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1. INTRODUCTION

Rainfall interstation correlation functions can be obtained
with the aid of analytic rainfall or storm models (STOL, 1977a;
1977b; 1977¢). ' . .

Correlation functions for various storm models, although
completely different concerning their mathematical structure, do
not differ so much in shape when plotted in a graph.

If we want to mutually compare the graphical representation
of different correlation functions, this can be done best by
comparable storm models.

Since alternative storm models have different mathematical
formulas, comparison should be based on equallity of parameters
like storm diameter, mean rainfall amount, storm maximum or
total storm volume.

In this report we will discuss some useful stormmodels and
the relationship between the parameters of three models already

used to obtain the correlation funetion analytically.

2. REVIEW

Storm models can be used in analytic hydrological research.

Since the storm model is the startinmg point for further
elagborations, their mathematical definition must be simple to be
sure that the required analytic treatment can be fulfilled.

Even strongly simplified models may lead to rather complicated
mathematical results when deriving the correlation function. This

means that the search is for simple mpdels that should be, however,



reasonable realistic. For this reason we first will discuss models

that have been suggested in the literature,.

In most of the following formulas the variables are consistent

and have the following meaning:

h = rainfall depth

x,y = coordinates to define locations in the storm

H = maximum rainfall depth in the center of the storm
B = storm width, storm diameter

= storm radius measured from the center to an isohyetal
area, enclosed by isohyetals

= total storm volume

Pt P oH
I

»b = further storm parameters

= random component

|

Occasionally some other variables are used. They are defined

in the text.

Random variables will be underlined. The following expression

means:

£ = 0, the random variable takes the value O (in this

special case)

In this Section the origin of the co-ordinate system is located

at the center of the storm.

COURT (1961) has given a review on area—depth rainfall formulas.
He refers, among others, to Frilhling, who in 1894 proposed a

parabolic equation

Y o

where B was taken 12 km. Most of the other functions referred to
are based on areas enclosed by ischyetals and try to give average
values over that area. Special mention must be made of his reference
to Light from whom a logarithmic curve is discussed, suggested in

'

a 1947 research. COURT quotes Light's conclusion that in '... a

gingle-celled rainfall pattern with concentric circles as isohyets, ...



rainfall decreases logarithmically with distance from the storm
center'.

The general structure of this sugge&tioﬁ reads

h=a-b ln A, A > 50 miz
which was scaled accordingly to aveid unrealistic results.
Court himself suggested the use of a Gaussian type formuyla

namely

M) = 1 eCE YY) o @
Finally Court concludes that 'the several formulas-discuésed aee
indicate that short-~duration storms tend to have steeper precipitation
gradients than those of 1onger duration and larger area'. He also
mentions some conditioi.s to be met by storm functions namely;
'Any realistic representation of the variation of rainfall amount
with distance from the storm center should be smooth at the center. -
This means that the first derivative of the function should be zero
when evaluated at the center' ... 'At the other.extreme, an asymptotic
approach to zero rainfall with inereasing distance seems desirable'.
In conclusion he adds: 'The Gaussianlformula, in additjon, has some
probabilistic justificatiop, and may be sujitable as an arpa-depth
formula'. ‘ | _ S
McCULLOCH, 1961, in an artidle on statistiaal assessment of
rainfall, gives examples for Africa from which he concludes:
'... that it is unreasonable to expect satisfactory results on the

assumption of a statistical model of the type

h.=H+ ¢, ' L ) | @y
where h. is the rainfall measured at a given point in the area, H
is the true rainfall of the area and el is the devxatlon from the
mean of any partlcular observation h

'"Unless the area belng cons;dered is very small or the rainfall |
is widespread, 'cold-front' type rainfall, it is unrealistic to |

propose a general mean;.,.’



The above mentioned model will be called the 'rectangular' type.
It lacks, however, the definition of the storm size (or storm

diameter) and so it is not a complete model.

On the basis of his experience McCulloch proceeds with saying
that '.... in these circumstances, there is no option but to propose
a sampling model of the type:

Ei = H + ax + by t e o | (4)
where - a and b may be congidered as pure mumbers in the first instance.
',aﬁd x and y are recténgﬁlar coGOrdinates of distance in two dimensions'.

The constants a and'b neeﬁ be chosen such thét.'the pattern is '
one of a heavy deluge over.a.small area with- rainfall decreasing
"perhaﬁs to zero at a relatively short distance from the center of
the storm.' .

