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1 . INTRODUCTION 

Infrared pictures taken from air planes or satallites play 

an important role in the study of the earth surface. In the case 

of Infra Red Line Scanning (IRLS) the 'windows' in the atmosphere 

(3-5 ym and 8-14 um) are used. But even under clear sky conditions 

the atmosphere in the 'windows' is not completely transparent for 

infrared radiation. 

The atmosphere does not cause only a shift of the level of the 

surface temperatures, but it causes also a smoothing of the temperature 

differences at the surface. So information about the influence of 

the atmosphere on thermal infrared radiation is very important. 

To calculate atmospheric corrections under clear sky conditions 

different models are available. In this paper a NASA-model as 

developed by RANGASWAMY and SUBBARAYUDU (1978) for the 10.5 -12.5 urn 

wave length band is tested for meteorological conditions in the 

Netherlands. The model needs information about temperature, pressure 

and humidity at different levels in the atmosphere (PTH profiles). 

As different scanners measure in the 8-14 ym wave length band the 

NASA model has been adjusted for application in this band. 

Also a simplified model of BECKER (1978) has been tested. In 

this model it is supposed, that atmospheric attenuation in the 

8-14 ym wave length band is proportional to the amount of water vapour 

in the atmosphere. 

PTH-profiles are not always available. It is, however, possible 

to eliminate the atmospheric parameters in BECKER's model, if the 

radiation emitted by the surface is measured in two different wave 

length bands of the electromagnetic spectrum. 



2. THEORY 

2 . 1 . T h e r m a l e m i s s i o n o f a n a t u r a l b o d y 

The radiance emitted by a black body depends on the temperature 

of the body and the wave length. The radiance is given by the 

formula of Planck: 

« b W = exp(cWT) - 1 ( W . n ^ . s r - V 1 ) (2.1) 

where 

c = 1.185 . 108 W.m"2.p"4 

c2= 1.439 . 104 y.K 

T = the temperature (K) 

v = X = frequency (u ) 

X = wave length (y) 

Per unit of frequency interval the radiance is equal to: 

3 

V V ' T ) = exp(c^/T) - 1 (W.m-'.sr-1) (2.2) 

Studying the influence of the atmosphere the surface is regarded 

as a black body. As this is actually not the case the radiation of 

the surface is equal to: 

R = e(v) R(v,T ) + (l-e(v)).R(v,T ) W.m'^sr"1 (2.3) 
S S S cl ci 

where R is the radiance of the surface per unit of frequency 

interval, R is the radiance at the surface from the atmosphere 
-2 - I a 

(W.m .sr ) , T and T are the temperature of the surface and the 
S 3. 

atmosphere respectively (K), and e(v) is the emission coefficient 

of the surface. An equivalent black body temperature of the surface 

can be calculated from the inversion of Planck's formula: 

c v 
T ±- (K) (2.4) 

DS ln(cV/R + 1) 1 s 



2.2. T r a n s m i t t a n c e o f r a d i a t i o n i n t h e 

a t m o s p h e r e 

In the atmosphere radiance is scattered and absorbed. By these 

processes an extinction of the surface infrared radiation occurs in 

the atmosphere. 

Depending on the relation between wave length and particle size 

of the scattering medium, scattering can be divided in (e.g. FARROW, 

1975): 

- Scattering by particles with small dimensions with respect 

to the wave length of the radiance: Rayleigh-scattering. 

According to the Rayléigh scattering theory the scattering 

coefficient ß is strongly wave length dependent. Thé relation 

is: 

ß «x. X - 4 (2.5) 

- Scattering by particles with dimensions comparable to the 

wave length: Mie-scattering. Wave length dependence is then 

less than for Rayleigh scattering. Mie scattering depends on 

shape and size of the particles. In the atmosphere Mie-scattering 

is mainly caused by droplets. The problem is that the shape 

and size of droplets fluctuate very much with time. If the 

amount of particles causing Mie-scattering is too high 

conditions are too bad to perform IRLS flight. The visibility 

has to be more than 5 km (BECKER, 1977). 

