

Modelling Crop Production in Fenhe Irrigation District, Shanxi province, North China

B. Bake, H. van Keulen, A. Verhagen & D. Zheng

Note 419

Modelling Crop Production in Fenhe Irrigation District, Shanxi province, North China

B. Bake³, H. van Keulen^{1,2}, A. Verhagen¹ & D. Zheng³

¹ Plant Research International, Business Unit Agrosystems Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands

² Plant Production Systems Group, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, the Netherlands

³ Research Center for Resource Utilization and Environment Management, China Agricultural University, 100094, Beijing, China

Plant Research International B.V., Wageningen October 2006

Note 419

© 2006 Wageningen, Plant Research International B.V.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Plant Research International B.V.

Plant Research International B.V.

Address	:	Droevendaalsesteeg 1, Wageningen, The Netherlands
	:	P.O. Box 16, 6700 AA Wageningen, The Netherlands
Tel.	:	+31 317 47 70 00
Fax	:	+31 317 41 80 94
E-mail	:	info.pri@wur.nl
Internet	:	www.pri.wur.nl

Table of contents

n	ac	ĭΔ
D	a۶	くて

Sum	mary		1	
Ackn	owledg	ements	3	
1.	Introdu	ction	5	
2.	Descri	ption of the region	7	
	2.1 General2.2 Soil texture and cropping pattern2.3 Social and economic conditions			
3.	Descri	ption of the experiments in the region	11	
	3.1 3.2	Experimental Site Materials and methods 3.2.1 Irrigation and nutrient management Winter wheat 3.2.2 Groundwater table management 3.2.3 Experiments on sowing date and early maturing wheat 3.2.4 Vegetables and other crops	11 11 11 15 17 19	
4.	Results	s of the experiments	21	
	 4.1 4.2 4.3 4.4 4.5 4.6 	Effects of irrigation and nutrient management Winter wheat 4.1.2 Spring maize 4.1.3 Sunflower Soil moisture dynamics under shallow groundwater table depths Simulation of E_t , the contribution from the water table to evapotranspiration under different water table depths Impacts of water table on crop yield and WUE Irrigation management aimed on high crop yield and limited irrigation under shallow water table Influence of sowing date and crop variety on crop growth 4.6.1 Light-temperature characteristics of winter wheat at different sowing dates 4.6.2 Frost hardiness and crop yield We note that the source of the sour	21 21 23 24 25 28 33 35 39 39 41	
	4.7	Vegetable experiments	43	
5.	WOF03 5.1 5.2 5.3	WOFOST crop model description Procedure for model calibration for local conditions 5.2.1 Calibration of crop parameters for the potential production situation 5.2.2 Calibration of soil and crop parameters for the water-limited production situation Validation of model results 5.3.1 Crop phenology and grain yield 5.3.2 Soil moisture content and water balance	47 47 48 49 50 51 51 51 52	

6.	. Potential crop production		
	6.1 6.2	Potential total aboveground production 6.1.1 Winter wheat 6.1.2 Spring maize 6.1.3 Sunflower Maximum leaf area and harvest index	55 55 55 56 57
		6.2.1 Winter wheat6.2.2 Spring maize6.2.3 Sunflower	57 57 58
7.	Water	-limited crop production	59
	7.1	 Crop production under rainfed conditions 7.1.1 Winter wheat 7.1.2 Spring maize 7.1.3 Sunflower 	59 59 59 59
	7.2	Crop production under irrigated conditions 7.2.1 Winter wheat 7.2.2 Spring maize 7.2.3 Sunflower Yield gap analysis	61 61 62 63 63
8.	Nutrie	ent-limited crop production	65
9.	Concl	usions	67
10.	.0. References		
Арре	endix I.	List of abbreviations	2 pp.
Арре	Appendix II. WOFOST Model Simulation Results		

Summary

Water scarcity is a very serious problem in Northern China (north of the Yangtze River). In Fenhe District, one of the largest irrigation schemes in Shanxi province, annual precipitation varies between 200-700 mm (453 mm on average); in dry years farmers can irrigate crops only once in conventional irrigation systems. To increase income, farmers increasingly grow vegetables that need more irrigation water. Despite the scarcity of water, waste in agriculture is widespread. In addition, the unreliability of water supply makes fertilizer management difficult. Hence, experiments related to irrigation and nutrient management and cropping pattern for the main field crops and vegetables were carried out in the Central Experimental Station (CES) since the 1990s. In this report, experiments from 1992 to 2004 are analyzed. Soil water dynamics, including soil surface evaporation under shallow water table depths are discussed and simulated. Irrigation management under different hydrological conditions and water table depths (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 m) is discussed. Light-temperature characteristics of a new early maturing wheat variety were tested and possibilities for introducing this variety in the study area are discussed. Irrigation management experiments on vegetables were performed and effects of irrigation management and its economic benifits are anaysed.

The WOFOST crop growth simulation model is used to estimate potential, water-limited and nutrient-limited crop production for Fenhe Irrigation District (FID). To examine the spatial and temporal variability in crop production for Fenhe Irrigation District, weather data (1961-2002) for Taiyuan (north Fenhe), Jiexiu (south Fenhe) and the central meteorological stations were used to simulate potential and water-limited yields for winter wheat, spring maize and sunflower with the WOFOST simulation model.

Main results and conclusions from the study are:

- 1. The results show maximum grain yields of 5842, 9769 and 2231 kg ha⁻¹, under adequate nutrient supply for winter wheat, spring maize and sunflower, respectively. Highest observed water use efficiencies (WUE) under these conditions, based on grain yield and total water input (rainfall + irrigation) were 17.8, 25.2 and 8.8 kg ha⁻¹ mm⁻¹ for winter wheat, spring maize and sunflower, respectively. The relation between water consumption and grain yield under different fertilizer inputs could be expressed by a logarithmic curve; the relation between water consumption and WUE for winter wheat could be expressed by a negative logarithmic curve. As spring maize and sunflower are growing in the rainy season, the relations between water consumption and water use efficiency starts to decrease at water consumption values exceeding 310 mm, hence supplementary irrigation is not needed in high rainfall years.
- 2. Root zone (0-100 cm) soil water dynamics are influenced by capillary rise under shallow water table depths, for both winter wheat and spring maize. Soil water content varies more strongly under shallower water table depths, which leads to more uptake from the groundwater and higher water use. Percolation after irrigation or rainfall started later under deeper water tables. The relation between rate of soil surface evaporation and water table depth can be expressed by an exponential curve, while the relation between cumulative soil surface evaporation over the crop growing season and water table depth for winter wheat and spring maize could also be expressed by an exponential curve. The effects of shallow water table depths on crop growth and yield were mainly mediated through more profuse tillering and higher spike densities, but not through individual grain weight. Crop yields and WUE were highest for water table depths of 1.0 and 1.5 m for spring maize and winter wheat, respectively. WUE for winter wheat attained the highest values at water table depths of 1.0 m and was lower at both shallower and greater depths. Crop water requirements, calculated by the FAO method, were 405 and 391 mm for winter wheat and spring maize, respectively. On this basis, irrigation requirements for winter wheat and spring maize, aimed at realizing high crop yields, were calculated for shallow water table depths under varying rainfall regimes.
- 3. The new photo-insensitive and early-maturing wheat variety, Dongzao 5 (DZ5), matured 4-5 days earlier and showed a 20% higher yield than Jingdong 8 (JD8). Moreover, DZ5 uses less thermal time for ear differentiation and does not need vernalization and can thus be sown either before or after winter. The temperature limit for 50% seedling mortality was -14.9 °C, 1.8 °C higher than that for JD8. It is expected to over-winter safely in Beijing and the southern part of North China.

- 4. Results of the vegetable experiments show that efficient water use and economic benefits are best combined by applying small irrigation doses, e.g. 20~40 mm per application (except for water melon). Recommended doses are: sweet potato: 200 mm irrigation (total water consumption 400 mm), jequirity: 100 mm (total water consumption 440 mm), sesame: 68 mm (total water consumption 350 mm), water melon/black bean: 188 mm (total water consumption 510 mm), muskmelon: 84 mm (total water consumption 270 mm), turnip: 250 mm (total water consumption 470 mm), sharo pepper: 110 mm (total water consumption 370 mm).
- 5. The WOFOST simulation model yielded an average total aboveground dry matter production under optimal conditions of 20 500 kg ha⁻¹ (10 500 kg ha⁻¹ in grain) for winter wheat, 27 110 kg ha⁻¹ (14 500 kg ha⁻¹ in grain) for spring maize and 11 650 kg ha⁻¹ (5 900 kg ha⁻¹ in grain) for sunflower. Potential production in Taiyuan was somewhat higher (winter wheat grain yield 1.6% higher, spring maize 3.4% higher, sunflower 2.3% higher) than in Jiexiu. Simulated grain yield under irrigated conditions was overestimated by 8.75% and 22.3% for spring maize and winter wheat, respectively, compared to measured yield. Simulated maximum leaf area indices and harvest indices were somewhat higher than observed value. Simulated grain yield and precipitation plus irrigation can be correlated by logarithmic curves for all three crops (correlation coefficients higher than 0.7). Crop production under water-limited (rainfed) conditions was low for all three crops, albeit acceptable for spring maize and sunflower, growing in the rainy season. For sunflower, simulated water-limited grain yields are logarithmically correlated to precipitation.
- 6. Anticipated developments in the agricultural sector will lead to a shift from cultivation of bulk products such as rice, wheat and maize, in view of the shift in consumer preferences and the continuing economic growth, to more remunerative high-value commodities, such as vegetables and fruits, and animal products, i.e. milk, meat, eggs, etc. As shown in the experiments reported in this report, vegetables (and the same holds for fruits), are high-intensity crops that require higher inputs, both in terms of water and in terms of nutrient elements.
- 7. The shift away from bulk products brings to the fore, the conflict between the dual objectives of the Chinese government of maintaining self-sufficiency in basic foodstuffs and reducing the income gap between the rural and the urban population. As China is now a full member of WTO, scope for policy measures is limited; it is doubtful therefore whether both objectives can be realized in the long run. In terms of water management this might mean that a choice will have to be made between the different water users in the Yellow river basin, i.e. agriculture, industrial and domestic. When industrial and domestic users will continue to receive priority, total agricultural production in Fenhe Irrigation District will decline.
- 8. As water availability from Fenhe reservoir is limited, farmer will increasingly resort to the use of groundwater for irrigation of the high-value commodities. Already there is a serious drop in groundwater table depths, and this will aggravate under the anticipated changes in structure of the agricultural sector. Whether this increased groundwater use can be restricted through economic measures such as water pricing is doubtful. The price of water required for full-cost recovery would be such that it would seriously affect the profitability of farm enterprises.
- 9. Expansion of the animal production sector which also will lead to high-intensity production activities involving import in the region of concentrate feed, to supplement the roughage that could be grown as an alternative to the current bulk food crops of low profitability, will lead to a surplus of nutrients, especially nitrogen and phosphorus. An active land use policy is then required to balance the intensity of the animal production systems and the associated manure production and the land area on which the manure can be applied as a fertilizer. Rules and regulations that would condition required licenses-to-produce for animals are the required.
- 10. In this report attention has focused on water use for agriculture. Increasingly, the requirements of water for ecosystem functions are stressed. In the Yellow river basin, including Fenhe River, these functions have largely been ignored in the past. More emphasis on this use is another serious threat to the agricultural sector, as it will reduce the availability of water for agricultural purposes.
- 11. There is therefore in Fenhe Irrigation District a need for formulation of water use plan, including the necessary enabling policy measures. This water use plan should not only take into account the bio-physical possibilities and constraints, but should also look at the (socio-)economic consequences. When agricultural water availability is seriously declining, the livelihoods of (many of) the small farmers now dependent on Fenhe reservoir will be under pressure. It will then be absolutely necessary to take measures creating alternative employment in the region.

Key Words: WOFOST simulation model; calibration; validation; winter wheat; spring maize; sunflower; vegetables; potential production; water-limited production; nutrient-limited production

Acknowledgements

During project implementation many people have assisted. Mr. Jia Yunmao, Mr. Meng Chong, Mr. Wang Zhansheng and Mr. Wu Chaobao from the Central Experimental Station helped in collecting experimental data and weather data and arranging accommodation; Mr. Duan Shuqiang, Mr. Zhao Yanfeng, Mrs. Yuexiang, Mrs. Zhixiang, Mr. Tuheti and Mr. Li Zhiqiang assisted in experimental observations. Special thanks are due to Mr. Niu Haozhen from Fenhe Irrigation Authority and Prof. Fan Guisheng from Taiyuan University for Technology for support in organizing the workshops during the project; Dr. Zhang Jianxin from Shanxi Meteorological Agency for providing climate data. In addition, Drs. Koen Roest and Robert Smit from Alterra, Wageningen, The Netherlands, gave comments on drafts of this report. Their contributions to the project are gratefully acknowledged.

1. Introduction

Crop models have proven to be useful tools in increasing quantitative understanding of the performance of cropping systems. Crop genetic properties and environmental conditions such as soil properties, weather conditions and management practices that interactively determine crop performance are represented in a simplified manner in crop growth models (van Keulen and Wolf, 1986). Crop production situations can schematically be classified into *potential* (determined only by radiation, temperature and crop genetic properties), *water-limited* (determined by availability of water), *nutrient-limited* (determined by availability of crop nutrients) and *actual* (effects of weeds, pests and diseases are taken into account).

Crop models offer a way to estimate the yield potential of a crop and yield levels under limiting conditions. Simulation, i.e. application of crop models, permits exploration of combinations of soil and crop properties for optimization of management strategies and, while such modeling experiments cannot substitute field experimentation, they enable preferred options to be identified (Karthikeyan et al., 1996). Before formulating recommendations for improvements in crop management practices, it is useful to know the potential yield of a crop in the region of interest, as a yardstick for the 'ultimate' possibilities, to establish the gap between yield potential and current yields, and to identify the yield-limiting factors (Matthews, 2003). In crop models, the current state of knowledge of plant growth and development from various disciplines (such as crop physiology, agrometeorology, soil science and agronomy) is integrated in a consistent, quantitative and process-oriented manner (Jame and Cutforth, 1996). Yield gaps have been defined as the difference between an attainable yield level as obtained in well-kept trials and the actual yield (Pinnschmidt et al., 1997). This yield gap can be the result of many factors, such as inadequate water supply, insufficient nutrient supply, weed competition, or incidence of diseases and pests. For example, Becker et al. (2003), analyzing rice yield gaps in irrigated systems along an agro-ecological gradient in West Africa, reported yield gaps ranging from 3.2 to 5.9 Mg ha⁻¹. They concluded that improved management of fertilizer N would be most beneficial in reducing the gap in these savannah environments. Aggarwal and Kalra (1994) used a wheat growth model to quantify the gap between actual and potential yields. Simulated potential grain yields at New Delhi, determined by solar radiation and temperature, varied between 5.6 and 8.0 Mg ha⁻¹, depending on year. There was at least a 2.0 Mg ha⁻¹ yield gap between climatic potential yield and actual yield. The gap appeared to be wide, and mainly dependent on two factors, i.e. crop variety and fertilization level. Yield gap analysis allows quantification of the likely benefits to be gained from improved crop management and identification of the factors on which research resources should be concentrated.

A crop model has been described as 'a quantitative scheme for predicting the growth, development and yield of a crop, given a set of genetic coefficients and relevant environmental variables' (Monteith, 1996). Many crop models have been developed for a variety of purposes. For example, SUCROS (Goudriaan et al., 1997), a generic model that has been parameterized for various species, the ORYZA-family for rice, including ORYZA1 for potential production (Kropff et al., 1993), ORYZA_W for water-limited production (Wopereis et al., 1996), ORYZA_N for nitrogen-limited production (Drenth et al., 1994) and ORYZA 2000 (Bouman et al., 2001) an integrated version; and the CERES group (Jones et al., 1984), including CERES-Rice (Alocilja & Ritchie, 1988), CERES-Maize (Jones and Kiniry, 1986) and CERES-Wheat (Ritchie and Otter, 1985), that have been widely applied (Mastrorilli et al., 2003; Yun, 2003). WOFOST (Boogaard et al., 1998) has been developed by the Centre for WOrld FOod STudies to explore the possibilities of increasing agricultural productivity at regional and national scales, in particular in developing countries. WOFOST has been applied in studies on quantitative land evaluation, regional yield forecasting, analysis of risk and inter-annual yield variation, and quantification of the effects of climate change and increased atmospheric CO₂ concentration (Roetter et al., 1998; Wolf and Van Diepen, 1995; Wolf, 1993). WOFOST estimates potential, waterand nutrient-limited yields, taking into account the supply of water and nutrients from the soil and the crop's water and nutrient requirements. The model is particularly suited to quantify the combined effect of soil type, weather conditions and crop management on crop development, crop growth and production and water use, taking into account the interactions between factors. Foltescu (2000) used WOFOST to predict yields of spring barley, spring rape and winter wheat in Sweden, based on meso-scale meteorological information, and reported prediction errors of the order of 8 to 16%, with the smallest errors for winter wheat and spring barley.

In Fenhe Irrigation District (FID), one of the largest irrigation schemes in Shanxi province, Northern China, annual precipitation varies between 200-700 mm (453 mm on average); in dry years, farmers can irrigate crops only once in conventional irrigation systems. To supplement water supply from the irrigation system, water is pumped on an individual farm basis from the groundwater. Average annual net income per capita is about 130 U\$ in the district. To increase income, farmers increasingly grow vegetables that need more irrigation water. Despite the scarcity of water, waste in agriculture is wide-spread. In addition, the unreliability of water supply makes fertilizer management difficult, leading to low (nitrogen) fertilizer use efficiencies (expressed as 'agronomic efficiency', i.e. increase in crop yield per unit fertilizer nutrient applied; Adhikari *et al.*, 1999; Witt *et al.*, 1999). Hence, lack of water increasingly constrains increases in agricultural production. Moreover, water scarcity, inappropriate use and mis-management of both surface- and groundwater resources have led to many environmental and ecological problems, such as land drops, land degradation, groundwater pollution, etc. In addition, drought injury may occur in early~mid June in FID (as in the whole of Northern China), coinciding with the late grain-filling period for winter wheat. Farmers always need supplementary irrigation to prevent yield reductions, which becomes increasingly difficult because of the lack of irrigation water. Research on early maturing wheat varieties has been carried out in attempts to avoid these late-

season drought periods. Because of seasonal fluctuations in depth of the shallow water table, irrigation water management is becoming more difficult. Therefore, improvements in water management in crop production systems, among others through optimization of spatial and temporal water distribution at farm and regional level, modifications in cropping patterns and crop variety selection and precision irrigation management practices under shallow water tables, are urgently required in Fenhe Irrigation District.

In this report, experiments related to cropping pattern and irrigation and nutrient management for the main field crops and vegetables are analyzed.

The variation in potential and water-limited crop production for crop production systems in FID is analyzed for the period of 1961~2002, focusing on the main cereal crops winter wheat and spring maize and the oil crop sunflower. The WOFOST crop growth model has been applied to simulate potential and water-limited yields for these crops, and yield gaps due to unfavorable conditions are identified and analyzed.

2. Description of the region

2.1 General

Fenhe Irrigation District (FID), the study area (111°15' to 112°37' NL, 37°07' to 37°53' WL, see Figure 1) is located in the Taiyuan basin in North China (Figure 3), surrounded by Yunzhong Mountain (North), Taihang Mountain (East), Lüliang Mountain (West) and Taiyue Mountain (South). Its altitude ranges from 730 m above sea level in the southwest to 810 m in the northeast and its slope from 1/2500~1/3000 from north to south and from 1/1500~1/2000 from east to west. FID is the largest irrigation district of Shanxi province, with an irrigated area of 99 700 ha. Three dams and the Fenhe River divide the district into four irrigation schemes (Figure 1, right): First Dam Scheme (25 574 ha), Fenxi Scheme (34 800 ha), Fendong Scheme (21 033 ha) and Third Dam Scheme (23 293 ha).

Figure 1. Location of (left) Shanxi province, (centre) Fenhe Irrigation District and (right) its sub-division in four irrigation schemes: First Dam Scheme (dark-grey), Fenxi Scheme (grey), Fendong Scheme (white) and Third Dam Scheme (hatched).

The study area is representative for the continental monsoon climatic region, with an annual average temperature of 9.5 °C and annual precipitation of 200-700 mm (453 mm on average for 1961~2002), concentrated in June, July and August, with strong year-to-year variability (Figure 2, right hand side). Annual average number of frost days is 177. Temperature and radiation are high in the wet season from May to September, and low in the dry season, especially in November, December and January (Figure 2, left hand side).

There are three main water sources: Fenhe reservoir, interzone water between the First Dam, Second Dam and Third Dam and groundwater. The major part of the surface water used for irrigation comes from Fenhe Reservoir, managed by the Fenhe Irrigation District Authority. Average annual discharge from the reservoir is 367.5 Mm³ and exploitable groundwater resources amount to 93.5 Mm³ annually. Higher water storage in Fenhe Reservoir In favorable rainfall years allows farmers to irrigate more frequently, resulting in higher crop production than in dry years (Figure 2, right hand side).

Figure 2. Average weather conditions (left) and reported average crop yields for winter wheat and spring maize and precipitation during 1980~2003 (right) in Fenhe Irrigation District.

Excessive water consumption and the consequent serious drop in groundwater table depth are the main problems in exploitation and utilization of water resources in FID. In the period 1965-1996, due to overexploitation of groundwater, the groundwater table has declined by 3.64 and 1.94 m/a in Taiyuan and Jiexiu, respectively (Wang and Cun, 2003). The shallow water table fluctuates seasonally between 0.5 and 9 m in FID. Because of spring irrigation and prevailing rainfall pattern, the shallow water table rises twice annually: in early spring and in mid-summer.

Figure 3. Satellite image of Taiyuan Basin, the Fenhe Irrigation District (red line), hydrological border (yellow line) and the locations of weather stations (yellow points).

Saline land occupies 6 667 ha (6.7% of the total area, 2000), of which 74.8% is slightly saline and the remainder moderately and heavily saline. The salt problem mainly occurs in the Fenxi, Fendong and Third Dam Schemes, being most serious in the Third Dam Scheme.

2.2 Soil texture and cropping pattern

Soils in FID are pre-dominantly sandy loams and loams, with some fine sandy and clay soils. Sandy loam and a mixture of sand and clay constitute the upper soil layer in FID. A typical profile consists of an upper layer of some 0.8 m, underlain by 0.2 m fine sand, followed by alternating layers of sand and clay. Close to the river, the texture is sandy loam up to some 1/3 of the length of the main laterals. The remaining part is clay and sand.

	First Dar 25 5	Scheme Fenxi Scheme 74 ha 34 800 ha		Fendong Scheme 21 033 ha		Third Dam Scheme 23 293 ha		FID Total 99 700		
Crop	Planted area (%)	Crop yield (kg ha-1)	Planted area (%)	Crop yield (kg ·ha ^{·1})	Planted area (%)	Crop yield (kg ha ^{.1})	Planted area (%)	Crop yield (kg ·ha ^{·1})	Planted area (%)	Crop yield (kg ha ⁻¹)
Winter wheat	28.9	4950	25.1	4320	29.0	5230	11.7	3000	23.1	4500
Maize+ sorghum+ millet	57.1	6165	66.9	6450	52.7	6840	58.9	4800	60.8	6120
Rice	5.5	6975	0	0	0	0	0	0	1.3	6975
Cotton	0	0	2.2	450	8.2	900	2.2	585	2.8	720
Oil crops	0	0	3.3	2310	7.6	2175	20.1	2220	7.3	2235
Vegetables	8.5	40425	2.5	25125	2.5	52920	7.1	26445	4.7	33750
Multiple cropping	0	0	3.9	2730	21.3	1965	2.7	1680	5.9	2115

Table 1. Main crops, planted area and average yields in Fenhe Irrigation District, North China (2002).

As rainfall is low and evaporative demand high, agricultural production is low without irrigation. Irrigated crop yields are moderate in FID, e.g. wheat (winter) and corn yields are 4500 and 6100 kg·ha⁻¹ on average, respectively. Winter wheat, corn, sorghum, millet, oil crops and vegetables are the main crops in FID (Table 1, Figure 4). Annually, only one crop can be planted or three crops in two years: winter wheat or autumn crops; maize-winter wheat-sunflower or vegetables. During the winter season no crops can be grown, because of low temperatures.

Figure 4. Cropping calendars of the main crop rotations in Fenhe Irrigation District, North China.

Spring maize is cultivated on the largest area (56.1% of the total area in 2002), followed by winter wheat (23.1% of total area in 2002). More and more farmers plant vegetables, because of the higher revenues. Rice is grown on a small area beyond the Fenhe riverbank and the cotton area has decreased since 1995.

Cereal crops, cash crops, fruit trees and vegetable occupied 86%, 11.3%, 1.05% and 0.75% of the irrigated land, respectively (2002).

2.3 Social and economic conditions

FID is the largest irrigation district in Shanxi province, North China, accounting for 10% of the total irrigated area in the province. Located near the political, economic and cultural centre, Taiyuan city, it is the basis for the production of the main food crops and vegetables. Agricultural production constitutes 70.3% of the total production value in Shanxi. Dunhua Scheme (located to the east of FID in Figure 1) has been added to FID (administrative change) in 2000. The total population in FID is 1.02 million (2000), of which 92% is occupied in agriculture; there are 12 006 agricultural machines. Average GDP is RMB 5000 per capita (SBSP, 2002)¹ and average annual income RMB 1085 (130 US\$). More detailed information at irrigation scheme level is given in Table 2.

Irrigation Scheme	Villages	Population	Agricultura population	Labor force	Agricultural machines	Annual income	GDP (in 2001)
		(*10 ⁶)	(*10 ⁶)	(*10 ⁶)		per capita (RMB)	per capita (RMB)
First Dam Scheme	209	0.351	0.303	0.119	4807	1329	7050
Fenxi Scheme	79	0.132	0.131	0.057	1817	1692	3500
Fendong Scheme	136	0.289	0.286	0.124	2128	855	4050
Third Dam Scheme	98	0.178	0.166	0.079	2254	944	6000
Dunhua Scheme	36	0.065	0.059	-	-	-	-

 Table 2.
 Social and economic conditions in Fenhe Irrigation District, North China (2000).

¹ $_{1\text{US}\$}$ equal to 8.27 RMB

3. Description of the experiments in the region

3.1 Experimental Site

Because of the increasing pressure on water resources in agriculture (Rijsberman, 2004), during the past decades experiments on irrigation management have been carried out in FID, with the aim of designing precision water management schemes. These experiments on winter wheat, spring maize, sunflower and some vegetables, carried out in the Central Experimental Station (CES) since the 1990s, mainly focused on irrigation scheduling.

CES (112°12' NL,37°17' EL) is located in Hulan town, Taiyuan Basin, at an altitude of 749 m asl; annual radiation is 54.5-56.5 MJ m⁻², average annual temperature 9.4 °C, annual precipitation 450 mm and potential evaporation 1565 mm. The soil profile consists of three layers in CES. The first layer, 0~32 cm, is loamy (sand 12%, clay 23%), bulk density 1.0~1.32 g·cm⁻³; the second layer, 32~77 cm, is clay (sand 7%, clay 37%), bulk density 1.39 g cm⁻³; the third layer, 77~150 cm, is fine sand (sand 44%, clay 10%). For the soil layer 0~1 m, average bulk density is 1.38 g cm⁻³, field capacity is 27.7% (by weight), salinity 0.3%, organic matter 1.3%, total nitrogen is 0.8%, available potassium is 20 ppm (2001). Crops are irrigated using deep groundwater (well). Shallow groundwater table depth fluctuates between 1.5 and 3.5 m, under the influence of spring irrigation and summer rainfall (Figure 5).

Figure 5. Annual fluctuation in shallow groundwater table depth in the Central Experimantal Station, Shanxi Province, North China

3.2 Materials and methods

3.2.1 Irrigation and nutrient management

Winter wheat

Experiments on irrigation management were carried out in the periods 1992–1996 and 2001-2004. Table 3 shows the experimental design for winter wheat crop under irrigated condition. These experiments were done in 2 m \times 2 m plot with three replicates (Figure 6). Winter wheat variety was Jingdong 8. Sowing date varied between 25th September and 10th October, depending on weather conditions and the crop matured mid to end of June.

The crop was irrigated twice after re-greening. Irrigation dates were determined on the basis of soil moisture content (Table 3). Before jointing, irrigation was generally delayed to prevent excessive vegetative growth before anthesis. Fertilizer applied with high level in two doses (sufficient supply) from 1992 till 2002: before sowing 750kg·ha⁻¹ basic multi-fertilizer (8% nitrogen, 12% phosphorus, 5% potassium) and before jointing, i.e. top

application, 375 kg·ha⁻¹ urea (CO(NH₂)₂, 46% nitrogen). Birds (e.g. sparrow) are considered the main yield- reducing factor before harvest. Hence, sparrow nets have been used to protect grains from birds.

