
BiBLiOTHEEK
SfÂfHNGGEBOUW

ICW nota 1851

february 1988

vOB-

6

o
(O

UJ

5
K
UJ
>
UJ

oc
O

c
>

UJ
H
O
UJ
CL
(O
<

c
<v
O)

c
'c
o

O)

O)

c
T>
D
O .c w
"D
k_
o;
c

CD

CU
'c .c o
0)

3
O
j _

O
o >
3
D

CO

c

ASPECTEN VAN INFORMATIEVERWERKING
60
User's guide of the HANDY Instruction System

ing. J.B.H.N, van Gils

Nota's (Notes) of the Institute are a Beans of internal commu­
nication and not a publication. As such their contents vary
strongly, from a simple presentation of data to a discussion
of perliminary research results with tentative conclusions.
Some notes are confidential and not available to third parties
if indicated as such

| 3 0 ! « 1988
JSH iblyfili

ASPECTEN van INFORMATIEVERWERKING

60

De nota's handelende over Aspecten van Informatieverwerking bevatten
inlichtingen over de ontwikkeling van de informatieverwerking binnen
het Instituut. Naast meer concluderende en toelichtende beschouwingen
wordt aandacht besteed aan het gebruik van programma's, programma-
pakketten en apparatuur. Tevens worden inlichtingen gegeven over
praktijkervaring met en toepassing van informatieverwerking

CONTENTS
page

Introduction 2

Type and format of instructions 2

Blocks of instruction lines 4

Processing by main program 4

Input from file < — > conversation < — > storage in file 6

Composing and testing instructions 8

Instruction input in a DCL command procedure 10

Processing in batch 10

References 10

Table
1. Types of one line instructions provided by HANDY 1

Schemes
1. Structure of total program processing up till now 3
2. Processing of instruction lines corresponding to a question S

Examples
1. Journal of a program control after a processing is done 3
2. Starting a program in conversation and with storage of instructions 7
3. Starting a program reading instructions from file without simulation . . 9

- 1

LAYOUT OF THIS REPORT
The reader will find the text on the right hand page.
Table, schemes, and examples are placed on the left hand pages.
The explanations to table, schemes and examples are given at the opposite page.

Table 1. Types of one line instructions provided by HANDY.

closing notation expected one_line_ closing notation in instructions
to the question _instruction(s) belonging to the question

? [Y/(N)]

? [byte]

? [integer]

? [real]
? [filename]

? [yy/mm/dd hh:mm:ss]

? [string]

or empty

Y(ES) or y(es)
N(0) or n(o) or empty
integer value between
-12? and +12? or empty
integer value or empty
real value or empty
filename or empty
date/time value in
max. format or empty
string of printable
characters to be used
as table text or empty
characters string in a
block of instruction
lines or empty

<RETURN>
or

<space>/text<RETURN>

<RETURN>

<space>/..,<RETURN>

2 -

INTRODUCTION
The HANDY Instruction System (HIS) is a subsystem of a number of programs to
process the instructions to be read.
Normally a programmed conversation on the screen will guide the user. Moreover
this system enables testing, storing and automatic input of instructions.
The user will meet a more naturally reacting process than is suggested by the
somewhat abstract and formal description below. It is recommended to use this
guide during a terminal session of a program run.
Programs equipped with HIS are provided with modules from a HANDY library
(Van Gils, 1984) installed on a VAX computer working under VMS. Most programs
developed by the author are equipped with HIS.
Conversation and messages of HANDY modules are in english language.
The examples are taken from program ROCflOP as described in Van Der Valk and
Van Gils, 1963.

TYPE AND FORMAT OF INSTRUCTIONS
Instructions are detailed directives for the main program processing
(e.g. calculation, data processing). The location in the sequence of
instructions provides the interpretation by the program. In conversational mode
questions are displayed indicating which interpretation will be made.
Instructions are asked by the program in readable characters in a suitable
format. They are transmitted to the program when an end of record
(• end of line) appears and are interpreted per line.
There are different types of interpretations programmed so there are different
types of instructions as listed in table 1.