- Scattering by particles with dimensions much larger than the 

wave length. In this case scattering is independent of the 

wave length of the radiance. 

Under clear sky conditions the extinction of thermal infrared 

radiation is mainly caused by absorption of discrete amounts of 

energy by molecules. In this case also extinction of radiation is 

strongly wave length dependent. 

BEKCER (1977) divided the molecules in the atmosphere in two 

categories: 



- Molecules present in a given proportion: N~, 0_, C0_ etc. 

- Molecules present in proportions that fluctuate with time: 

mainly H„0. 

Absorption by ozonemolecules, concentrated in a layer between 

10 to 30 km above the surface, is neglected. In case of measurements 

by satellites the wave length from 10.5 - 12.5 um is usually applied, 

while absorption by ozone is concentrated at a wave length of 9,6 um. 

With air planes is usually flown lower than 10 km, by which ozone 

absorption can be neglected. 

If the atmosphere is divided into layers and each layer is regarded 

as a uniformly absorbing medium the transmission of monochromatic 

radiation obeys an exponential law: 

T(V) = exp(-k(v)x) (2.6) 

-2 
where x is the optical path length (g.cm ) and k(v) is the mass 

2 -1 
absorption coefficient (cm .g ). 

For absorption by different molecules k(v) is equal to the sum 

of the absorption coefficients of the different molecules: 

k(v) = kR 0(v) + k G 0 (v) + ... (cm2.g_1) (2.7) 

The transmission coefficient is then equal to the product of 

the transmission coefficients of the various molecules: 

T ( V ) = T H 2 0 ( V ) • \02
 ( V ) (2'8> 

Transmission in the 8-14 pm wave length band is, however, mainly 

determined by the amount of water vapour. 



3. ATMOSPHERIC MODELS 

3 . 1 . T h e RADTRA m o d e l d e v e l o p e d b y RANGASWAMY 

a n d SUBBARAYUDU (1978) 

The RADTRA-model estimates the attenuation of the atmosphere in 

the 10.5 - 12.5 ym wave length band. The attenuation of infrared 

radiation by the atmosphere can be estimated by solving the equation 

of radiative transfer. 

If only absorption by molecules is regarded, attenuation of 

radiation can be described by Beer's law: 

dR(v) = - R(v) k(v,z).p.dz (W.m~2.sr-1) (3.1) 

where pdz is defined as the optical thickness, p is the density 

(g.cm ) of the absorbing gas and z is the distance (m). 

The transmission of radiation emitted by the soil surface is 

described by: 

Rg(v,h) = Rs(v,Tg).T(v,h) (W.m"2.sr_1) (3.2) 

where R (v,T ) is the total radiation emitted by the soil surface 

if the emission coefficient of the surface is set equal to 1 and 

T(v,h) is the transmission coefficient of the airlayer of thickness 

h above the soil surface. This coefficient is found by integrating 

eq. (3.1): 

f h 

k(v,z)pdz 
T(v,h) = e" ° (3.3) 

Radiance emitted by the atmosphere is extinguished by the 

layer above the emitting level. The contribution of the atmosphere 

is: 
h 

r 
R (v,h) = I k(v,z) R (v,T z) exp(-

a ƒ a ci 
z=o z =z 

k(v,z ) pdz ) pdz 
1̂ 

(W.m"2.sr_1) (3.4) 



The general solution of the transfer equation is then: 

R(v,h) = R (v,h) + R (v,h) (W.m~2.sr-1) (3.5) 
S 3. 

The atmospheric attenuation in the 10.5 - 12.5 um wave length 

band can be calculated with the eq. (3.2), (3.3), (3.4) and (3.5) 

assuming, that radiation is monochromatic at a representative 

wave length within the called band. 

