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I, INTRODUCTION*

One of the critical assumptions in modelling water movement in
soils under unsaturated conditions is the one relating hydraulic con-
ductivity K to pressure head ¥. A survey by RAATS and GARDNER (1974)
lists six empirical relationships that have been used.

The choice of the K(¥) relationship is not the only problem,
however, applying data from laboratory experiments to field sites can
also be of concern, It is recognized that soil in its undisturbed
state has different properties than disturbed soil samples (WESSELING
and WIT, 1966). Even when taking undisturbed samples, the variation
of soil properties within a small region of what appears to be homo-
geneous soils, may be such that problems will arise.

This is called spatial variability and is addressed by WARRICK et al.
(1977a, 1977b), NIELSEN et al. and MULLEN and PARASHER at the Sympo-
sium on International Drainage in Field Soils (see EGS abstracts,
1978).

A natural question that arises is: "How sensitive are the results
from a mathematical model of flow in unsaturated soil to changes in
the X(¥) relationship?"

In this paper two types of functions are used: exponential varia-
tion of K with ¥ (see e.g. GARDNER, 1958) and a variation according
to a power law (WIND, 1955; WESSELING, 1957). The soil used is a
heavy clay soil for which J. BOUMA** did measurements with a so-called

crust method (for the wet range) and a dry hot air method (for the

*This work was done while the first author was on leave from the
Department of Mathematics of the University of Arizona, Tucson, U.S.A.
for two months of the summer 1978

**The authors are grateful to Dr. Bouma for allowing access and use of
some preliminary data. They also acknowledge useful discussions re-
garding this topic




dry range). For details see BOUMA (1977). The flow cases studied are
taken from the investigations of FEDDES (1971) at the groundwater
level experimental field Geestmerambacht and concern a red cabbage

crop grown on a sticky clay soil in the presence of a shallow ground-

“»

water table.

Specific sink functions will be taken and comparisons will be
made between pressure head (log v = pF) profiles as typical in the
field,

In general one can state that the sensitivity of a mathematical
model to changes in hydraulic conductivity is not simply an academic
question, The answer to this question should provide some assistance
in determining how much consideration should be given to the varia-
bility of soil types.

Analytic solutions are usually restricted to specific, mostly
simplified flow cases. However, they provide exact answers for the
situation investigated and can thus be used to check complex numerical

schemes, for which it is difficult to detect errors.



II. HYDRAULIC CONDUCTIVITY AS AN EXPONENTIAL FUNCTION OF PRESSURE
HEAD

a, General considerations

Darcy's law states that the velocity of water moviné in
unsaturated soil is proportional to the gradient of the total head,

i.e.
v = — KVH m

The constant of proportionality, K, is called the unsaturated hydrau-
lic conductivity and is usually taken to be a function of the pressure
head Y(H = ¥ - z if z is positive downward into the so0il),

If we now apply the principle of conservation of mass in the
horizontal region between the water table and the soil surface we
obtain

v

3% 8 )
for an equilibrium situation where S is the volume of water used by
the roots per unit volume of soil per unit time, Substitutingeq. (1)

into eq. (2) gives for strictly vertical flow

- d dH d ay
EE(.&?:[=H.Z.E<<E-1>:[=S . (3)

We now assume that the unsaturated hydraulic conductivity changes as

K = K expla¥) (4}

and define a new independent variable, ¢, by

y
¢ = J K(¥) d¥ = K/a (5)

o0

This transformation has been used by GARDNER (1958) and others to

cbtain solutions to problems in soil physics. It is also known as




Kirchhoff's transformation (see IRMAY (1966)). If we differentiate the
first part of eq. (5) and substitute the result into eq. (3), the

final form of our differential equation becomes

d —d—i_ = -
Tle a%]- S , 0<z<L (6)

For a specified sink function, S, we seek solutions of eq. (6)
subject to specified boundary conditions at z = 0 and z = L, If a

surface flux is specified at z = 0, we need

g4 _ _de - =
K - a2 + a¢ vy at z =0 (7)

The second boundary condition specifies the value of pressure head

of the water table. In terms of ¢ we can say

b= ¢ at z =1L (8)

b. Sink functions depending only on z

If S = 5(z), eq. (6) may be directly integrated and yields
F4

%% - 0 = I $(z') dz' - v (9)
0

(note that we have already satisfied eq. (7)). If we rewrite the left

hand side of eq. (9) as

gi__ ab = eaz_i_(ewaz

dz dz ¢)

we can integrate eq. (9) and obtain
L
e 22 ¢ = - J I S(z') dz' - v, e %% 4z + ¢ (10) T
z|0 '

. -l ,
The constant C in eq. (10) must be chosen as ¢0 e *" in order to

satisfy the boundary condition at the water table (eq. (8)).



Carrying out the only integration possible for a general S puts eq.

(10) in the form

L 1"

-a(l-z) _ Q02 J e 02

Z
$(2) = vo/u + (¢° - vola) e J S(z') dz'dz"
0

Z

(n

For any desired water uptake pattern as a function of z, the integrals

in eq. (I1) may be evaluated and ¢(also ¥) is determined.Among the exam-
ples of WARRICK (1974) is one where S equals the constant a. This gives

ea(z--L)

¢(z) = VO/G + Eﬁ¢o-vo+a(L + llu)i[ ahl - a(az + l)/ot2

(12)

c. Sink functions given implicity in

terms of exp(a¥)

]. S

a, + a¢

1
Consider now the solution of eq. (6) subject to boundary condi-
tions (egs. (7) and (8))when the sink function, S, is not specified
~a priori as a function of depth, but is allowed to change as the
pressure head changes. As long as we avoid saturated conditions, we
can account for increased water uptake by plant roots under wet con-
ditions and decreased uptake for dry conditions. LOMEN and WARRICK
(1976) have given solutions for five different sink functions over a
d e e p water table. These solutions become quite lengthy and will
not be repeated here. However, a misprint in the expression for 83
of Table | of LOMEN and WARRICK (1976) should be corrected where
D is actually given by

-0z -Va/a -0z,
D=(a-+ae ) e exp(va e /a)

-z

+ (a +va e

h® ¥

1) e/37a exp(- Ya e 1/a) (13)

Unfortunately these five functions typify irrigated soils where most

of the water uptake by roots occurs near the soil surface. In much




of the low lying areas of the Netherlands a shallow water table causes
the water uptake pattern to have a different distribution. FEDDES

(1971) reports a lack of root activity near the soil surface as well
as close to the water table. These facts will be included in the sink

functions used in the remainder of this report.

