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Abstract— We present and apply an alternative method for
the investigation of the well-known parameter identifiability
question for non-linear system models. The method is based
on a geometric analysis of the parametric output sensitivities
and is, in fact, an application of the tools that are available in
non-linear control theory to an augmented system, including
the parametric output sensitivities. Accessibility Lie algebras
are calculated that yield insight (through a simple rank test)
in the controllability of this augmented system. The method
is demonstrated in an example that is due to Dochain et al
[4]. Results are confirmed by the method that has certain
advantages in comparison to, for example, the Taylor series
approach that seeks for identifiable combinations of parameters
through inspection of the individual terms in a Taylor series
expansion of the output signal, i.e. application of the well-known
method of Pohjanpalo [15]. Parametric output sensitivities (as
already noted by Dötsch and Van den Hof [5] and Peeters and
Hanzon [13]) play a crucial role in identifiability analysis and
we further elaborate on this insight in the current paper. Our
goals are (i) to present an interesting method for addressing the
(local) identifiability question for non-linear systems and (ii) to
gain better understanding in the role of parametric state- and
output sensitivities in the identifiability question that stems from
an alternative perspective, and that has not been presented
in the identification literature. Of course, we are aware of
other algorithms and software that establishes an answer to
the identifiability question, albeit from a different perspective,
e.g. [19], but seek in the current paper mainly for another
interpretation and computational framework to address the
question of local identifiability, shedding some new light on
the problem.

I. INTRODUCTION

It has been argued by many that the identifiability question
plays a crucial role in any practical experimental setup
that is developed for determination of the values of the
model parameters from input-output data, e.g. [1, 24]. Indeed,
identification is a central and fundamental issue that should
always be addressed. The identification literature shows
many papers that deal with the identifiability problem, e.g.
[2, 3, 5, 11, 14, 16–18, 21, 23–25], and several solutions exist.
In an interesting paper by Dochain et al two of these methods
(the Taylor series approximation and a transformation of the
model to one that is linear-in-the-parameters) are considered
for data retrieved from a Rapid Oxygen Demand TOXicity
(RODTOX) device in an experiment that involves injection
of a substrate into a bioreactor [4]. Of the two methods
that were utilized to enforce a decision on the identifiability
question for certain bio-kinetic parameters (or combinations
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of these parameters) in the biokinetic model, the most general
approach of these is the Taylor series expansion. Its most
important limitation is that it is not clear, ‘a priori’, how
many terms in the series must be included to solve the
identifiability question unambiguously. The approach taken
here has similarities with the Taylor series expansion method
and in case of the existence of an input signal in the
experiment (meaning not just an initial condition but also
a manipulation variable u(t)) the result can be calculated
faster and a decision on the number of terms needed in
the expansion can be reached quickly with the method
introduced here. But let us first introduce some notation
and definitions that allow us to introduce the algorithm for
an identifiability test of a given experimental setup in more
detail.

A. Problem definition

Global identifiability is concerned with the question
whether it is possible to uniquely identify a model from a
given parameterized model class on the basis of its associated
input-output behavior. To be more precise, let M be a model
class and M(θ) an actual model from this class, where
θ ∈ Θ ⊂ Rp denotes the vector of model parameters. A
model M(θ) addressed in this paper is represented by a
set of model equations and accompanying initial conditions.
From an input-output point of view, such a model is regarded
to define an associated input-output mapping Σ(θ) : U → Y ,
which takes admissible input signals u(·) from an input space
U into output signals y(·) in an output space Y . (In terms of
the behavioral approach to systems theory, the graph of this
input-output map corresponds to the model behavior, which
is the set of all pairs (u(·),y(·)) that are consistent with the
model specifications.) The question of global identifiability
of a model class M can now be phrased as one of (global)
injectivity of the map Ψ : θ 7→ Σ(θ). Likewise, local
identifiability can be defined in terms of local injectivity
of Ψ. A specific model M(θ) is called identifiable if Φ is
injective at θ, i.e., if it holds true for all θ̃ ∈ Θ that

Σ(θ̃) = Σ(θ) ⇒ θ̃ = θ.

