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Abstract

In conventional wastewater treatment plants large amounts of energy are required

for the removal and recovery of nutrients (i.e. nitrogen and phosphorus). Nitrogen

(N) compounds are removed as inert nitrogen gas and phosphorus (P) is for example

removed as iron phosphate. About 80% of the N and 50% of the P in wastewater

originate from urine1, but urine only contributes about 1% to the volume of this

wastewater. High nutrient concentrations can be found in urine when it is collected

separately from other wastewater streams. In this thesis, the nutrient and energy

recovery from urine was investigated. At first, urine samples were analyzed for their

composition. This characterization showed that the composition of the organic frac-

tion in these samples was always similar. The differences between the concentrations

of specific organic compounds were caused by dilution, due to individual consumption

patterns of people. Two alternatives to the state-of-the-art nutrient recovery concepts

are evaluated. These alternatives are on the one hand membrane capacitive deioniza-

tion (MCDI) and on the other hand struvite precipitation combined with a microbial

fuel cell (MFC). The evaluation of the MCDI system showed that nutrients can be

concentrated from diluted urine. With its relatively low energy demand, MCDI could

be an alternative to electrodialysis. The evaluation of the phosphate recovery by stru-

vite precipitation combined with ammonium recovery and energy production by an

MFC showed that this concept is most promising. The highest ammonium recovery

rate achieved was 9.57 gN m−2 d−1 at a current density of 2.6 A m−2 (0.67 W m−2)

using real undiluted urine. The ammonium recovery and energy production by an

MFC (-10 kJ g−1
N ) can be considered a breakthrough, as usually energy is needed to

recover (i.e. ammonia stripping 32.5 kJ g−1
N )1 or convert (i.e. Sharon-Anammox 16

kJ g−1
N )1 ammonium. Predictions show that approximately 5.1 kg struvite and 7.3 kg

ammonia-nitrogen can be recovered from one cubic meter of urine, while producing

approximately 20 kWh. A comparison to state-of-the-art technology showed that

this process can be a good alternative for nutrient recovery from urine. Furthermore,

ammonium recovery and energy production by an MFC can possibly be applied to

other wastewater streams.

Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy

production from urine, membrane capacitive deionization

1According to M. Maurer, P. Schwegler, and T.A. Larsen, Water Science and Technology 48 (1),
37 (2003)
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1
General Introduction



1.1 Introduction

1.1.1 Background

Since its dawn, humanity has thrived. The growth rate of the human population

has been dramatically accelerated fueled by developments during and following the

industrial revolution [100]. As of 2012, over 7 billion people live on earth [2]. As

a result, the impact of human activities on the environment has reached a critical

point, not just for humanity [74]. Three out of nine planetary boundaries - proposed

thresholds for a ‘safe operation space of humanity’ - have been breached, namely

‘climate change’, ‘biodiversity loss’ and ‘nitrogen cycle’1. Furthermore, others, such

as the ‘phosphorus cycle’, are reaching the proposed boundary conditions [74]. This

shows that humanity needs to reconsider its current strategies and change its behavior

to prevent dramatic changes.

1.1.2 Essential nutrients

Nitrogen and phosphorus in their biologically available form are essential nutrients

for living organisms and are often limiting factors for growth. Their respective cycles

and human interference with them are presented in the following two paragraphs.

Nitrogen cycle

Nitrogen (N) has several essential functions for living organisms [54]; as amino acids

(i.e. NH2CHRCOOH 2), nitrogen is present in proteins, DNA and RNA. In chloro-

phyll, nitrogen is needed for binding and entrapment of the magnesium ion.

Inert N2 gas is found abundantly in the atmosphere, where it represents approxi-

mately 78% of the present gasses. However, nitrogen is not available to most living

organisms in its N2 form and needs to be converted to more reactive forms. The

nitrogen-cycle relies on biological, chemical and physical processes which transform

nitrogen compounds. Natural nitrogen-fixation - transformation of inert N2 to reac-

tive NH3 - is carried out by some bacteria (e.g. Azotobacter spp., Klebsiella, various

cyanobacteria, Rhizobium) using the nitrogenase enzyme [54]. Subsequently, nitrogen

1as part of the geochemical flow boundary with the phosphorus cycle
2generic form of an alpha amino acid with R as an organic substitute
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is available to other living organisms. Figure 1.1 shows a simplified scheme of the

biological nitrogen-cycle.

NH3

-NO2

N2

NH2

-NO2

NO,
N O2

-NO3

denitrification

ni
tri

fic
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io
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i

i

ii

  Legend
  i = assimilation
  ii = ammonification 

Figure 1.1: Simplified nitrogen-cycle showing the different processes involved in the
conversion of the different nitrogen forms (adapted from Madigan et al. [54] to include
the Anammox process).

Nowadays, humanity severely interferes with the nitrogen-cycle as large amounts

(120-160 Mt yr−1) of inert N2 are transformed into reactive N-compounds [41, 74].

The Haber-Bosch process is used for the fixation of inert N2 with H2 as reactive NH3

on an industrial scale, but the NH3 synthesis requires a large amount of energy: 37

kJ g−1
N [55]. Approximately 1% of the worlds energy production is used for ammonia

synthesis by the Haber-Bosch process, but recent published research shows that this

energy consumption can be lowered by using novel catalysts [41]. Most of the pro-

duced ammonia is used as fertilizer [41, 74]. In 2011 approximately 10 Mt of nitrogen

based fertilizers per year were used in the European Union (EU) [18].

Phosphorus cycle

Phosphorus (P) is the 11th most abundant element in the earth crust. Phosphorus

has an important role for life as it is involved in the metabolic energy transfer3

3ATP −−→ ADP + P

3
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and is present in DNA and RNA as the backbone of sugar and phosphate groups.

Phosphorus occurs in different forms and concentrations in the environment. Its

concentration ranges from less than 0.001 wt% in sea water up to 15 wt% in phosphate

rock [101]. Figure 1.2 shows a simplified scheme of the phosphorus-cycle without

human interference.

Biota
transport

Soil

 
 Surface 

water

transformation
P          P(aq) (s)

 
 Sediments,
 Minerals,

 Rock

3-PO4

tectonic activity

weathering

long term geological chances

burial flux

Ca (PO ) F5 4 3

Ca (PO ) OH5 4 3

Figure 1.2: Simplified scheme of the P-cycle without human interference adapted
from Valsami-Jones [101].

According to Valsami-Jones [101], this P-cycle compromises the erosion (weather-

ing) of P containing solids (rock, sediment, minerals), which is followed by cycling

between soil and biota with a consequent release to surface waters. Once in surface

waters (i.e. rivers) phosphorus is transported to oceans and seas. In oceans and seas,

phosphate transforms into P-containing solids due to burial flux, which is followed by

long term geological changes (i.e. tectonic activities) closing this cycle.

Human activities interfere with this cycle as large amounts of phosphate rock are

used to produce artificial fertilizers and the cycling capacity in the soil is reduced

due to deforestation and soil loss. In 2011 approximately 1.5 Mt of P-fertilizers

were used in the EU, which are applied in agriculture [18]. Therefore, a surplus of

phosphate enters surface waters directly (wash-out from farmland) or indirectly (over

the human/animal food chain) in addition to the natural phosphate loads [74, 101].

4
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In course of the long time frame of the phosphorus-cycle and the current rate

of mining, available resources of phosphate-rock are at risk of depletion: “...once

resources begin to be depleted: there is no substitute.”[3]. Based on proven reserves

it is estimated that phosphorus reserves will be depleted within 50 to 100 years [17].

However, a recent phosphorous deposit study [65] suggests that available phosphate-

rock deposits were underestimated in earlier studies and therefore phosphorus reserves

will not be depleted as rapidly as predicted in earlier studies by Driver et al. [17].

Nontheless, at the same time the quality of the phosphorous ore is decreasing due to

heavy metal contamination [14, 17]. Furthermore, rich phosphate-rock deposits are

mainly found in a few countries such as Morocco (including Western Sahara), Iraq,

China and Algeria [65].

1.1.3 Wastewater treatment

Due to the intensive use of phosphorus-products (i.e. fertilizers, anti-scalants, etc.)

and nitrogen-products (i.e. fertilizers), these compounds can end up in wastewater.

In wastewater P and N compounds were until recently considered as pollutants, as

they increase the risk of eutrophication of receiving water bodies when released in

large quantities. Therefore, these nutrients need to be removed or recovered from

wastewater [3]. Currently, P and N compounds are largely lost during treatment in

conventional wastewater treatment plants (WWTPs).

Nitrogen in WWTPs

Nitrogen is mainly removed by sequential biological nitrification and denitrifcation

processes, after which it is released as N2-gas to the atmosphere. Therefore, the

valuable reactive nitrogen compounds (i.e. NO–
3, NO–

2, NH+
4 ) are lost and additional

processes are necessary to recover nitrogen in a useful form. The energy consumption

of the nitrification and denitrifcation process is about 45 kJ g−1
N -removed (without

additional carbon source) and 109 kJ g−1
N -removed (with methanol as carbon source)

[55]. The Haber-Bosch process is applied globally for the recovery of nitrogen from

the atmosphere in the form of ammonia (NH3) using fossil fuels.

Anammox (Anaerobic Ammonium Oxidation) is a more energy efficient alternative

to the conventional nitrification and denitrification process. Anammox relies on the

biological conversion of ammonium and nitrite to nitrogen gas by specialized bacteria

5
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(Planctomycete-like) [37]. Part of the ammonium needs to be converted to nitrite

in a pretreatment step. Therefore, Anammox is combined with for example the

Sharon process (single reactor system for high ammonium removal over nitrite) [102,

103]. According to Maurer et al. [55] the elimination of ammonium-nitrogen via the

Sharon/Anammox process requires 16-19 kJ g−1
N -removed.

P in WWTPs

Phosphorus can be immobilized in the wastewater sludge by precipitation with iron

(II,III) salts (i.e. FeCl2, FeSO4, FeCl3) or aluminium (III) salt (AlCl3) [67]. However,

the sludge from WWTPs is not suitable for direct re-use due to its large volume and

also because other contaminants are immobilized in the sludge. The sludge can be

biologically digested, de-watered and incinerated to reduce its volume and to remove

organic contaminants. The remaining ash is rich in P, but also in heavy metals [63].

Furthermore, the solubility of these aluminium and iron phosphates is too low to be

used directly as a fertilizer. The P-recovery by FeSO4 requires 49 kJ g−1
P -recovered

[55]. The recovered P from wastewater still needs further processing before it can be

used as a fertilizer (i.e. Triple Super Phosphate - TSP - Ca(H2PO4)2 ·H2O).

Alternatively, the Enhanced Biological Phosphate Removal (EBPR) process [57]

can be used for a biological recovery of phosphates. So called polyphosphate ac-

cumulating organisms (PAOs) accumulate polyphosphates in their cells under aer-

obic conditions and break down these polyphosphates to phosphates under anaero-

bic conditions. The PAOs use two types of biopolymeres (polyphosphates and car-

bon storage polymeres) for this process. Under anaerobic conditions PAOs break

down polyphosphates to phosphate and store short chain fatty acids as carbon stor-

age polymeres (poly-β-hydroxybutyrate and poly-β-hydroxyvalerate). Under aerobic

conditions PAOs degrade these carbon storage polymeres to take up phosphates and

store them as polyphosphates. This allows for recovery of phosphorus from the ex-

cess sludge via precipitation as struvite (MgNH4PO4 · 6 H2O) and hydroxyapatite

(Ca5(PO4)3OH) or incineration (which requires dewatering). According to Maurer

et al. [55] the EBPR process combined with incineration requires about 28 kJ g−1
P -

recovered.

6
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1.2 Urine

1.2.1 Urine separation

Urine contributes only 1% to the volume stream of conventional domestic wastewater.

However, it contributes about 80% of the N-load [109] and 50% of the P-load [48]. One

person produces on average 1.5 L of urine per day, which contains approximately 9.1

gN L−1 and 1 gP L−1 [56]. Figure 1.3 shows the different wastewater streams which

can be collected in households with their respective nutrient and COD load. Nutrient

and COD load were calculated based on data presented by Kujawa-Roeleveld and

Zeeman [44], excluding the kitchen refuse waste stream.

rainwater toilet water
(without urine)

grey water

toilet water (without urine)
46 % of COD 
32 % of P
14 % of N

urine
10 % of COD
45 % of P
76 % of N 

urine

grey water
44 % of COD
23 % of P
10 % of N

Figure 1.3: Overview of different types of source separated wastewater with their nu-

trient and COD loads. The nutrient and COD loads were recalculated from reported

data [44], excluding the kitchen refuse stream.

The high nutrient concentrations in undiluted urine make it possible to develop

more effective and energy efficient recovery technologies. Therefore, a separation of

urine from other wastewater streams is an interesting option to keep these valuable

nutrients concentrated and to develop a suitable nutrient recovery concept. Based

7
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on this knowledge, European research groups started investigating treatment options

for so called ‘source separated urine’ in the 1990s [40, 48] in order to promote sus-

tainability of wastewater management. The term ‘source separated urine’ means that

urine is separated at source (toilet) from other wastewater streams in order to prevent

a dilution. Urine can be source separated by usage of urine separation toilets and

(waterfree) urinals (Figure 1.4).

(a) (b)

Figure 1.4: (a) Waterfree urinal type Urimat®-ECO (BioCompact Environmental
Technology B.V., The Netherlands) and (b) separation toilet type Roediger No-mix
(Roediger Vacuum GmbH, Germany).

1.2.2 Urine as a resource

Currently 10 Mt of nitrogen fertilizers and 1.5 Mt phosphorous fertilizers are used

yearly in the EU [18]. The European food production is currently heavily dependent

on phosphorous ore and fossil fuel imports for fertilizer production. Depletion of

these primary raw materials and the potential political intervention by exporting

countries would directly threaten EU food security. Direct and energy-efficient N and

P recovery technologies will reduce those threats. Nutrient recovery from urine can

provide 18% of the needed phosphorus and 25% of the needed nitrogen (details in

Table 1.1).

8
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Table 1.1: Possible coverage of N and P fertilizer from urine.

Phosphorus Nitrogen

Used Fertilizer [18] (Mt yr−1) 1.5 10.0

Inhabitants EU [19] (Million) 502.5 502.5

Excrete nutrients [15] (Mt yr−1) 0.275a 2.476b

Expected coverage (%) 18.3 24.8
a 1.5 L urine with 1 gP L−1, b 1.5 L urine with 9 gN L−1

1.2.3 Urine treatment

A detailed overview of different treatment processes for urine was presented by Mau-

rer et al. [56]. Maurer et al. [56] reviewed reported methods for urine treatment and

categorized them in hygenisation (Storage), volume reduction (Evaporation, Freeze-

thaw, Reverse Osmosis), stabilisation (Acidification, Microfiltration, Nitrification),

P-recovery (Struvite), N-recovery (Ion-exchange, Struvite, NH3-stripping, Urea com-

plexation), nutrient removal (Anammox) and micropollutant removal (Electrodialy-

sis, Nanofiltration, Ozonation). Most of these processes were tested and evaluated

under laboratory conditions. In the following paragraph nutrient recovery processes

and proposed techniques are explained in detail.

1.2.4 Recovery of nutrients

Struvite precipitation

Struvite precipitation is a convenient choice for the simultaneous recovery of P and

part of N from urine [75]. The pH of urine after urea hydrolysis4 is sufficiently high

(pH ≥ 9) and triggers the precipitation of struvite [97, 98]. Struvite from urine can

occur in two main forms: MgNH4PO4 · 6 H2O (MAP) and MgKPO4 · 6 H2O (MKP)

[87, 88]. Therefore, a recovery of either ammonium or potassium struvite from urine

is possible under the right conditions [111].

4Urea ((NH2)2CO) is hydrolyzed by the bacterial enzyme urease to NH3 and carbamate
(NH2COOH), whereas carbamate hydrolyzes further to NH3 and bicarbonate [58].

9



General Introduction

Ion-exchange

The application of ion-exchange materials such as resins or natural occurring zeolites

(e.g. clinoptilolite and others) have been tested for the recovery of ammonium from

wastewater [38] and urine [51]. Lind et al. [51] reported that the combination of zeolite

treatment in combination with addition of MgO for struvite precipitation results in

a good recovery of nutrients. The product (struvite and zeolite) can be used as soil

conditioner.

NH3-stripping

Ammonia (NH3) can be recovered from urine by NH3-stripping [4]. For this process

additional chemicals (e.g. CaO, NaOH, etc.) are necessary to increase the pH to ≥
9.3. Energy is required to heat the installation and potentially also for the applied

vacuum [4, 55, 56]. The recovered product is a liquid solution of ammonium salt (e.g.

with Cl–, SO2–
4 or NO–

3 as the counter ions). The energy requirement for N-recovery

by NH3-stripping is 32.5 kJ g−1
N -recovered [55].

1.2.5 Treatment processes

The large number of different treatment options means that various treatment con-

cepts can be developed for urine. In the following two paragraphs two treatment

concepts for urine are explained in detail.

Treatment concept as envisioned by DHV

Recently, a new process was proposed by Hemmes et al. [32], which combines struvite

precipitation with energy production in a so called solid oxide fuel cell (SOFC). A

SOFC is a fuel cell which operates at high temperature and usually uses natural gas

or propane as a fuel [85]. The principle of the process is illustrated in Figure 1.5.

In the proposed process, ammonium is recovered from wastewater as struvite. Con-

sequently, the struvite is thermally decomposed according to reaction 1.1 [5]:

MgNH4PO4 · 6 H2O
heat−−−→ NH3 + MgHPO4 + 6 H2O (1.1)

The released NH3-gas is converted to electricity, N2-gas and water in a modified

SOFC (the then called NH3-fuel cell [21, 62]). The remaining MgHPO4 can be reused
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Urine

O2 
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Figure 1.5: The envisioned DHV concept, adapted scheme from Hemmes et al. [32]

for the struvite precipitation as the magnesium and phosphate source. The process

was envisioned for the treatment of wastewater from a WWTP as well as from urine

to remove nitrogen and produce electricity. For the treatment of urine, this process

is also known as the ‘Gele stroom’ (‘Yellow current’) process [24].

Recovery processes in practice by GMB

Currently, there is only one operational recovery system for nutrients from urine on a

large scale [25]. The so called SaNiPhos® process was designed to produce struvite

and ammonia-liquid (i.e. 2 NH+
4 (aq) + SO2–

4 (aq)). The centralized SaNiPhos® in-

stallation is situated at the WWTP near to Zutphen (GMB, The Netherlands), which

requires the transport of urine from various locations to the installation. The process

includes 8 steps in total [8, 25].

1. Buffer tank; controlled hydrolysis of urea at pH 6-7 with acid dosing

2. Filter unit; removal of larger unwanted particles

3. CO2-stripper; removal of CO2 at pH of 4 and aeration

4. MAP precipitation; recovery of MAP by dosage of Mg(OH)2 and NaOH

5. NH3-stripping; removal of NH3 at pH of 10-11 by dosage of caustic, increased

temperature (60°C) and aeration with process air (closed circuit)

11
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6. Heat exchanger; heat recovery

7. Ammonia adsorption; NH3 is recovered from the process air leaving the NH3-

stripper

The high energy, chemicals and heat demand of this system requires a centralized

treatment facility. Therefore, it is necessary to transport large amounts of urine by

motor lorries from various collection locations to the central treatment system, which

results in additional costs and pollution (CO2 emissions).

1.2.6 Criteria for an optimal process

Criteria for an optimal process included the recovery of nutrients (nitrogen and phos-

phorus) in a useful form (e.g. as fertilizers). A decentralized concept is preferred over

a centralized system, in order to minimize the need to transport large amounts of

water. Usually this transport would need additional infrastructure or a transport by

motor lorries, which results in additional costs and emission of pollution. The energy

requirement of the recovery process should be low. An energy production step - from

for example the organic compounds - should be considered. An energy production

could lower the demand for additional energy input and therefore lower the opera-

tional costs. Furthermore, the process should be compact and robust in design, so it

can be operated in a decentralized setting. Both processes presented earlier do not

fulfill all of these requirements. A summary of the advantages and disadvantages of

the respective technologies is shown in table 1.2.

Table 1.2: Advantages and disadvantages of the DHV and GMB process.

Treatment Advantages Disadvantages

Process

DHV energy production no N-recovery

‘Gele stroom’ P-recovery

MgHPO4 re-use

GMB N-recovery energy consumption

‘SaNiPhos®’ P-recovery chemical usage

transport of urine

12
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1.3 Scope and outline of this thesis

The state-of-the-art nutrient recovery from urine technology is energy intensive and/or

requires large amounts of chemicals. Therefore, the scope of this thesis is to evaluate

alternatives for the recovery of nutrients and energy from urine. In Chapter 2, the or-

ganic and inorganic fractions of urine from a large sample group were characterized to

investigate their compositions and variations. This is essential for the development

and optimization of a suitable treatment strategy. The application of membrane

capacitive deionization (MCDI) as tool to concentrate and recover nutrients from

urine was investigated in Chapter 3. Chapters 4 and 5 focus on the application of

a bio-electrochemical system (BES) for the recovery of nitrogen with the possibility

of simultaneous energy production from synthetic and real urine/wastewater. The

applicability of BES for wastewater treatment containing high NH+
4 concentrations is

evaluated in Chapter 4 using synthetic wastewater. A concept for a future nitrogen

recovery and energy production system is presented in Chapter 5, in which real undi-

luted urine is treated. Chapter 6 presents a treatment concept based on results of

Chapter 5 in combination with phosphate recovery by Struvite (MAP) precipitation.

A scenario analysis is presented based on these results and on literature. Finally,

Chapter 7 gives a broader reflection of the presented work in this thesis. Further-

more, the proposed recovery concept from Chapter 6 is compared with the GMB

‘SaNiPhos®’ process and the envisioned DHV ‘Gele stroom’ process with respect to

energy requirements and nutrient recovery prospects.

13





2
Urine characterization with special emphasis on the

composition of the organic fraction



Abstract

In this study, the organic and inorganic fractions of urine samples were character-

ized to investigate their compositions and study their variations. In total 92 urine

samples from healthy persons and 14 samples from persons in a hospital were ana-

lyzed. The inorganic fraction was analyzed for the most abundant components. The

organic fraction was analyzed in terms of the chemical oxygen demand and in terms

of functional groups of organic compounds commonly found in urine by 1H-NMR.

Theoretical COD values were calculated from the results of the 1H-NMR analysis

and compared to the actual measured COD values in the respective urine samples.

Additionally, the total nitrogen content of the samples was measured. The results

show that although a broad spectrum of urine samples was taken, the composition of

the organic compounds was similar in these samples. However, relatively large fluc-

tuations in the concentrations of organic compounds and measured COD in the urine

samples were observed. This difference is caused by dilution, due to the individual

water consumption of the sample donors. Over 73% of the COD in non-hospital sam-

ples is aliphatic and can be considered biodegradable. No direct correlation between

the total nitrogen concentration and the measured COD was found.

Authors P. Kuntke, H. Bruning, G. Zeeman and C.J.N. Buisman

16



Introduction

2.1 Introduction

Urine contributes less than 1% to the volume of domestic wastewater. However, 80%

of the nitrogen (N), 70% of the potassium (K) and 50% of the phosphorus (P) load to

a wastewater treatment plant originates from urine [108]. Urine contains on average

1 gP L−1 phosphorus, 9 gN L−1 nitrogen and 2 gK L−1 potassium. Therefore, urine

can be considered as a valuable source for the recovery of nutrients and numerous

technologies have been developed to recover these nutrients [46, 56].

In addition to these nutrients, a high chemical oxygen demand (COD) of 10 gO2

L−1 [48, 56, 99] has been reported. This indicates a considerable amount of oxidizable

organic compounds, which can be used for energy production by biological processes

(e.g. bio-electrochemical systems [27]). This energy could be used to recover nutri-

ents. A broad overview of commonly found organic compounds in urine and excreted

amounts are given in the Documenta Geigy [15]. In this book, various literature

sources (mostly medical studies) are used, but nothing is reported about measured

COD. Therefore, little to nothing is known about the origin and variation of the

COD in urine samples. Furthermore, little attention has been given to explain the

relatively high COD values which are measured in urine compared to the measured

concentrations of organic compounds.