The first example assumes that the sink function is linearly re-

lated to the matrix flux potential ¢. Thus we write

0 0 <z < z
S = a, +a ¢ z) <z < 22 (14)
0 z, <2< L

In the central layer (zl <z < ZZ) we have the differential equation

L9 i, - ab - a; = 0 (15)

d2¢ d¢
2-—&-——_
dz

First notice that if we add al/a to a solution of

2
d d
“f-agt-aw=o0
dz

» : (16)

we have the solution to eq. (15). Eq. (16) is a linear differential
equation which can be solved by assuming a solution in the form of
an exponential and determining the constant from eq. (16) by the

1 2
can be obtained using the techniques of Section II.b. A solution of

quadratic formula. Solutions of eq. (14) for 0 < z < z, and 2, < z < L

eq. (14) over the entire range of z may be written as

v o + A &*? 0<zc<z
o 1
¢ = B e™ +C e™ - aI/a z) <2<z, (17)
% + D(e*? - eaL) z, <z <L
where m = (o - Va2 + 4a)/2 , n = (o + Va2 + ba)/2.



This function satisfies the two boundary conditions (eqs.{7) and (8))
automatically. The four arbitrary constants (A, B, C, D) remaining in
eq. (17) are determined by demanding that ¢ and its derivative be
continuous at z = z, and 2y This is equivalent to having the pressure
head, ¥, and the flux continuousg., This will result in solving four

equations in four unknowms,namely

a4z, mz, nz,
- Ae + Be + Ce = vo/a + a]/a
az, mz nz,
- oAe + mBe + nCe =0
(18)
mz nz 0z
Be 2 + Ce 2 + D(emL - e 2) = ¢o + alla
mz nz az
mBe 2 + nCe Z_ aDe 2 =0
The solution of eq. (18) is
e 2 2, ™
A=e E%(vo + aa]/a) + (n”" -m“) e ¢|/(na)
' -mz, {n-m) z,
B = (vo + ualla) e - me cl/n
(19)
-az m(z,=z.) nz nz_ +m(z_-2z_)
D=e [é(vo + ual/a) e 2 1 + n2 e 2 _ m2 e ! 21 é]l(nu)
u(L—zz) m(zz—z])
o+ ual/a - (vo + aa‘/a) (1 + m/ne ) e
C= nz, u(L—zi) nz]+m(22-zl) a(L—zz)
e “(m + ne )~ me (1 + m/ne )

Any time there is a lot of algebra involved in obtaining a solu—
tion, it is reassuring to have special cases to check against. In

this situation we have three such check points:

~ If we let zl + 0 and z2 + L we should have the same solutions as

36 in LOMEN and WARRICK (1976). Taking these limits achieves this

agreement if we make the associations B + A], C - B]’ a, =+ a

1

and L + zl.



- If we let z,, = L, » « and zl -+ 0 we obtain SI of LOMEN and WARRICK

2

{1976). In this case note that we can write (if z, = L and z, = 0)

2
C as

e-ﬁL n[¢0 +'alla] - (vo + qalfa)

C=

ne(n-m) L. m

before taking limits to get

lim
L & o

=0

and

lim

L B = (vo + ualla)/n

This gives the proper agreement by noting a, = - a¢_.

— The final check case is to let z, = 0, z, = L and take the limit as
a + 0. This will prove that the resulting ¢ agrees with that of eq.
(12) which was derived for a constant uptake function. Since a
appears in the denominator of several expressions in the solution
much manipulation is required along with the use of L'Hopitals Rule.
No details will be given as the computation is long and messy,

~ however, the final conclusion is that the expressions agree.

A computer program was written in Fortran to evaluate the func-
tion in eq. {17) and the constants in eq. (19). The listing appears
as Fig. 1 with sample output as Fig. 2. The effects of a, and a on

1
the sink function can be observed in Fig. 3.
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AL L
SINK = SM(Z=l1}/(ZM=Z1IEXP((ZMaZ)/(IM=Z1))
PROGRAM SENK(INPUT,O0UTPUT)
2 0, .
= ¢
AD(9:8,ENUB90) SM,B,Z1,ZMyL2,0L,HL,8N,8A
RMAT (2E10,3,7F8,3)
RMAT (F10,1.,7E10,3)
INT 30
INT 1
INT 2,8MeBs21,2ZM;22,L oML, 3N, SA
RMAT (/1H 9%, 2H3M, B, LHBpTXp2HZLpbX s 2HIM,bXp2HL2,6X, 1HL , 7K, 2HHL
Xs1HN,12H SMALL A/)
RMAT (1H1)
= 2,7182818
2 & EXP((IM=22)/({Zm=21))
=y0
ay) + SMa(ZM=Z1)*E
C2 = SMwa(Z2 ¢+ IM = 2, %Z1)%ELQ
0.
O
SAA(AGS(HL) ) aw (] ,~SN)/(Sh=],)=C3InL
D3 + (L3=C2)xf25Mn(ZMmllIn{Z242 IMu3 RZ1)REZR
D2 + SMx(Zlmell)n(Z , nIM=])RE
SMx( (ZM=lf)aEw(Z24ZMe2 w71 INEL2)
INT S0, TU ’
INT 3
HMAT L/1H 959X, 2HCY,8X,2HC2,8X,2HC3, TX,2HCU,BX,2H01 ,8X,2HD2,9X%,2H
p8X,2H04,11H UPTAKE/)
INT ﬂtCchZ:C3rC“le:UE:D$ G4, Tu
RMAT (9E10,3)
RMAT (1X,E10,3)
InT 57
80 JEl,21l
2 5,n(J"1)
= EXPL(ZM=L)/(LMn=21))
(£.67T,21) GO TL 10
s Ci»Z2 + Ui
s O,
NK = ¢,
U=l
fo 12
(£.61,22) 60 Tu 11
= SMnR(IMeZ1)n(L ¢ 2., 2lM=3 %21 )*El + (2%l + D2
= SMa((ZMeZ])xE = (Z+ZM=2 *I1)%EZ)/TU
NK = SMa(Z=Z]l)nEL/(IM=21)
U s =SMa(l + ZMe2 wZ1)wEZ + Ca
To 12
= C3 «Z + U3
% 1.
NK = U,
s C3
»(ABS({1,=3N)XHH/SA))x*(1,/(1,=8N))
UX & wi,%xFLU
I =H + 2
z ALUGLCG(ABS(PS3]1))
BZ 2 FLUN{=] #H)**FN/SA
RMAT(/1H ;6*;!“[;4!;15ﬂ¥0rﬁL HtAD FS1,5X, 16HPERCENT UP SINK,8X
HHH;OX;QHFLUK:&X:“H PF /)
LT 6ol sH e PSTI,UR,SINK,HH,FLUX,PF
HTINUE
= h * 1