Note that identifiability depends not only on the structure
of the model equations in M(θ), but that crucial roles are
played by the definitions of Θ and U too. In this paper we
shall require that Θ constitutes an open and connected non-
empty subset of Rp and that the input space U contains
arbitrary piecewise constant functions.

The space Ψ(Θ) will often exhibit a manifold structure (of
course depending on the smoothness of the model equations,
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especially with respect to θ). Note that the structure of
the manifold Ψ(Θ) can be manipulated through a choice
of sensors that allow observation of the system’s input-
output behavior and, in the identification context, may allow
reconstruction of the values of the parameters. Of course,
the manifold Ψ(Θ) only has substance if the system has
been properly excited, meaning that we can only speak of
an interesting identification problem if we observe non-trivial
input-output behavior. Excitation of the system is achieved
through (i) the input signal u(·) ∈ U and (ii) the initial
condition x(0) at which the system starts. For the current
study we put no emphasis on the well-known fact that some
of the input signals may in practice not be admissible, i.e.
substrate and biomass concentrations cannot be negative, for
example, or flow-rates are usually bounded by upper and
lower bounds.

For convenience our model class M has been limited to
the class of smooth-affine control systems (which is still a
very general class):

ẋ(t) = f(x(t), θ) + g(x(t), θ)u(t) (1)
x(0) = x0(θ) (2)
y(t) = h(x(t), θ) (3)

where f(x(t), θ), g(x(t), θ), x0(θ) and h(x(t), θ) all depend
smoothly on their respective arguments. (The dependence on
the time t has been suppressed for the sake of readability.)
This model class is very often used in mechanical, biological
and chemical engineering and it therefore relates to most
of the practical case studies. Two remarks can be made at
this point: First, in the above model definition it may also
be assumed that the initial condition x(0) of the system is
known with complete certainty. Such an assumption can be
relaxed by noting that (part of) the initial condition vector
may be parameterized through some additional parameters
that then become part of the identification problem. This
may be the case, for example, in biochemical case stud-
ies where the initial substrate concentration is sometimes
completely unknown so that its value must be determined
from the input-output data. For clarity, we have chosen to
incorporate the possible dependence of x(0) on θ explicitly
in (2). Second, the parameters in the model are assumed
to be truly constants, i.e. they do not depend on time. Of
course, time varying parameters might as well be incorpo-
rated as additional states, describing the dynamics of these
parameters over time, and these particular equations then
contain new time-invariant coefficients that become part of
the identification problem.

II. PARAMETRIC STATE AND OUTPUT SENSITIVITIES

In order to find an answer to the question whether the
mapping Ψ : θ 7→ Σ(θ) is locally injective, an additional
set of n × p equations is defined, known as the system of
local parametric state sensitivities associated with the model

M(θ), i.e.

ẋθ(t) =
∂f
∂x

xθ(t) +
∂f
∂θ

+ (
∂g
∂x

xθ(t) +
∂g
∂θ

)u(t)(4)

xθ(0) =
∂x0(θ)

∂θ
(5)

Here, for ease of notation, the arguments of the
various functions have been dropped, and xθ(t) =(

xθ1(t) xθ2(t) . . . xθp(t)
)

= ∂x
∂θ . This set of equa-

tions is obtained from the model equation (1) through differ-
entiation of both sides with respect to θ, and interchanging
the order of differentiation with respect to t and θ on the
left-hand side. Since θ itself does not depend on t, the
order of differentiation can be interchanged easily. Also,
the parametric sensitivity dynamics derived from the model
are not approximated at some nominal value θ̄ and so the
structural relations obtained for the sensitivity dynamics are
exact. Finally, when observing the initial condition (5) for
the system of local parametric sensitivities, it holds trivially
true that if the initial condition (2) does not depend on any
parameters, then the initial condition (5) is zero.

