INFORMATIEVERWERKING 60

s inStituut voor cultuurtechniek en waterhuishouding, wageningen s

ASPECTEN van

nota Lo

3G HAART 1988

BIBLIOTHEEK
S8TARINGGEBOUW

ICW nota 1851

february 1988

ASPECTEN VAN INFORMATIEVERWERKING

80
User's guide of the HANDY Instruction System

ing. J.B.H.M. van Gils

Nota's (Notes) of the Institute are a means of jinternal commu-
nication and not a publication. As such their contents vary
strongly, from a simple presentation of data to a discussion
of perliminary research results with tentative conclusions.
Some notes are confidential and not available to third parties
i1f indicated as such

IS abyea *

ASPECTEN van INFORMATIEVERWERKING

60

De nota's handelende over Aspecten van Informatieverwerking bevatten
inlichtingen over de ontwikkeling van de informatieverwerking binnen
het Instituut. Naast meer concluderende en toelichtende beschouwingen
wordt aandacht besteed aan het gebruik van programma's, programma-
pakketten en apparatuur. Tevens worden inlichtingen gegeven over
praktijkervaring met en toepassing van informatieverwerking

CONTENTS

page

Introduction00 . 2
Type and format of instructions e e e e e e e e e e e e e,
Blocks of instruction limes+ . . .+ &
Processing by main program 4
Input from file <--> conversation <--> storage in file B
Composing and testing instructions P -
Instruction input in a DCL command procedure10
Processing in batch e 1
References T Ro
Table

1. Types of one line instructions provided by HANDY e e e e e o
Schemes

1. Structure of total program processing up till now . . e |
2. Processing of instruction lines corresponding to a question T -
Examples

1. Journal of a program control after a processing is done 3
2. Sterting & program in conversation and with storage of instructlons o7
3. Starting a program reading instryctions from file without simulation . ., 8

LAYOQUT CF THIS REPORT

The reader will find the text on the right hand page.
Teble, schemes, and examplaes are placed an the left hand pages.
The explanations to table, schemes and examples are given at the opposite page.

Table 1. Types of one line instructions provided by HANDY.

S L L ol . L L e Al o o T W D oyl o e o G T TR . S TR R R R AR D R AR WD AR R G N S R ER S R SR M A AR AR SR AR R e S

closing notation
to the question

?LY/(N)]:

? [byte):

? [integer]:

? [real):

? [filaname]:

? [yy/mm/dd hh:mm:ss]:

? [string]:

expected one_line_
_instruction(s)

*Y(ES) or y(es)

N(D) or nl{o) or empty
integer value betwean
-127 and +127 or empty
integer value or empty
real value or empty
filename or ampty
date/time value in
max. format or empty
string of printable
characters to be used
a5 table text or empty
characters string in »a
block of instruction
lines or empty

closing notation in instructions
belonging to the guestion

——— . W S A e

<RETURN>
or
<space>/text<RETURN>

<RETURN>

<gpace>/...<RETURAN>

L B e e e e e i o o e e S i e e R S i e M e o b e o o e - e . o T TP R N S = i e A

INTRODUCTION

The HANDY Instruction System (HIS) is a subsystem of a number of programs to
process the instructions to be read.

Normally a programmad conversstion on the screen will guide tha user. Morsovar
this system enables testing, storing and automatic input of instructions.

The user will meet a more naturally reacting process than is suggested by the
somewhet abstract and formal description below., It is recommended to use this
guide during a tarminal session of a program run,

Programs equipped with HIS are provided with modules from a HANDY library
(Van Gils, 1984) installed on & VAX computer working under VMS. Most programs
developed by the author are equipped with HIS.

Conversation and messages of HANDY modules are in english language.

The examples are tahken from program ROCAOP as described in Van Der Valk and
Van Gils, 19B83.

TYPE AND FORMAT OF INSTRUCTIONS

Instructions are detailed directives for the main program processing

(e.g. calculation, data processing). The location in the sequence of
instructions provides the interpretation by the program. In conversational mode
questions are displayed indicating which interpretation will be made.
Instructions are asked by the program in readable characters in a suitable
format. They are transmitted to the program when an end of record

(= end of lins) appears and are interpreted per line.

There are different types of interpretations progrommed so there are different ‘
types of instructions as listed in table 1.

Explanation to table 1.

Pressing a key representing s nonprintable character is indicated by <key_name>,
A <RETUAN> closes a line (end_of_recaord).

A guestion requiring one or more lines is placed in the lines before.

A guestion requiring o line in a2 block of instructions lines is only <space>:

or the question is not put down.

A guestion requiring a line in a text block is placed before the line; the text
block in the instructions is closed by an empty line.