Calculations are performed by dividing the atmosphere in 

different layers and taking mean values for the mass absorption 

coefficient and the meteorological variables for each layer. The 

radiance at the top of layer n is equal to the sum of the transmitted 

radiance of layer (n-1) and the emitted radiance of layer n: 

-2 -1 
R(v,n) = R(v,n-1).exp(-k x ) + R (v,n)(l-exp(-k x ) (W.m .sr ) 

n n 3. n n 
(3.6) 

The radiance emitted by layer n is calculated by substituting 

a mean air temperature of layer n in Planck's equation. 

As the atmospheric attenuation in the 10.5 - 12.5 um wave length 

band is mainly caused by water vapour molecules the optical path 

length x is: 

x = p .Ah (g.cm z') (3.7) 
n v 

-3 
where p is water vapour density (g.cm ) and Ah is thickness of 

layer n (m). 

According to BIGNELL (1970), the constant k of eq. (3.6) can 

be described as: 

kn = f 1 (T) 'N (Tö!ö } + f 2 ( T ) "k2 T O T (S"' •Cm2) (3'8) 

where 

fj(T) = 1 - 0,005 (303-Tn) 

f2(T) = 1 + 0,02 (303-Tn) 

T = mean air temperature of layer n (K) 
n 

e = mean partial pressure of water vapour of layer n (mbar) 
n 

P = mean pressure of layer n (mbar) 
n 



kj =0,10 (g"1 cm2) 

k2 » 3,2 (g-1 cm2) 

If the angle between direction of observation and the vertical 

is e, the optical pathlength x must be divided by cos (ß). With this 

method upward radiation is calculated at each height above the surface. 

With eq. (2.4) an equivalent black body temperature T, (h,8) is 
DS 

calculated. The difference of this temperature and the surface 
temperature T, is the correction for the attenuation of thermal 

v bs 
infrared radiation by the atmosphere. 

AT = Tbs(h,6) - Tbg (K) (3.9) 

3 . 2 . A d j u s t m e n t s o f t h e RADTRA - m o d e l f o r 

a p p l i c a t i o n i n t h e 8-14 urn w a v e l e n g t h 

b a n d 

Fig. 1 shows, that transmission for water vapour is wave length 

dependent and that the mean transmission coefficient for the 10.5 -

12.5 um wave length band is higher than for the 8-14 um wave length 

band. 

For each wave length interval a mean value should be calculated. 

Then attenuation of radiance per wave length interval can be 

calculated from the eqs. (3.2) to (3.5). 

Atmospheric attenuation has been calculated taking 11 um as 

a representative wave length and taking a weighting mean for the 

transmission coefficient in the 8-14 um wave length band. 

The radiance emitted by the surface is wave length dependent. 

As a wave length interval is more important when the radiance 

emitted in this interval is higher, the transmission coefficient 

has been calculated mean proportional to the radiance per interval. 

For the calculation of the transmission coefficient of a wave 

length interval the model of ALTSHULER (ANDING et al., 1971) has 

been applied. This model is based on the melecular band absorption 

theory (ANDING, 1967). 
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Fig. 1. Transmission depending on the wave length and the amount 

of water vapour (W) taken from Mc. CLATCHEY et al. (after 

BECKER, 1978) 

If only water vapour absorption is considered the transmission 

for a resolution element (AX) is given by: 

T(AX) - exp - (W*.K(AX)) (3.10) 

-1 Table 1 shows the spectral absorption coefficient K(AX) (cm ) 

The 8-14 ym wave length interval has been divided into 12 intervals. 

The mean values K(AX) as calculated from table 1 are shown in 

table 2. 