To further address the identifiability property of the man-
ifold Ψ(Θ) of input-output mappings, it is useful to also
consider the parametric output sensitivity vector yθ(t) that
relates the output sensitivities to the internal states, inputs,
and parametric state sensitivities. It can easily be derived
from (3) as:

yθ(t) =
∂h
∂x

xθ(t) +
∂h
∂θ

(6)

where the arguments of the functions have again been
omitted for ease of notation. The system of parametric
sensitivities (4)–(6) can be viewed as a set of p decoupled
systems that do not interfere with one another as depicted
in figure 1. Thus, associated with each individual parameter
θi one has a parametric sensitivity system, consisting of an
output yθi

(t) and a parametric state sensitivity xθi
(t) which

is driven by the input-state behavior of the original system
(1)–(2). This will be made more explicit in the next section.

At this point it is interesting to note that the study of
parametric (output) sensitivities has received ample attention
in the literature, e.g. [5, 7, 10, 13, 20], albeit from many
different perspectives and never from a differential geometric
perspective as presented here. Having introduced the para-
metric output and state sensitivities, the remaining part of the
paper is now concerned with the following objective: To gain
insight into local injectivity of the map Ψ : θ 7→ Σ(θ) by
studying the joint input-output behavior of the systems (1)–
(6). This map Ψ is studied in the following sections with the
tools that are available in differential geometry and this will
show to be quite rewarding.

III. THE USE OF PARAMETRIC SENSITIVITIES FOR
IDENTIFIABILITY ANALYSIS

A. The accessibility Lie algebra and the observation space

For a non-linear system M(θ) of the form studied in this
paper, the accessibility Lie algebra A (also called the control
Lie algebra in the literature) is defined as the smallest Lie
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Fig. 1. Flow diagram summarizing the original system with I/O behavior
[u,y] and p sensitivity systems with I/O behavior [u,yθ]. Each of the
sensitivity systems, together with the original system [u,y], defines a so-
called augmented systemMa(θ) as explained in section III-B.

subalgebra of the space of smooth vector fields on the state
manifold, which (i) contains the vector fields f and g, and
(ii) is closed under the Lie bracket operation. The associated
controllability distribution ∆A is defined as the mapping
which assigns to every point x on the state manifold the
linear subspace spanned by the vectors {v(x)|v ∈ A}. The
controllability rank condition (CRC) is said to hold at a point
x if dim(∆A(x)) = n, which means that an open subset of
the state manifold can be reached from x under piecewise
constant inputs. The observation space O of the system is
defined as the smallest subspace of smooth functions on the
system manifold, which (i) contains the output function h,
and (ii) is closed under Lie differentiation with respect to the
vector fields in the accessibility Lie algebra A.

We now note that when the functions in the observa-
tion space O are evaluated at the initial state x0, they
constitute quantities that show up as coefficients in Taylor
series expansions of the output function y(t) for certain
particular choices of piecewise constant input functions u(t).
Therefore, these quantities are invariants of the systemM(θ)
that may subsequently serve to characterize the associated
input-output mapping Σ(θ). As a consequence, when a set
of p such invariants turns out to have a nonsingular Jacobian
(upon partial differentiation with respect to θ) at a given
value θ0, then local injectivity of the mapping Ψ at θ0 holds
true, hence local identifiability.

In such an approach to identifiability analysis it is required
to first compute A and O, and then to evaluate the functions
that span O at x0 yielding invariants which are functions of
θ. Finally, these invariants are differentiated with respect to
θ, to evaluate local injectivity of the mapping Ψ. However,
the computation of A and O also involves differentiation
(as it involves Lie brackets and Lie differentiation with
respect to the vector fields f and g). In the present paper
it is proposed to interchange the order of differentiation

with respect to f and g on the one hand and with respect
to θ on the other hand. Thus, we propose to proceed by
constructing the sensitivity system first, and only then to
compute the accessibility Lie algebra and the observation
space of the sensitivity system. Finally, the functions spanning
the observation space are evaluated at the augmented initial
state. Depending on the values of p and n and on the
exact nature and complexity of the model equations that
represent M(θ), such an approach may pay off in terms
of computational effort involved.