Explanation to table 1.
Pressing a key representing a nonprintable character is indicated by <key_name>.
A <RETURN> closes a line (end_of_record) .
A question requiring one or more lines is placed in the lines before.
A question requiring a line in a block of instructions lines is only <space>:
or the question is not put down.
A question requiring a line in a text block is placed before the line; the text
block in the instructions is closed by an empty line.
After a closing <space>/ comment may appear in the line; comment is not used by
the program; text cannot be closed by <space>/ because the /-sign may be part of
the text.
Empty instructions consist of no or more spaces; a text line having spaces is
considered non empty. Empty instructions are interpreted in the way defined in
the text belonging to the question.
In some programs a date/time value without surrounding delimiters is required;
because there are /-signs in this notation the closing notation of instructions
is set to the string <space>/ ; in some cases a single /-sign will do.

- 3 -

r reading detailed processing instructions
instruction input
data input

u processing by stored instructions
input of control instructions
- which group of processing instructions will be replaced or stop

Scheme 1. Structure of total program processing up till now.

PROGRAM CONTROL

do you continue program ROCROP?
with another instruction file?
with another listfile?
with another growing season?
with other planting system?

plant properties?
prices?

radiation data?
radiation factors?

with another headline?

with
with
with
with

other
other
other
other

PLANTING SYSTEM

[Y/(N)]r
[Y/(N)]:
[Y/(N)]:
[Y/(N)]:
[Y/(N)]:

[Y/(N)]:
CY/CN)] :
CY/CN)]:
[Y/(NJ]:
[Y/(N)]:

Y
n
n
n
Y
Y
n
n
n
n

Example 1. Journal of a program control after a processing is done

4 -

BLOCKS OF INSTRUCTION LINES
Some questions ask for a block of data. Mostly the block is stored as a single
file, if wanted it is read from the terminal; there are no other possibilities
of mixing other datatypes in the instructions.
Blocks of instructions are composed in a more complex format. The format is
defined in the conversation when no pre-knowledge is required. Incorrect
statements written in correct format may be interpreted by the program in a
surprising manner; in cases that may happen, the program can output its
interpretation.
Blocks of instructions consist of values between separators, these are clusters
of one or more characters. The separating clusters define the meaning that the
program gives to the value. Some constant values are written as strings
surrounded by delimitors (single quote, *-sign); /-signs, that are part of
constants, don't close instructions.

PROCESSING BY MAIN PROGRAM
Uptill now all programs equipped with HIS have the same structure (scheme 1).
After answering the last question processing starts immediately; only parts of
the instructions will be replaced before the next processing is done.

Explanation to scheme 1:
Before processing by instructions starts, all instructions and other data are
read, checked, interpreted and stored.
In conversation the groups of instructions are indicated. After processing a
group of instructions is read controlling wich groups of instructions are
replaced before the next processing starts (example 1).
Some programs don't allow a rerun with the same instructions.

question
by progren

/

if In conversational mod*
or In reproduction nod*
than , alaa

writing in Journal
taxt corresponding
to tha question

\
instruction input nod* in .
conversational , fron file

/
reading line
fro» keyboard

\
reading line
fron file

\
•witching to
conversational node
write node

copying instructions
to new file

\

then , el

J

if end_of_flle was reached
and in reproduction node
end in interactiva node

optionally
writing instructions
to file

se

\

\

optionally
reproducing conversât
in Journal

ion

/
checking/interpreting instructions;
if fornally incorrect
then , else

/ \
ting error storii reporting error

in Journal

storing in core
for data processing

/
if in conversational node
then , else

\

\

/

stopping interpreting
if in write mode (répare) complex instructions
then , els* (restart) in Journal

/

if error is
in last line
then , else

/
pret
ex 1
urn«

\

if in conversational nod*
or in reproduction node
then , else

backspacing
line

J
\
nak
che

A

if closing notation
Is in the line

then , els*

naka your
choice

backspacing stopping
lin** (répare)

(restart) JL continue the program ...

Scheme 2. Processing of instruction lines corresponding to a question.

file:///then

- 6 -

INPUT FROM. FILE < — > CONVERSATION <--> STORAGE IN FILE
Instructions may be read in conversation (from terminal) or from an instruction
file (Scheme 2).

Explanation to scheme 2:
At the moment of reading an instruction line the processing modes in the program
have been set:

- instruction input mode: conversational or from file;
- reproduction mode or non-reproduction mode;
- write mode or non-write mode when in conversational mode;

In an instruction line it is determined:
- whether an end_of_file is reached;
- wheter and where a closing notation appears;

Together with the question in the program it is defined:
- whether instructions can comprise more lines;
- which notation closes the instructions corresponding to the question;
- how instructions are interpreted.

After a program stop the (incorrect) instructions remain unaltered, the errors
can be repared in the instruction file and the program restarted. This also
applies to a manual stop. The procedure yields a number of versions of
instruction files and output files.

