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Abstract

Food science problems are complex. Scientists may be able to capture more of the 

complexity of an investigated theme if they were able to integrate related studies. 

Unfortunately, individual studies are usually not designed to allow such integration,  

and the common statistical methods cannot be used for analyzing integrated data. 

The modeling technique of Bayesian networks has gained popularity in many fields 

of application due to its ability to deal with complexity, but has emerged only recently 

in food science. This thesis used data from experiments on sensory satiation as case 

studies. The objective was to explore the use of Bayesian networks to combine raw 

data of independently performed but related experiments to build a quantitative 

model of sensory satiation. 

Methods
This thesis started with introducing the theoretical background of Bayesian networks 

to food science. The available data from various independent experiments on 

sensory satiation were then examined for their potential to be combined. Finally, 

the outcomes obtained using Bayesian networks on a single dataset were compared 

with the published outcomes of the respective study, in which classical statistical 

procedures were used to analyze the data. 

Results
Two hurdles were identified when combining the data of related studies that were 

performed independently and without the intention of combining their data. The first 

hurdle was a lack of essential information for reliable estimations of parameters of 

the combined model network. This information could be obtained by deriving it from 

existing information in the individual studies or by performing extra experiments; 

these practices are, however, not always possible. The second hurdle was a possible 

conflict in causal relationships underlying the individual experimental designs, which 

can cause misleading analyses of the combined dataset. This was the case for some 

experiments that involved the control of secondary explanatory variables. As such, 



an approach termed as Global Experimental Design was proposed in this thesis as 

a solution to overcome these hurdles. This approach emphasizes the building of an 

overall network prior to designing individual studies.

 In comparison to using the classical statistical procedures, more information 

can be extracted using Bayesian networks. This technique could make use of the 

domain knowledge in a transparent manner as well as empirical data with missing 

values.

Conclusions
It is possible to combine raw data from related studies for a meaningful analysis 

if effort is made in the phase of experimental design. The approach of Global 

Experimental Design outlines this phase with the building of an overall network. By 

using Bayesian networks as a tool for exploratory analysis, scientists are able to gain 

more insights into a research domain.
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This thesis explored the use of Bayesian networks, a modern modeling technique, 

in the field of food science. The exploration was performed with the data on food 

satiation that were already available. The thesis was part of a larger project entitled 

“Sensory specific satiation: linking product properties to obesity prevention”. Various 

controlled experiments were independently designed and conducted to understand 

sensory satiation, i.e. how different sensory aspects influence satiation. In these 

experiments, researchers manipulated the composition of some sensory stimuli or 

oral/ nasal exposure to sensory stimuli during food consumption. Their designs 

involved information on sensory perception (e.g. taste and aroma) and oral processing 

characteristics (e.g. bite size and bite frequency).

This introduction starts with the definition of satiation and satiety. It is followed by 

an overview of the complexity of satiation to demonstrate the need of modeling to 

understand this process. Bayesian networks are then briefly presented as a potential 

tool for modeling food-related problems. The chapter concludes with the objective 

and outline of this thesis.
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1.1  Food intake: satiation and satiety

There are two processes involved in the consumption of food: satiation and satiety 

(Blundell et al., 1988). Satiation is the process that develops during a course of 

eating (meals or snacks) and brings this course to an end (meal termination). Satiety 

is the process that takes place after an eating course and inhibits the start of the 

next eating course (meal initiation). As such, the feeling of hunger is reduced with 

the development of satiation and is suppressed by satiety. It is thus expected that 

satiation determines the meal size (how much food is eaten in a meal), and satiety 

determines the meal frequency (how many meals are eaten a day). 

 Blundell et al. (1988) have illustrated the processes of satiation and satiety by 

the “satiety cascade” (Figure 1.1). These authors have also identified four mediating 

processes that have control over satiation and satiety: sensory, cognitive, post-

ingestive, and post-absorptive. 

Figure 1.1: 
The satiety cascade of 
Blundell et al. (1988).

1.2 Satiation: complexity and the need of modeling

Satiation or meal size results from the choices of what to eat and drink, and of how 

much to consume (Booth, 1990). So, what influences these choices? We can view the 

influencing factors belonging to three groups: the Actual, the Inner, and the Outer 

(Figure 1.2).
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Figure 1.2: 
The various influences 
that contribute to the 
complexity of satiation.

 The “Actual” factors concern the responses of human senses to the food, 

the food itself, and also the stomach and gut signals during the consumption. A 

food presents various stimuli to different human senses: vision, hearing, touch, smell, 

and taste. The overall sensory perception strongly affects the liking of the food 

(palatability or pleasure); and the liking in turn can influence how much of the food is 

eaten (Sorensen et al., 2003). When a food is consumed until satiation, the perceived 

pleasantness decreases specifically for this food; it does not change however, or 

decreases much less, for other (uneaten) foods. This phenomenon is called “Sensory 

specific satiation/satiety, SSS” (Rolls, 1986). In addition, the chemical and physical 

properties of the food can directly influence how the food is processed in the oral 

cavity. For example, different food textures ranging from liquid to solid determine the 

level of mastication needed (or not at all). This difference can lead to a short or rather 

long oral residence time, or different eating rates (Viskaal-van Dongen et al., 2011). A 

high rate of eating is strongly correlated with a high intake, as shown in various studies 

(Spiegel et al., 1993; Andrade et al., 2008; Zijlstra et al., 2010; Viskaal-van Dongen et 

al., 2011). It is also believed that a longer residence in the oral cavity enhances the 

oro-exposure to the sensory signals, hence contributing to the development of an 

earlier satiation (de Graaf, 2012). To decide on whether to continue or stop eating 

a food, the brain uses not only the sensory signals (sensory processes) but also the 
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signals from the stomach and the gut hormones (metabolic processes). The state of 

hunger prior to a meal influences the amount to be consumed (Decastro, 1988); this 

hunger state is controlled by some gastrointestinal hormones, e.g. ghrelin, leptin, and 

glucose. During the meal, the degree of stomach distention and the release of some 

other hormones, such as cholecystokinin (CCK) and glucagon-like peptide 1 (GLP-1), 

trigger brain-signaling of satiation (Woods et al., 1998; Blom et al., 2004). Liddle et 

al. (1985) observed that human plasma CCK levels increase seven-fold during meals, 

peaking between 10 and 30 min after meal initiation and gradually falling when the 

meal ends. 

 The “Inner” factors account for the contribution of human cognition to the 

development of satiation. The sensory signals during eating are linked to the metabolic 

consequences. These learning processes shape the eating pattern of each individual 

(de Graaf & Kok, 2010). It is believed that sensory attributes of a food (e.g. taste, 

smell, and texture) are associated with its quality and energy content, and thus guide 

food intake behavior (Woods, 2009). In other words, humans have unconsciously 

learned about the satiating capacity of different foods. These learned associations 

(beliefs) are built-in and automatically affect the food choice and the amount to be 

eaten. Another cognitive aspect that plays an important role in determining the meal 

size is dietary restraint, i.e. controlling body weight by limiting food intake (Vanstrien 

et al., 1986). These cognitive factors (“Inner” factors) interactively give direct feedback 

to the sensory and metabolic processes (“Actual” factors).

 The “Outer” factors encompass the eating environment. It could be the 

availability of foods or the ambiance of the meal. For example, portion size has a 

robust, positive effect on food intake (Kral & Rolls, 2004; Piernas & Popkin, 2011). 

Stubbs et al. (2001) showed that increasing the variety of foods that are identical in 

composition but differ in sensory perception can increase food and energy intake. This 

is explained by the sensory specific satiation/satiety phenomenon. The unchanged 

(or less changed) pleasantness towards uneaten foods (or not yet exposed flavor) 

encourages us to eat more when presented with greater variety. The amount of food 

eaten can increase with the presence of distracting factors, such as friends or family 

(Hetherington et al., 2006), or television or music (Bellisle et al., 2004; Stroebele & de 

Castro, 2006; Temple et al., 2007). The eating environment (“Outer” factors) itself also 

possibly affects the sensory and metabolic processes (“Actual factors”) due to distraction.
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 As described above, the development of satiation is a highly complex 

process. It involves a large number of variables and many of these are interrelated. 

The capacity of human beings for causal reasoning with severable interrelated 

influencing factors in their head is limited. That is why we need a mathematical model 

to extend our capability in that respect. As our  problem also possesses a high degree 

of variability (natural variation) and uncertainty (lack of knowledge) finally a statistical 

model is needed to capture and communicate the insights in satiation. 

1.3 Modeling with Bayesian networks 

Machine learning techniques are known as the convergence of artificial intelligence 

and statistics. Unlike classical statistical analysis, with which researchers must formulate 

and test each hypothesis individually, these modern techniques can automate 

both hypothesis generation and testing process (Cunningham, 1995). A Bayesian 

network model has two components: graphical (model structure) and probabilistic 

(model parameters) (Heckerman, 1995). The graphical nature makes it easy to grasp 

the overall picture as the causal relationships among variables are visualized. The 

probabilistic nature makes it transparent to reason through the problem as the 

relationships are quantified by conditional probabilities. Therefore, this modeling 

technique can deal with complexity and facilitates an easy communication among 

model users of different scientific backgrounds. 

 Owing to its practical features, Bayesian networks have been increasingly 

applied in many fields, such as finance, medical diagnosis, and genetics (Pourret et 

al., 2008). Figure 1.3 shows an indication of this growth in popularity by the number 

of publications over time recorded in the online database “Web of Science”. Two 

search criteria were used: i) the topic must include “Bayesian network”, or “Bayes 

net”, or “belief network”, and ii) the research area excluded “Computer science” 

and “Mathematics”. The second criterion assured that only applications of Bayesian 

networks in other fields were counted. Only records until 2011 were used, taking into 

account a possible delay in document indexing.
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Figure 1.3: 

The increasing growth 
of Bayesian network 
applications in various 
domains as measured by 
the number of publications 
in the Web of Science (see 
text for more details).

 

Yet, this modeling technique is not so much applied in food research. An active 

application of Bayesian networks can be found only in the area of microbial risk 

assessment (Barker et al., 2002; Barker et al., 2005; Smid et al., 2012), where modeling 

as such has had a long tradition. Bayesian networks have recently also been used 

in the field of human nutrition by Mioche et al. (2011a; 2011b). In those papers, 

it is shown how to apply Bayesian networks for predicting fat-free mass through 

easily available information on sex, age, weight, and height. Food product design 

also appears to be an area that can potentially benefit from this modeling technique 

as Corney (2000) discussed with sensory and consumer data.

1.4 Objective and outline 

This thesis was part of a larger project on satiation with its own specific objective. The 

objective of this thesis was to explore the use of Bayesian networks to combine raw 

data of independently performed but related experiments to build a quantitative 

model of sensory satiation. 

 The outline of the thesis is as follows. Chapter 2 introduces the theoretical 

background of the Bayesian network technique and its potential applications in 

food science. A food example was used as the basis to present the main features 

of Bayesian networks. Chapter 3 describes the first hurdle encountered when 

combining data: a lack of Structural Linking Information. Chapter 4 describes the 
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second hurdle encountered when analyzing the combined data: a possible conflict 

in causal relationships underlying the experimental designs. These two hurdles need 

to be overcome when intending to combine data for a meaningful pooled analysis 

of the data. While Chapter 3 and Chapter 4 focus at a theoretical level, Chapter 5 

illustrates some practical benefits of using Bayesian networks as a modeling method. 

Based on the same dataset obtained from a single study, this latter chapter describes 

what kind of extra information scientists can obtain with Bayesian network analysis 

as compared to with common statistical procedures. The general discussion (Chapter 

6) closes this thesis with two parts. The first part communicates the approach of 

Global Experimental Design by synthesizing the results obtained from Chapter 3 and 

Chapter 4. This approach provides guidance on how to design individual related 

studies that allows their data to be integrated. The second part gives a conclusion on 

the whole of the thesis and discusses the outlook.
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Abstract

Although Bayesian networks have gained popularity in many fields, they have just 

recently emerged in food-related problems. This technique can be used as a tool 

for prediction, explanation, exploration, or decision-making under uncertainty. This 

chapter mainly provides a theoretical background of Bayesian networks through a 

food example. It also discusses the advantages and challenges, as well as potential 

applications of Bayesian networks in food area.
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2.1 Introduction

Food research is highly complex. Food technologists and researchers need to take 

into account not only physical and chemical interactions between food ingredients 

under processing, but also biological interactions between food and microorganism 

and those between food and the human body. Owing to its nature, we need to 

consider the variability and uncertainty of the system. Variability reflects natural 

variation whereas uncertainty represents the lack of human knowledge (van Boekel, 

2008, pages 2-5). For instance, perception responses to the same odorant can vary 

between human subjects, or even within one subject at different psychological and 

physiological states (variability). Besides this, the mechanism of how odorants trigger 

olfactory receptors has not yet been fully understood (uncertainty). Therefore, we 

humans build models to simplify and approximate the real world as a way to handle 

complex problems.

 One of the challenges of the food industry in the 21st century is to reformulate 

commonly eaten foods. This task has been defined in response to the dietary 

recommendations for lower intake of saturated fat, trans fat, sugar and salt (van Raaij 

et al., 2008). The reduction of these components requires huge research efforts to 

recreate the conventional flavor and texture that is desirable to consumers. As such, 

prediction of sensory attributes and consumer acceptance while modifying physical 

chemical properties of foods is a valuable tool. Deterministic models essentially 

ignore uncertainty and variability of complex problems. Stochastic or probabilistic 

approaches, however, suggest possible solutions by expressing uncertainty and 

variability through probability distributions (Fearn, 2004).

 Recent food research has witnessed an increasing application of modern 

measurement techniques.  Hence, more and more data are generated and food 

scientists need to work with large datasets. The capability of data analysis techniques 

to provide efficient explanations of data and explorations of implicit information 

is thus of importance. Cunningham (1995) has discussed this point while bringing 

together classical and modern statistical approaches. In classical statistical analysis, 

researchers must formulate and test each hypothesis individually. The information 

discovery process becomes time-consuming and difficult to manage. In response, 

machine-learning techniques, which are the convergence of artificial intelligence and 



Chapter 2

24

2

Chapter 2 Theoretical background of Bayesian Networks

24 25

statistics, have been intensively developed over the last decades. These techniques 

can automate both hypothesis generation and testing processes.  

 Bayesian networks, also referred to as Bayesian belief networks, belief networks, 

Bayes nets, or causal probabilistic networks, are one machine learning technique based 

on a probabilistic approach. This technique can be used as a tool for prediction, 

explanation, exploration or decision-making under uncertainty (Heckerman, 1995, 

Kjaerulff and Madsen, 2008). Bayesian networks are growing in popularity with 

numerous applications covering a variety of areas, such as finance, medical diagnosis, 

robotics, genetics, and ecology. General introductions to Bayesian networks as well 

as real-life case studies in these domains are presented by Pourret, Naïm, and Marcot 

(2008). An early application of Bayesian logic can be found in medical diagnosis 

(Barnett et al., 1998). A model system was developed from a database of thousand 

clinical findings such as symptoms, laboratory data and associated diseases. This 

model can predict the most likely diseases when provided with a description of new 

patients’ data. 

 Despite the wide use of Bayesian networks in various fields, its presence 

in food-related problems has emerged very recently (van Boekel, 2004). Modeling 

with Bayesian networks has mostly focused on microbial risk assessment in the food 

production chain (Barker et al., 2005, Barker et al., 2002, Carlin et al., 2000). This kind 

of models was shown to add new information in a structured and simple manner 

(Barker et al., 2005). To the authors’ knowledge, the first published effort in designing 

food was to build Bayesian network models relating sensory features to consumer 

preference (Corney, 2000). It was shown that Bayesian networks could be a valuable 

addition to food design and could be built from small data sets. 

 In short, Bayesian networks are able to handle variability and uncertainty in 

explaining, exploring information and particularly in predicting behaviors of systems. 

Although it is promising in solving problems in food research, Bayesian networks have 

not yet garnered enough attention within the food science community. This is probably 

because available tutorials on this technique often require an advanced mathematical 

background that few food experts have. The present paper aims to make ideas and 

techniques of Bayesian networks accessible to food scientists by describing a Bayesian 

network model using a food example (2.2); showing benefits of the model once it has 

been built (2.3); and explaining the theories behind Bayesian networks (2.4, 2.5, and 
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2.6). We discuss then the advantages and challenges, as well as potential applications 

of this technique in food area (2.7), and finally provide sources for further reading 

(2.8).

 Hypothetical examples of Bayesian networks are used throughout the paper. 

Variables, probability values and dependent relations were suggested based on the 

knowledge and beliefs of the authors. Terminologies and concepts (formatted bold) 

concerning Bayesian networks are gently introduced while the paper focuses on the 

examples. 

2.2 Concepts of Bayesian networks
 

Suppose we conducted a consumer test on snack consumption among teenagers 

(N = 200). There were four treatment conditions of two levels of snack types: sweet 

and salty, and two levels of eating environments: with friends and without friends. 

In each condition, teenagers first tasted snack samples and scored their liking on 

a continuous hedonic line scale ranging from 0 (not at all) to 100 (very much). 

They were then allowed to eat as much as they wanted. The total amount of snack 

consumed (intake) by each teenager was recorded. Data were generated by HUGIN 

software (HUGIN Researcher 7.2, http://www.hugin.com/), and a sample of 20 cases 

is shown in Appendix 2.A. We were interested in four variables: ‘Snack type’, ‘Liking’, 

‘Eating with friends’ and ‘Intake’, and wanted to examine their relationships using the 

technique of Bayesian networks. 

 A Bayesian network has two aspects: qualitative and quantitative (Figure 

2.1). The qualitative aspect is a graph formed by a set of labeled nodes (labeled 

ellipses, implying respective variables) linked to each other by a set of arrows (implying 

dependence relations among variables). Each node in the graph is associated with a 

table called Conditional Probability Table (CPT). The set of these CPTs represents the 

quantitative aspect of the model. They allow the quantification of relations among 

variables through probability expressions.

 Definition 2.1: Probability of an event A is the likelihood or chance that A will occur, 

denoted as P(A).
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Figure 2.1: A hypothetical Bayesian network of snack consumption. Labeled ellipses (nodes) represent 
respective variables of interest. Arrows indicate dependent relations between the two linked variables. 
The table associated to each node identifies different states that the variable can take, and the probability 
that the variable takes a specific state (given or not certain conditions). The probabilities associated with 
‘Snack type’ and ‘Eating with friends’ were fixed by the experimental design. The probabilities associated 
with ‘Liking’ and ‘Intake’ resulted from the hypothetical data. 

The arrow pointing from parent node to its child node suggests a possible cause-

effect relationship. For instance, in Figure 2.1, the node ‘Snack type’ is a parent of 

‘Liking’, i.e. the type of snack could influence liking scores. The node ‘Intake’ has 

two parents: ‘Liking’ and ‘Eating with friends’, i.e. snack consumption is supposedly 

affected by these two variables. These interactions (placement of the arrows) were 

suggested by the present authors.

 In Bayesian networks, the graph is directed and acyclic. It means that the 

nodes must be connected by arrows, and there is no way from one node back to 

itself if following the arrows. This Directed Acyclic Graph (DAG) is considered as the 

structure of the Bayesian network model.

 In snack consumption data, the values of two variables ‘Liking’ and ‘Intake’ are 

typically treated continuous because they can be given by any real number (between 

0 and 100 for ‘Liking’ and any record for ‘Intake’). In principle, Bayesian networks can 

handle both continuous and discrete variables. Many general-purpose algorithms, 
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however, only deal with models containing discrete variables. Therefore, continuous 

data used in Bayesian networks are often discretized, i.e. creating a countable set of 

values.

 Continuous variables can be converted into discrete variables by setting 

categories (referred to as states). In this case, two states of ‘Liking’ could be ‘Very 

much’, which was used to label liking scores greater or equal to 70; and ‘Not very 

much’ to label the rest (Appendix 2.A). The intervals and respective names of the 

states are generally suggested by domain experts, and preferably based on earlier 

empirical findings. The values of ‘Intake’ in our hypothetical network were also set 

into three states in the same manner: ‘Low’, ‘Medium’, and ‘High’. The data of ‘Snack 

type’ and ‘Eating with friends’ were categorical themselves (set by the experimental 

design). ‘Snack type’ had two states: ‘Sweet’ and ‘Salty’, and ‘Eating with friends’ had 

two states: ‘Yes’ and ‘No’. When one variable takes a specific state, its value is defined, 

and is treated as an event. For example, (‘Liking’ = ‘Very much’) and (‘Snack type’ = 

‘Sweet’) are two events.

 In a DAG, if a node has no parent, each value in its associated CPT represents 

the probability of the respective variable taking a specific state. For instance, the CPT 

of ‘Snack type’ says P(‘Snack type’ = ‘Sweet’) = 0.5 and P(‘Snack type’ = ‘Salty’) = 0.5; 

and that of ‘Eating with friends’ says P(‘Eating with friend’ = ‘Yes’) = 0.5 and P (‘Eating 

with friend’ = ‘No’) = 0.5. These probabilities reflect the randomization process of the 

experiment: ‘the chance of a teenager receiving a sweet or salty snack is equal, and 

his/her chance for eating snacks alone or with friends is also the same’. If a node has 

one or more parents, the associated CPT indicates the probability of the respective 

variable taking a specific state, given that the state of its parent variable(s) has been 

specified. For instance, having ‘Snack type’ as the unique parent, the CPT of the node 

‘Liking’ is read as follows:  

P(‘Liking’ = ‘Very much’ | ‘Snack type’ = ‘Sweet’) = 0.7, or in words: ‘given that a 

snack is sweet, the probability of this snack being liked very much is 0.7’

P(‘Liking’ = ‘Not very much’ | ‘Snack type’ = ‘Sweet’) = 0.3

P(‘Liking’ = ‘Very much’ | ‘Snack type’ = ‘Salty’) = 0.4

P(‘Liking’ = ‘Not very much’ | ‘Snack type’ = ‘Salty’) = 0.6

The probabilities above were obtained by counting the frequency of liking score 

values labeled as ‘Very much’ or ‘Not very much’ given by teenagers when (‘Snack 
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type’ = ‘Sweet’) and when (‘Snack type’ = ‘Salty’). 

 The node ‘Intake’ has two parents: ‘Liking’ and ‘Eating with friends’. The 

probabilities in its CPT were determined as the frequency of intake values being 

labeled as ‘Low’, ‘Medium’ or ‘High’ for each of 3 x 2 state combinations of the two 

parent variables. For instance, we can say that teenagers consume a lot of snack if 

they like it very much and while eating with friends from the probabilities below:

P(‘Intake’ = ‘Low’ | ‘Liking’ = ‘Very much’, ‘Eating with friends’ = ‘Yes’) = 0.1 

P(‘Intake’ = ‘Medium’ | ‘Liking’ = ‘Very much’, ‘Eating with friends’ = ‘Yes’) = 0.2 

P(‘Intake’ = ‘High’ | ‘Liking’ = ‘Very much’, ‘Eating with friends’ = ‘Yes’) = 0.7 

The probabilities in the CPTs of ‘Liking’ and ‘Intake’ are called conditional probabilities, 

because they are conditioned to the state(s) of their parent(s). All values of the set of 

CPTs of a Bayesian network are recognized as parameters of the model.

Definition 2.2: Conditional probability is the probability of an event A given that 

another event B has occurred, denoted P(A|B).