1. Program listing for S of eq. (14)
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Fig. 3. Water uptake patterns for an implicit sink function (eq. (14))

The top curve in Fig. 3 has a = 10_3, a = 10_4, the middle curve

—4 -3 S -4
a=10 7, a; = 10 ~ and the bottom curve a = 10 7, a = 10 . Notice
that changing a; from 10-4

middle one) almost has the exact effect of shifting the curve by the

to 10_3 (from the bottom curve to the

amount of increase and retaining the same shape.(Recall a is the
constant term in the sink function). However, a similar increase in
a causes the shape of the curve, as well as the extent, to be dras-

tically altered.

c.2. S = a(¢ = b) exp(- 2az)

A second form of the sink function was used to incorporate an ex-
plicit depth dependence in addition to the dependence on ¢. Specifi-

cally we consider the form

11



( 0 0 <z < z
S = < ae_zaz(¢ b) z) <z <z, (20)
SM z, <z < z4
N 0 2y <z <L
The solution of eq. (6) with this sink function is
Aleaz + vo/a 0 <z« z,
¢ = b+ A2 exp(/Zé-aZ/a) + B2 exp(- /Eé-az/u) 2, <z« 22(2!)
- SMz/a + A3eaz + B, z, <z <z,
SRR G 2y <z <L

Notice that the boundary conditions imposed by egs. (7) and (8)
have already been satigfied by the solution in eq. (21). The six re-
maining arbitrary constants may be evaluated in the manner illustrated
in the previous section by requiring ¢ and its derivative to be con-

tinuous at z = 21y 2, and Zye The resulting values for Al’ A A

22 Bys Az,

B3 and A4 are summarized at page 13,

d, Further considerations

FEDDES and ZARADNY (1977) consider a sink function which depends

upon ¥ as
" 0 Wl <Y <Q= TO
SM Tz < ¥ < Wl
S =1 S¥-¥)/(¥,-¥) vy <v<w (22)
0 ¥ < WB

12



Constants for eq. (21)

-¢ -z -0z

2 1
fo) + B2 exp(- vYae

e
]

| !}2 exp(Vae ]/a) +b - vo/c;[ e

A, = [ay,c; ~ 2 ,c,1/D o .
311822 7 #12%21
2 = [,y = a3;c)1/D

. - { R fr_—uzz /__-azz e -az, -az,
5= {{- 4, exp(Vae /a) + B, exp(- Yae fa)} Yae + SM/a e Jo
a(l-2.)
By = 4, *+ Syzafa + (e O - D/a” - &l a,
-az
A4 = A3 - SM e 3/u2
~az, -z,
ay, = (Vae + o) exp(Yae fa) ,
~az, —az,
a, = (o - Vae ) exp(- Yae fa)
oz, a(L—zz) 0z,
a,, = (o + Yae (1 - ) exp(Vae [fa)
7 a(l-z,) -0z
a.. = (a - Vae 2(1 -e 2 ) exp(- vVae 2/a)
22
c1 = Vo - ab
' a(L—zs) a(L—zZ)
¢, = a(¢° - b) + SM(Z3 - zz) + SM(e - e Ya

The region ¥, < ¥ < 0 is near the water table and below the

1

root zonme (at least in the absence of infiltration from the surface),
Tz < ¥ < T] denotes the zone where maximum water uptake occurs while
for ¥, < ¥ < ¥, uptake decreases until the "wilting" point is reached
‘F-
at3

The relationship between ¥ and the matrix flux potential, ¢, is

13



¢ = Ko/a exp{a¥), so if ¢i = ¢0 exp(u?i), i=0,1, 2, 3 we can
directly transform eq. (22) into

0 o) <9 < b
S = | Sy 4y <8 < ¥ (23)

SM(lﬂ d} - 1n ¢3)/(1ﬂ ¢2 = In ¢3) ¢3 < ¢ < ¢2

; 0 0 <¢ < ¢y

Several attempts were made to solve the differential equation in
the interval ¢3 < ¢ < ¢2 but with limited success. The change of

variables Y = 1n ¢ will change
$"(2) - a¢'(2) = A + B 1In $(2) (24)

to

T(z) + (T'(2))% - a¥'(z) + (A + BY(z)) e T(Z) o g (25)

Now change the dependent variable from Y to p and the independent

variable from z to Y by the relationship
dr _ s0 z = I 4
P p(Y)

This results in an Abel equation of the second kind (see KAMKE (1956)
Chapter !, 4, 114)

pp' + p> —ap - (A+BY) e =0, p=p(¥) (26)

We can obtain an Abel equation of the first kind (4.10) KAMKE
(1956) by letting p = 1/u(Y), namely

fl
o

u' + (A + BY) e—Yu3 + au2 -u {(27)

KAMKE lists further transformations to be carried out but I
sincerely doubt that evaluating all the integrals required to find

¢ again will result in a tractable expression. No more attempts were

14



made along this path of endeavor.
A different possibility is to expand ln ¢ from eq. (23) in a

Taylor series and obtain
¢" - ap' = A + B¢

We notice that for no infiltration and a water table, ¢ will
have small positive values near the soil surface and take its maximum

value at the water table. Thus an approximation would be

0 0 <z < z]

"o_ LI

¢ o 3 A + B¢ 2, <z <z (28)
S'H 22<z<23
0 z, <z <

which is the same as eq. (l4) if Zy = 24 The solution of this system

can be obtained very easily in the same manner of Section IJI.c.