In this study, the organic and inorganic fraction of urine was characterized to

investigate the compositions and study their variations. This characterization could

be useful for the development and optimization of a suitable recovery strategy using

the potential energy contained in the organic compounds. The inorganic fraction

was analyzed for the most abundant components. The organic fraction was analyzed

in terms of most abundant components based on functional groups and COD. The

urine samples were analyzed by 1H-NMR on the basis of functional groups of organic

compounds commonly found in urine. Theoretical COD values were calculated from

the results and compared to the actual measured COD values in the respective urine

samples.
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2.2 Materials and Methods

2.2.1 Urine samples

Two sets of urine samples were collected. The first urine sample set was collected

from colleagues at Wetsus (Leeuwarden, The Netherlands) and the second sample set

was collected from patients at the hospital MCL (Medisch Centrum Leeuwarden, The

Netherlands). The Wetsus samples consists of morning and afternoon urine samples.

In total 92 Wetsus urine samples (54 from male donors, 34 from female donors and

4 from unknown gender donors, age group between 18 and 65 years) were collected

anonymously. The MCL samples (total of 14 samples, unknown gender) were collected

from hospital patients. The samples were directly analyzed for the concentration of

cations, anions, COD, total nitrogen and ammonium. Small aliquots (3 × 1.5 mL) of

each sample were directly frozen at -80 °C until 1H-NMR analysis.

2.2.2 1H-NMR measurements

Unfrozen sample aliquots (1.5 mL) were vortexed for 60 seconds to homogenize the

samples. Afterwards solids and proteins were separated1 by centrifugation for 10

minutes at 10,000 g. 200 µL of the supernatant was transferred to a clean PCR vial.

In the PCR vial the sample was mixed with 200 µL buffer solution (0.1 M pH 7

sodium phosphate buffer, 10 volume % D2O, and 25 µM TSP). From this mixture

200 µL was transferred to a 3 mm NMR tube and the samples were analyzed directly

after preparation.

The 1H-NMR measurements were performed using an Avance III 600 MHz spec-

trometer (H-frequency 600.45 MHz, 14.1T, Bruker, Germany). The sample measure-

ments were fully automated (sample transfer, temperature control 300 K, tuning and

matching, 90° pulse determination). The following conditions were used for the 1

dimensional 1H-NMR experiments: pulse sequence, noesygppr1d; ∼ 9 µs a 90° 1H-

NMR pulse; 4 seconds relaxation delay; 1.8 seconds acquisition time; 4 dummy scans;

256 total scans; spectral width: 18,000 Hz.

1Proteins were analyzed according to Bradford [9] see chemical analysis, page 20.
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2.2.3 1H-NMR data analysis

Each NMR spectrum was segmented into 0.05 ppm pieces in the spectral region (σ)

from 10 to 0.05 ppm with the Topspin software (Version 3.0.a, Bruker, Germany).

The water peak region (σ = 4.5 - 4.8) and the urea peak region (σ = 5.3 - 5.9) were

excluded from the analysis, since water and urea do not contribute to the measured

COD of a sample. The remaining integrals from the defined segments were analyzed

further on basis of the Bruker NMR table (see supporting information Table 2.4, page

28) for 1H chemical shifts in organic compounds (Bruker, Germany) [11]. Where

functional groups were overlapping in their spectral region, the overlapping parts

of these integrals were equally divided among these functional groups. The specific

regions and example compounds found in urine are shown in Figure 2.1.
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Figure 2.1: An overview of a representative urine sample analyzed with 1H-NMR.
The arrows indicate specific regions and compounds.
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Since creatinine and creatine are the most abundant organic components in urine,

their respective peak regions were excluded from the routine analysis and their signals

were analyzed separately. For the COD calculations no distinction was made between

creatine (reaction 2.1) and creatinine (reaction 2.2), since their oxidation requires the

same amount of oxygen according to:

C4H9N3O2 + 3 O2 −−→ 4 CO2 + 3 NH3 (2.1)

C4H7N3O + 3 O2 + H2O −−→ 4 CO2 + 3 NH3 (2.2)

The 1H concentration in a sample (excluding the water and urea regions) was

calculated from the sums of the integrals (
∑(∫

1Hi (σ)
)
). The amount of oxy-

gen (mol) needed for the oxidation of a functional group was determined by set-

ting up the redox-equation for the oxidation of the functional group (e.g. -CH3

+1 3
4 O2 −−→ CO2 + 1 1

2 H2O). Afterwards the COD was calculated according to:

CODcalc. =
∑

(CODi · ni) (2.3)

Where CODcalc. (g L−1) is the calculated total COD, CODi (g mol−1) is the COD

of functional group i and ni (mol L−1) is the concentration of the functional group i.

Additionally, a theoretical COD was calculated based on the reported concentrations

from Documenta Geigy [15]. The Documenta Geigy lists average excreted amounts

(mg d−1) and concentrations (mg L−1) originating from various literature sources.

When excreted amounts per day were reported, the concentration was determined

assuming an excretion of 1.5 L urine per day. The theoretical COD was calculated on

basis of the sum formula of the reported compounds and their average concentrations

(similar to Equation 2.3).

2.2.4 Analysis and measurements

Samples were analyzed for the concentration of cations, anions, chemical oxygen

demand (COD), total nitrogen (TN) and total ammonium nitrogen (NH+
4 -N). The

cation concentrations were determined using an ICP-OES, type Perkin Elmer Optima

3000 DV (Waltham, Massachusetts, USA). The anion concentrations were determined

using an ion chromatography system, type Metrohm IC Compact 761 (Schiedam, The
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Netherlands). NH+
4 -N was analyzed using test kit LCK 303; TN was analyzed using

test kit LCK 338 and COD was analyzed using test kit LCK 314 (all Dr. Lange,

HACH, Loveland, Colorado, USA) in a spectrophotometer HACH XION 500 (HACH,

Loveland, Colorado, USA). Proteins were analyzed by the Bradford method [9]. All

samples were analyzed in duplicate. Samples for determination of anion and cation

concentrations were filtered through 0.45 µm filters prior to analysis. The BOD5 was

determined using the OxiTop® system (WTW, Germany) over a period of 5 days at

20°C.

2.3 Results and discussion

2.3.1 Overview of urine samples

An overview of the measured sample parameters is shown in Table 2.1. For compar-

ison reported literature values are given in the same table.

Table 2.1: Average concentrations and standard deviations obtained from the 106
analyzed urine samples and reported literature values.

Compound This study literaturea literaturea

(g L−1) [15] [99]

COD 9.0 ± 4.1 n.r.b 10.0

TN 8.6 ± 3.7 8.83 9.2

Cl– 3.8 ± 2.1 4.97 3.8

Ptotal 0.7 ± 0.5 0.8-2.0 0.54

PO3−
4 2.00 ± 1.62 n.r.b n.r.b

Stotal 0.6 ± 0.3 1.315 0.5

SO2−
4 1.18 ± 0.69 n.r.b n.r.b

Na+ 2.41 ± 1.43 3.45 2.60

K+ 1.89 ± 1.16 2.737 2.20

Mg2+ 0.078 ± 0.051 0.119 0.0

Ca2+ 0.106 ± 0.073 0.233 0.0

NH+
4 -N/NH3-N 0.431 ± 0.192 0.463 8.1

a Standard deviation not available; bnot reported

The measured concentrations in the analyzed samples are similar to concentrations
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reported in literature [15, 99]. Only the NH+
4 /NH3 concentration reported by Udert

et al. [99] was significantly higher. This difference can be explained by the hydrolysis

of urea ((NH2)2CO) to ammonia and carbamate followed by the subsequent carba-

mate decomposition, which leads to the formation of NH3, NH+
4 and CO2 [58, 96].

The high standard deviation determined from the measured urine samples presented

in this work reflects the individual diet and consumption patterns (food and water)

of the individual persons who provided the urine samples. No information about

standard deviations were available for the literature sources [15, 99]. The measured

concentrations are similar to the literature values, which shows that representative

urine samples were taken for the analysis of the COD content of urine in this study.

2.3.2 COD composition derived from literature

An extensive overview of various compounds commonly found in urine is presented in

the Documenta Geigy [15]. A theorectical COD was calculated based on the reported

average concentrations (g L−1) or excreted amounts (g d−1) of organic compounds

according to the procedure explained in Materials and Methods (page 19). Table

2.2 shows the calculated COD from the various compound groups as reported in the

Documenta Geigy [15].

Table 2.2: Calculated COD based on compound groups reported in the Documenta
Geigy[15]

Compound Group COD (g L−1)

Proteins 0.019

Amino acids 0.802

other N-Containing 3.887

Carbohydrates 0.498

Organic acids 0.770

Lipids 0.034

Sum 6.009

It has to be mentioned that the reported concentrations or excreted amounts orig-

inate from various literature sources and that those studies usually focus on one

specific group of compounds. Therefore, these results show an incomplete picture of

the COD composition. Furthermore, most of these studies do not report COD values,
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as they have a medical background. Therefore, Table 2.2 only represents an approxi-

mation based on reported literature and further research on the COD composition is

necessary. Also the calculated average COD differs from the average COD measured

in various studies [56, 99] and the results presented in this study (see Table 2.1).

2.3.3 Characterization of COD by NMR

First the feasibility of using a functional group based analysis to characterize the

COD composition as described in the Material and Method section 2.2.3 (page 19)

was investigated. Therefore, the relation between the measured COD and the 1H

concentration in the analyzed functional groups was determined using linear regres-

sion analysis. Figure 2.2a shows the relation between the measured COD and 1H

concentration of the 106 urine samples.

Measured COD (g L-1) 

0 5 10 15 20 25

M
ea

su
re

d 
1 H

 (
m

ol
 L

-1
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R2 = 0.9339
y = 0.0566 x - 0.0033

(a)

Measured COD (g L-1) 

0 5 10 15 20 25

C
al

cu
la

te
d 

C
O

D
 (

g 
L-1

) 

0

5

10

15

20

R2 = 0.9109
y = 0.7355 x + 0.0246

(b)

Figure 2.2: Linear regression analysis between the measured COD 1H concentration

of the functional groups (a) and the calculated COD (b) including for both 95%

prediction band (dashed line) and 95% confidence band (solid line)

A good correlation (R2 = 0.9339) was found between the 1H concentration in the

analyzed functional groups and the measured COD values. This proves that the 1H-
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NMR measurements provide a good overview of the organic compounds present in

these urine samples, except for proteins which were removed prior to analysis.

As a next step, the relation between the calculated COD2 and the measured COD

was investigated by linear regression analysis. Figure 2.2b shows the relation between

the measured COD and calculated COD of the urine samples. A correlation factor

(R2) of 0.9109 was found between the calculated COD and the measured COD. In

general, the calculated COD values were 26% lower than the measured COD values.

This difference can be explained by two factors: 1) The calculated COD does not

include the COD of the protein content and 2) The sum formulas of the functional

groups are only an approximation for organic compounds present. Both factors lead

to an underestimation of the calculated COD. However, the good linear correlation

between measured COD and measured 1H concentration also shows that the com-

position of organic compounds is relatively stable (over the samples measured COD

range) which indicates that the differences in COD are mainly caused by dilution.

Additionally, the relation between the measured total nitrogen (TN) as well as

the measured ion concentration and the measured COD was investigated. No direct

correlation was found between the measured COD and those parameters (supporting

information in Table 2.5 on page 29).

2.3.4 Differences between sample sets

The differences between sample sets were determined for further investigations. There-

fore, the samples were grouped by their sampling time and gender of the persons. The

hospital samples were a separated group. The samples were analyzed using a box-

and-whisker diagram for the differences in COD, total nitrogen and ionic strength of

the sample sets. The ionic strength was calculated from the dominant anions and

cations as presented in Table 2.1 according to Equation 2.4.

Ionic Strength (mol L−1) =
1

2
·

n∑
i=1

(
ciz

2
i

)
(2.4)

Where ci is the measured concentration of an ion and zi is the charge of the

respective ions. No significant differences were found between the various groups, only

the hospital sample set showed minor differences compared to the other samples (see

2determined according to Equation 2.3 and Table 2.4
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supporting information in Figure 2.4 on page 30). The results of the linear regression

analysis of the calculated COD and measured COD of the respective sample sets are

presented in Table 2.3. All sample sets collected at Wetsus show a good correlation,

only the hospital sample set shows a lower correlation factor, which probably is due

to pathological reasons.

Table 2.3: Results of the linear regression analysis of the different sample sets calcu-
lated COD vs measured COD

R2 Slope Intercept

Morning 0.9408 0.820 -0.436

Afternoon 0.9770 0.746 -0.045

Male 0.9572 0.788 -0.322

Female 0.9528 0.789 -0.205

Hospital 0.8111 0.586 0.735

2.3.5 Relative contributions of the functional groups to the COD

Further analysis was performed to identify the relative contribution of the organic

compounds to the calculated COD. Therefore, the specific COD of the organic com-

pounds and proteins in the urine samples were divided by the total calculated COD

(including the calculated COD of the protein content) of the respective samples. The

relative contribution to the calculated COD of the different functional groups and

protein content is shown in Figure 2.3. Although high standard deviations were

found for the measured COD (9.0 ± 4.1 g L−1) and calculated COD (6.6 ± 3.1 g L−1),

based on the 106 samples, very little variation was found in the relative contributions

to the COD. For the Wetsus sample set most of the COD originates from aliphatic

compounds (73.2%) and creatinine/creatine (20.7%). The remaining COD originates

from aromatic and hetero aromatic compounds (3.4%) and proteins (2.7%). The hos-

pital samples show a relatively high COD contribution from the proteins (11.8%) and

therefore a respectively lower COD contribution by creatinine/creatine (14%) and

aliphatic compounds (69.9%), which is a result of their medical condition.

The high amount of aliphatic compounds indicates a high biodegradability of the

organic compounds found in urine. The biodegradability was determined by mea-

suring the biological oxygen demand (BOD5) of 10 representative urine samples. A
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Figure 2.3: Relative contributions of the organic compounds to the calculated COD
for (a) the Wetsus sample set and (b) the Hospital sample set.

BOD5 of 67 ± 2% of the measured COD was found. This relatively high BOD5

indicates a high biodegradability of the organic compounds found in urine. In liter-

ature, an even higher aerobic biodegradability of 85% was reported for the organic

compounds in urine [95].

2.4 Conclusions

This work shows that although a broad spectrum of urine samples was taken, the com-

position of the organic compounds was similar in these samples. However, relatively

large fluctuations in the concentration of total organic compounds and measured

COD in the urine samples were observed. This difference in the measured COD of

the urine samples is caused by dilution. This shows that urine is a relatively stable

wastewater stream without major differences in the COD composition. Therefore,

a conversion of chemical energy stored in these compounds into electrical energy by

a bio-electrochemical system (i.e. MFC) can be an interesting option to consider

for future research. The higher protein content in the hospital urine samples com-
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pared to the other samples makes this urine more complex. Over 73% of the COD

in non-hospital samples was aliphatic and can be considered biodegradable. No di-

rect correlation between the total nitrogen concentration and the measured COD was

found.
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Supporting Information

Table 2.4: Overview of the spectral region (σ) for 1H chemical shifts (ppm) in organic
compounds

Functional Group Sum-formula σ (ppm)

Carboxylic acid COOH 10.0 → 8.95

Aldehydes COH 10.0 → 9.45

Heteroaromatic C5H5N 8.9 → 8.05

C5H5N 7.4 → 6.45

Aromatic C6H6 8.5 → 6.45

Alkenes =CH- 8.0 → 4.45

=CH2 6.4 → 4.45

Alcohols =HC-O- 5.3 → 3.75

-H2C-O- 4.5 → 3.5

H3C-O- 4.0 → 3.25

Alkines -CCH 3.0 → 2.35

X-CH3 =N-CH3 3.45 → 2.25

-S-CH3 2.85 → 2.1

H3C- 2.6 → 2.1

-OC-CH2- 2.6 → 2.1

H2C= 1.8 → 1.1

-OC-CH3 2.6 → 1.75

C-CH3 2.0 → 0.05

X-C-CH3 2.0 → 0.8
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Figure 2.4: Box-and-whisker diagrams of the different sample sets for (a) COD, (b)
Total nitrogen and (c) ionic strength. Where 1 are samples from male donors, 2
are samples from female donors, 3 are samples from morning, 4 are samples from
afternoon and 5 are samples from hospital.
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3
Membrane capacitive deionization as a novel tool to

concentrate nutrients from urine



Abstract

This work describes the application of membrane capacitive deionization (MCDI)

as a tool to concentrate and recover nutrients from urine. Concentrating nutrients is

important for their recovery from diluted waste streams. The results obtained with

model urine show that the applied flow rate has an effect on the concentration effi-

ciency and recovery of nutrients. Higher flow rates led to high recoveries, whereas

lower flow rates led to higher concentration efficiencies. Using MCDI it was pos-

sible to recover 99.3% of the potassium, 98.5% of the phosphate and 98.2% of the

ammonium-nitrogen from diluted real urine. The low energy requirements (14.21 to

16.77 kJ L−1) make MCDI an alternative to electrodialysis. Furthermore, MCDI

allows for the separation of urea from ions.

Authors P. Kuntke, H. Bruning, G. Zeeman and C.J.N. Buisman
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Introduction

3.1 Introduction

Urine contributes, with a production of 1 - 1.5 L per person per day, only 1% to the

total volume of domestic wastewater. Nonetheless, it contains approximately 80% of

the nitrogen (N), 70% of the potassium (K) and 50% of the phosphorus (P) found

in domestic wastewater [111]. Urine also contains a considerable amount of organic

compounds [15, 56]. Therefore, urine can be considered as a valuable source for

nutrients and energy [110]. Yet, the use of flushing toilets and urinals often results in

dilution with considerable amounts of water and other waste streams which prevents

efficient recovery of nutrients and energy. Lately, intensive studies were conducted

by various research groups on effective and efficient treatment methods for separately

collected urine [31, 34, 52, 56, 71, 72, 75, 97, 110]. It has been concluded that further

research is needed to find promising process combinations for urine treatment and

recovery of nutrients [56].

Capacitive deionization (CDI) can be seen as a potential technology for the treat-

ment of urine. CDI or electrosorption is a process which removes ions from aqueous

solutions with lower energy consumption compared to other desalination techniques

(i.e. reverse osmosis, electrodialysis) [107]. The CDI principle is based on the elec-

tric double layer formed at the surface of two electrodes when a voltage is applied.

Ion adsorption occurs when an aqueous solution flows through the electrodes while

a potential is present. This results in a deionized stream. When the potential dif-

ference is equalized, stored ions are rapidly released to the solution, leading to a

highly concentrated stream [6, 107, 113]. Recent studies have shown strong benefits

when modifying the conventional CDI system by addition of ion-exchange membranes

[7, 49, 50]. A membrane capacitive deionization (MCDI) stack consists of a cation ex-

change membrane (CEM) and an anion exchange membrane (AEM) applied with the

electrodes, leading to a higher salt removal efficiency. MCDI has so far been studied

and applied as a desalination technology, in which the focus lies on the production of

deionized water [7, 22, 49, 50, 114].

This study investigates the application of MCDI as a concentration tool for a

complex electrolyte solution, such as urine. The hypothesis is that MCDI is able to

recover nutrients from urine in a concentrate stream. Furthermore, the separation of

urea (a neutral organic compound) from other nutrients (i.e. P and K) is investigated

by MCDI.
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3.2 Materials and Methods

3.2.1 Membrane capacitive deionization unit

A commercially available MCDI stack was provided by Voltea LTD (Vlaardingen, The

Netherlands). The MCDI stack contained 31 cells. Figure 3.1 presents the MCDI cell

configuration.
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Electrode
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Figure 3.1: MCDI cell design including a current collector, activated carbon elec-
trode, anion exchange membrane (AEM), a feed spacer, a cation exchange membrane
(CEM), activated carbon electrode, a current collector.

Each cell was composed of two graphite current collectors, two carbon based elec-

trodes (each 256 cm2), one feed spacer, one AEM and one CEM. The layout of the

experimental setup is presented in Figure 3.2.

The MCDI stack was connected to a power supply (Voltacraft 1560 PFC, Conrad

Electronic SE, Hirschau, Germany). A 60 mV/ 100 A DIN-shunt (Weigel, Conrad

Electronic SE, Hirschau, Germany) was placed in series with the power supply to

record the applied current by measuring the voltage drop over the resistor (0.6 mW).

The conductivity (σ) was measured using a conductivity electrode QC281x and a

controller P 862 (ProSense BV - QiS, Oosterhout, The Netherlands). A peristaltic

pump (Masterflex, Cole-Parmer, Vernon Hills, USA) was used for controlling the flow

from the stirred reservoir. The conductivity and applied current were recorded on an

Ecograph T RSG30 (Endress+Hauser B.V., Naarden, The Netherlands).
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MCDI
Stack

Feed tank

Stirrer

Pump

Resistor

Power supply

V

s

 
Effluent tanks for
1) Clean stream
2) Concentrate
3) Reject water

V

s

Volt meter

Conductivity meter

Figure 3.2: Schematics of the MCDI setup consisting of a feed tank with stirrer,
pump, MCDI unit, power supply, and conductivity meter.

A diluted model urine solution, which composition was derived from literature

[111], was used for the optimization of the flow rate. The model urine consisted of

Milli-Q water and various salts. Table 3.1 presents its composition compared to the

literature values [111].

All chemicals were purchased in analytical grade at Boom (Meppel, The Nether-

lands). Milli-Q water was produced using a Millipore system (Millipore, Billerica,

MA, USA). HCl was added to stabilize the model urine and prevent precipitation

of salts (i.e. hydroxyapatite, struvite) [31, 75]. It should be noted that the model

solution only contained salts, no urea and organic compounds were added. A diluted

model solution was chosen for the experiments, based on the expected dilution of

urine with flushing water [56] from flushing urinals (for details see Table 3.2).

3.2.2 Urine solution

Morning urine samples from 5 male co-workers were collected, mixed and stabilized

(pH ≤ 3) [31]) using concentrated sulfuric acid (97%) (Boom, Meppel, The Nether-

lands). In total, a volume of 4 L was collected and diluted to 10 L using Milli-Q

water. This dilution (0.4) is similar to dilutions reported in literature [56]. Stabi-

35



Membrane capacitive deionization as a novel tool to concentrate nutrients from urine

Table 3.1: Diluted model urine solution used during optimization experiments and
the reported literature values[111].

Compound/ Model urine Literature value [111]

Parameter Amount Unit Amount Unit

KH2PO4 2.1 g L−1 4.2 g L−1

MgCl2 · 2 H2O 0.325 g L−1 0.65 g L−1

CaCl2 · 6 H2O 0.325 g L−1 0.65 g L−1

NH4Cl 0.5 g L−1 1 g L−1

NaCl 2.3 g L−1 4.6 g L−1

Na2SO4 1.15 g L−1 2.3 g L−1

KCl 0.8 g L−1 1.6 g L−1

HCl (37%) 0.1 mL L−1 – a

σ 9.85 mS cm−1 – b

a not added; b not reportet

lization was performed to prevent hydrolysis of urea [58] and precipitation of salts.

This diluted and stabilized urine was stored at room temperature for a period of 7

days and was afterwards filtered (0.45 µm) to remove any particulate matter (e.g.

denatured proteins). Table 3.2 presents the measured concentrations of the diluted

and stabilized urine solution after filtration.

3.2.3 MCDI operation

The MCDI stack was operated in cycles at a fixed cell potential. One cycle consisted

of a charging step with a cell potential of 1.4 V followed by a discharging step with

a cell potential of 0 V. 1.4 V was chosen for the desalination step following the rec-

ommendation of published work [50]. The MCDI setup was operated manually. The

operational time for each step depended on the in situ measured effluent conductivity.

For experiments using model urine, the chosen limit for the clean stream was ≤ 1 mS

cm−1, whereas the chosen limit for the concentrate stream was ≥13 mS cm−1. After

the power supply was switched on and the conductivity reached the set conductivity

level (≤ 1 mS cm−1), the clean stream was collected. Once the conductivity exceeded

the set limit (breakthrough) the power was switched off and the cell potentials were

equalized. The resulting concentrate stream ≥13 mS cm−1 was collected. After a
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Table 3.2: Measured concentrations and parameters of the urine solution and model
urine.

