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1. DRAINAGE OF A HOMOGENEOUS AQUIFER 

In the Netherlands two formulae are rather widely used for the 

computation of discharge, drain spacing or phreatic level. Both for­

mulae take into account the radial flow to the parallel, horizontal 

drains. 

The older formula of these two is obtained by assuming a 

completely horizontal flow, but instead of the thickness H of the 

aquifer between drain level and impermeable base (fig. la), a reduced 

thickness d (fig. lb) has to be introduced to take into account the 

influence of the radial flow (HOOGHOUDT, 1940). 

Fig. 1. Steady state groundwaterflow in a homogeneous aquifer. 

a. Real situation with partially penetrating parallel drains 

b. Imaginary situation with fully penetrating drains. 

Inflow, outflow, drain spacing and potential difference 

are supposed equal in both cases. The equivalent layer must 

have a thickness d < H 



4k(h -h ) 2 + 8kd(h -h ) 
N = U ?-£-2 !l-2- (I) 

N = downward flux through phreatic surface (in steady state equal 

to precipitation surplus P-E) 

U = discharge by drains per unit of horizontal area 

k = hydraulic conductivity 

L = spacing between parallel drains 

h = hydraulic head of the groundwater midway between the drains 

h = hydraulic head of the open water in the drains 

d = thickness of equivalent layer 

H = thickness of the aquifer between drain level and impermeable 

base 

B = wet perimeter of the drainage channels 
wp 

The parameter d depends solely on the thickness H of the 

aquifer below drainlevel, the drainspacing L and the wet perimeter 

B . Hooghoudt used infinite series to compute the parameter d (see 

tables in the original paper, HOOGHOUDT, 1940). These infinite series 

can be replaced by a closed expression containing hypwrbolic functions 

(LABYE, 1960). In spite of this simplification d is a rather 

complicated function of L, so that an explicite solution of L 

cannot be obtained in this way. However, equation (1) has the 

advantage, that it shows immediately that there is a second degree 

relation between h -h and N or U. 
m o 

Another formula valid for the same situation has been obtained 

by distinguishing a vertical, a horizontal and a radial component 

in the flow from land surface to drainage channel (see b, c and d 

in fig. 2 and ERNST, 1956, 1962, 1963). The potential difference 

between A and B has to be determined for each of the figures 2b, c 

and d. Addition will give the potential difference valid for fig. 2a: 

h -h = Ah + AhL + Ah , (2) 
m o vert hor rad 

with 

H2 

Ah - £ (H --Tg-) * £ ( h - h ) (3) 
vert k u 2H k m o 

m 



precipitation , phreatlc surface, 

Fig. 2. Separation of the groundwaterflow into three components 

for vertical, horizontal and radial flow: a • b+c+d 

Ah. NL NL 
hor 4k(H +H ) 8kH 

o m av 

(4) 

Ah = NLfi 
rad (5) 

H = average thickness of aquifer 
a.V 

Q = radial flow resistance 

By substitution of eqs. (3), (4) and (5) into eq. (2) 

2 
h-h = f (h -h ) + ^ - + NLfi 
m o k m o 8kH 

av 

or: 

k-N ,, , . NL XTT„ 
K m o 8kH 

av 
(6) 



Eq. (6) seems to be quite close to a linear relation between 

h -h and N, because in nearly all practical cases the coefficient 
m o 

(k-N)/k will ly between 0.9 and 1. However this is not a reason to 

consider eq. (6) very different from the second degree eq. (1). 

It should be born in mind, that not only H & v is depending on nm"ho, i.e. 

H = H +i(h -h ) , but that there is also a slight decrease in 
av o m o 

the radial flow resistance fi for increasing discharge. 

For the moment all non-linear effects will be discarded by 

assuming that only situations with small N/k and consequently 
small h -h have to be dealt with. This implies that eq. (6) can 

m o 
be replaced by: 

NL2 

h -h = -—- + NLtt (7) 
m o 8kH o 

o 

with 

ü - radial flow resistance for a nearly horizontal phreatic 
o 

surface. 