15



III. HYDRAULIC CONDUCTIVITY AS A POWER FUNCTION OF PRESSURE HEAD

In the next analysis the form of hydraulic conductivity function
is chosen as a power function of pressure head. WIND (1955) and

. WESSELING (1957) both used the relationship

K=a(-¥)" , n>0 (29)

for conditions away from saturation., Recent experiments with the dry
hot air method by BOUMA (1978) down to ¥ values of -10° cm also indicate
that eq. (29) might be reasonable for heavy clay soils from the rather
wet to the‘rather dry range. Thus it seems appropriate to seek solu-
tions of the basic differential equation (3) for this situation, If

we have 8 = 5(z), eq. (3) may be integrated to obtain

. Z
a(- ‘l’)_nE—il-Z—— }j[ = j 8(z') dz' + C (30)
0
or
z
a'gé-— (- v)® J S(z') dz' + C| = a (31)
0

For general values of n this seems difficult to solve, even for
simple functions of S. Note even thoughn =1 makes the equation linear,
the solution is still not simple, so further efforts were not expended
along this direction. However, it was noted that solutions were
readily available if K was a power function of the t ot a1 head!

This assumption will be made in the following section.

16



IV. HYDRAULIC CONDUCTIVITY AS A POWER FUNCTION OF TOTAL HEAD

a.General sink functions

In the previous section we noted that some researchers have
assumed K = a(- ¥) . Since ¥ = H + z there is little difference be-
tween ¥ and H for small values of z or large values of H. For many
problems of interest this is the case so we take the hydraulic conduc-

tivity of the form

K=a(-o)" (32)

{We note that GARDNER (1958) also used a modified form of (29) as
K= a((- W)n + C)_] to have a finite value of K at ¥ = 0).

Now we seek solutions of eq. (6) written as

dla-m™ P -5 (33)

If S is only a function of z we can integrate directly and obtain

a(- B) " -g—g - I s(z') dz' + ¢, (34)

This term is also integrable as

L)

= J I S(z') dz'dz" + ¢z +e
00

_ a(- H)-n+l

-n+1 2

and may be solved for H yielding

" 1/(1—1'1)

. zZ z
H= - (n ; 1)({ I §(z') dz'dz" + ¢,z + cz) (35)
00 '

Solutions for H for specific sink functions S(z) will be obtained
and illustrated in the next section.

If the sink function is allowed to depend only upon H, S = S(H),

17



the differential equation in question, (33), can be written as

H"(z) - nf V[H'(2)]% - (- ©)™ S(H)/a = O

If one defines a new dependent variable by

dH . dH
p(H) = I > i.e.z= [ ETﬁT

one obtains a Bernoulli equation

n -
p'—nH‘-]p-[-g:-.F_)-—_—-——-s(H)Jpl

a

(36)

(37)

(38)

The standard way of solving this equation is by letting

Y = p2

yielding

2(- 2)%s(H)

Y'(H) - 20HY = =

(39)

This is a linear differential equation with an integrating factor

exp(J(— ity am) = B30

d (y-2nyy . 2(- B) "s(H)
FHH Y] -

or

Y(H) = HZ“[; J(- H) "S(H)/a dH + é]
For example if

S(H) = b{~- H)? +B,

YE) = 2[b- B/ (a - w- 1) + B(- H)

18

n+l

so we can write eq. (39) as

(40)

(41)

(42) .

/(a - D1/a + c(- B*®
(43)



i P —— e

1/2 and z must be

Notice that while Y(H) is completely determined, p = Y
determined from the integration in eq. (37).
For special cases this might not be so hopeless. In particular if
m=n=1.5 and B = 0, using DWIGHT (1961) 129.9, we obtain
g = > 2b/; : (44)
C°(D + 2)7/4 - C .

where D is an arbitrary constant of integration.
If we choose C and D to satisfy conditions of no flux at the soil

surface and H = HL at z = L we obtain D = 0 and

c = 2¢1 +V1 + 2bL2/aHL)/L2.

If m = n = | the golution can also be developed.

In practice the slope of K(¥) line will probably not be some
"nice” number so we will stop this approach and return to having
S = §(z) only.

b. Sink functions determined by conne c—

ted straight lines

The model of the sink function of FEDDES and ZARADNY (1977) which
depends on the value of the pressure head was mentioned before (see
eq. (22) in Section E.d). One of the outputs of their simulation
model is the change of this sink function with depth. Many of these
predicted sink functions can be quite closely approximated by straight
lines. For this reason a prescribed sink function was chosen as

illustrated in Fig. 4 and given by (45)

~

0 0 <z < zZ
Az + B zl < z < 22
5(z) = 9 Az, + B 2, < 2z <z, (45)
L 0 Zy <z <L

19



Az.+B AzZ,+ B S(z)

i<l

L

Y
z

Fig. 4. Sink with connected straight lines

The jump at z, can be avoided by choosing AzI + B =0,

The differential equation we must solve is from (33)

d dH
K] = 5@ - (46)
. e e dH

subject to the boundary condition - K 1z - Yo at z = 0, and to

H= HL for z = L (see eqs. (7) and (8)).Even though the general form
of the solution of eq. (46) has been given by eq. (35), it is instruc-
tive to rework each step. These intermediate results are useful in
their own right. If we integrate eq. (46) once with $(z) given by

eq. (45) we obtain '

-

CI 0 <z < z,
K %%-=7 Azzl2 +B + C, z <z<z (47)
(Az2 + B) z + C3 22 < z < Zq
[ €, 23<z2<7
dH

Now the flux is given by - K-HE s 80 1f we satisfy the flux boundary

20



condition at the surface and assume the flux is continuous,we obtain

2
v, - Az]/2 - Bz

g
i

| (48)

_ _ 2
C3 = 02 Azzl2

lp]
I

4" C3 + (Az2 + B) 24

Since K = a(~ H)_n the left hand side of eq. (47) is equal to the

a(- H)-n+]

P » SO one more integration vields

derivative of

¢ Clz + D1 0 <z < Z,
A23/6 + Bzzlz + C,z+D, z <z <z
a(_ H)-n+l 2 2 ] 2
HH - ——rT—-:-T-—-—- = ﬁ (49)
2
(Az2 + B) 2972 + CBZ + D3 2y <2< Z3
k CAZ + D4 z3 <z <L