2.3 Use of Bayesian networks

Suppose that we have obtained a Bayesian network comprising of its structure (a set 

of nodes linked to each other by a set of arrows, known as the qualitative aspect), and 

its parameters (a set of conditional probability tables CPTs, known as the quantitative 

aspect). What we can do then is to perform inference. The probabilistic inference is 

the computation of probabilities of interest given the model (Heckerman, 1995). For 

example, from the network of snack consumption (Figure 2.1), we wanted to compute 

the probability that teenagers eat a low (or medium, or high) amount of a snack, 

given that they are eating sweet snacks with friends. This computation is equivalent 

to predicting the snack consumption when certain information is available.

 We used HUGIN software to illustrate the inference procedure within Bayesian 

networks. On the HUGIN interface, the probabilities are represented in percentage 

and visualized using horizontal bars. 

 2.3.1 Initial probability distribution

The initial probability distribution of the snack consumption network is presented 
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in Figure 2.2. Compared with the network in Figure 2.1, the DAG stays the same; 

whereas, the overall marginal probability values are shown instead of conditional 

probability tables. 

Definition 2.3: Overall marginal probability is the probability of one variable taking a 

specific state while not knowing the values of all other variables in the network.

 

 The overall marginal probabilities of one variable are automatically calculated 

based on the CPT of that variable and the CPT(s) of its parent node(s). For instance, 

from the conditional probability values of the CPTs associated with ‘Intake’, ‘Liking’ 

and ‘Eating with friends’, we obtained the following overall marginal probabilities: 

P(‘Intake’ = ‘Low’) = 0.21, P(‘Intake’ = ‘Medium’) = 0.41, and P(‘Intake’ = ‘High’) = 0.36. 

This set of overall marginal probabilities specifies the overall marginal probability 

distribution the variable ‘Intake’, denoted as P(‘Intake’). Similarly, P(‘Eating with 

friends’) includes (‘Yes’ = 0.50; ‘No’ = 0.50), and P(‘Liking’) includes (‘Very much’ = 

0.55; ‘Not very much’ = 0.45). 

Figure 2.2: Initial probability distribution (HUGIN interface). Overall marginal probabilities of each 
variable are represented by horizontal bars and by percentages. These probability values were calculated 
by the software from the associated CPT of the variable, and the CPT(s) of its parent node(s).

 2.3.2 Reasoning from cause to effect 

We wanted to know how ‘Snack type’ influences ‘Intake’. Once the initial probability 

distribution of the network was given (Figure 2.2), evidences should be set on the 

variable ‘Snack type’ to answer this question. An evidence could be the information 
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observed or potential evidence about one hypothesis to be tested.

 It was hypothesized that snacks are sweet, so P(‘Snack type’ = ‘Sweet’) was 

set equal to 1.0 (Figure 2.3a). The software computes the probability distributions of 

other variables and all probabilities were conditioned by the event (‘Snack type’ = 

‘Sweet’). Overall marginal probability distribution for each variable was replaced by 

its conditional marginal probability distribution. 

Definition 2.4: Conditional marginal probability is the probability of one variable 

taking a specific state while knowing the value of at least one other variable in the 

network.

 When no information about the type of snack was given, the (overall) 

marginal probability P(‘Liking’ = ‘Very much’) = 0.55, but when it was certain that 

the eaten snack is sweet, its (conditional) marginal probability P(‘Liking’ = ‘Very 

much’ | ‘Snack type’ = ‘Sweet’)  increased to 0.7. The marginal probability P(‘Intake’ 

= ‘High’) = 0.36 also increased when being conditioned with (‘Snack type’ = ‘Sweet’):  

P(‘Intake’ = ‘High’ | ‘Snack type’ = ‘Sweet’) = 0.41. This shift in probability distribution 

gave us more “confidence” to say that teenagers would like a snack very much 

and consume more when they are given sweet snacks. In addition, the probability 

distribution of the variable ‘Eating with friends’ did not change under the evidence 

P(‘Snack type’ = ‘Sweet’) = 1.0, which means ‘Snack type’ had no influence on the 

consumption environment. This observation is obvious because these two variables 

were independently manipulated in the experimental design. When it was certain 

that the eaten snack is salty (P(‘Snack type’ = ‘Salty’) = 1.0), the resulting probability 

distributions are presented in Figure 2.3b. 

 Getting back to the question how ‘Snack type’ influences ‘Intake’, it is enough 

to compare the probability distribution of the variable ‘Intake’ when the evidence 

was P(‘Snack type’ = ‘Sweet’) = 1.0 (Figure 2.3a) and when P(‘Snack type’ = ‘Salty’) = 

1.0 (Figure 2.3b). The distribution of ‘Intake’ had more “weight” on ‘High’ state and 

less “weight” on ‘Low’ state when P(‘Snack type’ = ‘Sweet’) = 1.0 than when the other 

evidence was set. We can conclude from this hypothetical network that teenagers are 

more likely to have a higher intake when the snacks are sweet rather than salty. In the 

same manner, the influence of ‘Liking’ and ‘Eating with friends’ on ‘Intake’ could be 

tested by setting new evidences on these variables.
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Figure 2.3: Inference: influence of snack type. When it is certain that ‘Snack type’ = ‘Sweet’ (a), it is very 
likely that teenagers like it ‘Very much’, and that the amount of snack consumed is higher than when 
‘Snack type’ = ‘Salty’ (b). This results from the greater probability of ‘Intake’ taking ‘High’ state and the 
lower probability of ‘Intake’ taking ‘Low’ state when the evidence is ‘Snack type’ = ‘Sweet’. The type of 
snack has no influence on whether or not teenagers are having snacks with their friends. 

 2.3.3 Combined influence of variables

Bayesian network models allow a clear visualization of the combined effect of two 

variables. Figure 2.4 shows the probability distributions of ‘Liking’ and ‘Intake’ when 

evidences were set for ‘Snack type’ and ‘Eating with friends’. 

 Let us consider Figure 2.4a (eating sweet snacks) as the baseline of Figure 

2.4b (eating sweet snacks with friends) and Figure 2.4c (eating sweet snacks without 

friends). Adding the information of the eating environment (with friends or alone) 

either increased (Figure 2.4b) or decreased (Figure 2.4c) the probability of consuming 

a high amount of sweet snacks. The same trend was observed when comparing the 

probability distribution of ‘Intake’ given three input evidences: i) eating salty snacks, 

ii) eating salty snacks with friends, and iii) eating salty snacks alone (illustration not 

shown). Hence, the combined effect of ‘Snack type’ and ‘Eating with friends’ was 

present: ‘Eating with friends’ enhanced the influence of ‘Snack type’ on ‘Intake’.

 In this section, we wanted to predict the snack consumption when it is 

known that teenagers are eating sweet snacks with friends. The answer is indeed 

the probability distribution of the node ‘Intake’ when it was set that P(‘Snack type’ = 

‘Sweet’) = 1.0 and P(‘Eating with friends’ = ‘Yes’) = 1.0 (Figure 2.4b). 

 In the same manner, we can set evidence for more variables. For example, 
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we can predict the intake when teenagers are eating salty snacks with friends, with the 

added knowledge that they all like salty snacks very much. 

Figure 2.4: Inference: combined evidences. When it is known that teenagers are eating sweet snacks (a), 
the probability of consuming a high intake increases if they are eating with friends (b), as compared to 
when they are eating alone (c). 

 2.3.4 Reasoning from effect to cause

The inferences performed in Figure 2.3 and Figure 2.4 are forward reasoning, i.e. from 

cause to effect. Bayesian network models also allow backward reasoning, i.e. from 

effect to cause. 

 Suppose the only information we know was the amount of snacks consumed. 

If this amount was low (Figure 2.5a), the eaten snacks were more likely to be salty 

than sweet (P = 0.55 vs. P = 0.45) and it were very likely (P = 0.77) that teenagers 

ate snacks alone. The opposite trends were found when the intake was high (Figure 

2.5b). 

 In short, predictions can be made with Bayesian networks through the 

inference procedure. The backward reasoning is a particular strength of these models. 



Chapter 2

32

Chapter 2 Theoretical background of Bayesian Networks

32 33

2

It could be useful in product design. For instance, a model relating input attributes 

to output attributes can deduce the most likely states of how input attributes should 

be in order to obtain the desired output attributes.

Figure 2.5: Inference: backward reasoning. If the ‘Intake’ is known to be ‘Low’, the type of snack is 
deduced to be more likely salty than sweet and more likely to be eaten in the absence of friends (a). If 
the ‘Intake’ is known to be ‘High’, it is very likely that teenagers consumed sweet snacks together with 
friends (b). 

2.4 Inference in simple models

This section explains how the probabilities are calculated in a simple network model.  

Suppose we work on a network relating ‘Liking’ to ‘Snack type’ (Figure 2.6). This 

network was extracted from the hypothetical network on snack consumption among 

teenagers (Figure 2.1). We wanted to know how likely a snack is to be ‘Sweet’ (or 

‘Salty’) if it was observed that teenagers like the given snack ‘Very much’. Thus, it was 

needed to compute two conditional probabilities: P(‘Snack type’ = ‘Sweet’ | ‘Liking’ =  

‘Very much’)  and P(‘Snack type’  = ‘Salty’ | ‘Liking’ = ‘Very much’).

 The variable ‘Snack type’ had two states: ‘Sweet’ and ‘Salty’. Its overall 

marginal probability distribution P(‘Snack type’) was quantified to be (0.5, 0.5) by the 

experimental design (Figure 2.6). We did not know yet the overall marginal probability 

distribution of the variable ‘Liking’. However, the relationship between ‘Snack type’ 

and ‘Liking’ was quantified through the conditional probability distribution P 

(‘Liking’ | ‘Snack  type’) = (0.7, 0.3, 0.4, 0.6) (Figure 2.6).
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Figure 2.6: 
A Bayesian network model relating 
snack type to liking. The overall marginal 
probability distribution of ‘Snack type’ 
(‘Sweet’ or ‘Salty’) resulted directly from 
the experimental design. The conditional 
probabilities associated with ‘Liking’ 
(‘Very much’ or ‘Not very much’) were 
the frequency of the liking scores being 
either ‘Very much’ or ‘Not very much’ for 
each type of snack.  

In order to compute the overall marginal probabilities of ‘Liking’, we need to know 

the joint probability distribution of the given Bayesian network.

Definition 2.5: Joint probability of two events   and   is the probability that both events 

occur together, denoted as  P (A,B).

For instance, the joint probability of two events (‘Snack type’ = ‘Sweet’) and (‘Liking’ 

= ‘Very much’) is P(‘Snack type’ = ‘Sweet’, ‘Liking’ = ‘Very much’), which represents 

the probability that one snack is found to be both sweet and liked very much.

Definition 2.6: Joint probability distribution of two discrete variables X and Y , denoted 

as P(X,Y) , is the set of joint probabilities P(X=x, Y=y)  , where  and  are any state of  X 

and Y , respectively. 

For instance, the joint probability distribution of two variables ‘Snack type’ and ‘Liking’ 

P(‘Snack type’, ‘Liking’) consists of four following joint probabilities: 

P(‘Snack type’ = ‘Sweet’, ‘Liking’ = ‘Very much’), 

P(‘Snack type’ = ‘Sweet’, ‘Liking’ = ‘Not very much’),

P(‘Snack type’ = ‘Salty’, ‘Liking’ = ‘Very much’),

P(‘Snack type’ = ‘Salty’, ‘Liking’ = ‘Not very much’). 

  2.4.1 Calculation of joint probabilities and overall marginal probabilities

The fundamental rules of probability allow the calculation of the joint probability 
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from the marginal probability and conditional probability: 

 P(A,B) = P(A|B) * P(B) = P(B|A) * P(A)                                     Equation 2.1

Applying directly Equation 2.1, the joint probability distribution of P(‘Snack type’, 

‘Liking’) could be obtained from P(‘Snack type’) and P(‘Liking’ | ‘Snack type’), for 

example:

P(‘Snack type’ = ‘Sweet’, ‘Liking’ = ‘Very much’) = P(‘Liking’ = ‘Very much’ |  

‘Snack type’ =  ‘Sweet’) * P(‘Snack type’ = ‘Sweet’) = 0.7 * 0.5 = 0.35

Four joint probabilities of the distribution P(‘Snack type’, ‘Liking’) are shown in the 

joint probability table in Figure 2.7a. 

Figure 2.7: Calculation of marginal probability distributions. This example was done on the model in 
Figure 2.6. The marginal probabilities of ‘ Liking’ were obtained by summing up all rows of the joint 
probability table (a) and those of ‘Snack type’ found by summing up all its columns. The same results 
calculated by HUGIN software are shown in (b).

The law of total probability says, for any event A , that if there is a set of n   mutually 

exclusive and exhaustive events Ei(i=1,…,n) [1], then:

                           P ( A ) =       P ( A,Ei )Σ
n

i=1

                      Equation 2.2

This enables us to calculate the marginal probability distribution P(‘Liking’) based on 

the two mutual exclusive and exhaustive events of ‘Snack type’:

P(‘Liking’ = ‘Very much’) = P( ‘Liking’ = ‘Very much’, ‘Snack type’ = ‘Sweet’) + P 

1     n events  E1, E2,…,En are said to be mutually exclusive and exhaustive if no two of them do occur at the 
same time (  

Ei Ej ≠0  with i,j ε n and i ≠ j  ) and their individual probabilities sum up to 1  P (Ei)=1Σ
n

i=1
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(‘Liking’ = ‘Very much’, ‘Snack type’ = ‘Salty’) = 0.35 + 0.20 = 0.55 

P(‘Liking’ = ‘Not very much’) = P(‘Liking’ = ‘Not very much’, ‘Snack type’ = 

‘Sweet’) + P(‘Liking’ = ‘Not very much’, ‘Snack type’ = ‘Salty’) = 0.15 + 0.30 = 0.45 

 

The rule of this calculation is to sum up all rows of the joint probability table (Figure 

2.7a). If summing up all columns, the marginal probability distribution P(‘Snack type’) 

is again found. The same results given by HUGIN software are shown in Figure 2.7b.

 2.4.2 Calculation of conditional probabilities of interest

At this stage, our conditional (marginal) probabilities of interest could be computed 

using the derived form of Equation 2.1:

P(‘Snack type’ = ‘Sweet’ | ‘Liking’ = ‘Very much’) = P(‘Snack type’ = ‘Sweet’, 

‘Liking’ = ‘Very much’) / P(‘Liking’ = ‘Very much’) =  0.35 / 0.55 = 0.6364

P(‘Snack type’ = ‘Salty’ | ‘Liking’ =  ‘Very much’) = P(‘Snack type’ = ‘Salty’, 

‘Liking’ = ‘Very much’) / P(‘Liking’ = ‘Very much’) = 0.20 / 0.55 = 0.3636 

Note that the probability P(‘Snack type’ = ‘Salty’ | ‘Liking’ = ‘Very much’) can also be 

derived from P(‘Snack type’ = ‘Sweet’ | ‘Liking’ = ‘Very much’) because all marginal 

probabilities of one variable sum up to 1.

 These outcomes were also given automatically by HUGIN software when 

setting evidence (‘Liking’ = ‘Very much’) (Figure 2.8a). Similar steps allowed us to 

obtain the probability distribution of ‘Snack type’ when the evidence ‘Liking’ = ‘Not 

very much’ was set (Figure 2.8b). In short, the joint distribution of a Bayesian network 

is the key to do inference. 

Figure 2.8: 
Inference in the model relating 
snack type to liking. The distribution 
of ‘Snack type’ given evidence on 
the variable ‘Liking’ was found by 
calculating the joint probability P 
(‘Snack type’, ‘Liking’).

2.5 Inference in complex models
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 So far, we have considered only the inference procedure in the network 

containing two variables (‘Snack type’ and ‘Liking’) and each variable had only 

two states. The joint probability distribution of this network consisted of four joint 

probability values and only three of those needed to be specified (the last one is 

dependent on the rest). In real world problems, however, we are typically interested 

in looking for relationships among a large number of variables (Heckerman, 1995). 

 Consider, for example, a network connecting n variables (X1,X2,…,Xn).Assuming 

that each variable of this network takes only two states, its joint probability distribution 

P(X1,X2,…,Xn)  is specified by (2n – 1)[1] joint probability values. This exponential 

relationship results in an enormous number when   is large. If the variables have 

more than two states, this number grows even more rapidly. To simplify the calculation 

of the joint probabilities, assumptions on probabilistic relations are used in Bayesian 

networks, such as dependence and conditional independence. 

 2.5.1 Problem example 

We used again the network on snack consumption, except that the variable ‘Purchase 

intention’ was included, denoted as “Extended snack consumption network” (Figure 

2.9). When teenagers tasted and gave liking scores for snack samples, they also 

stated whether or not they have the intention to purchase the product. Values of 

‘Purchase intention’, given as either ‘Yes’ or ‘No’, were assumed to be influenced only 

by the variable ‘Liking’.

 The structure of Bayesian networks can be read by three typical connections 

linking a group of three nodes. These typical connections are serial (X Y Z), (X

Y Z), diverging (X Y Z), and converging (X Y Z). In the extended snack 

consumption network (Figure 2.9), for instance, (‘Snack type’  ‘Liking’  ‘Intake’) and 

(‘Snack type’  ‘Liking’  ‘Purchase intention’) are two serial connections, (‘Purchase 

intention’  ‘Liking’  ‘Intake’) is a diverging connection, and (‘Liking’  ‘Intake’  

‘Eating with friends’) is a converging connection. These kinds of connections will be 

referred to while examining network probabilistic relations in this chapter.

1     The number of joint probabilities of the network is 2n. However, as all these probabilities have to sum 
up to 1, the last one is dependent on the other values, which results in the number (2n – 1). 
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Figure 2.9: 
Extended snack consumption network.

 

To perform inference on this network, the joint probability distribution over the 

network needs to be specified, i.e. P(‘Intake’, ‘Purchase intention’, ‘Liking’, ‘Snack 

type’, ‘Eating with friends’), or abbreviated as P(‘Int’, ‘Pur’, ‘Lik’, ‘Sna’, ‘Eat’). 

 Applying the fundamental rules of probability of Equation 2.1, the joint 

probability distribution of the network  of  variables   can be decomposed into the 

product of conditional and marginal probability distributions:

P(X1,X2,…,Xn) = P(X1 | X2,…,Xn) * P(X2,…,Xn) 

= P(X1 | X2,…,Xn) * P(X2,X3,…,Xn) * P(X3,X4,…,Xn)    

= P(X1 | X2,…,Xn) * P(X2 | X3,…,Xn) * .. * P(Xn-1  | Xn) * P(Xn)                 Equation 2.3

 

This allows us to rewrite the joint probability distribution of the extended snack 

consumption network as follows:

P(‘Int’, ‘Pur’, ‘Lik’, ‘Sna’, ‘Eat’) = P(‘Int’ | ‘Pur’, ‘Lik’, ‘Sna’, ‘Eat’) * P(‘Pur’ | ‘Lik’, ‘Sna’, 

‘Eat’) * P(‘Lik’ | ‘Sna’, ‘Eat’) * P(‘Sna’ | ‘Eat’) * P(‘Eat’)

The joint probability distribution can be thus calculated through the conditional 

probability distributions. These conditional probability distributions can be simplified 

when specific assumptions about probabilistic relations among the five variables are 

defined: assumptions about their dependencies. 
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 2.5.2 Independence and Conditional dependence 

Let us consider the variable ‘Eating with friends’. It is linked directly to ‘Intake’, 

indirectly to ‘Liking’ through a converging connection, indirectly to ‘Snack type’ and 

‘Purchase intention’ through one converging connection and one serial connection 

(Figure 2.9). 

 On the one hand, when no information in the network was given, changing 

the marginal probability distribution of ‘Eating with friends’ did not affect those 

of ‘Snack type’, ‘Liking’ and ‘Purchase intention’ (Figure 2.10a,b). In turn, different 

evidences on these three variables did not lead to any modification in values of 

‘Eating with friends’ (illustrations not shown). It is said that information cannot be 

transmitted through a converging connection.  

Figure 2.10: Independence and conditional dependence. The variable ‘Eating with friends’ is 
independent of ‘Snack type’, ‘Liking’ and ‘Purchase intention’ because modifying values of ‘Eating with 
friends’ (a, b) does not lead to any changes on the marginal probability distributions of the other three 
variables.  However, when prior information on ‘Intake’ is provided (for example, ‘Intake’ = ‘Medium’), 
modifications of ‘Eating with friends’ (c, d) affect marginal probability distributions ‘Snack type’, ‘Liking’ 
and ‘Purchase intention’. Thus, ‘Eating with friends’ becomes conditional dependent to ‘Snack type’, 
‘Liking’ and ‘Purchase intention’ given values of Intake.

 In probability theory, two events (or variables) are said to be independent if 
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the probability (distribution) of one event (or variable) does not change whether or 

not provided with information about the other:

Definition 2.7: Two events A and B (P(A) ≠ 0 and P(B) ≠ 0) are independent if P(A|B) 

= P(A). 

Definition 2.8: Two discrete variables X and Y are independent if P(X=x | Y=y) = 

P(X=x) for any state x, y of X and Y, respectively; or simply expressed by probability 

distribution if P(X|Y) = P(X).

 From the definitions of probabilistic independence, it can be interpreted that 

‘Eating with friends’ is independent of the three variables ‘Snack type’, ‘Liking’ and 

‘Purchase intention’. Consequently, P(‘Sna’ | ‘Eat’) = P(‘Sna’); P(‘Lik’ | ‘Eat’) = P(‘Lik’); 

P(‘Pur’ | ‘Eat’) = P(‘Pur’).

 On the other hand, when knowing the value of the middle node of the 

converging connection (‘Liking’  ‘Intake’  ‘Eating with friends’), changing the 

marginal probability distribution of ‘Eating with friends’ appears to affect those 

of ‘Purchase intention’, ‘Liking’ and ‘Snack type’ (Figure 2.10c,d). In this situation, 

‘Eating with friends’ became conditional dependent to ‘Purchase intention’, ‘Liking’ 

and ‘Snack type’ (given values of ‘Intake’). Thus, it is said that information can be 

transmitted through a converging connection only if information about the middle node is 

provided.

 2.5.3 Dependence and conditional independence 

Consider now the variable ‘Purchase intention’. It is linked directly to ‘Liking’, indirectly 

to ‘Snack type’ through a serial connection, indirectly to ‘Intake’ through a diverging 

connection, and indirectly to ‘Eating with friends’ through one diverging connection 

and one converging connection. 

 When no information in the network was given, changing the marginal 

probability distribution of ‘Purchase intention’ affected those of ‘Snack type’, ‘Liking’, 

‘Intake’ (Figure 2.11a,b).  However, when evidence was set for ‘Liking’, e.g. ‘Liking’ 

= ‘Very much’, added information on ‘Purchase intention’ had no more effect on 

(conditional) marginal probability distributions of ‘Intake’ and ‘Snack type’ (Figure 
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2.11c,d). Similarly, given ‘Liking’ = ‘Very much’, added information on ‘Intake’ (or 

‘Snack type’) did not influence neither the probability distributions of the other two 

nodes (illustrations not shown). It is thus said that information can be transmitted 

through serial and diverging connections. This flow of information, however, can be 

blocked by providing evidence on the middle node of these two connections. 

Figure 2.11: Dependence and conditional independence. Information can be transmitted from 
‘Purchase intention’ to ‘Snack type’ through a serial connection (X Y Z) and to ‘Intake’ through a 
diverging connection (X Y Z) (a,b). However, this flow of information is blocked when evidence is set 
for ‘Liking’, the middle node in serial and diverging connections (c,d).  

 Briefly, although three variables ‘Snack type’, ‘Purchase intention’ and ‘Intake’ 

do not link directly to each other, they are not independent. New information about 

one variable can lead to changes in values of the other two variables through the 

updated information on the middle variable ‘Liking’. However, when the value of 

‘Liking’ is known, new information about one of the three variables ‘Snack type’, 

‘Purchase intention’ and ‘Intake’ does not change the values of the other two. This 

observation is an example of the concept of conditional independence in probability 

theory:
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Definition 2.9: Two events A and B are conditionally independent given event C if P(C) 

≠ 0 and P( A|B,C) = P(A|C).