B. Some additional definitions

Let us now define for each i = 1, 2, . . . , p an augmented
system Mi

a(θ), which describes the parametric output sen-
sitivity yθi

in terms of the state x(t) of the model M(θ)
and the parametric state sensitivity xθi

(t) that appears in the
i-th column of the equations (4)–(5). This augmented system

Mi
a(θ) has the state vector xi

a(t) ,

(
x(t)
xθi

(t)

)
and is given

by the following structure:(
ẋ(t)
ẋθi

(t)

)
=

 f(x(t), θ) + g(x(t), θ)u(t)
∂f
∂x xθi

(t) + ∂f
∂θi

+
(∂g

∂x xθi
(t) + ∂g

∂θi
)u(t)

 (7)

xi
a(0) =

(
x0(θ)
∂x0(θ)

∂θi

)
(8)

yθi
(t) =

∂h
∂x

xθi
(t) +

∂h
∂θi

(9)

In addition, the following notation is introduced for the aug-
mented drift vector field f ia(x

i
a(t), θ) and for the augmented

control vector field gi
a(x

i
a(t), θ), for the coupled dynamics

of the state vector x(t) and the parametric state sensitivity
xθi

(t) on the righthand side of (7):

f ia(x
i
a(t), θ) ,

(
f(x(t), θ)

∂f
∂x xθi

(t) + ∂f
∂θi

)
(10)

gi
a(x

i
a(t), θ) ,

(
g(x(t), θ)

∂g
∂x xθi

(t) + ∂g
∂θi

)
(11)

Likewise, the output function for the augmented system
Mi

a(θ) is conveniently introduced as:

hi
a(x

i
a(t), θ) ,

∂h
∂x

xθi
(t) +

∂h
∂θi

. (12)

C. Construction of the observation space of the system of
parametric output sensitivities

To analyze local injectivity of the mapping Ψ, we proceed
by computing the observation space of the complete system
of parametric output sensitivities. This space is jointly gener-
ated by the observation spaces of the decoupled augmented
systems Mi

a(θ), i = 1, 2, . . . , p.
For each of the augmented systems Mi

a(θ) we start by
constructing its accessibility Lie algebra. This is the smallest
Lie subalgebra of the space of smooth vector fields on the
augmented state space which contains both the drift vector
field f ia and the control vector field gi

a and which is closed
under the binary Lie bracket operator [·, ·]. Recall that the
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Lie bracket operator tests whether two vector fields f and g
commute and is defined as

[f ,g] = Lfg − Lgf

where Lfg denotes the Lie derivative of vector field g along
the vector field f , [8, 9, 12]. It can be quite a laborious task to
calculate the Lie derivatives, Lie brackets, and the accessible
Lie algebra by hand. Hence, we have used a symbolic algebra
package, i.e. Kwatny’s ProPac add-on for Mathematica [9],
to perform these computations with great ease.

Once the accessibility Lie algebra has been calculated, we
proceed to calculate the observation space of each Mi

a(θ).
This is the smallest subspace of smooth functions on the
augmented state space which contains the function hi

a and
which is closed under Lie differentiation along the vector
fields f ia and gi

a (or equivalently, which is closed under Lie
differentiation along the vector fields contained in the acces-
sibility Lie algebra). Note that the (repeated) Lie derivatives
of the functions hi

a considered here should be structured in
the same way for each i = 1, 2, . . . , p, as it is our purpose
to compute partial derivatives with respect to each of the
parameters θi of the same input-output invariants of the
system M(θ).