In realistic situations a > O, n > 1 and H < 0 so the quantity HH
should be positive. This quantity is printed out in the output of
the computer program for evaluating the pressure head as a function
of depth. Negative values will occur when the specified water uptake
by plant roots is greater than can be supplied from the groundwater
table or surface flux,.
To determine the constants Di’ i=1, 2, 3, 4 we specify H at
z = L and then require that H, and therefore HH, be continuous through-

out 0 < z < L, This gives

Z aylm - _
D, =& /(n-1)-CL
5 )
Dy =D, + (A22 + B) 23/2 (50)
_ 2,, _,.3
D2 = D4 + (Az2 + B) z3/2 Azz/z
D, =D, + A23/6 + (C,-C,) z, + 322/2
1 2 I 2 1 1 1
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The values of a and n strongly affect the value of D4 which in

turn occurs in Dl’ D2 and D3. Thus not only can the lack of water
(surface flux or water table) give rise to inappropriate values of H,
(i.e. imaginary) but also possible combinations of a and n. The mathe-
matical requirement that H be real, implies that each of the expres-
sions on the right hand side of eq. (49) must be greater than or

equal to zero. For the case of no infiltration vy = 0 the soil will

be driest near the surface and this condition gives D1 > 0.

From eq. (50) this mathematical inequality can bewritten in terms of
aand n, but it is a non-linear inequality that cannot be solved exactly.
From eq. (49) we see that

1/(1-n)

H =-[(n - 1) HH/a] (51)

To avoid needless delays and messages in the printout for HH < 0, the
absolute value of HH ig used in this calculation. The wvalues of HH
should always be checked on the computer printout to make sure that
HH > O,

The last calculation we need to make will determine the water
uptake by plant roots as a function of depth.This is a straight for-

ward calculation from eq. (45) and yields

2

A(z" - zf)/z + B(z - zl) Z, <z <z

2

2 ¥ Z?)/Z) + B(; - zl) zZ,. <2z < z

Z
Uptake = J S(z') dz' = 4 A(zzz - (z
0

2 2
A(zzz3 - (22 + z])/2) + B(z3 - z]) zZ, <z <L

(52)

-

The various functions occurring for the sink consisting of straight

lines are summarized in Table 1.
The listing of the FORTRAN computer program that evaluates those fune-

tions is given in Fig. 5. The output of a typical run is given in Fig. 6.

s
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10

11

13

12

80

90
2
']
5

6
8

REAL L
OPEN 9,"aDATA"
OFPEN 10, "aLIST " ATTS"P"
vo = 0,
N = 0
. SINK wlTH TWO STRAIGHT LINESC(2%,22,2Z3.,L)
READ (9/,0,ENDEBG0) A,B8,71,22:23,LiHL,38N,54
WRITE (10,30)
WRITE (10,2) ApB,Z1¢Z2,73sLsHL,3N,SA
Cl = =Vo

C2 =z =AxZInZIn .5 = V) = @gnZ]

€3 = C2 » ,5%Anl2x22

C4 3 C3 + (AxZ2 + d)#Z3

D4 = SAx(ABS(HL)IAx(1,=8N)/(SN=1,)=Cl4nL

V3 2 04 + Sn(A%22 + B)»Z23x23

D2 = D4 ¢+ SH{ARZ2 + B)I%Z3%Z23 = AxJ2ax3 /b,

D1 = D2 + Anlland/o, ¢ (C2 = CLINZL + BaZlnlin,5

TU = An(Z2813 =« Sx(Z2%22 + [1%11)) + Ba{Z3=11)
WRITE (10,4) C1,C2,C3,C4,04,02,D3,04,TVL
WwRITE (10,%)

DO 80 J=1,21

1z S,x{J=1) _

IF(Z,61,21) GU TO 10

HH = Cixi + D1

Uk = @,

SINK = 0,

FLU = €1

GO TO 12

IF(Z,6T.Z2) 60 TO 11

HH & (AnZ/6, *+ ,SxB)wZn2 + C2%Z + D2

UP 2 (Ax S5a(InZedin]ll) + B2{l=21))/TU
SINK = ARZ + B

FLU = (AWZ¥,5 ¢ MIxZ + (2

GO Y0 12

IF(2,67.Z3) GO TU 13

HH = (AnZ2 +B)xZxiw .5 ¢ (C3InxZ + D3

UP = (An(Z2%2=,9n(22%Z2 + 21%21)) + Bw(2=21))/TV
SINK = A®22 + B

FLU = (AxZ2 + B)xZ + C3

GO Tu 12

HH & CawZ ¢+ D4

upP = 1,

SINk = 0,

FLU = C4

H o= =(ABSC(1 ,*SN)NHH/SA) ) *n{1,/(1,~8iN}}
FLUX = =1 %FLU

P51 = H +

PF = ALOGIOCABS(PSIL))

DHDZ & FLUw(=] wh)xn3N/SA

WRITE (10,6) ZoHePSI,UP,SINK,HH,FLUX,PF
CONTINUE

N 2N+

GO Tu 9

S10P

FORMAT (/1M »SX,1HA, 99X, IMByBX2HZ1 06X, 2HZ2)0X,2HZ3,6X,1HL»7X,2HHL,
*TXp AHN, 3X s THSMALL AZZtH ,2E10,.3,7F8,2)

FORMAT (/1H ,SX,2HCL,8X,2HC2,8%,2HC3,TX,2HC4,8%,2HD1,8X,2HD2,9X,
®2HD3, //1H s TEL0,3/71H »SX,2RDU, 7%, 6HUPTAKE/ /1M ,2E10,3/)
FORMAT(/1H ,6X,1HZ,4X, 1SHTOTAL HEAD PSI,5X,16HPERCENT UP SINK,8X
*,2HNH.6XQ“”FLUIf°K'4H PF /)

FORMAT (F10,1,7E10,3)

FORMAT (2E10,3,7F8,3)

Fig. 5. Program listing for S of eq. (45)
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Examination of water extraction patterns as determined from
measured data of FEDDES (1971) shows that roots do not stop as
abruptly near the water table as given by the models of Fig. 3. A
simple modification of this would be to use a slanted line Instead
of a horizontal one at zqe Such a sink function is given in Fig. 7.
Sipce the solution of the resulting syétem is so similar to that
just concluded, we omit all details and simply present the results
in Table 2. The only expression lacking is that of uptake, but that

did

is identical with K =— if we set v

dz 0 €, and C..