Figure 6. Experimental plots used for irrigation and nutrient management in the Central Experimental Station, Shanxi Province, North China.

Table 3.	Irrigation management for winter wheat experiments in the Central Experimental Station in Shanxi
	province, North China.

		Bef	ore jointing	Befo	ore grain filling	Effective precipitation
Year and treatment		Date	Irrigation volume (mm)	Date	Irrigation volume (mm)	during growing season (mm)
1992		24 th March	120	16 th May	65	120.4
1993		24 th March	120	16 th May	60	117.4
1994		22 nd April	100	19 th May	100	167.7
1995		30 th March	90	13 th May	78	125.4
1996		24 th March	70	16 th May	60	110.9
2001		24 th March	100	19 th May	100	182.0
2002	1	25 th March	140	29 th April	140	115.8
	2	25 th March	100	19 th May	100	115.8
	1	15 th April	150	27 th May	105	165.0
	2	15 th April	120	27 th May	90	165.0
20022	3	15 th April	90	27 th May	75	165.0
2005a	4	15 th April	60	27 th May	60	165.0
	5	15 th April	30	27 th May	45	165.0
	6	-	0	-	0	165.0
	1	21 st April	150	19 th May	105	123.0
	2	21 st April	120	19 th May	90	123.0
	3	21 st April	90	19 th May	75	123.0
2004	4	21 st April	60	19 th May	60	123.0
	5	21 st April	30	19 th May	45	123.0
	6	-	0	-	0	123.0

Soil physical and chemical characteristics were observed before sowing and after harvesting. Soil water content distributions were measured with neutron probes (CPN503, CPN Company, USA), from the surface to the depth 2.5 m with neutron probe, at 10 day intervals and in 20 cm increments. In the case of rainfall or irrigation observation intervals are shortened (e.g. add observation just before and after rainfall or irrigation). Crop phonology and crop yield have been observed.

In 2003 and 2004, three levels of nutrient supply (high, medium and low) were combined with six irrigation management schemes (Tables 3 and 4). Soil nutrient and salinity conditions before sowing and after harvesting were observed. Leaf area development and mean culm height were measured every 15 days.

Fertilizer		200	3	2004		
treatment	Basal		After re-greening		Basal	After re-greening
	NH₄HCO₃ (17% N)	Ca(H ₂ PO ₄) ₂ H ₂ O (14% P ₂ O ₅)	K ₂ SO ₄ (33% K ₂ O)	NH ₄ NO ₃ (35% N)	Compound fertilizer (8%N, 12% P, 5% K)	CO(NH ₂) ₂ (46% N)
High Medium	750 500	750 500	150 100	600 400	750 500	375 280
Low	250	250	50	200	250	185

Table 4.	Nutrient management (application rate in kg ha ¹) for winter wheat experiments in the Central
	Experimental Station in Shanxi province, North China (2003-2004).

An additional experiment on irrigation management was conducted in 2003 (Table 5). The winter wheat variety was Jing 9428 (similar to Jingdong 8) sown on 13^{th} October 2002 in 6.67×3 m plots and harvested on 23^{rd} June, 2003. Fertilizer was applied in two splits: A basal dressing before sowing of 125 kg·ha⁻¹ diammonium phosphate $((NH_4)_2HPO_4, 18\% N, 46\% P_2O_5)$ and a topdressing before jointing of 225 kg·ha⁻¹ urea (CO(NH₂)₂, 46% N). Total precipitation during crop growth was 182.4 mm (effective precipitation was 165.0 mm). Soil moisture was measured with a neutron probe (CPN503, CPN Company, USA) in 20 cm increments to a depth of 2.0 m, at 5-day intervals. In the case of rainfall or irrigation, the observation interval was shortened (e.g. observations were added just before and after rainfall or irrigation). Crop phenology and dry matter dynamics were monitored. Groundwater table depth was fixed at 8.0 m through installation of a drain pipe.

	Jointing	Heading	Grain filling	Total irrigation
Treatment	10 th April (mm)	25 th April (mm)	27 th May (mm)	(mm)
1	75.0	75.0	75.0	225.0
2	60.0	0	45.0	105.0
3	0	45.0	0	45.0
4	45.0	0	0	45.0
5	0	0	0	0

Table 5.Irrigation schedule for the winter wheat experiment in the Central Experimental Station in Shanxi
province, North China in 2003b.

Spring maize

Experiments were conducted in 1992, 1993, 1994, 1995, 2001 and 2002 (Table 6) in 2 × 2 m plots with three replicates. The maize variety Tunyü 2 was sown in mid- or late April and harvested end of September. Fertilizer was applied at a high level in a single dressing before sowing. Soil physical and chemical characteristics were monitored before sowing and after harvesting. Soil moisture was monitored with a neutron probe (CPN503, CPN Company, USA) in 20 cm increments to 1.5 m depth, at 10-day intervals. In the case of rainfall or irrigation, the observation interval was shortened (e.g. observations were added just before and after rainfall or irrigation). Crop phenology and crop yield were monitored.

	_	Irrigation	Effective precipitation during	Fertilizer		
Year	Date	Irrigation volume	growing season	$Ca(H_2PO_4)_2H_2O$	CO(NH ₂) ₂ (46% N)	
		(mm)	(mm)	(14% P ₂ 0 ₅) (kg·ha ⁻¹)	(kg·ha ⁻¹)	
1992	5 th June	95	173.0	750	375	
1993	16 th June	40	251.0	750	375	
1994	21 st June	43	258.9	750	375	
1995	24 th June	100	368.7	750	375	
2001	26 th May	60	248.2	750	375	
2002	15 th May	98	232.1	750	375	

Table 6.Irrigation and fertilizer management for spring maize in the Central Experimental Station in Shanxi
province, North China.

Sunflower

Sunflower is planted after harvesting of winter wheat. Experimental data are available for 2002 and 2003. Irrigation management comprised the main treatment in 6.67 \times 3 m plots. Fertilizer was applied at a high level as a single dressing before sowing (Table 7). Sunflower variety was KWS203. Fertilizer ammonium bicarbonate NH₄HCO₃ (17% N) was applied with amount of 750 kg·ha⁻¹. Soil water content distributions were measured with neutron probes (CPN503, CPN Company, USA), from the surface to the depth 2.0 m with neutron probe, at 15 day intervals and in 20 cm increments. In the case of rainfall or irrigation observation intervals are shortened (e.g. add observation just before and after rainfall or irrigation). Crop phonology and crop yield have been observed.

Irrigation		200	2	2003			
	Irr	igation	Fertilizer	Irrigation	Fertilizer		
	5 th July (mm)	30 th July (mm)	NH ₄ HCO ₃ (17%N) (kg ha ^{.1})	30 th July (mm)	$NH_4HCO_3(17\%N)$ (kg ha 1)		
1	146.0	146.0	750	120.0	750		
2	120.0	120.0	750	93.0	750		
3	93.0	93.0	750	66.0	750		
4	66.0	66.0	750	45.0	750		
5	45.0	45.0	750	0	750		
Ck	0	0	750	-	-		

Table 7.Irrigation and fertilizer management for sunflower in the Central Experimental Station in Shanxi
province, North China.

Water use efficiency (WUE in kg ha⁻¹ mm⁻¹) was calculated as grain yield divided by total water consumption:

WUE= $Y/(I + P_e + S_g - D + \Delta W)$

Where, /is irrigation, P_e is effective precipitation, S_g is capillary contribution from the groundwater table to the crop root-zone (only included if observed), D is downward drainage from the crop root-zone to the groundwater (only included if observed), ΔW is change in soil water storage (0-150 cm) and Y is grain yield (14% water content).

3.2.2 Groundwater table management

Experimental design

Seasonal fluctuations in depth of the shallow water table make water management difficult. Therefore, experiments have been carried out on water table management schemes in CES for winter wheat (Babijiang *et al.*, 2004a) and spring maize (Babijiang *et al.*, 2004b).

A Mariotte bottle system (RWCMWR, 1994) was used to control the water table depth and to provide an estimate of the amount of water required to maintain a static groundwater level. The columns were closed at the bottom and connected to the Mariotte bottle via flexible PVC tubes (Figure 7). Six constant water table depths, i.e. 0.5 m ($WT_{0.5}$), 1.0 m ($WT_{1.0}$), 1.5 m ($WT_{1.5}$), 2.0 m ($WT_{2.0}$), 2.5 m ($WT_{2.5}$) and 3.0 m ($WT_{3.0}$) were maintained, 3 replicates for each depth and the natural variation in water table depth (WT_{ck}) as control. Plot area was 2 × 2 m and the top of each plot was about 10 cm above ground surface. The columns were packed to a bulk density of 1.38 g cm⁻³ with a sandy loam soil, with the 0–32 cm, 32–77 cm and deeper than 77 cm layers returned in the proper sequence, to reconstruct the original soil profile collected from the experimental station.

Each plot was connected with a pipe to a Mariotte bottle in a centrally located underground laboratory. Water was supplied to each plot from the Mariotte bottle and recorded twice a day (0800 hours and 2000 hours). Downward drainage from the crop root-zone to the groundwater was collected and recorded daily. Soil water content was measured with a neutron probe (CPN503, CPN Company, USA), in 10-cm increments from the surface to the water table depths (0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m, and 3.0 m) at 10-day intervals.

Actual evapotranspiration (ET_c) from each plot between successive soil moisture content measurements was estimated using the water balance equation:

$$ET_c = I + P_e + S_\sigma - D - R_f + \Delta W \tag{1}$$

where, *I* is irrigation, P_e is effective rainfall, S_g is capillary contribution from the groundwater table to the crop rootzone, *D* is downward drainage from the crop root-zone to the groundwater, R_f is surface runoff, and ΔW is change in soil water storage.

Figure 7. Schematic representation of the groundwater table control facility in the Central Experimental Station, Shanxi Province, North China.

Evaporation under controlled water table depth (E_{l}) is estimated from the empirical relation:

$$E_t/E_{20} = a e^{-b H}$$

where, E_{20} is potential evaporation (mm) from a 20 cm evaporation dish (obtained from the weather station), *H* is groundwater table depth (m), *a* and *b* are empirical constants.

Winter wheat

Experiments were conducted from 1992 till 1996 and in 2001 and 2002. The winter wheat variety was Jingdong 8, sown between 25th September and 10th October, depending on weather conditions and the crop matured mid- to end June. Irrigation rates were determined on the basis of soil moisture content, with the aim to maintain soil moisture content at 60-80% of field capacity. Fertilizer was applied at high doses in two splits, before sowing and before jointing (Table 8). Before jointing, irrigation was generally delayed to prevent excessive vegetative growth before anthesis. Crop phenology and yield were monitored.

Table 8.	Dates and amounts of irrigation for winter wheat under different water table management regimes in
	the Central Experimental Station in Shanxi province, North China (2002).

Water table treatment	Irr	rigation	Fertilizer			
	Before jointing 25 th March (mm)	Before grain filling 29 th April (mm)	Basal (compound fertilizer) (8% N, 12% P , 5% K) (kg ha ⁻¹)	Topdressing (CO(NH ₂) ₂) (46% N) (kg ha ^{.1})		
WT _{ck}	149.0	102.5	750	375		
WT _{0.5}	0.0	22.5	750	375		
WT _{1.0}	8.3	47.5	750	375		
WT _{1.5}	58.0	85.0	750	375		
WT _{2.0}	127.0	120.0	750	375		
WT _{2.5}	128.3	125.0	750	375		
WT _{3.0}	142.3	135.0	750	375		

Table 9.Irrigation applications to spring maize under different water table management regimes in the CentralExperimental Station in Shanxi province, North China (2002).

Water	Irrigation management	Precipitation in growing season	Fertiliz	Fertilizer		
table	15 th April	Total/effective	Ca(H ₂ PO ₄) ₂ H ₂ O (14% P ₂ O ₅)	CO(NH ₂) ₂ (46% N)		
	(mm)	(mm)	(kg ha ⁻¹)	(kg ha ⁻¹)		
WT _{ck}	98	285/232	750	375		
WT _{0.5}	7.5	285/232	750	375		
$WT_{1.0}$	0	285/232	750	375		
$WT_{1.5}$	18	285/232	750	375		
WT _{2.0}	60	285/232	750	375		
WT _{2.5}	50	285/232	750	375		
WT _{3.0}	60	285/232	750	375		

Spring maize

Experiments were performed in 1992, 1993, 1994, 1996, 2001 and 2002 (Table 9) with maize variety Tunyü 2. Fertilizer was applied at a high level as a basal dressing before sowing. Irrigation rates were determined on the basis of soil moisture contents, with the aim to maintain soil moisture content at 60-80% of field capacity. Total precipitation was 285 mm with 232 mm of effective precipitation in 2002.

3.2.3 Experiments on sowing date and early maturing wheat

This experiment was carried out in the experimental field of China Agricultural University (CAU) in Beijing in 2000-2001. CAU (116°18' NL, 37°57' EL) is located in the Northwest of Beijing; average annual temperature is 11.5 °C, annual precipitation 595 mm, depth of the shallow water table 14 m. The 0-100 cm soil profile consists of light clay and clay, organic matter is 1.258%, total nitrogen is 0.068%, and available potassium 20 ppm (2000). Crops are irrigated using deep groundwater (well).

Two varieties of winter wheat, Jingdong 8 (JD8) and Dongzao 5 (DZ5), were used to study the effects of sowing date and variety on growth and yield. DZ5 is a new photo-insensitive and early maturing variety, developed at the Beijing Academy of Agricultural and Forestry Sciences. With JD8 as reference, this experiment focused on the effects of day length and temperature and frost hardiness on DZ5, as a basis for its characterization as a photo-insensitive, winter-hardy and early maturing variety.

Five sowing dates in autumn (20th Sept., 27th Sept., 4th Oct., 11th Oct., 10th Nov. 2000) and three in (early) spring (1st March, 15th March, 1st April 2001) were included in 4 × 5 m plots with 3 replicates. Before sowing, 750 kg·ha⁻¹ basal compound fertilizer (8% N, 12% P, 5% K) and after re-greening a topdressing of 225 kg·ha⁻¹ urea (CO(NH₂)₂, 46% N), were supplied. Soil moisture contents were measured in 20 cm increments to a depth of 1.0 m, at the main development stages.

The main phenological development stages were recorded, in addition to leaf number on the main culms, LAI and aboveground dry matter at ten-day intervals from mid-October till flowering for each sowing date. Detailed phenological development stages, based on ear differentiation, were recorded at five-day intervals from early March till flowering. Storage organ weight was measured at five-day intervals from flowering till maturity and crop yield was recorded at maturity.

Experimental	Coordinates	Alti-	Soil characteristics			Soil Fertility			Groundwater
site	(NL; EL)	tude (m asl)	Field capacity (% by weight)	Bulk / density (g/m³)	Poro- sity (% by weight)	Organic matter (%)	Available N (%)	Available P (ppm)	table depth (m)
Yu he	113° 20'; 40° 06'	1052	22.5	1.5	49	1.3	0.06	4.9	6
Xiaohe	112° 36'; 37° 22'	787	27.1	1.4	46	1.34	-	-	8
CES	112° 02'; 37° 04'	749	27.7	1.4	48	1.26	0.08	20	1-3
Zhen Ziliang	113° 11′; 39° 33′	1005	24.3	1.46	45	-	-	-	1-3
Shenxi	113° 41′, 39° 43′	1075	27.2	1.42	48).72	-	-	7
Zhang Bei	113° 23'; 36° 31'	753	23.5	1.38	47	1.23	0.76	20.0	30

Table 10. Locations and soil conditions of experimental sites in Shanxi Province, North China (2002).

Experimental	Vegetable species	C	Ouration	Weather conditions		
site		Sowing date	Harvesting date	Effective precipitation (mm)	Potential evaporation (mm)	
Yu he	Sweet potato	30 th April	5 th Sept.	154.5	962.8	
Xiaohe	Jequirity ²	20 th May	30 th Sept.	338.9	737.6	
CES	Sesame	28 th May	17 th Sept.	226.2	665.8	
Zheng Ziliang	Water melon/black bean	11 th May	1 st Sept.	170.6	732.6	
Ohanni	Musk melon	21 st April	25 th July	142.0	827.8	
Snenxi	Turnip	10 th June	20 th Sept.	219.0	921.8	
Zhang Bei	Chilli pepper	21 st May	20 th Oct.	281.0	977.4	

Table 11.Experimental site, species and growth period, and weather conditions during the growing period for
vegetable experiments (2002).

 Table 12.
 Water management treatments for vegetables in Shanxi Province, North China (2002).

Experimen- tal site	Vegetable species	Treatment 1 Irrigation dose date	Treatment 2 Irrigation dose date	Treatment 3 Irrigation dose date	Treatment 4 Irrigation dose date	Treatment 5 Irrigation dose date	Treatment 6 Irrigation dose date
Yu he	Sweet	59 mm 7 th June	59 mm 7 th June	59 mm 7 th June	-	-	0 mm
	potato	74 mm 8 th July	74 mm 8 th July	85 mm 23 rd July	-	-	
		72 mm 23 rd July	55 mm 22 nd Aug.	-	-	-	
		52 mm 22 nd Aug.		-	-	-	
Xiaohe	Jequirity	150 mm 12 th Aug.	-	-	-	-	0 mm
CES	Sesame	216 mm	126 mm	120 mm	76 mm	62 mm	0 mm
		in 2 doses	in 2 doses	in one dose	in one dose	in one dose	
Zheng	Water melon	195 mm 7 th June	150 mm 7 th June	105 mm 7 th June	60 mm 7 th June	-	0 mm
Ziliang	Black bean	$195 \text{ mm} 18^{\text{th}} \text{July}$	$150 \text{ mm } 18^{\text{th}}$ July	$105 \text{ mm } 18^{\text{th}} \text{ July}$	$60 \ mm 18^{th} \ July$	-	
Shenxi	Musk melon	61 mm 5 th June	63 mm 5th June	-	-	-	0 mm
		59 mm 25 th June			-	-	
	Turnip	31 mm 10 th June	33 mm 10 th June	35 mm 10 th June	33 mm 10 th June	32 mm 10 th June	
		$33 \text{ mm} 15^{\text{th}}$ June	31 mm 15 th June	31 mm 15 th June	32 mm 15 th June	34 mm 15 th June	
		33 mm 25 th June	32 mm 25 th June	31 mm 25 th June	34 mm 25 th June	30 mm 25 th June	
		$28 \ \text{mm} 10^{\text{th}} \ \text{July}$	35 mm 10 th July	$34 \text{ mm} 10^{\text{th}} \text{ July}$	$28 \ mm 10^{th} \ July$	$25 \ \text{mm} 20^{\text{th}} \ \text{July}$	
		33 mm 20^{th} July	31 mm 10 th Aug	28 mm 30 ^h July	$30 \ mm 30^{th} \ July$	31 mm 20 th Aug.	
		33 mm 10 th Aug.	27 mm 20 th Aug	29 mm 10 th Aug.	33 mm 20 th Aug.	-	
		33 mm 20 th Aug.	33 mm 30 th Aug	31 mm 20 th Aug.	-	-	
		32 mm 1^{st} Sept.	32 mm 10th Sept	t	-	-	
		30 mm 10 th Sept		-	-	-	
Zhang Bei	Chilli pepper	111 mm 21 st May	90 mm 21 st May	63 mm 21 st May	90 mm 21 st May	-	0 mm
		101 mm 16 th June	e 90 mm 16 th June	e 62 mm 16 th June	-	-	

² Jequirity (*Abrus precatorius*), is also called Black-eyed Susan, Rosary Pea or Indian Licorice

3.2.4 Vegetables and other crops

Various vegetable species have been tested at different experimental sites throughout Shanxi Province (Table 10). Experiments were performed on sweet potato, jequirity (*Ormosia*), black bean, sesame (gingili), water melon, musk melon, chilli pepper, turnip, etc., in 2002 (Table 11). These experiments dealt mainly with irrigation management (irrigation amounts and timing). Development stages and soil moisture contents at main development stages were monitored. Few nutrient management data are available. However, data are available for summary economic analyses. Table 12 shows detailed irrigation management practices for each vegetable.

4. Results of the experiments

4.1 Effects of irrigation and nutrient management

Winter wheat

Results for different irrigation management regimes for winter wheat are given in Table 13 (1992-1996, 2001-2003). Total water consumption of winter wheat varied between 220 mm (no irrigation) and 390 mm and grain yield between 1300 and 5800 kg ha⁻¹. Highest crop yield, 5842 kg ha⁻¹, was observed under the high irrigation regime in 2002 (280 mm; water consumption 393.3 mm) with WUE 14.9 kg ha⁻¹·mm⁻¹; lowest crop yield, 2250 kg ha⁻¹, was observed without irrigation in 2003 (water consumption 219.1 mm) with WUE 10.3 kg ha⁻¹ mm⁻¹.

	2001-2003).									
Year Treatment	Change in soil moisture (mm)	Irrigation (mm)	Effective precipitation (mm)	Water consumption (mm)	Grain yield (kg∙ha ^{.1})	Water use efficiency (kg·ha ^{.1} ·mm ^{.1})				
1992	54.3	185	120.4	359.7	4 396	12.2				
1993	37.2	180	117.4	334.6	4 140	12.4				
1994	4.2	200	167.7	371.9	2 713	7.3				
1995	56.0	168	125.4	349.4	4 605	13.2				
1996	30.6	210	110.9	351.5	4 542	12.9				
2001	42.0	200	144.4	386.4	4 812	12.5				
2002 1	- 2.5	280	115.8	393.3	5 842	14.9				
2002 2	19.0	200	115.8	334.8	5 520	16.5				
2003b 1	-35.9	225.0	165.0	354.1	5 431	15.3				
2	10.1	93.3	165.0	268.4	4 275	15.9				
3	56.4	45.0	165.0	266.4	3 960	14.9				
4	53.4	45.0	165.0	263.4	3 600	13.7				
5	54.1	0	165.0	219.1	2 250	10.3				

Table 13.	Winter wheat terms of the water balance, grain yield and water use efficiency under different irrigation
	regimes in the Central Experimental Station in Shanxi province, North China (1992-1996,
	2001-2003).

In 1994, effective precipitation was relatively high (167.7 mm), and with 200 mm irrigation, grain yield was only 2713 kg ha⁻¹, leading to a low WUE of 7.3 kg ha⁻¹ mm⁻¹, as a result of unfavorable distribution of precipitation and loss of grain through predation by birds.

Figure 8. The relation between water consumption and grain yield of winter wheat under high (H, triangles), medium (M, crosses) and low nutrient supply (L, circles) in CES, North China (2003).

Table 14.	Terms of the water balance, grain yield (air-dry) and water use efficiency for different irrigation and
	fertilizer management regimes in winter wheat in the Central Experimental Station in Shanxi province,
	North China (2003 and 2004).

Irrigation treatment	Change in SM	l ^a P _{ef}		TWC	High r su	High nutrient supply		Medium nutrient supply		Low nutrient supply	
	(mm)	(mm)	(mm)	(mm)	Grain Yield (kg·ha ^{.1})	WUE (kg·ha ⁻¹	Grain yield (kg·ha ⁻¹)	WUE (kg·ha ⁻¹	Grain yield (kg·ha ^{.1})	WUE (kg·ha ⁻¹	
						mm ⁻¹)		mm ⁻¹)		mm ⁻¹)	
2003a 1	22.5	255.0	165.0	442.5	5286	11.9	4901	11.1	5162	11.7	
2	49.2	210.0	165.0	424.2	5542	13.1	5819	13.7	5535	13.0	
3	58.3	165.0	165.0	388.3	5504	14.2	4532	11.7	5502	14.2	
4	28.8	120.0	165.0	313.8	4341	13.8	4658	14.8	4307	13.7	
5	32.6	75.0	165.0	272.6	4851	17.8	4866	17.9	4581	16.8	
6	46.2	0.0	165.0	211.2	4237	20.1	3467	16.4	3763	17.8	
2004 1	46.1	255	123.0	424.1	5237	12.3	4477	10.6	4303	10.1	
2	61.3	210	123.0	394.3	4497	11.4	4736	12.0	4577	11.6	
3	54.9	165	123.0	342.9	4104	12.0	3427	10.0	3287	9.6	
4	50.5	120	123.0	293.5	3190	10.9	3225	11.0	2763	9.4	
5	52.4	75	123.0	250.4	2776	11.1	2852	11.4	1777	7.1	
6	16.8	0	123.0	139.8	1889	13.5	1292	9.2	1207	8.6	

^aI = irrigation; P_{ef.} = effective precipitation; TWC = total water consumption; WUE = water use efficiency

For the experiment conducted in 2003a (Table 14), grain yield and total water consumption showed a negative logarithmic relation; for the high fertilizer supply (Figure 8) a correlation coefficient of 0.9, a slope of -10.281 and an intercept of 74.797 was established. Highest WUE was observed in the no irrigation treatment.

Figure 9. The relation between water consumption and grain yield under high (H, triangles), medium (M, crosses) and low nutrient supply (L, circles) for winter wheat in CES, North China (2004).

In the experiment in 2004, the highest grain yield of 5237 kg·ha⁻¹ was observed under the high water and high fertilizer input, and the highest WUE of 13.5 kg ha⁻¹ mm⁻¹ in the no irrigation treatment (total water consumption 139.8 mm).

Water consumption and grain yield under different fertilizer input levels in this year showed a logarithmic relation. For the high fertilizer input, the correlation coefficient is 0.9, the slope 2858.5 and the intercept -12 587 (Figure 9).

4.1.2 Spring maize

Spring maize is grown in the rainy season, and because of strong variation in total precipitation (effective precipitation varied between 173 and 368 mm for the 6 years illustrated in Table 15) and its distribution, grain yield fluctuates substantially over the years, even with supplementary irrigation. Total water consumption for spring maize over the 6 years varied between 350 mm and 480 mm.

Water use efficiency also fluctuates strongly, and two of the lowest values coincide with relatively low total water consumption, but the highest value coincides with one but the lowest total water use. This could suggest that not so much total water availability, but rather its distribution is the major factor in yield formation. Without additional information, however, this conclusion can not be substantiated.

	20012002).					
Year Treatment	Change in soil moisture	Irrigation	Effective precipitation	Total water consumption	Grain yield	Water use efficiency
	(mm)	(mm)	(mm)	(mm)	(kg ha ⁻¹)	(kg ha ⁻¹ mm ⁻¹)
1992	132.8	95	173	400.8	9 159	22.85
1993	99.9	40	251	390.9	4 636	11.86
1994	147.5	43	258.9	449.4	9 769	21.74
1995	9.9	100	368.7	478.6	9 417	19.68
2001	37.5	60	248.2	345.7	5 661	16.38
2002	37.2	98	232.1	367.3	9 250	25.18

Table 15.Terms of the water balance, grain yield (air-dry) and water use efficiency for different spring maize
experiments in the Central Experimental Station in Shanxi province, North China (1992-1995,
2001-2002).

4.1.3 Sunflower

Water consumption varied between 114 and 376 mm in the sunflower growing season in 2002 and grain yield was between 200 and 2270 kg ha⁻¹. Under very low water input, i.e. 90 mm irrigation and no irrigation, because of water deficiency, grain set in sunflower was negatively affected (Table 16), which led to sink-limited grain yields and thus to very low water use efficiencies.

Treatment	Total Irrigation (mm)	Change in soil moisture (mm)	Effective precipitation (mm)	Total water consumption (mm)	Grain yield (kg ha ^{.1})	Water use efficiency (kg ha ⁻¹ mm ⁻¹)
2002 1	292	-9.2	123.2	376	2175	5.79
2	240	-46.2	123.2	320	2268	7.09
3	186	-17.2	123.2	275	2231	8.11
4	132	-34.2	123.2	238	2100	8.82
5	90	-43.2	123.2	167	1305	7.80
Ck	0	-39.2	123.2	114	198	1.74
2003 1	120.0	-	417.6	-	866	-
2	93.0	-	417.6	-	855	-
3	66.0	-	417.6	-	627	-
4	45.0	-	417.6	-	606	-
Ck	0	-	417.6	-	459	-

Table 16.Terms of the water balance, grain yield (air-dry) and WUE for sunflower under different irrigation
treatments in the Central Experimental Station in Shanxi province, North China (2002-2003).

Figure 10. The relation between water consumption and grain yield for sunflower in CES, North China (2002).

The relation between water consumption and grain yield can be described by a parabolic curve, with a correlation coefficient of 0.9 (Figure 10).

4.2 Soil moisture dynamics under shallow groundwater table depths

Figure 11 shows the dynamics of soil moisture contents in the 0-20 and 0-60 cm soil layers for spring maize and winter wheat in the course of the growing season for different water table depths. Total soil moisture in both layers strongly reacts to precipitation (irrigation included in precipitation). For both crops, soil water contents are higher for shallower groundwater depths, but the dynamics show similar trends.