Definition 2.10: Two discrete variables X and Y are conditionally independent given 

another random variable Z if P(X=x |Y=y, Z=z) = P(X=x |Z=z) for any state x, y, z of X, 

Y and Z, respectively; or simply expressed by probability distribution P(X|Y,Z) = P(X|Z) 

or P(X|Y,Z) = P(Y|Z).

 According to the definition of conditional independence, three variables 

‘Snack type’, ‘Purchase intention’ and ‘Intake’ are conditional independent to each 

other given ‘Liking’. We can thus simplify some conditional probabilities, such as 

P(‘Int’ | ‘Pur’, ‘Lik’) = P(‘Int’ | ‘Lik’), P(‘Int’ | ‘Sna’, ‘Lik’) = P(‘Int’ | ‘Lik’).

 To summarize, two dependent variables X and Y can become conditionally 

independent if there is a third variable Z forming a serial connection (X Z Y or X

Z Y) or a diverging connection (X Z Y). Two independent variables X and Y can 

become conditionally dependent if there is a third variable Z forming a converging 

connection (X Z Y). 

 2.5.4 Joint probability distribution in Bayesian networks

Having defined probabilistic relations in the network, let us come back to the 

calculation of the joint probability distribution as proposed in Section 2.5.1:

P(‘Int’, ‘Pur’, ‘Lik’, ‘Sna’, ‘Eat’) = P(‘Int’ | ‘Pur’, ‘Lik’, ‘Sna’, ‘Eat’) * P(‘Pur’ | ‘Lik’, ‘Sna’, 

‘Eat’) *  P(‘Lik’ | ‘Sna’, ‘Eat’) * P(‘Sna’ | ‘Eat’) * P(‘Eat’)

Given that ‘Intake’, ‘Snack type’ and ‘Purchase intention’ are conditional independent 

given ‘Liking’, and ‘Eating with friends’ is independent to ‘Snack type’, ‘Purchase 

intention’ and ‘Liking’, the following relationships were established:

P(‘Int’ | ‘Pur’, ‘Lik’, ‘Sna’, ‘Eat’) = P(‘Int’ | ‘Lik’, ‘Eat’) 

P(‘Pur’ | ‘Lik’, ‘Sna’, ‘Eat’) = P(‘Pur’ | ‘Lik’, ‘Eat’) = P(‘Pur’ | ‘Lik’)

P(‘Lik’ | ‘Sna’, ‘Eat’) = P(‘Lik’ | ‘Sna’)

P(‘Sna’ | ‘Eat’) = P(‘Sna’)

resulting in:

P(‘Int’, ‘Pur’, ‘Lik’, ‘Sna’, ‘Eat’) = P(‘Int’ | ‘Lik’, ‘Eat’) * P(‘Pur’ | ‘Lik’)* P(‘Lik’ | ‘Sna’) * P(‘Sna’)* P(‘Eat’)
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 The joint probability distribution P(‘Int’, ‘Pur’, ‘Lik’, ‘Sna’, ‘Eat’) can therefore be 

calculated from the product of conditional probability distributions of each variable 

given its parent(s) and marginal probability distributions of variables that have no 

parents. To generalize, the joint probability distribution of the network   having  

variables   in Equation 2.3 can be computed as the product of conditional probability 

distributions of each node given its parent(s):

P(X1,X2,…,Xn) =         P ( Xi | parents(Xi))Π
n

i=1

                                                                                        Equation 2.4

If the node has no parent, its conditional probability distribution is actually its marginal 

probability distribution.

 In short, identifying independence and conditional independence relations 

among the set of variables of interest is essential to compute the joint probability 

distribution, which in turn enables us to perform inference on the network.

 In this section, the inferences in the network were performed to illustrate 

the probabilistic relations among the variables. In practice, however, if the structure 

is defined by domain experts, it also implies probabilistic relations through the 

identification of serial, diverging, and converging connections. If the structure is not 

known yet, these probabilistic relations could be examined based on the data, and 

the structure is then built from these relations. This learning process will be briefly 

discussed in the next section.

2.6 Learning Bayesian Networks

 2.6.1 Definition of Bayesian networks

Most papers on Bayesian networks begin with stating the definition of a Bayesian 

network model, which is difficult to relate to real world problems in food science.  We 

hope that after having introduced basic terminologies and concepts, the definition 

below can now be more easily connected to the content:

Definition 2.11: A Bayesian network is a graphical model for probabilistic relationships 

over a set of variables. It consists of a qualitative aspect, encoding (conditional) 

dependence and independence among variables; and a quantitative aspect, encoding 
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the joint probability distribution over these variables. 

 2.6.2 Learning Bayesian networks

To construct (or to learn) a Bayesian network model, we need to specify its structure 

(a set of nodes linked by a set of arrows or a DAG) and its parameters (all conditional 

probabilities forming the Conditional Probability Table for each node). The input that 

can be used to learn a Bayesian network are the so-called domain knowledge and 

empirical data (new observations). The domain knowledge can be the common 

knowledge of the domain (collected from published scientific papers) or the beliefs 

of domain experts (hypotheses). The empirical data involved may be complete or 

incomplete (containing missing values).

 The network structure can be elicited from domain knowledge, as in the 

cases where domain experts are able to specify relevant variables and interactions 

among them (Corney, 2000). The structure would be then considered as known. 

Theoretically and practically, domain knowledge also allows the specification of the 

network parameters (probability values) as in the case of expert systems (Heckerman 

et al., 1995). These probabilities are to be otherwise estimated from the data. 

 In some cases, the network structure is not known or incomplete. Empirical 

data is therefore the only input for inducing structure and estimating parameters. 

Learning the structure of a Bayesian network from data is a challenge pursued within 

the machine-learning domain. The task is even harder with incomplete data. The 

underlying computational issues, mathematical challenges, as well as the general 

problems related to such a board inductive learning task go beyond the scope of 

this small introduction. The interested reader is pointed to a current comprehensive 

review on that subject in Daly et al. (2011).

 2.6.3 Known structure, complete data 

Let us consider the network on snack consumption among teenagers (Figure 2.1). 

Conclusions from various studies (domain knowledge) were used to define the 

structure of this network: i) flavor of a food product is an important factor determining 

the liking for it, (ii) the more we like a product, the more we eat it, iii) the social 

interaction during a meal also influences the amount of food we eat. 

 The data of snack consumption study was assumed to be complete (a sample 
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of the dataset is shown in Appendix 2.A). The conditional probabilities of the CPT for 

each variable were simply the frequency of its specified state given the state of its 

parents. Having obtained the complete structure and all the parameters, inference 

can be performed.

 2.6.4 Known structure, incomplete data

In reality, data is often not complete, due to some variables not being observed for 

all cases. The frequency cannot be accessed in such cases. To solve this problem, the 

missing data could be assigned to certain expected values based on available data 

using EM- (Expectation-Maximization) algorithm (Lauritzen, 1995). This algorithm 

uses an iterative method to maximize the probability of the observed data given the 

(estimated) parameters of the network.

2.7 Discussions
 
Bayesian networks, as well as other machine learning techniques, are rather 

complementary than contradictory to classical statistical approaches in analyzing 

data (Cunningham, 1995). At the present time, not many applications of Bayesian 

networks in food area have been published. In this section, we discuss the general 

advantages and disadvantages of this approach in view of using food data, as well as 

the potential applications of Bayesian networks in food areas.

 2.7.1 End-user friendly communicator

Bayesian networks provide a good visual communication tool of mathematical 

relations to end-users through graphical representation. They can give fast responses 

to queries (inferences) once the model is completed.

 2.7.2 Handle complex problems 

Assumptions on probabilistic dependence and independence allow scientists to 

model complex problems using Bayesian networks. In a large network, it would be 

enough to examine relations of each variable with its parent variables. Reasoning 

on learned causal relationships can then be done to predict behavior of the whole 

system. 
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 First, we can estimate and visualize how the “cause“ influences its “effect” 

(forward reasoning). This feature serves to explain as well as to explore information 

from our system. Second, backward reasoning reveals how to manipulate the “causes” 

to obtain certain desired values of its “effect”. This feature of Bayesian network is 

valuable in designing food products driven by any desired characteristics or consumer 

demands.

 2.7.3 Use of prior knowledge

Learning the structure of a network is the most difficult task, especially from small 

datasets. Fortunately, Bayesian networks enable us to combine domain knowledge 

with empirical data. In food-related problems, existing knowledge could provide 

information to define (at least partly) dependence relations between variables of 

interest.   

 2.7.4 Handle incomplete datasets

Gathering food data, particularly concerning human responses, is very expensive 

and time-consuming. Thus, typical features of food datasets are small and often 

incomplete (Corney, 2000). The EM-algorithm, which is one among several possible 

solutions, allows the approximation of the missing observations of one variable 

through the state of other variables (Heckerman, 1995). 

Generally, larger data sets yield more reliable estimations of probabilities. However, 

there is no such criterion describing “enough data” to perform the analysis. The 

performance of the networks is best validated when testing with new data. 

 2.7.5 Discretization of continuous variables

While food data often have continuous values, Bayesian network software can 

deal with continuous variables in only a limited manner. Hence, it is necessary to 

convert continuous variables into discrete variables. This is a disadvantage of 

Bayesian networks due to a huge information loss, especially in linear relationships 

(Myllymäki et al., 2002). Furthermore, finding “the appropriate” way to discretize 

data is another issue. The number of intervals and the division points can lead to 

different results (Myllymäki et al., 2002). On the one hand, the bigger the number of 

intervals, the better the real relationships of variables can be captured. On the other 
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hand, the increase of this number requires larger amounts of data to estimate all the 

probabilities. Generally, domain experts perform this step based on specific goals of 

the modeling or on other relevant information.

 It should be noted that, however, research on Bayesian networks is evolving 

very fast and promises more flexible uses of continuous data. 

 2.7.6 Potential applications of Bayesian networks in the food area

In the food area, most published models are related to chemical kinetics and 

microbial growth and they are based on deterministic approaches. The application of 

Bayesian networks in modeling is at the early stages, and mostly concerns microbial 

risk assessment. van Boekel (2004) has discussed Bayesian solutions with respect to 

the inherent variability and uncertainty in food-science problems, from food quality–

safety management to food design aspects. 

 Food quality and safety management often involves a large number of 

variables, and these variables are not always observed or measured due to economic 

or technological constraints. Bayesian networks are suitable to handle these problems, 

and could be applied in building models to control different dimensions of quality, as 

well as to detect potential risk factors along the food chain. 

 Food design is driven by consumer preference, which can be generally 

accessed by sensory attributes of a product. Conventional flavor and texture are 

widely accepted and constitute the so-called “balance” of a food. Recent efforts of 

the food industry, however, are to remove a large portion of saturated and trans 

fats, and to reduce the amount of salt and sugar from food products without losing 

the balance in flavor and texture. These efforts interfere not only physical and 

chemical interactions of different ingredients at the food level, but also multi-modal 

perceptions at the brain level. We can practically handle interactions at the food 

level. Huge uncertainty due to the lack of knowledge at the brain level, however, 

does not allow us to control the perception integration. Therefore, deterministic 

food design limits itself within various isolated contexts. Bayesian networks might be 

valuable in product design. First, this technique is capable to deal with uncertainty. 

Second, it provides a possibility to combine different related studies, which enable us 

to consider a complex problem as a whole.

 Particularly, consumer and marketing research is giving more and more 
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attention to Bayesian networks beside Structural Equation Modeling as a conventional 

technique (Blodgett and Anderson, 2000, Gupta and Kim, 2007, Repères research). 

These two techniques have been shown to complement each other (Gupta and Kim, 

2007). The number of observations in consumer and marketing research is rather large, 

which enables the parameter learning and possibly structure learning in Bayesian 

networks. From this point of view, sensory studies may encounter challenges when 

using Bayesian networks due to the limited sample size. However, the possibility to 

use domain knowledge may be of help in these cases. More modeling work with 

sensory data is expected in future to examine the potential application of Bayesian 

networks in this field.

2.8 Sources for further reading

“Learning Bayesian Networks” written by Neapolitan (2003) is highly recommended 

to readers who want to get an in-depth understanding on Bayesian networks. 

Besides, Heckerman (1995) wrote “A Tutorial on Learning with Bayesian networks” 

which highlighted well main features and discussed technical problems. 

 For readers whose interest lies in applications, a short and gentle 

introduction “Bayesian networks without Tears” given by Charniak (1991), or a more 

detail introduction written by Murphy (1998) are advisable. Technical approaches 

are described in detail in “Bayesian Networks and Influence Diagrams: A Guide to 

Construction and Analysis” (Kjaerulff and Madsen, 2008). Particularly, the textbook 

“Bayesian networks: A Practical Guide to Applications” (Pourret, Naïm and Marcot, 

2008) brings in many applications in various fields. 

 There are a considerable number of software packages available in open 

source or commercially to build Bayesian networks. They were listed and given a 

detailed description in (Korb and Nicholson, 2004). Here are some examples:

 HUGIN (http://www.hugin.com/, Hugin Expert A/S) is a commercial product 

that supports an easy use by click-and-point procedures. HUGIN can learn structure 

and parameters from discrete data, and also support inference on Bayesian networks 

having continuous variables. HUGIN version 7.2, however, cannot learn parameters 

from continuous data. Besides, decision and utility nodes can be added to Bayesian 

networks, resulting in the so-called “Influence diagrams”, to support the decision-
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making process. 

 Netica (http://www.norsys.com, Norsys Software Corp.) is also a widely used 

commercial software that supports Bayesian networks and Influence diagrams. Netica 

can learn only parameters and work only with discrete nodes.

 BayesiaLab (http://www.bayesia.com/, Bayesia Ltd) is commercially available 

to learn Bayesian networks, both parameters and structure. However, discretization of 

continuous variables is also required. This tool does not support utility and decision 

nodes.

 Bayes Net Toolbox (http://people.cs.ubc.ca/~murphyk/Software/BNT/bnt.

html, Murphy K) is a widely used and powerful mathematical software package, 

and runs only on Matlab. This free software supports both parameter and structure 

learning.

 gR (http://www.ci.tuwien.ac.at/gR/), a language and environment for statistical 

computing and graphics, provide free packages to learn Bayesian networks. Package 

deal (Bøttcher and Dethlefsen, 2003) can deal with both discrete and continuous 

variables in learning structure and parameters. This package also allows transferring 

information to HUGIN interface.
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2.10 Appendix 2.A

A consumer test (n = 200) was hypothetically performed. A sample (20 cases) of the 

hypothetical data is shown in Table 2.1. The test was designed by 2 x 2 treatment 

combinations, which comprised of two snack types: sweet and salty, and two eating 

environments: alone and with friends In each treatment condition, teenagers scored 

their liking for the snack, and their ad libitum intake was recorded. Data in Table 2.1 

were generated by HUGIN software and cases (1 case = results of one subject per 

treatment) are listed randomly, i.e. not necessarily in order of subject, test product or 

eating environment.
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Table 2.1: Sample of snack consumption data 

 
Case Snack type Eating with 

friends Liking Liking[1] 

(discretized)
Intake 

(g)
Intake[2] 

(discretized)

1 Salty No 90 Very much 65.5 High

2 Sweet No 62 Not very much 47.0 Medium

3 Sweet No 50 Not very much 70.3 High

4 Sweet No 56 Not very much 39.5 Low

5 Salty No 75 Very much 69.6 High

6 Sweet Yes 82 Very much 72.0 High

7 Salty Yes 88 Very much 80.0 High

8 Sweet Yes 72 Very much 65.4 High

9 Salty No 81 Very much 30.2 Low

10 Sweet Yes 49 Not very much 74.0 High

11 Sweet Yes 69 Not very much 67.6 High

12 Sweet No 73 Very much 56.3 Medium

13 Sweet No 91 Very much 54.0 Medium

14 Sweet No 78 Very much 18.0 Low

15 Salty No 55 Not very much 40.8 Low

16 Salty Yes 54 Not very much 86.1 High

17 Salty No 83 Very much 69.0 High

18 Sweet No 92 Very much 73.5 High

19 Sweet No 71 Very much 90.3 High

20 Salty No 80 Very much 82.1 High

.. .. .. .. .. .. ..

[1] Liking scores were obtained by subjective ratings on a continuous line hedonic scale ranging from 
0 (Not at all) to 100 (Very much). These continuous data were converted into two categories: ‘Not very 
much’ (value < 70), and ‘Very much’ (value >= 70). 
[2] Intake data are also continuous and were discretized into three categories: ‘Low’ (value < 45), ‘Medium’ 
( 45 <= value < 65), and ‘High’ (value >= 65).
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Abstract

Bayesian networks were used to combine raw datasets from two independently 

performed but related studies. Both studies investigated how different sensory 

aspects influence ad libitum intake of a tomato soup. The Aroma study varied aroma 

concentration and aroma duration as the explanatory variables, and the Taste study 

varied salt intensity. To enable data integration, the Aroma study needed information 

on salt aspects for all of its observations. Likewise, the Taste study needed information 

on aroma aspects. This information was used to link the two single networks, each 

representing one study, into a combined network. It was therefore referred to as 

Structural Linking Information. The approach taken was seen as an example to 

communicate a potential benefit as well as the challenges when combining raw 

datasets from independent studies. The combined network was able to generate 

additional insights into complex relationships encountered with research on satiation. 

The main challenge resulted from the missing of Structural Linking Information. In 

this chapter, we suggested different strategies to obtaining the structural linking 

information, and also proposed the approach of Global Experimental Design to avoid 

this problem. The nature of the chapter is theoretical rather than analytical due to the 

limitations caused by the small size of datasets.
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 3.1 Introduction

Food and nutrition researchers conduct controlled experiments to investigate causal 

relationships between explanatory variables and outcome variables. This type of 

experiments usually yields useful information to better understand mechanisms of 

the system behavior. However, as many variables are artificially kept constant, these 

experiments do not reflect the complexity of real-life situations. It is therefore of 

interest to understand the combined effects of independently manipulated variables 

on common outcome variables. Combining information from related studies can 

make this possible, and thereby provides more insights into a specific domain. 

Therefore, a practical tool supporting this combination is needed. 

 Meta-analysis is a popular statistical procedure that assists the combination 

of results obtained from related studies concerning a single theme (Charlton, 1996; 

Egger et al., 1997). This procedure has been mainly used in medial field and typically 

based on the summary characteristics that are available in published papers such 

as effect size, sample size, mean, and variance (Sutton & Higgin, 2008). Additional 

assumptions and statistical modeling approaches need to be carefully chosen to 

reduce bias and uncertainties. The goal of most meta-analyses is comparatively 

simple: estimating the effect of one explanatory variable on one outcome variable. 

All other variables (e.g. age, gender) are seen as noise factors that have to be taken 

into account appropriately. In food and nutrition research, however, the combined 

effects and the interactions among many influencing factors are of high interest. One 

needs to look beyond the published summary statistics for individual variables. For 

example, the correlational structure among variables should be taken into account. 

This information can be derived from raw datasets. Analyses of combined datasets 

can be superior to meta-analysis if done with the same amount of care because 

fewer assumptions are required. Despite its potential, examples and appropriate 

methodology for this approach have hardly been published. 

 When addressing complex relationships, domain or expert knowledge plays 

an important role in specifying causal relationships in model-building. Although this 

approach is used in the medical field, such as in health economy (Le and Doctor, 

2011) and economics, by structure equation modeling (Hoyle, 1995), it is relatively 

unexplored by the food science community.



Chapter 3

58

3

Chapter 3 Combining raw data with Bayesian Networks

58 59

 Bayesian networks are probabilistic graphical models consisting of two 

components: graphical (network structure) and probabilistic (network parameters) 

(Heckerman, 1995). The structure is a graph formed by a set of variables linked to 

each other by a set of arrows. These arrows imply possible cause-effect relationships. 

The network parameters are the set of conditional probability values that quantify 

these relationships. These two network components can be inferred and estimated 

based on the combination of empirical data and domain knowledge (Heckerman et 

al., 1995). Owing to its probabilistic and graphical nature, this modeling technique 

can handle complexity and uncertainty. When related studies yield different Bayesian 

network models that partly overlap, these networks can, under certain restrictions, 

be combined to build a larger single network. An example of this approach in biology 

has been shown by combining heterogeneous biological data sources to predict 

gene function (Troyanskaya et al., 2003).

 Bayesian networks have been rarely applied in food-related problems despite 

the popularity of this technique in various fields. Published applications mostly deal 

with microbial risk assessment (Barker et al., 2005, Barker et al., 2002, Carlin et al., 

2000, Smid et al., 2011). Corney (2000) has also discussed Bayesian networks as a 

valuable tool for food design by linking sensory attributes with consumer preference. 

More research is needed to further explore the potential of Bayesian networks in 

food design applications.

 This chapter explore the potential use of Bayesian networks to combine raw 

data from related studies and the formal incorporation of domain knowledge in 

model-building. The exploration was based on two studies that were independently 

performed but closely related. The first study investigated the effect of retro-nasal 

aroma release profile on the ad libitum intake of a tomato soup (Ramaekers et al., 

submitted for publication). The second study investigated the effect of perceived 

intensity of saltiness on the ad libitum intake of two equally palatable tomato 

soups (Bolhuis et al., 2010). The combination of the datasets of these two studies 

was expected to result in a single model relating ad libitum intake of tomato soups 

to the combined effect of salt intensity and aroma release profile. The objective of 

this chapter was to use this practical example to communicate the approach and 

its potential through a general theoretical discussion. It has to remain theoretical 

because the studies were small in set up, and the available data was not sufficient to 
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validate the predictive accuracy of the model. 

 This chapter deals with three issues: i) the requirements for combining raw 

data, ii) the strategies to obtaining the missing data needed for the combination, and 

iii) the recommendations for designing future related experiments such that their 

data can be combined. 

3.2 Description of the case studies

Sensory perception has been suggested to contribute to satiation and thus to meal 

termination (Hetherington, 1996). The meal termination process can be assessed 

by ad libitum intake, i.e. the amount of food eaten by individual subjects till they 

are pleasantly satiated. Two experimental studies investigated how aroma and taste 

aspects influence ad libitum intake. It was hypothesized that increased sensory 

stimulation leads to lower food intake, which is referred to as sensory satiation. In 

this chapter, the ad libitum intake is expressed in weight (gram), and variable names 

and their states are put in single quotation marks. 

 3.2.1 Aroma study

The Aroma study (Ramaekers et al., submitted for publication) worked with four aroma 

release profiles combined with the same tomato soup base (Figure 3.1a illustrates 

one profile). These profiles resulted from a 2 x 2 crossover design with two variables: 

‘Aroma concentration’ and ‘Aroma duration’. The two states of ‘Aroma concentration’ 

were ‘High’ and ‘Low’, and those of ‘Aroma duration’ were ‘Long’ and ‘Short’. The 

aroma profiles were determined based on some release profiles recorded in-vivo 

during natural consumption of a real tomato soup.  They were then regenerated 

using an olfactometer in the actual experiment. The reference aroma profiles were 

referred to as ‘Normal concentration’ and ‘Normal duration’. As compared to the 

reference profiles, the state ‘High’ of ‘Aroma concentration’ was higher, and the state 

‘Low’ was lower, than the ‘Normal concentration’. The state ‘Short’ of ‘Aroma duration’ 

was equal to the ‘Normal duration’.

 In the defined test conditions, different tomato aroma profiles were 

introduced into the nose of the subjects as they consumed the same soup base. 