= (0 in Cl’ CZ’ C3, 4 5

Azy+B Az,+B S(z)
Y | ™ 1 S

Fig. 7. Polygonal sink function

c.Parabolic¢c sink functions

One of the disadvantages of the 'straight-line' models discussed
under b is the amount of information to be specified. For example in

Fig. 7, foﬁr Bepths, zl, Zys 24 and Z,s two slopes, A and A*, as well
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as Sm may all be independently assigned. While this is fine for con-
structing a model to describe known results, it is mot so good if the
model is to be used as a predictive tool. To construct a sink func-
tion which uses only the minimum and maximum values of the root zone
as well as Sm’ the maximum value of the uptake function, we consider
a parabola as given in Fig. 8. The intercepts of the parabola are
taken at z, en z, and the maximum value is taken as Sm. Since the
integration is straightforward and similar to the previous examples,
the results are summarized in Table 3. The only expression lacking

is the uptake which again is the same as the expressions for K d

if v, = 0 in Cl’ 02 and C3. A listing of the FORTRAN program wrgiten
to evaluate the expressions in Table 3 is shown in Fig. 9. .In the
input data, zm,refers to the place where S has its maximum value.
This is needed for the exponential function shown in Section IV.d,
but is overridden in this program by an instruction giving z 8s the
arithmetic mean of z, and Z, The inclusion of z, in the imput allows

the same input and output to be used for these two different sink

functions.
Sm S(z)

O T -
Zq
Z2
L v

y

4

Fig. 8. Parabolic sink function
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REAL L

PARABOLIC SINK PROFILE

Vo = 0,

N

OPEN S, "aDATA" ,ATT="B"
9 READ(S,8,END=90) SM,B,21,ZMp22,L,HL SN, S$A
8 FORMAT (2E10.,3,7F8,3)
& FORMAT (F10,1,7E10,3)
PRINT 30
PRINT 1§
Q 2 = a3M/(Z2=21)%%2
% & (Il + 22)/2.
PRINT 2,8M,8,21,ZM,Z2,.,HL SN, SA
e FORMAT (2E10,3,7F8,2)
1 FORMAT (/iH pOXy2HEM X, L1HB, TXs2HZ1 ) 6N 2HIM,, 8X ) 2HZ2,6X s 1ML ¢ TX s 2HHL
", 7XyLHNy12H SMALL A/)
30 FORMAT (1H1)

ci
ce2
C3
Ca
D3
De
D1
TU

=0

cl

Ce + 2.,x3Mw{Z2x21)/3,

o,
SAR(ABS(HL) I #a (1,=5N)/(SN=1,)=C3AL
D3 + SMa(Z2=21)x(22+21)/3,

D2

2 %SMw(Z2=21)/3,

PRINT S0,TU
PRINT 3
3 FORMAT (/1H ,5X%,2HCL,8X,2HCZ,8X,2HC3,7X,2HCH4,8X,2HD1,8X,2HD2,9X,2H
xD3,8X,28 Q)
PRINT 4,C1,C2,C3,C4,01,02,03,u
50 FURMAT (1X,E10,35)
4 FURMAT (9E10.3]
PRINT 5
DU A0 J=i,21
Z 3 5,x(J=})
IF (Z2,6T,Z1) 60 10 toO
Hrt 2 CiaZ + U1
JP 2 0,
SINK = 0,
FLU # C1
G0 7O 12
10 IF(Z2,67,22) GU TU 1
HH = QR(Z=]1)xnxdn(it+21=2,%72)/12, + C2*xZ + D2
Up . = U*QZ-ZI)**2*lE.*Z+ZI~3.*ZB}!b.ITU
SINK 2 (n(l=Z1)%x(2=22)
FLU a YPxTU + (2
Gu TO 12
11 HH = C3xZ + (3
ur = 1§,
SINK 2 0,
FLU & C3
12 H = =«(aBS((1,»SN)aHH/SA))Rn(1,/(1,=8N))
FLUX 8 =1 *xFLU
PSI s H + 2
PF = ALOGIO(CABS(PS1))
OHDZ = FLUN(=] AH}**x3N/5A
S FURMAT(/1H 60X, HZ,4X,15HMTOTAL HEAD PSI,5X,16HPERCENT UP SInkK,8X
*, 2HHH, AXp AHFLUX p6X, 4H PF /)
PRINT 64 ZsH,PS1,UP,SINK,HH,FLUX,PF
80 CONTINUE
N=NG+
GG 10 %
90 3STUP

Fig. 9. Program listing for parabolic sink function
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d. Exponential sink funection

This type of sink function has the advantage that only four con-
stants are needed to describe it. Besides the Zs 2y and Sm needed
before, the value of =z, Z s where Sm is achieved must also be speci-
fied. A diagram showing such a sink function is given in Fig. 10 with
the resulting solution given in Table 4. The FORTRAN listing of the
computer program used to evaluate the various interesting terms is

given in Fig. 11,

Sm S(z)
0o I -
Zmi
22
L "
4
" Z
Fig. 10. Exponential sink function
e.Examples
In this section we give examples to show the effect the two

parameters a and n {occurring in the unsaturated hydraulic conducti-
vity function) have on the pressure head distribution in the soil.
The values of a and n are typical of those given in BOUMA et al.
{1979) for heavy clay.
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PROGRAM SINKCINPUT,OUTPUT)

REAL KO,MZ24

CALL CONNECCSLINPUT)

N=@8
1S READ 40.KO,ALP,V(),PHO,Z4,Z2,RL.A.A4
48 FORMATC(SFB.4)

RM = .5%(ALP - SGRT(ALP®ALP + 4.%A))
RN = ALP - RM

B = ALP*[PHO + A4/A)

B2 = VO + ALP®A4/A

AMZ21 = EXPLRM*{Z2-Z4))]

EMZ24 = EXP{-RM%(Z2-24))

RM%(Z2-724)

EXPLRN#®#Z 4]

EXPCRN%Z2)

EXPLALP*(RL-22))