Figure 11. Soil moisture contents in the 0-20 cm and 0-60 cm soil layers for spring maize (left) and winter wheat (right) at different water table depths in the Central Experimental Station in Shanxi province, North China.

In spring maize, crop water consumption after the jointing stage increases, as a result of higher temperatures and lower humidity, which leads to increased soil surface evaporation. Precipitation during August and September maintains soil moisture content at a relatively high level.

In winter wheat soil moisture dynamics can be divided in 3 periods. In the first period (from Sept. till Nov.), temperature gradually decreases, precipitation is relatively low, and soil moisture decreases due to evapotranspiration loss from the soil and the crop. Soil moisture content in the 0.5 m water table is substantially higher than in the other treatments (Figure 11). In the second period, 'the winter', with frost, soil water content changes not much. Only under the 0.5 m water table soil moisture content slightly increases due to capillary rise. In the third period, from April till end of June, soil moisture content strongly fluctuates, under the influence of evapotranspiration and precipitation/irrigation, with only small differences among the different water table depths.

Soil water contents before and after irrigation on March 25th (Figure 12A) and precipitation on June 9th (Figure 12B) show that in the top layers soil moisture contents increase substantially, and the deeper the water table, the lower soil moisture for a given soil depth. In the 1.0 m water table treatment, irrigation was restricted to 8.3 mm, because soil moisture was above the limiting value. Irrigation or precipitation reduces the differences in soil moisture content

among the water table depths. Soil water contents below 100 cm are similar for all water table depths. Under shallow water tables, water is transported from the groundwater to the root zone (capillary rise), and evaporation from the soil surface is higher than under deeper water tables.

The effect of crop water consumption on soil moisture dynamics, in the absence of irrigation and precipitation (from 8^{th} till 27^{th} May) is illustrated in Figure 13.

Figure 12. Volumetric soil moisture content variations before and after rainfall and irrigation in the water table depth experiment in the Central Experimental.

Under the 1.0 m table depth, water content changes in the upper layers (0-70 cm) only; under the 3.0 m table depth, water content changes over the full profile depth (till 100 cm). As irrigation and precipitation were absent during this period and the crop has attained full cover, the difference in soil moisture dynamics can only be explained by capillary rise. Under the shallow water table, more water is transported from the groundwater to the root zone. During this period the water table depth in the control was about 2.4 m; the soil moisture distribution in the profile in this treatment is consequently between those for the treatments with water table depths of 2.0 m and 3.0 m.

For spring maize, t soil water dynamics are almost identical. The only difference is that soil moisture extraction is restricted to a shallower depth because of the shallower rooting system of maize.

Figure 13. Volumetric soil moisture contents under different water table depths (WT, depth in m.; ck = control) in the water table management experiment in the the Central Experimental Station in North China.

Cumulative drainage and cumulative capillary rise from the groundwater in spring maize show remarkable differences among the groundwater treatments (Figure 14). High rainfall or irrigation lead to higher drainage rates, that cease after a relatively short time. Under deeper water tables, drainage is lower and starts later than under shallower water tables. For example, precipitation on June 8th/9th was 46 mm. Drainage from water table treatments 0.5 m, 1.0 m, 1.5 m and 2.0 m was 10.8, 8.7, 8.3 and 5.8 mm, respectively. Under the water table treatment of 0.5 m, drainage started on 10th June, under the 2.0 m treatment on 12th June. Drainage ceased under the 0.5 m. treatment on 13th June, for the 2.0 m on 18th June. In the groundwater treatments of 2.5 and 3.0 m. no drainage was observed throughout the growing season.

Total seasonal capillary rise m was 40.9, 33.4, 20.1 and 19.6mm, respectively in the water table treatments 0.5 m, 1.0 m, 1.5 m and 2.0 m. The dynamics of capillary rise from the groundwater to the root zone of spring maize can be sub-divided into four stages for all groundwater treatments. In the first stage (from sowing till jointing), there is a slow but constant rate. Transpiration is negligible, as the crop is in the seedling stage; hence water loss is mainly from soil surface evaporation. In the second stage, capillary rise is absent, as the large amount of rainfall on June 8th and 9th brought the root zone to field capacity. In the third stage (i.e. jointing to grain filling), capillary rise is substantial again, as high rates of evapo-transpiration remove large amounts of water from the root zone, even though that is partially replenished by rainfall. In the forth stage (i.e. grain filling to maturity), the rate is stable but low again, as precipitation supplies most of the water for crop transpiration and surface evaporation (Figure 14).

Figure 14. Cumulative draianage (top) and cumulative capillary rise (bottom) and rainfall/irrigation (middle) for the groundwater table experiment depth experiment Transformation of groundwater-soil water under different water table in the Central Experimental Station, North China.

The exchange of water between the groundwater and the root zone for winter wheat is similar to that for spring maize. Total seasonal capillary rise from water table depths of 0.5, 1.0, 1.5 and 2.0 m is 66.3, 54.5, 25.6 and 16.1 mm, respectively. High rainfall or irrigation leads to drainage that ceases after a few days, and decreases with increasing groundwater depth and does not play a role for the groundwater treatments of 2.5 and 3.0 m.

4.3 Simulation of *E_t*, the contribution from the water table to evapotranspiration under different water table depths

Analysis of the contribution from the water table to evapotranspiration under different water table depths shows (Figure 15) that the contribution was much smaller for the bare soil than for the crop field. Crop roots reduce the distance of movement of phreatic water compared to bare soil. The contribution from groundwater decreases with increasing groundwater depth. The difference between winter wheat and maize may be explained by the difference in growing period (winter for winter wheat; summer for spring maize).

Figure 15. Contribution from the groundwater to evapotranspiration at different water table depths in winter wheat (Oct. 1991 till March 1992) and spring maize (July till September 1992) in the Central Experimental Station, North China.

The phreatic efficiency C is defined as the ratio of the contribution from the groundwater to evapotranspiration and potential evapotranspiration, and is calculated as:

$$C = E_t / E_{20} \tag{1}$$

where, E_t is contribution from the groundwater (mm) in a period, E_{20} is potential evaporation (mm) from a 20 cm evaporating dish (observed at weather stations). The relation between the contribution of the groundwater table and water table depth, H, could be expressed by:

$$C = a e^{-b H}$$

where, a and b are empirical constants.

Statistical analyses were carried out on the relation between the contribution from the groundwater to evapotranspiration and water table depth, using the observed data from 1992. The exponential curve yielded a coefficient of 0.9923.

Figure 16. Fitted curve for the relation of the contribution from the groundwater table to evapotranspiration, C and water table depth H for a bare soil in the Central Experimental Station, North China (1992).

(2)

Statistic analyses have been carried out on the relation between the cumulative contribution from the groundwater to evapotranspiration over the whole crop growing season E_t (observed) and water table depth *H*. The results show an exponential relation for both, winter wheat and spring maize (Table 17).

Year	Winter wh	eat	Spring ma	Spring maize		
	Formula	R ²	Formula	R ²		
1991	$E_t = 494.81 \text{ e}^{-1.1925H}$	0.9801	$E_t = 854.76 \text{ e}^{-1.3722H}$	0.9578		
1992	$E_t = 579.56 \text{ e}^{-1.1464H}$	0.9884	$E_t = 635.84 \text{ e}^{-1.0396H}$	0.9737		
1993	$E_t = 303.25 e^{-0.8990 H}$	0.9511	$E_t = 323.59 \text{ e}^{-1.3898/t}$	0.9849		
1994	$E_t = 400.45 \text{ e}^{-1.2594H}$	0.9766	$E_t = 863.96 e^{-1.8475H}$	0.9861		
1995	$E_t = 756.84 \text{ e}^{-1.7434H}$	0.9919	$E_t = 588.68 \text{ e}^{-2.0749H}$	0.9964		
1996	$E_t = 709.15 \text{ e}^{-1.6984H}$	0.9847	$E_t = 382.79 \text{ e}^{-1.4979H}$	0.9803		

Table 17.The relation between the cumulative contribution from the groundwater to evapotranspiration E_t and
water table depth H, for winter wheat and spring maize.

The relations between potential evaporation E_{20} the contribution from the groundwater to evapotranspiration, E_t and water table depth *H* for the period 1991-1996 are given in Table 18 for winter wheat and spring maize for the whole growing season. The results indicate that other factors, in addition to potential evaporation and water table depth, such as precipitation and irrigation, influence the relation.

Table 18.	The relation between potential evaporation E_{20} , the cumulative contribution from the groundwater to
	evapotranspiration Et and water table depth H, for winter wheat and spring maize.

Year	Winter whea	at	Spring maize	Spring maize		
	Formula	R ²	Formula	R ²		
1991	$E_t/E_{20} = 0.5855 \mathrm{e}^{-1.1925H}$	0.9801	$E_t/E_{20} = 0.9372 \mathrm{e}^{-1.3722H}$	0.9578		
1992	$E_{\ell}/E_{20} = 0.5796 \text{ e}^{-1.1464/\ell}$	0.9884	$E_t/E_{20} = 0.7003 \text{ e}^{-1.0396H}$	0.9737		
1993	$E_t / E_{20} = 0.3808 \text{ e}^{-0.8990/t}$	0.9511	$E_t/E_{20} = 0.3902 \text{ e}^{-1.3898/4}$	0.9849		
1994	$E_t / E_{20} = 0.4353 \text{ e}^{-1.2594H}$	0.9766	$E_t/E_{20} = 0.9095 \text{ e}^{-1.8475H}$	0.9861		
1995	$E_t / E_{20} = 0.7884 \text{ e}^{-1.7434/4}$	0.9919	$E_{20} = 0.6832 \mathrm{e}^{-2.0749H}$	0.9964		
1996	$E_{t}/E_{20} = 0.8082 \text{ e}^{-1.6984/t}$	0.9847	$E_{t}/E_{20} = 0.5266 \text{ e}^{-1.4979H}$	0.9803		

This analysis indicates that the relation between the cumulative contribution from the groundwater to evapotranspiration and groundwater depth is characterized by different empirical constants, *a* and *b*, for different years. It is recommended that the simulation interval should be shortened To restrict errors, average monthy values have been used in the calculations. The values of the empirical constants *a* and *b* for the various months, calculated from regression analysis for bare soil, winter wheat and spring maize are given in Tables 19, 20 and 21.
	•						<i>.</i>			
Constant	Oct.	Nov.	Dec.	Jan.	Feb.	March	April-June	July	August	Sept.
а	0.3945	0.6649	0.9742	0.9368	0.4562	0.2534	-	0.7642	0.5010	0.6596
b	0.4848	0.6342	0.4930	0.6325	0.5523	0.5154	-	1.2288	1.2485	1.7605
R ²	0.9142	0.8743	0.8570	0.8814	0.9290	0.9792	-	0.9936	0.9878	0.9936

Table 19.Values of the empirical constants a and b for calculation of the contribution from the groundwater to
evapotranspiration from bare soil in the Central Experimental Station, North China (1991-1992).

Table 20.Values of the empirical constants a and b for calculation of the contribution from the groundwater to
evapotranspiration for winter wheat in the Central Experimental Station, North China (1991-1992).

Constant	Oct.	Nov.	Dec.	Jan.	Feb.	March	April	May	June
a	0.6627	0.9378	1.0721	1.0833	0.2192	0.0604	0.8761	3.2111	1.1441
b	0.8318	1.0198	0.9386	0.9088	0.6884	0.5259	2.6804	2.7703	2.1320
R ²	0.9299	0.9806	0.9801	0.9868	0.9504	0.9863	0.9635	0.9635	0.9094

 Table 21.
 Values of the empirical constants a and b for calculation of the contribution from the groundwater to evapotranspiration for spring maize in the Central Experimental Station, North China (1991-1992).

Constant	April	May	June	July	August	Sept.
а	1.2063	0.4087	2.7949	1.2955	0.9903	1.2063
b	2.2063	2.6427	0.2.6638	0.9790	0.9433	2.2063
R ²	0.9898	0.9210	0.9651	0.9753	0.9386	0.9898

Experimental data from 1993-1994 were used for validation of the empirical model for winter wheat. The results show reasonable agreement between simulated and observed values (Figure 17) for the various water table depths. The relative error varied between 4.4 and 12.6%.

Figure 17. Simulated and observed values for the contribution from the groundwater to evapotranspiration for winter wheat in the 1993-1994 growing season under different groundwater table depths in the Central Experimental Station, North China.

Figure 18. Simulated and observed values for the contribution from the groundwater to evapotranspiration for spring maize in the 1993 growing season under different groundwater table depths in the Central Experimental Station, North China (1993).

Experimental data from 1993 were used for validation of the empirical model for spring maize. The results show reasonable agreement between simulated and observed values (Figure 18). The relative error varied between 5.6 and 13.3%. The relative error for spring maize exceeds that for winter wheat, probably because of higher rainfall during the maize growing season.

Comparison of simulated and observed E_t -values for winter wheat (1993-1994) and spring maize (1993) during the whole growing season (Figure 19) under all water table depths shows satisfactory agreement for both crops. For winter wheat, simulated values are linearly correlated to observed values with a slope of 0.97 and an intercept of 0.1583. For spring maize, simulated values are linearly correlated to observed values with a slope of 0.9963 and an intercept of 0.0004. Correlation coefficients for the relation between measured and simulated E_t are above 0.99 for both winter wheat and spring maize.

Figure 19. Comparison of simulated and observed value for the contribution from the groundwater to evapotranspiration for winter wheat (1993-1994) and spring maize (1993) in the Central Experimental Station, North China.

4.4 Impacts of water table on crop yield and WUE

Yield and yield component data are given in Table 22 for further analysis of the influence of water table depth on yield formation. At water table depths of 0.5 and 1.0 m, seedling density, tiller density, ear density and total aboveground dry matter were lower than at greated water table depths. This might be because of unfavorable soil aeration under the shallow water tables. In addition, strong evaporation may have led to salinity problems in the surface layer.

Water Seedling table density		Tiller density (10 ⁴ ha ⁻¹)		Ear density	Grains per	Thousand grain weight	Total aboveground dry matter
(m)	(10 ⁴ ha ⁻¹)	Before wintering	Jointing	(10 ⁴ ha ⁻¹)	Spike	(g)	(kg·ha ⁻¹)
0.5	375.0	399.0	138.0	85.5	24.2	40.2	3 499.5
1.0	418.5	490.5	399.0	238.5	22.4	41.6	3 639.0
1.5	496.5	606.0	790.5	445.5	27.7	40.3	8 667.0
2.0	546.0	642.0	724.5	426.0	30.6	42.4	8 041.5
2.5	501.0	570.0	684.0	450.0	30.0	38.8	8 958.0
3.0	496.5	534.0	738.0	450.0	31.3	42.7	10 126.5

Table 22.Crop yield and yield components under different water table depths for winter wheat in the CentralExperimental Station, North China (1996).

During the spring maize growing season, high temperatures in summer lead to high evapotranspiration rates, soil water fluctuation maintain rooting depth soil water, air, heat movement in favorable level. In 1992, i.e. the first year experiment, crop growth is not much different under different water table depths (Table 23). The situation changed dramatically after 1992, as illustrated for 1993. Because of saline water, crop growth was negatively influenced under the shallow water tables, as evaporation leads to salinization in the rooting zone. Under the water table depths of 0.5 m and 1.0 m in 1993, plant density, plant height, cob height and cob weight were lower than under the deeper water tables. These results were confirmed in 1994, 1995 and 1996.

Water		1992					1993				
table depth (m)	Plant density (10 ³ ha ⁻¹)	Plant height (cm)	Cob height (cm)	Cob weight per plant (g)	Hundred grain weight (g)	Plant density (10 ³ ha ⁻¹)	Plant height (cm)	Cob height (cm)	Cob weight per plant (g)	Hundred grain weight (g)	
0.5	49.9	270.0	115.0	233.5	36.57	34.9	233.7	101.7	203.5	35.38	
1.0	49.9	258.0	110.0	245.1	36.82	46.7	255.3	111.0	190.9	34.29	
1.5	49.9	227.0	88.0	219.7	36.77	50.0	275.7	115.5	220.7	35.26	
2.0	49.9	232.0	102.0	201.4	36.82	49.1	273.3	118.3	219.8	24.98	
2.5	49.9	223.0	100.0	204.9	37.09	50.0	276.0	114.6	213.5	34.37	
3.0	49.9	215.0	91.0	198.9	37.22	50.0	279.0	123.0	233.0	37.20	

Table 23.Yield components under different water table depths for spring maize in the Central ExperimentalStation, North China (1992-1993).

In FID, the climate conditions during the spring maize and winter wheat growing seasons are different. As a single crop is growth annually, the soil remains bare after crop harvest. After maize harvest, rainfall is less than following harvest of wheat. Soil water evaporation exceeds infiltration during the period of bare soil after maize harvest, bringing salt to the upper soil layers. At sowing of the next maize crop, the surface soil has accumulated conside-rable amounts of salt. Young seedlings of maize suffered from these salinity problems. For winter wheat the situation is not the same. During the rainy season, following harvest of wheat, there is net downward movement of water so that the surface soil is leached and soil salinity is reduced to a low level. Hence, the initial situation is much more favourable for winter wheat than for spring maize.

Crop yield and soil water balance in winter wheat field are given in Table 24 for 2001-2002. The soil water balance, has been calculated for the soil layer till the water table level. Effective precipitation during the crop growing season was 115.8 mm. Under the water table depths of 0.5 and 1.0 m, crop water consumption is less than under the other treatments. Crop water use under the 0.5 m water table depth is 9.9 mm higher than under the 1.0 m water table depth, though irrigation was lower, due to more capillary rise. The highest crop yield of 5842 kg ha⁻¹ was observed at 1.5 m water table depth. Under the 0.5 m treatment, crop yield might have been negatively influenced by salinity problems if groundwater has a high salt concentration. The highest WUE of 20.23 kg ha⁻¹ mm⁻¹ (kg grain per hectare per mm water input) occurred at a water table depth of 1.0 m.

Table 24.Water consumption, crop yield and WUE under different water table depths for winter wheat in the
Central Experimental Station, North China (2001-2002).

Water table	Change in soil moisture	Irrigation	Capillary rise	drainage	Effective precipitation	Water consumption	Crop yield	Water use efficiency
(m)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg ha ⁻¹)	(kg ha ⁻¹ mm ⁻¹)
Ck	19	251.5	-	-	115.8	348.3	5203	14.94
0.5	-7.8	22.5	66.3	20.1	115.8	232.5	4399	18.92
1.0	34	55.8	54.5	30.5	115.8	222.6	4480	20.13
1.5	-37	143.0	25.6	5.9	115.8	327.3	5842	17.85
2.0	-15	247.0	16.1	21.5	115.8	415.4	5520	13.29
2.5	-8	253.3	0.0	0.0	115.8	377.1	5314	14.09
3.0	7	277.3	0.0	0.0	115.8	386.1	4403	11.40

Effective precipitation in the spring maize growing season was 232.1 mm. At a water table depth of 1.0 m, crop water consumption is higher than under the other treatments (Table 25) due to higher drainage. temperature lead to As evapotranspiration is high during summer, crop water use is 45.8 mm higher at 0.5 m water table depth than 1.0 m water table depth, due to more capillary rise. The highest crop yield of 10 250 kg ha⁻¹ is observed at the water table depth of 1.0 m. The highest WUE of 32.60 kg ha⁻¹ mm⁻¹ (kg grain per hectare per mm water input) was observed at 2.5 m water table depth, but the differences among the treatments are small.

Water table	Change in soil moisture (mm)	Irrigation (mm)	Capillary rise (mm)	drainage (mm)	Effective precipitation (mm)	Water consumption (mm)	Crop yield (kg∙ha¹)	Water use efficiency (kg ha ^{.1} mm ^{.1})
	37.0	08	ignoro	ignoro	222.1	202.0	8750	20.87
0.5m	12.4	98 7.5	40.9	32.0	232.1	300.1	9250	30.82
1.0m	-20.2	0	33.4	60.2	232.1	345.9	10250	29.63
1.5m	8.6	18	20.1	42.8	232.1	304.4	8750	28.75
2.0m	26.8	60	19.6	30.4	232.1	315.3	9625	30.53
2.5m	-1.6	50	0.0	0.0	232.1	283.7	9250	32.60
3.0m	19	60	0.0	0.0	232.1	273.1	8250	30.21

 Table 25.
 Water consumption, crop yield and WUE under different water table for spring maize in the Central Experimental Station, North China (2002).

4.5 Irrigation management aimed on high crop yield and limited irrigation under shallow water table

The crop coefficient K_c under standard conditions (Table 26) was calculated according to the FAO method (Allen *et al.*, 1998). Crop water requirements were subsequently calculated on the basis of potential evaporation data. Crop water requirements amount to 405 mm under optimal moisture conditions (high crop yield).

Growing stage	Date	Duration	K _c	Potential evaporation	Crop water requirements
	(day month)	(days)		(mm)	(mm)
Whole season	22 nd Sept.~29 th June	280		1172.2	405.0
Sowing ~ wintering	22 nd Sept.~20 th Nov.	59	0.433	193.6	83.8
Wintering ~ re-greening	21 st Nov.~10 th March	110	0.285	199.2	56.8
re-greening ~ jointing	11 th March~20 th April	41	0.304	226.7	68.9
Jointing ~ heading	21 st April~13 th May	23	0.321	174.2	55.9
Heading ~ grain filling	14 th May~1 st June	19	0.481	151.3	72.8
Grain filling ~ maturity	2 nd June~29 th June	28	0.294	227.2	66.8

Table 26.Crop coefficients for different growth stages of winter wheat in the Central Experimental Station,
North China.

A statistical analysis of long-term average precipitation is given in Table 27 for the winter wheat whole growing season. Precipitation events less than 2 mm are considered non-effective and precipitation exceeding the storage capacity at field capacity for the rooting depth of 0-80 cm is considered drainage.

Precipitation	Probability 25% (mm)	Probability 50% (mm)	Probability 75% (mm)	Probability 95% (mm)
Total precipitation	301.4	240.4	202.9	130.2
Precipitation less than 2 mm	36.5	11.5	6.7	4.3
Effective precipitation	264.9	228.9	196.2	125.7
Sowing + seedling stage	95.3	69.3	41.2	17.0
Wintering ~ re-greening	24.0	15.8	11.0	19.4
Re-greening ~ jointing	33.6	21.6	5.3	7.3
Jointing ~ heading	39.3	61.2	48.6	0.0
Heading ~ maturity	72.7	61.0	90.1	82.0

 Table 27.
 Long-term average precipitation and its distribution during the winter wheat growing season in the

 Central Experimental Station, North China (1961-2002).
 Central Experimental Station, North China (1961-2002).

Average available soil water for crop use for winter wheat in 1993-1996 before sowing has been calculated by taking into account the water above wilting point and below field capacity under different water table depths (Table 28). Irrigation was calculated as:

 $IR = 10 * H^* (\theta_f - \theta_o)$

Where *IR* is total irrigation; *H* is thickness of soil layer; θ_f and θ_o are field capacity and wilting point (volumetric %), respectively. Irrigation demands have been calculated for different rainfall years. The results indicate that no irrigation is needed for water table depths above 1.0 mm, even in very dry years.

Water table depth (m)	Thickness of soil	Available soil water before sowing (mm)	Total capillary	Irrigation	Irrigation demand in different rainfall years				
	layer (cm)		rise (mm)	25% (mm)	50% (mm)	75% (mm)	95% (mm)		
0.5	50	60.5	264.4	0	0	0	0		
1.0	80	84.8	100.7	0	0	0	0		
1.5	80	57.3	53.4	30	75	100	175		
2.0	80	44.3	36.5	85	120	150	220		
2.5	80	41.6	9.2	90	135	160	230		
3.0	80	29.6	4.3	90	135	165	230		

Table 28.Soil water balance and irrigation demand before sowing for winter wheat under water table in the
Central Experimental Station, North China (1993-1996).

The calculated irrigation demands for different growth stages for winter wheat (Table 29) show that irrigation is needed twice at a water table depth of 1.5 m in dry years (95%) and once in other years. For water table depths below 2.0 m, irrigation is needed three times in dry years (95%), twice in moderately rainy years (50% and 75%) and once in rainy years (25%).

Rainfall year	Water table	Sowing and Seedling	re-greening	Jointing	Heading	Grain filling
	(m)	(mm)	(mm)	(mm)	(mm)	(mm)
	1.5	-	-	30	-	-
Probability 25%	2.0	-	-	85	-	-
	2.5	-	-	90	-	-
	3.0	-	-	90	-	-
	1.5	-	-	75	-	-
Probability 50%	2.0	-	60	60	-	-
	2.5	-	75	-	-	-
	3.0	-	60	75	-	-
	1.5	-	-	100	-	-
	2.0	75	-	75	-	-
Probability 75%	2.5	80	-	80	-	60
	3.0	-	-	85	-	-
	1.5	-	-	75	100	-
	2.0	70	-	70	75	-
Probability 95%	2.5	70	-	70	75	-
	3.0	-	-	70	75	-

Table 29.Average available soil water before sowing and Irrigation demands for different growth stages for
winter wheat under different water table depths in the Central Experimental Station, North China
(1993-1996).

The crop coefficients for spring maize have been calculated similarly to those for winter wheat (Table 30).

	IIIId.				
Growing stage	Date	Duration	Kc	Potential evaporation	Crop water requirements
	(day month)	(days)		(mm)	(mm)
Whole season	1 st June~17 th Sept.	140		948.9	391.0
Sowing ~ jointing	1^{st} June~20 th June	51	0.305	408.9	124.7
Jointing ~ heading	21 st June~10 th July	20	0.415	150.6	62.5
Heading ~ grain filling	11 th July~5 th August	26	0.647	173.6	112.3
Grain filling ~ maturity	6 th August~17 th Sept.	43	0.423	215.9	91.3

Table 30.Crop coefficients for different growth stages of spring maize in the Central Experimental Station,
North China.

A statistical analysis of long term average precipitation for the spring maize growing season is given in Table 31. Precipitation less than 2 mm is considered non-effective and precipitation exceeding the storage capacity at field capacity of the rooting depth (0-80 cm) is considered drainage.

Precipitation	Probability 25% (mm)	Probability 50% (mm)	Probability 75% (mm)
Total precipitation	474.0	332.0	286.0
Precipitation less than 2 mm	57.0	26.0	44.0
Effective precipitation	417.0	306.0	242.0

Table 31.Long term average precipitation during the spring maize growing season in the Central ExperimentalStation, North China (1961-2002).

Irrigation requirements were calculated in the same way as for winter wheat (Table 32).

Table 32.Average crop water requirements for spring maize under different water table depths in the Central
Experimental Station, North China (1992-1996).

Water	Thickness	Available soil	Tot al	Irrigation der	nand in differen	t rainfall years
Table depth (m)	of soil layer (cm)	water before sowing (mm)	capillary rise (mm)	25% (mm)	50% (mm)	75% (mm)
0.5	50	42.0	229.6	0	0	0
1.0	80	42.0	80.3	0	0	0
1.5	80	42.0	54.0	0	10	75
2.0	80	42.0	26.1	0	35	100
2.5	80	42.0	3.9	0	60	125
3.0	80	42.0	2.1	0	60	125

Calculated irrigation requirements for different growth stages for spring maize show (Table 33) that when the water table is below 2.0 m, irrigation is needed twice in dry years (75%) and once in other years.

Rainfall year	Water table depth (m)	Jointing (mm)	Heading (mm)	Grain filling (mm)
	1.0	0	0	0
	1.5	0	0	0
Probability 25%	2.0	0	0	0
	2.5	0	0	0
	3.0	0	0	0
	1.0	0	0	0
	1.5	0	0	0
Probability 50%	2.0	35	0	0
-	2.5	60	0	0
	3.0	60	0	0
	1.0	24	0	0
	1.5	75	0	0
Probability 75%	2.0	50	0	50
2	2.5	60	0	60
	3.0	60	0	60

Table 33.Irrigation demands for different growth stages for spring maize under different water table depths in
the Central Experimental Station, North China (1992-1996).

4.6 Influence of sowing date and crop variety on crop growth

4.6.1 Light-temperature characteristics of winter wheat at different sowing dates

Experimental results showed that sowing date has a strong effect on crop phenological development (Table 34). Irrespective whether sowing was in autumn or spring, there was not much difference in phenological development between DZ5 and JD8 during the sowing to re-greening stage. After jointing, the difference in phenological development becomes larger. For the crops sown on September 27, heading was 8 days earlier for DZ5, flowering was 5 days earlier and maturity 4 days earlier. For the crops sown on November 15, heading for DZ5 was 2 days earlier, flowering 3 days earlier and maturity 6 days earlier. In early summer 2001, a drought occurred, so that both varieties suffered heat stress, but DZ5 reached maturity 3 to 4 days earlier than JD8. For the spring sowings, phenological events occurred about 15 days earlier for DZ5. In the absence of vernalization, JD8 remained vegetative, but DZ5 reached the reproductive stage. Hence, DZ5 can be sown both in autumn and in spring.