Compound/ Urine solution Model urine

Parameter Amount Unit Amount Unit

Mg2+ 6.9±0.5 mg L−1 39.5±0.9 mg L−1

Ca2+ 10.3±0.4 mg L−1 91.3±1.8 mg L−1

Na+ 1040±14 mg L−1 1303±57 mg L−1

K+ 588±11 mg L−1 1103±50 mg L−1

PO3–
4 270±12 mg L−1 1555±37 mg L−1

Cl– 1680±35 mg L−1 2333±79 mg L−1

SO2–
4 1320±21 mg L−1 779±24 mg L−1

TN 1840±6 mg L−1 n.a.b

NH+
4 -N 82±5 mg L−1 123.7±2.4 mg L−1

COD 1620±11 mg L−1 n.a.b

σ 8.45 mS cm−1 8.95 mS cm−1

Dilutiona 0.4 0.5
a dilution = Vurine

Vurine+Vwater
; b not analyzed

defined threshold value was reached (11.5 mS cm−1) the next cycle was started by

switching on the power supply.

For experiments using the urine solution, the set limit for the clean stream was

≤1 mS cm−1, whereas the set limit for the concentrate stream was ≥10.5 mS cm−1.

The threshold value for starting the next cycle was chosen as 10 mS cm−1. Figure

3.3 shows the effluent conductivity recorded from a representative experiment (two

cycles) with model urine to indicate the concentrate stream and the clean stream.

Effluent which did not meet the set limits of the clean stream or concentrate stream

was discarded as reject water. In real applications, this reject water can be recycled

as a feed stream for the MCDI stack. Four cycles were performed for each experi-

ment with model urine. The first cycle was not used for analysis to ensure a steady

state system and therefore reproducible results. Samples from the clean stream and

concentrate stream were taken for each cycle. For the experiment with real urine, the

different effluent streams (clean, reject and concentrate stream) were collected over

the 5 applied cycles. Samples were taken from the collected streams for analysis.
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Figure 3.3: Measured effluent conductivity of a representative experiment to illus-
trate a clean stream (a), a concentrate stream (b) and the end of the cycle (c).

3.2.4 Analytical Methods

Samples from the experiments were analyzed for the concentration of cations, anions,

chemical oxygen demand (COD), total nitrogen (TN) and ammonium-nitrogen (NH+
4 -

N). The cation concentrations were determined using an ICP-OES, type Perkin Elmer

Optima 3000 DV (Waltham, Massachusetts, USA). The anion concentrations were

determined using an ion chromatography system, type Metrohm IC Compact 761

(Schiedam, The Netherlands). NH+
4 -N was analyzed using test kit LCK 303; TN was

analyzed using test kit LCK 338 and COD was analyzed using test kit LCK 314 (all

Dr. Lange, HACH, Loveland, Colorado, USA) in a spectrophotometer HACH XION

500 (HACH, Loveland, Colorado, USA). All samples were filtered through 0.45 µm

filters (PTFE syringe filters, VWR, Amsterdam, The Netherlands) and analyzed in

duplicate. Precipitated crystals were analyzed using an ATR-FTIR spectrometer,

type Shimadzu 4800 (Shimadzu Benelux, s-Hertogenbosch, Netherlands).
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3.2.5 Calculations

Recoveries (%) of ions were calculated using Equation 3.1.

Recovery (%) =
C2 ·Vol2

(C1 ·Vol1 + C2 ·Vol2)
· 100% (3.1)

C1 refers to the concentration of a specific ion (g L−1) in the clean stream, while

Vol1 refers to the volume (L) of the clean stream. C2 refers to the concentration of

a specific ion (g L−1) in the concentrate stream, while Vol2 refers to the volume (L)

of the concentrate stream. Concentration efficiencies (ηConcentration (%)) of ions were

calculated using Equation 3.2.

ηConcentration (%) =
C2 − C0

C0
· 100% (3.2)

C0 refers to the concentration of a specific ion (g L−1) in the influent. C2 refers to

the concentration of a specific ion (g L−1) in the concentrate stream.

The Energyi (J) consumption for each cycle was calculated according to Equation

3.3.

Energyi (J) = V ·
∫ t

0

Idt (3.3)

Where I is the measured current (A), V is the applied potential (V) and t is the

time interval (s) for a specific desalination step. The energy demand (kJ L−1) needed

in each desalination step to process one liter of model urine or urine solution was

calculated using Equation 3.4.

Energy demand (kJ L−1) =
Energyi

V oli
(3.4)

Voli is the volume (L) of influent measured during a specific desalination step at a

specific flow rate and Energyi is the energy (J) used in the corresponding desalination

step calculated according to Equation 3.3.
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3.3 Results and Discussion

3.3.1 Flow rate optimization for model urine

The effect of the applied flow rate on the recovery (%) and concentration efficiency of

ions (%) was investigated. The chosen flow rates were 25, 50, 75, and 100 mL min−1.

In situ measured parameters (volume and conductivity) were used for a general as-

sessment of the process. Table 3.3 shows the measured volume and conductivity of

the produced clean and concentrate streams.

Table 3.3: Characteristics of the produced clean streams and concentrate streams
including standard deviations at several flow rates.

Flow rate Clean stream Concentrate stream Influent

mL min−1 mL mS cm−1 mL mS cm−1 mL

25a 397±20 0.61±0.01 520±19 17.84±0.14 1265±43

50a 306±11 0.53±0.01 555±24 15.04±024 1310±147

75a 257±24 0.52±0.01 660±91 13.65±0.11 1618±129

100a 213±22 0.68±0.03 829±85 15.19±0.19 1828±172

90b 198±15 0.56±0.02 1008±145 11.78±0.35 1860±517
a model urine; b real urine

The measurements show that the produced volume of concentrate increased with an

increasing flow rate, whereas with an increasing flow rate the produced volume of clean

stream decreased. In general, the conductivity of the clean stream was considerably

lower (≤ 0.68 mS cm−1) compared to the model solution (9.85 mS cm−1). The

conductivity of the concentrate stream was increased (≥ 13.65 mS cm−1) compared

to the model solution (9.85 mS cm−1). Figure 3.4 presents the recoveries of the ions

from the model urine solution.

The results indicate that a higher flow rate led to a higher recovery (%). The

difference in recovery (%) between 75 and 100 mL min−1 was not significant and was

found to be within the standard deviation. On average 99.3% of each analyte can be

recovered using this MCDI stack. Figure 3.5 presents the concentration efficiencies

(%) of the ions from the model urine solution.

In general it was observed that a lower flow rate led to a higher concentration

efficiency (%). This can be explained by the smaller volume of concentrate stream
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Figure 3.4: Recoveries (%) obtained during experiments using model urine at several
flow rates: (A) 25 mL min−1; (B) 50 mL min−1; (C) 75 mL min−1; (D) 100 mL
min−1.
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Figure 3.5: Concentration efficiency (%) obtained during experiments using model
urine at several flow rates: (A) 25 mL min−1; (B) 50 mL min−1; (C) 75 mL min−1;
(D) 100 mL min−1.
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generated (Table 3.3) at a lower flow rate. The results indicate that polyvalent cations

can be better concentrated than monovalent cations. Higher concentration efficiencies

for polyvalent cations can be explained by the larger size and charge of these ions,

which make them more susceptible to the applied electric field at the electrodes [22].

Ca2+ had a higher concentration efficiency than Mg2+, due to its smaller hydration

radius [22, 64]. According to their hydration radii NH+
4 was better concentrated

than K+ and Na+ [64]. The relative low concentration efficiencies of PO3–
4 compared

to SO2–
4 can be explained by the low pH of the medium. At a pH of 3, phosphate

is present as dihydrogen orthophosphate (H2PO–
4), which is less susceptible to the

electric field. Furthermore, hydroxyapatite precipitation was found in the collected

concentrate streams (flow rate of 25 mL min−1). The latter indicates that the Ca2+

and PO3–
4 concentration efficiencies (%) were sufficient to induce precipitation.

MCDI is able to achieve high recoveries of ions (on average 98.5%) and high con-

centration efficiencies of ≥75% at 25 mL min−1. Similar to electrodialysis, MCDI

can concentrate ions in 42% of the original volume. The reported concentrate vol-

umes (in relation to the influent) are lower for vapor compressed distillation (≤ 5%),

evaporation (5%), and freeze-thaw (25%), while these techniques have equal or lower

recoveries [56]. However, further improvements in concentration efficiencies could be

made by using a ”stop-flow” operation and ”reversed voltage” to force ions away from

the electrodes [7]. When those enhancements are applied, the special focus should be

the prevention of scaling inside the MCDI stack.

3.3.2 Concentration of nutrients from a real urine solution

In order to confirm the results of the model urine solution, a real urine solution

was processed with the same experimental setup. Recovery (%) and concentration

efficiency (%) of the different analytes were used again for the assessment. 90 mL

min−1 was chosen as the flow rate in order to achieve high recoveries. 198 ± 15 mL

of clean stream was produced on average in each cycle with a conductivity of 0.56 ±
0.02 mS cm−1. 1008 ± 145 mL of concentrate stream was produced on average in

each cycle with a conductivity of 11.78 ± 0.35 mS cm−1. The characteristics of the

produced clean and concentrate streams are also shown in Table 3.3.

In total 1.122 L (0.56 mS cm−1) of clean stream, 4.606 L (11.09 mS cm−1) of

concentrate stream and 3.288 L (8.49 mS cm−1) of reject stream were produced

during the 5 cycles. The calculated recoveries (%) and concentration efficiencies (%)
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for ions and nutrients (excluding TN and COD) are shown in Figure 3.6.
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Figure 3.6: (A) Concentration efficiency (%) and (B) recovery (%) obtained in ex-
periments using real urine at a flow rate of 90 mL min−1.

99.3% of the potassium, 98.5% of the phosphate and 98.2% of the ammonium-

nitrogen were recovered from urine at a flow rate of 90 mL min−1. The concentration

efficiencies (%) of Mg2+, Ca2+, Na+, and NH+
4 -N were found to be similar to the

concentration efficiencies for respective ions of the model solution (at 100 mL min−1).

The concentration efficiencies (%) of SO2–
4 , Cl–, and K+ were found to be lower than

the concentration efficiencies for respective ions of the model solution (at 100 mL

min−1). This difference could be a result of the different inflow concentrations and

a higher complexity of the real urine. The concentration efficiency (%) of PO3–
4 was

found to be higher than the respective concentration efficiency of the model solution

(at 100 mL min−1).

The concentration of TN in the clean stream was 1771 ± 4.2 mg L−1, whereas

the concentration in the concentrate stream was 1873 ± 6.8 mg L−1. A recovery of

84.2% and concentration efficiency of 1.8% were calculated. This low recovery (%)

and concentration efficiency (%) can be explained by the partition of urea in the

various streams. Urea, a charge neutral compound, is not affected by the separation

processes of MCDI. Therefore, the changes of the TN concentration are a result of

the changes in the NH+
4 -N concentration and charged organic nitrogen compounds
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(e.g. amino acids). When a cell potential was applied, NH+
4 and charged nitrogen

compounds were stored in the formed electric double layer. When the cell potentials

were equalized, the stored NH+
4 and charged nitrogen compounds were released. The

possibility to separate urea from ions was also confirmed using a model solution

(results not shown). Thus MCDI technology can be used to separate urea from

ions. Therefore, a concentrated NH+
4 solution can be produced using the following

approach. Stabilized urine is treated by MCDI. The concentrate stream will contain

ions and charged organic compounds. The clean stream will contain non-charged

organic compounds and urea. Urea can be hydrolyzed to ammonia/ammonium by

addition of urea-amidohydrolase [58]. Acidification will then transform ammonia into

ammonium. In a second MCDI treatment step ammonium will be separated from

the non-charged organic compounds. Using this approach a concentrated NH+
4 liquid

could be collected.

Fate of the organic compounds

A recovery of 89.1% and a concentration efficiency of 0.8% were calculated for COD.

The COD in the clean stream was 995 ± 31.1 mg L−1, whereas the COD in the

concentrate stream was 1608 ± 61.3 mg L−1. These results can be explained by

charged functional groups (e.g. COO–) found within organic compounds (e.g. organic

acids). The MCDI stack is able to store these organic compounds in the formed

electric double layer on the electrodes. The chemical analysis of the effluents showed

that a small fraction of the COD is retained within the MCDI stack. The real

urine solution contained 14.61 g of COD before MCDI treatment. The clean stream

contained 1.08 g of COD, the concentrate stream contained 7.42 g of COD and the

reject stream contained 4.67 g of COD. Therefore, 1.44 g of COD was accumulated

inside the MCDI stack, most likely on the carbon electrodes or the ion exchange

membranes.

3.3.3 Energy demand of the desalination step

The energy consuming step in every conventional MCDI process is the desalination

step. The energy demand was calculated according to Equations 3.3 and 3.4. The

results are shown in Table 3.4.

The average energy needed in the desalination steps decreases with an increasing
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Table 3.4: Average inflow during the desalination step (mL), average energy (kJ)
needed in the desalination step and energy demand (MJ m−3) based on the applied
current in the MCDI setup

Flow Average volume Average Energy

rate desalination step Energyi demand

mL min−1 mL kJ kJ L−1

25a 484±14.2 8.11±0.36 16.77±0.36

50a 383±11.0 5.94±0.49 15.52±0.11

75a 349±22.9 5.13±0.36 14.68±0.09

100a 311±20 4.42±0.32 14.21±0.12

90b 313±53.2 4.62±0.83 14.72±0.28
a model urine; b real urine

flow rate. The main reason for this decrease is the earlier occurrence of the break-

through (effluent exceeded 1 mS cm−1) and therefore a smaller volume (L) of urine

was processed in the desalination step (as presented in Table 3.4). The calculated

energy demand ranged from 14.21 to 16.77 kJ L−1 for model urine and 14.72 kJ L−1

for real urine. The operational time of the desalination step was the influencing factor

for the energy demand. At higher flow rates less time was needed to process one liter

of influent. Thus, lower energy demands were found at higher flow rates.

The energy demand (for the desalination step) of the MCDI lies between 14.21 and

16.77 MJ m−3 (model urine) and 14.72 MJ m−3 (real urine). Therefore, MCDI would

use less energy than electrodialysis (107 MJ m−3) [56]. In addition an MCDI system

also needs energy for pumping, controlling and possibly a pretreatment step (e.g.

filtration for particle removal). Despite these concerns, the energy demand shows that

MCDI technology could be an alternative to electrodialysis to concentrate nutrients

from urine. Furthermore, possible benefits of energy recovery from the discharging

step were not considered in this research, but this energy recovery can further decrease

the energy demand [1].

3.4 Conclusion

This study demonstrates the capability of MCDI to concentrate nutrients from com-

plex liquid streams, such as urine. Concentration of nutrients is of special interest
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in situations where urine is diluted with flushing water. From a concentrated urine

various products (i.e. hydroxyapatite, struvite) can be extracted more efficiently than

from a diluted stream due to a higher concentration of nutrients in the produced con-

centrate stream. The energy demand of an MCDI system is low enough to become an

interesting alternative to electrodialysis. Furthermore, the results of this study show

that MCDI can be an interesting option for the treatment of liquid streams beyond

the boundaries of its former purpose as a pure desalination technology.
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Abstract

Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated

at high ammonium concentrations. Increasing the ammonium concentration (from

0.07 g to 4 g ammonium-nitrogen L−1) by addition of ammonium chloride did not af-

fect the performance of the MFC. The obtained current densities by DC-voltammetry

were higher than 6 A m−2 for both operated MFCs. During continuous operation at

an external resistance (250 W) a current density of 0.9 A m−2 was achieved. Effec-

tive ammonium recovery can be achieved by migrational ion flux through the cation

exchange membrane to the cathode chamber, driven by the electron production from

the degradation of organic substrate. The charge transport was proportional to the

concentration of ions. Nonetheless, a concentration gradient will influence the charge

transport. Furthermore, a charge exchange process can influence the charge transport

and therefore the recovery of specific ions.

This chapter has been published in a modified version as:

P. Kuntke, M. Geleji, H. Bruning, G. Zeeman, H.V.M. Hamelers, C.J.N. Buisman,

Effects of ammonium concentration and charge exchange on ammonium recovery from

high strength wastewater using a microbial fuel cell. Bioresource Technology (2011)

doi:10.1016/j.biortech.2010.12.085
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Introduction

4.1 Introduction

Bioelectrochemical systems and particularly microbial fuel cells (MFCs) have been

studied intensively for many applications [27, 53, 66]. In general, MFCs use microor-

ganisms to catalyze reactions at the anode and thereby produce energy. Various

applications have been considered for MFCs, including wastewater treatment [39],

energy production [73], and recovery of metals [92].

It has been shown that cations (i.e. NH+
4 , Na+, K+, Mg2+ and Ca2+) are even

transported against a concentration gradient through the cation exchange membrane

into the cathode chamber and will lead to an increase of the cathode pH [78]. It was

also shown that ammonium (“ammonium” refers in a general sense to NH3 and NH+
4 ,

whereas the chemical formulae are used to refer to its specific forms) is removed from

the cathode chamber by volatilization of NH3 [39]. These findings offer the possibility

to concentrate and recover NH3 from an ammonium rich wastewater (e.g. urine).

However, in most MFC applications, only low strength anolytes (synthetic and real

wastewaters) have been used for the assessment of the processes [39, 83, 91].

Ammonium is used by bacteria, fungi, and plants as an important nitrogen source

and it is known for its cytotoxic effects [59]. As an example, a high ammonium

concentration can affect anaerobic digestion [104, 116] by affecting methanogenesis.

Despite these findings, it was recently suggested that bacteria could be generally

resistant against high ammonium concentrations [59].

In this work, the effect of an increased ammonium concentration on the cell po-

tential and current density of an MFC was investigated. Furthermore, the transport

of cations to the cathodes was measured to determine the possibility of ammonium

recovery using MFCs.

4.2 Materials and Methods

To make an adequate assessment on MFCs as a tool to recover ammonium, contin-

uously fed MFCs were operated at high ammonium concentrations up to 4 gNL−1.

The used MFCs were of a two chamber design, using a reliable catholyte: ferricyanide

[91], to be able to focus solely on anode performances. The ammonium concentration

and external resistance were alternated. For the assessment of ammonium recovery,

the charge transport (Qion) was determined in relation to charge production(Qe).
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4.2.1 Microbial fuel cell design and setup

The setup consisted of two identical MFCs (MFC 1 & MFC 2) with the anode cham-

bers hydraulically connected in series, whereas the cathode chambers were hydrauli-

cally separated. The cell design for the experiments was similar to previously studied

MFCs [91]. Mechanical roughened graphite plates (22 cm2) were used in the anode

chambers and flat graphite plates (Mueller & Roesser GmbH & Co., Troisdorf, Ger-

many) were used in the cathode chambers. The anode chamber and cathode chamber

were separated with a Ralex cation exchange membrane, type CMH (Ralex, Mega,

Straz pod Ralskem, Czech Republic). The anode compartment (including chambers,

tubing, and buffer tank) had a combined liquid volume of 200 mL, and the cathode

compartments (including chambers, tubing, and flask tank) had a liquid volume of

1 L each. Anode and cathode media were recirculated at 80 mL min−1 through the

MFC using a peristaltic pump (Masterflex, Cole-Parmer, Vernon Hills, USA).

4.2.2 Microbial fuel cell operation

The MFCs were inoculated using effluent of another active MFC [83]. The anode

potential for each MFC was measured using an Ag/AgCl reference electrode (ProS-

ense QiS, Oosterhout, The Netherlands), connected to the anode chambers via a

Haber-Luggin capillary. The anode pH was actively controlled at pH 7 using a con-

troller (Liquisys M CPM 253, Endress + Hauser B.V., Naarden, The Netherlands),

an RC 8 Stepdose pump© (KNF, Trenton, USA) and a 1 M NaOH solution. The

MFCs were operated at a continuous temperature of 30 °C using a water bath (DC

10/K10, Thermo-Haake, Thermo Temperature Control BV, Eindhoven, The Nether-

lands). The individual cell potentials, anode potentials and pH were recorded in a 5

s interval using an Ecograph T data logger (RSG 30, Endress & Hauser B.V., Naar-

den, The Netherlands). Anode and cathode were connected via an external circuit

containing several external resistances (Table 4.1). During the initial period, a high

external resistance (1 kW) was used to study only the effects of an increasing ammo-

nium concentration on the cell potential and the current density. In later stages of the

experiment, the ammonium concentration was kept constant, whereas the external

resistance was lowered to study the increasing cation transport. Fresh anolyte was

constantly supplied to the anodes (1 mL min−1) using a peristaltic pump. The anolyte

contained 1.36 g L−1 NaCH3COO · 3 H2O, 0.74 g L−1 KCl, 0.58 g L−1 NaCl, 0.68 g
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Table 4.1: NH4-N concentration and applied external resistances during the experi-
mental period.

Day NH4-N External resistance

(g L−1) (W)

1 - 6 0.07 1000

7 - 12 0.5 1000

13 - 19 1.0 1000

20 - 26 1.5 1000

27 - 33 2.0 1000

34 - 40 3.0 1000

41 - 47 4.0 1000

48 - 54 4.0a 1000

55 - 61 4.0a,b 1000

62 - 65 4.0a,b 500

66 - 68 4.0a,b 250
aalternative anolyte solution

breduced volume of catholyte solution

L−1 KH2PO4, 0.87 g L−1 K2HPO4, 0.28 g L−1 NH4Cl, 0.1 g L−1 MgSO4 · 7 H2O, 0.1

g L−1 CaCl2 · 2 H2O and 0.1 mL L−1 of a trace element mixture [83]. The ammonium

concentration of the anolyte was increased stepwise (0.07, 0.5, 1.0, 1.5, 2.0, 3.0, and

4.0 gN L−1) by addition of NH4Cl. Further details on the MFC operation are shown

in Table 4.1. All chemicals were purchased at Boom B.V. (Meppel, The Netherlands)

in analytical grade. From day 48 onwards an alternative anolyte solution with an

increased KCl concentration was used for determining transport numbers of specific

cations. The anolyte contained 1.36 g L−1 NaCH3COO · 3 H2O, 5.4 g L KCl−1, 0.58

g L−1 NaCl, 0.68 g L−1 KH2PO4, 0.87 g L−1 K2HPO4, 0.1 g L−1 MgSO4 · 7 H2O,

15.11 g L−1 NH4Cl, 0.1 g L−1 CaCl2 · 2 H2O and 0.1 mL L−1 of a trace element

mixture. The cathode compartment contained a buffered ferricyanide catholyte as

the electron acceptor.

During the first period (until day 48), the catholyte (1 L) contained 50 mmol

K3Fe(CN)6 (FCN), 1.36 g L−1 NaCH3COO · 3 H2O, 0.74 g L−1 KCl, 0.58 g L−1

NaCl, 0.68 g L−1 KH2PO4, 0.87 g L−1 K2HPO4, 0.1 g L−1 MgSO4 · 7 H2O, 0.1 g
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L−1 CaCl2 · 2 H2O, 0.1 mL L−1 of a trace element mixture and NH4Cl of identical

concentration to the anolyte.

4.2.3 Electrochemical characterization

Polarization curves were measured to determine current densities (A m−2) of the

MFCs before increasing the ammonium concentration. The polarization curves were

prepared via DC-voltammetry using the chronoamperometry method on an Ivium-

stat.XR (Ivium Technologies, Eindhoven, The Netherlands). The cell potentials were

decreased stepwise and kept constant for 900 seconds to stabilize the direct current.

The sampling interval was 5 s. The MFCs were measured from 700 to 350 mV (cell

voltage) in steps of 50 mV. The average current measured over 60 s at the end of

each potential step was chosen for evaluation. The corresponding average anode po-

tential measured over 60 s was taken from the data logger (Ecograph T). At least 3

repetitions using chronoamperometry were performed per polarization curve.

4.2.4 Calculation

The current density (A m−2) was obtained according i = ECell (R·A)−1, where i (A

m−2) is the current density, ECell (V) is the cell voltage, R (W) is the resistance and

A (m2) is the area of the anode. The power density (W m−2) is calculated from

the current density according to P= i· ECell. The amount of produced charge (Qe),

expressed in coulombs (C), was calculated according to:

Qe =

t∫
0

Idt (4.1)

Where I is the current produced by the MFC over a certain period of time. The

amount of charge transported to the cathode (Qion), expressed as coulombs (C), of

specific ions through the cation exchange membrane was determined according to:

Qion = (Cion − Cion,0) ·V · zion · F (4.2)

Where Cion (mol L−1) is the concentration inside the cathode compartment of a

specific ion at the end of the experiment, Cion,0 (mol L−1) is the concentration inside
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the cathode compartment at the start of the experiment, V (L) is the volume of the

cathode compartment, zion (-) is the charge of the ion and F is the Faraday constant

(F 96,485 C mol−1) [84]. The Concentration Factor for ammonium was determined

according to:

Concentration Factor(%) =
(C1 − C0)

C0
· 100% (4.3)

Where C0 (g L−1) is the concentration at the start of a specific experiment and C1

(g L−1) is the concentration at the end of a specific experiment.