Using only two dimensions the foregoing statement refers to a
triangular storm type. However,'like medel (3), the expression given
" by (4) lacks the storm diameter as a parameter. S0, a (and b) cannoi
‘be considered asg 'pure.npmbérs' but should be chosen such that at

the boudary of the storm Ei # 0, apart from random fluctuations.

McCulloch finally mentions: 'In particular cases it may be
- necessary to postulate guadratic, cubic or even more complicated

depeéndence on the distance co-erdinates.' However, no further

suggestions are given.

. On the other hand EPSTEIN (1966} considered circular precipitation
cells in a study on boint and areg precipitation probabilities. Here,
indeed, the storm diameter ﬁas given aé 4 parameter. It was assumed
that each cell covered an area A so having a diameter 2r obtained

from the radius r given by

\f A -
r = -ﬂ- (5)

No further details on the distribution of rainfall intensities
‘within each call were givenlsince the-main objective was to derive
probabilities of any'amount-of précipitation.

This was done'bwaOGEL and DUCKSTEIﬁ (1969) who used circular
 patterns with a Gaussian-type rainfall distribuﬁion to obtain rainfall
frequencies. |

.



BOYER {1957) refers to a study of thunderstorm rainfall made by
the U.S. Weather Bureau and the Corps of Engineers in 1947, An
indication was obtained '... that for such storms the precipitation
rate h along an isohyetal is amn exponential function of distance
ffam the storm center ...'. It appeared to hold for much larger

storms as well. The formula reads

h=He ™ o (6)

where

precipitation along any isohyetal

maximum at the eye of the storm

a coefficient of distribution

EC I - - =
]

distance from the storm center to the isohyetal,

measured along an axis of the storm
This formula is the basic form for the exponential storm type.

In an investigation on the sensitivity of peak catchment
discharge to the characteristic spatial variability of convenctive
and cyclonic storm rainfall, EAGLESQON (1967) used the model given
by (6) to represent 'great cyclponic storms'.

For convective storms Eagleson refers to WOOLHISER and SCHWALEN
(1959) who fitted the average areal rainfall distribution with a
storm-centered function, where radial symmetry and a circular area
is assumed. From this function, which is essentially linear,

Eagleson derives the relationéhip

PI(r)

§;TBT =1 = 0.72ﬁF~ (7)

where

r = storm radius (distance from center)

PT'= total storm depth

= storm correlation radius'defined
¢_(r )
by EB__E_ = 0.5
P(0)

% = energy density spectrum




In his analysis ro was found to be 1.73 PT(O) giving

PT(r) = PT(O).{I - 0.42 1} _ (8)

which is a linearly decreasing function with maximum rainfall depth

PT(O) at r = 0 and storm diameter r = 2.38 giving PT(2.38) = 0.

Although the functions used by Eagleson are linear (8) and
exponential (6) functions, the symbols used are explained in his
article by a three-dimensional bell-shaped storm rainfall pattern
(Eagleson, 1967, fig. 2) which, however, was not used.

This was done by HUTGHINSON (1970) who used the bell-shaped
form as a model rainstorm. Iﬁe éhape was defined as a circular
storm. Of 172 actual storms.the shape appeared to be '... somewhat
irregular, but about 80% were more circular than elliptical...'.

The rainstorms were thus giﬁen by

~18{ (x=x)2 + (y-§)2}

i = I exp ~ (9
d .
where
I = maximum intensity

X,y = general co~ordinates _

X,y = co-ordinates of the center of the storm

d = diameter

i = intensity at any point (x,y)

This model was used in the'following way:

I and d are supposed to be able to be represented by two

parameter log normal distributions, with

for I: u = 0.095 in. g 1.9 in.

5.38 miles

for d: qu 17 miles a

1l

§,§ were obtained from a rectangular {0, 1)-distribution
and scaled accordingly to suit an area of 500 miles x
500 miles
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In an investigation on the sensitivity of peak catchment
discharge to the characteristic spatial variability of convenctive
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In his analysis r, was found to be 1.73 PT(O) giving

PT(r) = PT(O).{I - 0.42 r} . , (8)

which is a linearly decreasing function with maximum rainfall depth

PT(O) at r = 0 and storm diameter r = 2.38 giving PT(2.38) = 0,

Although the functions used by Eagleson are linear (8) and
exponential (6) functions, the symbols used are explained in his
article by a three-dimensional bell-shaped storm rainfall pattern
(Eagleson, 1967, fig. 2) which, however, was not used.