We then construct a ‘Jacobian matrix’ Ξ of which the i-th
column (corresponding to partial differentiation with respect
to θi) is constructed as

Ξi(xθi
a (0)) , (hi

a Lv1h
i
a . . . Lvqh

i
a )T (13)

where the vector fields vk, k = 1, 2, . . . , q, are chosen from
the accessibility Lie algebra of the system Mi

a(θ) (structured
in the same way for each i = 1, 2, . . . , p) that was calculated
in the first step. The vector fields vk are chosen such that
the observation space of the corresponding sensitivity system
Mi

a(θ) is spanned by them and we perform this construction
for each of the parameters {θi, i = 1, . . . , p} in the parameter
vector θ as to build up the complete matrix Ξ. The matrix
Ξ then allows us to check for linear dependencies between
columns or, in other words, linear correlations between
parametric output sensitivities.

A test for local identifiability follows immediately from
the injectivity requirement of the original mapping Ψ:

Corollary 1: A sufficient condition for the parameters in
the system model M(θ) to be locally identifiable is that the
matrix Ξ has full rank p.

Note that it is our construction of the matrix Ξ that is
‘special’ here. Important is that this construction allows for
an alternative viewpoint with respect to identifiability, much
in line with the approach of [5] but now extended to a non-
linear parameterized class of state-space models. Note also
that if the matrix Ξ is not of full rank, then the system may
still be identifiable; then further investigations are necessary
to establish this. In the case of unidentifiability, the nature
of the linear dependence between the columns of Ξ may
often provide one with more detailed information on the
actual source of unidentifiability and for instance allow one
to compute a parameter transformation which pinpoints the
parameter combinations that can or cannot be identified.

1) A simple example: We will now introduce a simple
example that allows the reader to better understand the
construction of the matrix Ξ as proposed in the previous sec-
tion. Consider therefore the single-input-single-output linear
system

ẋ(t) = (θ1 + θ2) x(t) + u(t) (14)
x(0) = θ2 (15)
y(t) = x(t) (16)

The associated parameter sensitivity system is

( ẋθ1 ẋθ2 ) = (θ1 + θ2) ( xθ1 xθ2 ) + ( x x )(17)
( yθ1 yθ2 ) = (xθ1 xθ2 ) (18)

so that the augmented models M1
a(θ) and M2

a(θ) are

identical, except(!) for their initial condition, which is
(

θ2

0

)
for M1

a(θ) and
(

θ2

1

)
for M2

a(θ). The augmented vector

fields are easily determined from (17)–(18) as

f1a =
(

(θ1 + θ2) x
(θ1 + θ2) xθ1 + x

)
(19)

f2a =
(

(θ1 + θ2) x
(θ1 + θ2) xθ2 + x

)
(20)

g1
a = g2

a =
(

1
0

)
(21)

h1
a = xθ1 (22)

h2
a = xθ2 (23)

The accessibility Lie algebra for the augmented model
M1

a(θ) is easily found from f1a , g1
a to be spanned by

{v1,v2} = {
(

1
0

)
,

(
θ1 + θ2

1

)
} (24)

Involutivity clearly holds because, for example,

[f1a , [f1a ,g1
a]] = −(θ1 + θ2)2 g1

a + 2 (θ1 + θ2) [f1a ,g1
a] (25)

For the augmented model M2
a(θ) it is not difficult to observe

that in this particular example the accessibility Lie algebra
coincides with the one of M1

a(θ).
We then continue to construct the matrix Ξ(x0) column-

by-column, by taking Lie derivatives in the directions v1

and v2 for each parameter. The result, which includes the
‘zero-order’ term hj

a, see (13), is given by

Ξ(θ2) =

 0 1
0 0
1 1

 (26)

Since this matrix has rank 2, we conclude that the parameters
can be identified, which should not surprise the reader since
θ2 is included in the initial condition and is assumed known
whilst θ1 can be easily identified form the output once θ2

has been identified.
The method presented above is very well suited for

implementation in a symbolic computer algebra package
which makes the calculation of the matrix Ξ much easier.
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The examples in section IV were also calculated using
such a symbolic program. We will now turn our attention
to the Rapid Oxygen Demand TOXicity (RODTOX) case
study that has been studied by Dochain and co-workers and
was already mentioned in the introduction. We will further
demonstrate the applicability of the method introduced here
to this interesting case study in the field of water quality
monitoring.