4.2.5 Chemical analysis

During the experiments, daily samples were taken from the anode compartment and

cathode compartment. They were analyzed for the concentration of cations, an-

ions, and NH+
4 -N. The cation concentrations were determined using an ICP-OES,

type Perkin-Elmer Optima 3000 DV (Waltham, Massachusetts, USA). The measured

cation concentrations were used to determine the cation transport. The anion con-

centrations were determined using an ion chromatography system, type Metrohm IC

Compact 761 (Schiedam, The Netherlands). NH+
4 -N was analyzed using test kit LCK

303 (Dr. Lange, HACH, Loveland, Colorado, USA) in a spectrophotometer HACH

XION 500 (HACH, Loveland, Colorado, USA). The samples for NH+
4 -N were dis-

tillated prior to analysis to avoid interference of FCN. All samples were analyzed in

duplicate. Samples for determination of anion and cation concentrations were filtered

using 0.45 µm filters (PTFE syringe filters, VWR, Amsterdam, The Netherlands)

prior to analysis.

4.3 Results and discussion

4.3.1 Overall performance of the MFCs

The average cell potential and current density of MFC 1 and MFC 2 are shown in

Figure 4.1. Linear regression analysis of the measured cell voltage over the applied

NH+
4 -N range showed only a marginal increase of the cell potential from MFC 1 and

MFC 2. For MFC 1, a slope of 0.017 and a minor correlation (R2) of 0.86 were found.

For MFC 2, a slope of 0.017 and a minor correlation (R2) of 0.76 were found. These

results indicate that there were no toxic effects of ammonium in the tested range.
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The average current density for MFC 1 was found to be 0.320 ± 0.017 A m−2 (0.226

± 0.025 W m−2) and for MFC 2 was found to be 0.317 ± 0.022 A m−2 (0.222 ±
0.031 W m−2). These results indicate no adverse effects of an increased ammonium

concentration.
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Figure 4.1: Cell potential averages (V) and current densities (A m−2) of MFC 1 and
MFC 2 at the various applied ammonium nitrogen influent concentrations.

For further investigation of the anode performance, polarization curves at the var-

ious ammonium nitrogen concentrations were recorded. Figure 4.2 displays the po-

larization curves for both MFCs.

The increasing ammonium concentration does not seem to affect the development of

the biofilm on the anode as obtained current densities increase despite increasing the

ammonium concentrations. A unimodal character was observed in Figure 4.2A-D. At

high anode potentials (>-0.300 V), the MFCs show a maximum in current density,

followed by a decrease, which reflects the maximum activity of the anode biofilm

[91]. Our hypothesis is that this maximum of the current density and the subsequent

decrease were caused by the early development stage (i.e. biomass limitations) of the

anode biofilm. This would result in a unimodal character of these polarization curves.

Figure 4.2E-H show a higher maximum current density at higher anode potentials for

both MFCs, which indicates a more developed (mature) biofilm on the anode. High

current densities (6 A m−2) were obtained for both MFCs at potentials of -0.200
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Figure 4.2: Polarization curves of MFC 1 and MFC 2 at various ammonium nitrogen
influent concentrations. (A) 70 mgN L−1, (B) 500 mgN L−1, (C) 1 gN L−1, (D) 1.5
gN L−1, (E) 2 gN L−1, (F) 3 gN L−1, (G) 4 gN L−1, and (H) 4 gN L−1 using the
alternative anolyte solution with an increased KCl concentration.

57



Effects of NH+
4 concentration and charge exchange on NH+

4 recovery by an MFC

V (vs. Ag/AgCl) at an ammonium concentration higher than 3 gN L−1. Current

densities obtained in these experiments were higher than current densities reported

in earlier experiments with identical cell designs [91]. This can be the result of the

continuous feeding of the MFCs with fresh anolyte and the higher conductivity of the

anolyte.

Four aspects could explain the observation that NH+
4 -N is not toxic for the anode

biomass: (1) The pH of the experiments remained lower than 7.1, at which little

NH3 occurs and all ammonium is present as NH+
4 [42]; (2) The concentration of

ammonium was increased gradually, which gave the bacteria a chance to adapt to the

new conditions [104]; (3) Microorganisms at the bioanode are growing in a biofilm [68],

which might protect them from toxic effects of ammonium; (4) A general tolerance or

resistance of bacteria against high ammonium concentrations as recently suggested

[59].

No ammonium toxicity was observed in these experiments, which can be explained

by the neutral anode pH. Therefore, the anodic pH influences the ammonia toxicity.

In the final application (wastewater treatment), the pH and therefore the presence

of NH+
4 can be influenced by controlling the supply of new anolyte. Protons are

constantly produced by the bio-catalyzed anode reaction:

CH3COO− + 4 H2O −−→ 2 HCO−
3 + 8 e− + 9 H+ (4.4)

This anode reaction 4.4 will lead to an acidification of the anode.

4.3.2 Transport numbers

Literature showed that ammonium is transported to the cathode compartment [80]

and can be removed by volatilization [39]. According to the Nernst-Plank flux equa-

tion the total ion flux through a membrane can be described by three processes:

convection, diffusion and migration. When using an anion or cation exchange mem-

brane only two of these processes can occur: migration and diffusion [80]. Whereas

diffusion is caused by a concentration gradient, the migration is caused by the charge

production.

The results of the ammonium measurements (day 1 - 41) of the samples taken from

the cathode compartment (containing 50 mmol FCN), revealed a higher NH+
4 -N-

transport than expected. As an example (day 34 - 40), the ammonium concentration
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increased by 8.893 mmol d−1 (858 C d−1) (average of MFC 1 and MFC 2), which

cannot be explained by the charge production (Qe) of 70 C d−1, during the same

period (average of MFC 1 and MFC 2). The ammonia concentrations in the an-

ode and cathode compartments are identical at the start of the experiment, which

excludes diffusion flux as the main cause for this high ammonium transport. Further-

more, the produced charge (Qe) was too low to explain this transport, which excludes

migrational flux as the main cause for this high ammonium transport. Also both com-

partments were buffered at pH 7 (using a 10 mmol phosphate buffer). Therefore, all

ammonium remained in the NH+
4 form, which excludes an unbalanced concentration

caused by pH changes and formation of NH3. The reason for this high NH+
4 transport

was found in a charge exchange process. The cathode compartment had a 180 mmol

L−1 K+ concentration, whereas the anode compartment only had a 30 mmol L−1

K+ concentration. Therefore, a diffusional transport of K+ from the cathode com-

partment to the anode compartment was induced. Samples taken from the cathode

during this experimental time (day 34 - 40) confirmed the charge exchange process.

The charge transport for K+ was found to be -8.913 mmol d−1 (-860 C d−1), indicat-

ing diffusion of K+ from the cathode compartment to the anode compartment. This

K+ diffusion resulted in an unbalance of the anion to cation ratio within the cathode

compartment. Therefore, the most prevalent cation (NH+
4 ) in the anode compart-

ment was transported to the cathode to maintain overall charge neutrality. Figure 4.3

shows the K+ and NH+
4 concentration (mol L−1) at the cathode during day 27 - 46

(as a combined average of the MFCs) and the schematic representation of the charge

exchange. From Figure 4.3a can be seen that at different anodic NH+
4 -N concentra-

tions (indicated via the dashed vertical lines) the process of charge exchange took

place. This process of charge exchange was also confirmed in experiments without

biological activity (data not shown).

This observed effect of charge exchange should be considered especially when de-

termining removal rates or charge transport, when using high strength catholytes (i.e.

50 mmol K3Fe(CN)6) in combination with cation exchange membranes.

To determine migrational transport numbers for ammonium, further experiments

were needed. Between day 48 and 68 charge transport (Qion) was determined in

relation to charge production (Qe). The anolyte and catholyte were altered to be

balanced in their cation concentration. Details on the alternate anolyte are given in

the experimental section 4.2.2 (page 52). The catholyte was a buffered ferricyanide
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4 and K+ amounts (averages of MFC 1 and MFC 2) at

the cathode (day 55 - 68) and b) schematic representation of the migration flux.
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solution with the same concentrations of cations as the anolyte. The concentration

of the ferricyanide was effectively lowered (24 mmol L−1) and the volume of the

catholyte was reduced (day 55) to make it possible to measure changes in the ammo-

nium concentration in shorter time periods. The operational time for each experiment

was also shortened to compensate for the lower ferricyanide concentration. Addition-

ally, the external resistance was lowered stepwise to the increase current density and

the produced charge (Qe). Figure 4.4 shows the absolute amounts (mol) of NH+
4 and

K+ measured at the cathode (as a combined average of the MFCs) at several applied

external resistances (indicated by the dashed vertical lines) and the schematic repre-

sentation of the migration flux. Furthermore, Figure 4.4 shows that the diffusion of

K+ from cathode to anode was prevented.

These results (Figure 4.3 and 4.4) show that the charge exchange should be taken

into account when determining transport numbers for ammonium. This can be done

by calculation of the contribution of charge exchange or experimentally by balancing

the anodic and cathodic media composition.

Table 4.2 shows the obtained concentration factor for NH+
4 -N, current densities

and power densities from the different external resistances (1 kW, 500 W and 250 W)

which were used. As expected the current density and power density increased

Table 4.2: Concentration factor for ammonium, current density and power density
obtained with the alternative anolyte solution using a lower concentrated catholyte
solution (day 55 - 68).

External Current Power Concentration

resistance density density factor

(W) (A m−2) (W m−2) (%)

MFC 1 MFC 2 MFC 1 MFC 2 MFC 1 MFC 2

1000 0.313 0.319 0.216 0.224 7 6

500 0.608 0.619 0.407 0.422 5 5

250 0.877 0.917 0.625 0.675 7 7

with respect to the decreasing external resistance according to Ohm’s law. Figure 4.5

shows the charge produced and the charge transported for both MFCs.

Ions were transported according to the following order NH+
4 ≥ Na+ > K+ > Ca2+
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Figure 4.5: Charge produced (Qe) and charged transported (Qion) of MFC 1 (a) and
MFC 2 (b).

� Mg2+, which corresponds to the concentration of the ions in the anode compart-

ment. However, the transport of Na+ was affected by the unbalance in concentration

between the anode compartment and the cathode compartment, resulting from the

pH control at the anode using 1 M NaOH. Thus, diffusion flux for Na+ was still

possible, which can explain the high transport of Na+.

4.3.3 Ammonia recovery

Table 4.2 reports the achieved concentration factors for NH+
4 -N. The results show

that similar concentration factors were obtained in the experiments. However, the

necessary operational time (at 500 W and 250 W) to achieve these concentration

factors decreased due to a higher current density. The concentration process of am-

monium is related to the electron transport and the earlier described charge exchange

had no direct influence on this concentration process (Figure 4.4 and 4.5). In com-

bination with the previously reported localized pH increase at the cathode [80] and

the volatilization of NH3 [39] this would offer a pathway to recover NH3 from high

strength ammonium wastewater (e.g. urine). This recovery can be achieved via
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diffusional flux and migrational flux of ammonium. Whereas diffusional flux only

allows for ammonium transport until an equilibrium between the anode and cathode

compartment is reached, migrational flux allows for increasing the ammonium con-

centration against a concentration gradient. The volatile NH3 could be stripped from

the cathode and adsorbed into an acid solution. Urine contains approximately 10 g

COD L−1 and approximately 8.1 gN L−1 (after hydrolysis) [56], which should pro-

vide enough energy (Qe) to recover a substantial amount of ammonium from urine.

Nonetheless, migrational flux of ions (other than NH+
4 ), which occurs at the same

time, will affect the recovery of ammonium.

4.4 Conclusions

In these experiments, no (cyto-)toxic effects of ammonium at concentrations up to 4

gN L−1 were observed. Also the increasing salinity of the media did not affect the

performance of the MFCs. These experiments prove that ammonium can be recovered

using an MFC, while energy is produced at the same time. The main processes

for ammonium transport are migrational flux and diffusional flux. Ammonium was

transported against a concentration gradient by migrational flux. Higher transport

rates can be achieved by further optimization of the current density.
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Abstract

Nitrogen recovery through NH3 stripping is energy intensive and requires large amounts

of chemicals. Therefore, a microbial fuel cell was developed to simultaneously produce

energy and recover ammonium. The applied microbial fuel cell used a gas diffusion

cathode. The ammonium transport to the cathode occurred due to migration of am-

monium and diffusion of ammonia. In the cathode chamber ionic ammonium was

converted to volatile ammonia due to the high pH. Ammonia was recovered from the

liquid-gas boundary via volatilization and subsequent adsorption into an acid solu-

tion. An ammonium recovery rate of 3.29 gN d−1 m−2 (vs. membrane surface area)

was achieved at a current density of 0.50 A m−2 (vs. membrane surface area). The

energy balance showed a surplus of energy (3.46 kJ g−1
N), which means more energy

was produced than needed for the ammonium recovery. Hence, ammonium recovery

and simultaneous energy production from urine was proven to be possible by this

novel approach.

This chapter has been published in a modified version as:

P. Kuntke, K.M. Śmiech, H. Bruning, G. Zeeman, M. Saakes, T.H.J.A. Sleutels,

H.V.M. Hamelers, C.J.N. Buisman, Ammonium recovery and energy production from

urine by a microbial fuel cell. Water Research (2012)

doi:10.1016/j.watres.2012.02.025

66



Introduction

5.1 Introduction

5.1.1 Nitrogen

Ammonium is an essential nutrient and an important nitrogen source for plants.

Here “ammonium” refers to the sum of volatile NH3 and ionic NH+
4 ; the specific

chemical formulae are used to distinguish between NH3 and NH+
4 . Ammonium-

based fertilizers are applied on a large scale to increase crop yields and to ensure

a high food production. The production of ammonium fertilizer is dependent on

the Haber-Bosch process, wherein N2 is fixated as NH3. After consumption of the

produced food, nitrogen compounds (i.e. ammonia, nitrite, nitrate, etc.) end up in

wastewater. These nitrogen compounds are removed as N2 in wastewater treatment

plants (WWTPs) by nitrification/denitrication or the Anammox process. The Haber-

Bosch process and nitrogen removal are energy intensive and therefore costly. Energy

can be saved by a direct NH3 recovery from wastewater. The main obstacles for

ammonia recovery from wastewater are the low nitrogen concentration and large

volumes of wastewater to be processed, which result in a high energy demand [55].

Focusing on the composition of wastewater, 75% of the nitrogen load to a conven-

tional WWTP originate from urine [48]. However, urine only contributes 1% to the

volume of the wastewater. On average urine contains 1 g L−1 phosphorus, 9 g L−1

nitrogen and 10 g L−1 COD [56]. Due to these high concentrations, urine can be

considered as a valuable resource for nitrogen, phosphorus and for energy recovery.

Urine can be easily separated and kept concentrated by the use of separation toilets

and water-free urinals.

In fresh urine most of the nitrogen is found in the form of urea ((NH2)2CO).

Urea is hydrolyzed by the bacterial enzyme urease to NH3 and carbamate, whereas

carbamate hydrolyzes further to NH3 and bicarbonate [58]. Urease is produced by

bacteria which can be also found in the sanitary installation and storage tank. As

a result of the decomposition of urea, the pH of the urine increases and triggers the

precipitation of salts (i.e. MgNH4PO4 · 6 H2O, Ca10(PO4)6OH2, CaCO3, etc.) [97].

Ammonium concentrations up to 8.1 gN L−1 can be found in urine [56].
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5.1.2 Microbial fuel cell

Bio-electrochemical systems are an emerging technology with a wide range of appli-

cations [27]. In Microbial Fuel Cells (MFCs) - a specific type of bio-electrochemical

systems - bacteria catalyze the oxidation of organic substrate (e.g. acetate) at the

anode according to:

CH3COO− + 4 H2O −−→ 2 HCO−
3 + 8 e− + 9 H+ (5.1)

The electrons are used to reduce an electron acceptor (i.e. O2) at the cathode.

Given the neutral to alkaline environment (pH ≥7) of the cathode, the reduction of

oxygen results in the production of hydroxide according to:

O2 + 4 e− + 2 H2O −−→ 4 OH− (5.2)

Anode and cathode are often separated by an ion exchange membrane [53]. Ion

exchange membranes and the cathode-electrode can be combined to form a so called

membrane electrode assembly (MEA) [47, 69, 70]. In a MEA, the membrane separates

the anode from the cathode and serves as an ion conductor, while the electrode can

be directly exposed to the gas phase (air-cathode).

5.1.3 Ammonium recovery by an MFC

The principle of ammonium recovery by an MFC was reported in Chapter 4 ([45]) us-

ing a sacrificial K3Fe(CN)6-cathode and synthetic wastewater. Recently, ammonium

has been reported as a proton shuttle (between anode and cathode) and ammonium

recovery was demonstrated by stripping from a synthetic wastewater[13]. The fea-

sibility of using highly diluted (0.035 vol/vol) urine solutions as fuel in MFCs has

been reported in literature [33]. The aim of this study is to investigate ammonium

recovery from real undiluted urine using a more sustainable air-cathode under high

NH3 concentrations and a high pH. Therefore, ammonium recovery and energy pro-

duction were studied not only from synthetic urine but also from real urine. The

obtained results were compared to the previous work in Chapter 4 ([45]). Further-

more, the energy demand for this ammonium recovery (kJ g−1
N ) was calculated and

compared to the energy demand of conventional NH3-stripping processes. The new

MFC facilitated ammonium recovery concept is shown in Figure 5.1a.
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Figure 5.1: (a) Schematic representation of the processes involved in the ammonium
recovery using an MFC; (b) Schematic representation of the experimental setup for
ammonium recovery using an MFC.

At the anode, electrons are produced (equation 5.1) and transported via an external

load (resistor) to the cathode, where oxygen is reduced (equation 5.2). The electron

transport induces a charge transport (i.e. anion or cation transport) across the mem-

brane to maintain the charge neutrality of the system. In case of the applied Cation

Exchange Membrane (CEM), cation transport (i.e. H3O+, Na+, K+, Mg2+, Ca2+,

NH+
4 ) occurs from the anode chamber through the CEM to the cathode chamber

(migrational flux) and leads in time to a concentration gradient between the cathode

and anode chamber of the MFC. The pH in the cathode chamber increases during

operation due to the production of hydroxide (OH–) according to equation 5.2 and a

migrational transport of cations other than H3O+ and NH+
4 . During continuous MFC

operation an equilibrium will be reached, where forward (anode to cathode) migra-

tional flux and backward (cathode to anode) diffusion flux of cations will be equal and

a maximum concentration of cations and OH– in the cathode chamber is reached. At

this point, the cathode pH remains stable, because the constant production of OH–

leads to a diffusion flux of OH– from cathode to anode [78, 84].

The high pH in the cathode chamber results in formation of volatile NH3. NH3 is
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stripped [13] from the liquid-gas boundary at the MEA by the air stream supplied to

the air-cathode. Subsequently, NH3 can be recovered from the gas stream leaving the

cathode by adsorption in an acid as NH+
4 . Therefore, this innovative concept couples

energy production from urine by a MFC with NH3 stripping.

5.2 Materials and Methods

5.2.1 MFC design and experimental setup

The applied MFC was of a two chamber design similar to recently published work

[36]. The MFC was made from two identical Plexiglas plates (21 cm×21 cm), each

plate contained one flow through chamber (10cm × 10 cm × 0.2 cm) with a 9 chan-

nel inlet and 9 channel outlet for flow distribution. In the anode chamber (volume

20 mL), a graphite felt (100 cm2 thickness 3 mm, National Electrical Carbon BV,

Hoorn, The Netherlands) was used as the anode. The anode chamber and the cath-

ode chamber (volume 20 mL) were separated using a MEA. The MEA (100 cm2)

was produced by hot pressing (5 minutes, 140°C, 534 bar) a platinum coated (20 g

m−2) titanium fine mesh (Dexmet, Magneto Special Anodes B.V., Schiedam, The

Netherlands) into a Nafion N117 (Dupont, Geneva, Switzerland) CEM using a Labo-

press P 400 S (Vogt Maschinenbau GmbH, Berlin, Germany). Anode (graphite felt)

and cathode (Pt coated Ti felt) were each contacted via 4 Pt/Ir (80/20) wires (0.025

cm diameter, Advent Research Materials, Oxford, UK) to the outside of the MFC.

Anode medium was recirculated at 80 mL min−1 through the MFC using a peristaltic

pump (Masterflex, Cole-Parmer, Vernon Hills, USA). New influent was supplied at a

flow rate of 1 mL min−1 by another peristaltic pump. The total volume of the anode

was 250 mL, including tubes (PTFE-based), anode chamber, mixing flow cell (Schott

Duran®, VWR, The Netherlands). The MFC was operated at room temperature (20

± 2°C). Air was supplied to the MEA in the cathode chamber at a flow rate of 10 mL

min−1 using a compressor (Kaeser Sigma SM 9, USA), a multistage pressure regula-

tor (VWR, The Netherlands) and a PTFE needle valve (VWR, The Netherlands) for

flow control. The gas stream from the cathode was channelled through two 500 mL

gas washing bottles with filter disks (Schott Duran®, VWR, The Netherlands) placed

in series. The first bottle was filled with boric acid (20 g L−1) to collect the volatile

NH3 as NH+
4 (adsorption bottle). The boric acid was renewed periodically. The gas
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stream from the adsorption bottle was channelled to a second bottle filled with a

0.4M H2SO4 solution to prevent contamination of boric acid with ammonia from the

laboratory environment. Figure 5.1b presents the scheme of the experimental setup.

5.2.2 MFC operation

The MFC was inoculated using effluent of another active MFC operated at 30 °C on

synthetic media with acetate [45]. The anode potential of the MFC was measured via

a Haber-Luggin capillary relative to an Ag/AgCl reference electrode (+0.200 V vs.

NHE, ProSense QiS, Oosterhout, The Netherlands). The anode pH was measured

using an Orbisint CPS11D pH electrode connected to a Liquisys M CPM 253 trans-

mitter (Endress + Hauser B.V., Naarden, The Netherlands). The cell voltage, anode

potential and the pH in the anode chamber were recorded in a 5 s interval using an

Ecograph T data logger (RSG 30, Endress + Hauser B.V., Naarden, The Nether-

lands). The anode and the cathode were connected through an external resistor.

The experiment consisted of two parts. In part one, synthetic urine was used

to study the effects of the anode ammonium concentration and electron transport

rate (current density) on ammonium transport. In part two, the feasibility of this

ammonium recovery and energy production by an MFC was studied under realistic

conditions using real urine.

The effects of an increasing anode ammonium concentration on the ammonium

recovery was studied at a high external resistance of 1 kW. The effects of the electron

transport rate on the ammonium recovery was studied at a constant anode ammonium

concentration and a decreasing external resistance. Further details about part one of

this experiment are given in Table 5.1. The synthetic urine contained 1.36 g L−1

NaCH3COO · 3 H2O, 0.74 g L−1 KCl, 0.58 g L−1 NaCl, 0.68 g L−1 KH2PO4, 0.87 g

L−1 K2HPO4, 0.28 g L−1 NH4Cl, 0.1 g L−1 MgSO4 · 7 H2O, 0.1 g L−1 CaCl2 · 2 H2O

and 0.1 mL L−1 of a trace element mixture [83]. The ammonium concentration was

increased by addition of NH4Cl. All chemicals were purchased at VWR (Amsterdam,

The Netherlands) in analytical grade. The synthetic urine had a measured COD of

600 mg L−1.

On day 77 the influent was changed to real urine and one day later the effluent

of the MFC was connected to the influent tank to recycle the same batch of urine

over a longer period of time. The ammonium concentrations in the urine batch were

expected to decline at a moderate rate, based on the expected produced currents and
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Table 5.1: Ammonium concentration, applied external resistances during the exper-
iment, conductivity of the influent and pH of the influent.