After a closing <space>/ comment may appear in the line; comment is not used by
the program; text cannot be closed by <spoace>/ because the /-sign may be part of
the text.

Empty instructions consist of no or more spaces; a text line having spaces is
considered non empty. Empty instructions are interpreted in the way defined in
the text belonging to the question.

In some programs a date/time value without surrounding delimiters is required;
because there ara /-signs in this notation the closing notation of instructions
is set to the string <space>/ ; in some cases a singla /-sign will do.

instruction input

reading detailed processing instructions
| data input

processing by stored instructions
input of control instructions
= which group of processing instructions will be replaced or stop

Scheme 1. Structure of total program processing up till now.

PADGRAM CONTRAOL

| do you continue program ROCROP? [Y/(N)]: Y
] with another instruction file? [Y/(N}]): n
] with another listfile? [Y/(N)]): n
| with another growing season? [Y/(N)]: n
| with other planting system? [Y/(N)]: Y
i with other plant properties? [Y/(N}]: Y
! with other prices? [Y/[(N)]: n
! with othar radiation data? [Y/(N)]): n
l with other radiation factors? [Y/(N)]: n
| with anather headline? [Y/(N)): n
i

!

|

PLANTING SYSTEM

o o = e e e BN ER R W T W MR e TR P WP TR WP W WP MR R WP W A S

Example 1. Journal of a program control after a processing is done.

BLOCKS OF INSTAUCTION LINES

Some questions ask for a block of data. Mostly the block is storad as a single
file, if wanted it is read from the terminal; there are no other possibilities
of mixing other datatypes in the instructions.

Blocks of instructions are composed in & more complex format. The format is
dafined in the conversation whan no pre-knowledge is required. Incorrect
statements written in correct format may be interpreted by the program in a
surprising manner; in cases that may happen, the program can output its
interpretation.

Blocks of instructions consist of values betwean separators, these are clusters
of one or more characters. The separating clusters define the meaning that the
program gives to the value. Some constant vealues are writtan as strings
surrounded by delimitors (single quote, “-sign); /-signs, that are part of
constants, don‘t close instructions.

PROCESSING BY MAIN PROGRAM

Uptill now all programs equipped with HIS have the same structure (scheme 1}.
After answering the last question processing starts immediately; only parts of
the instructions will be replaced before the next processing is done.

Explanation to scheme 1:

Before processing by instructions starts, all instructions and other data are
read, checked, interpreted and stored.

In conversation the groups of instructions are indicated. After processing a
group of instructions is read controlling wich groups of instructions are
replaced before the next processing starts {example 1).

Some programs don‘t allow & rerun with the same instructions.

question
by program

if in conversational mods
or in reproaducticon mods

then , else

writing in journsl

“ taxt corrssponding
to the question

instruction input mode

convarsational , from file

reading line
from kayboard

switching to
conversational wods
writs mods

copying instructions
to naw fila

opticnally
writing instructions
to file

in

reading lina
from fils

if end_of_file was reechad
and in raproduction moda
and in interactive mods
then , alse

optionally
reproducing conversation
in journal

chacking/interpreting instructions;

if formelly inc
than . al

raporting arror
in journsl

if in conversational wods
then , alse

orrect
58

storing in cors
for data processing

i7 in convarsetianal msode
orF in reproduction mode
then |, slsa

stopping interpreting
i in write mode (repare) complex instructions
then , slse { restert} in journal

i error is
in last line if closing notation
then , slse is in tha 1lines
then , slss
backspacing saks your _
line choica > 4//
bachspecing stopping
lines (repare)
\ (restart)
continue the progrem ...
Scheme 2. Processing of instruction lines corresponding to a question.

file:///then

INPUT FROM, FILE <--> CONVERSATION <--> STORAGE IN FILE
Instructions may be read in conversatiocn (from terminal) or from an instruction
file (Scheme 2}.

Explanation to scheme 2:

At the moment of raeading an instruction lins thea processing modes in the program
have been set:

- instructicn input mode: conversational or from file;

- reproduction mode or non-reproduction mode;

- write mode or non-write mode when in conversational mode;
In an instruction line it is determined:

- whether an end_of_file is reached;

- wheter and where & closing notation appears;
Together with the question in the program it is defined:

- whether instructions can comprise more lines;

- which notation closes the instructions corresponding to the question;

- how instructions are interpreted.
After a program stop the (incorrect) instructions remailn unaltered, the errors
can be repared in the instruction file and the program rastarted. This also
applies to & manual stop. The procedure yields a number of versions of
instruction files and output files.