For a drainage channel with a half circular wet perimeter or 

with a width about equal to twice its depth (fig. 3a), the following 

expression can be used (ERNST, 1962): 

kn = — ln-l2- (8) 
o IT B 

wp 

© \ / ® 
\\, J'I eqs.(8)and (49) ~~"B~..V eqs.(9)and (50) 

'wp Bwp 

Fig. 3. Drainage channels with trapezoidal wet cross-sectional area, 

a. Width about equal to twice the depth, which case is fairly 

equivalent to a half circular shape. In the homogeneous aquifer 

eq. (8) can be used. In case of a two layer aquifer see fig.10 

and eq. (49). b. Width much larger than depth, which case is 

about equal to a zero depth. For a homogeneous aquifer and a two 

layer aquifer the eqs. (9) and (50) can be used respectively 



When the depth of the channel is small as compared with the 

width (fig. 3b), the radial flow resistance ÇI can be determined 

by means of (ERNST, 1962): 

i 4 H 

tó = — l n - ^ - (9) = — I n — r = 
O TT TTC wp 

The decrease of Ü, with increasing discharge q = NL through 

each of the drainage channels, is a rather complicated problem, 

which has not been investigated thoroughly up to now. For a 

homogeneous aquifer both the depth H of the impermeable base, the 

shape of the drainage channel (p.g.: slope a, see fig. 4) and the 

discharge intensity q should be taken into account. 

X _ V V 1 / 4 

^7 7*. 

0 T5=ckB wp 

Fig. 4. Nomograph for the decrease in radial flow resistance ÇI with 

increasing discharge q for a wet cross-sectional area like 

shown in right hand side of this figure (ERNST, 1962, fig. 

28c). The water depth is assumed to remain constant 

The magnitude of the decrease of fi can be read from fig. 4. 

Because in most practical cases q /kB < 1, it can be assumed that r ^o wp 

this decrease is not of much importance,except for flat slopes and 

very large discharge intensities. 

Another question which has still to be discussed is about the 

applicability of the preceding formulae on very thick aquifers. 

Both expressions (8) and (9) are not to be used in case of very 

large H /L-values. It can be seen immediately, that use of these 

equations for H = °° would lead to h -h = °°. It is obvious, that 
o m o 



for increasing H there must be a gradually decreasing hydraulic 

head difference h -h , with the following minimum values for the 
m o 

cases corresponding to eqs. (8) and (9) (ERNST, 1956, 1962): 

H -»- «><J 
o 

h -h-m o 

h -h-« 
m o 

NL n L 
-T l n 5 — ïïk B 

wp 

NL , 
ïïk B 

4L 

(10) 

(11) 

wp 

Substitution of eq. (8) or (9) in (7) and comparison with eq. 

(10) or (11) shows that the accuracy is satisfactory if H < L/4. 

Formulae containing radial flow resistances can therefore be 

accepted especially for those practical problems in which H /L and 

(h -h )/L have no excessive values, 
o m 

2. A THIRD DEGREE EQUATION FOR THE DRAIN SPACING 

Still using the assumption that N/k and h -h are relatively 
m o small,eq. (1) can be simplified to: 

v, u NL 
m o 8kd 

(12) 

From (7) and (12) it follows immediately that 

H L + 8kH Q o o o 
(13) 

This expression for d can also be used in eq. (1) without 

neglecting the second degree term. Then only one condition has to be 

obeyed: H < L/4. For larger values of H eq. (13) can still be used 

by introducing a fictitious value H^ being about one fourth of the 

presumable value of L. 



Substitution of (13) into (1) gives: 

NL2 - 8kH • x \. „ 0 (h -h ) + 4k(h -h ) 2 

o L + 8kH ft m o m o 
o o 

or: 
M T 2 2 H L 

NL^ . „ o ( u ) 
7 7 ~ T T I (L + 8kH f2 ) (h -h ) 
4k(h -h ) z v o o m o m o 

A rather convenient method for the solution of this third degree 

equation in L is by means of a nomograph. For this purpose the follo­

wing parameters are substituted: 

2(h - h ) m o 

4 kH fi 
o o 

h - h 
m o 

h - h 
m o 
2H 

o 

(15) 

(16) 

(17) 

which results in: 

e i ( x 2 - , ) = T T ^ <18> 

A graphical representation of eq. (18) is given in fig. 5. For 

any arbitrary combination of a and ß the corresponding À-value can 

be read directly from this diagram. Finally eq. (15) has to be used 

in order to obtain the value of L satisfying the original eq. (14). 