In eq. (3.9) W* is the equivalent optical depth (cm) of liquid 

water at standard temperature and pressure. For a layer of thickness 

h this optical depth is equal to: 
h 

W* -
,P -N2 Zo.1.5 , 

) pv(r> (T- } dz 

' o o a 

(cm) (3.11) 



Table 1. Spectral absorption coefficients for water vapour (after 

ANDING et al., 1971) 

Wavelength 

(cm) 
7.737 
7.797 
7.859 
7.921 
7.984 

8.048 
8.114 
8.180 
8.247 
8.316 

8.386 
8.457 
8.529 
8.602 
8.677 

8.753 
8.830 
8.909 
8.989 
9.070 

9.130 
9.220 
9.310 
9.335 
9.398 

9.463 
9.494 
9.526 
9.590 
9.652 

9.713 
9.773 
9.834 
9.893 
9.953 

K(AX) 

(cm*1) 

2.00E 00 
1.74E 00 
1.56E 00 
1.77E 00 
1.54E 00 

8.30E-01 
4.36E-01 
2.41E-01 
1.42E-01 
8.30E-02 

5.46E-02 
4.67E-02 
4.19E-02 
3.89E-02 
3.67E-02 

3.4SE-02 
3.32E-02 
3.12E-02 
2.93E-02 
2.73E-02 
2.60E-02 
2.35E-02 
2.10E-02 
1.90E-02 
1.49E-02 
1.18E-02 
1.05E-02 
9.00E-03 
7.20E-03 
6.20E-03 

5.20E-03 
4.40E-03 
3.75E-03 
3.35E-03 
2.95E-03 

Wavelength 

(lira) 

10.070 
10.190 
10.290 
10.440 
10.550 

10.900 
11.500 
11.670 
11.790 
11.900 

12.050 
12.200 
12.350 
12.500 
12.530 

12.560 
12.590 
12.630 
12.660 
12.690 

12.720 
12.760 
12.790 
12.820 
12.850 

12.890 
12.920 
12.950 
12.990 
13.020 

13.050 
13.090 
13.120 
13.160 
13.190 

13.230 
13.260 
13.300 
13.330 
13.370 

K(AX) 

(cm-1) 
2.65E-03 
1.98E-03 
1.86E-03 
1.90E-03 
2.00E-03 

2.50E-03 
4.52E-03 
5.33E-03 
6.23E-03 
7.15E-03 

8.17E-03 
1.01E-02 
1.28E-02 
1.71E-02 
1.81E-02 

1.92E-02 
2.00E-02 
2.05E-02 
2.15E-02 
2.25E-02 

2.34E-02 
2.46E-02 
2.50E-02 
2.55E-02 
2.60E-02 

2.69E-02 
2.76E-02 
2.83 E-02 
2.92E-02 
3.01E-02 

3.12E-02 
3.26E-02 
3.39 E-02 
3.58E-02 
3.71E-02 

3.95E-02 
4.14E-02 
4.37E-02 
4.54E-02 
4.78E-02 

Wavelength 

(um) 
13.400 
13.440 
13.480 
13.510 
13.550 

13.590 
13.620 
13.660 
13.700 
13.740 

13.770 
13.810 
13.850 
13.890 
13.950 

13.930 
14.030 
14.060 
14.100 
14.140 

14.180 
14.220 
14.270 
14.310 
14.350 

14.390 
14.430 
14.470 
14.510 
14.560 

14.600 
14.640 
14.680 
14.730 
14.770 

14.810 
14.860 
14.900 
14.950 
14.990 

K(AX) 

(cm"1) 
4.95 E-02 
5.14E-02 
5.33E-02 
5.47E-02 
5.66E-02 

5.85E-02 
6.10E-02 
6.52 E-02 
6.95E-02 
7.38E-02 

7.72E-02 
8.19E-02 
8.66E-02 
8.82E-02 
9.07E-02 

9.24E-02 
9.58E-02 
9.89E-02 
1.03E-01 
1.07E-01 

l . l lE-01 
1.17E-01 
1.26E-01 
1.33E-01 
1.41E-01 

1.48E-01 
1.54E-01 
1.59E-01 
1.64 E-01 
1.70E-01 

1.75E-01 
1.86E-01 
1.98E-01 
2.12E-01 
2.23E-01 

2.34E-01 
2.44E-01 
2.52E-01 
2.63E-01 
2.72E-01 

where: P « standard pressure at sea level (P =1013 mbar) 
o o 

T = standard absolute temperature at sea level (T • 288,15 K) o o 
P = atmospheric pressure (mbar) 