The ad libitum intake of the soup was recorded for each aroma profile (Figure 3.1b). 
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The subjects were also asked to rate the ‘Pleasantness’ and ‘Flavor intensity’ after 

consuming the first 30 g of the soup. Data from 38 subjects were used for statistical 

analysis in the original paper.

Figure 3.1: 
Illustrations of the 
Aroma study. ‘Aroma 
concentration’ and 
‘Aroma duration’ were 
two derived variables 
representing an aroma 
release profile (a). The 
network (b) represents 
the investigated effects.

 3.2.2 Taste study

The Taste study (Bolhuis et al., 2010) worked with two tomato soups that differed 

in salt concentration, namely ‘Low’ and ‘High’, but had similar rated pleasantness 

(Figure 3.2a). These two soups were first selected, in the pilot experiment, for each 

subject based on their individual pleasantness ratings for 5 soups varying in salt 

concentration. In the main experiment, the ad libitum intake was measured as the 

subjects consumed in doublicate their two soups (Figure 3.2b). Before each replicate, 

either ‘Salt intensity’ or ‘Flavor intensity’ and ‘Pleasantness’ were rated by tasting a 

soup sample. Data from 47 subjects were used for statistical analysis in the original 

paper.  
Figure 3.2: 

Illustrations of the 
Taste study. Two salt 
concentrations were 
chosen based on a pilot 
experiment, being ‘low’ 
and ‘high’ with similar 
pleasantness ratings (a). 
Network (b) represents 
the investigated 
relationship in the main 
experiment.
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 3.2.3 Compatibility for data combination 

The tomato soups and experimental settings of the two studies were not identical. 

To check the validity of pooling the intake values in the combined model predicting 

‘Intake’, the distributions of the ‘Intake’ values obtained from both studies were 

inspected (Figure 3.3). The two probability density distributions show a similar right-

skewed shape. The median value of ‘Intake’ was 335 g for the Aroma study, and 353 

g for the Taste study. Their difference of around 5% justifies combining these two ad 

libitum intake studies and generalizing the model for these types of soups.

Figure 3.3: 
Probability density 
distribution of ‘Intake’ 
from the Aroma study 
(a) and Taste study (b).

 In addition to ‘Intake’, the Aroma and Taste studies had two other common 

variables: ‘Pleasantness’ and ‘Flavor intensity’. They were both rated on the same 

scale (Visual Analogue Scale 100 mm) with similar questions. These ratings were 

given after the subjects consumed 30 g of soups in the Aroma study or tasted 

about 15 g of soups in the Taste study. Thus, in both studies, ‘Pleasantness’ could 

be referred to as the initial pleasantness of the soup, and ‘Flavor intensity’ as the 

perceived overall flavor intensity. In other words, ‘Pleasantness’ obtained from the 

two studies was meant for the same concept and measured in a comparable manner. 

This compatibility allows us to treat them as one variable in the combined database. 

The same argument was also applied for ‘Flavor intensity’.                                                

3.3 Combining data 

The Aroma and Taste studies were not initially designed for data integration using 

Bayesian networks. Instead, the technique of ANOVA was foreseen to separately 
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analyze the treatment effects in each study. Therefore, this section looks first at the 

data situation and identifies the necessary requirement for combining data (3.3.1). We 

propose then some possible practices to meet this requirement (3.3.2), and introduce 

the combined database (3.3.3) for later use in the Bayesian modeling section.  

  3.3.1 Necessary requirement for combining data

Table 3.1 gives an overview of the raw combined database when pooling available 

data from the Aroma and Taste studies together. This database contains many missing 

values. These missing data were systematic because their pattern was not random, 

i.e. not being spread across the table but concentrated in certain columns for certain 

rows. This resulted from the experimental designs.

 Theoretically, the Expectation-Maximization (EM) algorithm (Lauritzen, 1995), 

adapted in many Bayesian network software, can estimate missing values based on 

the available data. In the current situation, however, such estimation relies only on 

the information about dependencies in one study to fill in the missing values in 

another study. Because this process does not model the systematic differences, it 

would result in biased estimates. Therefore, one should use background knowledge 

of the original studies or other measures to fill in as much missing information as 

possible. In Table 3.1, part of the missing information is essential to integrate the 

two datasets and is referred to as “Structural Linking Information”. Obtaining the 

Structural Linking Information was seen as the necessary requirement for combining 

raw data from related studies. 

Table 3.1 Illustration of the raw combined database. The first four rows represent the observations from 
the Aroma study (38 subjects x 4 sessions);  the last four rows represent the observations from the Taste 
study (47 subjects x 4 sessions). 

Aroma 
concentration

Aroma      
duration

Salt      
concentration

Salt       
intensity

Flavor      
intensity Pleasant-ness Intake

High Long NA NA Avail Avail Avail

Low Long NA NA Avail Avail Avail

High Short NA NA Avail Avail Avail

Low Short NA NA Avail Avail Avail

NA NA High Avail NA NA Avail

NA NA High NA Avail Avail Avail

NA NA Low Avail NA NA Avail

NA NA Low NA Avail Avail Avail
‘NA’: data not being available; ‘Avail’: data being available.
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 3.3.2 Obtaining systematic missing information

In the Aroma study, the salt concentration of the soup base was not reported. However, 

the information of the soup’s ingredients could be tracked, and salt concentration 

was calculated to be 208 mg Na/100 g soup (same unit as in the Taste study). This 

information was then filled in for ‘Salt concentration’ of all the Aroma’s observations. 

Although ‘Salt concentration’ was unchanged, ‘Salt intensity’ ratings could vary 

across subjects and across measurements. To obtain information on ‘Salt intensity’, 

we could recruit, in principle, the same subjects to rate the perceived saltiness of the 

soup for each test condition. For practical reasons, however, this action could not be 

taken. Therefore, ‘Salt intensity’ values for the Aroma’s observations were left missing 

in the final combined database. 

 In the Taste study, there was no indication about ‘Aroma concentration’ and 

‘Aroma duration’. It is known, however, that the aroma aspects of the soups were not 

altered, and the subjects consumed the soups in a natural setting. Additionally, the 

reference aroma profiles of the Aroma study were measured during the consumption 

of a real tomato soup, which is comparable to the situation in the Taste study. The 

aroma profiles in the Taste study can be thus approximated by the reference aroma 

profiles. In the Aroma study, the reference aroma profiles were identified with ‘Normal’ 

for ‘Aroma concentration’ and ‘Short’ for ‘Aroma duration’. As a result, we assigned 

‘Normal’ for ‘Aroma concentration’ of the Taste’s observations, and ‘Short’ for ‘Aroma 

duration’. 

 Furthermore, in the Taste study, the ad libitum intake was measured in 

duplicate for each salt concentration. There were missing values for ‘Flavor intensity’ 

and ‘Pleasantness’ in one replicate and missing values for ‘Salt intensity’ in the other 

replicate. The researchers intended to do so to obtain ‘Salt intensity’ ratings that 

do not interfere with the other two ratings. As these missing values were inevitable, 

they were left missing in the combined database. Nevertheless, by conducting two 

replicates, the information on all these three variables was available for both states 

‘Low’ and ‘High’ of ‘Salt concentration’. This would lead to a more accurate estimation 

by the EM learning process for these missing values. 

 3.3.2 Combined database 

Table 3.2 summarizes the combined database to be used to learn the combined 
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network model in the following section. Some missing values in the raw combined 

database (Table 3.1) were either calculated or assigned a state based on available 

information from the experimental studies. The current combined database possessed 

far less missing data (Table 3.2). The EM algorithm will estimate the missing values 

based on the available information in the modeling process. 

 In the Aroma study, the mean intake of the first testing session was found to 

be significantly lower than the three following sessions (Ramaekers et al., submitted 

for publication). To avoid this bias possibly due to the experimental set-up, data from 

the first session were excluded. The final combined database (Table 3.2, N = 306) 

consisted of 118 observations from the Aroma study and 188 observations from the 

Taste study. Although the two studies had a within-subject design, this combined 

database did not include information about subjects. A new variable ‘d_Intake’ 

(difference in ‘Intake’) was then introduced into the combined database to assess 

the within-subject variation. This variable was calculated from the ‘Intake’ values: 

‘d_Intake’ = ‘Intake’ – ‘individual mean intake’. 

Table 3.2 Illustration of the combined database (N = 306). The new variable ‘d_Intake’ was calculated from 
‘Intake’ to capture within-subject variation (see text).

Aroma 
concentration

Aroma   
duration

Salt 
concentration

Salt  
 intensity

Flavor 
intensity Pleasant-ness Intake d_Intake

High Long calculated NA Avail Avail Avail Avail

Low Long calculated NA Avail Avail Avail Avail

High Short calculated NA Avail Avail Avail Avail

Low Short calculated NA Avail Avail Avail Avail

  Normal Short Avail Avail NA NA Avail Avail

  Normal Short Avail NA Avail Avail Avail Avail

  Normal Short Avail Avail NA NA Avail Avail

  Normal Short Avail NA Avail Avail Avail Avail
‘NA’: data not being available; ‘Avail’: data being available.

 

3.4 Bayesian network modeling
                 

The Bayesian network modeling involves learning, i.e. inferring or estimating, two 

components of a model network: structure and parameters. Having obtained these 

components, model users can perform inferences on the network to examine the 

relationships among variables and to make predictions. This section presents first 

how domain knowledge can be used to define the causal relationships (structure) 
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for the single and combined networks (3.4.1), then explains the automatic parameter 

learning based on data (3.4.2). Due to the lack of data, not all parameters could 

be estimated reliably. Nevertheless, the inference in these networks is presented 

(3.4.3) to illustrate the Bayesian network modeling in general, and to explore and 

discuss the concept of combining raw data. HUGIN Bayesian networks software 

(HUGIN Researcher 7.2, tutorial available at http://www.hugin.com/) was used for 

both learning parameters and inference.

 

 3.4.1 Defining network structures 

Two single structures, Aroma network and Taste network (Figure 3.4), were formed by 

including ‘Pleasantness’, ‘Flavor intensity’ and ‘Salt intensity’ into the initial network 

of each study (Figure 3.1b, Figure 3.2b). 

Figure 3.4: Structure of two single networks.

 The arrows linking these variables to the existing ones were defined based 

on domain knowledge. Aroma and taste aspects contribute to the overall flavor 

perception of a food product (Auvray & Spence, 2008). Hence, four arrows were set 

from ‘Aroma duration’, ‘Aroma concentration’, ‘Salt concentration’ and ‘Salt intensity’ 

to ‘Flavor intensity’. The flavor intensity in turn determines largely consumer liking 

for the food (Auvray & Spence, 2008), which was expressed by the arrow from ‘Flavor 

intensity’ to ‘Pleasantness’. Being part of the overall flavor perception, ‘Salt intensity’ 

was also taken into account as a direct contributor to ‘Pleasantness’.  The amount 

of food eaten is influenced by how much a subject finds it pleasant (Zandstra et al., 

1999; Zandstra et al., 2000; Vickers et al., 2001), resulting in ‘Pleasantness’  ‘Intake’. 
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Moreover, the investigated relationship ‘Salt concentration’  ‘Intake’ (Figure 3.2b) 

was absent in the Taste network as we assumed in this work that the influence of ‘Salt 

concentration’ on ‘Intake’ goes via ‘Salt intensity’.

 The structure of the combined network (Figure 3.5) was simply formed by 

piling up the two single structures. It inherited all variables and arrows of the Aroma 

and Taste networks. One should be aware that more relationships in these networks 

could be learned if the data support this. 

Figure 3.5: Structure of the combined network.

 3.4.2 Parameter learning 

HUGIN software version 7.2 supports both parameter learning and structure learning 

from data only with discrete variables (variables with finite number of states). The 

continuous variables were thus discretized, including ‘Flavor intensity’, ‘Intake’, ‘d_

Intake’ and ‘Pleasantness’. The discretization boundaries for the first three variables 

were chosen such that all the states had an almost equal number of observations. 

The boundaries applied for ‘Pleasantness’ were technically meaningful. For instance, 

ratings for ‘Pleasantness’ below 50 are in practice considered as not good for a 

commercial product; ratings between 50 and 70 are acceptable; and ratings higher 

than 70 are good. Though discrete, ‘Salt concentration’ was re-set with fewer states. 

Appendix 3.A provides information on the final states of all variables.

 Provided with a network structure and a discrete database, the software built 

a Conditional Probability Table (CPT) for each variable. This table contains conditional 

probabilities of the variable taking a specific state given the states of its parents. When 

having no parents, these probabilities are simply the relative counts of the number of 
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observations differentiated by that state. This rule applies to ‘Aroma concentration’, 

‘Aroma duration’ and ‘Salt concentration’ in the combined network. When having one 

or more parents, these relative counts are estimated for each combination of states of 

the parents. This is illustrated in Table 3.3 that shows the CPT of ‘Pleasantness’ under 

nine state combinations of its two parents ‘Salt intensity’ and ‘Flavor intensity’. 

Table 3.3: Conditional Probability Table (CPT) of ‘Pleasantness’ in the combined network. The CPT shows 
the probabilities of ‘Pleasantness’ (in italic) taking one of its states given 9 state combinations of two 
parents ‘Salt intensity’ and ‘Flavor intensity’. ‘Experience’ indicates the number of observations for each 
combination of states of the parents.

Salt intensity 0-33 33-66 66-100

Flavor intensity 0-50 50-65 65-100 0-50 50-65 65-100 0-50 50-65 65-100

Pleasantness = 0-50 0.79 0.09 0.12 0.25 0[1] 0.19 0[1] 0.41 0.69

Pleasantness = 50-70 0.01 0.22 0.22 0.75 0.71 0[1] 0.55 0.45 0.27

Pleasantness = 70-100 0.20 0.69 0.66 0[1] 0.29 0.81 0.45 0.14 0.04

Experience[2] 44 43 25 40 12 37 19 34 52

[1] values below 0.005 were replaced by 0 for simplification
[2] all numbers were rounded. The original numbers were not integer due to the automatic estimation of 
missing values on ‘Salt intensity’ for the Aroma’s observations

 The records on ‘Experience’ for each combination indicated the total number 

of the available observations that matched the information regarding parents’ states. 

The probabilities of ‘Pleasantness’ taking each of its three states were estimated 

based on these observations. For example, the conditional probability distribution 

of ‘Pleasantness’ given ‘Salt intensity = 0-33’ and ‘Flavor intensity = 0-50’ was (0.79, 

0.01, 0.20), and its ‘Experience’ = 44 (Table 3.3). This information means there were 

44 observations in the combined database satisfying both ‘Salt intensity = 0-33’ and 

‘Flavor intensity = 0-50’. Among these, 79% observations had ‘Pleasantness = 0-50’, 

1% had ‘Pleasantness = 50-70’, and 20% had ‘Pleasantness = 70-100’. 

 The parameters of a variable are defined as the set of conditional probability 

values in its CPT. Hence, the number of parameters of a variable or the size of its 

CPT is the product of the number of its states, number of parents, and number of 

parent’s states. The amount of data required for parameter learning in a Bayesian 

network depends on the number of parameters of the largest CPT. As a rule of thumb, 

the minimum number of observations required is five to ten fold the number of 
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parameters of the largest CPT (Spirtes et al., 2000). In the combined network, ‘Flavor 

intensity’, ‘Intake’, and ‘d_Intake’ had the largest CPT size containing 162 parameters. 

The combined database (N = 306) is smaller than two fold of this number. This lack of 

data was reflected in many zero records on ‘Experience’ for the CPT of these variables 

(data not shown). This reveals that a number of conditional probability values were 

estimated based on no data at all. Consequently, these parameters were not reliable 

with the current available data. It should thus be kept in mind that the predictions 

made in the presented networks should be interpreted as hypotheses-generating 

rather than hypotheses-testing.

 3.4.3 Inference 

In Bayesian networks, the inference procedure is an automatic calculation of 

probabilities of interest given certain information on one or more variables of the 

model network. This procedure is illustrated with the Aroma network and then with 

the combined network. The Aroma network resulted from the Aroma data (N=118) 

and Aroma network structure (Figure 3.4a), the combined network resulted from 

the combined database (Table 3.2) and combined network structure (Figure 3.5). For 

convenience, three states of the discretized variables are later on referred to as ‘Low’, 

‘Medium’ and ‘High’, respectively.
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Aroma network
Prior to examining the effect of the aroma release profile, let us see how the 

pleasantness of the tested soup influences intake (Figure 3.6). Overall, a larger effect 

of ‘Pleasantness’ was seen on ‘Intake’ than on ‘d_Intake’. When ‘Pleasantness’ was 

shifted from ‘Low’ to ‘Medium’ and then ‘High’ (c), the probability of ‘Intake’ being 

‘High’ increased markedly, from about 5% to 36%, and then to 48%. For ‘d_Intake’, 

an increase was visible when ‘Pleasantness’ shifted from ‘Low’ to ‘Medium’, yet little 

change was observed with ‘Medium’-to-‘High’ shift. Thus, it can be said that how 

much an individual consumes of a soup differs considerably if he disliked (0-50) or 

liked (50-70) the soup, but not much if he liked or liked very much (70-100) the soup. 

These inferences showed that the influence of pleasantness on food intake is more 

important when assessing a population effect than an individual effect.

Figure 3.6: Influence of ‘Pleasantness’ on ‘Intake’ and ‘d_Intake’. When ‘Pleasantness’ was known 
(assumed) to be ‘0-50’, the probability of this event was set equal to 100% (a). The probability distributions 
of all other variables in the network were automatically calculated given this information (only shown for 
‘Intake’ and ‘d_Intake’, variables being arranged in column). These probability distributions were different 
when ‘Pleasantness’ = ‘50-70’ (b) and when ‘Pleasantness’ = ‘70-100’ (c). Changes in these distributions 
show how the pleasantness of the tested soup influences intake.

       

 

 With classical statistical analysis, the aroma profile ‘high+long’ (high 

concentration and long duration) was found to produce a significant lower ad libitum 
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intake than the three other profiles (Ramaekers et al., submitted for publication). 

This finding could also be visualized via inferences on the Aroma network (Figure 

3.7). Indeed, the probability of having a low ‘d_Intake’ was considerably higher for 

‘high+low’ profile (about 51%) than for the other three aroma profiles (ranging from 

25% to 31%). The effect of aroma profile was much less pronounced for ‘Intake’. This 

result was expected because the large between-subject variation is only reflected in 

‘Intake’, not in ‘d_Intake’, which resulted in more noise disguising the effect.

Figure 3.7: Influence of aroma release profile on ‘Intake’ and ‘d_Intake’. Each aroma profile is identified by 
combining the information on ‘Aroma concentration’ and ‘Aroma duration’. The probability distributions 
of ‘Intake’ and ‘d_Intake’ under different aroma profiles (a, b, c, d) are subject to comparison.

Combined network
Figure 3.8 shows one example of the combined effects of aroma and taste aspects 

on soup intake. In this figure, the effect of ‘ Salt concentration’ on ‘Intake’ and ‘d_

Intake’ at the state ‘Long’ of ‘Aroma duration’ was examined. The ‘Pleasantness’ is 

fixed (‘50-70’) to partly rule out the indirect influence of ‘Salt concentration’ through 

the ‘Pleasantness’ pathway. Changes in probability distributions indicate that both 

‘Intake’ and ‘d_Intake’ seemed to decrease when ‘Salt concentration’ increased. This 

pattern was, however, not seen when ‘Aroma duration’ = ‘Short’ (inferences not 

shown). This interaction effect between ‘Aroma duration’ and ‘Salt concentration’ can 

be considered as hypotheses in future studies. 
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Figure 3.8: Influence of ‘Salt concentration’ on ‘Intake’ and ‘d_Intake’ at the state ‘Long’ of ‘Aroma 
duration’. The effect of ‘Pleasantness’ is partly ruled out by fixing it at any state (shown at ‘50-70’). The 
probability distributions of ‘Intake’ and ‘d_Intake’ under different salt concentrations (a, b, c) are subject 
to comparison.

3.5 Discussion

This chapter explored the use of Bayesian networks to combine raw data from related 

studies and to ultimately build a combined model network. First, the discussion 

focuses on how the Bayesian network modeling technique can cope with data from 

controlled studies in food research (3.5.1). Second, it takes on the possibility to make 

use of related databases that have been available (3.5.2). Finally, recommendations 

are given on how to design future studies such that their results can be combined 

later on with the Bayesian network framework (3.5.3). 

 3.5.1 Modeling with Bayesian networks 

Bayesian networks formalize the use of domain (expert) knowledge in building the 

network structure as explained in section 3.4.1. The network structure can also be 
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learned automatically from data. This learning normally requires a vast amount of 

data, which are unfortunately often scarce in controlled experiments. Yet, controlled 

experiments allow us to test our hypotheses on cause-effect relationships. Published 

literature is therefore a reliable source to be referred to as domain knowledge. The 

specification of the structure can also involve beliefs of domain experts. Since this 

process is subjective, different groups of experts may not yield the same network 

structure for the same set of variables. This subjectivity is partly the nature of modeling. 

Bayesian networks make those assumptions transparent, open for discussion. 

Furthermore, validation with new data is always the best measure to judge which 

model is more useful. 

 Concerning parameter learning from data, section 3.4.2 has shown that a 

larger amount of data is required than classical statistical analysis. Bayesian networks 

involve inferences or predictions that always need much more data than a hypothesis 

testing procedure, such as ANOVA. To reduce the required amount of data, modelers 

should limit the number of parameters to be estimated. This can be controlled by 

limiting the number of parents of the variable with largest CPT. Too-many-parents 

problem can be solved by introducing a hidden variable that captures the influence 

of two or more parents (Kjaerulff & Madsen, 2008). The number of parameters can 

considerably decrease as well if continuous data are not discretized. Some Bayesian 

network software can estimate parameters only for discretized data, e.g. Netica (http://

www.norsys.com/, Norsys Software Corp.) and BayesiaLab  (http://www.bayesia.

com/, Bayesia Ltd.). In this case, a fewer number of states per variable is technically 

favorable. The latest version of HUGIN Bayesian network software (version 7.5) do 

support parameter learning for continuous variables, but not yet structure learning. 

However, there are some other available Bayesian networks software that are able to 

deal with both tasks for continuous variables (Murphy, 2005).

 Inferences in Bayesian networks have been illustrated in section 3.4.3. This 

procedure allows the influence of any variable on the rest of the network to be easily 

examined and communicated. It is of particular value when dealing with complex 

models, which generally cause great difficulty to conventional statistical models. 

Moreover, a combined network could generate new hypotheses for the research field. 

For example, new knowledge can come from the prediction of interaction effects of 

separately controlled variables. The combined network also provides a global view 
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of the model, which actively supports the reasoning process when examining the 

problem.   

 3.5.2 Combining related databases

If a number of related databases are already available, three steps can be followed 

to build a combined network from these databases. The first step is to build a 

network for each database and then build a combined network based on these single 

networks. The second step is to construct the raw combined database and to identify 

the Structural Linking Information among the systematic missing data. Structural 

Linking Information is the missing data that are essential for the combined network. 

The third step is to obtain this Structural Linking Information by other means.