The increasing elevation of the phreatic surface with increasing 

precipitation must result in a non-linear relation between N or U 

and h -h . This has been taken into account by HOOGHOUDT in his 
m o J 

equation (1) by assuming that the flow in the ground above drain 

level is the main reason for the non-linear behaviour. Neglect of 

the vertical component of the flow above drain level is not always 

allowed. The vertical flow is of importance if 0.2 < N/k < 1 and 
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also in two-layer aquifers with a rather small hydraulic conductivity 

in the upper region. Whatever the importance may be, the vertical 

flow component can be taken properly into account by addition of 

a coefficient k/(k-N), as has been shown by eqs. (3) and (6) 

(ERNST, 1956; KIRKHAM, 1961). 

It is obvious, that this coefficient should also be added to 

eqs. (1) and (14) respectively resulting in: 

4(k-N)(h h )' *• 8d(k-N)Ui Hi ) 
N 5L^ E_iL ( 1 9 ) 

and 

L2 

N 2 L Bt, ,. . v . .,. _,, N2 
L 8H (h -h ) + 4(h -h ) (20) 

k-N L + 8kH ü o m o m o 
o o 

Equation (18) remains valid with the following expressions for X, 

a and S , being slightly different from those used before: 

2(h -h ) Vk-N 
m o " 

(21) 

4kH n . , M o o \ / N 
h -h Vk-N 

m o 

h -h 
m o 
2H ^1 

o 

= a (22 ) 

(23) 

In the analysis achieved by KIRKHAM and T0KSÖZ (KIRKHAM, 1958; 

TOKSÖZ and KIRKHAM, 1971a and 1971b) the horizontal flow above drain 
2 2 

level has been neglected, which implies that always d h/dN > 0. 

This involves that a comparison of these results with eq. (20) 

should be done in the first place for N << K. Under this condition 

Kirkham's formula (KIRKHAM, 1958) and formula (20) will give 

practically results except for H > L/4, where the combination of 

eq. (7) with (8) or (9) is failing. 



3. THE INFLECTION POINT IN THE h (N)-RELATION 
m 

In many practical cases a linear relation between N • U and 

h -h can be assumed without the implication of large errors. 
m o 

Introduction of special assumptions for the flow direction above 

drainlevel - horizontal flow or vertical flow - will result in 

non-linear relations with exclusively negative or exclusively 
2 2 positive values for the second derivative d h/dN . 

In the preceding chapter it has been shown, that from a 

fundamental point of view a more satisfactory relation can be 

obtained by means of the third degree eq. (20), with both positive 
2 2 and negative values of the second derivative d h/dN . The conditions 

under which for practical application a linear or non-linear relation 

might be assumed, can be most easily discussed by writing equation 

(19), in a slightly different way: 

N 
k-N 

(24) 

Equation (24) can also be written as: 

. , 2 2 x 4(y -a ) = — 
hm-h„.d 

(25) 

Fig. 6. Relation between hydraulic head h -h and precipitation surplus 
m o 

N dependent on d, L and k according to eq. (24) 

locus of inflection points 

10 



In each inflection point the second derivative must be equal to 

zero: 

^ f - 0 (26) 
à* 

By elimination of a, from eqs. (25) and (26), the locus of the 

inflection points is found to be: 

Vk-N 

h ~h +d . 
1 „ ~ (27) 

Eq. (24) and the locus of inflection points according to eq. (27) 

are shown in fig. 6. It can be seen that an obvious curvature is only 

possible for relatively large values of (h -h )/L or (and) d/L. 
m o 

According to Hooghoudt's tables the maximum value of d/L = 0.34. Large 
values of (h -h )/L can be considered as being exceptional under 

m o 

practical conditions. This implies that the influence of k/(k-N) 

will seldom be so large that the concave curvature will be 

predominating. The convex curvature, which follows from the 

Hooghoudt equation (1), is only of importance for relative 

small values of d/L. This cannot always be considered to be neglectable, 

especially for two-layer aquifers with k << k , which case will be 

considered in the next chapter. 