Table 34.	Phenological development of winter wheat under different sowing dates in Beijing, North China
	(2000-2001).

Sowing (Date)	Variety	Emergence (Date)	Wintering (Date)	Re-greening (Date)	Jointing (Date)	Heading (Date)	Flowering (Date)	Maturity (Date)
0.7# 0	DZ5	2 nd Oct	24 th Dec	26 th Feb	4 th Apr	27 th Apr	4 th May	2 nd Jun
27 ^{an} Sep	JD8	2 nd Oct	24 th Dec	26 th Feb	8 th Apr	5 th May	9 th May	6 th Jun
1 Cth NI.	DZ5	2 nd Mar	24 th Dec	26 th Feb	23 rd Apr	12 th May	15 th May	1 st Jun
15" NOV	JD8	3 rd Mar	24 th Dec	26 th Feb	23 rd Apr	14 th May	18 th May	7 th Jun
1 ct 1 4	DZ5	18 th Mar	-	-	24 th Apr	15 th May	17 th May	12 th Jun
1 st Mar	JD8	18 th Mar	-	-	5 th May	-	-	-
	DZ5	1 st Apr	-	-	9 th May	22 nd May	25 th May	18 th Jun
1 st Apr	JD8	1 st Apr	-	-	29 th May	-	-	-

Light and temperature conditions during the growing period are given in Table 35. For the autumn sowings, time from sowing till heading was shorter for DZ5 and hence daily average temperature is lower than for JD8. From physiological jointing till heading, average day length for DZ5 is slightly less than for JD8; DZ5 can complete vernalization under shorter day lengths, because it is photo-insensitive. From heading to maturity, average temperature for DZ5 is 1-3 °C higher than for JD8.

Sowing time	ing time Variety Sowing date		Sow. ~ Jointing			Jointing ~ Heading			Heading ~ maturity		
			Duration	T _{aver} .	Day length	Duration	T _{aver.}	Day length	Duration	T _{aver} .	Day length
			(d)	(°C)	(h)	(d)	(°C)	(h)	(d)	(°C)	(h)
Autumn	DZ5	27 th Sept.	191	3.4	6.4	23	15.0	7.3	36	23.5	8.7
		11 th Oct.	182	2.6	6.4	25	16.4	7.3	38	25.2	10.0
	JD8	27 th Sept.	195	3.6	6.4	27	16.5	8.0	31	25.5	10.0
		11 th Oct.	184	2.7	6.5	27	17.1	8.2	32	26.5	9.7
Spring	DZ5	1 st March	54	10.6	8.0	21	19.4	8.9	29	27.2	10.5
		1 st April	38	15.9	6.9	13	25.8	9.4	27	27.5	10.4
	JD8	1 st March	78	13.6	7.8	-	-	-	-	-	-
		1 st April	58	19.4	8.0	-	-	-	-	-	-

Table 35.Phenological development under different sowing dates and its relation to temperature and day length
in Beijing, North China (2000-2001).

Under the standard sowing date, the young ear elongation stage of DZ5 started 2 days earlier than that of JD8, increasing to 8 days at heading (Table 36).

North China (2000-2001).			
Young ear differentiation stage		Date	
	DZ5	JD8	
Elongation	10 th March	12 th March	
Single ridge	17 th March	19 th March	
Double ridge	22 nd March	26 th March	
Floret differentiation	5 th April	9 th April	
Stamen and pistil differentiation	8 th April	12 th April	
Anther diaphragm formation	12 th April	14 th April	
Tetrad formation	17 th April	23 rd April	
Heading	27 th April	5 th May	

Table 36.Development of young ear differentiation and caulis leave under standard sowing date in Beijing,
North China (2000-2001).

Leaves are growing faster and young ear differentiation is shortened under higher temperatures. The lighttemperature characteristics of wheat crops are an indication for ecological adaptation. The value of the product of sunshine hours and cumulative thermal time can scale development rates of wheat crops (long day crops). Experiment results (Table 37) show that astronomical sunshine hours and efficient thermal time of DZ5 in every young ear development stage were smaller than those for JD8. This is the main reason for the faster development rate of DZ5.

Development of young ear differentiation	Astronomical sunshine hours (h)		Efficient thermal time (°C d)		Sunshine hours × thermal time (h °C d)	
	DZ5	JD8	DZ5	JD8	JD5	DZ8
Elongation~ single ridge Single ridge~ double ridge	118.5 90.6	119.3 121.9	55.8 66.5	80.7 104.9	6613.6 6024.0	9625.0 12791.8
Double ridge~ floret differentiation	233.5	236.5	141.9	143.0	33132.4	33823.9
Floret differentiation ~ stamen and pistil differentiation	64.0	64.8	47.1	46.8	3014.2	3034.2
Stamen and pistil differentiation~ anther diaphragm formation	80.9	82.0	62.3	87.7	5040.7	7188.7
Anther diaphragm formation~ tetrad formation	98.5	133.5	108.8	141.2	10719.2	18850.6
Tetrad formation~ heading	185.0	223.6	180.5	221.9	33400.5	49611.0

 Table 37.
 Sunshine hours and thermal time during the whole growing season and during young ear differentiation in Beijing, North China (2000-2001).

The effective thermal time during young ear differentiation for DZ5 was obviously less than for JD8, and it was almost the same in the double ridge to floret differentiation stage. In the period from double ridge till stamen and pistil differentiation, the key period for grain formation, astronomical sunshine hours and efficient thermal time of were not much different for DZ5 and LD8, which is an advantage for DZ5 in spikelet and grain formation. Overall, phenological development in DZ5 proceeds faster in the early and late stages of young ear differentiation compared to JD8.

4.6.2 Frost hardiness and crop yield

Winter wheat seedings can stand a certain low temperature. In general, 10% death of seedlings during winter is called initial death, 50% substantial death and 70% fatal death, the corresponding temperature values are called critical temperature values. The temperature of the tillering node is the criterion for chilling injury for wheat, and also the criterion for wheat frost hardiness characteristics. The lower the critical temperature values, the greater frost hardiness. The temperature leading to 50% death of wheat seedlings in the manual freezing method is called limiting temperature (LT50).

Figure 20. The relation between temperature and survival rate of wheat after re-greening in the laboratory in Beijing, North China (2000-2001).

The relations between temperature and survival rate for the wheat varieties DZ5 and JD8 established in the laboratory for the 'standard' sowing date (27th Sept. 2000) are shown in Figure 20. The limiting temperature (LT50) for DZ5 is -14.9 °C, only 1.83 °C lower than for the winter-hardy variety JD8. According to, DZ5 is a medium frost hardy variety. It is expected that under normal management practices, DZ5 can safely survive winter in Beijing and the south of Northern China.

The relation between survival rate, *Y* and temperature, T_{i} is logistic for both varieties (Table 38), with correlation coefficients exceeding 0.97 (n=20, α =0.001).

Variety	Fitted curve	R	T value	Significance	LT50 (°C)
Dongzao5	Y=0.82/[1+exp(-5.53-0.347)]	0.98	0.048	* * *	-14.94
Jingdong8	Y=1.07/[1+exp(-4.23-0.347)]	0.97	0.090	* * *	-16.77

Table 38.The relation between temperature and survival rate of wheat after re-greening in the laboratory in
Beijing, North China (2000-2001).

Figure 21. Cumulative grain weight of winter wheat varieties JD8 and DZ5 in Beijing, North China (2000-2001).

Figure 22. Rate of grain filling winter wheat varieties JD8 and DZ5 in Beijing, North China (2000-2001).

Analysis of the rate of grain filling indicates a logistic growth curve for grain weight associated with a unimodal curve for grain filling rate for both varieties, DZ5 and JD8 (Figures 21 and 22). The rate of grain filling in JD8 increases faster than in DZ5 in the early stages, but also decreases earlier. In the late grain filling stage, DZ5 maintains a higher grain filling rate than JD8. The relation between grain filling rate $Y(Y_{dz5} \text{ and } Y_{jd8} \text{ for DZ5 and JD8}, \text{ respectively} and day number after flowering could be expressed by:}$

 $Y_{dz5} = -8.4143x^2 + 308.89x - 469.07 \ R^2 = 0.7962^{**}$ (significance level is 0.025) $Y_{dd8} = -8.1391x^2 + 278.18x - 191.55 \ R^2 = 0.7709^{**}$ (significance level is 0.025)

Temperatures in early 2001 were above-normal. As young ear differentiation in JD8 started late and drought and high temperatures shortened the floret differentiation stage, grain number per spike and the duration of grain filling were reduced (Table 39). That is the main reason for the difference in harvest index HINDEX between DZ5 and JD8. Pest and disease incidence was high during the seedling and grain filling stages in the 4th Oct. 2000 sowing, hence yield was strongly reduced. Average grain yield for the autumn sowings of DZ5 was 38.5% (total aboveground dry

matter 10.6% higher) higher than that of JD8. DZ5 produced 4000 kg ha⁻¹ grain yield when sown in spring, when JD8 remained vegetative.

Variety	Sowing date	Grains/ spike	10 ³ -Grain weight (g)	Ear density (10 ⁴ ha [.] 1)	Harvest index	Y _{theoritical} (kg ha ⁻¹)	Y _{actual} (kg ha ⁻¹)
	20 th Sept.	39.7	45.5	444.0	0.49	8020	6817
	27 th Sept.	39.9	46.8	469.5	0.46	8767	7452
DZ5	4 th Oct.	34.9	41.3	513.0	0.49	7394	6285
	11 th Oct.	38.3	38.6	477.0	0.41	7051	5994
	20 th Sept.	30.3	42.6	415.5	0.38	5363	4559
	27 th Sept.	35.0	44.1	396.0	0.38	6112	5195
JD8	4 th Oct.	33.8	42.9	334.5	0.38	4850	4123
	11 th Oct.	36.7	42.0	444.0	0.38	6844	5817

Table 39.Grain yield and yield components of DZ5 and JD8 wheat varieties for different sowing dates
(2000~2001).

4.7 Vegetable experiments

Sweet potato experiments, conducted in Yuhe experimental station, show (Table 40) a highest yield of 22 800 kg ha⁻¹ at high water input of 421 mm, with net revenue of 7479 Yuan³ ha⁻¹ (sweet potato price was 0.57 Yuan kg⁻¹ in 2002). The highest WUE of 59.69 kg ha⁻¹ mm⁻¹ was observed at a water input of 367 mm. Without irrigation, total economic input exceeded total output, i.e. a net loss of 78 Yuan ha⁻¹. If water saving is the main objective, treatment 2 with a total irrigation of 189 mm is recommended.

Table 40.	Sweet potato water use, yield and revenue under different irrigation management regimes in Yuhe,
	Shanxi Province, North China.

Treatment	Total irrigation	Change in soil moisture	Effective precipitatio	Water nconsumption	Yield (fresh)	Water use efficiency	Total Input	Total output	Net revenue
	(mm)	(mm)	(mm)	(mm)	(kg ha ⁻¹)	(kgha ⁻¹ mm ⁻¹)	(Yuan ha ⁻¹)	(Yuan ha ⁻¹)	(Yuan ha ⁻¹)
1	258	10	154.5	421	22800	54.11	5571	13050	7479
2	189	23	154.5	367	21885	59.69	5388	12485	7097
3	144	58	154.5	356	20775	58.36	5267	11909	6642
4	0	116	154.5	271	9150	33.81	4875	4797	-78

Results of the jequirity experiments, conducted in Xiaohe experimental station, show (Table 41) that without irrigation, total economic input exceeded total output, i.e. a net loss of 93 Yuan ha⁻¹ (jequirity price 2 Yuan kg⁻¹ in 2002). For further analysis more irrigation treatments were recommended.

³ 1 U\$ = 8.25 Yuan

Treatment	Total irrigation	Change in soil	Effective precipitation	Water consumption	Yield (fresh)	Water use efficiency	Total input	Total output	Net revenue
	(mm)	moisture (mm)	(mm)	(mm)	(kg∙ha⁻¹)	(kg ha ⁻¹ mm ⁻¹)(Yuan ha ⁻¹)	(Yuan ha ⁻¹)	(Yuan ha ⁻¹)
1	150	-46	339	443	2601	5.88	3942	5202	1260
2	0	25	339	364	1722	4.73	3537	3444	-93

Table 41.Jequirity water use, yield and revenue under different irrigation management regimes in Xiaohe,
Shanxi Province, North China.

Sesame is very sensitive to soil water conditions. Under excessive water supply before flowering, the flower buds are shed, leading to substantial yield loss. Experiments were conducted in CES to support this statement (Table 42). The highest yield of 1182 kg ha⁻¹ is observed at a water input of 349 mm with a highest WUE and net revenue of 3.38 kg ha⁻¹ mm⁻¹ and 1933 Yuan ha⁻¹ (sesame price was 2.49 Yuan kg⁻¹ in 2002), respectively. Both higher and lower irrigation doses lead to lower WUE and net revenue. For higher crop yields, irrigation in small doses is recommended.

Table 42.Sesame water use, yield and revenue under different irrigation management regimes in CES, Shanxi
Province, North China.

Treatment	: Total irrigation	Change in soil moisture	Effective precipitation	Water nconsumption	Yield	Water use efficiency	Total Input	Total output	Net income
	(mm)	(mm)	(mm)	(mm)	(kg ha ⁻¹)	(kg ha ⁻¹ mm ⁻¹)) (Yuan ha ⁻¹)	(Yuan ha ⁻¹)	(Yuan ha ⁻¹)
1	216	-112.9	226.2	329.3	848	2.57	1311	2119	808
2	126	38.5	226.2	390.7	821	2.10	1071	2052	981
3	76	63.1	226.2	349.3	1182	3.38	1022	2955	1933
4	62	47.1	226.2	321.3	864	2.69	1008	2160	1152
5	0	39.1	226.2	265.3	801	3.02	795	2003	1208

Yields and water use of intercropped water melon and black bean are given in Table 43. Total water consumption of both species combined varied between 305 mm and 630 mm. The highest yields for water melon and black bean were observed under a total irrigation supply of 188 mm. Highest WUE was observed in the non-irrigated treatment. Under high irrigation supply, seedlings died and yield was reduced.

Treatment	Total	Change	Effective	Water	Wa	ter melon	Black bean		
	(mm)	moisture (mm)	(mm)	(mm)	Yield (fresh) (kg ha ^{.1})	Water use efficiency (kg ha ⁻¹ mm ⁻¹)	Yield (fresh) (kg ha ⁻¹)	Water use efficiency (kg ha ⁻¹ mm ⁻¹)	
1	390	73.3	170.6	633.9	68393	107.90	2505	3.95	
2	300	115.7	170.6	586.3	74205	126.57	2918	4.98	
3	210	130.9	170.6	511.5	95498	186.71	3098	6.06	
4	120	136.9	170.6	427.5	81458	190.56	2258	5.28	
5	0	134.7	170.6	305.3	70607	231.24	1958	6.41	

Table 43.Intercropped water melon and black bean water use, yield and revenue under different irrigationmanagement regimes in Zhangziliang, Shanxi Province, North China.

Economic analysis for water melon and black bean shows a high net income (Table 44). The highest net revenue of 27 578 Yuan ha⁻¹ (water melon price was 0.17 Yuan kg⁻¹ and black bean price 2.80 Yuan kg⁻¹ in 2002) was calculated for a total irrigation application of 210 mm.

	Total irrigation	Input	Out	Net income	
		(Yuan ha ⁻¹)	Water melon (Yuan ha ⁻¹)	Black bean (Yuan ha ⁻¹)	(Yuan ha ⁻¹)
	390	5100	17010	7014	18924
	300	4920	18510	8169	21759
watermelon/black bean	210	4740	23645	8673	27578
	120	4560	20091	6321	21852
	0	4320	17483	5481	18644

Results of musk melon experiments, conducted in Shenxi experimental station show (Table 45) a highest yield of 24 750 kg ha⁻¹ at an irrigation application of 68 mm, with the highest WUE of 90.59 kg ha⁻¹ mm⁻¹ and the highest net income of 12782 Yuan ha⁻¹ (muskmelon price was 0.69 Yuan kg⁻¹ in 2002). The highest irrigation supply (120 mm) resulted in low yields and waste of water, compared to the treatment with 68 mm.

Table 45.	Musk melon water use, yield and revenue under different irrigation management regimes in Shenxi,
	Shanxi Province, North China.

Treatment	Total Irrigation	Change in soil	Effective precipitation	Water consumption	Yield (fresh)	Water use efficiency	Total Input	Total output	Net income
	(mm)	moisture (mm)	(mm)	(mm)	(kg ha ⁻¹)	(kg ha ⁻¹ mm ⁻¹)(Yuan ha	¹)(Yuan ha ⁻¹) (Yuan ha ⁻¹)
1 2 3	120 68 0	83 63 74	142 142 142	345 273 216	24600 24750 15750	71.40 90.59 72.78	5046 4926 4620	16974 17708 10868	11928 12782 6248

Experimental results for turnip, collected in Shenxi experimental station, showed (Table 46) a highest yield of 105 000 kg ha⁻¹ under a total irrigation supply of 319 mm, associated with the highest net income of 14 970 Yuan ha⁻¹ (turnip price was 0.21 Yuan kg⁻¹ in 2002), but the highest WUE 235.65 kg ha⁻¹ mm⁻¹ was observed at a total irrigation input of 135 mm. Without irrigation, turnip yield was very low.

Table 46.	Turnip water use, yield and revenue under different irrigation management regimes in Shenxi, Shanxi
	Province, North China.

Test	Total Irrigation	Change In soil moisture	Effective precipitation	Water consumption	Yield (fresh)	Water use efficiency	Total Input	Total output	Revenue
_	(mm)	(mm)	(mm)	(mm)	(kg ha ^{.1})	(kg ha ⁻¹ mm ⁻¹)	(Yuan ha ⁻¹)	(Yuan ha ⁻¹)	(Yuan ha- ¹)
1	319	-61	219.5	478	105000	219.79	7080	22050	14970
3	219	-26	219.5	413	90000	218.02	6945	18900	11955
5	152	-28	219.5	344	81000	235.65	6810	17010	10200
6	0	29	219.5	248	48000	193.24	6510	10080	3570

Experimental results indicate that irrigation strongly influences chilli pepper yields (Table 47). Highest yield, coinciding with highest WUE and highest net income, is observed at the lowest irrigation supply. As effective precipitation was 281 mm, rain was enough to almost completely satisfy total water requirements; high irrigation supply leads to high soil moisture and reduced aeration of the soil, finally leading to yield reductions. It is recommended to irrigate in small doses in rainy years.

Table 47.	Chilli pepper water use, yield and revenue under different irrigation management regimes in Zhangbei,
	Shanxi Province, North China.

Test	Total irrigation	Change In soil moisture	Effective precipitation	Water consumption	Yield fresh	Water use efficiency	Total Input	Total output	Revenue
	(mm)	(mm)	(mm)	(mm)	(kg ha ⁻¹)	(kg ha ⁻¹ mm ⁻¹)	(Yuan ha ⁻¹)	(Yuan ha ⁻¹)	(Yuan ha-1)
1	212	-34.2	281	459	15000	32.69	4475	9000	4526
2	180	-65.5	281	395	13130	33.19	4425	7875	3450
3	125	-37.7	281	368	27600	74.95	4343	16560	12218
4	90	-28.9	281	342	28500	83.30	4290	17100	12810
5	0	-7.7	281	273	21300	77.93	4155	12780	8625

5.1 WOFOST crop model description

5.

The WOFOST model, applied in this study, as tool for quantitative analysis of the growth and production of annual field crops (Boogaard *et al.*, 1998), originates from the Center for World Food Studies (CWFS). It is a member of the family of crop growth models developed in Wageningen in the footsteps of C.T. de Wit (Bouman *et al.*, 1996). Related models are SUCROS (Simple and Universal CROp Simulator) (Spitters *et al.*, 1989), Arid Crop (van Keulen *et al.*, 1981; van Keulen, 1975), spring wheat (van Keulen & Seligman, 1987), MACROS (Penning de Vries *et al.*, 1989) and ORYZA1 (Kropff *et al.*, 1993). All these models follow the hierarchical pattern of potential and resource-limited production and share similar crop growth sub-models, with light interception and CO_2 assimilation as growth-driving processes and crop phenological development as growth-controlling process. However, the sub-models for soil water balance and soil and crop nutrient (nitrogen) balance may vary appreciably in approach and level of detail. WOFOST simulates crop dry matter accumulation and yield formation from emergence till maturity, as a function of radiation, temperature and crop genetic properties in time intervals of one day. Meteorological input consists of maximum temperature (°C), minimum temperature (°C), radiation (kJ m² d⁻¹), wind speed at 2 m height (m s⁻¹), early morning vapor pressure (kPa), and precipitation (mm d⁻¹); both daily and long-term monthly data can be used in crop simulation.

WOFOST simulates phenological development of the crop, which is characterized by the rate and order of appearance of the various organs, i.e. roots, leaves, stems and storage organs. The most important phenological transition is that from growth of the vegetative organs to growth of the reproductive organs. For example, in grain crops, practically all assimilates produced after anthesis are used for filling of the grains. Phenological development stage is expressed in a dimensionless variable, having the value 0 at seedling emergence, 1 at anthesis and 2 at maturity, which is obtained through integration of the development rate defined as a function of temperature. Development rate is higher at higher temperatures, and growth duration is shorter (Van Keulen and Wolf, 1986).

The basis for calculating dry matter production is gross canopy CO₂ assimilation rate, calculated as a function of incoming radiation and crop leaf area. Gross assimilation rate per unit leaf area is calculated from absorbed radiation and the photosynthetic characteristics of single leaves. Part of the carbohydrates (CH₂O) produced is used to provide energy for maintenance of existing live biomass (maintenance respiration). The remainder is converted into structural plant dry matter that is partitioned among roots, leaves, stems and storage organs, using partitioning factors that depend on the phenological development stage of the crop (Spitters *et al.*, 1989). These growth rates are integrated over time to yield dry weights of plant organs. The fraction partitioned to the leaves determines leaf area development and hence the dynamics of light interception.

WOFOST keeps track of the soil moisture content to determine when and to what degree the crop is exposed to water stress. A water balance is included, which compares incoming water in the rooted zone, treated in the model as a single 'container', with outgoing water and quantifies the difference between the two as the change in total soil moisture content (SM). This soil moisture content influences the rate of both soil evaporation and plant transpiration. When SM in the root zone decreases below the critical soil moisture content, crop transpiration rate is reduced and so is its gross assimilation rate. When SM decreases further and drops below wilting point, transpiration of the crop and hence crop growth completely stops.

The effects of nutrient availability (nitrogen, phosphorus and potassium) on yield are calculated following the dynamic calculations of potential and water-limited production, according to the procedure developed by Janssen *et al.* (1990). This procedure consists of four steps. First, the potential soil supplies of nitrogen, phosphorus and potassium are calculated from soil chemical characteristics, or they may be entered by the user. In the second step, the actual uptake of each nutrient is calculated as a function of the potential supply of that nutrient, taking into account the potential supply of the other two nutrients. Subsequently, three yield ranges are established in dependence of the actual uptake of nitrogen, phosphorus and potassium, respectively. In step four these yield

ranges are combined to obtain a mean yield estimate. In WOFOST, potential soil supplies of nutrients are entered by the user, based on expertise and available experimental evidence. For potential and water-limited production WOFOST also calculates fertilizer nutrient requirements based on potential soil supplies and apparent recovery fractions of applied nutrients.

Parameter	Increased Value	e MaxTWLV	MaxTWST	LAIM	MWLV	MTWST	MTWSO	MTAGP	MLAI
TDWI	21	0.482	0.078	3.719	1.261	1.634	0.235	1.491	0.990
RGRLAI	0.000817	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SLATB1(0.0)	0.000212	7.450	3.656	9.091	3.151	3.658	0.899	3.297	2.970
SLATB2(0.5)	0.000212	5.083	4.145	13.636	4.517	4.150	3.489	4.126	13.366
SLATB3(2.0)	0.000212	0.044	0.117	0.620	0.105	0.104	0.257	0.149	1.485
SPAN	3.13	0.000	0.000	0.000	51.050	0.000	1.348	0.522	50.990
KDIFTB1(0.0)	0.006	0.56968	-0.9384	0.41322	-1.2605	-0.9339	-1.0702	-0.7125	-1.4851
KDIFTB2(2.0)	0.006	-0.131	-0.899	-0.207	-0.735	-0.908	-2.354	-1.317	-0.990
EFFTB1(0.0)	0.045	5.083	4.340	4.959	4.412	4.332	2.954	3.935	4.455
EFFTB2(40.0)	0.045	3.944	4.184	3.926	4.307	4.176	4.666	4.316	4.455
AMAXTB1(0.0)	3.583	6.091	3.421	5.992	3.571	3.424	0.342	2.726	3.465
AMAXTB2(1.0)	3.583	4.032	4.497	3.926	4.517	4.488	1.434	3.223	4.455
AMAXTB3(1.3)	3.583	0.000	0.000	0.000	0.000	0.000	4.880	1.881	0.000
AMAXTB4(2.0)	0.448	0.000	0.000	0.000	0.000	0.000	0.385	0.149	0.000
TMNFTB1(3.0)	0.1	18.361	16.540	18.388	16.702	16.524	14.255	16.280	16.337
CVL	0.0685	6.748	3.910	6.612	4.307	3.917	0.385	3.074	4.455
CVS	0.0662	6.705	8.074	6.612	8.193	8.067	-0.428	4.524	7.921
CVO	0.0709	0.000	0.000	0.000	0.000	0.104	8.733	3.422	0.000
CVR	0.0694	3.506	1.896	3.512	1.891	1.894	0.300	1.574	1.980
RML	0.003	-0.964	-1.114	-1.033	-1.050	-1.115	-1.948	-1.417	-0.990
RMO	0.001	0.000	0.000	0.000	0.000	0.000	-0.985	-0.381	0.000
RMR	0.0015	-0.351	-0.293	-0.413	-0.210	-0.311	-0.449	-0.373	-0.495
RMS	0.0015	-0.351	-0.684	-0.413	-0.525	-0.700	-2.247	-1.243	-0.495
RDRRTB3	0.002	0.000	0.000	0.000	0.000	0.000	0.021	0.008	0.000
RDRSTB3	0.002	0.000	0.000	0.000	0.000	-1.349	0.064	0.025	0.000

Table 46. Sensitivity analysis of WOFOST Crop parameters (see Appendix Fior explanation of acr
--

SLATB1~SLATB3 refer to values for different growing seasons or as function of independent variable.

5.2 Procedure for model calibration for local conditions

Calibration in relation to crop modeling can be defined as 'adjustment for a particular function' (Merriam-Webster, 1998). For model applications in specific situations, model calibration is required, because models generally do not perform well outside the domain for which they have been developed ((Sinclair and Seligman, 2000; Jamieson *et al.*, 1998; Kabat *et al.*, 1995). Hence, model parameters have to be adapted to the specific combination of environmental conditions and crop variety. Proper calibration requires site-specific information on crop phenology, crop growth dynamics and yield.

Model calibration is performed first for the potential production situation, in which crop growth is not limited by excess or shortage of water or by nutrient deficiency, and yield losses due to weed competition, pest and disease

infestation or other factors are negligible. This requires optimum crop management with respect to nutrient supply, irrigation and drainage and crop protection. Subsequently, calibration is performed for the water-limited production situation, in which crop growth is limited by excess or shortage of water as a result of sub-optimal irrigation and/or drainage.

Calibration is performed in the following order: 1) growth duration and phenological development; 2) light interception and potential biomass production; 3) assimilate distribution among crop organs; and for water-limited production 4) water availability; 5) evapotranspiration.

5.2.1 Calibration of crop parameters for the potential production situation

In the potential production situation, water supply, nutrient supply and crop protection and management are all optimal. In this case, soil information is not used. For the purpose of identifying the main crop parameters to which the model results are sensitive, it is necessary to perform a sensitivity analysis on all parameters. In this paper we define the sensitivity as the percentage change in model output (MaxTWLV, MaxTWST, LAIM; TWLV, TWSO, TAGP and MLAI) as the value of the test parameter is increased by 10% (while the other parameters retain their default values).

The results (Table 48) show that biological production (leaves, stems, storage organs and total production) was sensitive to specific leaf area (SLAT), extinction coefficient for diffuse visible light (KDIF), light use efficiency (EFF), light-saturated assimilation rate of single leaves (AMAX), conversion efficiencies of photosynthate in dry matter and respiration rate. Maximum LAI (LAIM) was very sensitive (13%) to the initial specific leaf area (SLATB). LAI at maturity (MLAI) and TWLV at maturity (MWLV) were very sensitive (up to 50%) to life span of leaves.

The final results of the calibration of crop parameters for FID are given in Table 49.