Time Anode ammonium External Conductivity pH

concentration resistance influent influent

(d) (gN L−1) (W) (mS cm−1) (-)

1 - 6 0.07a 1000 5.4 7.0

7 - 14 0.07 1000 5.4 7.0

15 - 20 0.5 1000 9.1 7.0

21 - 27 1.0 1000 13.3 7.0

28 - 34 2.0 1000 21.5 6.9

35 - 41 3.0 1000 29.2 6.9

42 - 48 4.0 1000 37.2 6.8

49 - 55 4.0 500 37.2 6.8

56 - 62 4.0 250 37.2 6.8

63 - 76 4.0 100 37.2 6.8

77 - 119 4.05b 500 35.0 8.85

120 - 135 3.96b 250 35.0 8.85

136 - 149 4.05c 250 35.0 8.85

150 - 160 4.01c 100 35.0 8.85
ainoculation; b1stbatch real urine; c2ndbatch real urine

previous experiments [45]. Therefore, the same batch of urine can be recycled for

longer periods without the risk of depleting the urine batch of COD or ammonium.

Two batches of urine (each 9 L) were used during part two of the experiment. This

urine (from 60 persons: 6 female and 54 male) was collected at Landustrie B.V.

(Sneek, The Netherlands) by DeSaH B.V. (Sneek, The Netherlands) using separation

toilets (Villeroy & Boch Gustavsberg AB, Gustavsberg, Sweden) and Urimat® eco,

water free urinals, (Biocompact Environmental Technology B.V., Rotterdam, The

Netherlands). The urine was pretreated by centrifugation at 8000 rpm for 5 minutes

(Avanti J-26XP, Beckman Coulter, USA) to remove particulate matter, suspended

particles and crystals (i.e. struvite).

Table 5.2 presents key parameters measured in the real urine after centrifugation.
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Table 5.2: Key parameters measured in the real urine after centrifugation.

Parameter Value Unit

Na+ 1.85 g L−1

K+ 1.49 g L−1

Mg2+ ≤5.0 mg L−1

Ca2+ 7.1 mg L−1

NH+
4 /NH3-N 4.05 g L−1

Cl– 3.29 g L−1

PO3−
4 -P 0.21 g L−1

SO2−
4 -S 0.21 g L−1

COD 3.9 g L−1

pH 8.85 -

Conductivity 35.0 mS cm−1

5.2.3 Chemical analysis

The urine was analyzed for the concentrations of relevant cations, anions and COD

after centrifugation. An ICP-OES, type Perkin Elmer Optima 5300 DV (Waltham,

Massachusetts, USA) was used to determine cation concentrations. An ion chro-

matography system, type Metrohm IC Compact 761 (Schiedam, The Netherlands)

was used to determine anion concentrations. The COD was analyzed using test

kit LCK 514 and the ammonium content was analyzed using test kit LCK 303 (Dr.

Lange, HACH, Loveland, Colorado, USA) and a spectrophotometer HACH XION 500

(HACH, Loveland, Colorado, USA). Ammonium concentrations from the absorption

bottle were measured throughout the experimental time to determine ammonium

transport numbers. Samples of the influent and anode media were filtered (0.45 µm,

PTFE syringe filters, VWR, Amsterdam, The Netherlands) prior to analysis. All

samples were analyzed in duplicate. The conductivity was determined using a con-

ductivity electrode QC281x and a controller P 862 (ProSense BV - QiS, Oosterhout,

The Netherlands).

73



Ammonium recovery and energy production from urine by an MFC

5.2.4 Calculations

The current density was calculated according to i = ECell·R−1·A−1, where i (A m−2)

is the current density, ECell (V) is the cell voltage, R (W) is the external resistance

and A (m2) is the surface area of the membrane (equal to the projected anode surface

area). The power density (W m−2) is calculated according to P = i·ECell. From the

recorded (pH and anode potential) and calculated (current density and power den-

sity) parameters average values and standard deviation were calculated based on the

results obtained during a specific set of operation conditions (applied concentration

or resistance) over a certain period of time (as indicated in Table 5.1). The amount

of produced charge (Qe), expressed in coulombs (C), was calculated according to:

Qe =

t∫
0

Idt (5.3)

Where I is the current (A) produced by the MFC over a certain sampling period.

The transport of ammonium from anode to cathode was determined indirectly by

measuring the ammonium concentration in the gas washing bottle filled with boric

acid. The ammonium transport (QNH4
) is presented as charge transport, which is

expressed in coulombs (C) and was calculated according to:

QNH4
= (cNH4

− cNH4,0
) ·V · zNH4

· F (5.4)

Where, cNH4 (mol L−1) is the concentration of ammonium at the end of a certain

sampling period, cNH4,0 (mol L−1) is the concentration of ammonium at the start of a

certain sampling period, V (L) is the volume of the boric acid used in the adsorption

bottle, zNH4 (-) is the charge of the NH+
4 and F is the Faraday constant (96485 C

mol−1). The Coulombic efficiency (ηCE) was calculated according to:

ηCE =
Qe

F · b
(

1
MO2

)
·∆COD ·V

(5.5)

Where Qe is the amount of produced coulombs during a specific time period (equa-

tion 5.3), b is the amount of electrons (4) exchanged per mole of O2, F is the Faraday

constant, MO2
is the molar mass of oxygen, ∆COD is the change in the measured

COD during a specific time period and V is the volume of the urine (9 L).
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The NH3 content (%) present in the solution at a specific pH was calculated ac-

cording equation 5.6 based on a pKA of 9.24 (at 25°C) [90].

NH3 content = 100 ·
[
1 +

10−pH

10−pKA

]
(5.6)

The ammonium recovery rate (gN d−1 m−2), which is based on the daily measured

ammonium transport and the membrane surface area was calculated according to:

Recovery rate =
∆ (mi)

AM
(5.7)

Where ∆ (mi) is the transported amount of NH+
4 or NH3 amount (gN d−1) and

AM is the membrane area (m2).

5.3 Results and discussion

5.3.1 Ammonium recovery from synthetic urine

In part one of the experiment, first the effect of an increasing anode ammonium

concentration and second the effect of an increasing current density on the ammonium

transport were investigated. Figure 5.2a shows the average anode potential and the

average current density reached at a constant external resistance (1 kW) at increasing

anode ammonium concentrations.

The current density stabilizes above an ammonium concentration of 1 gN L−1

and shows a peak at an ammonium concentration of 2 gN L−1. At 2 gN L−1 an

average current density of 59 mA m−2 and an average power density of 34.22 mW

m−2 were obtained. The measured average anode potential shows only a marginal

increase with an increasing anode ammonium concentration. The results show that

no adverse effects were found in the tested ammonium concentration range. This

observation is in agreement with earlier published work [45]. However, these results

are in contrast to the reported ammonium toxicity in a single chamber MFC [61].

For all applied anode ammonium concentrations, the relation between ammonium

transport and produced charge is shown in Figure 5.2b. A direct linear relation

(R2 = 0.995) was found between ammonium transport and produced charge in these

experiments. Independent of the ammonium concentration, 30% (slope = 0.30) of

the produced charge was used for ammonium transport to the cathode.
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Figure 5.2: (a) Average anode potential and average current density with standard
deviation obtained at 1 kW and at increasing ammonium concentrations (day 7 - 48
synthetic urine); (b) Ammonium transport against produced charge from day 7 until
day 48.

Figure 5.3a shows the measured average anode potential, current density and av-

erage power density obtained at higher current densities and at a constant anode

ammonium concentration (4 gN L−1).

At an increasing current density (from 0.1 to 0.47 A m−2), a slight increase of the

anode potential was observed (from -0.42 to -0.39 V). A power density of 222 mW

m−2 was measured at a current density of 0.47 A m−2 under the given operational

conditions. The obtained current densities in this work were found to be lower than

the current density obtained in previous work [45]. This difference can be explained by

the respective cathode systems used in the experiments. The air-cathode is affected

by the conditions (e.g. pH, low buffer concentration, oxygen supply) found in the

MFC [117], whereas the K3Fe(CN)6-cathode is not limited by these conditions.

The relation between ammonium transport and produced charge at these current

densities is shown in Figure 5.3b. A direct linear relation (R2 = 0.998) was found be-

tween ammonium transport and produced charge in these experiments at the different

current densities. The ammonium transport increased together with the produced
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Figure 5.3: (a) Average anode potential and average power density with standard
deviations obtained at higher current densities and a constant anode ammonium
concentration of 4 gN L−1 (day 49 - 69 synthetic urine); (b) Relation of ammonium
transport and produced charge from day 49 until day 69.

charge. Independent of the current density, 31% (slope 0.31) of the produced charge

from synthetic urine was used to transport ammonium. The ammonium transport

using a K3Fe(CN)6-cathode was reported to be 50% of the produced charge [45].

This difference could be caused by the difference in MFC designs. The advantage

of the air-cathode is the removal of NH3 from the cathode by the supplied air [39].

In a K3Fe(CN)6-cathode, ammonium is concentrated in the cathode and needs to be

separated from K3Fe(CN)6 in an additional step (i.e NH3 stripping). Since the pH

of the K3Fe(CN)6-cathode does not increase during operation, chemicals need to be

added prior to NH3 stripping.

The ammonium transport was found to be independent of the anode ammonium

concentration and increases with current density. This successfully demonstrates the

principal of ammonium recovery and energy production from synthetic urine by an

MFC using an air-cathode system.
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5.3.2 Ammonium recovery from real urine

In part two of the experiment, ammonium recovery from real urine was investigated.

Figure 5.4a shows the measured average anode potential, current density and power

density obtained during experiments with real urine.
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Figure 5.4: (a) Average anode potential and average power density with standard
deviation obtained at higher current densities during operation on real urine; (b)
Average anode pH with standard deviation during operation on synthetic urine and
real urine.

A stable anode potential was observed at increasing current densities. A power

density of 250 mW m−2 was measured at a current density of 0.50 A m−2 under

the given operational conditions. Although a more complex substrate was used,

comparable current densities and power densities were obtained during the operation

on real urine and synthetic urine. This shows that the biomass was able to use real

urine as a substrate. The anode potentials were lower during the operation on real

urine compared to operation on synthetic urine. This decrease in anode potential

can be explained by the change in the anode pH. Figure 5.4b shows the average

recorded anode pH during the experiments. The anode pH during operation on

synthetic urine was 6.8±0.1 and the anode pH during operation on real urine was
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8.85±0.1. The anode pH remained stable at 8.85 during the operation on urine,

because of the high concentration of the buffer. The two buffers which are present

were ammonium-ammonia (pKA= 9.24) with a concentration of 0.29 mol L−1 and

bicarbonate-carbonate (pKA= 10.33) with a concentration of 0.25 mol L−1.

The anode potential [53] decreases with a decreasing proton concentration (due to

the high pH) at the anode according to:

EAnode = E0
Anode −

RT

nF
ln

( [
CH3COO−][

HCO2−
3

]2
[H+]

9

)
(5.8)

Where E0
Anode(V) is the standard potential of the anode reaction, R is the universal

gas constant (8.314 J mol−1 K−1), T the temperature (K), n the number of electrons

transferred per reaction (mol), F the Faraday constant (96485 C mol−1), [xi] the

concentration (mol L−1) of the reactants (xi).

High ammonium concentrations have been reported to inhibit microbial processes

and to influence the performance of anaerobic digestion [10, 104]. Generally, the NH3

form has been reported to be more toxic than the NH+
4 form [43]. The anolyte am-

monium concentration was measured after 2 days of operation and from this result

the NH3 concentration was determined according to equation 5.6. The NH3 concen-

tration in the anode was 1.15 gN L−1 as a result of the anode pH. However, no toxic

effects on the biological processes in the MFC were found, since the anode potential

remained stable at increasing current densities and power densities. These results are

in contrast to reports of ammonium toxicity in a single chamber MFC [61], which

showed that already a low NH3 concentration can be toxic. However, the operational

conditions (start up, cell type) and the inoculums (possible adaptation to a high

ammonium concentration) were different in the respective works. No published infor-

mation was found on MFC operation at high ammonium concentrations at alkaline

pH conditions (pH ≥ 8.5) for comparison.

Although similar current densities were obtained with synthetic urine and real

urine, the daily ammonium transport was significantly higher in experiments with real

urine (Table 5.3). Also the relation between ammonium transport and produced

charge was different during the operation on real urine (Figure 5.5).

A slope of 1.32, 0.81 and 0.53 was found at a current density of 0.11, 0.22 and

0.50 A m−2, respectively. A slope higher than 1.00 shows that more coulombs of

ammonium were transported than coulombs of electrons were transported. Therefore,
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Table 5.3: Average ammonium transport (C d−1) and the average produced charge
(C d−1) during operation on synthetic urine (4 gN L−1) and real urine at the respective
current densities.

synthetic urine real urine

i QNH4
Qe i QNH4

Qe

A m−2 C d−1 C d−1 A m−2 C d−1 C d−1

0.10 27±5 85±5 0.11 123±10 94±5

0.22 61±2 185±3 0.22 160±10 192±6

0.47 117±13 406±8 0.50 227±26 431±4

the ammonium transport can not solely originate from migrational transport. Since

convection transport of ammonium is impossible through a CEM, the ammonium

transport is limited to migration and diffusion. The explanation for this difference

in ammonium transport is diffusion of NH3. NH3 diffusion through perfluorosulfonic

ion exchange membranes (”Nafion”) has been reported in literature [28, 94, 105]. At

a pH ≤ 7 (operation on synthetic urine) less than 0.7% of the ammonium is present

as NH3. Whereas at a pH of 8.85 (operation on urine) 28.5% of the ammonium is

present as NH3 (see equation 5.6).

The NH3 diffusion (nNH3,dif ) can be determined by calculation, because the total

ammonium transport (nNH4,total) is equal to the sum of NH3 diffusion and NH+
4

migration (nNH+
4 ,mig).

nNH4,total = nNH3,dif + nNH+
4 ,mig (5.9)

nNH+
4 ,mig can be substituted with “α · ne” given that the NH+

4 migration is equal

to a fraction (α) of the transported electrons (ne).

nNH4,total = nNH3,dif + α · ne (5.10)

Where nNH4,total (mmol d−1) is the measured total ammonium transport, nNH3,dif

(mmol d−1) is the NH3 diffusion and α is a factor and ne (mmol d−1) is the amount of

transported electrons (measured current). nNH3,dif and α were determined using the

amount of transported electrons and total ammonium transport obtained during the

experiments at various current densities. nNH3,dif was 0.995±0.06 mmol d−1 (equal
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Figure 5.5: Ammonium transport against produced charge at various current densi-
ties during operation on real urine.

to 96±6 C d−1) and α was 0.31±0.01. Hence, the diffusion of NH3 from the anode to

cathode chamber affects the total ammonium transport. As shown in section 5.3.1,

similar α values (i.e. 0.30 and 0.31) were obtained during experiments using synthetic

urine.

To determine NH3 diffusion experimentally, synthetic urine (ammonium concen-

tration (4 gN L−1) without NaCH3COO · 3 H2O) was prepared according to details

given in section 5.2.2 and adjusted to the desired pH using 1M NaOH. The setup

was identical to the MFC setup, while anode and cathode were not connected by an

external circuit. No ammonium transport was measured during 7 days of operation

at an anode pH of 7. A diffusional ammonium transport of 1.03±0.05 mmol d−1

(equal to 100±5 C d−1) was measured during 7 days of operation at an anode pH of

8.8.

The NH3 diffusion accounts for 42.2% of the ammonium transport measured at

the highest current density, whereas at lower current densities NH3 diffusion is the

dominant ammonium transport mechanism.
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5.3.3 Ammonium recovery rates

The ammonium recovery rates were determined according to equation 5.7. The high-

est ammonium recovery rate was 3.29 gN d−1m−2 at a current density of 0.50 A m−2.

This recovery rate can be divided into NH3 diffusion (concentration gradient and pH

dependent) and NH+
4 migration (current density and concentration dependent). Fig-

ure 5.6 shows the ammonium recovery rates with the respective NH3 transport and

NH+
4 transport obtained during the experiments on real urine. Higher ammonium

recovery rates can be reached by increasing the current density or increasing the NH3

diffusion.
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Figure 5.6: Recovery rates calculated at achieved current densities divided in NH3

transport and NH+
4 transport.

5.3.4 Energy analysis for ammonium recovery by an MFC

The energy analysis for ammonium recovery by MFC was performed at the highest

current density (highest ammonium recovery) for an MFC, operated on real urine,

with a membrane surface area of 1 m2 and compared to conventional NH3 stripping.

The energy demand of the ammonium recovery by MFC was calculated based on

aeration, the energy demand for ammonium recovery (adsorption in H2SO4) and the

energy production of the MFC. The energy demand for aeration (E(aeration) (kJ g−1))
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of the scaled-up MFC was calculated according to:

E(aeration) =
∆P ·Q · 86400

η ·AM · recovery rate
(5.11)

Where ∆P is the measured pressure drop in the gas diffusion cathode (2.0 · 104 N

m−2) in a single cell, Q is the air flow (1.67 · 10−7 m3 s−1), η is the pump efficiency

(conservatively chosen 0.8), AM is the membrane surface area (0.01 m2), 86400 (s d−1)

is the amount of seconds per day and recovery rate (gN d−1m−2) is the ammonium

recovery rate (equation 5.7). The ∆P measured in a single cell is representative for a

scaled-up MFC, which is a stack of identical cells with a similar geometry to the here

applied prototype. An energy demand for aeration of 10.93 kJ g−1
N was calculated.

Details on the energy demand of conventional NH3 stripping, including chemical usage

(CaO and H2SO4) and aeration were obtained from literature [55]. The comparison

between ammonium recovery by an MFC and conventional NH3 stripping is shown in

Table 5.4. These results highlight the advantages of the MFC facilitated ammonium

Table 5.4: Detailed energy analysis for conventional NH3 stripping and ammonium
recovery by an MFC.

NH4 recovery Conventional

by an MFC NH3 Stripping

Aeration (kJ g−1
N ) 10.93 26.3 a

Energy production (kJ g−1
N ) -6.69 0

CaO (kJ g−1
N ) n.r. b 13.9 a

H2SO4 (kJ g−1
N ) -7.7 a -7.7 a

Net energy yield (kJ g−1
N ) -3.46 32.5 a

a[55],b not required

recovery over the conventional NH3 stripping. The ammonium recovery by an MFC

requires less energy for aeration. The MFC produces energy and no CaO (or NaOH)

addition is necessary for the NH3 stripping. Therefore, a net energy yield of -3.46

kJ g−1
N was calculated for ammonium recovery by an MFC, whereas the conventional

NH3 stripping needs 32.5 kJ g−1
N [55].
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5.3.5 Perspectives for the ammonium recovery by an MFC

One drawback of the ammonium recovery by an MFC is that only 31% of the pro-

duced electrons (α ≤ 0.31) were used for transport of ammonium. This limits the

total amount of ammonium which can be transported by migration. The measured

COD of the urine (3.9 g L−1) shows that a maximum of 0.49 moles of electrons (per

liter urine) can be produced and therefore only 0.15 moles of NH+
4 (50%) can be re-

covered. The COD in the urine batches was monitored during the experiments, after

the COD decreased to 1.5 g/L the urine batch was changed. A Coulombic efficiency

of 10% was calculated during the operation on real urine at the highest current den-

sity, which shows that further improvements are needed. An electricity production

coupled to ammonium, as shown recently [29], was not possible in this tested proto-

type MFC, because the anode was anaerobe and no nitrite was measured during the

experiments. The total ion transport through the membrane can be influenced by the

ion concentration at the anode and cathode [78]. A lower NH+
4 concentration at the

cathode compared to the anode leads to NH+
4 diffusion. At the same time the ammo-

nium transport is influenced by the NH3 diffusion through the membrane. Therefore,

ammonium needs to be removed from the cathode at a high rate to increase the total

ammonium transport.

To become a competitive ammonium recovery technology, the ammonium recovery

rate (gN d−1m−2) must be increased. Since a higher current density leads to a higher

rate of NH+
4 transport, this can be achieved by increasing the current densities of

the MFC. Recent literature reports current densities up to 5.5 A m−2 for a scaled-up

MFC [93] and 22.8 A m−2 for a Microbial Electrolysis Cell [36] on a similar cell design.

Although these current densities were reached using synthetic media, it shows that

high current densities can be reached in bio-electrochemical systems.

The potential ammonium recovery efficiency (ηNH4
) was calculated on basis of

the measured Coulombic efficiency (ηCE), the measured ratio of charge transport

(QNH4
) to produced charge (Qe) during experiments on real urine and the realistic

concentration of ammonium (CNH4−N = 8.1gN L−1) and COD (10 g L−1) found in

urine [56] for a scaled-up MFC according to:

ηNH4
=

b ·
[
COD
MO2

]
· ηCE ·

[
QNH4

Qe

]
[

CNH4−N

MN

] (5.12)

84



Conclusions

Where b is the amount of electrons (4) exchanged per mole of O2, MO2
is the molar

mass of O2, MN is the standard atomic weight of nitrogen, ηCE is the Coulombic

efficiency (0.1) and QNH4
/Qe is the ratio of the total ammonium transport to the

produced charge (0.53). A potential ammonium recovery efficiency of 11.4% was

found. The low Coulombic Efficiency and the relatively low total ammonium trans-

port to produced charge ratio are the limiting factors for the recovery of ammonium

by an MFC. The Coulombic efficiency can be increased by limiting unwanted biomass

growth (i.e. methanogens), due to an optimized operational control (i.e. lower reten-

tion time of anolyte) of the MFC [27]. Further investigation on ammonium recovery

and Coulombic efficiency will be performed on a scaled-up version of this promising

new technology.

The precipitation of crystals (e.g. struvite) inside MFCs is an important issue to

consider when using highly concentrated streams (like urine) as a fuel. As a pre-

treatment step, partial removal of phosphorus can be necessary to avoid precipitation

inside the MFC. In this work, the precipitated crystals were removed from the hy-

drolyzed urine to avoid scaling inside the MFC. No further precipitation inside the

MFC was observed during the experiments.

5.4 Conclusions

This work demonstrates successfully the principal of simultaneous ammonium recov-

ery and energy production from real urine using an MFC. The electrons needed for

the transport of NH+
4 from anode to cathode are produced by microorganisms on

the anode. Additional NH3 diffusion enhances the total ammonium transport to the

cathode. NH3 stripping from the liquid-gas boundary at the cathode occurs due to

the localized high pH and the aeration of the gas diffusion cathode. The energy anal-

ysis shows that this technology can be a sustainable ammonium recovery technology.

Further improvements to the ammonium transport rates are necessary, in order to

become a competitive ammonium recovery technology.
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Urine treatment concept



Abstract

In this study nutrient recovery from urine was investigated based on experiments

and theoretical calculations. A process combination of phosphorus recovery via stru-

vite precipitation and ammonium recovery using a Microbial Fuel Cell (MFC) was

evaluated. The results show a high market potential for the proposed nutrient re-

covery concept. Phosphorus recovery by struvite precipitation does not only recover

a valuable product, it also reduces the risk of scaling inside the MFC. The electric-

ity production combined with the energy efficient ammonium recovery in the MFC

are the biggest advantages of the proposed technology, as theoretical calculations

show that enough electric energy is produced to operate the treatment process in-

dependently. The products of the proposed process are struvite, ammonia (or an

ammonium sulfate solution) and electricity. Since urine contributes the biggest part

of the nutrient load (i.e. 80% N and 50% P) to conventional wastewater treatment

plants, a wide scale application of the proposed concept could significantly reduce

this nutrient load and produce valuable fertilizers and energy.

Authors P. Kuntke, H. Bruning, G. Zeeman and C.J.N. Buisman
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6.1 Introduction

6.1.1 Urine as a resource

Urine contains valuable resources, such as nitrogen and phosphorus, in high concen-

trations. Urine contributes about 80% of the nitrogen load and 50% of the phosphorus

load to conventional wastewater, while it only contributes 1 % of the total volume

to this wastewater [15, 40, 48, 56]. In conventional wastewater treatment plants

(WWTPs) these resources are lost due to mixing with other waste streams and sub-

sequent conversion or discharge. When urine is collected separately phosphorus and

nitrogen can be recovered more effectively [55, 56, 108, 75, 46]. Phosphorus in urine

is mostly found in a phosphate form (≥90% [15, 48]). Nitrogen in urine is mostly

found as urea (≥84% [15, 48]). Urea can be hydrolyzed by the bacterial enzyme

urease to NH3 and carbamate, the latter is hydrolyzed further to NH3 and bicarbon-

ate [58]. Urease is produced by many bacteria, which can also be found in sanitary

installations (toilets, pipework and plumbing) and the storage tank.