 More case studies applying this approach are needed to give a general 

guidance on how to judge which systematic missing data are essential (i.e. Structural 

Linking Information). Examples of essential and non-essential missing data in the 

current combined database are discussed as follows. The information on ‘Salt intensity’ 

for Aroma’s observations and that on ‘Aroma concentration’ and ‘Aroma duration’ for 

Taste’s observations were essential (section 3.3.1). The availability of this information 

would allow for new variables to be added to the individual networks. The Aroma 

network could be then extended with ‘Salt intensity’, and the Taste network with 

‘Aroma concentration’ and ‘Aroma duration’. As a result, two single networks would 

share five common variables predicting ‘Intake’ instead of two, namely ‘Pleasantness’ 

and ‘Flavor intensity’. These extra common variables strengthen the link between the 

single networks. More importantly, they carry the hypothesis of the original studies, 

as they were experimentally controlled variables. Conversely, the missing information 

on ‘Salt concentration’ in ‘Aroma’ can be considered as not essential. The reason is 

that ‘Salt concentration’ has no direct arrow to ‘Intake’, and its influence on ‘Intake’ 

is captured by ‘Flavor intensity’ and ‘Salt intensity’. However, when for example 

‘Sweetness’ is included into this network, ‘Salt concentration’ might have an effect 

on this variable, thus information on ‘Salt concentration’ could become essential. For 

this reason, it would still be better to have such primary information collected. 

 Having identified the Structural Linking Information, researchers can work 

on different strategies to obtain this. Some information is easy to extract from the 

materials and methods of the individual studies. It was the case for salt concentration 
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of the soup used in the Aroma study. Some information can be obtained based on 

their experimental designs. Assigning states of ‘Aroma concentration’ and ‘Aroma 

duration’ for the Taste’s observations was one example. Some information requires 

extra experiments, individual salt intensity ratings for the Aroma study for instance. 

Arguably, such measures might not be satisfactory. It might thus be necessary to 

consult with and obtain consensus from domain experts to justify the use of the 

obtained data.

 3.5.3 Designing future studies to enable the combination of their data

As discussed in the earlier sections, difficulties may arise when combining data 

of independently performed experiments if they were not originally designed for 

integration, despite being closely related. However, many problems can be avoided 

if researchers envision an overall network before designing small experiments that 

cover part of it. 

 Envisioning an overall network, designated as Global Experimental Design, 

means i) identifying all variables of interest of a research theme, ii) standardizing the 

measurement method for each variable, as well as iii) defining states (or all possible 

values) that each variable can get. From this overall network, independent studies 

involving a smaller number of variables can be designed to support the future 

combination of all the datasets. The first important message is that the states of 

all variables are judged not only within a single study, but also on a global scale 

(overall network). The second important message is that each study might have to 

gather more information than needed for its own scope. In the case studies of this 

chapter, subjects participating in the Aroma study should have been asked to rate 

the perceived salt intensity in each testing session. This information might not be of 

direct value for the hypothesis testing procedure in the Aroma study; yet, it plays an 

essential role in the combined network as explained in section 3.5.2.

3.6 Conclusions

Bayesian networks act as a complementary modeling technique to classical statistical 

analysis. This modeling technique can be a potential tool to combine raw data from 

related studies, resulting in a combined model network. If these studies are not initially 
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designed to be integrated, the systematic missing data in the combined database 

can cause unreliability in estimating model parameters. Some of these systematic 

missing data could be essential for the combined network and are referred to as 

Structural Linking Information. A general guidance on this judgment requires more 

applied works. Obtaining Structural Linking Information is identified as the necessary 

requirement for the presented approach. This information can be derived from the 

background information of the original studies or obtained by extra experiments. 

These strategies are subject to careful consideration and agreement among the 

researchers. To prevent the lack of Structural Linking Information, the proposed 

approach of Global Experimental Design can be used before conducting small and 

independent studies concerning a specific research theme. The technique of Bayesian 

networks is a potential tool to combine of different sources of data and to formally 

incorporate domain knowledge in the model-building process. Such features would 

allow scientists to gain more information and a more holistic view of the research 

theme. This chapter is a unique contribution to the Bayesian network modeling field 

as a data-driven approach rather than a traditional simulation-driven approach. 
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3.8 Appendix 3.A 

Discretization of continuous variables in the combined network. Three intervals for 

‘Intake’ and ‘d_Intake’ set for the Aroma network are not necessary the same as those 

set for the combined network.

Salt concentration   
(mg Na/100 g) Salt  intensity Flavor  intensity Pleasantness Intake (g)          d_Intake

63-200 0-33 0-50 0-50 56-280 (-320)- (-16)

200-300 33-66 50-65 50-70 280-410 (-16) – 24

300-880 66-100 65-100 70-100 410-1020 24-280

Low Short NA NA Avail Avail
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Abstract

This chapter investigated how the causal relationships underlying the experimental 

design affect the possibility to combine raw data of related studies. Bayesian 

networks were used to re-examine the experimental design of two published studies 

on oro-sensory exposure. The role of each explanatory variable in the design was 

categorized as either directly manipulated (primary) or indirectly manipulated 

(secondary) through primary variables. It was shown that when a secondary variable 

is manipulated, causal relationships are reversed. Consequently, it can become 

impossible to meaningfully analyze the obtained data in combination with those 

from other related studies that do not follow the same causal structure. Using a 

secondary variable as the explanatory variable also makes it difficult to translate the 

findings to real-life situations. The current work has provided additional arguments 

and insights into using Global Experimental Design as a method to design related 

controlled experiments for data integration.
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4.1 Introduction

Oro-sensory exposure to food leads to earlier meal termination as reviewed by de 

Graaf (2012). Oro-sensory exposure has been explained as the factor that mediates 

the observed differences in ad libitum intake due to viscosity (Zijlstra et al., 2008) 

and texture differences (Zijlstra et al., 2010). To investigate this mediating role further, 

Weijzen et al. (2009) have explicitly altered the oro-sensory exposure through a 

number of variables while controlling the eating rate of orangeade. Similar studies 

have been done with tomato soups (Bolhuis et al., 2011; Bolhuis et al., submitted for 

publication). Eating rate is known to largely affect the ad libitum intake (Zijlstra et 

al., 2008; Kellen, 2010). Therefore, the studies on oro-sensory exposure have fixed 

eating rate to rule out its effect (Weijzen et al., 2009; Bolhuis et al., 2011; Bolhuis 

et al., submitted for publication). These types of experimental designs involve the 

manipulation of multiple variables, it is consequently not easy to communicate the 

causal relationships in a transparent manner. Understanding the underlying causal 

relationships is important when combing data from independent studies because the 

causal structures affect the possibility to do a meaningful analysis of the combined 

data.  

 Bayesian networks are graphical probabilistic models consisting of two 

components: structure (graph) and parameters (probabilities) (Heckerman, 1995). 

The network structure represents the causal relationships among the variables; the 

network parameters quantify these relationships through probability expressions 

(Phan et al., 2010). The graphical nature of Bayesian networks is said to make it easy to 

communicate and comprehend the overall picture of a research domain; even if a large 

number of variables is involved. Phan et al. (2012) have previously demonstrated the 

potential of Bayesian networks to combine raw data from independently performed 

but related studies. 

 This chapter investigated how the causal relationships underlying the 

experimental design of related studies determine whether sets of data from separate 

studies can be combined. We re-examined closely the experimental design of two 

published studies on oro-sensory exposure (Bolhuis et al., 2011; Bolhuis et al., 

submitted for publication). Data from another related study (Bolhuis et al., 2012) 

were also analyzed in combination with data from those two studies. Bayesian 
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networks were used as a tool for visualizing causal relationships, and evaluated for 

its effectiveness in establishing a clear view of the problem.

4.2 Materials and method

 4.2.1 Description of the original studies

Study I investigated how the oro - sensory exposure time (‘Food exposure time’) and 

the intensity of saltiness (‘Salt intensity’) influence the ad libitum intake of tomato 

soup (‘Intake’) (Bolhuis et al., 2011). ‘Food exposure time’ was defined as the average 

time that food resides in the oral cavity calculated for one gram of food (s/g). A 

full crossover design was used. Each subject received all six combinations of three 

states of ‘Food exposure time’ being ‘short’, ‘long’, and ‘free’ and two states of ‘Salt 

intensity’ being ‘low’ and ‘high’. In the current work, we did not take into account the 

free condition of the food exposure time in order to focus on the general aspects 

of the experimental design. A number of variables were manipulated to create the 

short and long exposure times, and the salt concentrations that gave perceptions 

of low and high intensity were chosen such that they were rated at similar levels of 

pleasantness.  

 The study consisted of two separate parts: a primary tasting and the actual 

crossover design on intake. First, the preliminary tasting was performed to select 

two soups having different salt concentrations but eliciting the same degree of 

pleasantness. These soups were assumed to represent the two states of ‘Salt intensity’. 

Subjects tasted five soups varying in salt concentration, and rated pleasantness and 

relative-to-ideal salt intensity as described in (Bolhuis et al., 2010). The soup with 

ideal salt intensity was the most pleasant soup, whereas, the soups with low and high 

salt intensity were less pleasant than the ‘ideal’ and similar in pleasantness ratings 

(Figure 4.1). Only the soups with low and high salt intensity were chosen for the 

intake experiment.
Figure 4.1: 

Illustration of the soups having low, ideal, and 
high salt intensity.  The soup with ideal salt 
intensity is the most pleasant soup. The other 
two soups are similarly pleasant, though they 
differ in salt concentration. Adapted from Phan 
and Bolhuis et al. (submitted for publication).
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 In the intake experiment, subjects ate a fixed preload of raisin buns (calculated 

as 50% of the average energy intake for a lunch meal) before consuming ad libitum 

either the soup with low or high salt intensity. Subjects received the soups directly 

into their mouth via a food-grade tube connected with a peristaltic pump. Under 

this setting, the states of ‘Food exposure time’ were specified by controlling three 

variables: time interval between the start of two subsequent bites (‘Bite interval’, s), 

residence time of each bite in the oral cavity (‘Bite residence time’, s), and amount of 

each bite (‘Bite size’, g). The definitions of ‘Bite interval’ and ‘Bite residence time’ are 

illustrated in Figure 4.2. The bite residence time was the total time that the subjects 

received one bite of soup and kept this bite in their mouth before swallowing it.

Figure 4.2: Illustration of bite residence time and bite interval. 

 Table 4.1 summarizes the experimental design of Study I. In the short 

condition of ‘Food exposure time’, ‘Bite size’ was set equal to 15 g, ‘Bite interval’ = 

15 s, and ‘Bite residence time’ = 3 s.  In the long condition of ‘Food exposure time’, 

these values were 5 g, 5 s, and 2 s, respectively. ‘Bite size’ and ‘Bite interval’ were 

chosen such that the amount of soup eaten per minute (‘Eating rate’, g/min) was 

equal to 60 g/min in both conditions of the exposure time. The ad libitum intake was 

recorded. Data from 55 subjects were taken into account in the statistical analysis of 

the original study.

Table 4.1: Experimental design of Study I. In a crossover design, ‘Salt intensity’ (low, high) and ‘Food 
exposure time’ (short, long) were used to explain ‘Intake’ under a constant ‘Eating rate’. ‘Bite size’, ‘Bite 
interval’, and ‘Bite residence time’ were manipulated to obtain the desired conditions. The data on ‘Intake’ 
were observed (represented as ‘Avail’).

Salt intensity Food exposure 
time (s/g)

Bite interval 
(s)

Bite size 
(g)

Bite residence  
time (s)

Eating rate 
(g/min)

Intake 
(g)

Low Short 15 15 3 60 Avail

High Short 15 15 3 60 Avail

Low Long 5  5 2 60 Avail

High Long 5  5 2 60 Avail
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 Study II investigated how the oro-sensory exposure time (‘Food exposure 

time’) and the number of bites per unit of food weight (‘Food bite number’, bites/g) 

influence the ad libitum intake (‘Intake’) of a tomato soup (Bolhuis et al., submitted 

for publication). A full crossover design was used. Each subject received all four 

combinations of two states of ‘Food exposure time’ (short or long) and two states of 

‘Food bite number’ (low or high) as summarized in Table 4.2. 

Table 4.2: Experimental design of Study II. In a crossover design, ‘Food bite number’ (low, high) and ‘Food 
exposure time’ (short, long) were used to explain ‘Intake’ under a constant ‘Eating rate’. ‘Bite size’, ‘Bite 
interval’, and ‘Bite residence time’ were manipulated to obtain the desired conditions. The data on ‘Intake’ 
were observed (symbolized as ‘Avail’).

 One single tomato soup was served after the subjects ate a fixed preload 

of raisin buns (calculated as 50% of the average energy intake for a lunch meal). 

Like Study I, the food-grade tube and pump system supported the ad libitum intake 

experiment. ‘Bite size’ was set equal to 15 g to obtain the state ‘low’ and to 5 g to 

obtain the state ‘high’ of ‘Food bite number’. At low food bite number, two states 

‘short’ and ‘long’ of ‘Food exposure time’ were specified by setting ‘Bite residence 

time’ at 3 s and 9 s, respectively. At high food bite number, two states ‘short’ and 

‘long’ of ‘Food exposure time’ were specified by setting ‘Bite residence time’ at 1 

s and 3 s, respectively. ‘Bite interval’ was manipulated along with ‘Bite size’ to keep 

‘Eating rate’ constant at 60 g/min in all conditions: 15 s when ‘Bite size’ = 15 g, and 

5 s when ‘Bite size’ = 5 g. The ad libitum intake was recorded. Data from 57 subjects 

were taken into account in the statistical analysis of this study.

4.2.2 Analyzing causal relationships underlying experimental designs 

using Bayesian networks

In applied statistics, explanatory variables are defined as those that are used in a 

statistical model to explain the variation of the outcome variable, i.e. dependent 

variable. Explanatory variables are also called predictor variables, independent 

variables, input variables, regressors, etc. as the terminology is not highly harmonized 

Food bite number   
(bites/g)

Food exposure 
time (s/g)

Bite interval  
(s)

Bite size       
(g)

Bite residence 
time (s)

Eating rate 
(g/min)

Intake               
(g)

       Low Short 15 15 3 60 Avail

       Low Long 15 15 9 60 Avail

       High Short 5  5 1 60 Avail

       High Long 5  5 3 60 Avail
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(Dodge et al., 2006; Everitt & Skrondal, 2010). In particular, the term “independent 

variables” when being used interchangeably with “explanatory variables” can be very 

confusing. In the general sense, explanatory variables may or may not be independent 

from each other, and may or may not be independently experimentally controlled.  In 

the Cambridge Dictionary of Statistics (Everitt & Skrondal, 2010), it is recommended 

to abandon the use of this term for explanatory variables. When the overall causal 

structure among the variables is of interest, it is important to differentiate the variables 

being independently experimentally controlled (or manipulated) from the variables 

being explanatory. Therefore, we define here explicitly the exact use of terminology.

 In this chapter, the term “primary explanatory variables” refers to explanatory 

variables that are used to explain the outcome variable in statistical models, and that 

can be independently manipulated in the experimental setting. The term “secondary 

explanatory variables” is used for explanatory variables that cannot be manipulated 

as such but are calculated/derived from primary explanatory variables. In studies 

having rather similar experimental setups but different goals, often the primary 

explanatory variables are the same (but not always reported), while the secondary 

ones might be different. It is thus crucial to differentiate the two types of explanatory 

variables when combining data of those studies. Special attention should be paid 

to the experimental designs whose intention is to control or manipulate secondary 

explanatory variables by the primary ones. Such designs have major influence on the 

causal structure among all variables observed in the experiments and may render a 

meaningful analysis on combined data with other experiments impossible. 

 The current work consisted of two main tasks. The first task was to revisit 

the experimental designs of the two original studies. The role of each explanatory 

variable being primary or secondary in the design was clarified. The second task was 

to consider the possibility to combine data from related studies to build a larger 

model, as described earlier by Phan et al. (2012), from the available data. The data 

combination was first analyzed solely using the two current original studies (Bolhuis 

et al., 2011; Bolhuis et al., submitted for publication), and then analyzed together with 

an additional related study (Bolhuis et al., 2012). These two tasks were performed 

using the qualitative aspect of Bayesian network modeling, i.e. the network structure 

or the causal relationships among the variables. 
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4.3 Results

 4.3.1 Revisiting the experimental designs

Secondary explanatory variables versus primary explanatory variables. Study II 

used ‘Food exposure time’ and ‘Food bite number’ as explanatory variables of ‘Intake’. 

However, looking into the details of the experimental setup, the variables that were 

actually manipulated to obtain a constant ‘Eating rate’ and varied ‘Food bite number’ 

and ‘Food exposure time’ were ‘Bite interval’, ‘Bite size’, and ‘Bite residence time’. The 

network structure in Figure 4.3 illustrates the dependency among these six variables. 

In this network, each arrow is assumed to point from cause to effect, therefore, it 

represents a causal relationship.

Figure 4.3:  Network structure for the design of Study II. 

 Given the definition of the variables, it is straightforward that ‘Eating rate’ is 

equal to 60*Bite size/Bite interval, ‘Food bite number’ is equal to 1/Bite size, and 

‘Food exposure time’ is equal to Bite residence time/Bite size. These deterministic 

relationships allowed us to draw the arrows from ‘Bite interval’ and ‘Bite size’ towards 

‘Eating rate’, the arrow ‘Bite size’  ‘Food bite number’, and the arrows from ‘Bite 

size’ and ‘Bite residence time’ towards ‘Food exposure time’. ‘Bite interval’, ‘Bite 

size’, and ‘Bite residence time’ were taken as the causes because they are primary 

explanatory variables in the experimental setting. Also, as it is true in most cases, 

they are most easily manipulated in more natural settings of eating. That makes them 

easy to translate to consumer advice or to product design related to eating behavior 

in real life. Bite interval tells the consumers to delay or speed up in taking the next 

bite; bite size tells the consumers to take a big or small bite; bite residence time tells 
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the consumers to keep the bite in their mouth for a long or short time. ‘Eating rate’, 

‘Food bite number’, and ‘Food residence time’ were drawn as the effects because 

they are calculated from the primary variables, and hence are secondary variables. In 

that sense, ‘Food bite number’ and ‘Food exposure time’ were secondary explanatory 

variables of ‘Intake’ in Study II.

Experimental design versus natural setting. Eating rate was fixed at 60 g/min for 

all experimental conditions in both Study I and Study II. This criterion permitted the 

researchers to rule out the effect of eating rate on ad libitum intake. With the fixing of 

the eating rate, the two variables ‘Bite interval’ and ‘Bite size’ became dependent on 

each other. The network in Figure 4.4a illustrates this design, in which ‘Bite interval’ 

and ‘Bite size’ appear to be the effects of ‘Eating rate’.  In Figure 4.4b, the arrows 

Bite interval  Eating rate and Bite size  Eating rate could be justified by the 

deterministic relation: Eating rate = 60*Bite size/Bite interval. We use the term 

‘natural setting’ because it reflects the causal structure among the three variables 

as observed during normal eating situations (Figure 4.4b). It can therefore be said 

that the experimental design of the original studies reversed the causal relationships 

between ‘Bite interval’, ‘Bite size’, and ‘Eating rate’ as compared to natural eating 

occasions. 

Figure 4.4:  Reversal of the causal relationships. A possible causal relationship between ‘Bite 
interval’ and ‘Bite size’ in real life eating occasions was not taken into account.

Similar experimental designs. Study I was designed to investigate the influence of 

food exposure time and salt intensity on the ad libitum intake; Study II was designed 

to investigate the influence of food exposure time and food bite number on the 

ad libitum intake. Despite these differences, the two experimental designs can be 
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considered as similar because of the two following reasons:

 First, despite the absence of ‘Food bite number’ in Study I, the effort made 

to obtain different values for ‘Food exposure time’ forced the control of the same 

variables as in Study II. The information on ‘Food bite number’ was thus available 

in Study I. Second, the absence of ‘Salt intensity’ in Study II can be rectified. This 

study did not contain the preliminary tasting session related to salt intensity ratings. 

However, salt concentration for the tested soup was chosen based upon the data of 

Study I, such that the soup was the most pleasant perceived by most subjects. Hence, 

we were able to create the variable ‘Salt intensity’ with a single state ‘ideal’ for Study 

II. 

 As a result, the data of the two original studies can be summarized in one 

single combined database after some modifications (Table 4.3). In this database, 

the state ‘ideal’ of ‘Salt intensity’ was assigned to all observations in Study II. The 

two states of ‘Food exposure time’ were given the same name (short, long) in both 

studies. However, they did not represent the same value. Then, these ordinal states 

were converted to arithmetic values using the equation Food exposure time = Bite 

residence time/ Bite size (s/g). The equation Food bite number = 1/ Bite size 

(bites/g) was used to make the same conversion for ‘Food bite number’ in Study II 

and to obtain the information on ‘Food bite number’ in Study I.

Table 4.3: Combined database. The information related to ‘Salt intensity’, ‘Food exposure time’, and ‘Food 
bite number’ was modified such that the data of Study I (represented by the first four lines) and Study II 
(represented by last four lines) can be combined. The state ‘ideal’ of ‘Salt intensity’ was created for all the 
observations of Study II. The ordinal states of ‘Food exposure time’ and ‘Food bite number’ were replaced 
by the arithmetic values, which resulted from the calculation containing ‘Bite size’ and ‘Bite residence time’. 
The old information is put in parentheses.

  Salt
 intensity

Food exposure 
time (s/g)

Food bite 
number (bites/g)

Bite interval        
(s)

Bite size      
(g)

Bite residence    
time (s)

Eating rate  
(g/min)

Intake 
(g)

(Low) Low (Short) 0.2 (NA) 0.07 15 15 3 60 Avail

(High) High (Short) 0.2 (NA) 0.07 15 15 3 60 Avail

(Low) Low (Long) 0.4 (NA) 0.2 5 5 2 60 Avail

(High) High (Long) 0.2 (NA) 0.2 5 5 2 60 Avail

(NA) Ideal (Short) 0.2 (Low) 0.07 15 15 3 60 Avail

(NA) Ideal (Long) 0.6 (Low) 0.07 15 15 9 60 Avail

(NA) Ideal (Short) 0.2 (High) 0.2 5 5 1 60 Avail

(NA) Ideal (Long) 0.6 (High) 0.2 5 5 3 60 Avail

NA: data not being identified; Avail: data being observed in the original studies.                                                 
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4.3.2 Considering the possibility to combine raw data from related 

studies

Combining raw data of the two original studies. 

Since Study I and II have similar designs, and can be combined into one single 

database (Table 4.3), it is possible to build one model from this database using 

Bayesian networks. We call the model OroSensory Exposure Network (SEN). The 

following describes the process of structure specification for this model network. 

 The eating rate was kept constant so this variable was removed from the 

SEN model. However, one should note that SEN was only meant for one specific 

value of eating rate (in the studies it was set to 60 g/min), not for the whole range 

of this variable. With the knowledge that bite interval and bite size are dependent, 

we decided to keep ‘Bite size’ in SEN instead of ‘Bite interval’ because ‘Bite size’ 

contributes to ‘Food exposure time’, a variable of interest in the original studies. Next, 

‘Food bite number’ was also redundant and thus excluded as this variable can be 

calculated directly from ‘Bite size’. In the end, the SEN model comprised five variables: 

‘Salt intensity’, ‘Bite size’, ‘Bite residence time’, ‘Food exposure time’ (discrete), and 

‘Intake’ (continuous). ‘Bite size’, ‘Bite residence time’, and ‘Food exposure time’ were 

treated as discrete variables because only few values of each were assessed in the 

original studies. Figure 4.5 shows the structure of SEN.

Figure 4.5:  
Structure of the OroSensory 
Exposure Network model. The 
single ovals indicate discrete 
variables, and the double oval 
indicates a continuous variable. 