Parameters	Source	Calibrated value		Remarks	
		Wheat	Maize	Sunflower	
TSUMEM	Experiment	110	150	130	
TSUM1	Experiment	945	920	950	
TSUM2	Experiment	695	800	900	
TDWI	Experiment	298.6	50.0	120	
RGRLAI	WOFOST	0.00817	0.0294	0.0187	
SLATB1(0.0)	Calibrated	0.00171	0.0021	0.0045	
SLATB2 (0.5)	Calibrated	0.00280	0.0019	0.0035	For sunflower SLATB2 (1.0)
SLATB3 (2.0)	Calibrated	0.0009	0.0008	0.0025	
SPAN	Calibrated	31.3	31.0	30.0	
KDIFTB1 (0.0)	WOFOST	0.6	0.6	0.9	
KDIFTB2 (2.0)	WOFOST	0.6	0.6	0.9	
EFFTB1 (0.0)	Calibrated	0.49	0.49	0.49	
EFFTB2 (40.0)	Calibrated	0.45	0.48	0.46	
AMAXTB1(0.0)	Calibrated	35.83	70.0	40	
AMAXTB2(1.0)	Calibrated	40.83	70.0	40	For sunflower AMAXTB2
		40.00	70.0		(1.22)
AMAXIB3(1.3)	Calibrated	40.83	70.0	-	
AIMAX I B4(2.0)	Calibrated	40.83	70.0	35	
CVL	Calibrated	0.74	0.613	0.75	
CVS	Calibrated	0.80	0.8571	0.69	
CVO	Calibrated	0.69	0.7090	0.55	
CVR	Calibrated	0.74	0.7658	0.72	
RML	WOFUST	0.030	0.020	0.03	
RMO	WOFUST	0.010	0.010	0.012	
RMR RMS	WOFUST	0.015 0.015	0.015 0.010	0.010 0.015	

Table 49.Calibrated values for main crop parameters for the Fenhe Irrigation Station, North China (see
Appendix I for explanation of acronyms).

5.2.2 Calibration of soil and crop parameters for the water-limited production situation

In the water-limited production situation, soil properties and the soil water balance are taken into account. Water availability is determined first by the soil physical characteristics and second, the water balance. The water balance in the rooted zone during the growth period is equal to the difference between water supply from precipitation and irrigation and water losses by crop transpiration, soil evaporation and percolation to deeper soil layers. The soil physical characteristics determine the amount of water that can be stored at maximum in the soil and that can be supplied to the crop.

WOFOST simulates soil moisture content of the actual rooting depth and takes the whole soil layer as one 'container'. Therefore, soil physical characteristics have been calibrated for a homogeneous soil profile. Calibrated results for CES soil (bulk density 1.36 g cm³) are given in Table 50. Soil moisture content at wilting point (SMW) is 0.226 cm³ cm³; soil moisture content at field capacity (SMFCF) is 0.360 cm³ cm³; soil moisture content at saturation (SMO) is 0.435 cm³ cm³; critical soil air content for aeration CRAIRC is 0.090 cm³ cm⁻³; hydraulic conductivity of saturated soil (KO) is 18.50 cm d⁻¹; maximum percolation rate root zone (SOPE) is 12.47 cm d⁻¹; maximum percolation rate subsoil (KSUB) is 24.03 cm d⁻¹.

pF [log (cm)]	SMTAB cm ³ cm ⁻³	CONTAB [log (cm d ⁻¹)]		
-1.000	0.487	1.079		
1.000	0.435	0.971		
1.300	0.420	0.864		
1.491	0.390	0.746		
2.000	0.360	0.002		
2.400	0.310	-1.626		
2.700	0.270	-2.357		
3.400	0.255	-3.337		
4.204	0.226	-4.457		
6.000	0.160	-		

Table 50. Calibrated values for soil physical properties for the Central Experimental Station, North China.

The initial rooting depth, RDI was set to 20 cm (observed value on 1 January) and 10 cm (observed value at emergence) for winter wheat and spring maize, respectively; maximum rooting depth RDMCR was set to 140 cm and 100 cm for winter wheat and spring maize, respectively.

5.3 Validation of model results

5.3.1 Crop phenology and grain yield

WOFOST was calibrated for winter wheat and spring maize to examine model performance for different phenological phases and climate conditions; model results have been compared with results from field experiments in CES in 1992~1996, 2001 and 2002.

Comparison of simulated and observed flowering and maturity dates (Figure 23 left) and grain yield (Figure 23 right) shows satisfactory agreement for both winter wheat and spring maize. For winter wheat, simulated grain yields are linearly correlated to observed values with a slope of 1.2936 and an intercept of -1.0178. For spring maize, simulated grain yields are linearly correlated to observed values with a slope of 0.7571 and an intercept of 2.0701.

Figure 2. Simulated and observed winter wheat flowering (FLWW) and maturity dates (MTWW) in 1992-1996 and 2001-2002, and spring maize flowering (FLSM) and maturity dates (MTSM) in 1992, 1994, 2001 and 2002 (left) and simulated and observed grain yield for winter wheat (WWheat) in 1992-1995 and 2001-2002 and spring maize (SMaize) in 1992-1995 and 2001-2002, Central Experimental Station, Shanxi Province, North China.

5.3.2 Soil moisture content and water balance

Simulated soil moisture contents (actual rooting depth) have been tested for experiments carried out in CES in 2002. Initial available water in the potential root zone (WAV, moisture content above wilting point) was set to 2.0 cm and Initial moisture content in the initial rooting depth, SMLIM, to 0.263 cm⁻³. Results showed that simulated and measured soil moisture content were in satisfactory agreement during the winter wheat growing season for the irrigation treatments 100 mm (Figure 24, left) and 140 mm in two doses in 2002 (Figure 24, right), with correlation coefficients of 0.88 (R value).

Figure 24. Measured and simulated soil moisture content (actual rooting depth) for winter wheat in 2002 irrigated with 100 mm (left) and 140 mm (right) in two doses in the Central Experimental Station, Shanxi Province, North China.

Measured soil moisture content under winter wheat (actual rooting zone) in CES in 1992 (Figure 25a) and 1994 (Figure 25e) clearly illustrate the effects of irrigation and precipitation (Figures 25b, c, e and f). Simulated soil moisture was in close agreement with the observed data.

Comparison of simulated and observed soil moisture content (actual rooting depth) of winter wheat (1992, 1994, 2001, 2002) and spring maize (2001, 2002) during the whole growing season (Figure 26) shows satisfactory agreement for both crops. For winter wheat, simulated values are linearly correlated to observed values with a slope of 0.8991 and an intercept of 0.0274. For spring maize, simulated values are linearly correlated to observed values with a slope of 0.8673 and an intercept of 0.0324. Correlation coefficients for the relation between measured and simulated total rooting depth soil moisture contents are above 0.9 for both, winter wheat and spring maize.

Figure 25. Measured and WOFOST simulated soil moisture content (actual rooting zone) for winter wheat in 1992 (a, b and c) and 1994 (e, f and g) in Central Experimental Station, Shanxi Province, North China.

Figure 26. Measured and WOFOST-simulated soil moisture content (potential rooting zone) for winter wheat (1992, 1994, 2001, 2002) (left), and spring maize (2001, 2002) (right) in Central Experimental Station, Shanxi province, North China.

6. Potential crop production

6.1 Potential total aboveground production

6.1.1 Winter wheat

The variation in simulated total aboveground dry matter production (18 000~23 000 kg ha⁻¹, with an average of 20.500 kg ha⁻¹; Figure 27, left) for Taiyuan and Jiexiu for the 42 years is very similar. The maximum value of 24 133 kg ha⁻¹ was simulated for 1997. In 1962, production in Jiexiu is much lower than in Taiyuan, due to lower production of leaves (maximum LAI was 4.22, the lowest value for the 42 years) and stems.

Figure 27. Simulated potential total aboveground dry matter production (TAGP; left) and (right) potential dry weights of leaves (TWLV), stems (TWST) and grain (TWSO) for the period 1961 to 2002 for winter wheat in Taiyuan and Jiexiu, Shanxi Province, North China.

Simulated potential grain yields (TWSO in kg dry matter kg ha⁻¹; Figure 27 right) range between 9 000 and 12 000, with an average of about 10 500 for the 42 years. In years with favorable weather conditions (e. g. 1964, 1973, 1997, 1998) the potential exceeds 12 000 (equivalent to 13 950 at 14% moisture content, i.e. air-dry) kg ha⁻¹, in years with unfavorable weather conditions (e. g. 1961, 1972, 1980, 1994) potential yields are below 9 500 kg ha⁻¹. The variation in simulated total dry weight of leaves (TWLV) and stems (TWST) over the 42 years in relative terms is similar to that in TWSO. For the 42 years, average values for TWLV and TWST are around 2 850 and 7 050 kg ha⁻¹, respectively. The correlation between TWLV and TWST appears much higher than between TWLV/TWST on one hand and TWSO on the other. This is because TWSO is mostly determined by the weather conditions (radiation and temperature) during the post-flowering phase (Nix, 1976; Fischer and Maurer, 1976) and TWLV and TWST by the conditions pre-flowering. In addition, if weather conditions are favorable for vegetative growth, the crop produces relatively large quantities of leaves and stems. During the post-flowering phase, this large vegetative biomass requires high maintenance respiration, restricting assimilate availability for grain growth.

6.1.2 Spring maize

The variation in simulated total aboveground dry matter production (23 500-31 500 kg ha⁻¹; average about 27 110; Figure 28) for Taiyuan and Jiexiu is very similar. The maximum value of 31 694 kg ha⁻¹ is simulated for 1965. For almost all years, the production in Jiexiu is somewhat lower (on average 3.5% for the 42 years) than in Taiyuan, due to lower production of leaves (maximum LAI was on average 0.1 lower for the 42 years).

Simulated potential grain yields (TWSO in kg dry matter kg ha⁻¹; Figure 28, right) range between 11 500 and 17 000, with an average of about 14 100 (equivalent to 16 395 at 14% moisture content, i.e. air-dry) kg ha⁻¹ for the

42 years. In years with favorable weather conditions (e. g. 1965, 1969, 1980, 1986, 1987, 1993), potential yield exceeds 16 000 kg ha⁻¹, in years with unfavorable weather conditions (e. g. 1967 and 1996) potential yields are below 12 000 kg ha⁻¹.

Figure 28. Simulated potential total aboveground dry matter production (TAGP, left) and dry weights of leaves (TWLV), stems (TWST) and grain (TWSO) (right) for the period 1961 to 2002 for spring maize in Taiyuan and Jiexiu, Shanxi Province, China.

The variation in simulated total dry weight of leaves (TWLV) and stems (TWST) over the 42 years in relative terms is similar to that in TWSO. For the 42 years, average values for TWLV and TWST are around 4 264 and 8 681 kg ha⁻¹, respectively. The correlation between TWLV and TWST is much higher than that between TWLV/TWST on the one hand and TWSO on the other. This is because TWSO is mostly determined by the weather conditions (radiation and temperature) during the post-flowering phase and TWLV and TWST by the conditions pre-flowering.

6.1.3 Sunflower

The variation in simulated total aboveground production (10 000~13 300 kg ha⁻¹; average about 11 500; Figure 29, left) for Taiyuan and Jiexiu for the 42 years is very similar. The maximum value of 13 302 kg ha⁻¹ is simulated for Taiyuan in 1980. Potential production on average was lower in Jiexiu than in Taiyuan, due to lower production of leaves and stems.

Figure 29. Simulated potential total aboveground production (TAGP, left) and dry weights of leaves (TWLV), stems (TWST) and grain (TWSO) (right) for the period 1961 to 2002 for sunflower in Taiyuan and Jiexiu, Shanxi Province, China.

Simulated potential grain yields (TWSO in kg dry matter kg ha⁻¹; Figure 30, right) range between 5 000 and 6 750, with an average of about 5 990 (equivalent to 6 965 at 14% moisture content, i.e. air-dry) kg·ha⁻¹ for the 42 years. In years with favorable weather conditions (e. g. 1965, 1966, 1969, 1972, 1974, 1979, 1980, 1984, 1986, 1993)

potential yield exceeds 6 500 kg ha⁻¹, in years with unfavorable weather conditions (e. g. 1963, 1967, 1973, 1975, 1991, 1997) it is below 5 400 kg ha⁻¹.

The variation in simulated total dry weight of leaves (TWLV) and stems (TWST) over the 42 years in relative terms is similar to that in TWSO. For the 42 years, average values for TWLV and TWST are around 2 300 and 3 500 kg ha⁻¹, respectively. The correlation between TWLV and TWST is much higher than between TWLV/TWST on the one hand and TWSO on the other. This is because TWSO is mostly determined by the weather conditions (radiation and temperature) during the post-flowering phase and TWLV and TWST by the conditions pre-flowering.

6.2 Maximum leaf area and harvest index

6.2.1 Winter wheat

Maximum values of simulated leaf area index (LAIM) for Taiyuan and Jiexiu are very similar (Figure 30, left), ranging between 4 and 8, with an average for the 42 years of about 6.5. The highest LAIM-values, slightly above 8, are simulated in 1976 and 1997, with favorable weather conditions before anthesis, associated with simulated values of TWLV of about 4 000 kg ha⁻¹. Such high values are unlikely to be encountered in the field and point to inadequacies in model description. In reality, when LAI reaches high values (exceeding about 6), incident light intensity at the lower leaves is so low that their assimilate balance (gross photosynthesis minus respiration) becomes negative, and the leaves die. This effect is not included in the WOFOST model description, contrary to the spring wheat model of van Keulen and Seligman (1987). This deviation from reality has only limited consequences for the calculated net assimilation rates (and thus dry matter production) in the model, as only small negative values for the lower leaves are calculated. High values for LAIM are also calculated for 1967, 1968, 1980 and 1984.

Figure 30. Simulated maximum leaf area index (left) and harvest index (right) for potential growth conditions for the period 1961 to 2002 for winter wheat in Taiyuan and Jiexiu, Shanxi Province, China.

Simulated harvest index (HINDEX), the ratio of grain yield to total aboveground dry matter production, varies between 0.44 and 0.61, with an average for the 42 years of 0.51 (Figure 30, right). Such values of HI are common for modern so-called high-yielding wheat varieties (Austin, 1994). The highest value (0.61) is calculated for 1998, a year with relatively unfavorable conditions before anthesis (LAIM 4.69) and favorable conditions during grain-filling. Similar conditions prevailed in 1963, 1964 and 1969.

6.2.2 Spring maize

Maximum values of simulated leaf area index (LAIM) for Taiyuan and Jiexiu are very similar (Figure 31, left), ranging between 6 and 8, with an average for the 42 years of about 6.8. The highest LAIM-values, slightly above 8, are

simulated in 1968, with favorable weather conditions before anthesis, associated with simulated values of TWLV of about 5 508 kg ha⁻¹.

Figure 31. Simulated maximum leaf area index (LAIM, left) and harvest index (right) for the period 1961 to 2002 for spring maize in Taiyuan and Jiexiu, Shanxi Province, China.

Such high values are unlikely to be encountered in the field and point to inadequacies in model description. In reality, when LAI reaches high values (exceeding about 6), incident light intensity at the lower leaves is so low that their assimilate balance (gross photosynthesis minus respiration) becomes negative, and the leaves die. This deviation from reality has only limited consequences for the calculated net assimilation rates (and thus dry matter production) in the model, as only small negative values for the lower leaves are calculated. High values for LAIM were also calculated for 1964, 1965, 1969 and 1974.

Simulated harvest index (Figure 32, right), the ratio of grain yield to total aboveground dry matter production, varies between 0.48 and 0.59, with an average for the 42 years of 0.52 (Figure 32). The highest value (0.59) is calculated for 1994.

6.2.3 Sunflower

Maximum values of simulated leaf area index (LAIM) for sunflower for Taiyuan and Jiexiu are very similar (Figure 32, left), ranging between 5.9 and 7.4, with an average for the 42 years of about 6.5. The highest LAIM-values, slightly above 7.2, were simulated in 1980, with favorable weather conditions before anthesis, associated with simulated values of TWLV of about 2 645 kg ha⁻¹. Such high values are unlikely to be encountered in the field and point to inadequacies in model description. High values for LAIM are also calculated for 1965, 1973 and 1986.

Figure 32. Simulated maximum leaf area index (left) and harvest index (right) for the period 1961 to 2002 for sunflower in Taiyuan and Jiexiu, Shanxi Province, China.

Simulated harvest index (HINDEX, Figure 32, right), the ratio of grain yield to total aboveground dry matter production, varies between 0.46 and 0.55, with an average for the 42 years of 0.51. The highest values (0.55) are calculated for 1972, 1979 and 1982.

7. Water-limited crop production

7.1 Crop production under rainfed conditions

7.1.1 Winter wheat

Precipitation varied between 50-250 mm during the winter wheat growing season for the period 1961 to 2002 in FID. Hence, to create optimum growth conditions for the crop, supplementary irrigation is required in all years. Simulated winter wheat yields are very low without irrigation. The lowest grain yield is about 1 000 kg ha⁻¹. For 1991, with 245 mm precipitation, simulated grain yield is 6484 kg ha⁻¹ for Taiyuan, and for 1964 with 191 mm, 2226 kg ha⁻¹. For 1990, also with 191 mm precipitation simulated grain yield is 1478 kg·ha⁻¹, indicating that in addition to total rainfall, the distribution is of importance (van Keulen and Seligman, 1987).

7.1.2 Spring maize

Precipitation varied between 90~610 mm (325 mm on average) during the spring maize growing season for the period 1961 to 2002 in FID. Hence, to create optimum growth conditions for the crop, supplementary irrigation is required in dry years. Simulated results show (Figure 33) that spring maize yield is low under rainfed conditions. In some years (e. g. 1966 and 1969) total precipitation exceeded 550 mm, but crop yield is still very low, due to unfavorable rainfall distribution (during a rainstorm precipitation was 180 mm in one day in 1969). Conditions were similar for 1973 and 1977. Spring maize grain yield exceeded 11 000 kg ha⁻¹ in 1964, 1988 and 1996 because of favorable rainfall conditions during the growing season

Figure 33. Growing season precipitation and smulated spring maize grain yield under rainfed conditions for the period 1961-2002 in Taiyuan, Shanxi Province, North China.

7.1.3 Sunflower

Precipitation varied between 120-702 mm (398 mm on average) during the sunflower growing season for the period 1961 to 2002 in FID. Simulated results show (Figure 34) that sunflower grain yield (dry weight) is correlated to precipitation, and can be expressed by a logarithmic curve, with a correlation coefficient of 0.75 and a slope of

4465.8 and an intercept of -23 388. Average grain dry weight for the simulated period under rainfed conditions is 3 074 kg ha⁻¹.

In some years (e. g. 1992 and 1999) precipitation exceeded 300 mm, but simulated crop yields are still very low (Figure 35), due to unfavorable distribution of rainfall. Sunflower grain yield exceeds 6 300 kg ha⁻¹ in 1976 and 1982 thanks to favorable rainfall distribution during the growing season.

Figure34. The relation between simulated sunflower grain yield and precipitation under rainfed conditions (1961-2002) in Taiyuan, Shanxi Province, North China.

Hence, to create optimum growth conditions for the crop, supplementary irrigation is required in dry years, especially in years with precipitation below 400 mm during the growing season.

Figure 35 Growing season precipitation and simulated sunflower grain yields under rainfed conditions for the period 1961-2002 in Taiyuan, Shanxi Province, North China.

7.2 Crop production under irrigated conditions

7.2.1 Winter wheat

Under the prevailing irrigation scheduling for winter wheat in FID, the crop is irrigated twice (100 mm per application) after the winter period: once before jointing (end of March) and once before grain filling (end of April). Simulated grain yields (TWSO in kg dry matter per ha; Figure 36) for the period 1961 to 2002 for winter wheat under this irrigation regime vary between 100 and 10 000 kg ha⁻¹ with an average of 5 205 (equivalent to 6 052 at 14% moisture content, i.e. air-dry) kg ha⁻¹.

Figure 36. Simulated grain yield for the period 1961 to 2002 for winter wheat under irrigated conditions (100 mm twice after the winter period) in Taiyuan, Shanxi Province, North China.

Statistical analysis shows that simulated winter wheat grain yield is correlated to precipitation+irrigation during the simulated growing season, and can be described by a logarithmic curve (Figure 37), with correlation coefficient of 0.73, a slope of 12 376 and an intercept of -66 015.

Figure 37. The relation between simulated winter wheat grain yield and precipitation+irrigation for the period 1961-2002 in Taiyuan, Shanxi Province, North China.

7.2.2 Spring maize

Under the prevailing irrigation scheduling for spring maize in FID, the crop is irrigated once (90 mm) after jointing. Simulated results show (Figure 38) that spring maize grain yield is correlated to precipitation+irrigation, and can be described by a logarithmic curve, with correlation coefficient of 0.76, a slope of 9781 and an intercept of -51 575.

Figure 38. The relation between simulated spring maize grain yield and precipitation+irrigation for the period 1961-2002 in Taiyuan, Shanxi Province, North China.

Simulated grain yield (TWSO in kg dry matter per ha; Figure 39) for the simulated period (1961~2002) under irrigated condition varies between 1900 and 14 380 kg ha⁻¹ with an average of 7 689 (equivalent to 8 940 at 14% moisture content, i.e. air-dry) kg ha⁻¹.

Figure 39. Growing season precipitation + irrigation and simulated grain yield (TWSO) for the period 1961 to 2002 for spring maize under irrigated conditions (single application of 90 mm after jointing) in Taiyuan, Shanxi Province, North China.

7.2.3 Sunflower

Under the prevailing irrigation scheduling for sunflower in FID, the crop is irrigated once (60 mm) before head appearance. Simulated results show (Figure 40) that sunflower grain yield is correlated to precipitation+irrigation, and can be described by a logarithmic curve, with a correlation coefficient of 0.71, a slope of 5912.7 and an intercept of -32 286. Simulated grain yield (TWSO in kg dry matter per ha; Figure 41) for the simulated period (1961~2002) under irrigated conditions varies between 36 and 6 469 kg ha⁻¹ with an average of 3 805 (equivalent to 4 424 at 14% moisture content, i.e. air-dry) kg ha⁻¹, an increase of 731 kg ha⁻¹ compared to rainfed conditions.

Figure 40. Growing season (precipitation + irrigation) and simulated grain yield (TWSO) for the period 1961 to 2002 for spring maize under irrigated conditions (single application of 90 mm after jointing) in Taiyuan, Shanxi Province, North China.

7.3 Yield gap analysis

The average yield gap (1992-1996 and 2001-2002) between simulated water-limited yield and actual yield is 0.7 and 1.0 Mg kg·ha⁻¹ for spring maize and winter wheat, respectively (Figure 42). Simulated results overestimate grain

yield for spring maize by 8.75% and for winter wheat by 22.3%. The difference could be due to effects of diseases and pests that are not taken into account in the model. Simulated water-limited grain yield for spring maize is 0.8 Mg ha⁻¹ higher than simulated potential yield in 1995, because of irrigation and more favorable weather conditions after anthesis, that lead to a higher harvest index (Boogaard *et al.*, 1998).

In FID, average winter wheat yield under irrigation is 4 500 kg ha⁻¹. Experimental results have shown that winter wheat yield can reach 7 710 kg ha⁻¹ under best water management and nutrient supply (Wang and Cun, 2003). The highest yield that has been reported for winter wheat was 11 180 kg ha⁻¹ (equivalent to 13 000 kg ha⁻¹ at 14% moisture content, i.e. air-dry) in 1998. In this report, the simulated potential yield is 12 137 kg ha⁻¹ for 1998, just 8.6% higher than that reported. Hence, the yield gap between calculated potential yield and actual yield for this specific site is very small. But the yield gap between the average yield of 4 500 kg·ha⁻¹ and the 'attainable' yield of 11 180 kg·ha⁻¹ is still very large. This indicates the need for fine-tuning of water- and nutrient management and improved and integrated pest and disease management.

Figure 42. Simulated potential grain yield, water-limited grain yield and experimental data for spring maize (SP_SM, W_SM and E_SM)and winter wheat (SP_WW, W_WW and E_WW) for the period 1992-1996 and 2001-2002 in the Central Experimental Station, Shanxi Province, North China.

8. Nutrient-limited crop production

Soil nutrient availability, fertilizer application, nutrient uptake by crop roots and distribution of nutrients in crop organs should be taken into account under nutrient-limited crop production. Nutrient applications were calculated based on fertilizer application in 2003 and 2004 (Table 4) for winter wheat. Three fertilization levels, i.e. high, medium and low for N, P and K were applied (Table 51).

	2003			2004		
Supply	Ν	Р	К	Ν	Р	K
High	232.5	45.8	41.1	232.5	90.0	37.5
Medium	155.0	30.5	27.4	168.8	60.0	25.0
Low	77.5	15.3	13.7	105.1	30.0	12.5

Table 51.Winter wheat fertilizer application (kg ha1) in the Central Experimental Station in Shanxi province,
North China (2003 and 2004).

Indigenous soil nutrient contents were measured before sowing and after harvest for 2004 (Table 52). Soil nutrient content before sowing plus fertilizer applied minus soil nutrient content after harvest is considered crop uptake plus leaching.

Elements	Fertilization level	Fertilizer	Soil nutrie	Soil nutrient content	
		(kg ha ⁻¹)	Before sowing I(kg ha ⁻¹)	After harvest (kg ha ⁻¹)	and leaching (kg ha ^{.1})
	High	232.5	160.8	231.4	161.9
Ν	Medium	168.8	134.4	193	110.2
	Low	105.1	93.6	166.1	32.6
	High	90	64.6	109.5	45.1
Р	Medium	60	76.9	93.1	43.8
	Low	30	78	82.9	25.1
	High	37.5	295.4	242.8	90.1
К	Medium	25	280.6	244.5	61.1
	Low	12.5	258	250	20.5

Table 52.	Fertilizer application for winter wheat and the change in soil nutrient content in the 0-50 cm soil layer
	under sufficient irrigation in the Central Experimental Station in Shanxi province, North China (2004)

WOFOST estimates nutrient requirements, following the dynamic calculations of potential and water-limited production, following the QUEFTS-method of Janssen *et al.* (1990). This method takes into account indigenous soil nutrient supply that can be either calculated from soil chemical characteristics or can exogenously be supplied by the user, if nutrient uptake in the non-fertilized situation is known. Total crop nutrient requirements are calculated from dry matter production and crop-specific characteristic nutrient concentrations. To calculate fertilizer requirements, the user has to supply an estimated recovery fraction of applied fertilizers, i.e. the fraction of the fertilizer

nutrient that is actually taken up by the vegetation. As in the experiments no data on nutrient uptake were determined, nor the soil chemical characteristics necessary for calculation of indigenous soil nutrient supply, as this stage, we have not further analyzed nutrient requirements.

Detailed nutrient data for spring maize and sunflower are presented in Tables 53 and 54.

 Table 53.
 Fertilizer application for spring maize and the change in soil nutrient content in the 0-50 cm soil layer under sufficient irrigation in the Central Experimental Station in Shanxi province, North China (2004).

Elements	F	Fertilizer		Soil nutrient content		
	level	Rate (kg ha ^{.1})	Before sowing (kg ha ⁻¹)	After harvest (kg ha ⁻¹)	and leaching (kg ha ⁻¹)	
N	High	276.0	1111.2	333.6	1053.6	
	Medium	172.5	1188.0	537.6	822.9	
	Low	103.5	993.6	458.4	638.7	
	High	126	47.8	108.9	64.9	
Р	Medium	84	50.1	84.1	50	
	Low	42	65.9	87.8	20.1	
К	High	0	231.5	183.9	47.6	
	Medium	0	217.0	208.0	9	
	Low	0	220.3	203.8	16.5	

Table 54.Fertilizer application for sunflower and the change in soil nutrient content in 0-50 cm soil layer under
sufficient irrigation in the Central Experimental Station in Shanxi province, North China (2004).

Elements	I	Fertilizer		Soil nutrient content		
	level	Rate (kg ha ⁻¹)	Before sowing (kg ha ⁻¹)	After harvest (kg ha ⁻¹)	and leaching (kg ha ⁻¹)	
N	High	393.0	2078.4	3984.0	-1512.6	
	Medium	270.0	1965.6	3403.2	-1167.6	
	Low	147.0	1629.6	3792.0	-2015.4	
Р	High	144.0	131.8	198.8	77.0	
	Medium	108.0	159.8	244.6	23.2	
	Low	72.0	141.9	243.3	-29.4	
К	High	60.0	244.1	211.6	92.5	
	Medium	45.0	230.9	220.3	55.6	
	Low	30.0	232.6	221.9	40.7	

66
9. Conclusions

In Fenhe Irrigation District (FID), farmers can irrigate crops only once in conventional irrigation systems in dry years. To supplement water supply from the irrigation system, water is pumped on an individual farm basis from the groundwater. For the purpose of increasing revenue, farmers increasingly grow vegetables that need more irrigation water. However, the lack of water increasingly constrains increases in agricultural production. Moreover, the unreliability of water supply makes fertilizer management difficult. Therefore, improvements in water and nutrient management practices in crop production systems are urgently required in FID.

