Suppression of soil-borne plant pathogens in horticultural systems through microbial interactions

Joeke Postma - 07/03/2013

Disease-suppressive soils

Many examples:

- Take-all decline: reduction of Gaeumannomyces graminis (Raaijmakers & Weller, 1998)
- Pythium suppressive soil (Lifshitz, Stanghellini, Baker, 1984)
- Fusarium suppressive soil (Alabouvette et al., 1979)
- Rhizoctonia decline (Postma et al. 2010)

Mechanisms of disease suppression

- Abiotic conditions: structure, moisture, pH,
- Biotic interactions: soil is full of organisms competing for nutrients and space!

parasitism

antibiosis

competition

"living soil":

- Bacteria: 10⁷-10⁹ cfu/g soil;
 5000-14000 species
- Fungi: 10⁵-10⁶ /g soil ; 50 m/g
- Algae: 10⁵ /g soil
- Protozoa: 10⁴ /g soil
- Nematodes: 10² /g soil
- Arthropods: 2-5 10⁴ /m²
- Enchytrae: 4-20 10³ /m²
- Earthworms: 0-1 10³ /m²

Enhancement of soil suppressiveness

Use the natural treasures of the soil!

- Enormous diversity of beneficial soil organisms
- How can they be stimulated?
- Can soil suppressiveness be enhanced?

Difficulty:

- Pathogens are sensitive for different mechanisms
- Management has different effects on different pathogens

Example 1: organic matter

"Topsoil" experiment at PPO-Lisse (Gera van Os)

Bioassay with different pathogens Importance for disease suppression

	Organic matter	Soil biota
Meloïdogyne	++	++
Pratylenchus	+	+
Pythium	+	++
Rhizoctonia	-	+

Example 2: specific organic compounds

- Enhanced disease suppression of Rhizoctonia solani
- With yeast, chitin, animal waste products
- Not with plant-derived materials

Soil-less systems

Advantages:

- Independence on soil type
- High yield
- Increased quality of products
- Better control of growth
- Pathogen free start !!!

Disadvantage:

- Sensitive for infections!!
- No/poor microbiological buffering capacity

Microbial populations in substrates

Substrate	Culturable bacteria	Remark
Natural soil	10 ⁸ -10 ⁹ CFU/g	Enormous diversity; strong competition between MO
Fresh peat	10 ⁴ -10 ⁸ CFU/g	No plant related MO:
New rockwool	10 ⁴ -10 ⁶ CFU/g	no pathogens, no beneficials

Diversity: low

Fresh substrate lacks biological buffering capacity

Challenge:

How to enhance suppressiveness in soil-less systems?

- Improved physical and chemical conditions
- Microbial enrichment: used rockwool is often suppressive
- Search for suppressive substrate and identify the suppressive component
- Addition of biocontrol agents
- Addition of plant strengtheners or elicitors

Suppressive substrate

- Used rockwool is suppressive to Pythium aphanidermatum
- Suppressive microflora can be translocated to sterilized rockwool
- Suppressiveness correlates with bacterial diversity & CFU of streptomycetes

Biocontrol of Pythium in rockwool

- Lysobacter enzymogenes 3.1T8
- Isolated from cucumber root tips grown in disease suppressive rockwool
- Surfactant, protease, lipase, chitinase
- Antibioticum: dihydromaltophilin
- In vitro: inhibition of Pythium growth
- Effective control of P. aphanidermatum in

ebb & flow system

No commercial product

Folman et al, 2003 Postma et al, 2009 Nijhuis et al, 2010

Biocontrol & compost

- Reduction of disease by compost (20%) added to peat
- Reduction of Rhizoctonia with Verticillium biguttatum
- Reduction of Fusarium wilt with non-pathogenic Fusarium oxysporum

Biocontrol combined with P-mobilisation

- Selected bacteria:
 - Antagonistic against plant pathogens
 - Phosphate solubization capacity
 - Root colonization
- Controling Pythium and Fusarium in tomato bioassays

Postma et al, 2010. Applied Soil Ecology

Organic substrate

- Phytopthora cactorum in strawberry plants
- Improvement of substrate, e.g. addition of compost ?
- Controlling disease with antagonistic bacteria/fungi ?
- Antagonistic bacteria are present in the rhizosphere
- Difficult to control Phytophthora!

Summary

	Pathogens can be present	Pathogen-free plant material
Soil : crop history & infections	Symptoms depend on suppressiveness of the soil	Healthy crop, limited crop damage by pathogens present in the soil
Substrate: new & clean clean e.g. young plants from outside	Healthy crop as long as infections are avoided	
		Disaster when infection occurs

Create disease suppressive substrate!!

Thank you for your attention