 The arrows ‘Salt intensity’  ‘Intake’ and ‘Food exposure time’  ‘Intake’ 

represent the research hypotheses of the original studies. The arrows ‘Bite size’ 

 ‘Food exposure time’ and ‘Bite residence time’  ‘Food exposure time’ could  
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be justified by the deterministic relations: Food bite number = 1/Bite size and 

Food exposure time = Bite residence time/Bite size. The direct arrow ‘Bite size’ 

 ‘Intake’ delivers one hypothesis of the current work that ‘Food exposure time’ 

does not carry all the information from ‘Bite size’ towards ‘Intake’. The absence of 

the direct arrow ‘Bite residence time’  ‘Intake’ implies another hypothesis that 

‘Food exposure time’ carries most of the relevant information. There were no arrows 

connecting ‘Salt intensity’, ‘Bite size’ and ‘Bite residence time’ because these variables 

were manipulated independently of one another. The current structure of SEN should 

be adapted if the empirical data do not support the above hypotheses. 

Combining raw data from the original studies with those from another related study. 

Data from another related study (Bolhuis et al., 2012, Study III) was considered for 

integration with the current combined database (Table 4.3). In this study, ‘Salt intensity’ 

(low, ideal, high) was the explanatory variable of ‘Intake’. In addition, ‘Eating rate’, ‘Bite 

size’, and ‘Bite frequency’ could be calculated from observational information. ‘Bite 

frequency’ was defined as the mean number of bites per minute and mathematically 

equivalent to 60/Bite interval (Phan and Bolhuis et al., submitted for publication). 

The information on ‘Bite residence time’ was not observed, and hence ‘Food exposure 

time’ was also missing. 

 Despite having many common variables, data from Study III could not be 

combined with those from Study I and Study II and analyzed in a meaningful way. 

The reason was that the experimental design of Study III followed a real-life setting 

whereas those of Study I and Study II did not. Specifically, the structure of causal 

relationships among ‘Bite interval’ (Bite frequency), ‘Bite size’, and ‘Eating rate’ in 

Study III do not match the causal structure of Study I and Study II (Figure 4.4) and 

hence cannot be combined.

 To illustrate that an analysis of the current data combination would be 

misguided, we describe what would happen if it were to be done. The new database 

is shown in Appendix 4.A. In constructing the database that is used for any actual 

analysis, one has to select the variables that are not direct mathematical derivations 

from each other. That might otherwise cause a redundancy that would lead to 

numerical and interpretational difficulties during statistical analysis. After the variables 

have been decided upon, the causal structure is assumed where the selected variables 
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are seen as being primary explanatory variables and independently manipulated. 

Appendix 4.B shows a network structure suggested for the available variables. In our 

example, this is the causal structure that is correct for one part of the data (Study 

III), but not for the other (Study I and Study II). Given the database and network 

structure, a final network with estimated parameters would predict that a high bite 

size leads to a lower value of intake than an average bite size does. This outcome 

would arise because the data from Study I and Study II gives misleading information 

about the influence of bite size on intake: a rather high bite size (15 g) “causes” an 

average eating rate (60 g/min) as the bite frequency was artificially kept low. This is 

combined with the information from the observational data of Study III, which shows 

a strong positive relationship between eating rate and intake. In combining the three 

studies, a pattern would emerge from the available data that says: high bite size  

average eating rate  average intake. This pattern would be in direct conflict with 

the empirical data of the original studies (not shown). As such, the model resulting 

from the combination of the three studies would fail to reflect the true relationships 

between the variables. 

 Note that such analysis would be true with any statistical method being applied 

on this combined dataset (Appendix 4.A). In general, the estimation of parameters 

in a statistical model relies on the assumption that underlying correlational/causal 

structure is the same for all data. Bayesian network modeling is just a tool that 

explicitly reveals causal assumptions with its graphical component.

 4.4 Discussion

The two original studies were designed to understand the impact of the food exposure 

time on the ad libitum intake independent from the influence of eating rate. The 

eating rate, a secondary explanatory variable, was fixed in the experimental designs. 

We have shown that food exposure time was a secondary variable derived from other 

primary explanatory variables that were actually manipulated in the experimental 

setup. It has been also shown that fixing eating rate reversed the causal relationships 

among bite interval, bite size, and eating rate as compared to more natural settings 

of eating events. These two design characteristics encountered problems when the 

results of the individual studies were related with real-life situations (4.4.1). Moreover, 
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this work has provided a better insight into the approach of Global Experimental 

Design (proposed by Phan et al., 2012), which starts from the real-life situations 

towards the planning of individual studies (4.4.2). 

 4.4.1 From individual studies towards real-life situations

The design of the two original studies led to the three following consequences. 

First, the control (fixing) of a secondary variable makes it impossible to meaningfully 

combine and analyze the obtained data with those from other related studies having 

different causal structures. Study I and Study II have a similar design, and their data 

can be combined to make a larger model network. The model was not larger in term 

of number of variables, but larger regarding the number of real values or ordinal 

states of the variables being taken into account. However, making the model larger 

by adding the data from Study III, a seemingly related study, could not be done 

as Study III had a different structure. That means data from Study I and Study II 

cannot be analyzed together with data from any studies where eating rate is not 

controlled. 

 Second, strong efforts to generate “explanatory” variables from primary ones 

often make the obtained results difficult to apply. The causal relationships of food 

bite number and food exposure time with the ad libitum intake were explored in the 

two original studies. Yet, these relationships may not be straightforwardly intervened 

in the future. Such studies turn out to be more relevant for basic research, and less so 

for giving advice to consumers or to the food industry. 

 Third, derived explanatory variables can be intrinsically dependent. It was 

the case for food bite number and food exposure time in Study II. Their dependency 

was induced by the common primary variable bite size. Therefore, it is difficult to 

interpret their relative importance on the outcome variable ad libitum intake.

4.4.2 From real-life situations towards individual studies: Global     

Experimental Design

We have earlier investigated the use of Bayesian networks to combine raw data from 

independently performed but related studies (Phan et al., 2012). We have proposed 

the approach Global Experimental Design to avoid the problem of systematic 

missing data when the related studies were not initially designed for integration. 
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This approach suggests that the design of related studies should be based on a 

prior built overall network of the study domain. Gathering more information than 

needed for the scope of one individual study was the center of that discussion; the 

design of individual studies was not. The current work has shown clearly that there 

should be no conflict in causal relationships of the individual designs to enable data 

combination. This message is inherent within the very first step of building an overall 

network.

 In conclusion, controlling a secondary variable makes it impossible to 

combine the obtained data with those obtained from related studies following real-

life settings. Using a secondary variable as explanatory variable can lead to new 

mechanistic insights in detailed parts of the study domain. Yet, this approach makes 

it difficult to apply the findings in real - world problems. Building the overall network 

within the Global Experimental Design framework is of utmost importance to allow 

the data integration from related studies. The overall network assists researchers 

not only to gather the structural linking information (Phan et al., 2012), but also to 

respect causal relationships when designing individual studies.
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4.6 Appendices

Appendix 4.A 

Database resulted from combining raw data from two original studies (Study I and 

Study II) with those from another related study (Study III). This database does not 
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contain ‘Bite number’ and ‘Bite frequency’, for they were represented by ‘Bite size’ 

and ‘Bite interval’, respectively.

Study Salt intensity Food exposure 
time (s/g) Bite interval (s) Bite size 

(g)
Bite residence 

time (s)
Eating rate (g/

min)
Intake 

(g)

I Low 0.2 15 15 3 60 Avail

High 0.2 15 15 3 60 Avail

Low 0.4 5 5 2 60 Avail

High 0.4 5 5 2 60 Avail

II Ideal 0.2 15 15 3 60 Avail

Ideal 0.6 15 15 9 60 Avail

Ideal 0.2 5 5 1 60 Avail

Ideal 0.6 5 5 3 60 Avail

III Low NA    Avail    Avail NA     Avail Avail

Ideal NA    Avail    Avail NA     Avail Avail

High NA    Avail    Avail NA     Avail Avail

NA: data not available; Avail: data observed (available).

Appendix 4.B 

A structure network. This network, which connects all the variable in the database 

describe in Appendix 4.A, was drawn according to deterministic relations, domain or 

expert knowledge, and research hypotheses of the original studies.
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Abstract

Bayesian networks were applied to re-model the data from a published study 

investigating how the saltiness intensity of a soup influences the ad libitum intake. 

In the original study, the two observed variables bite size and bite frequency were 

not included due to many missing values. However, with Bayesian networks it 

was straightforward to handle these variables. Domain knowledge (e.g. scientific 

literature) could be exploited to specify some highly plausible causal relationships. 

More information (considered as new hypotheses) was extracted from the data in 

comparison to the results that were published earlier. For example, the ad libitum 

intake increased about 28 g (7% -17%) or a 10% increase of bite size, and about 8 g 

(3% - 4%) or a 10% increase of bite frequency. Bite size explained partly the influence 

of salt intensity on the ad libitum intake. Eating rate explained partly the influence 

of bite size on the ad libitum intake, and this pathway accounted for about 60 % of 

the effect size. Bayesian networks enable scientists to generate new insights into a 

research domain as this technique allows a clear visualization of complex problems 

and a transparent quantification of information flows in the model. 
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5.1 Introduction

Meal termination or satiation has been a research topic of interest due to the 

prevalence of obesity in developed countries (Blundell et al., 1988; Blom et al., 2004; 

de Graaf et al., 2004; Ruijschop et al., 2009; de Graaf, 2012). Meal termination is 

usually assessed by measuring the ad libitum intake, which is defined as the amount 

of food eaten voluntarily by a subject until pleasantly satiated. Researchers have 

investigated the effect of various food characteristics on the ad libitum intake, such 

as viscosity (de Wijk et al., 2008; Zijlstra et al., 2008), energy content (Weijzen et al., 

2009), aroma (Ruijschop et al., 2008), and taste (Griffioen-Roose et al., 2009; D.P. 

Bolhuis et al., 2010; Bolhuis et al., 2012). Bite size and oral processing time have also 

been subject to investigation (Spiegel et al., 1993; Weijzen et al., 2009; Zijlstra et 

al., 2009; Bolhuis et al., 2011). Some additional variables are often observed in such 

studies, such as liking, appetite ratings, and eating rate. Apart from testing the main 

hypotheses, different statistical procedures are used to process information related 

to these observed variables. This practice is not the optimal way to extract all the 

useful information, especially when a large number of variables are present. We were 

interested in applying a method that gives an overview on the interplay of all the 

variables: Bayesian networks.

 Bayesian networks are graphical probabilistic models being widely applied 

in various fields, but not yet popular in food science (Pourret et al., 2008; Phan et 

al., 2010). This modeling technique can handle incomplete datasets (Heckerman, 

1995). It can also make use of expert knowledge in determining causal relationships. 

Furthermore, the graphical and probabilistic natures make Bayesian networks suitable 

to model complex problems and to communicate the model with model-users via 

inference procedures (Phan et al., 2010). 

 The present paper re-analyzes the data of a published study on satiation 

using Bayesian networks. All variables of interest can be included in one single 

model network, even ones containing a large number of missing values. This work 

focuses on quantifying the relationships among the variables. The objective of this 

chapter is to investigate whether and how applying Bayesian networks can provide 

extra information and improve the communication of the outcomes. Specifically, 

the capability to make the most use of available information and the power of the 
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inference procedure of Bayesian networks would lead to a better insight into the 

research theme.

5.2 Materials and method

 5.2.1 Description of the original study

The original study investigated how the ad libitum intake (‘Intake’) of a tomato soup 

is influenced by two variables: order of the food course (‘Food course’) and intensity 

of perceived saltiness (‘Salt intensity’) (Bolhuis et al., 2012). A full crossover design 

was used. Each subject received all six combinations of two states of ‘Food course’ 

being ‘first’ and ‘second’ and three states of ‘Salt intensity’ being ‘low’, ‘ideal’, and 

‘high’. Data from 43 subjects were taken into account in the statistical analysis. 

 The study consisted of two separate parts: a preliminary tasting and the actual 

crossover design on intake. First, the preliminary tasting was performed to select three 

soups of different salt concentrations, corresponding to the three states of ‘Salt intensity’. 

Subjects tasted five soups varying in salt concentration, and rated pleasantness and 

relative-to-ideal intensity of saltiness as described in Bolhuis et al. (2010). From these 

data, a set of three soups was chosen for each individual subject. The soup with ideal 

salt intensity was the most pleasant soup, whereas the soups with low and high salt 

intensity were less pleasant than the ideal but similar in pleasantness ratings (Figure 5.1). 

Figure 5.1 :
Illustration of the soups with low, ideal, 
and high salt intensity. The soup with ideal 
salt intensity is the most pleasant soup. 
The other two soups are similarly pleasant, 
though they differ in salt concentration.

 In the intake experiment, when the soup was served as the first course, 

subjects ate the soup ad libitum while knowing they could continue voluntarily 

with buns and different fillings. When the soup was served as the second course, 

subjects ate a fixed preload of raisin buns before consuming ad libitum the soup. 

Subjects consumed their soup from a self-refilling bowl with a spoon (Wansink et al., 

2005; Bolhuis et al., 2010). The total consumption time (‘Eating duration’) was also 
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recorded along with the ad libitum intake. The real-time automatic weighing system 

allowed the experimenters to read the weight of each bite during the ad libitum 

intake (real-time bite sizes) and total number of bites (‘Total bite number’). ‘Bite size’ 

was calculated as the mean of the real-time bite sizes for each eating condition. 

There were 51 random missing data for ‘Bite size’ and ‘Total bite number’ due to the 

instability of the balance that occurred in certain cases. The original paper did not 

take these two variables into account in the analysis.

 5.2.2 Modeling with Bayesian networks

A Bayesian network model consists of two components: structure and parameters. 

The network structure represents the causal relationships among the variables; the 

network parameters quantify these relationships through probability expressions (Phan 

et al., 2010). In this chapter, the model learning was supported with HUGIN Bayesian 

network software (HUGIN researcher 7.5, http://www.hugin.com). The following 

presents (1) the formation of the database and (2) the modeling procedure.

 Table 5.1 summarizes the database to be used further in building model 

networks. The variable ‘Food course’ was concluded not to affect the ad libitum 

intake in the original study. It was therefore not included in order to simplify the 

model. The variable ‘Bite frequency’ was introduced as the number of bites eaten per 

minute (bites/min) and calculated as Total bite number/Eating duration.  

Table 5.1: Summary of the database. The table represents data obtained from one subject. ‘Salt intensity’ 
was controlled with three states: ‘low’, ‘ideal’, and ‘high’. Data on ‘Bite frequency’, ‘Bite size’, ‘Eating rate’, 
and ‘Intake’ were either calculated from the observed information or obtained via direct measurement 
(represented as ‘Avail’).

Salt intensity Bite frequency 
(bites/min)

Bite size 
(g)

Eating rate          
(g/min)

Intake              
(g)

Low Avail Avail Avail Avail

Low - - Avail Avail

Ideal Avail Avail Avail Avail

Ideal Avail Avail Avail Avail

High Avail Avail Avail Avail

High Avail Avail Avail Avail

The sign, “-”, indicates that data is missing. These missing data were found randomly due to technical 
issues with the balance stability and they accounted for 20% of the observations.
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 ‘Eating rate’ was introduced as the average amount of soup eaten in one minute (g/

min) and calculated as Intake/Eating duration. As ‘Bite size’ could also be calculated 

as Intake/Total bite number, the following relationship was established:

Eating rate = Intake * 
Bite frequency 

= Bite size * Bite frequencyBite number       Equation 3.1

                                                                                        

 Since the information on ‘Total bite number’ and ‘Eating duration’ is fully 

carried by ‘Eating rate’, ‘Bite size’, and ‘Bite frequency’, the former two variables were 

excluded from the database. Furthermore, one outlier was detected (out of the 6 * 

Inter Quartile Range) from the records of ‘Bite frequency’. This outlier was removed 

to avoid one data point from having overly large influence on the model and 

parameter estimates. In summary, the database comprised one discrete variable ‘Salt 

intensity’ (controlled) and four continuous variables (observational): ‘Bite frequency’, 

‘Bite size’, ‘Eating rate’, and ‘Intake’. There were 258 observations in total, including 

50 missing values for ‘Bite size’ and 51 missing values for ‘Bite frequency’. The data 

of the continuous variables needed not being discretized in this chapter because 

the currently used HUGIN software (HUGIN Researcher 7.5) is capable to deal with 

continuous data.

  The modeling process started with model selection (5.3.1), which made use 

of both expert knowledge and statistical data. The data-driven judgment of four 

selected plausible model networks was based on three information criteria: log-

likelihood, Akaike information criterion (AIC), and Bayesian information criterion 

(BIC). In HUGIN software, the model with the highest information scores describes 

the data best from a statistical point of view. The inferences (5.3.2) were based on the 

model chosen to be the best. Through this procedure, the influence of salt intensity 

on bite size and ad libitum intake, and the influence of bite size and bite frequency on 

ad libitum intake were examined in detail. Also, the role of eating rate in mediating 

the effect of bite size on intake was explored by comparing the best model with a 

model omitting a direct arrow between bite size and intake.
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5. 3 Results

 5.3.1 Model selection

Four model networks were learned when combining the same set of data (summarized 

in Table 5.1) with four plausible structures: Net I, Net II, Net III, and Net IV (Figure 

5.2). The four network structures differ by their set of arrows implying possible causal 

relationships. These structures were defined based on deterministic relations, domain 

or expert knowledge, research hypotheses of the original study, and hypotheses of 

the current model. The formation of each network is explained as follows.

Figure 5.2: Network structure of the four model networks. A single ellipse represents a discrete variable; 
double ellipses represent continuous variables. Each arrow linking two variables implies a possible causal 
relationship. 

 In Net I structure, the arrows from ‘Bite size’ and ‘Bite frequency’ towards 

‘Eating rate’ originated from their deterministic relation described in Equation [3.1]. 

In addition, eating rate is often judged as a determinant of food intake due to their 

strong correlation reported in the literature (Spiegel et al., 1993; Zijlstra et al., 2010; 

Viskaal-van Dongen et al., 2011). The causal effect of the eating rate on food intake 

has been proven also by empirical evidence (Zijlstra et al., 2008; Kellen, 2010). This 

relationship can be considered as domain or expert knowledge, and it was expressed 

by the arrow ‘Eating rate’  ‘Intake’. Furthermore, the perceived salt intensity was 
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hypothesized to affect bite size. We introduced this hypothesis according to the 

proven effect of aroma intensity on bite size (de Wijk et al., 2009). In this network, 

‘Bite size’ and ‘Bite frequency’ were assumed to be independent since there was no 

apparent correlation between these two variables (raw data inspected). Net II carries 

all the arrows from Net I and contains an additional arrow ‘Salt intensity’  ‘Intake’ 

that is a direct link of the investigated relationship in the original study. In turn, Net 

III differed from Net II by the direct pathway from ‘Bite size’ to ‘Intake’. This direct 

pathway accounts for the extra information from ‘Bite size’ that ‘Eating rate’ cannot 

pass on to ‘Intake’ via the connection ‘Bite size’  ‘Eating rate’  ‘Intake’. With the 

same argument, Net IV was added with the direct pathway from ‘Bite frequency’ to 

‘Intake’ onto the Net III structure. The two arrows from ‘Bite size’ and ‘Bite frequency’ 

towards ‘Intake’ were seen as the hypotheses of this chapter. 

 Table 5.2 shows the scores of the information criteria of the four network 

models. Net IV had the highest log-likelihood score and AIC score; Net I had the 

highest BIC score. The log-likelihood criterion is always in favor of more complex 

models, as complexity translates to a higher flexibility in fitting any given dataset. 

This concept is visualized by the increase in the log-likelihood score when adding 

one more arrow to the current structure: Net II vs. Net I, Net III vs. Net II, and Net IV 

vs. Net III. The AIC score takes into account not only the goodness of fit but also the 

parsimony of the models, i.e. keeping the model simple and avoiding over-fitting of 

data. This criterion gives a larger penalty for models having more parameters. The 

BIC score also punishes the model complexity by giving a penalty that is heavier than 

the AIC.  

Table 5.2: Information criteria (IC) of the four model networks. The scores were calculated by HUGIN 
software. Model with the highest score (formatted bold) represents the best of the statistical data 
according to the selected criterion.

Network/IC Log-likelihood AIC BIC

Net I -3974.82 -3991.82 -4022.02

Net II -3968.88 -3991.88 -4032.74

Net III -3963.94 -3989.94 -4036.13

Net IV -3960.47 -3989.47 -4040.99

The BIC and AIC criteria were in favor of different models; BIC tends to prefer Net I 
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while AIC tends to prefer Net IV (the differences between the scores are small). Both 

AIC and BIC do already penalize model complexity. In the case that after penalizing 

models of different complexity do have comparable model selection values, the 

scientist can choose the one that better fits the primary task of the model, e.g. 

whether that is prediction where one would typically choose the smaller, or gaining 

new insights where one would typically choose the more complex model. Always 

choosing the less complex one would mean to double-penalize beyond the scheme 

of the information criteria, and displays some general mistrust to their capability 

to fight over-fit. A more complex model would result in more diverse inferences, 

to examine the relationships of interest. Therefore, Net IV was chosen as the best 

model and used to perform inferences as shown in the following section. This model 

network is from now on referred to as Soup Intake Network.

 5.3.2 Inferences 

In Bayesian networks the step corresponding with hypothesis testing is the structure 

learning respectively the model selection as described in section 5.3.1. Once that 

decision is made the model parameters can be learnt and the full model can be 

used for inference and for quantifying the causal relationships, which corresponds 

with the interpretation of least square means (also called predictive means) in the 

more familiar ANOVA setting. Once being fed with the dataset and the pre-defined 

structure, the HUGIN software automatically calculated the parameters of the Soup 

Intake Network (information not shown). The initial probability distribution of the 

network (Figure 5.3) was then calculated based on these parameters (see Phan et 

al., 2010 for examples). In HUGIN, the continuous variables are presented as normal 

distributions or a combination of several normal distributions; their probability 

density function is represented by sample mean and sample variance. The initial 

probability distribution represents the model network when no further information 

on the variables is provided. It acts as the working interface with the model users as well 

as the base to perform inferences.  Performing inference means updating (instantly and 

automatically) the network probability distribution when certain information on network 

variable(s) is provided. 
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Figure 5.3:
Initial probability distribution of 
Soup Intake Network. 

Influence of salt intensity on bite size and ad libitum intake. Figure 5.4 

demonstrates the inferences performed when setting evidence on ‘Salt intensity’ 

in Soup Intake Network. The soup having ideal salt intensity tended to produce the 

highest bite size (7.80 g); whereas the soup with high salt intensity led to a smaller 

bite size than the soup with low salt intensity did (7.51 g vs. 7.78 g). The same pattern 

was observed for ad libitum intake. The highest intake was inferred when the soup 

had an ideal salt intensity (271 g). A lower ad libitum intake was obtained for the 

soup with high salt intensity compared to the soup with low salt intensity (236 g vs. 

250 g), the difference being about 6%.
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Figure 5.4: Inferences on ‘Salt intensity’. Probability distribution of Soup Intake Network (also Net IV in 
Figure 5.2, only part of the network is shown) was calculated when evidence is provided for ‘Salt intensity’: 
(a) ‘low’, (b) ‘ideal’, and (c) ‘high’. Inspecting changes in mean and variance of ‘Bite size’ and ‘Intake’ over 
the three conditions allows us to examine the influence of ‘Salt intensity’ on these two variables. 

 The original paper has reported the same pattern for the influence of salt 

intensity on intake. The ANOVA analysis showed that the intake of the soup having 

ideal salt intensity is significantly higher than that of the other two soups. Although 

being equally pleasant, the soup having high salt intensity yields a significantly 

lower intake than the soup having low salt intensity. This decrease in intake has been 

reported to be about 7.5% (235 g vs. 254 g). There was a difference in the extent of 

decrease in intake found by the original work and that calculated by the current work 

(7.5% vs. 6%). This difference can be explained by the presence of extra variables 

(bite size, bite frequency, eating rate) in the Soup Intake Network model compared 

to the simple model (salt intensity and intake) used in the original study. 