IV. THE RODTOX CASE STUDY

A. Introduction

Consider a biomass (with concentration X) in an aer-
ated tank feeding on an injected substrate of wastewater
(S(0) δ(t), with δ(t) the familiar Dirac operator). Assume
that the concentration X is constant over the course of
one experiment (in case of the RODTOX device this is a
realistic assumption since the duration of one experiment,
i.e. recovery to steady state after injection of a unit of
wastewater, is usually some 30 minutes and this is a too short
time interval for the biomass to be able to grow substantially
– see also [22]). A dynamic description of the behaviour
of the substrate concentration is the Michaelis-Menten or
Monod model

dS

dt
= −µmaxX

Y

S(t)
Km + S(t)

(27)

S(0) = S0 (28)

where it should be noted that the initial substrate concentra-
tion S0 is unknown and the other parameters to be determined
from an identification experiment are {µmax, Y,Km}. As a
consequence of the injection of the substrate in the bioreactor
the biomass will start consumption and this requires oxygen.
The oxygen uptake rate (OURex) of the biomass is defined
as

OURex = −(1− Y )
dS

dt
(29)

and is measured indirectly through a dissolved oxygen (or
DO) sensor. In case of several substrate concentrations
{Si(t), i = 1, . . . , k}, the total oxygen uptake rate (OURex)
is simply defined by the sum of the individual contributions,
i.e. OURex =

∑k
i=1(1 − Yi)dSi

dt . For the case of one
substrate injection S(0) δ(t) only, Dochain et al. have applied
the Taylor series expansion method of Pohjanpalo [15] to the
sensor output equation OURex(t) to study the identifiability
of the one-substrate model. It was demonstrated that the
OURex observations allow identification of the following
parameter combinations [4]

θ1 =
(1− Y )µmaxX

Y
(30)

θ2 = (1− Y )S0 (31)
θ3 = (1− Y )Km (32)

This follows from the observation that all coefficients in
the Taylor series expansion for OURex(t) can be written
as combinations of the set {θi, i = 1, 2, 3}.

The question to be answered in the current paper is ‘What
does our differential geometric method (based on parametric
sensitivities) as presented in the above tell us about this
case study and does it reach the same conclusions?’ We will
answer this question in the next section.

B. Results of the Geometric Identification Method

We will now apply the geometric identification method to
the RODTOX case study. Since there is no input signal but
only an unknown initial condition we repeatedly calculate the
Lie derivative of the output signal, i.e. the OUR equation, for
each of the four parametric sensitivity systems associated
with each of the parameters {S0, µmax,Km, Y }, yielding
one column of the matrix Ξ(S0) for each of the parameters.
If one calculates these columns with a depth of 4, thereby
obtaining a 4 × 4 matrix Ξ(S0), one finds the following
result where, again for clarity, each column in the matrix
corresponds to a parameter in the set {S0, µmax,Km, Y }
respectively:

−KmX(Y−1)µmax

(Km+S0)2Y . . .
Km(Km−2S0)X

2(Y−1)µmax
2

(Km+S0)4Y 2 . . .

−Km(Km
2−8S0Km+6S0

2)X3(Y−1)µmax
3

(Km+S0)6Y 3 . . .
Km(Km

3−22S0Km
2+58S0

2Km−24S0
3)X4(Y−1)µmax

4

(Km+S0)8Y 4 . . .

− S0X(Y−1)
(Km+S0)Y

. . .
2KmS0X2(Y−1)µmax

(Km+S0)3Y 2 . . .

− 3Km(Km−2S0)S0X3(Y−1)µmax
2

(Km+S0)5Y 3 . . .
4KmS0(Km

2−8S0Km+6S0
2)X4(Y−1)µmax

3

(Km+S0)7Y 4 . . .

S0X(Y−1)µmax

(Km+S0)2Y . . .