In the conversation the program puts the questions. In principle conversation

is self explaining and "downward scrolling”. Some more complex instructions need
pre-knowledge (e.g. instructions for the calculator and selector in HANDY);

the interpretotion of these instructions by the program is shown in the journal.
In case of an error message the gquestion is repeated.

$ RUN ‘ROCROP‘ROCROP

bulb production of tulips
Filanames in the instructions:

" input file
" " " b output file
" " name defaults to SYSSINPUT or
A date is notated in the format YY/MM/DD

—— e T e S — TSR Wil WO e

INSTRUCTIONS

instructions from a file? [filaname]:
instructions to a file? {filenama]l:

an ampty type of en instruction file defaults to .INS
» " " -

" " .DAT
" * LIS
SYS$OUTPUT

<AETURN>
ROCAOP<RETURN>

. R e R M e D RS R P WP S A G e e A e D D A D SR R R GG D G G AN e G G AN S WM A A G AR e

Example 2. Starting & program in conversation
with storage of instructions.

Instructions read in conversation can be stored in a fila, corrected and
reused (example 2).

Explanation to example 2:
The directory holding the executable program is the string value
of DCL symbol ROCADP. When the symbol is mentioned between single
quotas, the valua of the symbol is substituted.
An empty filename stated in conversaticnal mode causes terminal
input (SYS$INPUT) or terminal output (SYSSOUTPUT).

Buring conversation stored instructions belonging to questions that require one
line, contain the text of the question as comment after space and /-sign.

COMPOSING AND TESTING INSTRUCTIONS

When working in conversation (and with & test cese) and when storing the
instructions, tha program can be stopped manually. This is useful in case a
iogically incorrect instruction is stated.

The part of instruction lines starting with the incorrect instruction can be
remgved by means of an editor. After that the program can bas restarted with the
shortened instructions. The instructions read from file are reproduced in the
journal together with the guestions and program interpretations as given in
conversation. When reaching the end of the instruction file during the
simulation of conversation, the program switches to conversation and storage of
instructions on file. This procedure may be repeated until processing is going
well.

After an error message caused by instructions read from file the program stops.
The instructions can be corrected by means of an editaor, after which the program
is restarted.

- D o o e e e AR e A i o e o e o e o e e o e ek o o T A

$ ROCROPINS:=ROCROP
$ RUN ‘ROCROP'ROCROP

S N L A N S SR A S S W e et A W WS N M W AR MR AR AR WS R W AR A e A A e

Example 3. Starting a program reading instructions from file
without simulation of conversation.

-10_

INSTRUCTION INPUT IN A DCL COMMAND PROCEDURE

Quring asutomatic processing by execution of a command procedure conversation
cannot be done so the instructions must come from an existing file.

At the start the program first tries to raad the instruction filae
"HANDYINIT.TMP" (see Van Gils, 1584), in which only the name of the (stated)
instruction file is expected. If this fails the program tries to read the name
of the (stated) instruction file in a special DCL symbol. Mostly this symbol is
given the program name (example 3). WUhan the read action is successful the
symbol is deleted; when the read action is not successful the program switchas
to convarsation,

Explanation to example 3:

The symbol ROCROPINS is created and gets the value "ROCROP". Program ROCROP
reads and deletes this symbol and switches to reading instructions from file
ADCROP.INS .

The symbol named ROCRDP is occupled (directory name) so the symbol holding the
filename is named ROCROPINS.

In the journal file the answers on the questions don‘t come behind the gquestion
but in the next line; & non beauty of DCL. All messsges are coming in the
journal so the journal file should be inspected by the user.

The only legal program stop by a program is caused by the first instruction

in the group of control instructions ("Do you continue program ..."J.

This stop returns the value TRUE in the DCL symbol "SUCCESSFUL", the other stops
return the value FALSE. In a procedure this symbol value could be used to
cantrol the execution.

PROCESSING IN BATCH

A batch job is a DCL command procedure being executed independently of the
terminal; this is & possibility to execute processing with tested instructions;
the journal massages are very important, the conversation of tested instructions
is not neaded and may be suppressed. The time limit of the central processor in
8 batch job must be stated; the value can be estimated from the capacity
raported in the journal after & processing is done.

Processing in bath can be done with the DCL symbol BATCH defined by command
procedure ‘HANDY'LDGIN and command procedure °'HANDY 'BATCH {Van Gils, 1984).

REFERENCES

Gils, J.B.H.M. van. 1984. Aspecten van informatiaverwerking 48.
HANDY ’84 utilities user’s guide. Nota ICW 1536. 31+1 pp.

Valk, G.6.M. vaen der, and J.B.H.M. van Gils., 1983. Bulb production of tulip
crops, a preliminary model. ICW-nota 1486: 66 p.