RM/RN

BTM = EXPCRN#Z2-MZ243nCRM+RN¥EALZ J-RM%ENZ 4%{ 4. +RMDN®EALZ )
CC = (BA*EMZ24 -~ B82#(4, + RMON®CALZII/BTHM

DD = C(RMDN%B2*EXPCHZZA-ALP*Z2)1+(RN*EXPL{LRN-ALP J%22)
% ~RM*RMDNXENZ {EXPLMZ2{-ALP*Z231#CCI/ALP

m

z

N

N
e

BB = BZ2Z/RN*EXPC-RM*Z4) —- RMON®EXPCLCRAN-RMInZ4)x(C

AA = [(RMDNXB2 + ALP%(4.-RHDNI®ENZ4%CCI/ALPXEXP(-ALP®Z4)

DL = PHO — DD*EXP(ALP*RL)]

TU = AXCCXENZA®CEXPCRN®(Z2-Z4))-AMZZ4)/RN + B2x[ 4., -~ AMZIZ4)

PRINTY 70
78 FCORMATC §H4)D
PRINT 26
PRINT &0,KO0,ALP,VD,PHO,Z4,Z2.RL.A. A4
PRINT 38
PRINT 48,AA,B88,CC,DD.DL,TU
48 FORMAT{9F 18.3)]
20 FORMATL/4H ,3X,2HK0,8X,SHALPHA,SX, 2HV0, &X, 7HPHIZERD ., 6X. 2HZ 4, 8%, 2HZ
#2, 9%, 4HL, 79X, 1HA, BX. 2HA4/)
38 FORMATC/ 4H , 3X, 2HAMN. 9X, 2HBB . 8X, 2HCC, X, ZHDD, 3X, FHPHIO-DEAL , X, 9HT.
# UPTAKE/]
40 FORMATLAE19.3)
. PRINT S8
DO 4 2 = 4.24
Z = S.%(]-4]
IF(Z.GT.Z4] GD TO 44
PHI = VO/ALP+AAREXPLALP®RZ)
U = 8.
SK = 8.
GO TO 43
44 IFCZ.GT.Z2) GO 70O 42
PHI = BB*EXPC(RM*Z) + CCxEXPLRN#*Z) - A4/A
SK = A1 + APHI
U = B2%C4.~EXPCRMRCZ-Z4III+ARCCARENZ %(EXPLRN#CZ-Z4)I-EXPCRM%(CZ~Z 4
#133/RN
PU = U/TU
G0 TO 43
42 PHI = DL + DD®EXPLALFP%Z)
SK = 8.
U= 0.
PU = 4.
43 RH = ALOCGLALP®*PHI/KO)/ALP
PRINT 48.,Z,FPHI,.RH, 1. PU,SK
58 FORMATC/4H ,4X, 4HZ, 8%, IHPHI, 6X, 4HHEAD, SX, 8HUPTAKE, 3X,9H P.UPTAKE. 2
¥X, 4HSINK/)
4 CONTINUE
N=N+ 1
IFEN.LT.4) GO TO 45

Fig. 11. Program listing for exponential sink function
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We will use the 3 different sink functions of Figs. 4, 8 and 10 to
model water uptake by plant roots. All the water used by the roots is
assumed to come from the water table and the flux across the soil
surface is taken to be zero. In all examples in this section we plot
z £ 70).

The lower limit of 70 was chosen simply for plotting convenience. We

pF = log(- ¥) versus the depth beneath the soil surface z (0

"

choose a root pattern consistent with that of day 185 in Fig. 44 of
FEDDES et al. (1978). The input parameters are listed directly below
each figure.

In the Figs. 12 and 13 the input parameters of the 2nd - 8th
column apply to the inserted Fig. 4. The 9th - 10th column contain
parameters of the unsaturated hydraulie conductivity function. The
numbers on the curves are associated with the various cases., The dif-
ference between Fig. 12 and 13 is that Fig. 12 uses a = 8 for the
cases 3, 6 and 9, while Fig. 13 uses a = 9 for the same threee corres-
ponding numbers. It is obvious from these two figures that increasing
the value of n, or decreasing the value of a causes an increase in
the value of pF. Also decreasing the value of a can cause a slight
'bending back' of the curves in the middle. To state this mathematic—
ally consider curve 6 in Fig. 12,

The concavity between z = 0 and the first *and between the second*
and z = 70 is to the left while between the two *'s the curve bends
to the right. It should be noted that the maximum pF for curve 9 is
4,45,

In Figs. 14 and 15 a parabolic water uptake pattern is used con-
sistent with Fig. 8. The parameters in the 2nd - 6th column again
apply to the inserted Fig. 8. The shapes of the curves are very simi-
lar to those for the straight line sink given before. Notice that
changing the value of a from 8 to % for curve 6 in Figs. 14 and 15
results in pF-values of 3.82 and 3.48 respectively.:

The column on the bottom of Fig. 16 are as in the Figs. 14 and
15 with the addition of a column (3) to denote where the exponential
sink obtains its maximum value. Figs. 15 and 16 have comparahle
values of a and n. The large increase in pF between the two cﬁrves
is because of the different uptake pattern between the parabola and

the exponential. As is indicated in the Figs. 8 and 10, for identical
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pF:log (-¢) -
3

104

20t

30t

401

50r

60¢

70+
depth z (cm)

K=a(-H &

No. A B zI z2 z3 L hL
n a
1 J447E=03 -2.233E-03 5. 20. 30 85. 85. 1.2 15
2  J447E-03 -2.233E-03 5. 20. 30. 85. 85. 1.2 10
3 .447E-03 -2.233E-03 5. 20. 30. 85. 85. 1.2 8.
4 J447E-03 -2,233E-03 5. 20. 30. 85. 85. 1.23 15
5 .447E-03 -2.233E-03 5. 20. 30. 85. 85. 1.23 10
6 .447E-03 -2.233E-03 5. 20. 30. 85. 85. 1.23 8.
7 JA447E-03 -2.233E-03 5. 20. 30. 85. 85. 1.26 15
8 L.447E-03 -2.233E-03 5. 20. 30. 85. 85. 1.26 10
9 L447E-03 -2.233E-03 5. 20. 30. 85. 85. 1.26 8.