6.1.2 Recovery process

The presented recovery process includes a phosphorus recovery via struvite (often

called MAP MgNH4PO4 · 6 H2O) precipitation and nitrogen removal via NH3 strip-

ping with simultaneous energy production. This process differs from the process of

Zang et al. [115], which also combines MAP precipitation and an MFC. Zang et al.

[115] proposed an ammonium recovery via MAP precipitation which requires the ad-

dition of a surplus of phosphate [56, 115]. The process presented in this work recovers

ammonium directly from an MFC system via NH3-stripping [45, 46]. The schematic

of the proposed process is shown in Figure 6.1.
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MFCP-recovery
Urine Supernatant
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Energy

Effluent

Caustic

NH3Mg

Figure 6.1: Schematic representation of the proposed treatment processes for the re-

covery of nutrients by struvite precipitation and ammonium recovery with simul-

taneous energy production (Mg = Magnesium salt, P = Phosphorus, Caustic =

NaOH/KOH solution, Energy = electricity, NH3 = Ammonia).

6.1.3 Phosphate recovery by precipitation

A quantitative recovery of phosphates from urine can be achieved by precipitation

of phosphate salts (e.g. hydroxyapatite and MAP) [56]. Due to the occurrence of

bi-carbonate and carbonate ions after urea hydrolysis [58], phosphate recovery via

hydroxyapatite (HAP - Ca5(OH)(PO4)3) precipitation requires an additional CO2

stripping step (including pH adjustments) to avoid calcite (CaCO3) formation. MAP

precipitation has been proven effective in urine [111, 97, 75] as the pH of hydrolyzed

urine (pH 8.85-9.25) is well suited for this. An additional advantage of MAP is the

fact that it contains Mg2+, NH+
4 and PO3–

4 in equal molar amounts, which makes

it a potentially effective fertilizer [23] and economically attractive [60, 112]. MAP

has a high estimated market value (e763 per ton) [16]. A suitable magnesium salt

has to be added to the urine [111, 75, 56], since the amount of magnesium ions in

urine is too low for a complete P-recovery1. Experiments on struvite precipitation by

Wilsenach et al. [111] showed that a PO3–
4 -P : Mg2+ ratio of 1 : 1 resulted in a high

1The molar ratio PO3–
4 -P : Mg2+ is 1 : 0.15 based on work in Chapter 2 and 1 : 0.17 based on

Diem and Lentner [15].
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phosphate removal of 99% independent of the magnesium source (MgCl2 or MgO).

6.1.4 Ammonium recovery by an MFC

Bio-electrochemical systems are an emerging technology with a wide range of appli-

cations [27]. In Microbial Fuel Cells (MFCs), a specific type of bio-electrochemical

systems, bacteria catalyze the oxidation of organic substrate (e.g. acetate) at the

anode according to:

CH3COO− + 4 H2O −−→ 2 HCO−
3 + 8 e− + 9 H+ (6.1)

Due to the absence of an electron acceptor (i.e. O2) in the anode chamber, the

electrons are transported over an external electrical circuit to the cathode. At the

cathode, the electrons are used to reduce oxygen. Given a neutral to alkaline en-

vironment (pH ≥7) in the cathode chamber, the reduction of oxygen results in the

production of hydroxide according to:

O2 + 4 e− + 2 H2O −−→ 4 OH− (6.2)

The anode chamber and cathode chamber are often separated by an ion exchange

membrane [53]. The ammonium recovery as demonstrated in Chapter 5 is based

on the migration and diffusion transport of the ammonium from anode to cathode

through the cation exchange membrane and followed by the volatilization of NH3

[46]. The transformation of ionic NH+
4 to volatile NH3 is the result of the high pH at

the cathode (NH+
4 (aq) + OH–(aq) −−→ NH3(g) + H2O).

6.1.5 Scope

In this study nutrient recovery from urine was investigated based on experiments and

theoretical calculations. A process combination of phosphorus recovery via struvite

and ammonium recovery using an MFC was evaluated. This study is divided into two

parts. The first part investigates the ammonium recovery by an MFC and phosphorus

recovery by struvite precipitation. The focus lies on phosphate removal during the

struvite precipitation and ammonium transport and energy production by the MFC.

The second part will use the obtained results and literature data to extrapolate the

benefits from the two processes in an up-scaled situation where one cubic meter

91



Urine treatment concept

of urine per day is treated. Possible products, the energy demand of the process

combination and bottlenecks are evaluated and presented to show the feasibility of

this treatment concept.

6.2 Materials and Methods

6.2.1 Batch struvite precipitation

Batch precipitation experiments were performed using urine collected via a separation

toilet (Villeroy & Boch Gustavsberg AB, Gustavsberg, Sweden) and water free uri-

nals, Urimat® eco (Biocompact Environmental Technology B.V., Rotterdam, The

Netherlands) at DeSaH BV (Sneek, The Netherlands). The pH of the urine was

adjusted using a 1M NaOH or a 1M HCl solution. The batch experiments were

performed at room temperature over a 24 hour period of time with constant agita-

tion (100 rpm - Shaking Water Baths SW 22, JULABO Inc., USA) of the samples

(each volume was 200 mL) in 500 mL bottles (HDPE bottles, Nalgene® VWR, The

Netherlands). MgCl2 · 6 H2O was chosen as the magnesium ion source for the pre-

cipitation experiments and was added in equal molar concentration to the phosphate

concentration. Subsamples (2 mL) were taken before addition of MgCl2 · 6 H2O and

after one, two, four and 24 hours of treatment. These samples were filtered through

a 0.2 µm filter to remove crystals. The collected filtrate was directly prepared for

analysis of the phosphorus concentration in an ICP-OES (further details on page 93).

The preparation step included the addition of 68% HNO3 (145 µL per 10 mL sample,

VWR, The Netherlands) to the diluted ICP samples (dilution factors 10x, 100x). The

dilution and the acid addition prevented further crystallisation.

6.2.2 MFC operation and design

The MFC setup used for the experiment was identical to the setup applied in Kuntke

et al. [46]. The MFC was made from two identical Plexiglas plates (21 cm×21 cm).

Each plate contained one flow through chamber (10 cm × 10 cm × 0.2 cm) with a 9

channel inlet and 9 channel outlet for flow distribution. In the anode chamber (vol-

ume 20 mL), a graphite felt (100 cm2, thickness 3 mm, National Electrical Carbon

BV, Hoorn, The Netherlands) was used as the anode. The anode chamber and the

cathode chamber (volume 20 mL) were separated using a membrane electrode assem-

92



Materials and Methods

bly (MEA). The MEA (100 cm2) was produced by hot pressing (5 minutes, 140°C,

534 bar) a platinum coated (20 g m−2) titanium fine mesh (Dexmet, Magneto Spe-

cial Anodes B.V., Schiedam, The Netherlands) into a Nafion N117 (Dupont, Geneva,

Switzerland) CEM using a Labopress P 400 S (Vogt Maschinenbau GmbH, Berlin,

Germany). The anode (graphite felt) and the cathode (Pt coated Ti felt) were each

contacted via 4 Pt/Ir (80/20) wires (0.025 cm diameter, Advent Research Materials,

Oxford, UK) to the outside of the MFC. Anode medium was recirculated at 80 mL

min−1 through the MFC using a peristaltic pump (Masterflex, Cole-Parmer, Vernon

Hills, USA). New influent was supplied at a flow rate of 1 mL min−1 by another peri-

staltic pump. The total volume of the anode was 250 mL, including tubes (PTFE

based), anode chamber, mixing flow cell (Schott Duran®, VWR, The Netherlands).

The MFC was operated at room temperature (20 ± 2°C). Air was supplied to the

MEA in the cathode chamber at a flow rate of 10 mL min−1 using a compressor

(Kaeser Sigma SM 9, USA), a multistage pressure regulator (VWR, The Nether-

lands) and a PTFE needle valve (VWR, The Netherlands) for flow control. The gas

stream from the cathode was channelled through two 500 mL gas washing bottles

with filter disks (Schott Duran®, VWR, The Netherlands) placed in series. The

first bottle was filled with boric acid (20 g L−1) to collect the volatile NH3 as NH+
4

(adsorption bottle). The boric acid was renewed periodically. The gas stream from

the adsorption bottle was channelled to a second bottle filled with a 0.4 M H2SO4

solution to prevent contamination of boric acid with ammonia from the laboratory

environment.

6.2.3 Chemical analysis

Liquid samples (i.e. urine, supernatant) were analyzed for the concentration of rel-

evant cations, anions and COD. An ICP-OES, type Perkin Elmer Optima 5300 DV

(Waltham, Massachusetts, USA) was used to determine cation concentrations. An

ion chromatography system, type Metrohm IC Compact 761 (Schiedam, The Nether-

lands) was used to determine anion concentrations. The COD was analyzed using

test kit LCK 514 (Dr. Lange, HACH, Loveland, Colorado, USA) and the ammonium

content was analyzed using test kit LCK 303 (Dr. Lange, HACH, Loveland, Colorado,

USA) and a spectrophotometer HACH XION 500 (HACH, Loveland, Colorado, USA).

Ammonium concentrations from the absorption bottle were measured throughout the

experimental time to determine ammonium transport numbers. Samples of the influ-
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ent and anode media were filtered (0.45 µm, PTFE syringe filters, VWR, Amsterdam,

The Netherlands) prior to analysis. All samples were analyzed in duplicate. Precipi-

tated crystals were analyzed using an ATR-FTIR spectrometer, type Shimadzu 4800

(Shimadzu Benelux, s-Hertogenbosch, Netherlands).

6.2.4 Calculation and simulation

MFC related parameters (current density and power density) and ammonium recov-

ery parameters (recovery rate and energy demand) were determined as described in

Chapter 5. A model urine with consistent composition (electron neutrality and ad-

justed pH) was derived using the OLI Analyzer 3.1.2 software (OLI Systems Inc.,

New Jersey, USA) based on the measured ion concentrations. Furthermore, the OLI

Analyzer was applied to determine possible precipitation products and their respec-

tive scaling tendencies. The scaling tendency describes the thermodynamic driving

force to form a specific solid, at a value of 1.0 this solid should form [89].

6.3 Results and discussion

6.3.1 Urine for the experiments

The average composition of the collected urine is presented in Table 6.1.

Table 6.1: Average composition of the urine used for the MFC and MAP experiments.

Parameter Value Unit

Na+ 1.85 g L−1

K+ 1.49 g L−1

Mg2+ ≤5.0 mg L−1

Ca2+ 7.1 mg L−1

NH+
4 /NH3-N 4.05 g L−1

Cl– 3.29 g L−1

PO3−
4 -P 0.21 g L−1

SO2−
4 -S 0.21 g L−1

COD 3.9 g L−1

pH 8.85 -

Conductivity 35.0 mS cm−1
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The collected urine had an almost identical composition to the urine collected at the

same location for an earlier study [46].

6.3.2 Phosphate recovery by MAP precipitation

Figure 6.2 shows the calculated scaling tendencies of important salts in hydrolyzed

urine as a function of the pH (8.5 - 12.5) and the percentage of experimentally recov-

ered PO3–
4 -P through MAP precipitation at various applied pH values from urine.
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Figure 6.2: (a) Scaling tendencies of several salts in urine calculated using OLI Ana-
lyzer 3.1.2 software (OLI Systems, Inc.) based on measured ion concentrations (Table
6.1) with NaOH and HCl as titrans; (b) PO3–

4 -P recovery by Struvite precipitation
determined at several pH values using MgCl2 · 6 H2O from urine collected at DeSaH
B.V.

Figure 6.2a shows that until a pH of 10 only the scaling tendency for MAP and

calcite (CaCO3) are equal to one. At higher pH values a shift from calcite to hy-

droxyapatite (HAP - Ca5(OH)(PO4)3) at a pH ≥10, and MAP to MKP (potassium

struvite, MgKPO4 · 6 H2O) at a pH ≥11.5 will occur. At a pH higher than 12, the

scaling tendency for Mg(OH)2 is equal to one. Figure 6.2b shows that a pH of 8.85 al-

ready yields a high phosphorus recovery of 97% in the performed batch experiments.

A lower P-recovery (95%) at pH values higher than 11 was observed, which could
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indicate the formation of unwanted Mg(OH)2. Furthermore, a relative short time

frame is needed (one hour) to reach high P-recovery. To summarize; phosphate can

be efficiently removed as struvite at a molar ratio of PO3–
4 -P : Mg2+ of 1 : 1 and at a

pH of 9 in a relative short time frame of one hour, which corresponds to findings of

Wilsenach et al. [111]. Figure 6.3 shows the IR analysis of the samples of the crystals

after 24h of experiment.

Wave number (cm-1)

500 1000 1500 2000 2500 3000 3500 4000

R
el

at
iv

e 
A

bs
or

ba
nc

e 
(b

as
el

in
e 

co
rr

ec
te

d)

pH 12.0

pH 11.5

pH 11.0

pH 10.5

pH 10.0

pH 9.5

pH 9.0

pH 8.85

Figure 6.3: IR analysis of samples from struvite precipitation at various applied pH
values from real urine.

The arrow indicates the ammonium-ions and water molecules bending vibration

region (1400 - 1500 cm−1) [87, 88]. In samples at pH 11.5 and higher, the peaks in

these regions are less intensive indicating a change in the crystal samples from MAP

to MKP.

6.3.3 Ammonium recovery by an MFC

The proposed concept is shown in Figure 6.4a, which is based on results of the research

presented in Chapter 5. Figure 6.4b shows a polarization curve obtained during

experiments using real urine. Each measuring point represents the average value

determined over a period of at least 6 days. The highest current density and power

density reached in this system are 2.6 A m−2 and 0.67 W m−2, respectively.
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Figure 6.4: (a) Concept of an MFC-based ammonium recovery and energy produc-
tion showing the involved processes. (b) Polarization curve obtained during experi-
ments with undiluted urine. Each data point represents the average measured value
over a time frame of at least 6 days.

The highest ammonium recovery achieved inside this system was 9.57 gN d−1 m−2

at a current density of 2.6 A m−2. The energy analysis for ammonium recovery

using this MFC was performed as described in Equation 5.11 of Chapter 5 [46].

An energy production of 6.1 kJ g−1
N and a net energy yield of -10.0 kJ g−1

N for the

recovery of ammonium by the MFC were determined, highlighting the possibility to

simultaneously produce energy and recover ammonia. Next to the energy efficiency,

the advantage of this approach is that a recovery of ammonia by stripping at the

cathode does not require additional chemicals to increase the pH. For comparison,

the N-recovery concept as proposed by Zang et al. [115] requires large quantities of

phosphate for the recovery of ammonium as struvite [56]2.

The ammonium recovery can be further optimised by increasing the ammonium

transport through the ion exchange membrane. Possibilities to increase this transport

are increasing the diffusion flux and/or migration flux through the membrane (see

Chapter 5). The diffusion flux of ammonium can be enhanced by effectively lowering

2molar ratio NH+
4 -N:PO3–

4 -P of 1:25.4 according to Table 6.1
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the NH+
4 and NH3 concentration in the cathode chamber by increasing the NH3-

stripping rate. The second option is to increase the current density as it determines

the migration flux. The results indicate that the cathode is limiting the performance

of the MFC. The theoretical cathode potential for the reduction of oxygen EpH7

is +0.6 V vs Ag/AgCl 3. As can be seen from Figure 6.4b, the cathode potential

deviates from this theoretical cathode potential. Better catalysts for oxygen reduction

in MFCs and improved aeration are crucial points. Recent literature suggests that

higher current densities (up to 16.4 A m−2) can be reached in MFCs [20]. However,

the results of Fan and Liu [20] rely on the use of synthetic wastewater (containing 100

mM Phosphate buffer and 100 mM Acetate) and the application of a stacked MFC

design (with a double cloth electrode assembly).

The Coulombic Efficiency (CE) of the employed MFC is another important point for

future research. The CE describes the relation between recovered electrons (current)

and the removed substrate (COD) [53]. Although high CEs of 83.5% and higher have

been reported for synthetic wastewaters and defined media [20, 27], the reported CEs

for urine processing MFCs are considerably lower [46, 115]. A key aspect is to limit

the growth of other microorganisms which are competing for the COD inside the

MFC [27].

6.3.4 Potential products of a scaled up recovery system

Model urine

A model urine was defined for the second part of this study in order to calculate the

amount of products which can be recovered. This model urine composition is based

on the average measured concentration as presented in Chapter 2 (Table 6.2), which

was collected directly in bottles without any dilution. Since urea ((NH2)2CO)

is the major N-containing compound in fresh urine [15, 40, 98], the total amount of

urea inside this average urine was estimated to be 90% of the total nitrogen which is

equal to a urea concentration of 15.77 g L−1 or 0.2625 mol L−1 4.

3typical cathode potential for oxygen reduction 0.805 V vs Standard Hydrogen Electrode (SHE)
[77] and Ag/AgCl 0.205 V vs SHE

4Determined according to:

Urea =
(TN −NH+

4 -N) · 0.9
MN · 2

·MUrea (6.3)

with MN = 14.0067 g moL−1 MUrea = 60.06 g moL−1
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Table 6.2: Average concentrations as presented in Table 2.1 Chapter 2.

Parameter Concentration

COD (g L−1) 9.0

TN (g L−1) 8.6

Cl– (g L−1) 3.8

PO3−
4 (g L−1) 2.00

SO2−
4 (g L−1) 1.18

Na+ (g L−1) 2.41

K+ (g L−1) 1.89

Mg2+ (g L−1) 0.078

Ca2+ (g L−1) 0.106

NH+
4 /NH3-N (g L−1) 0.431

A complete decomposition of urea5 yields a NH+
4 concentration of 4.73 g L−1, a

NH3 concentration of 4.46 g L−1 and a HCO–
3 concentration of 16.02 g L−1. The pH

of the model urine was set to the pKa-value of the ammonium (pKa = 9.3). The

assumed volume stream to be treated is one cubic meter per day, which corresponds

to the volume of daily excreted urine by approximately 667 persons (1.5 L p−1 d−1).

On the basis of this set of parameters a model urine was derived using the OLI

Analyzer 3.1.2 software (OLI Systems, Inc.)6. The composition of the hydrolyzed

urine is given in table 6.3. The COD and its composition was not considered in the

model at this point. The COD of urine, which was found to be mostly aliphatic

(Chapter 2), is assumed to be biodegradable to a large extent (≥ 85%). Similar high

biodegradability has been reported by Udert et al. [95].

Phosphate-recovery

A suitable magnesium ion source has to be added to the urine, since the amount of

magnesium ions in urine is too low (Table 6.3) for a complete P-recovery7. Various

types of magnesium salts are available (e.g. Mg(OH)2, MgO, MgCl2 · 6 H2O, etc.) as

5Overall reaction of the urea decomposition: (NH2)2CO + 2 H2O −−→ NH3 + NH+
4 + HCO–

3 [97]
6OLI Function: Add Water analysis, Reconciliation pH 9.3; NaOH and HCl as titrants; Ammonium

as dominant ion to adjust for electron neutrality.
7Molar ratio PO3–

4 -P:Mg2+ is 1 : 0.15 or 1 : 0.17 according to Table 6.3 and Diem and Lentner
[15], respectively.
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Table 6.3: Model urine derived from OLI Analyzer 3.1.2 software (OLI Systems, Inc.).

Parameter Concentration Difference

(g L−1) %

Cl– 3.80 -0.05

PO3–
4 1.999 -0.05

SO2–
4 1.179 -0.05

HCO–
3 16.012 -0.05

Na+ 2.409 -0.05

K+ 1.889 -0.05

Mg2+ 0.078 -0.05

Ca2+ 0.106 -0.05

NH+
4 5.275 7.81

NH3 4.460 -0.05

NaOH 1.240 100.00

H2O 9.77·102 -2.27

potential magnesium sources. Economically interesting for the MAP production is

magnesium oxide (MgO, 55% Mg2+), e475-525 per ton [106] 8, due to its low price

and high quantity of Mg2+.

A quantitative recovery (≥ 98%) of phosphate is possible at the pH of the hy-

drolyzed urine, as shown in Figures 6.2b and 6.5. The main product of the precipi-

tation is MAP, but calcite (CaCO3) precipitation occurs as a by-product. From one

cubic meter of urine 5.11 kg MAP (20.85 mol) can be recovered. The calculated

amount of MgO is 0.78 kg per m3 of urine treated resulting in estimated costs of

e0.37 - 0.41 per m3 of urine. A market value of e3.90 was estimated for the daily

produced MAP (5.11 kg) as slow release fertilizer [16].

Due to the large surplus of NH+
4 -N in the hydrolyzed urine, a quantitative recov-

ery of potassium (K) as MKP is not feasible [111]. An increase of the pH to 11.5

would yield MKP (Figure 6.5a), but also results in the formation of Mg(OH)2 as a

byproduct (Figure 6.5b). The Mg(OH)2 formation combined with the necessary ad-

dition of caustic for the pH increase to ≥11.5 makes K recovery by MKP production

economically less attractive.

8Quotation from M.A.F. Magnesite http://www.magnesiumoxide.com, May 2012
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Figure 6.5: (a) Recovered P-salts presented in % of total recovered P and (b) recov-
ered P-salt from one liter of urine presented in mmol in dependence of the pH using
MgO as magnesium source. All results were determined using the OLI Analyzer 3.1.2
software (OLI Systems, Inc.)

One issue concerning the MAP production is the fact that it usually yields very

fine crystals, which can wash out of the reactor and cause scaling in succeeding

treatment steps [111]. Therefore, crystal growth has to be enhanced to allow for

better separation or the formed struvite crystals have to be retained by other means

(e.g. a filter).

Maurer et al. [55] reported in the Life-Cycle-Assessment that MAP precipitation

requires 3.7 MJ kg−1
P of energy (electricity) and 13.4 MJ kg−1

Mg for chemicals usage

(MgO). Based on these requirements, the production of 5.11 kg MAP will require

a total of 8.14 MJ energy9. The urine after MAP precipitation (supernatant) still

contains a considerable amount of COD and ammonium. This makes this stream

interesting for further treatment in a MFC system for the recovery of ammonium and

production of electricity [46].

9MgO: 13.4 (MJ kg−1
Mg) · 0.55 (kgMg kg−1

MgO) · 0.78 (kgMgO) = 5.76 MJ

Energy: 3.7 (MJ kg−1
P ) · 20.85 (molP-recovered) · 30.97 g mol−1 / 1000 (g kg−1) = 2.39 MJ
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Ammonia-recovery and energy production

Based on the results of Chapter 2, a high biodegradability of the organic compounds10

is expected. The maximum amount of available electrons from the COD can be

determined according to e−max(mol) = 4 · COD( g
L )

32( g
mol ) ·Vurine(L). Given a COD of 9 g L−1

11 a theoretical maximum of 1,125 moles of electrons or 108,546 kC 12 are available per

cubic meter of urine. The amount of dominant positively charged ions after struvite

recovery 13 is equal to 68,098 kC. This means that in theory enough electrons are

available to transport all dominant charged cations by migrational transport and

therefore all ammonium can theoretically be recovered (7.26 gNL−1). The current

(I) produced from the maximum amount of available electrons can be determined by

Equation 6.4 and assuming a hydraulic retention time (HRT) of 24 hours:

I =
e−max · F

HRT
· ηCE (6.4)

Where e−max are available electrons (1,125 mol), F is the Faraday constant (96485

C mol−1), HRT is the hydraulic retention time (86,400 s) and ηCE is the coulombic

efficiency (0.85). A current (I) of 1,067 A was determined.

The theoretical cell voltage can be determined on basis of Equation 6.5:

ECell = ECathode − ηCathode − EAnode − ηAnode − I · RΩ (6.5)

Where ECathode is the cathode potential (V), ηCathode is the overpotential at the

cathode (V), ηAnode is the anode potential (V), EAnode is the overpotential at the

anode (V), I is the current (A) and RΩ is the total ohmic resistance of the anode and

cathode (W).