T = atmospheric temperature (K) 



Table 2. Mean spectral absorption coefficients (K(AX)) depending on the 

wave length interval(AX) calculated from table 1 

AX t (AX) 

8.0 - 8.5 0.262 

8.5 - 9.0 0.035 

9.0 - 9.5 0.019 

9.5 - 10.0 0.005 

10.0 - 10.5 0.002 

10.5 - 11.0 0.002 

11.0 - 11.5 0.003 

11.5 - 12.0 0.006 

12.0 - 12.5 0.012 

12.5 - 13.0 0.025 

13.0 - 13.5 0.041 

13.5 - 14.0 0.073 

Except for applying weighting factors per wave length interval 

for the radiation intensity, also weighting factors for the properties 

of the scanner should be introduced. Because of the properties of 

the filter the wave length bands in the middle of the 8-14 um wave length 

interval are probably more important than the other ones (SHAW and IRBE,1972), 

As no data about the filter of the used scanner are available this 

effect is not taken into account. 

The transmission coefficient in the 12.5 - 14.0 um wave length 

interval is strongly influenced by the absorption of radiation by 

C0„ molecules. So in this interval transmission in the atmosphere 

is determined both by H„0 molecules and CO« molecules. This effect, 

however, is omitted as well, because of the uncertainties in the 

operations of the filter. 

10 



3 . 3 . T h e m o d e l o f BECKER 

In this model it is assumed, that at atmospheric attenuation in 

the 8-14 um band is caused by water vapour molecules only. Applying 

linear expansion of Planck's formula, BECKER (1978) has derived 

that: 

T b s ( h ' e ) = T b s + fr1 (Q(h) - T b s > + 6 <*> (3-12) 

where 

h = a l t i t ude (m) 

6 = angle of observation 

T, = black body temperature of the surface* (K) 
D S 

W(h) = total water content of the atmosphere over the 
-2 

column of length h (g.cm ) 
2 -1 

A = constant characteristic of the atmosphere (cm .g ) 

6 = correction, which can be neglected to first order 

0(h) = an effective atmospheric temperature (K) 

The effective atmospheric temperature is defined as: 

N N 
0(h) = I W T / E V (K) (3.13) 

, n n , n 
n=l n= 1 

According to a first order approximation the temperature 

correction for atmospheric attenuation is: 

AT = Tbs(h,6) - Tb s = g ® . (0(h) - Tbs) (K) (3.14) 

Results obtained with this model have been compared with the 

RADTRA-model. The factor A has been calculated assuming that for 

a surface temperature equal to the temperature of the lower atmosphere, 

the corrections as calculated by both models are the same at the 

top of the atmosphere. 

In both of the mentioned models information about the PTH profiles 

in the atmosphere is necessary. In eq. (3.14), however W(h) and 

0(h) can be eliminated by measuring the radiation temperatures of the 

soil surface in two different wave length bands. 

11 



These a r e : 

AjW(h) 
T i ( h ' e ) • T b s + ^nr ( 0 ( h ) - V (K) ( 3-15) 

A W(h) 

Vh>9 ) = Tbs + c4lT ( 9 ( h ) - Xbs ) (K) ( 3 '16) 

The radiation temperature of the soil surface T, is found by 

combining the eqs. (3.15) and (3.16): 

T (h,9) + T (h,9) 
Tb s = _i _ f + (Tj(h,e) + T2(h,9)) Ä (K) (3.17) 

where: 

I Al + A2 A = 
2(A2-Aj) 

Calculations with eq. (3.17) are only accurate, if the difference 

in atmospheric transmission in the two wave length bands is large 

enough. 