Influence of bite size and bite frequency on ad libitum intake. A series of inferences 

were performed to record changes in intake with every step of 10% increase in bite 

size and in bite frequency over their observed range. The 10%-increase step of 

each variable was calculated to be one-tenth of the range between the mean +/- 
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3*Standard Deviation (covering more than 99.7% of the observed variation). This 

step was equal to 0.93 g for ‘Bite size’ and 2.25 bites/min for ‘Bite frequency’. Figure 

5.5 shows the inferred mean and standard deviation of intake depending on bite 

size (5a) and on bite frequency (5b). The series of input values for bite size and bite 

frequency started with the minimum among their observed values: 4.64 g and 1 

bites/min, respectively. The graphs in Figure 5.5 clearly show that ad libitum intake 

increased with a considerably larger extent when increasing bite size than when 

increasing bite frequency. The increase of intake was calculated to be 28 g when 

bite size was increased by 10% (the range of intake increase is from 7% to 17%). The 

increase of intake was only 8 g when bite frequency was increased by 10% (range 

from 3% to 4%).

Figure 5.5: Comparing the effect of bite size and bite frequency on intake. The mean and standard 
deviation of ‘Intake’ were inferred by Soup Intake Network at every 10% increase of ‘Bite size’ and ‘Bite 
frequency’.

Role of eating rate in the effect of bite size on intake. We want to quantify the 

information of bite size carried by eating rate towards intake.  Two models Soup 

Intake Network (also Net IV) and Net II (Figure 5.2) were studied together for this 

purpose. The direct arrow ‘Bite size’  ‘Intake’ is present in Soup Intake Network 

but not in Net II.  The two networks also differed in the presence of the arrow ‘Bite 

frequency’  ‘Intake’. However, this difference did not affect the current inferences 

because bite size and bite frequency were assumed to be independent. 
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 The relationship between intake and bite size under the condition ‘Salt 

intensity’ = ‘ideal’ inferred by Soup Intake Network was compared with that inferred 

by Net II (Figure 5.6a). The inferred mean eating rate was also plotted against bite 

size obtained with both models (Figure 5.6b). In these inferences, the evidence ‘Salt 

intensity’ = ‘ideal’ was set as background to rule out the flow of information from bite 

size towards intake via salt intensity. It is shown that the changes in eating rate stayed 

the same with or without the arrow ‘Bite size’  ‘Intake’ (Figure 5.6b). Without that 

arrow, Net II predicted a higher intake at small bite sizes and lower intake at larger 

bite sizes than the Soup Intake Network model (Figure 5.6a). 

Figure 5.6: Influence of eating rate on the effect size of the relationship between bite size and intake. The 
increase in mean intake due to increased bite size (at 10% increase) is compared when the arrow ‘Bite 
size’  ‘Intake’ is present in the model (Soup Intake Network) and when it is not (Net II) (a). The changes 
in eating rate are also tracked for both cases (b). The variable ‘Salt intensity’ was fixed at the ‘ideal’ state 
for all the inferences above.

 

 Overall, the mean intake increased to a lesser extent when increasing bite 

size, according to the prediction of Net II. The increase of intake under 10% increase 

of bite size obtained with Net II was calculated to be about 17 g (increase range from 

7% to 16%), while the increase obtained with Soup Intake Network was about 28 g 

(increase range is from 7% to 17%). Comparing these increases, we can estimate that 

eating rate carried about 60% (17/28) of the total effect of bite size on intake. 
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5.4 Discussion

This chapter revisited the dataset of a published study to illustrate the potentials 

of Bayesian networks in modeling food intake. In this section, we discuss how this 

modeling technique can make the most use of available information (5.4.1), and how 

its inference procedure and graphical nature can help to generate new hypotheses 

(5.4.2) and to visualize and quantify the flow of information (5.4.3).

  5.4.1 Making the most use of available information

This chapter has shown that Bayesian networks can use the information on both 

causal relationships and the statistical data with a large number of missing values. 

When suggesting a structure for Soup Intake Network, not only the hypothesis 

being tested (‘Salt intensity’  ‘Intake’) was taken into account, other sources of 

information supporting causal relationships were also employed. These sources were 

deterministic relations due to mathematical dependencies (‘Bite size’ ‘Eating rate’ 

and ‘Bite frequency’  ‘Eating rate’), domain knowledge (‘Eating rate’  ‘Intake’), 

and further hypotheses (‘Bite size’  Intake’ and ‘Bite frequency’  ‘Intake’). As such, 

the variables of interest were connected in a systematic and justifiable manner. In 

addition, the bite size and bite frequency data were included into the model building, 

even though they contained up to about 20% missing values. This was possible due to 

the Expectation – Maximization algorithm (Lauritzen, 1995), which is adapted in most 

Bayesian network software (including HUGIN). The EM algorithm estimates missing 

values based on the available information; therefore, Bayesian networks can handle 

missing data directly and competently if the data are missing at random. In contrast, 

in most classical statistical approaches, one needs either to exclude the observations 

containing missing values or to do a preceding missing value imputation step. This 

imputation step is not integrated in the actual analyses, and it is often difficult to 

decide which is the best or most appropriate procedure among the multitude of 

available possibilities. This drawback explains why the original work chose not to take 

into account the data on bite size and bite frequency.

 5.4.2 Generating new hypotheses

The inferences in Bayesian networks allow us to predict the outcome variable (or 
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any other variables) given the information on one or more variables of interest. 

Through this procedure, we found qualitatively the same relationship between salt 

intensity and ad libitum intake as reported in the original paper, but also gained 

further information. Since the current model has not been validated with new data, 

the information obtained in addition to the findings published in the original paper 

is considered as new hypotheses. 

 First, the new hypotheses concern the effect of salt intensity on bite size. 

According to the Soup Intake Network model, ideal salt intensity soup leads to 

people eating with the largest bite sizes. This inferred observation is in line with the 

finding on smaller bite sizes for less pleasant foods (DiMeglio & Mattes, 2000). It 

was also shown that higher salt intensity soup results in smaller bite size compared 

to lower salt intensity soup of similar pleasantness. This result is supported with 

empirical data obtained by another study using similar test soups (Bolhuis et al., 

2011). In this study, bite size has been proven to be significantly smaller for the soup 

with high salt intensity compared to the soup with low salt intensity during the first 

half of the soup consumption. Consistently, higher aroma intensities result in smaller 

bite sizes as de Wijk et al. (2009) concluded for custard desserts, however, one has to 

note that the pleasantness was not matched for these products. Combining all the above 

observations, we can illustrate the effect of salt intensity on bite size by Figure 5.7. 

Figure 5.7: 
Possible explanation of the effect of salt intensity 
on bite size. Pleasantness can explain only part of 
the effect of the salt intensity on bite size.

 Salt intensity was generalized to be continuous ratings of perceived saltiness. 

The effect of saltiness on pleasantness is one pathway that explains the influence of 

salt intensity on bite size. However, the effect is still observable after ruling out the 
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role of pleasantness. This fact allowed us to draw the direct arrow ‘Salt intensity’  

‘Bite size’.

 Second, the new hypotheses also concern the effect of bite size and bite 

frequency on ad libitum intake. In the original study, the data on bite size and bite 

frequency were not used, therefore the information related to these variables was 

absent. The Soup Intake Network model showed that increasing bite size or bite 

frequency results in higher soup intake. In addition, it was inferred that the effect of 

bite size on intake is about three times stronger than that of bite frequency. Larger 

bite size has been reported to increase intake of milk-based chocolate custard (Zijlstra 

et al., 2009) and that of orangeade (Weijzen et al., 2009). However, to the authors’ 

knowledge, the estimation of the differences in the effect size of bite size and bite 

frequency on intake has never been done before. This new idea would be interesting 

to test in future experiments.

 5.4.3 Visualizing and quantifying the flow of information

The concept concerning the flow of information can already be perceived via the 

suggested explanation of the effect of salt intensity on bite size (Figure 5.7). The 

following elaborates on this concept and its usefulness in extracting and representing 

information due to the power of Bayesian networks. The discussion is based on the 

role of eating rate in the effect of bite size on intake.

 When setting evidence on bite size in Soup Intake Network (Net IV), the 

information from bite size towards intake can flow via three pathways: direct, via 

eating rate, and via salt intensity. When setting evidence on bite size in Net II, the 

information from bite size towards intake can flow via two pathways: via eating 

rate, and via salt intensity (Figure 5.2). The background information ‘Salt intensity’ 

= ‘ideal’ allowed us to rule out the via salt intensity pathway. Consequently, the flow 

of information from bite size towards intake was allowed only via eating rate in Net 

II, and was possible with both direct and via eating rate pathways in Soup Intake 

Network.

 Without the presence of the arrow ‘Bite size’  ‘Intake’, the effect of bite 

size on intake was reduced. In other words, the extreme values of predicted intake 

were pulled closer towards the average, or the prediction lost a certain amount of 

sharpness. Obviously, eating rate can transfer only part of the information from 
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bite size towards intake as illustrate in Figure 5.8. On the basis of effect size, the 

transferrable information was about 60%. 

Figure 5.8:
Possible explanation of the effect of bite size 
on intake. Eating rate can transfer part of the 
information from bite size towards intake, which 
accounts for about 60% of the effect size.

 In literature, researchers recognize eating rate as a possible explanation 

for the influence of some food or consumer characteristics on the observed intake 

(Spiegel et al., 1993; Andrade et al., 2008; Zijlstra et al., 2010; Viskaal-van Dongen et 

al., 2011). Yet, this explanation has been only communicated at the level of arguments. 

Bayesian networks, in contrast, enables the explanation to be visualized with the 

graphical representation of causal relationships and quantified with the inference 

process.  Quantifying the flow of information is beneficial in any situation where a 

variable is believed to be a mediating factor of a causal relationship.

5.5 Conclusions

As inputs to build a Bayesian network, scientists can make the most use of the 

available information, from domain knowledge to the current statistical data and 

even include missing values. As outputs, there are a graph representing dependency 

among variables of interest and a set of parameters quantifying these dependencies. 

The graph allows the model-users to quickly grasp the relationships. It is of most 

value when the model comprises a large number of variables. The parameters 

support the inference procedure, which allows the model-users to examine the any 

relationships. With this procedure, the effect sizes can be estimated and compared in 

a transparent manner. Not to mention, the flow of information from an explanatory 
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variable to an outcome variable can be quantified to estimate the weight carried by 

an intermediate variable if presents.

 By applying Bayesian networks to remodel a previously available dataset 

(Bolhuis et al., 2012), we could replicate quantitatively the results communicated in 

the original paper. Furthermore, the current model network also predicted that (1) 

the ad libitum intake increases about 28 g (7% - 11%) at 10% increase of bite size and 

about 8 g (3% - 4%) at 10% increase of bite frequency, (2) bite size explains partly the 

influence of salt intensity on the ad libitum intake, (3) eating rate explains partly the 

effect of bite size on the ad libitum intake, and this pathway accounts for 60% on the 

basis of effect size. Since the current model network has not yet been validated with 

new data, these predictions can be seen as new hypotheses. 

 To conclude, Bayesian networks enable scientists to generate new insights 

into a research domain. This technique allows a clear visualization of complex 

problems and a transparent quantification of information flows in the model. 
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This general discussion consists of two parts. The first part (6.1) synthetizes the 

outcomes of Chapter 3 and Chapter 4, which leads to the development of Global 

Experimental Design approach. The second part (6.2) gives a conclusion on the 

whole of the thesis and discusses the outlook of this thesis. The approach Global 

Experimental Design is represented separately and thoroughly because it stands out 

as an important product or message of this thesis.
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6.1. Towards Global Experimental Design in food science using Bayesian 
networks

 6.1.1 The need to combine data from related studies

To understand the underlying mechanisms of complex phenomena in real life, 

scientists of different disciplines approach it from different perspectives. Within each 

perspective, a reductionist approach is adopted, where the problem is typically broken 

down into sub-problems that answer specific questions. It is usually tacitly assumed 

that the reverse process is possible, i.e. integrating the obtained information on the 

sub-problems to rebuild the complex phenomenon. This process is unfortunately 

difficult to achieve as independent scientific studies, despite having similar objectives, 

are in general not designed in a way that allows their data to be combined. The ability 

to combine raw data from various studies would be a big advantage in answering 

real-life problems. It is investigated here what would be needed to develop such an 

approach, proposed as the Global Experimental Design. 

 Previous work on modeling sensory satiation using Bayesian networks 

demonstrated a need for Global Experimental Design (Phan et al., 2012; Phan 

and Garczarek et al., submitted for publication). In this work, data was used from 

studies that were independently designed and conducted to investigate the impact 

of different sensory aspects on ad libitum food intake (definition of all variables 

mentioned in this chapter can be found in Appendix 6.A). We faced two hurdles 

that need to be overcome if the goal to combine data in a meaningful way is to be 

achieved. Hurdle One is a lack of Structural Linking Information (Phan et al., 2012); 

Hurdle Two is a conflict in causal relationships underlying the experimental designs 

(Phan and Garczarek et al., submitted for publication). To avoid these hurdles, specific 

actions need to be taken from the very beginning when designing the experiments. 

The objective of the present paper is to describe the Global Experimental Design 

approach and to demonstrate its importance in the process of integrating data from 

independent but related studies.

 6.1.2 Hurdle One: lack of Structural Linking Information

The first effort in combining data was based on two controlled studies that investigated 

how different sensory aspects influence ad libitum food intake of a tomato soup. First, 
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the Aroma study investigated the effect of aroma concentration and aroma duration 

(Ramaekers et al., submitted for publication). Second, the Taste study investigated 

the effect of perceived intensity of saltiness (salt intensity) by manipulating the salt 

concentration (Bolhuis et al., 2010). 

 In order to understand the assumed underlying causal relationships in those 

experiments, Bayesian networks were used (see Chapter 4). In short, Bayesian networks 

are graphical probabilistic models consisting of two components: structure (graph) 

and parameters (probabilities) (Heckerman, 1995). The network structure represents 

the causal relationships among the variables; the network parameters quantify these 

relationships through probability expressions (Phan et al., 2010). The graphical nature 

of Bayesian networks makes it easy to communicate and comprehend the overall 

picture of a research domain, even if a large number of variables are involved. 

 The graphical representation is shown in Figure 6.1a for the Aroma Study and 

in Figure 6.1b for the Taste Study. It is rather straightforward to draw the structure 

(causal dependencies among the variables) of the combined network from the two 

single networks (Figure 6.1c). 

Figure 6.1:  A combined network from single networks. Aroma network (a) represents the design of the 
Aroma study. Taste network (b) represents the design of the Taste study. The combined network (c) was 
drawn taking into account the specified causations. This figure was adapted from Phan et al. (2012).

The causal relationships (i.e. arrows) were based on the domain knowledge 

(literature) and the research hypotheses of the original studies. Measurements on 

variables beyond those that were addressing the main objectives of the studies 

were also included, namely ratings on the overall flavor intensity and pleasantness. 

However, the challenge is in the combination of the two independent datasets, to 

integrate them as one combined database. In this combined database, there was no 
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information on salt aspects in the Aroma study and no information of aroma aspects 

in the Taste study. This missing information was deemed to be necessary to allow 

a reliable estimation of model parameters. Such information was therefore called 

Structural Linking Information. 

 The problem that Structural Linking Information is lacking occurs when 

studies are designed to answer their own specific research questions without the 

intention of combining data with related studies. Some variables might be relevant 

for one question but not for the other, and hence are typically not measured and/or 

not documented. To rectify this problem, the missing information needs to be derived 

by different means - by making use of all available information or performing extra 

experiments. Some information can directly be derived from the original studies. 

In the current case study, the value of salt concentration in the Aroma study was 

calculated from the ingredient information of the soups used. Some information 

can also be logically deduced through reasoning on the experimental designs. For 

instance, a state (level) on the aroma concentration and aroma duration could be 

assigned for the observations of the Taste study. Such decisions can be justified 

by consensus among the experimenters and modelers. In some cases, performing 

extra experiments is required. This was needed to obtain the individual ratings of 

salt perception for the observations of the Aroma study. Given the Structural Linking 

Information, the parameters (i.e. conditional probabilities) of the combined network 

can be learned (estimated) from the combined database. This combined network 

provides a broader view over the problem of interest in terms of dependency among 

the variables. It also allows the examination of possible combined effects of the 

variables that have been manipulated in the individual experiments (e.g. aroma 

duration and salt concentration). Such extra information cannot be obtained if the 

two sets of data are analyzed separately.

 It is, however, not always possible to provide Structural Linking Information, 

once the individual studies have been completed. The costs of extra experiments can 

be prohibitive or it may not be possible to attain consensus among experts while 

creating new states for a variable. It is shown below in section 6.4 that the approach 

Global Experimental Design enables researchers to circumvent this problem.  
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 6.1.3 Hurdle Two: conflict in underlying causal relationships 

The second effort in combining data was based on two other controlled studies 

investigating the ad libitum intake of a tomato soup (Bolhuis et al., 2011; Bolhuis et 

al., submitted for publication). Both studies used food exposure time and a second, 

different, variable as explanatory variables of the intake.  In order to rule out the 

influence of eating rate on the ad libitum intake, the experimenters kept the eating 

rate constant in all experimental conditions of these studies. Bite interval, bite size, 

and bite residence time were manipulated to obtain the desired conditions. Phan 

and Garczarek et al. (submitted for publication) have analyzed these experimental 

designs to judge the possibility to combine their data with other related studies. This 

work used only the graphical component of Bayesian networks, i.e. the representation 

of causal relationships.

 Eating rate is a derived variable of bite interval and bite size because of the 

deterministic relationship: Eating rate = Bite size*60/Bite interval (see Appendix 

6.A). Translated into graphs, bite interval and bite size are represented as the causes 

and eating rate as the effect (Figure 6.2a). The causes are seen as interventional 

causes and are the ones that can be directly manipulated in the experiments, and 

hence makes them easy to translate into advice or actions in real life. For example, 

to reduce the meal intake, it is advisable for a consumer to take a rather small bite 

(Weijzen et al., 2009; Zijlstra et al., 2009), and food companies may consider the 

products of small portion sizes or serving sizes (Rolls et al., 2002; Ledikwe et al., 

2005; Flood et al., 2006). The causal relationships among bite interval, bite size, and 

eating rate as shown in Figure 6.2a represent well their relationships in the studies 

and also reflect real-life situations. Examples of such natural settings can be either 

those three variables, which are all observational, or eating rate being observed while 

manipulating bite size and/or bite interval.

 However, eating rate was fixed in the two original studies and this fact 

reversed the natural causal relationships (Figure 6.2b). Bite interval and bite size were 

manipulated together to keep the eating rate constant. As such, the two primary 

variables have become dependent on each other in these settings. The eating rate 

then appears to be the cause, and bite interval and bite size appear to be the effects. 

Phan and Garczarek et al. (submitted for publication) have shown that it is possible 

to combine raw data of the two original studies described above, for the structures 
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(causal relationships) underlying their experimental design were similar. However, it 

is impossible to combine their data with those from related studies that reflect real-

life situations, such as in the study by Bolhuis et al. (2012), as depicted in Figure 6.2a. 

This is a conflict in causal relationships and there is no way to rectify it at this stage. 

That means these designs are useful only in relation to their own scope but not for 

the general research topic of understanding food intake. This is the background for 

Hurdle Two. The Global Experimental Design approach is proposed to avoid facing 

Hurdle Two unexpectedly, this is discussed in the next section. 

Figure 6.2: Reversal of causal relationships. Figure 2a represents the natural setting in eating. The 
experimental design (b) that manipulated bite interval and bite size when keeping eating rate constant 
reverses the causal relationships among these variables found in the natural setting. 

 6.1.4 Solution: Global Experimental Design 

Global Experimental Design is proposed to give guidance on how to design 

independent but related studies to allow the integration of their raw data at a later 

stage. This approach involves two main steps. The first step is to build an overall 

network structure. The second step is to design individual studies, as before, but now 

derived from the overall network. 

Building an overall network structure

The objective is to identify variables of interest for a specific research problem and 

then to draw possible causal relationships among them. This task is similar to what 

scientists need to do before designing a controlled study, but on a much larger 

scale, i.e. concerning many more variables. Building a network structure on a large 

scale consists of two main challenges. The first is to select certain variables among 

many for the network. The second is to suggest the causal relationships among the 
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variables. To overcome these two challenges, knowledge and consensus from domain 

experts are of utmost importance. One should keep in mind, however, that the first 

overall network is only a formal suggestion with expert support, and is subject to 

improvement when more data are available. 

 To illustrate the approach, an overall network for Food Intake (a model 

predicting ad libitum intake) has been generated with a professionally facilitated 

workshop gathering more than 20 domain experts. The participants were asked to 

generate variables contributing to ad libitum intake in four areas: physical chemical 

properties of foods, sensory perception, oral processing, and gut feedback. 

 The workshop consisted of a group session and a plenary session. In the 

group session, the experts worked in pairs to write down the most relevant variables 

belonging to the four areas mentioned; the plenary session was led by the facilitator. 

All these variables were first shared and selected for each area based on the agreement 

among the participants. Important remarks and unsolved points were written down 

to ensure the time line and main focus. This was followed by the specification of the 

cause-effect relationships connecting the selected variables. To simplify the process, 

the causal relationships toward the outcome variable (Intake) were prioritized over 

the relationships among the explanatory variables, i.e. possible interactions between 

texture, taste, aroma variables. 

 The decision on causal relationships can be based on deterministic relations, 

causations confirmed in the scientific literature, or common beliefs and hypotheses 

of the experts. Such a practice has been clearly described in our previous papers 

(Phan et al., 2012; Phan and Bolhuis et al., submitted for publication; Phan and 

Garczarek et al., submitted for publication). Figure 6.3 shows the primary outcome of 

the workshop just for illustration of the size of the obtained network.
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Designing individual studies based on the overall network

The overall network allows the experimenters to see each (future) individual study 

as a part of a bigger picture. Hence, it can help to avoid not only a conflict in causal 

relationships (Hurdle Two) but also the problem of missing information (Hurdle 

One). 

 First and foremost, the overall network visualizes how the information is 

assumed to flow among the variables, i.e. from causes to effects, which helps in 

the formulation of hypotheses. An individual experiment can contribute to the data 

integration only if the causal relationships underlying its design do not violate those 

of the overall network. To put it another way, a pair of cause and effect variables 

found in the overall network must conserve their role in the experimental design. 

In some cases, this prerequisite is not applicable because a specific design must be 

followed to answer specific scientific questions. One should be aware that these cases 

cannot be considered for the data integration. Phan and Garczarek et al. (submitted 

for publication) have illustrated this situation earlier with the reversal of the causal 

relationships due to the control of a secondary or derived variable. 

 Second, the overall network shows explicitly how the variables of primary 

interest in an individual experiment connect to the rest. The Structural Linking 

Information can then be recognized and taken into account in the experimental 

design. That is, each experiment might have to gather more data than necessary for 

its own scope. For example, subjects participating in the Aroma study could have 

been asked to rate the perceived salt intensity in the testing sessions (Phan et al., 

2012). This information was not of direct value for the hypothesis testing procedure 

in the Aroma study, but it plays an essential role when combining data from Aroma 

study with those from Taste study. Moreover, the effort to identify the structural 

linking information also requires a global consideration on each variable of interest 

regarding its range of possible values. The variables should be defined and measured 

in a standardized manner. In this way, the states (levels) of the explanatory variables 

manipulated in the individual experiments can be handled adequately and judged 

independently from the experiments. For example, the manner in which Aroma 

concentration and Aroma duration were defined and manipulated could have been 

made more explicit in relation with these aspects in the real-life situations (Phan et 

al., 2012). 
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 6.1.5 Discussion, conclusions, and perspectives

Food problems are complex (van Boekel, 2008). Therefore, integrating data from 

different studies is highly desired to obtain a more holistic view. The use of Bayesian 

networks is emerging in food science. For example, food safety has used Bayesian 

networks to assess microbial risk in along the production chains (Barker et al., 2002; 

Barker et al., 2005). Another potential application in food safety is foreseen for 

assessing the performance of different food safety management systems (Sampers 

et al., 2010; Sampers et al., 2012; Luning et al., 2013). Food product design can also 

gain benefit from this modeling technique as Corney (2000) has discussed. This is 

because product design requires various sets of information - physical and chemical 

properties of foods (instrumental analyses), sensory attributes (sensory panel) and 

consumer preferences (consumer panel) - which are intricately linked but are difficult 

to capture in entirety in a single study.