In the conversation the program puts the questions. In principle conversation
is self explaining and "downward scrolling". Some more complex instructions need
pre-knowledge (e.g. instructions for the calculator and selector in HANDY);
the interpretation of these instructions by the program is shown in the journal.
In case of an error message the question is repeated.

- ? -

$ RUN 'ROCROP'ROCROP

bulb production of tulips

Filenames in the instructions:

an empty type of an instruction file defaults to .INS
" " input file " " .DAT

output file " " .LIS
" name defaults to SYS$INPUT or SYS$OUTPUT

A date is notated in the format YY/MM/DD

INSTRUCTIONS

instructions from a file? [filename]: <RETURN>
instructions to a file? [filename]: R0CR0P<RETURN>

Example 2. Starting a program in conversation and
with storage of instructions.

Instructions read in conversation can be stored in a file, corrected and
reused (example 2) .

Explanation to example 2:
The directory holding the executable program is the string value
of OCL symbol ROCROP. When the symbol is mentioned between single
quotes, the value of the symbol is substituted.
An empty filename stated in conversational mode causes terminal
input (SYSSINPUT) or terminal output (SYS$OUTPUT).

During conversation stored instructions belonging to questions that require one
line, contain the text of the question as comment after space and /-sign.

COMPOSING AND TESTING INSTRUCTIONS
Uhen working in conversation (and with a test case) and when storing the
instructions, the program can be stopped manually. This is useful in case a
logically incorrect instruction is stated.

The part of instruction lines starting with the incorrect instruction can be
removed by means of an editor. After that the program can be restarted with the
shortened instructions. The instructions read from file are reproduced in the
journal together with the questions and program interpretations as given in
conversation. Uhen reaching the end of the instruction file during the
simulation of conversation, the program switches to conversation and storage of
instructions on file. This procedure may be repeated until processing is going
well.
After an error message caused by instructions read from file the program stops.
The instructions can be corrected by means of an editor, after which the program
is restarted.

- 9

$ ROCROPINS:«ROCROP
$ RUN 'ROCROP'ROCROP

INSTRUCTIONS

with reproduction of instructions? [Y/(N)]: <RETURN>

Example 3. Starting a program reading instructions from file
without simulation of conversation.

10

INSTRUCTION INPUT IN A DCL COMMAND PROCEDURE
During automatic processing by execution of a command procedure conversation
cannot be done so the instructions must come from an existing file.
At the start the program first tries to read the instruction file
"HANDYINIT.TMP" (see Van Gils, 1984), in which only the name of the (stated)
instruction file is expected. If this fails the program tries to read the name
of the (stated) instruction file in a special DCL symbol. Mostly this symbol is
given the program name (example 3). Uhen the read action is successful the
symbol is deleted; when the read action is not successful the program switches
to conversation.

Explanation to example 3:
The symbol R0CR0PINS is created and gets the value "ROCROP". Program R0CR0P
reads and deletes this symbol and switches to reading instructions from file
ROCROP.INS .
The symbol named ROCROP is occupied (directory name) so the symbol holding the
filename is named R0CR0PINS.

In the journal file the answers on the questions don't come behind the question
but in the next line; a non beauty of DCL. All messages are coming in the
journal so the journal file should be inspected by the user.
The only legal program stop by a program is caused by the first instruction
in the group of control instructions ("Do you continue program . . . ") .
This stop returns the value TRUE in the DCL symbol "SUCCESSFUL", the other stops
return the value FALSE. In a procedure this symbol value could be used to
control the execution.

PROCESSING IN BATCH
A batch job is a DCL command procedure being executed independently of the
terminal; this is a possibility to execute processing with tested instructions;
the journal messages are very important, the conversation of tested instructions
is not needed and may be suppressed. The time limit of the central processor in
a batch job must be stated; the value can be estimated from the capacity
reported in the journal after a processing is done.
Processing in bath can be done with the OCL symbol BATCH defined by command
procedure 'HANDY'LOGIN and command procedure 'HANDY'BATCH (Van Gils, 1984).

REFERENCES
Gils, J.B.H.M. van. 1984. Aspecten van informatieverwerking 48.

HANDY '84 utilities user's guide. Nota ICW 1536. 31+1 pp.
Valk, G.G.M, van der, and J.B.H.M. van Gils. 1983. Bulb production of tulip

crops, a preliminary model. ICU-nota 1486: 66 p.