As ηCathode, ηAnode and I · RΩ are influencing the cell voltage, they can be sum-

marized as the Voltage efficiency [26]. Therefore, Equation 6.5 can be simplified to

Equation 6.6:

ECell = (ECathode − EAnode) · ηVoltage (6.6)

10aromatic compounds ≤ 5%
11see Table 6.2 on page 99
12electrical charge (C): Qe=e−max · F
13e.g. K+, Na+, NH+

4 ; assuming that all NH3 is present as NH+
4 , due to the acidification of the

anode as a result of the proton production Equation 6.1
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Where ηVoltage is the voltage efficiency which was assumed to be 70% (0.7). Fur-

thermore, ECathode is the cathode potential (0.805 V vs SHE) and EAnode is the anode

potential (-0.296 V vs SHE) under typical conditions found in MFCs [53]. This leads

to a cell potential (ECell) of 0.771 V for the MFC according to Equation 6.6.

Therefore, 19.76 kWh 14 can be produced from one cubic meter of urine, which

corresponds to an energy production equivalent of 71.16 MJ. For the design of the

MFC (to treat 1 m3 urine), an anode surface area of 67 m2 was estimated on basis

of a current density of 16 A m−2 15. A stacked design (monopolar or bipolar 16)

is envisioned, which consists of electrode pairs with a total surface area of anode

and cathode equal to the projected membrane surface area. Assuming an average

thickness of 1.5 cm per cell pair, the MFC has an estimated size of 1.05 m3. Although

the feasibility of a stacked MFC design has been presented by Shin et al. [81], intensive

research will be necessary to realize an MFC of these dimensions.

An energy demand of -17.21 kJ g−1
N for the ammonium recovery was determined

according to Chapter 5 [46] 17. Which shows that the energy production by the

MFC yields more energy than is required for the recovery of the ammonium, which

is conform with the results presented in Chapter 5.

Energy demand

The energy demand for the treatment of one cubic meter of urine per day is shown in

detail in Table 6.4. The calculations are based on the reported energy demands for

struvite recovery [55], ammonium recovery by an MFC 18 and the calculated energy

requirements for the recycle pump for the anode media and feeding pump to the

MFC.

The pump energy demand (kJ m−3) for recycling of the anode liquid in the MFC

was calculated on basis of Equation 6.7 adapted from Jeremiasse [35].

EPump =
Qrecycle ·∆P ·N ·HRT

V · ηPump
(6.7)

14P=I · ECell · 24
15Membrane surface area (m2) = 1,067A

16A m−2 = 66.75m2

16to be addressed in future research
17Power density: 12.24 W m−2, Recovery rate: 109 gN m−2 d−1, Aeration: 0.36 kJ g−1

N , Energy

production: -9.84 kJ g−1
N , H2SO4: -7.7 kJ g−1

N
18as presented in this chapter and in Chapter 5
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Where Qrecycle is the volumetric recycle rate (m3 s−1), ∆P is the pressure drop over

the anode chamber (N m−2), ηPump is the pump efficiency (0.8), N is the number of

electrode pairs (67), HRT the hydraulic retention time in seconds (86,400 s) and V is

the volume of urine treated per day (1 m3 d−1). Based on the work of Jeremiasse [35],

a volumetric recycle rate of 3.33 · 10−4 m3 s−1, which is equal to 28.8 m3 d−1, with a

corresponding ∆P of 3.3 · 103 N m−2 (Pa) were used for the calculation. The pump

energy demand for the feed pump was determined by equation 6.7, while substituting

the Qrecycle with Qfeed. Qfeed is the feed flow of 1.161 ·10−05 m3 s−1 (1 m3 d−1) to

the MFC. All other parameters where kept as mentioned above, assuming a pressure

difference of at least ∆P · N (3.3 · 103 N m−2 · 67 = 2.21·105 Pa).

Table 6.4: Energy demand for the treatment of one cubic meter of urine per day.

Treatment step Energy Quantity Energy demand

requirement MJ m−3

MAP

MgO 13.40 kJ g−1
Mg 429.0 gMg m−3 5.75

Energy use 3.70 kJ g−1
P 645.71 gP m−3 2.39

Subtotal 8.14

MFC

Recirc. pump 7.96 MJ m−3 7.96

Feed pump 276.38 kJ m−3 0.28

Aeration 0.33 kJ g−1
N 7260.0 gN m−3 2.40

Energy prod. -9.84 kJ g−1
N 7260.0 gN m−3 -71.44

H2SO4 use -7.70 kJ g−1
N 7260.0 gN m−3 -55.90

Subtotal -116.71

Total -108.57

Financial aspects

Table 6.5 shows the quantity of produced and consumed products and their value

or costs derived from market prices and predicted daily production from one cubic
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meter of urine. Overall, a yearly net income of e 5,900 is foreseen based on these

assumptions. Additional benefits may be derived from reductions of wastewater dis-

charge taxes, as urine is treated and COD, N and P are removed from the wastewater

stream.

Table 6.5: Value and quantity of produced and consumed products from the daily

treatment of one cubic meter urine.

Product Costs price Quantity a Revenues Revenues Ref.

(e d−1) (ke yr−1)

MAP 0.76 e kg−1
MAP 5.10 kg 3.9 1.4 [16]

MgO 0.5 e kg−1
Mg -0.78 kg -0.4 -0.1 [16]

electricityb 0.3 e (kWh)−1 16.80 kWh 5.0 1.8 [86]

NH3 1.3 e kg−1
N 7.30 kg 9.4 3.4 [106]

H2SO4 0.297 e kg−1
H2SO4

-18.20 kg -5.4 -2.0 [16]

Causticc 0.43 e kg−1
Caustic 8.30 kg 3.6 1.3 [16]

Total 16.2 5.9
a -x consumed +x produced per m3, b corrected for the energy demand of the

pumps (2), c NaOH/KOH

The costs of the here proposed treatment concept is highly dependent on the costs

of the MFC, since this is by far the largest investment due to its complexity, the

individual material costs and size. Table 6.6 shows the estimated costs for the MFC

system as presented in this chapter. These estimations show that the costs for the

cathode and the cation exchange membrane are the biggest contributors determining

the total costs of the MFC. The use of other CEMs from different producers and

other cathode materials might reduce the costs of the MFC significantly. Therefore,

further research into alternative designs and materials will be necessary to further

reduce the costs of the MFC.
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Table 6.6: Estimated material costs for the MFC stack$.

Part Costs Costs of the Reactor

(e m−2
reactor) (67m2) e

Current collector a 5 335

Anode b 42 2,814

Cathode c 470 31,490

Ion Exchange Membrane d 255 17,085

Stack housing e 2,500 2,500

Others f 5,000 5,000

Total 8,272 59,224
$ does not include labour and maintenance costs a Pt/Ir (80:20) wire, estimation

based on [35], b Graphite felt - Morgan AM&T UK , c PTFE/Ni-mesh/MnO2/C

Gas diffusion Cathode - Electric Fuel Israel, d Fumasep FKE-PK - Fumatech

Germany, e HDPE, estimation based on [35], f estimated costs for controls, pumps

and the electrical circuit

6.4 Conclusions

The results presented in this study show that a process combination of MAP pre-

cipitation and an MFC for ammonium recovery and energy production can produce

valuable fertilizers and electrical energy. This combination of these processes is es-

pecially interesting as more than 95% of the phosphate is removed during struvite

precipitation, resulting in an effluent that is suitable for ammonia recovery by an

MFC without risk of scaling. The laboratory scale MFC technology needs to be

significantly scaled up and issues concerning the cathode performance have to be

overcome. The electricity production combined with the energy efficient ammonium

recovery in the MFC are the biggest advantages of the proposed technology, as es-

timates show that enough electricity is produced to operate the treatment process

independently. The products of the proposed process are struvite, ammonia (i.e. am-

monium sulfate solution) and electricity. Additional benefits may be derived from the

reduction of wastewater taxes, as resources are recovered leading to a lower nutrient
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load to conventional WWTPs. Since urine contributes the biggest part of the nutri-

ent load (i.e. 80% N and 50% P) to conventional WWTPs, a wide scale application

of the proposed technology could significantly reduce this nutrient load and produce

valuable fertilizers and energy.
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7.1 Introduction

Nutrients are the base of fertilizers, which are applied in agriculture to ensure suf-

ficient food supply for a growing world population. In 2012, 10 Mt of Nitrogen

(N) based fertilizers and 1.5 Mt of phophorus (P) based fertilizers were used in the

EU alone [18]. Unsustainable Nitrogen fertilizer production and limited resources of

phosphor-rock are the incentives for the recovery of nutrients from wastewater.

Urine contributes only a small volume (about 1%) to domestic wastewater, but

most of the nutrients found in domestic wastewater originate from it (about 80% of

the N and 50% of the P). Domestic wastewater contains 20 to 70 mgN L−1 and 1 to 4

mgP L−1, whereas urine contains 8.6 gN L−1 and 0.7 gP L−1. Therefore, urine should

be seen as a valuable source for nutrient recovery. The use of separation toilets and

water-free urinals offers the possibility to collect a concentrated urine stream.

In this chapter, the work presented in this thesis is placed in perspective while

limitations and possible future research directions are presented.

7.2 Prospects for nutrient recovery from urine

Urine as a resource

Considering the European situation with no known available deposits of rock-phosphate

and the foreseeable depletion and scarcity of phosphorus in the future [65], a recovery

of P from waste(water) streams and especially urine is an interesting approach. Next

to scarcity of rock-phosphate, its pollution with cadmium, uranium and other heavy

metals is a big concern [17, 14]. Therefore, wastewater could be a clean and sustain-

able P source. The advantages of urine as a source for P recovery are the relatively

high concentration of phosphate and low concentrations of possible inorganic pollu-

tants [15, 76]. Furthermore, work by Ronteltap et al. [76] on struvite precipitation

showed that more than 98% of organic micro-pollutants (hormones and pharmaceuti-

cals) remained in solution. Heavy metals can co-precipitate but were not detected in

struvite produced from normal stored urine [76]. Furthermore, the high concentration

of N in urine, which is predominantly found as ammonium nitrogen (NH3 and NH+
4 )

after urea hydrolysis [15, 48], allows the development of a more efficient recovery

technology, as less volume needs to be treated compared to conventional wastewater.

The composition of urine is quite stable as shown in Chapter 2, which is in agree-
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ment to earlier findings [15]. Arguably, the chosen sample set is not entirely repre-

sentative for all inhabitants of Europe (or the world) as the age group of the Wetsus

sample set was 18-65 years. Interestingly enough, the organic composition is rela-

tively constant and only a dilution effect is shown. This shows that although differ-

ent amounts of oxidizable organic material (hence differences in measured COD) were

measured, the overall composition of the organic material is almost identical between

samples. Bio-electrochemical systems (i.e. Microbial Fuel Cells) and other systems

relying on microorganisms prefer an inflow stream of constant and stable composi-

tion so these microorganisms can adapt over time. Results of Chapter 2 show that

urine can be such a stream. Especially interesting is the high occurrence of aliphatic

compounds, which indicates a high biodegradability. A high biodegradability of the

organic compounds in urine was reported in experiments by Udert et al. [95].

Urine treatment by MCDI

The treatment of diluted urine by electrosorption (i.e. Membrane Capacitive Deion-

ization - MCDI) to concentrate the nutrients can be an interesting solution when

flushing water is collected along with the urine. As described in Chapter 3, the MCDI

technology allows for recovery of nutrients via concentration. The limitation for re-

covery is the solubility of the various salts (e.g. Ca5(PO4)3(OH), MgNH4PO4 · 6 H2O,

CaCO3) in order to avoid precipitation (scaling) inside the MCDI unit. The sepa-

ration and concentration steps are based on the temporary storage of charged ionic

compounds in the double layer formed at the electrodes, while a potential is applied.

Therefore, the major drawback of this technology is the energy consumption. An en-

ergy demand of at least 14.72 kJ per litre of diluted urine was determined in Chapter

3. Based on recently published work by Zhao et al. [118] this energy consumption can

be as low as 7.64 kJ per litre1 and additionally up to 40% of energy could be recovered

from the discharge step in an ideal situation. However, it has to be mentioned that

the operation parameters (i.e. flow rate, time steps, media composition, etc.) and

design (e.g., dimensions) of the respective systems were not identical.

The possibility to separate and concentrate ammonium apart from other nutrients

and COD needs to be investigated in future research. Theoretically ammonium could

be separated following a strict regime for the treatment of the collected urine. This

1Based on the reported lower limit of energy consumption of 22 kT per removed ion. Energy (kJ)
= 22 kT · 2.48 kJ mol−1

ions · 0.14 molions L−1 = 7.64 kJ L−1
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includes the following steps:

1. Stabilization to preserve the urea (H2SO4 addition to pH ≤ 5)

2. First MCDI treatment, separation of charged and uncharged compounds

3. Controlled hydrolysis of the urea to form NH+
4

4. Second MCDI treatment, separation of NH+
4 and uncharged compounds

Ammonia recovery by an MFC

Currently, the high energy and chemical demand of nitrogen recovery technology

(e.g. adsorption, NH3 stripping) makes a direct recovery economically uninteresting

[55, 56]. An indirect nitrogen recovery over the atmosphere via the Sharon-Anammox

process (N-removal) and the Haber-Bosch process (N-fixation) requires a relatively

low amount of energy [55]. The bottlenecks for any nitrogen recovery technology are

the relatively low energy demand for the Sharon-Anammox and Haber-Bosch process

and the availability of vast amounts of N2-gas from the atmosphere. Therefore, a

nitrogen recovery technology needs to out compete the Haber-Bosch process or to

find a niche market in order to be a successful alternative.

The possibility of using a Microbial Fuel Cell (MFC) for the recovery of ammonium

from high strength ammonium wastewater (e.g. urine) was shown in Chapter 4.

The effect of an increasing ammonium concentration (up to 4 g L−1) on the MFCs

was studied and it was shown that no negative effects could be found on the MFC

performance or stability. In this work, ammonium was concentrated in the cathode

compartment during the experiments, but ammonium removal from the cathode was

not investigated.

Therefore, an adapted ammonium recovery by an air-cathode-system microbial

fuel cell was developed and studied in further detail (Chapter 5). The process of

ammonium recovery by NH3-stripping from the cathode in combination with energy

production shows great potential. The results show that more energy can be produced

than is necessary for ammonium recovery. The recovery of ammonium is a result of the

migrational and diffusional transport of ammonium from the anode through the cation

ion exchange membrane to the cathode. The high pH at the cathode transforms ionic

NH+
4 to volatile NH3. The latter is removed by the gas stream passing through the

cathode chamber. Subsequently, NH3 can be collected in an acid washer to produce
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enriched ammonium liquids. The combination of energy and chemical efficient NH3-

stripping and the energy production by the MFC make this ammonium recovery

technology a promising alternative to conventional treatment (e.g. Anammox and

nitrification/denitrification) and recovery systems (e.g., NH3-Stripping).

Numerous applications can be derived from this MFC-based ammonium recovery

process, focusing on different types of wastewater (e.g. manure, conventional waste-

water, etc.). The requirements are a liquid stream containing a low amount of solid

particles and a balanced ratio of oxidizable organics to ammonium-nitrogen. Based on

the work presented in Chapter 5, a molar ratio of 0.83 to 1 (COD to N) is necessary,

but diffusional transport can lower the requirements for COD.

Urine treatment concept

One of the requirements for the safe application of an MFC on urine is the removal

of Ca2+, Mg2+ and PO3–
4 ions from urine to prevent crystallization of struvite (MAP

- MgNH4PO4 · 6 H2O), calcite and calcium phosphate inside the MFC. Therefore,

a logical step is to combine the ammonium recovery by an MFC with a phosphate

recovery step. The most attractive option for a phosphate recovery step is struvite

precipitation, due to the composition of urine. In Chapter 6 this process combination

was evaluated and it was shown that this combination is highly promissing. The

products of this process are struvite, an ammonium solution and electricity. At this

moment, further research and development need to focus on up-scaling and integration

of the technology. Additionally, the performance of the MFC needs to be improved

with a focus on Coulombic Efficiency, cathode performance and ammonia stripping.

From an economic point of view the MFC is too costly, as the estimated material

costs for the MFC alone are about e60,000 (not including installation costs) for the

treatment of 1 m3 per day, while the predicted revenue per year from the products

is about e5,900. Membrane and cathode electrode material are main cost factors

with e470 and e255 per square meter reactor2, respectively. The material costs per

square meter reactor is about e880, while a prediction shows that bio-electrochemical

systems (e.g. MFCs) can be produced for about e100 in the future [79, 82].

As Sleutels et al. [82] presented, MFCs can become a successful technology when

wastewater treatment is combined with electricity production and the production

2Based to the necessary electrode surface area (m2) including other materials see Chapter 6 for
further details.
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of valuable products. Therefore, ammonium recovery by an MFC seems to be a

promising path. Additionally, benefits may be derived from savings or revenues due

to wastewater taxes. For the Netherlands, wastewater taxes need to be paid on the

basis of pollution equivalents (“vervuilingseenheden”) [30]. A theoretical revenue

of about e17,320 can be expected (see supporting information, page 117), which

would significantly lower the return of investment time of this technology. The scale

(centralized or decentralized system) of the application will, amongst others, depend

on the logistics of chemicals and products. A centralized treatment system requires

the transport of large amounts of water, as urine contains only 1.2 wt% of nutrients.

Additionally, ammonia could be lost during storage and transport. In contrast, a

decentralized system requires logistics of chemicals and products. Furthermore, the

recovery system needs to be robust enough to work without constant need of service.

7.3 Comparison of technologies

Two technologies for urine treatment were used as a benchmark for the proposed

treatment concept presented in Chapter 6; the SaNiPhos® [25, 8] and the ‘Gele

stroom’ (‘Yellow current’) [24, 32]. In short; The SaNiPhos® uses a process combina-

tion of struvite precipitation and NH3-stripping to produce struvite and ammonium-

sulphate from urine collected at different locations [25] (see also page 11). The ‘Gele

stroom’ produces struvite (MgNH4PO4 · 6 H2O) from urine, which is thermally de-

composed to NH3 and MgHPO4. The NH3 is used as a fuel in a modified solid oxide

fuel cell and part of the MgHPO4 is reused for the struvite production [24] (see also

page 10).

The technologies were compared based on their respective energy demands. The

energy demands for the processes were calculated based on available literature data

and reported energy demands for the respective recovery technologies according to

Maurer et al. [55, 56] and the calculated energy production. Details of this calculation

are presented in the supporting information (page 117).

The ‘Gele stroom’ process produces a surplus of energy of about 70 MJ and MAP -

MFC process combination produces a surplus of energy of about 61 MJ, whereas the

SaNiPhos® process requires 171 MJ of energy. As mentioned by Bisschops et al. [8],

the energy demand of the SaNiPhos® process is expected to be lower in an up-scaled

situation. However, no information was available to assess the actual energy demand
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of a scaled up installation. For the ‘Gele stroom’ process, it has to be mentioned that

the energy demand for the transport of MgNH4PO4 · 6 H2O and MgHPO4 is not in-

cluded and will increase the energy demand of this process. Table 7.1 summarizes the

maximum amount of products which can be recovered using the respective treatment

processes for the treatment of one cubic meter of urine. Only the SaNiPhos® process

is currently operational on a full scale, whereas both of the other technologies are

still under development. Yet, the centralized installation of the SaNiPhos® process

requires the transport of large amounts of water (urine contains only 1.2 wt% of

nutrients).

Table 7.1: Product summary based on the treatment of one cubic meter of urine.

Treatment Energy N P

Process production recovered recovered

MAP+MFC 61 MJ 267 mol a 21 mol b

‘Gele stroom’ 70 MJ - 21 mol c

SaNiPhos® -171 MJ 267 mol a 21 mol b

a (NH4)2SO4 (aq) , b MgNH4PO4 · 6 H2O, c MgHPO4

7.4 Concluding remarks for future research

� Ammonium recovery by an air-cathode MFC is the most promising technology

for urine treatment investigated in this thesis. This technology can be applied

to various wastewater streams containing ammonium-nitrogen.

� Further research on the use of MFCs to recover nutrients from urine is neces-

sary to overcome its current limitations. This includes material development,

limitations of the current catalyst for oxygen reduction and ammonium removal

from the cathode compartment to enhance diffusional transport of ammonium

from anode to cathode.

� Alternatives to the MFC approach (such as Microbial Electrolysis Cells for

hydrogen production) should be considered and addressed in future research.

� A process combination of struvite precipitation and ammonium recovery by an

MFC shows a high potential as a nutrient recovery concept. Up to 98% of
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the nitrogen and phosphorus can be recovered from urine in this process. The

electricity production combined with the energy efficient ammonium recovery

in the MFC is the biggest advantage of this proposed technology.

� Ammonium recovery by an MFC is a breakthrough in urine treatment.
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Calculation of the pollution equivalent

The pollution equivalent (P.E.) is calculated according to equation 7.1:

P.E. =
Q · (COD + 4.57 · TN)

1000
· 365

54.8
(7.1)

Where Q is the volume (0.0015 m3 d−1), COD is the chemical oxygen demand

(9000 mg L−1), TN is the total nitrogen (8600 mg L−1), 1000 is the factor for the

gram to kilogram conversion, 365 is the number of days per year (d yr−1) and 54.8 is

the required oxygen amount of oxygen per year (kg yr−1). Urine has a P.E. of 0.48.

Based on an average price of e53.8 per P.E. [12] the total revenue is e17,320 per year

for the treatment of urine from 667 persons (1 m3 d−1).

Comparison of technologies

All assumptions are based on a treatment of one cubic meter of urine per day. The

composition of model urine is based on Chapter 6.

Table 7.2: Average concentration as presented in Table 2.1 Chapter 2.

Parameter Concentration

COD (g L−1) 9.0

TN (g L−1) 8.6

Cl– (g L−1) 3.8

PO3−
4 (g L−1) 2.00

SO2−
4 (g L−1) 1.18

Na+ (g L−1) 2.41

K+ (g L−1) 1.89

Mg2+ (g L−1) 0.078

Ca2+ (g L−1) 0.106

NH+
4 /NH3-N (g L−1) 0.431

The energy production in the solid oxide fuel cell was determined on the basis of

Equation 7.2 with the respective conditions for the NH3 oxidation (NH3 −−→ 1
2 N2 +

117



Supporting Information Chapter 7

3 H+ + 3 e–):

I =
e−max · F

HRT
· ηCE (7.2)

Where e−max are available electrons (mol), F is the Faraday constant (96485 C

mol−1), HRT is the hydraulic retention time (86,400 s) and ηCE is the coulombic

efficiency (0.80). With e−max = 3 · CNH3

MNH3

, e−max was determined to be 1.6 mol L−1.

CNH3
is the amount of ammonia and MNH3

is the molar mass of ammonia (g mol−1).

Therefore, the current (I) was determined to be 1,43 A. The cell potential of the

SOFC was determined based on literature [21] according to equation 7.3:

ECell = E0
Cell,1123K · ηvoltage (7.3)

Where E0
Cell,1123K is 1.33 V and ηvoltage is 0.8. Therefore, the overall 36.5 kWh are

produced from the ammonium present in one cubic meter urine (534 moles), which

corresponds to an energy production equivalent of 131.57 MJ.

The energy demand for the MAP precipitation was determined on the basis of the

required P removal. The amount of P removed is to be equal to the total amount of

N removed. One cubic meter urine contains 534 moles ammonium nitrogen, therefore

16.52 kg P needs to be removed. The results of the energy balance are shown in table

7.3.

For the SaNiPhos® process, the energy demand was calculated based on published

results from Bisschops et al. [8]. The authors report an electrical energy demand of 58

MJ g−1
N based on a 38% efficiency for electricity production. Hence, independent of the

source and efficiency for energy, 22.04 MJ g−1
N is required for the SaNiPhos® process.

Therefore, the recovery of all ammonium-nitrogen (7.76 kg m−3) requires 171 MJ.
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Humankind relies on the use of artificial fertilizers to ensure safety of the food supply.

Especially large quantities of nitrogen and phosphorus based fertilizers are applied

annually. They are produced by energy intensive processes. Next to the energy

consumption, the availability and quality of phosphate-rock - the raw material for

phosphate fertilizer production - are of a big concern. On the other side, household

wastewater contains nitrogen and phosphorus compounds and could be used as a

source for these valuable compounds. Chapter 1 describes the current situation

including dependence and importance of fertilizers as well as the current practise

of removal and recovery of nitrogen and phosphate in wastewater treatment plants.