This was done by HUTGHINSON (1970) who used the bell-shaped
form as a medel rainstorm..The shape was defined as a circular
storm. Of 172 actual storms the shape appeared to be '... somewhat
irregulér, but about BOZ were more circular tham elliptical...’'.

The rainstorms were thus given by
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where
I = maximum intensity

X,y = general co-ordinates

X,y = co-ordinates of the center of the storm

d = diameter

i = intensity at any point (x,y)

This model was used in the following way:

I and d are supposed to be able to be represented by two

parameter log normal distributions, with

0.095 in, o=1.9 in.

17 miles g = 5.38 miles

for I: u

#

for d: u

- -

X,Y¥ were obtained from a rectangular (0, l)-distribution
and scaled accordingly to suit an area of 500 miles x
500 miles



This model was used by Hutchinson to obtain interstation
correlations on basis of storm simulations. Although a storm model
was used, no analytic solutions had been pursued.

Finally mention must be made of the study by RODRIGUEZ-ITURBE
and MEJIA (1974) who applied a formula for ‘... the afeal extension

of convective storms...', viz.
2
Pt(r) = Pt(O) exp(~1rt) (10)

vhere t is a dispersion parameter given by

£ = 0,27 e 0-67 P (0) (11)

Here

Pt(o) = total depth in inches at the storm center
5 ‘

T = area at distance r from the center

and so rainfall depth is expressed as a function of circular areas
surrounding the center, and radial symmetry is assumed.

The formulas are due to FOGEL and DUCKSTEIN (1969). They write:
'When storms were selected for analysis, only those of less than
@ﬁo hours duration were chosen. Thunderstorms often consist of a
Eroup of three or more cells édjacent to e . other'., So their

formula may be regarded as a function for singlc storms.

3. PRINCIPLES OF STORM FUNCTIONS

Rainfall patterns are often very irregular concerning the
isohyetal plots. For'analytic models more regular patterns need
be used to make all required elaborations possible.

Examples given in the literature only give élementary functions.
For our purpose (STOL, 1977a, 1977¢) the following mathematical

treatment must be possible.

Given a storm diameter B, rainfall amounts h depending on the

stormcoordinate x, and a storm maximum H, we define a storm in a




two dimensional model by

1

h ]f(x), 0<xc< }B  (left of center)’

h- Zf(x)s }B < x <3 (right of center)

. 1 . .
Symmetry about the center x = B is assumed; f(x) is a momotonic
increasing, 2f(x) a monotonic decreasing function.

Particular values are

b)) =0, n=2@ =0

=
]

ho= '£(4B) = 2£(IB) = H

The assumption of symmetry tells that

£ (x) = *£(8-x)
The total storm volume S is given by

s-2 ("
J
0

]f(x) dx

If we choose a point a at random on B, uniformly distributed, then
the probability P, based on intervals, that the corresponding
rainfall depth ha = h(a) is not exceeded, is given by

_ 2a
R

A

P(ha

(12)

(See F'ig., 1)

Expressed in the variable h, this becomes, defining 1f"l(h) to be

the inverse function of ]f(x),

ph, s h) =3 ' ) (13)




hz'$(x) h =2f(x)

H

!

Fig. 1. Schematic illustration of the probability, based omn intervals,

that ha'is less than ha' The heavy bars have the same length

when the storm function is symmetric

The density of this function is, dropping the subscript a and
defining ib,

2 1 _-1 _ 2.
-"a"ﬁ—=§ ah f (h)—Blo (14)

To obtain statistical parameters the following elaborations must
be possible.

For the expectation yu,

H

2 d 1_-1
”’E! h-fr £ (h) dh (15)

0

For the variance 02,
H

2 I -
0% + u “"EJ W e my an (16)

In stead of the statistical parameter u we can calculate the
mean value h as follows

The total storm volume S reads
[
J
0

§ =2 Te(x) dx




Since the base of this volume equals B, the mean heigth of the

storm 1s
- )
h=3
or
x=3B
- 2 [ 1
h=—B—‘J f(x).dx
x=0

. | , - - . . :
Since f£(x) = h and x = lf l(h) we may write the last integral

in terms of h, viz.