4. TWO-LAYER AQUIFERS 

The heterogeneous aquifer, to which Hooghoudt's formula can be 

applied equally well as to the homogeneous aquifer, is made up of two 

layers with permeabilities k and k„ and divided by a horizontal 

boundary running through the level of the open water in the drainage 

channels (fig. 7). For this case formula (1) can be changed into: 

8k„d(h -h ) + 4k,(h -h ) 2 

N = U = - ^ B L ^ ' m ° (28) 

11 



Fig. 7. Groundwater flow to partially penetrating drains. Situation 

comparable with fig. la, but in this case a two-layer aquifer 

with hydraulic conductivities k and k , respectively above 

and below the level of the open water 

In chapter 1 the vertical component of the flow above the drain 

level has been taken into account by eq. (3). The potential difference 

for the vertical flow in the upper layer can now be expressed by: 

Ah 
N(h -h ) 

m o 
vert 

1 - k2VVW 
(29) 

Analogous to the case of the homogeneous aquifer a simplification 

of the expression for Ah can be accepted by neglecting the second 

term between the brackets, giving: 

'N 
Ah =-£L (h -h ) vert k m o 

(30) 

The vertical flow can be incorporated in the Hooghoudt formula 

idding Ah ^ to the potential difference 
° vert v 

result is an expression similar to eq. (19): 

by adding Ah to the potential difference used in eq. (28). The 

8 ^ d(h -h ) + 4(h-h ) 2 

K . m o m o 

k -N k -N 
(31) 

The expression which has to be substituted for d can be found 

again in (13), but now with proper subscripts: 

H„ L + 8k_H fi 
2 2 2 o 

(32) 

12 



Substitution of eq. (32) in (31) and rearranging results in: 

N L - i 2 2 _ 

4(k,-N)(h -h ) 1 m o 2 2 o 
1 m o 

Principally there is no difference between eqs. (14) and (33). 

Therefore eq. (18) and fig. 5 can be used again for a solution of L. 

The parameters X, a and 3, are now: 

N - X (34) 2(h -h ) Vk-N m o 1 

4k2H2 f io v 
h -h v 
m o ' 

1 m o 

/ N 

k - N 

- fi 

(35) 

2k2H2 "l <36> 

5. SIMPLIFIED EXPRESSIONS FOR THE DRAIN SPACING 

Some attempts have been made to obtain simple expressions for the 

drain spacing. The first attempt was made by adding an empirical 

coefficient to the last term of equation (7): 

2 
h -h --57-TJ—. .. , , — T T + ßoNL" (37) 
m o 8k0H„ + 4k,(h -h ) 2 o v 

2. l 1 m o 

with 

K2H2 1 
ß 2 " k 2 H 2 + ikl(hn-ho) = 1 + &, ( 3 8 ) 

The introduction of the coefficient g was done with the intention 

to avoid the use of more complicated expressions for Q. This results 

in an equation of the second degree in L: 

13 



, N 2 2 o 
m o 8k„H„ + 4k,h 

(39) 
2 2 1 

However, eq. (39) is only sufficiently accurate if 

aß Ä- 2k Ci /N/k < 0.1. This is enough reason to reject eq. (39). 

By solving L from eq. (7), adding a second degree term in h 

similar to eq. (1) and using the radial flow resistance ß„£2 similar 

to eq. (37), a simplified expression of satisfactory accuracy has 

been obtained, namely: 

-r 2. 