In this study, experiments from 1992 to 2004 were analyzed. Soil water dynamics, soil surface evaporation under shallow water table were discussed and simulated. Irrigation management under different hydrological conditions and water table management (depths: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 m) were discussed. Light-temperature characteristics of a new early maturing wheat variety were tested and possibilities for introducing this variety in study area were discussed. Vegetable experiments on irrigation management were introduced and effects of irrigation management and its economic benefits were analyzed. In addition, WOFOST crop growth simulation model were used to estimate potential and water-limited crop production in FID as a study case. To examine the variability in crop production for Fenhe Irrigation District, weather data (1961-2002) for Taiyuan (north Fenhe), Jiexiu (south Fenhe) and the central meteorological stations were used to simulate potential and water-limited winter wheat, spring maize and sunflower yields with the WOFOST simulation model. Main conclusions from the study are:

- 1. The results show maximum grain yields of 5842, 9769 and 2231 kg ha⁻¹, under adequate nutrient supply for winter wheat, spring maize and sunflower, respectively. Highest observed water use efficiencies (WUE) under these conditions, based on grain yield and total water input (rainfall + irrigation) were 17.8, 25.2 and 8.8 kg ha⁻¹ mm⁻¹ for winter wheat, spring maize and sunflower, respectively. The relation between water consumption and grain yield under different fertilizer inputs could be expressed by a logarithmic curve; the relation between water consumption and WUE for winter wheat could be expressed by a negative logarithmic curve. As spring maize and sunflower are growing in the rainy season, the relations between water consumption and water use efficiency are hardly significant, but for sunflower, crop yield and water use efficiency starts to decrease at water consumption values exceeding 310 mm, hence supplementary irrigation is not needed in high rainfall years.
- 2. Root zone (0-100 cm) soil water dynamics are influenced by capillary rise under shallow water table depths, for both winter wheat and spring maize. Soil water content varies more strongly under shallower water table depths, which leads to more uptake from the groundwater and higher water use. Percolation after irrigation or rainfall started later under deeper water tables. The relation between rate of soil surface evaporation and water table depth can be expressed by an exponential curve, while the relation between cumulative soil surface evaporation over the crop growing season and water table depth for winter wheat and spring maize could also be expressed by an exponential curve. The effects of shallow water table depths on crop growth and yield were mainly mediated through more profuse tillering and higher spike densities, but not through individual grain weight. Crop yields and WUE were highest for water table depths of 1.0 and 1.5 m for spring maize and winter wheat, respectively. WUE for winter wheat attained the highest values at water table depths of 1.0 m and was lower at both shallower and greater depths. Crop water requirements, calculated by the FAO method, were 405 and 391 mm for winter wheat and spring maize, respectively. On this basis, irrigation requirements for winter wheat and spring maize, aimed at realizing high crop yields, were calculated for shallow water table depths under varying rainfall regimes.
- 3. The new photo-insensitive and early-maturing wheat variety, Dongzao 5 (DZ5), matured 4-5 days earlier and showed a 20% higher yield than Jingdong 8 (JD8). Moreover, DZ5 uses less thermal time for ear differentiation and does not need vernalization and can thus be sown either before or after winter. The temperature limit for 50% seedling mortality was -14.9 °C, 1.8 °C higher than that for JD8. It is expected to over-winter safely in Beijing and the southern part of North China.
- 4. Results of the vegetable experiments show that efficient water use and economic benefits are best combined by applying small irrigation doses, e.g. 20~40 mm per application (except for water melon). Recommended doses are: sweet potato: 200 mm irrigation (total water consumption 400 mm), jequirity: 100 mm (total water

consumption 440 mm), sesame: 68 mm (total water consumption 350 mm), water melon/black bean: 188 mm (total water consumption 510 mm), muskmelon: 84 mm (total water consumption 270 mm), turnip: 250 mm (total water consumption 470 mm), sharo pepper: 110 mm (total water consumption 370 mm).

5. The WOFOST simulation model yielded an average total aboveground dry matter production under optimal conditions of 20 500 kg ha⁻¹ (10 500 kg ha⁻¹ in grain) for winter wheat, 27 110 kg ha⁻¹ (14 500 kg ha⁻¹ in grain) for spring maize and 11 650 kg ha⁻¹ (5 900 kg ha⁻¹ in grain) for sunflower. Potential production in Taiyuan was somewhat higher (winter wheat grain yield 1.6% higher, spring maize 3.4% higher, sunflower 2.3% higher) than in Jiexiu.

Simulated grain yield under irrigated conditions was overestimated by 8.75% and 22.3% for spring maize and winter wheat, respectively, compared to measured yield. Simulated maximum leaf area indices and harvest indices were somewhat higher than observed value. Simulated grain yield and precipitation plus irrigation can be correlated by logarithmic curves for all three crops (correlation coefficients higher than 0.7). Crop production under water-limited (rainfed) conditions was low for all three crops, albeit acceptable for spring maize and sunflower, growing in the rainy season. For sunflower, simulated water-limited grain yields are logarithmically correlated to precipitation.

- 6. Anticipated developments in the agricultural sector will lead to a shift from cultivation of bulk products such as rice, wheat and maize, in view of the shift in consumer preferences and the continuing economic growth, to more remunerative high-value commodities, such as vegetables and fruits, and animal products, i.e. milk, meat, eggs, etc. As shown in the experiments reported in this report, vegetables (and the same holds for fruits), are high-intensity crops that require higher inputs, both in terms of water and in terms of nutrient elements.
- 7. The shift away from bulk products brings to the fore, the conflict between the dual objectives of the Chinese government of maintaining self-sufficiency in basic foodstuffs and reducing the income gap between the rural and the urban population. As China is now a full member of WTO, scope for policy measures is limited; it is doubtful therefore whether both objectives can be realized in the long run. In terms of water management this might mean that a choice will have to be made between the different water users in the Yellow river basin, i.e. agriculture, industrial and domestic. When industrial and domestic users will continue to receive priority, total agricultural production in Fenhe Irrigation District will decline.
- 8. As water availability from Fenhe reservoir is limited, farmer will increasingly resort to the use of groundwater for irrigation of the high-value commodities. Already there is a serious drop in groundwater table depths, and this will aggravate under the anticipated changes in structure of the agricultural sector. Whether this increased groundwater use can be restricted through economic measures such as water pricing is doubtful. The price of water required for full-cost recovery would be such that it would seriously affect the profitability of farm enterprises.
- 9. Expansion of the animal production sector which also will lead to high-intensity production activities involving import in the region of concentrate feed, to supplement the roughage that could be grown as an alternative to the current bulk food crops of low profitability, will lead to a surplus of nutrients, especially nitrogen and phosphorus. An active land use policy is then required to balance the intensity of the animal production systems and the associated manure production and the land area on which the manure can be applied as a fertilizer. Rules and regulations that would condition required licenses-to-produce for animals are the required.
- 10. In this report attention has focused on water use for agriculture. Increasingly, the requirements of water for ecosystem functions are stressed. In the Yellow river basin, including Fenhe River, these functions have largely been ignored in the past. More emphasis on this use is another serious threat to the agricultural sector, as it will reduce the availability of water for agricultural purposes.
- 11. There is therefore in Fenhe Irrigation District a need for formulation of water use paln, including the necessary enabling policy measures. This water use paln should not only take into account the bio-physical possibilities and constraints, but should also llook at the (socio-)economic consequences. When agricultural water availability is seriously declining, the livelihoods of (many of) the small farmers now dependent on Fenhe reservoir will be under pressure. It will then be absolutely necessary to take measures creating alternative employment in the region.

10. References

Adhikari, C., K.F. Bronson, G.M. Panuallah, A.P. Regmi, P.K. Saha, A. Dobermann, D.C. Olk, P.R. Hobbs & E. Pasuquin, 1999. On-farm soil N supply and N nutrition in the rice-wheat system of Nepal and Bangladesh. Field Crops Res. 64, 273-286. Aggarwal, P.K. & N. Kalra, 1994. Analyzing the limitations set by climatic factors, genotype, and water and nitrogen availability on productivity of wheat II. Climatically potential yields and management strategies. Field Crops Res. 38, 93–103. Allen, R.G., L.S. Pereira, D. Raes & M. Smith, 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy. Alocilia, E.C. & J.T. Richie, 1988. Upland rice simulation and its use in multicriteria optimization. University of Hawaii and Michigan State University, IBSNAT. 95 pp. Austin, R.B., 1994. Plant breeding opportunities. In: Boote, K.J., Bennett, J.M., Sinclair, T.R. and Paulsen, G.M. (Eds.), Physiology and determination of crop yield. ASA, CSSA and SSSA, Madison, Wi, USA. pp. 567-586. Babijiang, B., D.W. Zheng, Y.M. Jia, Ch.B. Wu & G. Ren, 2004a. Influence of water table on winter wheat soil water and crop yield. J. Water Saving Irr. 5, 5-9. (Chinese with English abstract) Babijiang, B., D.W. Zheng, H. Kerime, Ch. Meng, Zh.Sh. Wang & J.Q. Qiu, 2004b. Influence of water table on spring maize soil water and crop yield. J. Soil and Water Cons. 18, 57-69. (Chinese with English abstract) Becker, M., D.E. Johnson, M.C.S. Wopereis & A.Sow, 2003. Rice yield gaps in irrigated systems along an agro-ecological gradient in West Africa. J. Plant Nutr. Soil Sci. 166.61-67. Boogaard, H.L., C.A. van Diepen, R.P. Roetter, J.M.C.A. Cabrera & H.H. van Laar, 1998. WOFOST 7.1 User's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5, Alterra, Wageningen. 143 pp. Bouman, B.A.M., H. van Keulen, H.H. van Laar & R. Rabbinge, 1996. The 'School of de Wit' crop growth simulation models: A pedigree and historical overview. Agric. Syst. 52, 171-198. Bouman, B.A.M., M.J. Kropff, T.P. Tuong, M.C.S. Wopereis, H.F.M. ten Berge & H.H. van Laar, 2001. ORYZA2000: modelling lowland rice. International Rice Research Institute, Los Baños. 235 pp. Drenth, H., H.F.M. ten Berge & J.J.M. Riethoven, 1994. ORYZA simulation modules for potential and nitrogen limited rice production. SARP Research Proceedings, IRRI/AB-DLO, Wageningen. 223 pp. Fischer, R.A. & R. Maurer, 1976. Crop temperature modification and yield potential in a dwarf spring wheat. Crop Sci. 16, 855-859. Foltescu, V.L., 2000. Prediction of crop yield in Sweden based on mesoscale meteorological analysis. Meteorol. Appl. 7, 313-321. Goudriaan, J., H. van Keulen & van H.H. Laar, 1997. SUCROS1: Crop growth model for potential production. In: Goudriaan, J., van Keulen, H. and van Laar, H.H. (Eds.) SUCROS97: Simulation of crop growth for potential and water-limited production situations as applied to spring wheat. Quantitative Approaches in Systems Analysis No. 14. DLO-Research Institute for Agrobiology and Soil Fertility and C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands. 52 pp. + Ann.

Jame, Y.W. & H.W. Cutforth, 1996.

Crop growth models for decision support systems. Can. J. Plant Sci. 76, 9–19.

Jamieson, P.D., J.R. Porter, J. Goudriaan, J.T. Ritchie, H. van Keulen & W. Stol, 1998. A comparison of the models AFRCWHEAT 2, CERES-Wheat, Sirius, SUCROS 2 and SWHEAT with measurements from wheat grown under drought. Field Crops Res. 55, 23-44. Janssen, B.H, F.C.T. Guilking, D. van der Eijk, E.M.A. Smaling, J. Wolf & H.van Reuler, 1990. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma 46, 299-318. Jones, C.A. & J.R. Kiniry, 1986. CERES-Maize. A Simulation Model of Maize Growth and Development, Texas A&M University Press, College Station, Temple. 194 pp. Jones, C.A., J.T. Ritchie, J.R. Kiniry, D.C. Godwin & S.I. Otter, 1984. The CERES wheat and maize models. In: (ICRISAT) Proceedings International Symposium on Minimum Data Sets for Agrotechnology Transfer. ICRISAT, Patancheru, India. pp. 95-100. Kabat, P., B. Marshall & B.J. Van den Broek, 1995. Comparison of simulation results and evaluation of parameterization schemes. In: P. Kabath, B. Marshall, B.J. van den Broek, J. Vos & H. van Keulen, (Eds), Modelling and parameterization of the soil-plant-atmosphere system – a comparison of potato growth models. Wageningen Press, Wageningen, The Netherlands. pp. 439-499. Karthikeyan, R., G. Hoogenboom & R.W. McClendon, 1996. Regional yield forecasting using crop models and GIS: A conceptual framework. An ASAE meeting presentation, Phoenix, Arizona, Paper No. 96-5010 Kropff, M.J., H.H. van Laar & H.F.M. ten Berge, (Eds.), 1993. ORYZA1 A basic model for irrigated lowland rice production. IRRI, Los Baños, The Philippines. Mastrorilli, M., N.Keterji & B. Ben Nouma, 2003. Using the CERES-Maize model in a semi-arid Mediterranean environment. Validation of three revised versions. Eur. J. Agron. 19, 125-134. Matthews, R.B., 2003. Crop management. In: Matthews, R. and Stephens, W. (Eds.). Crop-Soil Simulation Models. Applications in Developing Countries, CABI Publishing, New York, USA. pp. 29-54. Merriam-Webster, 1998. Merriam-Webster's Collegiate Dictionary. 10th Edition. Merriam-Webster, Springfield, MA. Monteith, J.L., 1996. The quest for balance in crop modeling. Agron. J. 88, 695–697. Nix, H.A., 1976. Climate and crop production in Australia. In: Yoshida, S. (Ed.), Climate and rice. IRRI, Los Baños, Philippines. pp. 495-507. Penning de Vries, F.W.T., D.M. Jansen, H.F.M. ten Berge & A. Bakema, 1989. Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs, Pudoc, Wageningen. 271 pp. Pinnschmidt, H. O., V. Chamarerk, N. Cabulisan, F. Dela Pena, N. D. Long, S. Savary, H.W. Klein-Gebbinck & P.S., Teng, 1997. Yield gap analysis of rainfed lowland systems to guide rice crop and pest management. In: Kropff, M. J., Teng, P. S., Aggarwal, P. K., Bouma, J., Bouman, B. A. M., Jones, J. W. and van Laar, H. H. (Eds.) Application of systems approaches at the field level. Systems Approaches for Sustainable Agricultural Development, Vol. 2, Kluwer Acad. Publ., Dordrecht, the Netherlands. pp. 321-338. Ritchie, J.T. & S. Otter, 1985. Description and performance of CERES-Wheat: A user-oriented wheat yield model. ARS-38, USDA-ARS. Temple. pp. 159-175. Roetter, R., P.K. Aggarwal, P.S. Tan, C.T. Hoanh, J.M.C.A. Cabrera & B. Nunez, 1998. Use of crop simulation models and alternative yield estimation techniques for optimizing agricultural land use and resource management. In: Roetter R., Hoanh, C. T., Luat, N. V., Van Ittersum, M. K. and Van Laar, H. H. (Eds.) SysNet Research Paper Series No. 1, IRRI, Los Baños, Philippines. pp. 15-29.

Rijsberman, F.R., 2004.

Water scarcity: fact or fiction? In: Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, M. and Lloyd, D. (Eds.), New directions for a diverse planet: Proceedings for the 4th International Crop Science Congress, Brisbane, Australia, 26 September – 1 October 2004. The proceedings are available online at: www.cropscience.org.au.

RWCMWR (Department of Rural Area, Ministry of Water Resources P. R. China), 1994.

Irrigation management enchiridion. Water Conservancy and Electric Power Press, Beijing, China.

SBSP (Statistical Bureau of Shanxi Province), 2002.

Shanxi Statistical Yearbook-2002: Agricultural economics sector. China Statistical Press, Beijing, China. Sinclair, T.R. & N. G. Seligman, 2000.

Criteria for publishing papers on crop modeling. Field Crops Res. 68, 165-172.

Spitters, C.J.T., H. van Keulen & D.W.G. van van Kraalingen, 1989.

A simple and universal crop growth simulator: SUCROS87. In: Rabbinge, R., Ward, S.A. and van Laar, H.H. (Eds.) Simulation and systems management in crop protection. Simulation Monographs, Pudoc, Wageningen, The Netherlands. pp 147–181.

Van Keulen, H., 1975.

Simulation of water use and herbage growth in arid regions. Simulation Monographs, Pudoc, Wageningen. 175 pp.

Van Keulen, H. & N.G. Seligman, 1987.

Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monographs, Pudoc, Wageningen, The Netherlands. 310 pp.

Van Keulen, H. & J. Wolf, (Eds.), 1986.

Modelling of agricultural production: weather, soils and crops, Simulation Monographs, Pudoc, Wageningen. 479 pp.

Van Keulen, H., N.G. Seligman & R.W. Benjamin, 1981.

Simulation of water use and herbage growth in arid regions - A re-evaluation and further development of the model 'Arid Crop'. Agric. Syst. 6, 159-193.

Wang, Y.R. & X.P. Cun 2003.

Agricultural water-saving theories and high efficient water use methods of Shanxi Province. China Science and Technology Press, Beijing. pp. 25-30.

Witt, C., A. Dobermann, S. Abdulrachman, H.C. Gines, Wang Guanghuo, R. Nagarajan, S. Satawatananont, Tran Thuc Son, Pham Sy Tan, Le Van Tiem, G.C. Simbahan & D.C. Olk, 1999.

Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res. 63, 113-138.

Wolf, J., 1993.

Effects of climate change on wheat production potential in the European Community, Eur. J. Agron. 2, 281-292.

Wolf, J. & C.A. van Diepen, 1995.

Effect of climate change on grain maize yield potential in the European Community. Climate Change 29, 299-331.

```
Wopereis, M.C.S., B.A.M. Bouman, T.P. Tuong, H.F.M. ten Berge & M.J. Kropff, 1996.
```

ORYZA_W: Rice growth model for irrigated and rainfed environments. SARP Research Proceedings. IRRI/AB-DLO, Wageningen. 159 pp.

Yun, J.I., 2003.

Predicting regional rice production in South Korea using spatial data and crop-growth modelling. Agric. Syst. 77, 23-28.

Appendix I. List of abbreviations

AMAXTB	Maximum leaf CO ₂ assimilation rate as a function of development stage of the crop (kg/ha/h)
CES	Central Experimental Station
CONTAB	10-log hydraulic conductivity as function of pF [log (cm); log (cm/d)]
CRAIRC	Critical soil air content for aeration (cm ³ /cm ³)
CVL	Conversion efficiency of assimilates into leaf tissue (kg/kg)
CVO	Conversion efficiency of assimilates into storage organs (kg/kg)
CVR	Conversion efficiency of assimilates into root tissue (kg/kg)
CVS	Conversion efficiency of assimilates into stem tissue (kg/kg)
DUR	Duration of simulation period (d)
EFFTB	Initial light-use efficiency of CO ₂ -assimilation rate of single leaves as function of daily temperature
	$[(kg/ha/h) \text{ per J/m}^2/s)]$
EVSOL	Evaporation rate from soil or from water stored on soil surface (mm/d)
FID	Fenhe Irrigation District
GASST	Gross assimilation rate (kg (CO ₃)/ha/d)
HALT	Day number at harvest (Julian calendar day)
HINDEX	Harvest index: weight of storage organs/weight of total aboveground material (kg/kg)
K0	Saturated soil hydraulic conductivity (cm/day)
KDIFTB	Extinction coefficient for diffuse visible light as function of development stage
KSUB	Maximum percolation rate subsoil (cm/d)
LAIM	Maximum leaf area index (ha/ha)
MaxTWLV	Maximum TWLV (kg/ha)
MaxTWST	Maximum TWST (kg/ha)
MLAI	LAI-value at maturity
MREST	Maintenance respiration rate (kg (CO ₂)/ha/d)
MTAGP	TAGP at maturity (kg/ha)
MWSO	TWSO at maturity (kg/ha)
MWST	TWST at maturity (kg/ha)
RDI	Initial rooting depth (cm)
RDRRTB	Relative death rate of roots as a function of development stage (kg/kg/d)
RDRSTB3	Relative death rate of stems as a function of development stage (kg/kg/d)
RDMCR	Maximum rooting depth (cm)
RDMSOL	Maximum rooting depth as dictated by soil characteristics (cm)
RGRLAI	Maximum relative increase in LAI (ha/ha/d)
RML	Relative maintenance respiration rate leaves [kg (CH ₂ O)/kg/d]
RMO	Relative maintenance respiration rate storage organs [kg (CH ₂ O)/kg/d]
RMR	Relative maintenance respiration rate roots [kg (CH ₂ O)/kg/d]
RMS	Relative maintenance respiration rate stems [kg (CH ₂ O)/kg/d]
SLATB	Specific leaf area as a function of development stage (ha/kg)
SMFCF	Soil moisture content at field capacity (cm ³ /cm ³)
SMLIM	Initial maximum moisture content in initial rooting depth (cm ³ /cm ³)
SMO	Soil moisture content at saturation (cm ³ /cm ³)
SMTAB	Volumetric soil moisture content as function of pF [log (cm); (cm ³ /cm ³)]
SMW	Soil moisture content at wilting point (cm ³ /cm ³)
SOPE	Maximum percolation rate root zone (cm/d)
SPAN	Life span of leaves growing at 35°C (d)
TAGP	Total aboveground production (dead and living plant organs) (kg/ha)
TDWI	Initial total crop dry weight (kg/ha)

I - 2

- TMNFTB Reduction factor of gross assimilation rate as function of average temperature
- TRANSP Transpiration rate (mm/d)
- TRC Transpiration coefficient (kg (H₂O)/kg dry matter)
- TSUM1 Thermal time from emergence to anthesis (°C d)
- TSUM2 Thermal time from anthesis to maturity (°C d)
- TSUMEM Thermal time from sowing to emergence (°C d)
- TWLV Total dry weight of leaves (dead and living) (kg/ha)
- TWRT Total dry weight of roots (dead and living) (kg/ha)
- TWSO Total dry weight of storage organs (dead and living) (kg/ha)
- TWST Total dry weight of stems (dead and living) (kg/ha)
- WAV Initial available water in total potential root zone (mm, moisture content above wilting point)

Appendix II. WOFOST Model Simulation Results

Potential winter wheat production for (the northern part, Taiyuan, of) Fenhe Irrigation District (1961-2002)