12 



4. RESULTS 

The influence of the atmosphere on thermal infrared radiation 

has been studied for an 'ideal' day to perform an Infra Red Line 

Scanning (IRLS) flight. This is a day, upon which the amount of 

water vapour in the atmosphere is very low. As an 'ideal' day June 

8, 1976 has been chosen. The meteorological data of this date are 

shown in table 3. From which data corrections for the influence 

of the atmosphere have been calculated. 

Table 3. Meteorological data of June 8, 1976 

h(m) P(mbar) T(K) e(mbar) 

174 1,001 298,2 12.2 

619 951 292.7 9.4 

1,080 901 288.4 8.7 

1,560 851 284.7 6.3 

2,060 801 281.6 3.3 

2,980 716 278.2 3 .0 

4,180 616 268.8 1.0 

5,550 516 260.6 0 .5 

6,740 441 253.2 0.4 

Fig. 2 shows some results obtained with the RADTRA-model. 

From this figure it is evident, that even for ideal Netherlands 

weather conditions the influence of the atmosphere cannot be 

neglected. 

In 1978 an IRLS-flight has been performed under clear sky 

conditions at July 31. Moreover this flight coincided with a 

passing over of the Heat Capacity Mapping Mission (HCMM) satellite. 

The meteorological conditions at midday are shown in table 4. 

13 



40 50 
8 (degrees) 

Fig. 2. Atmospheric temperature corrections (AT) depending on 

observation angle (6) as calculated with the RADTRA-model 

for June 8, 1976 

Table 4. Meteorological data of July 31, 1978 

h(m) 

88 

539 

1,010 

1,500 

2,010 

3,230 

4,470 

5,890 

6,690 

P(mbar) 

1,003 

953 

k 903 

853 

803 

693 

593 

493 

443 

T(K) 

300.8 

298.1 

294.9 

289.9 

285.4 

277.4 

267.1 

258.7 

252.0 

e(mbar) 

16.2 

14.8 

10.7 

9.8 

8.4 

2.9 

1.6 

0.3 

0.2 

Fig. 3 shows temperature corrections for the influence of the 

atmosphere AT depending on the height above the soil surface as 

calculated with the RADTRA and BECKER's model. From the corrections 

14 



h (km.) 
7 r Tb5 - 295k 300k 305k 

II 
315k 
I 

Fig. 3. Atmospheric temperature corrections (AT) depending on 

height (h) above the earth surface for differenct surface 

temperatures as calculated both with the RADTRA-model and 

BEKCER's model for July 31, 1978. The observation angle 6 is 

zero 

at 6700 m height as calculated with the RADTRA model, the constant 

A in BECKER's model has been derived. This constant A is found to 
2 - 1 

be equal to 0.09 cm .g . 

From fig. 3 can be concluded, that for surface temperatures 

which are about equal to the temperature of the lower atmosphere 

(+_ 300 K), the models agree very well. With an increase of the surface 

temperature the agreement is less. 

BECKER has tested his model against water temperatures of the 

river Rhine. This means that he checked his model only for relatively 

low surface temperatures. 

For the meteorological conditions of July 31, 1978 the influence 

of the atmosphere above a height of 4.5 km is negligible. Fig. 4 

shows for both models the dependence on the observation angle 6. 

For flights performed at low altitudes the influence of the observation 

angle is only important for high surface temperatures. With an increase 

15 



of the altitude the influence of the observation angle increases. 

So for flights performed at high altitudes as well as for satellite 

measurements the influence of the observation angle may not be 

neglected. This also holds true for low surface temperatures. 