NL2 = 4k,(h -h ) 2 + N 1 m o 

/ 9 8k D (h -h ) 

- ̂ 2Wo + ïA^^V + Nm ° (40) 

Introduction of the parameters A, a and 3. (withvN/k instead 

of\N/(k -N) permits a shorter writing of the last formula: 

A = 1 + 2(1 + ßj) 
4(1 + ßj)' 

(41) 

2(h -h )Vk. m o ' 1 
?• - A (42) 

4k„H„n 

h-=h- v k , = a 

m o » 1 

(43) 

2k2H2 
(44) 

A nomograph of eq. (40) is shown in fig. 8. The brpkon lines in 

this figure make clear that the differences between eqs. (33) and 

(40) are so small that they will be hardly of importance in practical 

applications. 

14 
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6. THE DRAIN SPACING FOR A THREE-LAYER AQUIFER 

Because eq. (33) is applicable to two-layer aquifer's, with 

the restriction that the interface between the two layers has to 

be of the same depth as the level of the open water, it seems 

profitable for practical application to investigate also the case 

of an interface below the bottom of the drainage channels. This 

can be done by passing over immediately to the consideration of 

three-layer aquifers like shown in fig. 9. 

Fig. 9. Parallel drains in a three^layer aquifer 

Eq. (33) can be adapted to such three-layer aquifers by writing 

k„H„ + k»H instead of k H . Moreover a resistance f2„Ä will be 

introduced for the radial flow in the two layers below the open 

water level. This means that hardly anything new will be met in 

the following eqs. (45) .... (48). 

NL 
2(k2H2 + k3H3)L 

4(k,-N)(h -h )' 
1 m o 

kl(hm-ho){L+ 8(k2H2 +k3H3)fi20} 
(45) 

Eq. (18) is again valid when the following expressions for A, a 

and 3, a r e used: 

2(h 
: \/XI = 
-h ) Yk-N 

(46) 
m o ] 

16 



Yk.-N 

4(k H + k H )n 
h - h Vir-« - « (47) 
m o 

VVV 
2(k2H2 - k3H3) 

(48) 

t For the application of the preceding equations the determination 

of the transmissivity for horizontal flow in each of the three layers 

is required. This will give no special difficulties compared with 

the more simple cases. So there remains only the determination of 

the radial flow resistance fi„_ as a new problem, asking for a 

separate treatment. 

Fig. 10 is showing a nomograph by means of which a determination 

of radial flow resistance in two-layer aquifers can be obtained. 

In this nomograph only k„/k and H /H are considered as variables, 

while variations in size or shape of the drainage channel and the 

phreatic surface are neglected (ERNST, 1962, 1963). ^s^^ 

Fig. 10 depends mainly on the assumption that B = H„„ and that 
J wp 20 

moreover the discharge q is so small that variations, comparable 

to what has been shown in fig. 4, are of no importance. Only for 

these conditions fig. 10 is giving immediately the corresponding 

radial flow resistance Œ' . For arbitrary values of the wet perimeter 
B , but anyhow not larger than H„„, the real radial flow resistance 
wp J 20 

Q can be computed by means of eqs. (49) or (50): 

" k2n2o • V 2 0 + 7 l n iF < 4 9 > 

wp 

1 4H20 

V20 = V20 + 7 ln IT5" (50) 

wp 
xi' in which formulae: 

f2„ = radial flow resistance for a two layer aquifer with a 

nearly horizontal phreatic surface 

thickness of layer wit! 

boundary of this layer 

H„- = thickness of layer with k between drain level and lower 

17 
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Which of the last two eqs. has to be applied depends on the general 

shape of the channel, respectively for relatively deep and relatively 

shallow channels as shown in fig. 3. 