Fig. 12. Plots of pF versus depth for 9 different cases using a sink
term with connected straight lines. A listing of the

various input parameters applied is given above
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pF=log (-¢)
3

10

20¢

0

40¢

S50t

60¢

70..
depth z (cm)

K =a(- H) ©
No. A B z] 22 z3 L hL

n a
1 LA47E-03  -2.233E-03 5. 20. 30. 85. 85. 1.2 15
2 LAATE-03  -2.233E-03 5. 20. 30. 85. 85. 1.2 10
3 LA4TE-03  -2.233E-03 5. 20. 30. 85. 85 1.2 9.
4 LA447E-03 =2.233E-03 5. 20. 30. 85. 85. 1.23 i5
5 JA447E-03 ~2.233E-03 5. 20. 30. 85. 85. 1.23 10
6 JA4T7E-03 -2.233E-03 5. 20. 30. 85. 85. 1.23 9.
7 JA447E-03 -2.233E-03 5. 20. 30. 85. 85. 1.26 15
8 L447BE-03 -2.233E-03 5. 20. 30. 85. 85, 1.26 10
9 JA47E-03 -2.233E-03 5. 20. 30. 85. 85. 1.26 9.

Fig. 13. As Fig. 12, but with different values of parameter a used

for the cases 3, 6 and 9.
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pFslogl(-¢}
3

10%

20t

30¢

a0}

50+

80}

70l
depth z{cm)

K=a(- B) ©
No. Sm z] 22 L hL

n a

1 .701E-02 5. 30. 85. 85. 1.2 15
2 .701E-02 5. 30. 85, 85. 1.2 10
3 .701E-02 5. 30. a5. 85. 1.2 8.
4 .701E-02 5. 30. 85. 85. 1,23 15
5 .701E-02 5. 30. 85. 85. 1.23 10
6 .701E-02 5. 30. 85. 85. 1.23 8.

Fig. 14. Plots of pF versus depth for 6 different cases using a
parabolic sink functiom. A listing of the various input

parameters applied is giving above
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pFaiog (-¢)
3

=

10

20¢

30

40}
se2}

50¢

60p

70
depth z {cm)

No. S 'z z L h

m ] 2 L

n a
1 .701E-02 5. 30. a5. 85. 1.2 15
2 .701E-02 5. 30. 85. 85, 1.2 10
3 .701E-02 5. 30. 85. 85. 1.2 9.
4 . 701E-02 5. 30. 85. 85. 1.23 15
5 . 701E-02 5. 30. 85. 85. 1.23 10
6 .701E-02 5. 30. 85. 85. £.23 9,

Fig. 15, As Fig. 14 but with different values of parameter a for the

cases 3 and 6
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pF = IOg ("b)
3

)
10}
4
w 20t
3ot
40F
50t
60T
70!
.depth z{cm)
K=a(- H) "
No. . Sm zZ, z z, L hL
n a
1 .701E-02 5. 20. 30. 85. 85. 1.2 15
2 . 701E-02 5. 20. 30. 85. 85. 1.2 10
3 . 701E-02 5. 20. 30. 85, 85. 1.2 9.
4 . 701E-02 5. 20. 30. 85. 85, 1.23 15
5 .701E-02 5. 20. 30. 85. 85. 1.23 10
6 . 701E-02 5. 20. 30. 85. 85. 1.23 9.
Fig. 16. Plots of pF versus depth for 6 different cases using an
exponential sink function. A listing of the various input
parameters applied is given above
.o
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values of Sm, Z) and rooting depths, the area under the parabola is
greater than the area under the exponential. This means that with
less water extraction, the profiles for the exponential sink will be

much wetter than for a parabolic sink. If one desires the same total

.
plant water uptake for the two cases and identical root location, then ;
the maximum value (Sm) for the sink function for the exponential must -
be increased over that of the parabola (Exact expressions for the
total uptake for the three sink functions are listed as TU in the
computer listings in the Figs. 5, 9 and 11).

. -
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V. SUMMARY AND CONCLUSIONS

We have considered two types of hydraulic conductivity pressure
head relationships and given analytical solution for one-dimensional
flow with various types of functions describing water uptake. A sur—
face flux was prescribed to allow for rainfall or irrigation and a
shallow water table was assumed. Mathematically the pressure head
was prescribed at a specific depth so deep water tables can also
be described by these solutions with appropriate choices for this
pressure head,

For the case of K = R, exp{a¥) the sink function can be given
explicitly in terms of depth, or explicitly in terms of the pressure
head and two arbitrary parameters. {The latter formulation is the

linear Taylor series expansion of the K(¥) function of FEDDES et al.,

1978 over the dry range of ¥). The FORTRAN listing is given and an

example shows the sensitivity of the uptake pattern to these two
parameters, For this type of model, the uptake pattern and moisture
profile are outputs of the model, with the two empirical parameters,
surface flux, water table depth etc. being the inputs.

Solutions for a K(¥) = a(- ?)-n can be obtained only for special
values of n, i,e. 1 and 1.5. However, for K(¥) = a(- ¥ + 2) " =
w a(- H)-n the resulting moisture profilesmay be easily obtained.
Analytical expressions are obtained for the resulting moisture pro-
files when the sink function S5(z) is given explicitly terms of depth.
The three types of patterns for S5(z) are straight line, parabolic
and exponential.

Plots of pF versus z curves are given for each of these three
functiors and six or twelve combinations of a and n. To use these
analytical results, the exact uptake pattern must be described as an
input to the system with the moisture profile being the output.

As mentioned in the body of this nota, care must be made in the
choice of a and n values in the hydraulic copductivity function. Cer-
tain choices will not allow for enough water movement from the
water table to meet the demand of the plant roots. This in turn
gives rise to nonsensical values of pF. When this occurs, HH will be

negative and all results should be ignored.
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BOUMA et al (1979) note a wide range of a and n values for heavy
clays, These values greatly depend on the range of ¥ over which the
least squares fit is taken. For best results, one should use a and n
values which are obtained by a best fit over the exact range of ¥
one is dealing with. In other words if one is operating in the dry e
range, one should obtain a and n from a best fit over that range.

As an example consider that the values of a and n change from 5.44
and 1.14 to 7.83 and 1,228 respectively by simply ignoring all data
with ¥ greater than -i00! |

The analytical expressions developed in this nota may generally
be used to test complex numerical schemes for which if is difficult

to detect errors.
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