Nitrogen and phosphate compounds are essential nutrients for life. Due to their ap-

plication as fertilizers, these nutrients enter the waterbodies directly (run off from

lands) or indirectly (over the animal-human food chain) which can cause eutrophica-

tion. Urine contributes a small volume fraction of household wastewater, but contains

most of the nutrients. In households, nutrients are diluted due to the combined col-

lection of different types of wastewater. This dilution is a big obstacle for nutrient

recovery. Furthermore, in wastewater treatment plants nutrients are considered pol-

lutants and therefore converted and removed from wastewater. Nitrogen compounds

are mostly converted to inert nitrogen gas using either the nitrification-denitrification

or the Anammox process. Phosphate can be removed by precipitation or via biolog-

ical processes, often resulting in products with a low solubility or products which
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are polluted with sewage sludge. These products need further processing before they

can be used as fertilizers. Urine can be collected separately from other wastewater

streams to avoid dilution to be able to recover the valuable fertilizers more efficiently.

In the EU, urine could provide up to 18% of the phosphorus and 24% of the nitrogen

used in agriculture as fertilizers. Furthermore, urine contains a considerable amount

of oxidizable organic compounds, which could be used in a bio-electrochemical sys-

tem to generate energy. However, existing technologies for recovery of nutrients are

energy intensive.

In Chapter 2, the organic and inorganic fraction of 106 urine samples were char-

acterized to investigate their compositions and study their variations. This character-

ization is useful for the development and optimization of a suitable nutrient recovery

strategy using the potential energy contained in the organic compounds. Two sets of

urine samples were collected. The first urine sample set was collected from colleagues

at Wetsus (Leeuwarden, The Netherlands) and the second sample set was collected

from patients at the hospital MCL (Medisch Centrum Leeuwarden, The Netherlands).

The urine samples were analyzed for the most abundant cations, anions, the am-

monium nitrogen, total nitrogen content, protein content and the chemical oxygen

demand (COD). Furthermore, the urine samples were analyzed by 1H-NMR on the

basis of functional groups of organic compounds commonly found in urine. Theo-

retical COD values were calculated from the 1H-NMR results and compared to the

actual measured COD values in the respective urine samples. The results show that

although a broad spectrum of urine samples was taken, the composition of the or-

ganic compounds was similar in these samples. However, relatively large fluctuations

in the concentrations of total organic compounds present in the urine samples were

observed. This difference in the measured COD of the urine samples was caused by

dilution, due to the individual water consumption of the respective sample donors.

Over 73% of the COD in non-hospital samples is aliphatic and can be considered

biodegradable. A higher protein content - a result of the donor’s medical conditions

- was found in the hospital urine samples compared to the other samples. No di-

rect correlation between the total nitrogen concentration and the measured COD was

found.

In Chapter 3, the application of membrane capacitive deionization (MCDI) as

a tool to concentrate and recover nutrients from urine was investigated. Concen-

tration of nutrients is of special interest in situations where urine is diluted with
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flushing water. From concentrated urine, various products (i.e. hydroxyapatite and

struvite) can be extracted more efficiently, due to a higher concentration of nutri-

ents in the produced concentrate stream. The concentration step is based on the

temporary storage of charged ionic compounds in the double layer formed at the

electrodes while a potential is applied. The results obtained with model urine show

that the flow rate has an effect on the concentration efficiency and recovery of nutri-

ents. Higher flow rates led to high recoveries, whereas lower flow rates led to higher

concentration efficiencies. By the use of MCDI it was possible to recover 99.3% of

the potassium, 98.5% of the phosphate and 98.2% of the ammonium-nitrogen from

diluted real urine. The limitation for recovery is the solubility of the various salts

(e.g. Ca5(PO4)3(OH), MgNH4PO4 · 6 H2O, CaCO3) in order to avoid precipitation

(scaling) inside the MCDI unit. The relatively low energy requirements (14.21 to

16.77 kJ L−1) could make MCDI a potentially attractive alternative to electrodialy-

sis. Furthermore, MCDI allows for the separation of urea (main nitrogen containing

compound) from ions.

The application of a bio-electrochemical system (BES) to produce energy from a

carbon source and recover ammonium at the same time was investigated in Chapters

4 and 5. In Microbial Fuel Cells (a specific type of a BES), bacteria catalyze the

oxidation of organic substrate (e.g. CH3COO– + 4 H2O −−→ 2 HCO–
3 + 8 e– + 9 H+)

at the anode. Due to the absence of an electron acceptor (e.g. O2, Fe3+) in the

anode chamber, the electrons are transported over an external electric circuit to the

cathode. At the cathode, the electrons are used to reduce an electron acceptor (e.g.

O2 +2 H2O+4 e– −−→ 4 OH–). The electron transport induces a charge transport (i.e.

anion or cation transport) across the membrane that separates the anode and cathode

chamber, to maintain the charge neutrality of the system. In case a Cation Exchange

Membrane (CEM) is applied, cation transport (i.e. H3O+, Na+, K+, Mg2+, Ca2+,

NH+
4 ) occurs from the anode chamber through the CEM to the cathode chamber. In

Chapter 4, ammonium recovery using two microbial fuel cells was investigated at

high ammonium concentrations to demonstrate the feasibility of the aforementioned

concept. Increasing the ammonium concentration (from 0.07 g to 4 g ammonium-

nitrogen L−1) by addition of ammonium chloride did not affect the performance of

the MFC. The obtained current densities measured by DC-voltammetry were higher

than 6 A m−2 for both operated MFCs. During continuous operation a current

density of 0.9 A m−2 was achieved. Effective ammonium recovery was achieved
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by a migrational ion flux through the cation exchange membrane to the cathode

chamber. Furthermore, an influence of the K3Fe(CN)6-cathode on the ammonium

transport was found. A high potassium concentration in the cathode chamber led

to a potassium diffusion from the cathode chamber to the anode chamber. This

potassium diffusion resulted in an unbalance of the anion to cation ratio within the

cathode chamber. Therefore, the most prevalent cation (i.e. NH+
4 ) in the anode

chamber was transported to the cathode to maintain overall charge neutrality of the

system.

In Chapter 5, a recovery concept based on the work of Chapter 4 was developed

and investigated for both model and real urine. A microbial fuel cell was used to

simultaneously produce energy and recover ammonium via ammonia-stripping in the

cathode chamber. The microbial fuel cell was equipped with a gas diffusion cathode.

The ammonium transport to the cathode occurred due to simultaneous migration of

ammonium and the diffusion of ammonia. The pH on the cathode surface increased

during operation due to the production of hydroxide (OH–) according to O2+2 H2O+

4 e– −−→ 4 OH– and a migrational transport of cations other than H3O+ and NH+
4 .

During continuous MFC operation an equilibrium was reached, where forward (anode

to cathode) migrational flux and backward (cathode to anode) diffusion flux of cations

were equal and a maximum concentration of cations and hydroxide in the cathode

chamber was reached. At this point the cathode pH remained stable, because the

constant production of OH– led to a diffusion flux of OH– from cathode to anode.

In the cathode chamber, ionic ammonium was converted to volatile ammonia due to

the high pH. Ammonia was recovered from the liquid-gas boundary via volatilization

and subsequent adsorption into an acid solution. An ammonium recovery rate of

3.29 gN d−1 m−2 was achieved at a current density of 0.50 A m−2. The energy

balance showed a surplus of energy (3.46 kJ g−1
N ), which means more energy was

produced than needed for the ammonium recovery. Hence, ammonium recovery and

simultaneous energy production from urine by this novel approach was proven.

Chapter 6 presents an urine treatment concept in which a nutrient recovery from

urine was investigated based on experiments and theoretical calculations. A process

combination of phosphorus recovery via struvite precipitation and subsequent am-

monium recovery using an MFC was evaluated. This chapter was divided into two

parts. The first part investigated the ammonium recovery by an MFC and phospho-

rus recovery by struvite precipitation. The second part used the obtained results and
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literature data to extrapolate the benefits from these two processes in an up-scaled

situation in which one cubic meter of urine per day is treated. Possible products,

the energy demand of the process combination and bottlenecks were evaluated and

presented to show the feasibility of this treatment concept. The products of the pro-

posed process are struvite (MgNH4PO4 · 6 H2O), ammonia (or an ammonium sulfate

solution) and electricity. The electricity production combined with the energy effi-

cient ammonium recovery in the MFC were the biggest advantages of the proposed

technology, as theoretical calculations show that enough electric energy is produced

to operate the treatment process independently. Big risks for the deployment of the

proposed technology are the high cost of the MFC technology (i.e. membrane and

cathode material) in combination with the predicted income due to the relatively low

value of the products.

Chapter 7 reflects on the presented work in this thesis. Especially the ammonium

recovery by an MFC seems to be a promising alternative to conventional nitrogen

recovery or removal processes with a wide field of applications in the future. The

promising concept proposed in Chapter 6, which combines phosphate recovery by

struvite precipitation and subsequent ammonium recovery by an MFC, was com-

pared to state-of-the-art recovery concepts (SaNiPhos® from GMB and the ‘Gele

stroom’ from DHV) for nutrient recovery from urine. All evaluated processes have

good features, but only the concept proposed in Chapter 6 recovers nutrients (am-

monia and phosphate) and produces energy at the same time. However, only the

SaNiPhos® process is currently in operation on full scale, whereas both other tech-

nologies are still under development. In order to successfully launch the promising

recovery process proposed in Chapter 6, further research and development is neces-

sary. Looking at financial aspects, next to expected decreasing cost for material used

in the MFC, benefits derived from wastewater taxes could reduce the pay-back time

(return of investment) of this technology.
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De mensheid is afhankelijk van het gebruik van kunstmest om de veiligheid van zijn

voedseltoevoer te garanderen. Jaarlijks worden bijzonder grote hoeveelheden op stik-

stof en fosfor gebaseerde kunstmesten toegepast. Deze worden in energie-intensieve

processen geproduceerd. Naast deze energieconsumptie zijn de beschikbaarheid en

kwaliteit van de fosfaaterts, welke de grondstof is voor fosforgebaseerde kunstmest,

van grote zorg. Daarentegen bevat huishoudelijk afvalwater stoffen die stikstof en

fosfor bevatten en zou daarom als bron gebruikt kunnen worden om deze waarde-

volle stoffen terug te winnen. Hoofdstuk 1 beschrijft de huidige situatie, inclusief

onze afhankelijkheid en het belang van kunstmest, en daarnaast ook de huidige wijze

waarop stikstof en fosfor in waterzuiveringsinstallaties wordt verwijderd en hoe deze

teruggewonnen worden uit afvalwater. Stikstof en fosfor zijn essentiële voedingsstof-

fen voor al het leven op aarde. Doordat deze stoffen als kunstmest worden toegepast,

stromen zij direct (door afwatering van akker- en weilanden) of indirect (via de dier-

mens-voedselketen) de waterketen in, hetgeen tot eutroficering kan leiden. Urine

draagt maar een kleine volumefractie bij aan het huishoudelijk afvalwater, maar het

bevat de meeste voedingsstoffen. In huishoudens worden voedingsstoffen verdund

door de gecombineerde afvoer van alle verschillende soorten afvalwater. Deze ver-

dunning is een groot obstakel voor het terugwinnen van voedingsstoffen. Hier komt

nog bij dat de voedingsstoffen in afvalwaterzuiveringen worden gezien als vervuiling

en om deze reden worden omgezet in andere stoffen en worden verwijderd uit het
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afvalwater. Stikstofhoudende stoffen worden vooral omgezet in inert stikstofgas in

het nitrificatie-denitrificatie proces of in het Anamox proces. Fosfaat kan verwijderd

worden door middel van precipitatie of via biologische processen, wat vaak resulteert

in producten die een lage oplosbaarheid hebben of in producten die vervuild zijn met

afvalwaterslib. Voordat deze producten gebruikt kunnen worden als kunstmest moe-

ten deze verder behandeld worden. Urine kan apart opgevangen worden van andere

afvalwaterstromen om zo verdunning te voorkomen en het op deze manier mogelijk

te maken de waardevolle kunstmesten efficiënter terug te winnen. Urine zou de EU

in tot 18% van de fosforbehoefte en tot 24% van de stikstofbehoefte kunnen voor-

zien die in de landbouw gebruikt worden als kunstmest. Daarbij komt dat urine ook

een aanzienlijke hoeveelheid oxideerbare organische stoffen bevat welke gebruikt zou

kunnen worden in bio-elektrochemische systemen om energie mee op te wekken. De

bestaande technologiën vergen echter erg veel energie.

In hoofdstuk 2 zijn de organische en anorganische fracties van 106 urinemonsters

gekarakteriseerd om hun samenstellingen en onderlinge variaties te onderzoeken. Deze

karakterisatie is nuttig voor de ontwikkeling en optimalisatie van een geschikte strate-

gie voor het terugwinnen van voedingsstoffen uit urine waarbij de potentiële energie

die zich in de organische stoffen bevindt wordt gebruikt. Twee reeksen van urine-

monsters zijn verzameld. De eerste reeks bestond uit urinemonsters van collega’s

binnen Wetsus (Leeuwarden, Nederland) en de tweede reeks bestond uit urinemon-

sters van patiënten van het MCL (Medisch Centrum Leeuwarden, Nederland). De

urinemonsters werden geanalysserd op de meest voorkomende kationen, anionen, het

ammoniumstikstof, het totale stikstofgehalte, het eiwitgehalte en het chemisch zuur-

stofverbruik (CZV). Verder werden de urinemonsters geanalyseerd met behulp van
1H-NMR op de functionele groepen van de meest voorkomende organische stoffen

in urine. Uit de resultaten van deze 1H-NMR analyse werden theoretische waarden

voor het CZV berekend en deze werden vergeleken met de daadwerkelijk gemeten

CZV-waardes van de respectievelijke urinemonsters. De resultaten laten zien dat

hoewel een breed spectrum aan urinemonsters was genomen, de samenstelling van

de organische stoffen van deze monsters gelijk was. Er werden echter grote schom-

melingen gevonden in de concentraties van de organische stoffen die aanwezig zijn

in de unrinemonsters. Dit verschil in de gemeten CZVs van de urinemonsters werd

veroorzaakt door verdunning: de individuele waterconsumptie van de respectievelijke

personen. Meer dan 73% van het CZV in de niet-ziekenhuismonsters is alifatisch en
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kan als bio-afbreekbaar worden beschouwd. Vergeleken met de andere monsters werd

een hoger eiwitgehalte (een resultaat van de ziektes van de personen) gevonden in

de ziekenhuisurinemonsters. Er is geen directe correlatie gevonden tussen het totale

stikstofgehalte en het gemeten CZV.

In hoofdstuk 3 is de toepassing van membraan capacitieve deonisatie (MCDI) om

voedingsstoffen uit urine te concentreren en terug te winnen onderzocht. Het con-

centreren van voedingsstoffen is van speciaal belang in situaties waarin urine wordt

verdund met spoelwater. Uit geconcentreerde urine kunnen namelijk verscheidene

producten (bijvoorbeeld hydroxyapatiet en struviet) efficiënter worden onttrokken,

doordat de concentraties van voedingsstoffen in de geproduceerde concentraatstroom

hoger zijn. De concentratiestap is gebaseerd op de tijdelijke opslag van elektrisch

geladen ionische stoffen in de electrochemische dubbellaag die gevormd wordt bij de

elektodes terwijl een potentiaal over deze wordt toegepast. De resultaten die met

een modelurine zijn behaald, laten zien dat de stromingssnelheid van de verdunde

urine een effect heeft op de efficiëntie waarmee de urine geconcentreerd wordt en

de voedingsstoffen worden herwonnen. Hogere stromingssnelheden leidden tot ho-

gere herwinningen, terwijl lagere stromingssnelheden leidden tot hogere efficiënties

van het concentreren van de stoffen. Met behulp van MCDI was het mogelijk om

99,3% van de kalium, 98,5% van de fosfor en 98,2% van de ammoniumstikstof uit

verdunde (echte) urine terug te winnen. De limiterende factor voor de terugwin-

ning is de oplosbaarheid van de verschillende zouten (bijvoorbeeld Ca5(PO4)3(OH),

MgNH4PO4 · 6 H2O, CaCO3) om precipitatie van zouten in de MCDI installatie te

voorkomen. De relatief lage energieconsumptie (14,21 tot 16,77 kJ L−1) kan MCDI

een potentieel aantrekkelijk alternatief maken voor elektrodialyse. Daarnaast maakt

MCDI het mogelijk urea (de voornaamste stikstofbevattende stof) te scheiden van de

ionen uit urine.

De toepassing van bio-elektrochemische systemen (BES) om energie uit een kool-

stofbron te produceren en tegelijkertijd ammonium terug te winnen is onderzocht

in hoofdstukken 4 en 5. In biobrandstofcellen (een specifiek type BES) katalyse-

ren bacteriën de oxidatie van een organisch substraat (bijvoorbeeld CH3COO– +

4 H2O −−→ 2 HCO–
3 + 8 e– + 9 H+) bij de anode. Door de afwezigheid van een elek-

tronenacceptor (bijvoorbeeld O2 or Fe3+) in het anodecompartiment worden de elek-

tronen door een extern elektrisch circuit naar de kathode getransporteerd. Bij de

kathode worden de elektronen gebruikt om een elektronacceptor te reduceren (bij-
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voorbeeld O2 + 2 H2O + 4 e– −−→ 4 OH–). Het transport van elektronen veroorzaakt

een transport van lading (bijvoorbeeld anion- of kationtransport) door het membraan

dat de anode- en kathodecompartimenten scheidt om de neutraliteit van lading van

het systeem te behouden. In het geval dat een kationuitwisselingsmembraan (KUM)

wordt toegepast, treedt kationtransport (bijvoorbeeld H3O+, Na+, K+, Mg2+, Ca2+,

NH+
4 ) op van het anodecompartiment door het KUM naar het kathodecompartiment.

In hoofdstuk 4 is de ammoniumherwinning van twee biobrandstofcellen onderzocht

bij hoge ammoniumconcentraties om de haalbaarheid van het eerder genoemde con-

cept te demonstreren. De prestaties van de biobrandstofcellen werden niet negatief

bëınvloed door het laten toenemen van de ammoniumconcentratie (van 0,07 g tot

4 g ammoniumstikstof L−1) door toevoeging van ammoniumchloride. De behaalde

stroomdichtheden gemeten door middel van gelijkstroomvoltametrie waren hoger dan

6 A m−2 voor beide biobrandstofcellen. Tijdens continue operatie werd een stroom-

dichtheid van 0,9 A m−2 behaald. Een effectieve ammoniumherwinning werd behaald

door een migrationele flux van ionen door het kationuitwisselingsmembraan naar het

kathodecompartiment. Verder werd een invloed van de K3Fe(CN)6-kathode op het

ammoniumtransport gevonden. Een hoge kaliumconcentratie in het kathodecompar-

timent leidde tot diffusie van kalium van het kathodecompartiment naar het anode-

compartiment. Deze kaliumdiffusie resulteerde in een inbalans in de anion-kationratio

binnen het kathodecompartiment. Hierdoor werd het meest voorkomende kation in

het anodecompartiment (bijvoorbeeld NH+
4 ) getransporteerd naar de kathode om de

algehele neutraliteit van lading van het systeem te behouden.

In hoofdstuk 5 is een herwinningsconcept dat gebaseerd is op het werk uit hoofd-

stuk 4 ontwikkeld en getest met zowel modelurine als echte urine. Een biobrandstofcel

werd gebruikt om tegelijkertijd energie te produceren en ammonium te herwinnen via

ammoniakstrippen in het kathodecompartiment. De biobrandstofcel was uitgerust

met een gasdiffusiekathode. Het ammoniumtransport naar de kathode vond plaats

door gelijktijdige migratie van ammonium en diffusie van ammoniak. De pH aan

het kathode-oppervlak steeg tijdens operatie door de productie van hydroxylionen

(OH–) volgens O2 + 2 H2O + 4 e– −−→ 4 OH– en een migratietransport van kationen

anders dan H3O+ en NH+
4 . Tijdens continue operatie van de biobrandstofcel werd

een evenwicht bereikt waarin de voorwaardse (anode naar kathode) migratieflux en

de achterwaardse (kathode naar anode) diffusieflux van kationen gelijk waren en een

maximale concentratie van kationen en hydroxyl werd bereikt in het kathodecom-
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partiment. In dit stadium bleef de pH van de kathode stabiel, omdat de constante

productie van OH– leidde tot een diffusieflux van OH– van de kathode naar de anode.

In het kathodecompartiment werd ionisch ammonium omgezet naar vluchtig ammo-

niak door de hoge pH. Ammoniak werd teruggewonnen uit de vloeistof-gasgrenslaag

via verdamping en daaropvolgende adsorptie in een zuuroplossing. Een ammonium-

herwinningssnelheid van 3,29 gN d−1 m−2 werd behaald bij een stroomdichtheid van

0,50 A m−2. De energiebalans laat een overschot van energie zien (3,46 kJ g−1
N ), wat

betekent dat meer energie werd geproduceerd dan dat er benodigd was voor de her-

winning van ammonium. Hiermee is de terugwinning van ammonium met gelijktijdige

energieproductie uit urine door deze nieuwe aanpak bewezen.

Hoofdstuk 6 presenteert een urinebehandelingsconcept waarin een voedingsstof-

fenherwinning uit urine onderzocht werd, gebaseerd op experimenten en theoretische

berekeningen. Een combinatie van de processen van fosforherwinning via struvietpre-

cipitatie en een opeenvolgende ammoniumherwinning met behulp van een biobrand-

stofcel werd geëvalueerd. Dit hoofdstuk is in twee gedeeltes verdeeld. Het eerste

deel onderzocht ammoniumherwinning door een biobrandstofcel en fosforherwinning

door struvietprecipitatie. Het tweede deel gebruikte de behaalde resultaten en ge-

gevens uit de literatuur om de voordelen van deze twee processen te extrapoleren

naar een opgeschaalde situatie waarin één kubieke meter urine per dag wordt behan-

deld. Mogelijke producten, de energiebehoefte van de combinatie van de processen en

knelpunten werden geëvalueerd en gepresenteerd om de haalbaarheid van dit behan-

delingsconcept te laten zien. De producten van het voorgestelde proces zijn struviet

(MgNH4PO4 · 6 H2O), ammoniak (of een ammoniumsulfaatoplossing) en elektriciteit.

De productie van elektriciteit gecombineerd met de energie-efficiënte ammoniumher-

winning in de biobrandstofcel waren de grootste voordelen van de voorgestelde tech-

nologie, omdat theoretische berekeningen laten zien dat genoeg elektrische energie

wordt geproduceerd om het behandelingsproces onafhankelijk te laten opereren. De

grootste risico’s voor de inzetbaarheid van de voorgestelde technologie zijn de hoge

kosten van de biobrandstofceltechnologie (bijvoorbeeld het membraan- en het katho-

demateriaal) in combinatie met het voorspelde inkomen door de relatief lage waarde

van de producten.

Hoofdstuk 7 beschouwt het in deze thesis gepresenteerde werk. Vooral de ammoni-

umherwinning door een biobrandstofcel lijkt een veelbelovend alternatief te zijn voor

conventionele stikstofherwinnings- of stikstofverwijderingsprocessen met een groot
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scala aan toepassingen in de toekomst. Het veelbelovende concept dat voorgesteld

werd in hoofdstuk 6, waarin fosforherwinning door struvietprecipitatie gecombineerd

wordt met een daarop volgende ammoniumherwinning door een biobrandstofcel, werd

vergeleken met de huidige state-of-the-art concepten (SaNiPhos® van GMB en de

‘Gele stroom’ van DHV) voor de herwinning van voedingsstoffen uit urine. Alle

geëvalueerde processen hebben goede eigenschappen, maar alleen het concept dat in

hoofdstuk 6 is voorgesteld herwint voedingsstoffen (ammoniak en fosfaat) en produ-

ceert tegelijkertijd energie. Alleen het SaNiPhos® proces wordt echter op dit mo-

ment op volledige schaal toegepast, terwijl beide andere technologiën nog ontwikkeld

worden. Om het veelbelovende herwinningsproces dat in hoofdstuk 6 is voorgesteld

succesvol te lanceren is verder onderzoek en verdere ontwikkeling nodig. Met het oog

op financiële aspecten, naast de verwachte toename in kosten voor het materiaal dat

in de biobrandstofcel gebruikt wordt, zouden inkomsten van waterzuiveringsbelastin-

gen gebruikt kunnen worden om de terugbetaaltijd (return of investment) van deze

technologie te reduceren.
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