‘lf“l(h)=iB
— 1

=2 hd £ ()
J

el (m)=0
which equals

O o
d f (h) ., -

=0

=£
B

g—

50

h=u | (17
and the mean rainfall depth h over the total storm diameter B equals
the mathematical expectation u for randomly chosen points in the
storm. _ _

Comparing parameters of different storms it obvipusly does not
matter whether the mean value or the mathematical expectation is

used.

The covariance (Fig. 2) between two points ha and hb at distance
D gives rise to even more complicated formulas (STOL, 1977c). However,
if (15) and (16) can not be solved the analytic approach already

breaks down here. These integrals are used as a test case to decide

10




Fig. 2. Schematic illustration of the relationship between two
randomly chosen points connected by their distance D.
The covarisnce betWeeu_ha and h, depends on D

whether or not it makes sense to pay attention to the storm model

by which they are produced.

4, DISCUSSION

From the foregoing review it follows that there are four main
qies that need further copcern. They are, including remarks given

by the respective authors,

a. The rectangular storm type

smpoth at the center

- no approach to zero

1

valid for longer durations and larger .areas

valid for 'cold-front' wide spread rainfall or very small

areas
b. The triangular storm type

- not smooth at the center

1

reaches zero at finite distapce

i

valid for short-duration storms

heavy deluge over a small area

- convective storms

Il
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The exponential storm type

- Not smooth at the center

Asymptotic approach to zerp

Valid for short-duration storms

Thunderstorms and larger storms-

Great cyclonic storms

The Gaussian storm type

~ Bmooth at the center

- Asymptotic approach tp zero

]

Valid for short-duration storms

Convective storms (less than two hours)

L]

Probabilistic justification

Some remarks must be made,

It seems not realistic to require 'smoothness' at the center.

A vanishing first derivative can only be found on the basis of

a model and so this property is included in the choice of the
model. The phenomenon of rainfall often indicates the existence
of isolated peak values. It is not clear how 'smoothness' should

be defined on the basis of fainfall data alone.

It seems not realistic tp require an asymptotic approach to zero.
Intervals in which this approach takes place are comparatively

small when regarding the total storm diameter.

The probabilistic justification of the Gaussian type is not a
correct argument since the ordinmate of the storm function is

the rainfall amount and not the probability density. According
to the theory developped here (equation (14)) the differential

form for the density would read (see also section 8)

1 1

2
., — dh
B ° 4bh /1

BT 1n(H/h)

which is not Gaussian,




. Physical arguments'are not given that plead for a specific storm

function. The only thing that could be concluded is:

Cold-front, wide spread rainfall storms occurring over large areas

can be described by the rectangular storm function;

Convective storms, thunderstorms, short-duration storms, great
cyclonic storms can bé described by storm functions that have a

maximum at the center and a relatively steep slope to the esdges.

. For an analytic approach integrals of the type given by (15) and
{16) have to be solved with the chosen storm function. This
argument probably is more selective than any physical or

meteorological condition.

5. THE RECTANGULAR STORM TYPE

We can define the rectangular storm type by
1 2
h= f(x) =H and h="f(x) =H (18)
The total storm volume is
S = BH

and the mean value equals the mathematical expectation (STOL, 1977a)

and because h = H is constant we have

02 = 0

All statistical parameters can be obtained and so this storm

type is suitable for further elaboratioms.

13



6. THE TRIANGULAR STORM TYPE

Like (8) the rectangular type can be defined by

b= lEx) =£;-x, h = 2£(x) = 28 - —2-;-‘-x

and the total storm volume is

in
. 4B
S =2 [ E% xdx = &%a. 5 x2 - = IBH
J
0 0

which gives for the mean valye

ol
H
wlw
|

- iH

From the definition of this storm type we have

H 2 H

Lan o 22| L E

u J hgdh =55 =3
0 0

H
02=[h2.lﬁdh-u2
J
0
o w W
3| &

This storm type too can1be used for further elaborations.