/4 AgAn A	YEAR	DUR*	TWRT	TWLV	TWST	TWSO	TAGP	LAIM	HINDEX	TRC	GASST	MREST	TRANSP	EVSOL
1951 173 1018 2308 6570 8813 17691 5.58 0.5 205 31899 7835 36.3 19.7 1962 181 1029 2508 6581 1100 19451 557 149 33849 7601 29.1 19.1 1964 180 1208 2745 6001 1255 1279 149 33849 7601 78.5 34.3 15.9 1965 181 1299 3045 7568 1097 21.09 7.05 0.5 188 3332 35.0 39.8 20.8 1966 177 1145 3458 7.04 1194 22044 7.78 0.51 176 46624 44.4 6.7 20.3 1970 185 230 67.4 1972 28.8 6.67 18.0 40.44 972 38.4 7.78 5.1 14.0 43.4 7.8 7.8 2.25 1970 1845 </td <td></td> <td>/d</td> <td>/kg/ha</td> <td>/kg/ha</td> <td>/kg/ha</td> <td>/kg/ha</td> <td>/kg/ha</td> <td>m²/m²</td> <td>/kg/kg</td> <td>/kg(H₂O)/kg</td> <td>/kg(CO₂)/ha</td> <td>/kg(CO₂)/ha</td> <td>/cm</td> <td>/cm</td>		/d	/kg/ha	/kg/ha	/kg/ha	/kg/ha	/kg/ha	m²/m²	/kg/kg	/kg(H ₂ O)/kg	/kg(CO ₂)/ha	/kg(CO ₂)/ha	/cm	/cm
1962 181 1029 2938 6581 11082 2017 6.03 0.55 179 35491 8200 36 21.1 1964 180 1013 1430 9922 1110 1945 5.7 1.64 33829 7.60 1.81 33829 7.63 3.83 33829 9.350 3.43 159 1965 116 2586 677 1096 2.044 6.7 0.51 1.76 4.0214 9.77 8.88 1.78 1964 179 1455 3566 7.91 1.161 2.044 7.78 0.51 1.76 4.0214 9.72 3.88 1.88 1964 179 1456 356 7.94 1.80 2.041 7.5 0.52 1.71 4.366 9.64 4.32 2.04 1970 172 1300 2.91 7.74 1.80 2.91 4.14 3.16 2.12 1971 179 173 <	1961	173	1018	2308	6570	8813	17691	5.58	0.5	205	31899	7835	36.3	19.7
1963 180 1231 2430 5922 11100 1941 5.87 0.57 149 33829 7601 29.1 19.1 1964 180 1208 2745 608 1265 2218 6.49 0.57 154 38860 8785 3.3 15.2 1965 175 1116 2566 667 1096 170 15.8 3365 7.03 1.04 5.05 1.04 20.4 7.08 0.51 1.76 40214 9772 3.88 1.77 1968 179 1485 3458 7661 1162 2081 6.17 0.57 1.76 4624 8.43 3.67 2.23 1971 179 1436 3144 766 1162 2141 7.5 0.52 191 41041 9910 4.34 2.82 1971 179 1496 2244 1706 1262 2.96 7.52 0.52 191 41041 99	1962	181	1029	2508	6581	11082	20171	6.03	0.55	179	35491	8290	36	23.2
1964 180 1288 2745 6908 1286 0271 0.55 154 3880 8785 3.3 1283 1965 175 116 2586 6877 1099 2020 7.65 0.55 188 38322 9350 3.3 1283 1966 175 1158 358 730 1194 6204 7.6 0.51 176 4024 9772 3.88 17.7 1967 177 1445 348 750 1197 27.5 0.52 171 41367 9839 3.3 18.8 1970 185 2120 6764 1962 2214 7.5 0.52 197 4066 9664 43.2 2215 177 178 342 2126 677 173 3344 774 178 213 334 374 373 177 178 179 170 170 1203 <th234< th=""> <th217< th=""> <th213< th=""></th213<></th217<></th234<>	1963	180	1031	2430	5922	11100	19451	5.87	0.57	149	33829	7601	29.1	19.1
1965 181 1299 3045 7568 10967 21209 7.05 1.05 1.88 38.392 9350 39.8 20.2 1966 177 158 3536 719 11316 22044 7.78 0.51 176 40214 9772 38.8 17.7 1970 178 1363 3506 11994 22965 7.66 0.52 171 36624 8434 36.7 20.3 1970 185 1230 2116 6620 11052 2141 7.5 0.52 195 40666 9664 43.4 20.2 1971 179 1303 2101 1262 2141 7.5 0.52 195 4066 964 43.4 20.2 1971 179 1303 2401 1262 2245 6.53 167 3544 7.83 35.2 21.6 1974 174 170 363 2420 1402 1401 14	1964	180	1208	2745	6908	12565	22218	6.49	0.57	154	38860	8785	34.3	15.9
196 175 1116 268 6877 1098 2044 6.17 0.54 192 36207 8508 39.2 20.4 1967 177 1538 353 719 1136 2044 7.78 0.51 176 44214 9772 38.8 17.7 1968 179 1485 3486 650 1157 2081 6.01 0.57 176 36244 48.43 35.6 22.2 1971 179 1436 314 766 1562 2141 7.5 0.52 195 40066 9644 4.2.2 20.4 1972 178 342 2126 672 1051 180 3491 3491 33.3 20.2 1971 176 150 344 176 180 3490 35.2 21.6 1977 176 161 2428 170 1304 341 35.2 21.6 1976 180	1965	181	1299	3045	7568	10597	21209	7.05	0.5	188	38392	9350	39.8	20.8
197 173 1538 3536 7193 11316 22044 7.78 0.51 176 40214 9772 38.8 17.7 1968 179 148 3458 7501 1195 2205 7.66 0.52 171 41367 9839 30.3 18.9 1969 179 1436 2120 620 1165 2141 7.5 0.52 197 3564 7.78 37.8 22.9 1971 179 1436 314 7.66 1162 21.7 7.5 0.52 191 40.066 9664 43.2 2.0 1972 178 942 2126 624 10.61 2.0 7.52 0.52 101 40.066 9664 43.2 2.0 1974 170 160 2424 7.06 1022 1953 5.4 0.51 178 44.07 40.04 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1966	175	1116	2568	6877	10996	20440	6.17	0.54	192	36207	8508	39.2	20.4
198 179 1485 358 7504 1194 22956 7.66 0.52 171 41367 9839 39.3 18.9 1969 179 1104 2504 6520 11857 20881 6.07 0.57 176 36624 8434 36.7 20.3 1970 178 1436 314 766 1552 2141 755 0.52 195 40066 9664 4.3.2 20.4 1972 178 942 216 6724 10316 1975 170 33544 7748 37.8 21.5 1975 170 1060 2444 7106 1024 71.65 13.0 34916 8399 3.2 21.6 1975 1750 1630 3451 11.6 10.6 17.7 34348 31.3 3.7 0.7 1977 176 1528 67.6 75.8 7.7 15.6 13.3 3447 8005 3.8<	1967	177	1538	3536	7193	11316	22044	7.78	0.51	176	40214	9772	38.8	17.7
199 190 1104 2504 6520 1185 2081 6.07 0.57 176 36624 8434 36.7 20.3 1970 185 1230 2815 666 1062 2044 6.63 0.53 171 36993 8595 35.6 222 1971 172 130 2991 743 1262 2957 6.93 0.55 180 40498 921 41.4 183 1974 177 1309 2347 7540 1180 22766 7.52 0.52 191 41041 9910 43.4 208 1975 176 0460 742 1766 1002 1825 5.84 0.51 180 3491 43.9 3.5 7.6 1976 185 173 3805 7.85 9.7 1928 17.5 34348 81.31 3.7 7.7 1977 180 133 2455 7.55 155	1968	179	1485	3458	7504	11994	22956	7.66	0.52	171	41367	9839	39.3	18.9
1970 188 1230 2815 6965 11062 20842 6.63 0.53 171 36933 8595 35.6 22.2 1971 172 1436 314 726 152 2141 7.5 0.52 195 40066 9664 4.32 20.4 1972 172 1300 291 7403 1262 2957 6.33 0.55 180 40404 921 4.4.4 8.3 1974 177 139 3347 7540 1180 2276 7.52 0.52 191 41041 901 4.3.4 20.8 1975 176 160 272 236 8.17 0.51 178 4416 10064 4.0.9 17.7 1977 176 152 236 758 957 0.51 163 34547 8095 31.8 17.1 1977 180 143 3247 700 156 3454 4031	1969	179	1104	2504	6520	11857	20881	6.07	0.57	176	36624	8434	36.7	20.3
1971 179 1436 3314 726 11562 2114 7.5 0.52 195 40066 9644 43.2 20.4 1972 178 942 2126 6724 10316 19167 5.17 0.54 197 33544 748 37.8 22.5 1973 170 1300 2991 7403 12662 22957 0.52 0.52 191 41041 9910 44.4 18.3 1974 177 1060 2242 1060 2026 5.54 0.51 178 41867 10064 40.9 17.7 1975 174 177 2550 750 9687 19287 6.11 0.5 175 34348 8131 3.37 2.0 1979 180 1033 2465 788 1927 0.55 163 34547 805 3.8 16.1 1981 176 1528 3607 816 991 2117 <td>1970</td> <td>185</td> <td>1230</td> <td>2815</td> <td>6965</td> <td>11062</td> <td>20842</td> <td>6.63</td> <td>0.53</td> <td>171</td> <td>36993</td> <td>8595</td> <td>35.6</td> <td>22.2</td>	1970	185	1230	2815	6965	11062	20842	6.63	0.53	171	36993	8595	35.6	22.2
1972 178 942 2126 6724 1031 1916 5.17 0.54 197 33544 7748 37.8 22.5 1973 172 1300 2991 7403 12662 22957 6.93 0.55 180 40498 9291 41.4 18.3 1974 177 1379 3347 7540 1180 2766 7.52 0.52 191 41041 9910 43.4 20.8 1975 176 1251 2936 818 11762 2046 6.8 0.5 167 3832 9309 37.4 19.8 1977 176 1251 2930 628 1927 0.5 163 34547 8095 31.8 191 1970 180 1033 2405 738 920 18.3 163 3447 8095 31.8 181 1980 176 1380 342 702 1921 7.6 0.65	1971	179	1436	3314	7266	11562	22141	7.5	0.52	195	40066	9664	43.2	20.4
1973 172 1300 2991 7403 12562 2975 6.93 0.55 180 40498 9291 41.4 18.3 1974 177 1379 3347 7540 11880 2766 7.52 0.52 191 41041 9910 43.4 20.8 1975 176 1060 2424 716 1002 1953 5.44 0.51 178 41807 1064 40.9 17.7 176 1251 2366 8218 11251 2406 6.88 0.5 167 3832 9309 37.4 18.9 1977 176 1251 2360 6.88 0.5 163 34547 805 31.8 18.1 1970 180 133 2452 758 975 0.51 163 34547 805 31.8 18.2 1981 176 1338 362 8017 9101 2014 77.4 0.46 17.8	1972	178	942	2126	6724	10316	19167	5.17	0.54	197	33544	7748	37.8	22.5
1974 177 1379 3347 7540 1180 2276 7.52 0.52 191 41041 9910 43.4 20.8 1975 179 1660 2424 7106 1002 1953 5.84 0.51 180 34916 8399 35.2 21.6 1976 185 1573 3806 742 170 2304 8.17 0.51 175 3432 3909 37.4 19.8 1977 176 1251 2305 785 1927 0.51 175 3434 8131 33.7 20.7 1978 180 1409 3462 8061 9639 2117 7.62 0.46 178 39157 9655 37.8 16.8 1981 16 183 3427 709 109 20.51 7.36 0.5 167 39810 9644 36.8 15.4 1984 183 1317 728 10445 7.46	1973	172	1300	2991	7403	12562	22957	6.93	0.55	180	40498	9291	41.4	18.3
1975 179 1060 2424 7106 1022 1953 5.84 0.51 180 34916 8399 3.52 2.1 1976 185 1573 3806 742 1170 2304 8.17 0.51 178 41867 10064 4.09 1.7.7 1977 176 1251 2936 8218 11251 22406 6.8 0.5 167 39832 3030 3.7.4 19.8 1978 103 2055 750 963 1217 7.62 0.46 178 34547 8955 3.7.8 18.2 1980 100 1438 2462 8061 9693 2.17 7.62 0.46 178 39157 9555 3.7.8 1.8.2 1981 176 1583 3607 8032 2.044 7.36 0.5 1.65 34956 2.211 3.1.8 1.6.1 1983 180 1438 3225 633 <	1974	177	1379	3347	7540	11880	22766	7.52	0.52	191	41041	9910	43.4	20.8
1976 185 1573 3806 7482 11760 23048 8.17 0.51 178 41867 10064 40.9 17.7 1977 176 1251 2936 8218 1125 22406 6.8 0.5 167 39332 9309 37.4 19.8 1978 174 1077 2550 7050 9687 19287 6.11 0.5 175 34348 8131 33.7 20.7 1970 180 1033 2405 738 9750 19513 5.79 0.5 163 34547 8095 31.8 18.1 1980 160 4362 816 9691 2114 7.9 0.44 163 40732 10046 36.8 15.4 1981 160 1438 3247 702 1091 2.445 7.64 0.49 141 37299 9271 31.8 15.8 1984 133 301 6604 10	1975	179	1060	2424	7106	10022	19553	5.84	0.51	180	34916	8399	35.2	21.6
1977 176 1251 2936 8218 11251 22406 6.8 0.5 167 39322 9309 37.4 19.8 1978 174 1077 2550 7050 9687 19287 6.11 0.5 175 34348 8131 33.7 20.7 1979 180 1033 2405 7358 9750 19513 5.79 0.5 163 34547 8095 31.8 182 1980 1409 3462 8061 9693 2114 7.9 0.44 163 40732 10046 36 155 1982 173 1380 3247 709 1095 2051 7.36 0.5 156 37495 9271 31.8 16.5 1984 183 158 3171 722 1991 2.46 0.49 153 36622 8741 30.9 15.5 159 1984 177 1390 3207 7040	1976	185	1573	3806	7482	11760	23048	8.17	0.51	178	41867	10064	40.9	17.7
19781741077255070509687192876.110.517534348813133.720.719791801033240573589750195135.790.516334547809531.819.119801801409346280619693212177.620.4617839157985537.818.2198117615283607816969121147.90.4416340732100463615.51982173138032477709110920517.360.516637495927131.816.119841831583343270299120457.640.4915336622874130.915.9198517713483171728104420347.360.5115137924916031.515.919861771343371728104420457.180.515137680940132.516.71987177114427076604103119626.440.531513478580772.916.3198818115353016860102920467.290.515937800940132.516.71989178136236726.71383562871130.316.916.916	1977	176	1251	2936	8218	11251	22406	6.8	0.5	167	39832	9309	37.4	19.8
1979 180 1033 2405 738 9750 1951 5.79 0.5 163 34547 8095 31.8 19.1 1980 180 1409 3462 8061 9693 2117 7.62 0.46 178 39157 9855 37.8 18.2 1981 176 1528 3077 8160 9619 22114 7.9 0.44 163 40732 10046 36.8 15.4 1982 173 1380 3247 709 1105 2051 7.36 0.5 156 37495 9271 31.8 16.1 1984 183 1508 342 702 991 2045 7.4 0.49 141 3729 8927 28.8 15.8 1985 177 130 3260 7042 9877 219 7.4 0.49 153 3662 8741 30.9 15.7 1986 161 151 161	1978	174	1077	2550	7050	9687	19287	6.11	0.5	175	34348	8131	33.7	20.7
180 180 1409 3462 8061 9693 21217 7.62 0.46 178 39157 9855 37.8 18.2 1981 176 1528 3607 8816 9691 22114 7.9 0.44 163 40732 10046 36 16.5 1982 173 1380 3247 7709 1095 2051 7.36 0.5 166 37495 9271 31.8 16.1 1984 183 1508 3432 7022 991 2045 7.64 0.49 141 3729 8927 28.8 15.8 1985 178 1438 3171 722 1044 2045 7.18 0.5 151 3742 9160 31.5 15.9 1986 177 144 2707 660 1031 166 0.51 151 3740 9401 32.5 16.51 1987 178 1642 1031 166	1979	180	1033	2405	7358	9750	19513	5.79	0.5	163	34547	8095	31.8	19.1
1981 176 1528 3607 8816 9691 22114 7.9 0.44 163 40732 10046 36 16.5 1982 173 1380 3247 7709 11095 22051 7.36 0.5 167 39810 9564 36.8 15.4 1983 180 1438 3285 6836 10314 2043 7.36 0.5 156 37495 9271 31.8 16.1 1984 183 1508 3432 7022 9991 20455 7.18 0.5 151 37924 9160 31.5 159 1985 177 1390 3280 7042 9877 2019 7.46 0.49 153 36622 8741 30.9 16.5 1984 181 1555 3301 6604 1029 20460 7.29 0.5 159 37800 9401 32.5 16.7 1984 178 162 307<	1980	180	1409	3462	8061	9693	21217	7.62	0.46	178	39157	9855	37.8	18.2
1982 173 1380 3247 7709 11095 22051 7.36 0.5 167 39810 9564 36.8 15.4 1983 180 1438 3285 6836 10314 20434 7.36 0.5 156 37495 9271 31.8 16.1 1984 183 1508 3432 702 991 20455 7.64 0.49 141 37299 8927 28.8 15.8 1985 177 1390 3280 7042 9877 20199 7.46 0.49 153 36622 8741 30.9 15.9 1986 177 144 2707 6604 10315 19626 6.44 0.53 151 34785 8077 29.6 16.3 1987 177 144 2707 6604 1029 2.05 159 3780 9401 32.5 16.7 1989 178 1362 307 7040 10	1981	176	1528	3607	8816	9691	22114	7.9	0.44	163	40732	10046	36	16.5
183 180 1438 3285 6836 10314 20434 7.36 0.5 156 37495 9271 31.8 15.1 1984 183 1508 3432 7022 991 2045 7.64 0.49 141 37299 8927 28.8 15.8 1985 178 1438 3171 7228 1046 20845 7.18 0.5 151 37924 9160 31.5 159 1986 177 1390 3280 7042 9877 2019 7.46 0.49 153 36622 8741 30.9 15.1 1987 177 1144 2707 6604 10315 1962 0.51 159 37600 9401 32.5 16.7 1980 178 1362 3097 7040 1651 5.02 0.54 147 3216 7381 2.7 151 1991 180 912 258 1611 503	1982	173	1380	3247	7709	11095	22051	7.36	0.5	167	39810	9564	36.8	15.4
184 183 1508 3432 7022 991 20445 7.64 0.49 141 3729 8927 28.8 15.8 185 178 1438 3171 7228 1046 2885 7.18 0.5 151 37924 9160 31.5 15.9 186 177 1390 3280 7042 877 2019 7.46 0.49 153 36622 8741 30.9 15.9 187 177 144 2707 6604 1035 9666 7.29 0.5 159 37800 9401 32.5 16.7 188 181 1535 301 6860 1029 2046 7.30 0.51 139 37203 8776 28.7 131 198 178 1362 307 7.40 1039 132 0.51 147 32316 7381 27.2 151 1991 182 126 3172 6606 <	1983	180	1438	3285	6836	10314	20434	7.36	0.5	156	37495	9271	31.8	16.1
198517814383171722810446208457.180.515137924916031.515919861771390328070429877201997.460.4915336622874130.915.9198717711442707660410315196266.440.5315134785807729.616.3198818115353301686010299204607.290.515937800940132.516.7198917813623097704010545206827.030.5113937203877628.713119901809122059644410039185415.020.5414732316738127.215.1199118212683172666610611203897.30.5215136559867130.8153199217712522783742410712209186.510.5115837417884933.115.919931761161254371071010197616.040.5115835768883431.314.519941751622879990019896.750.5115836130875833.52019951781014236768011492660.61146320066850<	1984	183	1508	3432	7022	9991	20445	7.64	0.49	141	37299	8927	28.8	15.8
19861771390328070429877201997.460.4915336622874130.915.9198717711442707660410315196266.440.5315134785807729.616.3198818115353301680010299204007.290.515937800940132.516.7198917813623097704010545206827.030.5113937203877628.7131990180912205964441003918515.020.5414732316738127.215.1199118212683172660610611203897.30.5215136559867130.815.3199217712522783742410712209186.510.5115837417884933.115.9199317611612543710710110197616.040.5115835768883431.314.519941751072235963699211179395.730.5119332536810134.622.319951781014236768010443196115.830.5317834891835934.82.21996182123528897199990019896.750.5168 </td <td>1985</td> <td>178</td> <td>1438</td> <td>3171</td> <td>7228</td> <td>10446</td> <td>20845</td> <td>7.18</td> <td>0.5</td> <td>151</td> <td>37924</td> <td>9160</td> <td>31.5</td> <td>15.9</td>	1985	178	1438	3171	7228	10446	20845	7.18	0.5	151	37924	9160	31.5	15.9
198717711442707660410315196266.440.5315134785807729.616.3198818115353301686010299204607.290.515937800940132.516.7198917813623097704010545206827.030.5113937203877628.71319901809122059644410039185415.020.5414732316738127.215.1199118212683172660610611203897.30.5215136559867130.815.3199217712522783742410712209186.510.5115837417884933.115.919931761161254371071010197616.040.5115835768883431.314.51994175107223596369921117935.730.5115835768881431.314.51994175107223596369921117935.730.5115836130875833.520219951781014236768001043196115.830.5317434891835934.822.21996182123528897199990019896.750.5168 <td>1986</td> <td>177</td> <td>1390</td> <td>3280</td> <td>7042</td> <td>9877</td> <td>20199</td> <td>7.46</td> <td>0.49</td> <td>153</td> <td>36622</td> <td>8741</td> <td>30.9</td> <td>15.9</td>	1986	177	1390	3280	7042	9877	20199	7.46	0.49	153	36622	8741	30.9	15.9
198818115353301686010299204607.290.515937800940132.516.7198917813623097704010545206827.030.5113937203877628.71319901809122059644410039185415.020.5414732316738127.215.1199118212683172660610611203897.30.5215136559867130.815.3199217712522783742410712209186.510.5115837477884933.115.9199317611612543710710110197616.040.5115835768883431.314.519941751072235963699211179395.730.5119332536810134.622.3199517810142367680010443196115.830.5317834891835934.822.21996182123528897199990019896.750.516836130875833.520199717117884037775611877236708.320.51174436681072641.313.1199816887219185371115718834.690.61146 </td <td>1987</td> <td>177</td> <td>1144</td> <td>2707</td> <td>6604</td> <td>10315</td> <td>19626</td> <td>6.44</td> <td>0.53</td> <td>151</td> <td>34785</td> <td>8077</td> <td>29.6</td> <td>16.3</td>	1987	177	1144	2707	6604	10315	19626	6.44	0.53	151	34785	8077	29.6	16.3
198917813623097704010545206827.030.5113937203877628.71319901809122059644410039185415.020.5414732316738127.215.1199118212683172660610611203897.30.5215136559867130.815.3199217712522783742410712209186.510.5115837417884933.115.919931761161254371071010197616.040.5115835768883431.314.519941751072235963699211179395.730.5119332536810134.622.3199517810142367680010443196115.830.5317834891835934.822.21996182123528897199990019896.750.516836130875833.520199717117884037775611877236708.320.51174436681072641.313.1199816887219185371115418834.690.6114632006685027.515.81999167111125846952982719326.670.5174	1988	181	1535	3301	6860	10299	20460	7.29	0.5	159	37800	9401	32.5	16.7
19901809122059644410039185415.020.5414732316738127.215.1199118212683172660610611203897.30.5215136559867130.815.3199217712522783742410712209186.510.511583741788493.115.9199317611612543710710110197616.040.5115835768883431.314.519941751072235963699211179395.730.5119332536810134.622.3199517810142367680010443196115.830.5317834891835934.822.219961821235288971999900199896.750.516836130875833.520199717117884037775611877236708.320.51174436681072641.313.11998168872191853711157188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.5174<	1989	178	1362	3097	7040	10545	20682	7.03	0.51	139	37203	8776	28.7	13
199118212683172660610611203897.30.5215136559867130.815.3199217712522783742410712209186.510.5115837417884933.115.9199317611612543710710110197616.040.5115835768883431.314.519941751072235963699211179395.730.5119332536810134.622.3199517810142367680010443196115.830.5317834891835934.822.219961821235288971999900199896.750.516836130875833.520199717117884037775611877236708.320.51174436681072641.313.119981688721918537111574188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.420011699912265673498318815.490.5218233610808634.417.5202216610192146577910868187925.20.58133 </td <td>1990</td> <td>180</td> <td>912</td> <td>2059</td> <td>6444</td> <td>10039</td> <td>18541</td> <td>5.02</td> <td>0.54</td> <td>147</td> <td>32316</td> <td>7381</td> <td>27.2</td> <td>15.1</td>	1990	180	912	2059	6444	10039	18541	5.02	0.54	147	32316	7381	27.2	15.1
199217712522783742410712209186.510.5115837417884933.115.919931761612543710710110197616.040.5115835768883431.314.519941751072235963699211179395.730.5119332536810134.622.3199517810142367680010443196115.830.5317834891835934.822.219961821235288971999900199896.750.516836130875833.520199717117884037775611877236708.320.51174436681072641.313.119981688721918537111574188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.517436341896134.916.6200116999122656734983188815.490.5218233610808634.417.5200216610192146577910868187925.20.58133 </td <td>1991</td> <td>182</td> <td>1268</td> <td>3172</td> <td>6606</td> <td>10611</td> <td>20389</td> <td>7.3</td> <td>0.52</td> <td>151</td> <td>36559</td> <td>8671</td> <td>30.8</td> <td>15.3</td>	1991	182	1268	3172	6606	10611	20389	7.3	0.52	151	36559	8671	30.8	15.3
199317611612543710710110197616.040.5115835768883431.314.519941751072235963699211179395.730.5119332536810134.622.3199517810142367680010443196115.830.5317834891835934.822.219961821235288971999900199896.750.516836130875833.520199717117884037775611877236708.320.51174436681072641.313.119981688721918537111574188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.517436341896134.916.6200116999122656734983318815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216	1992	177	1252	2783	7424	10712	20918	6.51	0.51	158	37417	8849	33.1	15.9
19941751072235963699211179395.730.5119332536810134.622.3199517810142367680010443196115.830.5317834891835934.822.219961821235288971999900199896.750.516836130875833.520199717117884037775611877236708.320.5174436681072641.313.119981688721918537111574188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.517436341896134.916.6200116999122656734983318815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216936868878934.718.1	1993	176	1161	2543	7107	10110	19761	6.04	0.51	158	35768	8834	31.3	14.5
199517810142367680010443196115.830.5317834891835934.822.219961821235288971999900199896.750.516836130875833.520199717117884037775611877236708.320.5174436681072641.313.119981688721918537111574188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.517436341896134.916.62001169991226567349883188815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216936868878934.718.1	1994	175	1072	2359	6369	9211	17939	5.73	0.51	193	32536	8101	34.6	22.3
19961821235288971999900199896.750.516836130875833.520199717117884037775611877236708.320.5174436681072641.313.119981688721918537111574188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.517436341896134.916.62001169991226567349833188815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216936868878934.718.1	1995	178	1014	2367	6800	10443	19611	5.83	0.53	178	34891	8359	34.8	22.2
199717117884037775611877236708.320.5174436681072641.313.119981688721918537111574188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.517436341896134.916.62001169991226567349833188815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216936868878934.718.1	1996	182	1235	2889	7199	9900	19989	6.75	0.5	168	36130	8758	33.5	20
19981688721918537111574188634.690.6114632006685027.515.819991671111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.517436341896134.916.62001169991226567349883188815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216936868878934.718.1	1997	171	1788	4037	7756	11877	23670	8.32	0.5	174	43668	10726	41.3	13.1
1999167111258469529827193626.20.5117034975862232.917.4200017112202841714710033200216.670.517436341896134.916.62001169991226567349883188815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216936868878934.718.1	1998	168	872	1918	5371	11574	18863	4.69	0.61	146	32006	6850	27.5	15.8
200017112202841714710033200216.670.517436341896134.916.62001169991226567349883188815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216936868878934.718.1	1999	167	1111	2584	6952	9827	19362	6.2	0.51	170	34975	8622	32.9	17.4
2001169991226567349883188815.490.5218233610808634.417.5200216610192146577910868187925.20.5813332859751525.013.8Average17712422866704010655205616.60.5216936868878934.718.1	2000	171	1220	2841	7147	10033	20021	6.67	0.5	174	36341	8961	34.9	16.6
2002 166 1019 2146 5779 10868 18792 5.2 0.58 133 32859 7515 25.0 13.8 Average 177 1242 2866 7040 10655 20561 6.6 0.52 169 36868 8789 34.7 18.1	2001	169	991	2265	6734	9883	18881	5.49	0.52	182	33610	8086	34.4	17.5
Average 177 1242 2866 7040 10655 20561 6.6 0.52 169 36868 8789 34.7 18.1	2002	166	1019	2146	5779	10868	18792	5.2	0.58	133	32859	7515	25.0	13.8
	Average	177	1242	2866	7040	10655	20561	6.6	0.52	169	36868	8789	34.7	18.1

Potential winter whe	at production for (the s	outhern part liexiu of	f) Fenhe Irrigation District (1961-2002	り
		ομιτιστη ραιτ, σισχιά, στ		/