ûT(k) 
5 r 

4 - — 

iT(k) 
10 

Tbs=300k 
radtra 
becker 8 

h = 6000 m 

4 -

Tbs=315k 
radtra 

_ becker 

h=1500m 

J 
10 20 30 40 50 

8 (degrees) 
10 20 30 40 50 

0 (degrees) 

Fig. 4. Atmospheric temperature corrections (AT) depending on 

observation angle (0) as calculated both with RADTRA-model 

and BECKER's model for July 31, 1978 for surface temperature 

Tbg= 300K (fig. 4A) and for Tfes= 315K (fig. 4B) 

Mean atmospheric transmission coefficients for the 10.5-12.5 um 

wavelength band have been calculated according to the method of 

BIGNELL (eq. 4.8) and ALTSHULER (eq. 4.10). RANGASWAMY and 
-1 2 

SUBBARAYUDU apply in their model k„ = 3.2 g cm (BURCH, 1970). 
- 1 2 

BIGNELL (1970), however, gives a value of 10 g cm for k2 (fig. 5). 

With the model of ALTSHULER also mean transmission coefficients 

for the 8-14 ym wave length band have been calculated. Table 5 

shows some results. 
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Fig. 5. Mass absorption coefficients kl and k2 as a function of 

wave number (after BIGNELL, 1970) 

The influence of the atmosphere has been calculated with 

the different formula's for the transmission coefficient. The 

results are presented in figs. 6A and B. Even small differences 

in transmissivity cause considerable differences in the atmospheric 

temperature corrections. So it is extremely important to calculate 

the transmissivity of the atmosphere very accurately. 

Finally fig. 7 presents the atmospheric corrections for July 31, 

1978 both in the 10.5 - 12.5 um and 8 - 14 um wave length band. 

Even for IRLS flights at low altitudes the influence of the 

atmosphere is not negligible. The correction in the 8 - 14 um 

band is much larger than in the 10.5 - 12.5 um band. 

17 



Table 5. Mean transmission coefficients for the 10.5 - 12.5 ym 

wave length interval according to BIGNELL (formula 3.8) 
-1 2 

with k« is 3.2 and 10.0 g cm respectively and according 

to ALTSHULER (formula 3.10). With the method of ALTSHULER 

also mean transmission coefficients for the 8 - 14 ym wave 

length interval have been calculated. 

h(m) 

88 

540 

1 ,012 

1,502 

1,910 

2,662 

3,533 

4,481 

5,531 

6,710 

Mean transmission coefficients for 6 = 

BIGNELL 

k~ = 3.2 

.942 

.986 

.997 

.982 

.993 

.992 

.996 

.998 

1.000 

1.000 

(10 5-12.5 ym) 

k2 = 10.0 

.898 

.976 

.995 

.964 

.987 

.989 

.994 

.998 

1.000 

1.000 

0° 
ALTSHULER 

10.5-12.5 

.959 

.980 

.989 

.979 

.985 

.984 

.988 

.992 

.996 

.997 

ym 8-14 ym 

.916 

.958 

.976 

.956 

.968 

.966 

.975 

.982 

.991 

.993 

h(m) Mean transmission coefficients for 6 = 45 

BIGNELL (10.5-12.5 ym) ALTSHULER 

k2 = 3.2 k2 = 10.0 10.5-12.5 ym 8-14 ym 

88 .906 .821 .951 .901 

540 .978 .957 .976 .950 

1,012 .995 .992 .987 .972 

1,502 .969 .933 .975 .948 

1,910 .988 .977 .982 .962 

2,662 .988 .981 .981 .960 

3,533 .994 .991 .986 .970 

4,481 .997 .996 .990 .978 

5,531 .999 .999 .996 .990 

6,710 1.000 1.000 .996 .992 
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Fig. 6. Atmospheric temperature corrections (At) on July 31, 1978 as 

calculated with the RADTRA-model for two surface temperatures 

(T, ) and for observation angle 0 (fig. 6A) and for 

9 = 45 (fig. 6B). Transmission of the atmosphere is calculated 
-1 2 

according to BIGNELL (eq. 4.8) with k« is 3.2 and 10.0 g .cm 

respectively and according to ALTSHULER (eq. 4.10) 
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Fig. 7. Atmospheric temperature corrections (AT) depending on 