14
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7. THE EXPONENTIAL STORM TYPE

According to (6) we can define the exponential storm type by

h o= 'e(x) = HeZD(XTHB)
h = 2f(x) = ge2(187%)
T:o "~ 72, storm voluwme is
s = 2{53e2b(x~53) 4 2b(x-1B)
J ZE
0
_H ezb(x-in)‘*B
b
0
=8 _bB
_b(le )

which gives for the mean value

- _ 8 H -bB
h=g =g e )

From the definition of this storm type we have

1.1 PR N TP .

f (h) = i 2B * % In T
and sc, from (14}):

L Te0) < h < Te(4m)

o 2bh°’ = o=

with density-E%E. Consequently, with lower boundary ]f(O) and
upper boundary !£(iB), we have

(20a)

(20b)

15




H —
s (e

bB)

The variance is obtained hy

H
6% = h2. B%B dh - u?
J -
He bE
H
-.—-.---—]_..:.I..l-‘2 —uz
5B " 2 .
He
2 2
=_% Eﬁ (1-e"20B) _ :g S (e bB, 2
bR
or
2 - B -2bB 1 -bB. 2

gl {5'(1"6 ) - EEI(I*G ) 1

This storm type can also be used for further elaborations.

8. THE GAUSSIAN STORM TYPE

A few authors used a Gaussian type function to describe a storm.

The equation reads

~2b(4B-x)?

h = 'f(x) = He (21a)

b (e tB) 2
h o= zf(x) = He 2b(x &B? (21b)

16



Since this function has no indefinite integral that can be

expressed into elementary functions, the analytic approach breaks

down here.

The inverse function reads

e Ty = -VI3mk

2b H

and so ié becomes

'¢0) < h< 'e4m)

It is not possible to find expressions for u and 02 on the

basis of this integrand and so the Gaussian storm type is not

used any further.

9. RELATTONSHIP BETWEEN PARAMETERS

The obtained results are collected in T&Ble 1, where

a=1]~ e-bB and v =1+ e—bB (22)
g0

uv = | - e—sz and u+vs=2 (23)
Table 1. Characteristics of different storm types
Type diameter [ maximum u 02 Volume S4
Rectangular B H H o BH
Triangular B H i r% u? 4BH

: H H2 | H

Exponential B 'H B Sﬁ-(i v - Eﬁ-u)u Tu
Gaussian B "H - -

17



In order to be able to compare the different storm types
mutually, some quantities have to be taken equal, to be sure that

comparable storms have been used,

It can be proved (STOL, 1977¢) that the correlation function
in its simplest form does not depend on the maximum rainfall amount
H in the center of the storm, while the storm diameter appears to
be an important parameter. To be comparable with respect to their
correlation function, storms should have equal diameters B, regardless
the value of the maximum H. However, since the mathematical expectation
occurs in the expression of the correlation function this parameter
should be equallized too. |

Apart from the arguments, suggested by the structure of the
correlation function, how te compare storms, we can consider storms
itselves in the same way.

Since the shape of the storms are different we can expect that
they have different variances. We will consider storms matching if
they have the same volume $of rain and we will not try to equallize
their variances. Since we chose storms with equal diameter B, this
means that we compare storms with the same valué-% = h, so with
the same mean value and in virtue of (17) also with the same
expectation.

Let the subscript r refer to the rectangular type, t to the
triangular type and e to the exponential type, then we have the

following pairs for comparisen.

9.1. Comparing the rectangular type with
the triangular type

W -
e take M “t 8Q

H, = M

or
H = 2H
r

and so take the maximum rainfall amount for the triamgular storm

18



equal to two times the maximum amount of the rectangular type to

have storms with equal diameters and equal storm volumes.

9.2.Com paring the rectangular type

with the exponential type

We take ur = “é and so

H

__e .,_ ~hB
Hr =B (I-e )

which yields

i

-bB

H = bBH
e T
l-e

‘Here we see that given Hr_each value for b gives a solution

for 1-1e which can be expressed by

H, = He(bIB, H)

where the vertical bar means: 'given'.
No unique solution is obtained this way and further conditions

have to be p.. forward. This will be done in the next section.

93.Comparing the triangular type with
the exponential type

Since comparing the rectangular type with the triangular type
does not give a unique solution we make use of the general shape of
the triangular type and the exponential type which are approximately
similar,

In conclusion we require for the exponential type to have

. the same volume and diameter as those for the rectangular type
. the same maximum amount as that for the triangular type with

the sgame volume and diameter.