7. DISCUSSION 

Use of equations with logarithms - like eq. (8) or (9) - for the 

determination of the radial flow resistance Q may cause relatively 

large errors. This might be considered as a major imperfection in the 

presented system. In order to show to which extent this is an objection 

for practical use, eqs. (7) and (8) will be applied on the drainage 

situation in a homogeneous aquifer (fig. 11). 

k(hm-hg) _ 2 ln J. \ N I 

Fig. 11. Graphical representation of the hydraulic head difference 

h ~h for the symmetric 
m o J 

of constant thickness H 

h -h for the symmetric drainage of a homogeneous aquifer 

By addition of the logarithmic term to the ordinates in fig. 11, 

the influence of the channel size (irr = B ) has been eliminated. 
o wp 

The full drawn line is giving the exact relation, while the less accurate 

19 



relation according to eqs. (7) and (8) is represented by the 

broken line. It is obvious that for increasing H/L above 0.25 

the error is rapidly increasing, while for smaller H/L the error 

is completely unimportant. 

For the same reason the new eqs. (14), (20), (33) and (40) should 

also be applied with caution when H/L > 0.25. This is even more 

valid for the heterogeneous aquifers dealt with in the preceding 

section when (H +H ) L > 0.25 and k » k . 

Some authors (HOOGHOUDT, 1940; . VAN BEERS, 1965) have 

stated that it makes hardly any difference if the aquifer at a 

depth below 0.25 L is permeable or impermeable. Neglecting the 

deeper part of the aquifer is fairly correct, in all those cases 

that the aquifer below 0.25 L will not have a very large 

conductivity. 

In order to show the influence of the permeability of 

deeper layers, e.g. below a depth 0.25 L, fig. 12 has been 

constructed by means of available exact information (KIRKHAM, 

1961; T0KSÖZ and KIRKHAM, 1971 b). This figure gives a comparison 

of required hydraulic head differences for two-layer aquifers, 

which are only different in k„-values. The small H /r -values 

given in this figure, will be rather exceptional. When H /r = 8, 

it follows that B /L = 0.1. 
wp 

By fig. 12a it is shown, that the assumption of impermeability 

below a depth L/4 can be rather bad, especially for Largo <f-<ttœ-&{ 

H /r -values. Even larger errors have to be expected when the 

second layer is neglected for values of H/L smaller than 0.25. 

From fig. 12b it can be concluded, that in case of a complete 

ignorance about the deeper layers, the errors will stay between 

fair limits by assuming that the permeability k holds also for 

the deeper layers below L/4. 

20 
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Fig. 12. The ratio between the hydraulic head differences for two 

symmetric drainage situations, which are only different 

in the k -value, a. Comparison with k„=0. b. Comparison 

with k =k . c. Comparison with k«=°° 

Fig. 12c shows that introduction of k„ = °° can only be 

recommended in those cases that k„/k. > 3. 

A main result of fig. 12 is that it shows the relatively large 

influence of the H,/r -values on the magnitude of the errors caused 
l o 

by introduction of wrong values for k„. When relatively large drains 

are excluded, some ignorance about the deeper layers is much less 

harmful. 

Finally it must be born in mind that the question about the 

errors caused by inaccurate values for the hydraulic conductivity 

of the deeper layers, has not to be confused with the applicability 
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of the drainage formulae presented in this paper. The statement 

that these formulae should not be used for very thick aquifers 

(H/L > 0.25) has to be maintained. This restriction can- hardly be 

weakened for relatively small drains, because even for B /L = 0.003 
J wp 

with H,/L=l, H /L=l and k./k =10, it can be shown that a plain use 
of these formulae will result in a 25%-error. > 

SUMMARY 

The drainage formula proposed by Hooghoudt can be combined with 

one proposed by the author. This results in a third degree polynomial 

equation for the drain spacing. The resulting formula can be applied 

to the steady state groundwater flow to parallel drains in homogeneous 

aquifers and in two-layer aquifers with the interface at the same 

level as the open water surface in the drainage channels. For some 

three-layer aquifers the same equation can be used in combination 

with a nomograph for the radial flow resistance in a two-layer 

aquifer. An attempt has been made to obtain a simpler formula by 

adding an empirical coefficient to the radial flow resistance. The 

result is a slightly less accurate second degree equation. A 

comparison of these formulae with the results of Kirkham and 

Toksoz did show only small differences. The formulae presented in 

this paper can therefore safely be used for practical applications, 

however with the condition that the drainspacing must be at least 

equal to four times the total thickness of the aquifer. 
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