− (2Km−S0)S0X2(Y−1)µmax
2

(Km+S0)4Y 2 . . .
S0(3Km

2−10S0Km+2S0
2)X3(Y−1)µmax

3

(Km+S0)6Y 3 . . .
S0(−4Km

3+43S0Km
2−52S0

2Km+6S0
3)X4(Y−1)µmax

4

(Km+S0)8Y 4 . . .

− S0Xµmax

(Km+S0)Y 2

−KmS0X2(Y−2)µmax
2

(Km+S0)3Y 3

Km(Km−2S0)S0X3(2Y−3)µmax
3

(Km+S0)5Y 4

−KmS0(Km
2−8S0Km+6S0

2)X4(3Y−4)µmax
4

(Km+S0)7Y 5

 (33)

The above matrix has a determinant of zero which indicates
that a full rank is not achieved so that the sufficient condition
for identifiability is not satisfied. This result is completely in
tune with earlier findings that resulted in the conclusion that
only three out of the four parameters could be identified
using the RODTOX device [4].

Further differentiation of the output, generating more
rows in the matrix Ξ(S0), does not change the column
dependencies in the matrix, i.e. all minors of size 4 are zero
– even after generating six rows. To further investigate the
dependencies of the columns of Ξ(S0) row reduction of the
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4 × 4 matrix was performed and this yielded the following
reduced matrix for Ξ(S0):

1 0 0 S0
−1+Y

0 1 0 µmax

Y (−1+Y )

0 0 1 Km

−1+Y
0 0 0 0

 (34)

Since the above matrix has rank 3, this result indicates again
that only three parameter can be determined from the given
experimental setup, assuming that additional rows will yield
no further information and reduce to zero after row-reduction
has been achieved. The reader should note the similarity of
the parameter combinations appearing in the fourth column
when compared to the original results (30)–(32) in [4]! If
we calculate the nulspace of the matrix Ξ(S0) we find the
vector ( S

(Y−1) ,
µmax

Y (Y−1) ,
Km
Y−1 , 1 ) and this vector can be used

to find an explicit re-parametrization, as explained in [6].
Without going into the details of this calculation we suggest
the following re-parametrization:

S̃(t) = (1− Y ) S(t) (35)

θ1 =
(1− Y )µmax X

Y
(36)

θ2 = (1− Y ) Km (37)

the transformed model reads

dS̃

dt
=

θ1 S̃(t)
θ2 + S̃(t)

(38)

S̃(0) = θ3 (39)

OURex(t) =
dS̃

dt
(40)

where, now, the parameter combinations {θ1, θ2, θ3} are to
be determined from the same input-output data. Construction
of the matrix Ξ(θ3) for the transformed model indeed showed
that it has full rank for almost all values of θi and Y 6= 1
and so the identifiability condition is satisfied.

C. Adding an input to the RODTOX setup

One could further elaborate on the results obtained sofar
and include an input signal in the experimental setup by con-
tinuously adding substrate to the bioreactor, i.e. a fedbatch
experiment. In case the substrate concentration is high so that
volume increase in the bioreactor can be neglected (meaning
essentially that the biomass concentration X remains con-
stant!) the modified model becomes

dS

dt
= −µmaxX

Y

S(t)
Km + S(t)

+ . . .

u(t)
V

(Sin − S(t)) (41)

S(0) = S0 (42)

where the input u(t) is a (small) flow rate and the volume
is assumed constant. An important final assumption, which
may not be true in practice, is knowledge of the inlet
concentration Sin of the substrate that is fed into the reactor.
To circumvent this practical problem arising in the above

fedbatch setup one could think of, for example, applying an
initial pulse of wastewater first (setting the unknown initial
condition S0), after which a known substrate with known
concentration Sin is fed into the reactor with a flow rate
u(t).

If we apply are going to construct the matrix Ξ for this
problem we immediately find that the introduction of the
input u(t) in the state equation introduces a feedthrough term
in the output equation. Hence, we modify the system and
include a second state v(t) in the model with dynamics v̇(t) =
u(t) and replace the input signal u(t) in the first equation
with v(t) so that the model becomes affine in the input v(t)
and with no input in the output equation.