height (h) for two surface temperatures (T, ) and an 

observation angle (8) of 45 as calculated with the 

RADTRA-model for July 31, 1978. Mean transmission coefficients 

have been calculated according to the method of ALTSHULER 

for the 10.5 - 12.5 pm and the 8-14 ym wave length band 

respectively 
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5. SUMMARY 

Crop radiation temperatures as determined by scanners from air 

planes or satellites are more and more used in regional hydrological 

models (JACKSON et al., 1977 and SOER, 1977). Large errors, however, 

may be introduced when neglecting the influence of the atmosphere 

on thermal infrared radiation. Even under clear sky conditions 

atmospheric corrections may amount to several degrees Kelvin. 

Moreover the atmosphere causes a smoothing of temperature differences 

at the surface. 

Most atmospheric models are based on calculation of the transmission 

coefficient of the atmosphere in any wave length band from profiles of 

pressure, temperature and humidity (PTH-profiles). It is evident, 

however, that these models are very sensitive for errors in the 

transmission coefficient. Therefore the model of BECKER is preferred. 

In this model the influence of the atmosphere is taken linearly 

proportional to the amount of water vapour in the atmosphere. 

It is possible, however, that, when the surface temperature is high 

in relation to the temperature of the lower atmosphere, with BEKCER's 

model atmospheric corrections are underestimated. Further study on 

this subject is necessary. 

As an input into the models PTH-profiles are required. Often 

these models are not known. With BEKCER's model, these data can 

be eliminated if the radiation emitted by the surface is measured 

in two different wave length bands. 

Insight in atmospheric processes can be obtained by applying 

simulations with models. For a reliable calibration of radiation 

temperatures measured with scanners from a certain height above 

the surface, such models are, however, not sufficient. Reference 

measurements in the field are indispensable. As the atmosphere, 

smoothes surface temperature differences which occur, measurements 

of both relatively low- and relatively high reference surface 

temperatures are required. 
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LIST OF USED SYMBOLS 

Symbol 

A 

3 

dl 
C2 
6 

e 

e 

0 

e 

h 

K 

k 

kl 
k2 

X 

n 

v 

P 

P 
o 

R 

R 
Ê 

P 

P.. 

Description 

constant characteristic of the atmosphere 

scattering coefficient 
g 

constant in formula of Planck (=1.185.10 ) 
4 

constant in formula of Planck (=1.439.10 ) 

correction term 

partial pressure of water vapour 

emission coefficient 

effective atmospheric temperature 

angle between the direction of observation 

and the vertical 

height above the earth surface 

spectral absorption coefficient 

massabsorption coefficient 

constant in formula of Bignell (=0.10) 

constant in formula of Bignell (=3.2 or 10) 

wavelength 

indicates number of layers in the atmosphere 

wave number or frequency of the electro

magnetic radiation (= X ) 

atmospheric pressure 

standard pressure at sea level (= 1013) 

radiation per unit of frequency interval 

blackbody radiation 

blackbody radiation per unit of frequency 

interval 

radiance emitted by the atmosphere 

radiance emitted by the soil surface 

density 

water vapour density 

temperature 

standard absolute temperature at sea level 

(= 288.15) 

Units 

2 -1 cm .g 

W.m .u 

y.K. 

mbar 

K 

m 
-1 

cm 
2 -1 

cm .g 
2 -1 

cm .g 
2 -1 

cm .g 

-1 

mbar 

mbar 
TT - 2 _ 1 

W.m . sr 
TT - 2 " I W.m . sr 

TT - 2 " I W.m . s r 
TT - 2 - 1 W.m . sr 
TT - 2 " I W.m . sr 

g.cm 
-3 g.cm 

K 

-1 

K 
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Symbol Description Units 

T, black body temperature of the surface K 

T atmospheric temperature K 

T surface temperature K 

T transmission coefficient 

W total water content of the atmosphere 
-2 over a certain column length g. cm 

W* equivalent optical depth cm 
-2 x optical path length g.cm 
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