19



This means that we require that

H =H_ = 2H | (24)

With this new condition we have to solve b from

2Hr = bBHr —————:E"E (25)
1 - e
or
bB = 2(1 - e °P) | (26)
and, putting »B = B, this reduces to
-8
B=2(1 -e ") (26a)

This is a non-linear equation with one unknown, the storm constant

B, which has to be solved iteratively.

10. THE SOLUTION OF THE STORM CONSTANT 8

The solution of 8 can be obtained as follows
Consider the two functions given by (26) or (26a) and sketched
in Fig. 3 viz.

1(B) =8 (27)
%)

c(B) = 2(1 - e (28)

This simultaneous system is assumed to be solved for B = Bn if
in sufficient approximation I(Bn) = c(Bn).

First we have to prove that a solution, different from 8 = O,
exists. Solve both equatiops for B, then, introducing subscripts

that are self-explanatory
By =1 s (from (27))

Bc = In 2 - 1In(2-c) , (from (28))

20



1{B) (B
c( B g

 —

Ofg Bn g—>
rivial valu

Fig. 3. Schematic illustration of the two functions of B8, a linear
and a curved function, whose points of intersection have

to be determined

Take 1 = ¢ and both equal to (2 - e“N) which gives the particular

gsolutions
8, = 2 - e N (29)
Bc =N+ 1n 2 (30)

then, since 0 < 1ln 2 < 1, we note that for two particular values

N =N, and N = N.,
1 J

Ni =0 gives B1 > Bc (31)
and
Nj =2 gives B8 <B (32)

Since both functions (27) and (28) are continuous and monotonic
increasing their must be a value N' with property O < N' < 2

that gives

B, = B,

21




We can solve the system by trial and error. For instance, from

{(31) and (32) we have

Let N = Nk be Ni< Nk< Nj’ then with this value inserted in

(29) and (30) we decide about Nk+l

If Bl > Bc take Nk+l > Nk

If < <

Bl Bc take Nk+1 Nk

S0 on the basis of (31) and (32) we can decide to increase the
last used value of Nor to decrease it, '

However, a method that gives in succession better approximations
to the solution automatically can be constructed quite easily

(see Fig. 4),.

é* Bz Bi

Fig. 4. Illustration of the iterative procedure to find the point
of intersection B* which is the solution of the simultaneous

system 1(B) and c(B)

We start the solution with deriving the equation for the
tangent t(8) to c(B). The slope to this curve at any point (BI’ c])

reads
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dc

-8
3 ‘

= 2 e

so the tangent at (Bl, c]) reads

t—-c, = Ze"B

] 1 (B—Bl)

where according to (28) we have

e, =20 - e P1)

and consequently

3.

-8 ~B

€8 =2 '(B-8) #2(l-e |

)

Now the procedure is

. Choose a point (8, 1,) on 1(8)

Determine the tangent to c(B) at BI which gives

_Bl .,_Bl
t(B) = 2 e (B-BI) +2(l —e )

Calculate the intersection of the tangent with the straight line
1(8), by putting 1, = £(B,) = 1(82) so by putting

1, =8

2 2
and _Bl "Bl .
ly=2e (ByB)+2(l~e )
respectively.

From both we have

-8, ~8

= - - 1
B2 2 e 82 | 2e B] +2(1 ~ e

)

which, solved for 32,-gives_
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-B}
2 - 2e (I+BIJ
82 = ‘;Bl | . (33)
| - 2e

and then

4, Take the new point (62, 12) to start with 1. again.

5. See 1, with (Bl. 11) L (82; 12), etc.

The procedure ig very simple and reads, in general: choose
a'starting value, insert this value in (33), insert the result
in (33) again, ete. where (33) can be written with general subscripts
- e Bi(1+'si)
Biep ™ 2 -8, (34)
l'-IZEl' '

Since c(B) < 2 weg ean start with %_= 2 and from (27) Bi =2,

so for Bi+l’ taking i = | we obtain a better approximation by

-2
1736 = 1.628878
1+2e

B, = 2

Since the tangent t to c élways is above ¢ and has a positive
slope,intersection with 1 in each following iteration cycle takes
place at a lower lying point oen 1, but will not pass below the
curve ¢ gince B is a point of the tangent.