Turning back to the construction of the matrix Ξ(S0),
for which now an input vector field g(x, θ) = (0, 1)T

is available, an important difference in comparison with
the zero-input case in the previous section can be made.
Indeed, having a control vector field available, the acces-
sibility algebras constructed for each parameter in the set
{S0, µmax,Km, Y } can now become involutive meaning that
all terms in the series expansion of the output parametric
sensitivities can be generated by a finite set of vector fields.
This important fact yields a stopping criterion for the method
utilized here, i.e. if an involutive algebra has been found
after calculation of, say, n rows of the matrix Ξ(x0), then
the (n + 1)th row can be generated through Lie-bracketing
using the first n rows that span the distribution. In other
words, after n rows have been generated there may be no
need to search for new directions in the output parametric
sensitivity space O.

Calculation of the matrix Ξ(S0) for this input-driven
setup (not presented here) indeed generated an involutive
distribution after four rows were generated. Moreover, the
determinant of the first four rows of the matrix Ξ(S0) was
found to be

2SinKm
3 (Sin − S0)2 S0 X6 (Y − 1)3 µ5

max

(Km + S0)11 V 4 Y 6
(43)

and this indicates that the rank condition of corollary 1
is satisfied for most practical cases. Note also that certain
parameter values (for example Y = 1) yield a vanishing
determinant, and this may indicate identifiability problems.
Finally, note also that if Sin = S0 then, locally there is no
input available anymore and we are back in the first situation
where identifiability was shown not to hold true.

V. CONCLUSIONS

We have revisited the question of local identifiability of the
parameters in non-linear system models from experimental
data; a question that has already been highlighted from
different angles in the identification literature. Our goal in
the current study was to demonstrate the importance of
the dynamic behavior of parametric output sensitivities in
relation to the identifiability question and the applicability
of non-linear control theoretical concepts to an augmented
system that includes the dynamics of the output parametric
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sensitivities as output channels. This has lead to an alterna-
tive angle of attack towards the identifiability problem that
more clearly sheds light on the role of parametric output
sensitivities in the identification problem.

The recipe for construction of the matrix Ξ(x0) as pointed
out in section III has shown to be successful in reproducing
earlier identification results for the RODTOX case study as
summarized in section IV – note further that this is a case
study that is especially interesting because of its unknown
initial condition and its nonlinear readout or observation
equation. A case like this has unfortunately not been dis-
cussed frequently in the literature on this subject (indeed,
very often the observation equation is assumed linear) while
the suggested approach taken here seems to handle the non-
linearities in the model and observation equation quite natu-
rally. This example has also demonstrated, at least formally,
that inclusion of an additional input signal in the model can
change the identifiability properties of a given system – a
result that confirms the intuitive fact that controlled excitation
of a system yields in general more information on the values
of the parameters in the system model than ‘just’ an initial
condition.

Finally, it should be mentioned that the method devel-
oped and applied here addresses the question of theoretical
identifiability rather than practical identifiability as discussed
in, for example, [7]. Some more reflection on the exact
construction of the accessible Lie algebras learns that, in-
deed, there may be directions in the parametric output
sensitivity space O (spanned by the column of Ξ(x(0))
that are very hard to reach since complicated Lie brackets
have to be calculated for these directions. The complexity
of these repeated Lie brackets can perhaps not be realized
in an experimental setup through manipulation of the input
signal. Put in other words: Complex manipulations of the
input signals to obtain directions in the parametric output
sensitivity space that involve high order Lie brackets may be
so convoluted that their consequences for the measurement
of the output signals may be lost due to measurement noise.
Further research could focus on finding case studies where
this is demonstrated for a practical setup. This would yield
more insight in the practical identifiability problem which, it
should be stated repeatedly, is an important subject for each
practitioner who collects real data through experimentation
for calibration of his/her models.
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