 The two hurdles identified in this chapter are not specific to the studies 

on sensory satiation; they can occur in any research domain when combining raw 

data from independently performed but related studies. Hurdle One, i.e. missing 

information, occurs naturally because of the specific or focused needs of individual 

studies. Hurdle Two is more likely to occur only with sophisticated experimental 

designs involving the control of secondary variables.

 It has been shown that data integration is possible only when special efforts 

are taken during the early phases of experimental design. The Global Experimental 

Design approach offers a framework which would guide the designing of individual 

experiments. Building an overall network is the core of this approach and requires 

taking the initiative to identify and gather experts. Such an initiative could be feasible 

within a research group or possibly with larger national research or EU projects where 

more complex and multidisciplinary themes are involved. The overall network acts 

as a guideline to avoid conflicts in causal relationships and  overlooking of essential 

linking information.

 This is the first time an approach to allow the combination of raw data from 

related controlled experiments has been communicated. Global Experimental Design 

could make a new impact on scientific practices in food science and technology as 

well as in other fields. This approach promotes the sharing or publishing of raw data 

as well as the standardization in data collection. 
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6.2 Conclusions and outlook

The objective of this thesis was to explore the use of Bayesian networks to 

combine raw data of independently performed but related experiments to build a 

quantitative model of sensory satiation. 

 The biggest challenge was that no framework has yet been published 

supporting the data combination from related controlled experiments to build a 

quantitative model, either using Bayesian networks or any other tools. Meta-analysis 

is a popular statistical procedure that assists the combination of results from related 

studies. This procedure has been mainly used in the medical field where the general 

goal is to get a good estimate of either the effect size of a specific drug or the 

strength of a risk factor (Sutton & Higgin, 2008). Meta-analysis is typically based on 

summary characteristics such as effect size, sample size, mean, and variance and thus 

suffers from the loss of information (among other things). This current thesis aimed 

at combining raw data to increase the understanding of the combined influences 

from several factors by providing a quantitative model of sensory satiation. This goes 

beyond what could be achieved by standard meta-analysis as working with raw data 

would minimize the loss of information and the bias that might result from working 

with the summary characteristics.

 6.2.1 Reflections on the main outcomes 

First, a tutorial on Bayesian networks has been, for the first time, written for the 

field of food science (Chapter 2). Statistical methods are most often associated with 

engineering, mathematics, and the medical sciences. As a result, food researchers 

are forced to use methods that were originally aimed at other disciplines (Pripp, 

2013). This could hinder the use of many statistical innovations in the field of food 

research due to a lack of understanding of these statistical tools. This chapter makes 

the theoretical background of Bayesian networks accessible to food researchers by 

gently introducing it through a food example.

 Second, two hurdles have been identified in the process of combining data of 

related studies that are performed independently without the intention of combining 

their data for a pooled analysis (Chapter 2 and Chapter 3). The first hurdle is a lack 

of information, which was termed as Structural Linking Information. This hurdle 
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becomes apparent when building the combined data table based on separately 

obtained datasets. This missing information is typically measured and recorded only 

in some but not all of the studies as it was only relevant for the specific objective of 

some studies. Such information appears to be necessary to allow a reliable estimation 

of parameters of the combined model network. The second hurdle is a possible 

conflict in causal relationships underlying the experimental design of the individual 

studies. This hurdle mainly concerns sophisticated designs that involve the control of 

secondary (or calculated) variables. In such cases, one or more causal relationships 

found in real-life settings may be reversed. The obtained data are then beneficial 

only in the framework of those studies, and not for being integrated with the data 

from other studies having a different causal structure.

 Third, the Global Experimental Design approach has been proposed as a 

potential solution to overcome the identified hurdles (Chapter 6, part I). The core of 

this approach is to build an overall network structure prior to designing individual 

related studies. This overall network visualizes all variables of interest for a specific 

research problem and the causal relationships among them. It provides guidance on 

which extra information to be gathered and on the causations to be respected when 

designing individual studies. Moreover, it also assists scientists to design (individual) 

studies such that the obtained results can be translated directly into actions in real 

life. In practice, the overall network can be built with the participation of domain 

experts to maximize the consensus.

 Fourth, it has been shown that scientists are able to gain more insights into a 

research domain when using Bayesian networks (Chapter 5). The graphical component 

of this modeling technique allows a quick grasp of the flow of information even with 

a complex problem; its probabilistic component allows a transparent quantification 

of any information flows of interest through inferences. Such outcomes can be 

obtained with observational data. These powerful features have been illustrated 

when comparing the information extracted from the same single dataset by using 

Bayesian networks versus using classical statistical procedures.

 6.2.2 Fulfillment of the objective

Given the limited availability of published applications of Bayesian networks in Food 

Science, this research has been of an explanatory nature. The use of Bayesian networks 
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to combine raw data of independently performed but related experiments has been 

explored. A quantitative model of sensory satiation has not yet been attained. 

 The major outcome of this thesis is the development of the approach of 

Global Experimental Design using Bayesian networks (Chapter 4). This approach 

incorporates and facilitates the combination of raw data from related studies. 

Therefore this approach has the potential to overcome the current limitations in 

developing an overall integrative model of sensory satiation. 

 Bayesian networks have been demonstrated throughout the thesis to 

be a powerful tool in supporting the design of experiments, analyzing data, and 

communicating the results.

 6.2.3 Conclusions

It is possible to combine raw data from related studies for a meaningful analysis if 

extra effort is made in the phase of experimental design. The approach of Global 

Experimental Design outlines this phase with the building of an overall network. 

Using Bayesian networks as an exploratory analysis tool, scientists are able to gain 

more insights into a research domain.

 6.2.4 Outlook

The motivation of this thesis was to combine raw data from the related studies that 

have already been completed. Yet, its outcomes have drawn our full attention to 

the phase of experimental design. It was found that in order to combine data from 

separate studies, it is of critical importance that scientists work together towards 

the common goal of understanding a particular research theme. In the proposed 

Global Experimental Design, we have demonstrated that it is possible to form a clear 

network structure to guide specific actions towards this goal. 

 Global Experimental Design has been developed from the attempt to 

use Bayesian networks to model sensory satiation. Yet, the core of this approach 

– building an overall network – makes use of only the graphical representation of 

this modeling technique. The graphical representation has indeed been widely 

used in reasoning and organizing information, e.g. mind mapping (Budd, 2004), 

or in other modeling techniques, e.g. path modeling (Tenenhaus, 2004) and neural 

network (Lacy, 1989; Fasel, 2003). Thus, the approach Global Experimental Design 
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can be applied independently from using Bayesian networks to model the obtained 

combined database. 

 Scientists have the freedom to use any other statistical procedures to extract 

the information from the combined database (e.g. obtained with Global Experimental 

Design). However, this thesis has found much reason to support the use of Bayesian 

networks in studying complex food problems (Chapter 5). The power of this modeling 

technique encourages scientists to first fully discover a complex scientific problem 

with observational studies. Controlled experiments should then be carried out only 

on relevant relationships to the problem. This practice is indeed in line with the 

common approach of performing scientific research as illustrated in Figure 6.4. 

Figure 6.4: Common approach of performing scientific research.

 The exploratory analysis on observational studies provides guidance to 

designing controlled experiments. Data obtained from the controlled experiments are 

subject to not only confirmatory analysis but also explanatory analysis. The second 

type of data analysis (explanatory) has received much less attention compared to 

the first type (confirmatory). The potential use of Bayesian networks emphasizes the 

possibility to perform exploratory analysis with data from controlled experiments. The 

information obtained from both types of analysis on data of controlled experiments, 

in turn, gives feedback to improve the design of future observational studies.

 In short, this work has provided new insights and has demonstrated a tool 

that enable scientists to integrate related information. The approach of Global 

Experimental Design using Bayesian networks is universal. It can be beneficial not 
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only to satiation studies or other food problems but also to any other fields of 

research where data integration is of interest.
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6.4 Appendix 6.A

Variable name Definition Unit Relationship

Intake (ad libitum) Amount of food eaten voluntarily by a 
subject until pleasantly satiated g

Bite size Weight of each bite g

Bite interval Time interval between the start of two 
subsequent bites s

Bite residence time Residence time of each bite in the oral 
cavity s

Bite frequency[i] Number of bites taken per minute bites/min = 60 / Bite interval

Eating rate Average amount of food eaten per minute g/min = Bite size * bite 
interval

Food exposure time[ii] Average oral residence time calculated for 
one gram of food. s/g = Bite residence time / 

Bite size

 

[i] referred to as bite number in the original paper(s); [ii] referred to as oro-exposure time in the original 
paper(s).
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Summary

Background

Food science problems are complex as they involve multiple disciplines and a 

multitude of factors that are interconnected with one another. Individual studies are 

not capable of capturing this complexity, but if integrated with related studies, a better 

representation of the investigated theme can be achieved. Unfortunately, individual 

studies are usually not designed to allow such integration, and the commonly used 

statistical methods cannot be used for analyzing integrated data.

The modeling technique of Bayesian networks has gained popularity in many fields 

of application, but emerged only recently in food science. A Bayesian network 

model has two components: graphical (structure) and probabilistic (parameters). 

The network structure represents the causal relationships among the variables of 

interest; the network parameters quantify these relationships through probability 

expressions. These features allow scientists working with Bayesian networks to deal 

with complexity.

Aim

This thesis was part of a larger project where various controlled experiments 

were independently designed and conducted to understand sensory satiation, i.e. 

how different sensory aspects influence the amount of food eaten in a meal. The 

development of satiation during a meal is a highly complex process that involves 

interaction of the chemical and physical properties of foods, sensory factors, cognitive 

factors, and also environmental factors. The specific objective of this thesis was to 

explore the use Bayesian networks to combine raw data of those studies to build a 

quantitative model of sensory satiation. 

Methods

The biggest challenge was that no framework had yet been published on supporting 

the data combination from related experiments to build a quantitative model, either 

using Bayesian networks or any other tools. 

A tutorial on Bayesian networks was first written to address the field of food science 

(Chapter 2). This chapter made the theoretical background of this modeling technique 
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accessible to food researchers by gently introducing it through a food example. The 

available data from various independent studies on sensory satiation were then 

examined for their potential combination. Finally, the outcomes of Bayesian networks 

on single data set were compared with those published using classical statistical 

procedures when analyzing the respective set of data. 

Main outcomes

Two hurdles were identified in the process of combining data of related studies that 

were performed independently without the intention of combining their data. A 

framework was proposed to avoid these hurdles when designing future related studies 

to enable the integration of their data. It has also been shown that Bayesian networks 

allowed scientists to extract more information by generating new hypotheses and to 

communicate the outcomes in a transparent manner.

 The first hurdle was a lack of essential information, which was termed as 

Structural Linking Information (Chapter 3). This hurdle became apparent when 

building a combined data table based on separately obtained datasets. The missing 

information is typically measured and recorded only in some but not all of the studies 

as it is only relevant for the specific objective of some studies. The Structural Linking 

Information is necessary for reliable estimations of parameters of the combined 

model network. It could be obtained by deriving it from existing information or by 

performing extra experiments; these practices are, however, not always feasible. 

Given the Structural Linking Information, model parameters of the combined network 

can be estimated. This allows the examination of possible combined effects of the 

variables that are independently manipulated in the individual studies. Such effects 

cannot be studied if the two sets of data are analyzed separately.

 The second hurdle was a possible conflict in causal relationships underlying 

the individual experimental designs (Chapter 4). This hurdle occurred with some 

experiments that involved the control of secondary explanatory variables. The 

graphical component of Bayesian networks was used to illustrate that one or more 

causal relationships found in real-life settings may be reversed in such experiments. 

The obtained data are thus useful only to the framework of those specific studies, 

but cannot be integrated with the data from other studies that have different causal 

structures. The latter effort can cause misleading analyses of the combined dataset. 
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In addition, the results obtained from such experiments were shown to be difficult to 

be translated into advice for actions in real-life occasions.

 The Global Experimental Designed approach, developed in this thesis, 

was proposed as a solution to avoid the two hurdles mentioned above (Chapter 6, 

section 6.1). The core of this approach is to build an overall network structure prior 

to designing individual related studies. This overall network visualizes all variables 

of interest for a specific research problem and the causal relationships among them. 

It provides guidance on which extra information to be gathered and on the causal 

relationships between variables that is to be respected when designing individual 

studies. Moreover, it also assists scientists to design (individual) studies such that the 

obtained results can be applied in real life. In practice, the overall network can be 

built with the participation of domain experts to reach a consensus.

 A justification for the goal to use Bayesian networks as an exploratory 

analysis tool in food science was presented in Chapter 5. With this technique 

scientists could make use of the domain knowledge in a transparent manner (e.g. 

to specify causation) and handle missing data. From the same single dataset, more 

information (considered as new hypotheses) was extracted with Bayesian networks 

as compared to classical statistical methods. The graphical component allows a clear 

visualization of a complex model network, and the probabilistic component allows 

a clear quantification of information flows in the model. Such a powerful tool could 

be of great value when working with the combined data from related studies (e.g. 

supported by Global Experimental Design).

Conclusions

This thesis has yet to attain a quantitative model of sensory satiation. However, it has 

provided new insights and has demonstrated a tool that would enable scientists to 

reach that final goal. 

 It is possible to combine raw data from related studies for a meaningful 

analysis if effort is made in the phase of experimental design. The approach of Global 

Experimental Design outlines this phase with the building of an overall network. 

Using Bayesian networks as a tool for exploratory analysis, scientists are able to gain 

more insights into a research domain.
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Potential applications

The two hurdles identified in this thesis are not specific to the studies on sensory 

satiation; they can occur in any research domain when combining raw data from 

independently performed but related studies. As such, the approach of Global 

Experimental Design is universal and can be beneficial to any research where complex 

and multidisciplinary themes are involved. This approach promotes the sharing or 

publishing of raw data, as well as the standardization in data collection.
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Samenvatting

Achtergrond

Het wetenschappelijke onderzoek aan levensmiddelen is vaak complex door 

een veelheid van onderling verweven factoren; om al deze factoren een plaats te 

kunnen geven vereist de inzet van verscheidene disciplines. Deze complexiteit kan 

niet goed worden geadresseerd als een bepaald probleem wordt gereduceerd tot 

één factor. Integratie van meerdere factoren tegelijk zou kunnen helpen om tot een 

betere benadering van de werkelijkheid te komen. Helaas zijn de meeste één-factor 

studies niet ontworpen om tot een dergelijke integratie te komen en de gebruikelijke 

statistische technieken zijn dan ontoereikend.

 Modelleren volgens de techniek van Bayesiaanse netwerken wint aan 

populariteit in verschillende onderzoeksvelden, maar wordt nog nauwelijks 

toegepast in het levensmiddelenonderzoek. Een Bayesiaans netwerk bestaat uit twee 

componenten: een grafische deel (dat de structuur weergeeft) en een probabilistisch 

deel (dat de parameters weergeeft). De netwerk structuur vertegenwoordigt de 

causale relaties tussen de variabelen die men onderzoekt en de netwerk parameters 

kwantificeren deze relaties door middel van waarschijnlijkheidsverdelingen. Deze 

aanpak is in principe geschikt om met complexiteit om te gaan.

Doel van het onderzoek

Het onderzoek beschreven in dit proefschrift maakte deel uit van een groter project 

over sensorische verzadiging waarin verschillende gecontroleerde experimenten 

onafhankelijk van elkaar werden opgezet, bijvoorbeeld een onderzoek op het effect 

van smaak en een ander op et effect van geur. Het doel van het grotere project was om 

te begrijpen welke sensorische aspecten van invloed zijn op de hoeveelheid gegeten 

voedsel tijdens een maaltijd. Het optreden van verzadiging is een zeer gecompliceerd 

proces waarbij chemische en fysische eigenschappen van levensmiddelen interacteren 

met sensorische, cognitieve en omgevingsfactoren. Het specifieke doel van het hier 

beschreven onderzoek was om te onderzoeken of het gebruik van Bayesiaanse 

netwerken het mogelijk maakt om de data uit de verschillende onderzoeken te 

combineren en aldus een model te bouwen dat sensorische verzadiging kwantitatief 

beschrijft.
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Methoden

De grootste uitdaging was dat er nog geen raamwerk beschreven is in de literatuur 

om een kwantitatief model te bouwen gebaseerd op individuele maar gerelateerde 

data, noch met Bayesiaanse netwerken, noch met welke andere techniek dan ook. 

 Begonnen werd met het beschrijven van een voorbeeld van hoe Bayesiaanse 

netwerken werken en hoe dit zou kunnen worden toegepast in levensmiddelen 

onderzoek (Hoofdstuk 2). De theoretische achtergrond werd duidelijk gemaakt in een 

voorbeeld aangaande een levensmiddel. Vervolgens werden de data die beschikbaar 

kwamen vanuit verschillende onafhankelijke studies onderzocht op hun mogelijkheid 

om ze te combineren in één kwantitatief model; daarbij werd de vergelijking gemaakt 

met resultaten verkregen m.b.v. de klassieke statistiek.

Belangrijkste resultaten

Het combineren van data van gerelateerde studies die onafhankelijk zijn uitgevoerd 

zonder bedoeling vooraf om ze te combineren leverde twee potentiele hindernissen 

op, beschreven in Hoofdstuk 3 en 4. De eerste hindernis kwam aan het licht bij het 

samenstellen van een gecombineerd data bestand gebaseerd op de afzonderlijk 

verkregen data bestanden. Informatie die verzameld was in de ene studie voor een 

bepaald doel bleek niet essentieel te zijn geweest voor een andere studie en werd 

daar dan niet gemeten. Bij het combineren van datasets bleek dat dan achteraf toch 

essentiële informatie te zijn voor een betrouwbare schatting van parameters van een 

gecombineerde model netwerk. Deze informatie die nodig is om onafhankelijke studies 

met elkaar te kunnen verbinden werd getypeerd als Structural Linking Information. 

Voor een deel kon deze benodigde informatie alsnog boven tafel gehaald worden of 

te kunnen worden verkregen uit additionele experimenten, maar dat is uiteraard niet 

altijd mogelijk. Het expliciet maken van Structural Linking Information maakt het wel 

mogelijk om uit gegevens van afzonderlijke, onafhankelijke studies gecombineerde 

effecten van variabelen te schatten, iets wat niet mogelijk is uit de afzonderlijke 

studies. Het werk beschreven in Hoofdstuk 3 was erop gericht een raamwerk te 

ontwikkelen dat deze eerste hindernis kan vermijden in toekomstige studies. Ook 

werd aangetoond dat het toepassen van Bayesiaanse netwerken het mogelijk maakt 

om extra informatie te verkrijgen uit de data, om nieuwe hypotheses te genereren en 

om de resultaten op een transparante manier te communiceren.



144144 145

 De tweede hindernis is beschreven in Hoofdstuk 4 en bestaat uit een 

mogelijk conflict in de causale relaties die ten grondslag lagen aan de individuele 

experimentele ontwerpen. Het ging daarbij om secundaire verklarende variabelen in 

sommige experimenten. De grafische component van Bayesiaanse netwerken maakte 

duidelijk dat een of meer causale relaties afgeleid uit de realiteit soms omgedraaid 

werden in experimenten. Het gevolg daarvan is dat de verkregen data alleen maar 

gebruikt kunnen worden voor de experimentele setting van dat bepaalde experiment 

en niet kunnen worden geintegreerd met data van andere studies met andere causale 

relaties, hetgeen zou resulteren in misleidende informatie als dat toch gebeurt. Ook 

kan de verkregen informatie niet meer gegeneraliseerd worden naar de realiteit 

waarvan de experimenten waren afgeleid. 

 Een motivering voor het gebruik van Bayesiaanse netwerken als een verklarend 

hulpmiddel voor de analyse van een probleem in het levensmiddelenonderzoek 

werd gepresenteerd in Hoofdstuk 5. Wetenschappers kunnen gebruik maken 

van kennis uit een bepaald domein op een transparante manier (bijv. om causale 

relaties te specificeren) en aldus met missende informatie om gaan. Vergeleken met 

klassieke statistische methoden bleek er meer informatie uit een dataset verkregen 

te kunnen worden met Bayesiaanse netwerken, leidend tot nieuwe hypotheses. De 

grafische component maakt het mogelijk om een complex netwerk overzichtelijk te 

visualiseren. De probabilistische component maakt het mogelijk om de informatie 

stroom in een netwerk te kwantificeren. Dit blijkt een krachtig hulpmiddel te zijn om 

data uit verschillende studies zinvol te kunnen combineren.

 In Hoofdstuk 6 wordt een benadering gepresenteerd als Global Experimental 

Design die onderzoekers in staat stelt om de twee eerder genoemde hindernissen 

te kunnen vermijden. De kern hiervan is dat een algeheel netwerk structuur wordt 

voorgesteld voordat individuele studies worden uitgevoerd. Met andere woorden, 

de individuele studies moeten worden afgeleid uit de algehele netwerk structuur. 

Dit algehele netwerk visualiseert alle relevante variabelen voor een bepaalde 

onderzoeksvraag, inclusief de causale relaties tussen de variabelen. Dit geeft richting 

aan welke informatie echt benodigd is en het laat ook toe om de causale relaties intact 

te houden voor alle studies. Op die manier kunnen de resultaten uit afzonderlijke 

studies ook gecombineerd worden om uitspraken te doen over relaties in de realiteit. 

Een dergelijk algeheel netwerk kan tot stand komen door experts uit het betreffende 
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domein met elkaar tot consensus te laten komen.

Conclusies

Het werk beschreven in dit proefschrift heeft de moeilijkheden in kaart gebracht die 

ontstaan als geprobeerd wordt om gegevens uit verschillende afzonderlijke studies 

met elkaar te combineren om tot een algeheel model te komen. Deze moeilijkheden 

waren van dusdanige aard dat het nog niet mogelijk is om met de bestaande 

gegevens een kwantitatief model voor sensorische verzadiging te bouwen. Niettemin 

heeft het proefschrift wel tot inzichten geleid hoe dat in de toekomst bereikt kan 

worden en er is een protocol/methode Global Experimental Design ontwikkeld dat 

wetenschappers in staat stelt om dat doel van een algeheel model op basis van een 

Bayesiaans netwerk te kunnen bereiken. 

Mogelijke toepassingen

De twee hindernissen die zijn vastgesteld in dit proefschrift zijn niet typerend voor 

onderzoek aan sensorische verzadiging alleen. Ze zullen ook voorkomen in andere 

onderzoeksgebieden waar geprobeerd wordt om data uit verschillende maar 

samenhangende onderzoeken te combineren. Het concept van Global Experimental 

Design is universeel en toepasbaar op onderzoeksvragen die een complex terrein 

bestrijken waar een multidisciplinaire aanpak zinvol is. De voorgestane aanpak is 

ook relevant voor het delen en publiceren van onbewerkte onderzoek data, en het 

standaardiseren van het verzamelen van data.
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