1961170125628517093 8722 186666.680.4718934389365635.21962176801178560459933177624.220.5617530634690131196317812342936686210179199786.820.5114135890856428.2196417812252698683412396219296.370.5713538421869629.7196517713713206735211065216237.280.5117039089943236.719661719742252640411385200415.470.571693481779013419671751546352469799774202787.740.4817837905968336196817714363428753711417223817.610.5116840482974237.5196917511442583646111593206376.220.5616636356841134.2197018113813087736310980214307.060.5116138446902634.6197117414773345728010823214487.480.519839216961942.41972176977216367339494 <th>EVSOL /cm</th>	EVSOL /cm
1962 176 801 1785 6045 9933 17762 4.22 0.56 175 30634 6901 31 1963 178 1234 2936 6862 10179 19978 6.82 0.51 141 35890 8564 28.2 1964 178 1225 2698 6834 12396 21929 6.37 0.57 135 38421 8696 29.7 1965 177 1371 3206 7352 11065 21623 7.28 0.51 170 39089 9432 36.7 1966 171 974 252 6404 11385 20041 5.47 0.57 169 34817 7901 34 1967 175 1546 3524 6979 9774 20278 7.74 0.48 178 3705 9683 36 1968 177 1436 3428 7537 11417 2338 7.62 0.51 1	15.9
1963 178 1234 2936 6862 10179 19978 6.82 0.51 141 35890 8564 28.2 1964 178 1225 2698 6834 12396 21929 6.37 0.57 135 38421 8696 29.7 1965 177 1371 3206 732 11065 21623 7.28 0.51 170 39089 9432 36.7 1966 171 974 2252 6404 11385 20041 5.47 0.57 169 34817 7901 34 1967 175 1546 3524 6979 9774 20278 7.74 0.48 178 37905 9683 36 1968 177 1436 3428 7537 11417 22381 7.61 0.51 168 36356 8411 34.2 1970 181 1381 3087 7363 10980 21430 7.66 0.51 161 38446 9026 34.6 1971 174 147 3435	24.4
1964 178 1225 2698 6834 12396 21929 6.37 0.57 135 38421 8696 29.7 1965 177 1371 3206 7352 11065 21623 7.28 0.51 170 39089 9432 36.7 1966 171 974 2252 6404 11385 20041 5.47 0.57 169 34817 7901 34 1967 175 1546 3524 6979 9774 20278 7.74 0.48 178 37905 9683 36 1968 177 1436 3428 7537 11417 22381 7.61 0.51 168 40482 9742 37.55 1969 175 1144 2583 6461 11593 20637 6.22 0.56 166 36356 8411 34.2 1970 181 1381 3087 7363 10980 21430 7.06 0.51 161 38446 9026 34.6 1971 174 1477 3345 7280 10823 21430 7.66 0.55 198 39216 9619 42.4 1972 176 977 2163 6733 9494 18389 5.26 0.55 172 39359 9071 38.5 1974 173 1432 3363 8013 10828 2204 7.5 0.49 191 40514 9959 42.4 <	16.7
1965 177 1371 3206 7352 11065 21623 7.28 0.51 170 39089 9432 36.7 1966 171 974 2252 6404 11385 20041 5.47 0.57 169 34817 7901 34 1967 175 1546 3524 6979 9774 20278 7.74 0.48 178 37905 9683 36 1968 177 1436 3428 7537 11417 22381 7.61 0.51 168 40482 9742 37.5 1969 175 1144 2583 6461 11593 20637 6.22 0.56 166 36356 8411 34.2 1970 181 1381 3087 7363 10980 21430 7.06 0.51 161 38446 9026 34.6 1971 174 1477 3345 7280 10823 2148 7.48 0.55 172 39359 9071 38.5 1971 176 977 2163	12.5
1966 171 974 2252 6404 11385 20041 5.47 0.57 169 34817 7901 34 1967 175 1546 3524 6979 9774 20278 7.74 0.48 178 37905 9683 36 1968 177 1436 3428 7537 11417 22381 7.61 0.51 168 40482 9742 37.5 1969 175 1144 2583 6461 11593 20637 6.22 0.56 166 36356 8411 34.2 1970 181 1381 3087 7363 10980 21430 7.06 0.51 161 38446 9026 34.6 1971 174 1477 3345 7280 10823 21430 7.06 0.51 161 38446 9026 34.6 1971 176 977 2163 6733 9494 18389 5.26 0.52 190 32903 8024 34.9 1973 169 1226 2824	16.5
1967 175 1546 3524 6979 9774 20278 7.74 0.48 178 37905 9683 36 1968 177 1436 3428 7537 11417 22381 7.61 0.51 168 40482 9742 37.5 1969 175 1144 2583 6461 11593 20637 6.22 0.56 166 36356 8411 34.2 1970 181 1381 3087 7363 10980 21430 7.06 0.51 161 38446 9026 34.6 1971 174 1477 3345 7280 10823 21448 7.48 0.5 198 39216 9619 42.4 1972 176 977 2163 6733 9494 18389 5.26 0.52 190 32903 8024 34.9 1973 169 1226 2824 7218 12294 2237 6.68 0.55 172 39359 9071 38.5 1974 173 1432 336	19
1968 177 1436 3428 7537 11417 22381 7.61 0.51 168 40482 9742 37.5 1969 175 1144 2583 6461 11593 20637 6.22 0.56 166 36356 8411 34.2 1970 181 1381 3087 7363 10980 21430 7.06 0.51 161 38446 9026 34.6 1971 174 1477 3345 7280 10823 21448 7.48 0.5 198 39216 9619 42.4 1972 176 977 2163 6733 9494 18389 5.26 0.52 190 32903 8024 34.9 1973 169 1226 2824 7218 12294 22337 6.68 0.55 172 39359 9071 38.5 1974 173 1432 3363 8013 10828 2204 7.5 0.49 191 40514 9959 42.4 1975 175 1057 2	15.2
1969 175 1144 2583 6461 11593 20637 6.22 0.56 166 36356 8411 34.2 1970 181 1381 3087 7363 10980 21430 7.06 0.51 161 38446 9026 34.6 1971 174 1477 3345 7280 10823 2148 7.48 0.5 198 39216 9619 42.4 1972 176 977 2163 6733 9494 18389 5.26 0.52 190 32903 8024 34.9 1973 169 1226 2824 7218 12294 22337 6.68 0.55 172 39359 9071 38.5 1974 173 1432 3363 8013 10828 2204 7.5 0.49 191 40514 9959 42.4 1975 175 1057 2415 7079 9516 1901 5.83 0.5 161 40082 9794 35.5 1976 182 1384 3396<	18.7
1970 181 1381 3087 7363 10980 21430 7.06 0.51 161 38446 9026 34.6 1971 174 1477 3345 7280 10823 21448 7.48 0.5 198 39216 9619 42.4 1972 176 977 2163 6733 9494 18389 5.26 0.52 190 32903 8024 34.9 1973 169 1226 2824 7218 12294 22337 6.68 0.55 172 39359 9071 38.5 1974 173 1432 3363 8013 10828 2204 7.5 0.49 191 40514 9959 42.4 1975 175 1057 2415 7079 9516 19010 5.83 0.5 162 34190 8359 30.8 1976 175 1057 2415 7079 9516 19010 5.83 0.5 161 40082 9794 35.5 1976 182 1384 3396<	17.2
1971 174 1477 3345 7280 10823 21448 7.48 0.5 198 39216 9619 42.4 1972 176 977 2163 673 9494 18389 5.26 0.52 190 32903 8024 34.9 1973 169 1226 2824 7218 12294 22337 6.68 0.55 172 39359 9071 38.5 1974 173 1432 3363 8013 10828 2204 7.5 0.49 191 40514 9959 42.4 1975 175 1057 2415 7079 9516 19010 5.83 0.5 162 34190 8359 30.8 1976 182 1384 3396 7599 11081 22077 7.58 0.5 161 40082 9794 35.5 1977 170 1244 2849 8005 11407 22261 6.63 0.51 143 39469 9167 31.9 1978 171 1240 2896<	19.8
1972 176 977 2163 6733 9494 18389 5.26 0.52 190 32903 8024 34.9 1973 169 1226 2824 7218 12294 22337 6.68 0.55 172 39359 9071 38.5 1974 173 1432 3363 8013 10828 2204 7.5 0.49 191 40514 9959 42.4 1975 175 1057 2415 7079 9516 1901 5.83 0.5 162 34190 8359 30.8 1976 182 1384 3396 7599 11081 22077 7.58 0.5 161 40082 9794 35.5 1977 170 1244 2849 8005 11407 22261 6.63 0.51 143 39469 9167 31.9 1978 171 1240 2896 7514 9633 20043 6.76 0.48 164 36256 8778 32.9 1979 177 973 2179 </td <td>17.7</td>	17.7
1973 169 1226 2824 7218 12294 22337 6.68 0.55 172 39359 9071 38.5 1974 173 1432 3363 8013 10828 2204 7.5 0.49 191 40514 9959 42.4 1975 175 1057 2415 7079 9516 19010 5.83 0.5 162 34190 8359 30.8 1976 182 1384 3396 7599 11081 22077 7.58 0.5 161 40082 9794 35.5 1977 170 1244 2849 8005 11407 22261 6.63 0.51 143 39469 9167 31.9 1978 171 1240 2896 7514 9633 20043 6.76 0.48 164 36256 8778 32.9 1979 177 973 2179 724 9939 19362 5.24 0.51 147 33948 7805 28.4 1980 176 1410 2485<	19.4
1974 173 1432 3363 8013 10828 2204 7.5 0.49 191 40514 9959 42.4 1975 175 1057 2415 7079 9516 19010 5.83 0.5 162 34190 8359 30.8 1976 182 1384 3396 7599 11081 22077 7.58 0.5 161 40082 9794 35.5 1977 170 1244 2849 8005 11407 22261 6.63 0.51 143 39469 9167 31.9 1978 171 1240 2896 7514 9633 20043 6.76 0.48 164 36256 8778 32.9 1979 177 973 2179 724 9939 19362 5.24 0.51 147 33948 7805 28.4 1980 176 1410 2485 8407 0241 21232 7.68 0.44 162 20016 2612 2142	17.3
1975 175 1057 2415 7079 9516 19010 5.83 0.5 162 34190 8359 30.8 1976 182 1384 3396 7599 11081 22077 7.58 0.5 161 40082 9794 35.5 1977 170 1244 2849 8005 11407 22261 6.63 0.51 143 39469 9167 31.9 1978 171 1240 2896 7514 9633 20043 6.76 0.48 164 36256 8778 32.9 1979 177 973 2179 724 9939 19362 5.24 0.51 147 33948 7805 28.4 1980 176 1410 2485 8407 0241 21232 7.68 0.44 162 20016 2641 2142	18
1976 182 1384 3396 7599 11081 22077 7.58 0.5 161 40082 9794 35.5 1977 170 1244 2849 8005 11407 22261 6.63 0.51 143 39469 9167 31.9 1978 171 1240 2896 7514 9633 20043 6.76 0.48 164 36256 8778 32.9 1979 177 973 2179 7244 9939 19362 5.24 0.51 147 33948 7805 28.4 1980 176 1410 2485 8407 0241 21223 7.68 0.44 162 20016 0241 2123	19.5
1977 170 1244 2849 8005 11407 22261 6.63 0.51 143 39469 9167 31.9 1978 171 1240 2896 7514 9633 20043 6.76 0.48 164 36256 8778 32.9 1979 177 973 2179 7244 9939 19362 5.24 0.51 147 33948 7805 28.4 1980 176 1410 2485 8407 0241 21232 7.68 0.44 162 20016 0.612 2142	16.6
1978 171 1240 2896 7514 9633 20043 6.76 0.48 164 36256 8778 32.9 1979 177 973 2179 7244 9939 19362 5.24 0.51 147 33948 7805 28.4 1980 176 1410 2485 8407 0241 21232 7.68 0.44 162 20016 0.642 2142	16.6
1979 177 973 2179 7244 9939 19362 5.24 0.51 147 33948 7805 28.4 1980 176 1410 2485 8407 0241 21222 7.68 0.44 162 20016 054.2 24.2	18.2
	19.4
1300 170 1413 3403 0407 3341 21233 7.08 0.44 102 33010 9642 34.3	15.5
1981 171 1281 3033 7682 10088 20803 7.08 0.48 165 37603 9083 34.3	15.9
1982 170 1324 3143 7393 10282 20819 7.21 0.49 166 37916 9333 34.5	14.2
1983 178 1539 3439 7280 10168 20888 7.54 0.49 147 38731 9733 30.8	14.6
1984 179 1436 3242 7005 9622 19869 7.33 0.48 136 36262 8734 26.9	14.4
1985 175 1276 2948 6752 10547 20247 6.93 0.52 154 36448 8733 31.3	15.6
1986 175 1575 3683 7300 10119 21103 7.94 0.48 150 38671 9326 31.6	16.1
1987 171 864 1967 6041 10037 18044 4.72 0.56 145 30930 6735 26.2	19.2
1988 178 1523 3371 6673 10060 20104 7.34 0.5 162 37352 9427 32.5	17.2
1989 176 1312 3036 6936 10502 20474 6.93 0.51 156 36542 8464 31.9	14.2
1990 180 955 2151 6709 9966 18826 5.26 0.53 172 33295 7905 32.5	16.6
1991 179 1033 2522 6844 10082 19448 6.06 0.52 150 34336 8005 29.2	16.6
1992 177 1323 3001 7538 11458 21997 6.92 0.52 151 39420 9366 33.3	15.9
1993 172 1042 2237 6300 10723 19260 5.4 0.56 175 34094 8069 33.8	17.5
1994 174 1013 2242 6333 10297 18873 5.47 0.55 183 33360 7857 34.5	23.7
1995 176 1073 2565 7132 10371 20068 6.17 0.52 188 35841 8644 37.8	22.8
1996 182 1193 2802 7547 9658 20007 6.56 0.48 180 36142 8782 36	21.7
1997 171 1710 3916 7780 12438 24133 8.18 0.52 185 43963 10563 44.5	14.6
1998 170 929 2054 5662 12137 19853 5.04 0.61 162 33887 7367 32.2	18.9
1999 167 1076 2523 7180 9970 19673 6.08 0.51 175 35283 8576 34.3	18.8
2000 170 1183 2817 7263 9869 19949 6.65 0.49 188 36118 8873 37.5	16.9
2001 167 1114 2546 7215 9998 19759 6.1 0.51 175 35552 8677 34.5	17.7
2002 166 1006 2293 6725 10251 19270 5.55 0.53 150 33981 7946 28.8	15.4
Average 174 1228 2828 7079 10487 20394 6.54 0.51 166 36598 8748 33.8	17.4

Potential spring maize production for (the northern part, Taiyuan, of) Fenhe Irrigation District (1961-2002)

YEAR	DUR /d	TWRT /kg/ha	TWLV /kg/ha	TWST /kg/ha	TWSO /kg/ha	TAGP /kg/ha	LAIM m²/m²	HINDEX /kg/kg	TRC /kg(H ₂ O)/kg	GASST /kg(CO ₂)/ha	MREST /kg(CO ₂)/ha	TRANSP /cm	EVSOL /cm
1961	100	2056	3564	7501	13391	24456	6.42	0.55	129	43883	9824	31.5	14.2
1962	106	2723	4658	8608	15039	28305	7.43	0.53	127	51588	11435	36	12.9
1963	106	2525	4349	9097	13374	26820	7.05	0.5	126	49252	11186	33.9	11.8
1964	112	3063	5014	8446	14173	27634	7.79	0.51	131	52136	12144	36.1	12.1
1965	107	3035	5100	9570	16821	31491	7.78	0.53	136	57438	12790	42.7	13.8
1966	109	2658	4508	8639	14633	27780	7.29	0.53	130	50761	11378	36	13.6
1967	103	2863	4677	9121	11702	25499	7.52	0.46	140	49185	11746	35.6	13.2
1968	108	3298	5508	10228	15556	31291	8.14	0.5	130	58549	13481	40.8	12.8
1969	110	3236	5251	10257	16053	31561	7.91	0.51	122	58407	13127	38.5	13.1
1970	110	2751	4770	10127	14608	29504	7.46	0.5	130	53919	12064	38.3	13.8
1971	106	2837	4755	9296	14009	28060	7.44	0.5	130	52248	12079	36.4	14.6
1972	106	2529	4318	8275	14230	26823	7	0.53	144	49157	11212	38.8	14.9
1973	109	2605	4536	9153	13763	27452	7.13	0.5	128	50576	11565	35	13.3
1974	106	3011	5139	10111	15445	30696	7.68	0.5	130	56572	12791	39.8	13.4
1975	104	2524	4252	8710	13831	26793	6.87	0.52	137	49378	11445	36.8	14.6
1976	113	2854	4882	9400	13529	27811	7.55	0.49	127	51491	11516	35.4	13
1977	110	2504	4229	8483	13449	26160	6.9	0.51	121	47951	10827	31.7	13
1978	105	2216	3966	8573	13317	25857	6.75	0.52	124	46653	10398	32.1	13
1979	109	2305	4085	8825	13651	26561	6.79	0.51	122	47879	10587	32.4	13.2
1980	106	2527	4460	9390	16505	30355	7.07	0.54	142	53848	11563	43.1	13.5
1981	105	2214	3888	7845	13167	24901	6.69	0.53	123	45113	10113	30.6	12.3
1982	109	2573	4478	9629	12646	26753	7.15	0.47	121	49329	11141	32.3	11.1
1983	110	2255	3958	8668	14769	27395	6.71	0.54	114	48664	10550	31.2	11.8
1984	112	2168	3866	8108	16094	28068	6.62	0.57	112	48834	10177	31.5	11.3
1985	107	2467	4247	8721	14511	27480	6.92	0.53	112	49734	11079	30.7	11.4
1986	109	2368	4233	9025	16611	29869	6.97	0.56	112	52342	11004	33.4	11.2
1987	110	2243	4092	9242	16261	29596	6.87	0.55	112	51736	10929	33.1	12
1988	110	2370	4109	8101	12050	24260	6.82	0.5	115	44675	10064	27.8	11.2
1989	111	2223	3750	7616	13966	25333	6.46	0.55	113	45420	10000	28.6	11.4
1990	108	2347	4011	8148	14483	26642	6.77	0.54	120	48082	10764	32	12.4
1991	105	2131	3750	7903	13177	24831	6.55	0.53	129	44944	10199	31.9	12
1992	107	2513	4373	9012	13169	26553	7.06	0.5	129	49093	11357	34.2	12.3
1993	114	2208	3954	8441	16075	28469	6.65	0.56	108	49709	10441	30.7	11.7
1994	100	1822	3388	7473	15287	26147	6.22	0.58	120	45180	9564	31.4	14.8
1995	106	2403	4158	8087	12424	24670	6.84	0.5	135	45805	10650	33.3	12.9
1996	109	2296	4009	8578	11950	24537	6.72	0.49	123	45277	10428	30.2	12.5
1997	99	2529	4253	8679	12472	25404	6.94	0.49	148	47859	11543	37.7	14.6
1998	102	2277	3956	7477	13403	24836	6.76	0.54	130	45421	10428	32.4	12.8
1999	99	2076	3741	8167	13991	25900	6.55	0.54	123	46363	10416	31.8	13.2
2000	101	2016	3575	8045	12380	24000	6.4	0.52	123	43442	9891	29.4	12.9
2001	99	2084	3717	7775	14294	25785	6.58	0.55	147	45950	10191	37.8	13.8
2002	103	1953	3550	8045	14844	26438	6.38	0.56	103	46385	10090	27.2	11.8
Average	107	2468	4264	8681	14169	27114	6.99	0.52	126	49291	11052	34.1	12.8

Potential spring maize	nraduction for (the sou	ithern nart lieviu of E	onho Irrigation District/1961_2002	
i otontiai spring maize		πητιτή ραιτ, στολία, στη τ		

YEAR	DUR /d	TWRT /kg/ha	TWLV /kg/ha	TWST /kg/ha	TWSO /kg/ha	TAGP /kg/ha	LAIM m²/m²	HINDEX /kg/kg	TRC /kg(H ₂ O)/kg	GASST /kg(CO ₂)/ha	MREST /kg(CO ₂)/ha	TRANSP /cm	EVSOL /cm
1961	98	1971	3386	7586	12635	23607	6.15	0.54	117	42424	9678	27.6	12.9
1962	104	2571	4391	8054	14737	27182	7.14	0.54	117	49267	11010	31.9	12.5
1963	103	2444	4187	8891	12827	25905	6.92	0.5	119	47533	10916	30.8	10.9
1964	110	2934	4867	8128	14133	27128	7.6	0.52	115	50740	11821	31.2	11
1965	103	2732	4643	9000	16506	30149	7.31	0.55	118	54091	11907	35.7	12.6
1966	105	2418	4144	8121	14449	26715	6.93	0.54	118	48023	10623	31.4	12.4
1967	99	2543	4403	8863	11571	24836	7.06	0.47	129	46670	11072	32	13.6
1968	106	3093	5203	9870	15676	30749	7.94	0.51	118	56718	12964	36.4	11.9
1969	103	2933	4843	9359	14844	29045	7.57	0.51	123	53467	12153	35.8	13.2
1970	108	2749	4747	9939	13647	28332	7.44	0.48	126	52313	12050	35.8	12.5
1971	105	2650	4395	9015	13785	27195	7.17	0.51	121	50300	11781	32.9	13.5
1972	101	2231	3866	7806	13757	25429	6.63	0.54	134	45815	10340	34.2	14
1973	104	2275	4035	8566	13598	26199	6.82	0.52	125	47355	10742	32.7	13
1974	102	2855	4891	9624	14882	29397	7.49	0.51	128	54013	12340	37.6	13.8
1975	101	2206	3819	8226	13936	25981	6.61	0.54	120	46758	10636	31.1	13.2
1976	108	2697	4626	8812	12501	25939	7.33	0.48	123	48356	11167	31.8	11.7
1977	106	2212	3773	8028	13247	25048	6.56	0.53	109	44957	9963	27.3	12
1978	101	2011	3644	7757	13260	24661	6.48	0.54	117	43781	9615	28.9	12
1979	108	2202	3886	8473	13649	26007	6.68	0.52	113	46435	10226	29.5	11.5
1980	105	2377	4229	9218	16297	29744	6.93	0.55	132	52360	11294	39.3	12.4
1981	103	1953	3536	7741	12852	24129	6.38	0.53	116	42983	9568	27.9	12.6
1982	105	2343	4105	8888	12454	25447	6.81	0.49	118	46306	10402	30.1	11.1
1983	106	2137	3747	8122	14299	26168	6.57	0.55	112	46285	10088	29.3	11.3
1984	111	2022	3653	7933	16136	27722	6.46	0.58	100	47635	9854	27.6	11
1985	103	2245	3905	8249	13920	26075	6.67	0.53	117	46818	10493	30.4	11.9
1986	107	2231	4009	8735	16012	28756	6.78	0.56	111	50206	10660	31.9	11
1987	104	2079	3762	8536	14745	27044	6.6	0.55	113	47454	10254	30.6	11.3
1988	107	2308	4013	7968	11554	23535	6.78	0.49	113	43329	9872	26.6	11
1989	111	2119	3737	7320	14340	25396	6.52	0.56	120	44954	9799	30.5	12.3
1990	104	2134	3686	7500	14178	25364	6.52	0.56	128	45228	10086	32.4	14.3
1991	103	2034	3567	7472	13246	24286	6.37	0.55	132	43435	9746	32.1	11.9
1992	106	2452	4213	8726	13000	25940	6.9	0.5	132	47847	11189	34.2	12.3
1993	112	2100	3790	8128	15880	27799	6.55	0.57	115	48163	10097	32	13.2
1994	102	1784	3268	7576	15618	26463	6.09	0.59	121	45205	9442	32.1	15.2
1995	104	2333	4007	7515	12363	23885	6.74	0.52	147	44000	10164	35	13.4
1996	109	2303	3878	8246	11876	24001	6.6	0.49	135	44161	10186	32.4	13.2
1997	98	2491	4194	8451	12856	25502	6.91	0.5	163	47400	11245	41.5	15.7
1998	100	2194	3802	7357	12823	23982	6.62	0.53	145	43796	10153	34.7	14.3
1999	98	1967	3574	8077	13599	25251	6.41	0.54	139	44974	10167	35	15.5
2000	100	1935	3398	7673	12006	23077	6.24	0.52	133	41672	9577	30.7	14.3
2001	96	1949	3448	7208	13691	24347	6.32	0.56	133	43257	9704	32.5	14.1
2002	100	1923	3473	7602	14247	25321	6.29	0.56	117	44642	9924	29.6	13.1
Average	104	2313	4018	8294	13848	26160	6.8	0.53	123	47170	10594	32.2	12.7

Potential sunflower production for (the northern part, Taiyuan, of) Fenhe Irrigation District (1961-2002)

YEAR	DUR /d	TWRT /kg/ha	TWLV /kg/ha	TWST /kg/ha	TWSO /kg/ha	TAGP /kg/ha	LAIM m²/m²	HINDEX /kg/kg	TRC /kg(H ₂ O)/kg	GASST /kg(CO ₂)/ha	MREST /kg(CO ₂)/ha	TRANSP /cm	EVSOL /cm
1001	0.4	2070	0000	2225	6105	11700	6.60	0.52	064	20460	7000	21	5.0
1961	94	3278	2203	3335	6185	11723	6.69	0.53	264	30468	7066	31	5.8
1962	99	3236	2153	3510	6077	10407	6.38	0.52	245	30257	6923	28.8	5.8
1963	95	3501	2210	3338	4943	11205	6.69	0.47	272	28419	6944	28.0	б.I Г.О
1964	100	3330	2200	3434	5595	11285	6.69	0.5	248	29351	0/20	28	5.8
1965	97	3830	2512	3922	6554	12988	6.95	0.5	286	33956	7852	37.2	7.1 C.F
1966	100	3219	2167	3002	5246	12456	6.54	0.54	250	31647	7060	31.2	0.0
1967	100	3331	2144	3255	5346	10744	6.44	0.5	201	28307	0013	28	0.2
1968	98	3779	2446	3974	5893	12313	6.9	0.48	270	32593	7776	33.3	6.7
1969	102	3571	2342	3/10	6544	12596	6.83	0.52	248	32721	7530	31.2	5.9
1970	101	3846	2370	3627	6133	12130	6.73	0.51	291	32387	7645	35.3	6./
19/1	98	3460	2334	3498	6305	12137	6.81	0.52	261	31513	/230	31.6	5.6
1972	100	3281	2170	3430	6921	12521	6.48	0.55	292	31974	7137	36.6	7.1
1973	100	3881	2489	3653	5305	11447	6.98	0.46	264	30731	7248	30.2	5.4
1974	101	3743	2386	3718	6811	12915	6.87	0.53	257	33810	7825	33.2	5.9
1975	93	3413	2262	3558	5301	11121	6.62	0.48	275	29751	7366	30.6	6.2
1976	106	3540	2275	3483	6327	12084	6.52	0.52	235	31384	7051	28.4	6.1
1977	97	3040	1916	3228	6140	11284	5.91	0.54	247	29070	6618	27.9	6
1978	97	3438	2248	3407	5567	11222	6.69	0.5	248	29436	6772	27.9	5.9
1979	104	3421	2225	3344	6701	12270	6.6	0.55	243	31613	7032	29.8	5.2
1980	101	3940	2645	4069	6588	13302	7.29	0.5	304	34524	7817	40.4	5.9
1981	95	3393	2170	3324	5578	11071	6.45	0.5	258	29298	6901	28.5	5.5
1982	104	3581	2260	3492	6220	11972	6.45	0.52	235	31135	6945	28.1	5.6
1983	98	3455	2259	3555	5952	11765	6.59	0.51	235	30755	7138	27.6	5.7
1984	103	3444	2269	3676	6583	12528	6.69	0.53	242	32281	7342	30.3	5.2
1985	102	3520	2317	3583	5888	11789	6.66	0.5	224	30703	6992	26.4	5.2
1986	101	3893	2532	3850	6821	13203	7.06	0.52	241	34569	7944	31.8	5.7
1987	98	3970	2516	3889	6466	12871	6.86	0.5	252	34118	8024	32.5	5.4
1988	99	3103	1970	2854	5965	10789	6.13	0.55	221	28163	6411	23.9	5.4
1989	99	3231	2118	3351	6047	11516	6.33	0.53	223	29841	6844	25.7	5.5
1990	95	3486	2313	3696	5642	11652	6.78	0.48	254	30791	7417	29.6	5.4
1991	91	3460	2339	3552	5325	11215	6.85	0.47	274	29982	7396	30.7	6
1992	100	3573	2314	3469	5930	11712	6.77	0.51	249	30994	7304	29.1	6.1
1993	107	3755	2403	3774	6750	12927	6.7	0.52	220	33671	7676	28.5	5
1994	93	3487	2314	3626	6285	12225	6.77	0.51	257	32057	7613	31.4	5.8
1995	97	3286	2081	3198	5516	10795	6.25	0.51	261	28550	6716	28.2	6.8
1996	97	3187	1971	3233	5624	10827	5.95	0.52	240	28683	6885	26	6.2
1997	87	3305	2145	3303	5222	10671	6.43	0.49	317	29000	7434	33.8	6.6
1998	87	3287	2198	3410	5391	10999	6.57	0.49	274	29254	7181	30.1	6
1999	88	3321	2178	3493	5391	11062	6.55	0.49	262	29746	7533	29	5.7
2000	93	3284	2152	3267	5967	11386	6.55	0.52	249	30096	7248	28.4	5.4
2001	91	3272	2238	3471	5605	11314	6.7	0.5	298	29699	7116	33.8	7.4
2002	93	3599	2336	3709	5372	11418	6.72	0.47	223	30611	7521	25.4	5.1
Average	98	3476	2266	3520	5988	11773	6.63	0.51	256	30904	7234	30.2	5.9

Potential sunflower production fo	r (the southern part _ liexiu	of) Fenhe Irrigation District (1961-2002)

YEAR	DUR /d	TWRT /kg/ha	TWLV /kg/ha	TWST /kg/ha	TWSO /kg/ha	TAGP /kg/ha	LAIM m²/m²	HINDEX /kg/kg	TRC /kg(H ₂ O)/kg	GASST /kg(CO ₂)/ha	MREST /kg(CO ₂)/ha	TRANSP /cm	EVSOL /cm
1961	90	3205	2150	3159	5994	11302	6.64	0.53	243	29579	6952	27.5	5.4
1962	96	3080	2069	3412	6139	11620	6.24	0.53	235	29759	6783	27.3	5.7
1963	93	3474	2201	3273	4652	10126	6.69	0.46	258	27764	6969	26.1	5.9
1964	98	3284	2227	3450	5373	11050	6.62	0.49	223	28857	6724	24.7	5.4
1965	94	3589	2373	3703	6600	12675	6.75	0.52	259	32898	7550	32.9	6.4
1966	97	3124	2096	3434	6696	12227	6.41	0.55	228	31043	6924	27.9	6.1
1967	99	3286	2118	3242	5192	10552	6.38	0.49	242	27967	6608	25.6	6.1
1968	96	3677	2387	3874	5848	12108	6.84	0.48	247	32021	7651	29.9	6.4
1969	93	3364	2215	3449	6167	11831	6.67	0.52	253	31011	7340	29.9	6.1
1970	95	3727	2293	3442	5788	11523	6.69	0.5	275	31055	7476	31.7	6.1
1971	95	3310	2254	3463	6076	11794	6.73	0.52	246	30701	7197	29	5.7
1972	95	3194	2090	3246	6490	11826	6.32	0.55	277	30508	6948	32.8	6.6
1973	94	3676	2377	3576	5115	11068	6.85	0.46	268	29691	7101	29.7	5.4
1974	96	3608	2315	3560	6431	12306	6.77	0.52	259	32393	7610	31.9	5.8
1975	92	3302	2210	3447	5377	11033	6.57	0.49	246	29352	7215	27.1	5.8
1976	98	3311	2110	3263	5935	11308	6.34	0.52	225	29469	6703	25.4	6.1
1977	96	2987	1887	3035	6170	11092	6.04	0.56	225	28704	6590	25	5.7
1978	94	3197	2109	3189	5499	10797	6.52	0.51	238	28164	6459	25.7	6.1
1979	102	3343	2172	3384	6468	12024	6.48	0.54	222	31065	7030	26.7	5.3
1980	98	3834	2605	3938	6458	13001	7.27	0.5	287	33796	7716	37.3	5.6
1981	93	3363	2144	3317	5444	10905	6.43	0.5	237	28969	6902	25.9	5.4
1982	102	3426	2153	3432	6057	11642	6.26	0.52	226	30305	6856	26.3	6
1983	93	3253	2131	3394	5644	11169	6.36	0.51	236	29166	6793	26.3	5.8
1984	102	3411	2261	3687	6494	12442	6.67	0.52	214	32033	7297	26.7	5
1985	98	3294	2193	3505	5564	11262	6.63	0.49	228	29357	6828	25.6	6
1986	96	3747	2470	3716	6326	12512	6.95	0.51	248	32945	7727	31	5.8
1987	92	3676	2308	3657	5938	11902	6.67	0.5	252	31777	7666	30	6.1
1988	95	3034	1921	2709	5741	10371	6.05	0.55	224	27189	6216	23.3	5.3
1989	98	3179	2109	3388	5931	11428	6.29	0.52	245	29545	6790	28	5.8
1990	91	3278	2215	3527	5562	11303	6.65	0.49	264	29713	7151	29.9	6
1991	89	3304	2260	3510	5302	11072	6.73	0.48	276	29342	7179	30.5	6.9
1992	97	3402	2225	3376	5877	11478	6.63	0.51	261	30261	7157	30	6.4
1993	104	3631	2334	3689	6651	12674	6.58	0.52	228	32898	7472	28.8	5.8
1994	93	3403	2290	3591	6607	12488	6.78	0.53	268	32262	7433	33.5	6.3
1995	97	3162	2026	3250	5507	10782	6.2	0.51	278	28348	6700	30	7.6
1996	96	3064	1908	3165	5676	10748	5.83	0.53	272	28277	6739	29.3	7
1997	87	3283	2142	3307	5301	10750	6.43	0.49	354	29032	7352	38.1	7.4
1998	85	3202	2157	3390	5214	10761	6.53	0.48	299	28742	7192	32.2	6.6
1999	87	3279	2150	3481	5236	10867	6.49	0.48	302	29335	7516	32.8	6.5
2000	91	3061	2044	3093	6175	11312	6.42	0.55	267	29468	6947	30.2	6
2001	90	2971	2086	3377	5698	11161	6.42	0.51	247	28830	6835	27.6	7.7
2002	91	3299	2161	3636	5286	11082	6.4	0.48	255	29477	7301	28.3	5.9
Average	95	3340	2189	3422	5850	11461	6.53	0.51	253	30073	7086	29.0	6.1