This means that (34) produces a bounded row

*

B|<82<-".<Bi<8" <...7’< Bn<8

1+l

which converges to B*. The value Bncan be taken arbitrarily close
to the solution. For practical reasons n will be taken relatively
small. |

The above -described procedure converges very fast to the

.solution. In table 2 the results are given in 6 decimals.
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Table 2. Consecutive solutions for the storm constant B

i - B TS
I B "2 1.628878
2 1.628878 1.5%4030
3 1.594030 1.593624
n=4 1.593624 1.593624
_34 :

e * = 0.203188

For practical purposes the results can be approximated by

continued fractions according to
R:ia 1
q 3 ‘ t.p‘q
n e p—————
P 1 n, + etc

The smallest fractions that approximate the results best are
determined by successively neglecting fractions that occur in the

denominators. These approximations are given in Table 3.

Table 3. Approximation to main results obtained by continued fractions

B = 1.593624 | 8. 0.203188

= S — e —
! =1 % = 0.25
5 -9 L 0.2

5

13 = L5 %%- = 0.2034
13 = 1.6 %% = 0.203125
142 = 1.5925 3% = 0.203209
133 = 1.59375 2297 = 0.203188
P38 = 1.593607
| 523 = 1.593625
i %%;é = 1.593624
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A practical optimal choice

suggested by Table 3, seems to be

bB = B = 1% and erB

=l
5
which gives, inserted in (22} and (23)

4 1
u = T and v lg

24
uv =

25 and u+vs=2

to be used in the applications. We observe that still

=bB
1l - e -8

l-e v _4/5_1
bB bB  B8/5 2
the required solution to equallize the expectation or mean value.

11. APPLICATION OF THE STORM CONSTANT B

The condition expressed by (26) and (26a) produces, with the
definition for u and v by (22) and (23) the equallity

==
B

®le

1
2

This means that the variance of the exponential storm type
{Table 1) can be written

2 _1 .21 _ l
¢ =5 H {5{2 u) 2}
—ZH(I u)
and so

0_2 =£2- e_bB =_H_% e_B
4 4

and in good approximation we obtained in the last section e-B

| —
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giving

I

2
50 & * 5 A,

For the triangular type we have {Section 6 and Table 1)

2 2

1 1 .2
a =T?H "EHQ
Finally all results can be collected in a table which gives the
parameters and characteristics of three storm types with equal

diameter and the same storm volume. See Table 4.

Table 4. Characteristics of different storm types

Type Diameter | Maximum | Special h and 02 Volume §
H parameter N

. ":, | ‘Fla.ny !

— , = = e
Rectangular A Ho - H 0 BHO

_ 8 1.2

‘Exponential B ZHO b = 3 H 5 B BH
Triangular B 2H - H L I-l2 BH
o o 37 o

In this table the storms are ordered according increasing values

of their variance.

12. SUMMARY OF STORM MODELS
When it is required to apply the rectangular, expome-*‘~" znd

triangular storm model with equal storm diameter b © & <.i. —cuq

value Hb’ storms have to be defined as follows.

a. the rectanguyular type

I
h='g) =H, O0gx<gB<B
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h = f(x)r—Ho, 0<5Bsx<B
. 2
properties U = Ho’ ¢ =0
1 ] 2
£(0) = H, £(4B) = “fUB) = B
2f(B) = H_

b.the exponential type

lf(x)

=
]

h = 2f(x)

2H_ exp [% a-=)10

properties u=H , 07 =

wre

L£¢0)

25 (B)

2
5 H

c.the triangular type

h = If(x) = EEQ X,

5 0gx< 4Bc<

h o= 2f(x) = 4 H(-3, 0< 48 <x
.pr0perties no= Ho, 02 = %—Hz
Y£0) = 0, 'E(iB) = 2£(yB) = 2 H
2,(8) = 0

Finally a graph of the three storm functions with the above

mentioned properties is given in Fig. 5.

- .8
2H0 exp Pg (==~ 1)}, 0O g

A
]
A

-
[~}
A
[=-]

A
-
=
[LIF
"
nA
w

] 2 ~
H, f(3B) = "£(4B) = 2H

B

<B
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h
2H r ——— 1 02 - 0
o L rmea2 0% = ﬁ s
./ \‘ _3 H /13
v W
A Y
Hod e A e - ———N - _.-.‘l
~ I
l’. e |
2!5“0 - ""w:
|
o 1B B K

Fig. 5. Graphical representation of three storm models with equal

diameter B and equal mean value H . They are 1: rectangular

type; 2: exponential type; 3: triangular type. Storms are

ordered according increasing values of their variance
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