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3 Regressiort 

C.J.F. ter Braak and C.W.N. Looman 

3.1 Introduction 

3.1.1 Aim and use 

Regression analysis is a statistical method that can be used to explore relations 
between species and environment, on the basis of observations on species and 
environmental variables at a series of sites. Species may be recorded in the form 
of. abundances, or merely as being present. In contrast with ordination and cluster 
analysis, we cannot analyse data on all species simultaneously; in regression analysis, 
we must analyse data on each species separately. Each regression focuses on a 
particular species and on how this particular species is related to environmental 
variables. In the terminology of regr<:ssion analysis, the species abundance or 
presence is the response vari'able and the environmental variables are explanatory 
variables. The term 'response variable' stems from the idea that the species react 
or respond to the environmental variables in a causal way; however, causality 
cannot be inferred from a regression analysis. The goal of regression analysis 
is more modest, namely to describe the response variable as a function of one 
or more explanatory variables. This function, termed the response function, usually 
cannot be chosen such that the function predicts responses without errors. By 
using regression analysis, we attempt to make the errors small and to average 
them to zero. The value predicted by the response function is then the expected 
response: the response with the error averaged out. 

Regression analysis is well suited for what Whittaker (1967) termed 'direct 
gradient analysis'. In ecology, regression analysis has been used mainly for the 
following: 

- estimating parameters of ecological interest, for example the optimum and 
ecological amplitude of a species 

- assessing which environmental variables contribute most to the species' response 
and which environmental variables appear to be unimportant. Such assessment 
proceeds through tests of statistical significance 

- predicting the species' responses (abundance or presence-absence) at sites from 
the observed values of one or more environmental variables 

- predicting the values of environmental variables at sites from observed values 
of one or more species. Such prediction is termed calibration and is treated 
separately in Chapter 4. 
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3.1.2 Response model and types of response variables 

Regressi?n analysis is ba~ed on a response model that consists of two parts: 
a systematic part that ~escnbes the way in which the expected response depends 
on the explanatory vanables; and an error part that describes the way in which 
the observed response deviates from the expected response. 

The s~stematic part ~s ~peci~ed. by a regression equation. The error part can 
be de~cnb~d by the statistical d1stnbution of the error. For example, when fitting 
a straight !me to data, the response model (Figure 3.1) is 

y = b0 + b 1 x + c 

with 
y the response variable 
x the explanatory variable 
c the error 

Equation 3.1 

bo and b 1 fi~ed but unknown coefficients; they are the intercept and slope parameter 
respectiVely. ' 

The expected res~onse, denot~d b~ Ey, is equal to b
0 

+ b
1 

x. The systematic 
part of the model1s thus a stra1ght !me and is specified by the regression equation 

Ey = b0 + b 1 x. 

The error part is the distribution of c, i.e. the random variation of the observed 
respons.e around the e~pected response. The aim of regression analysis can now 
be ~pec1fi7d more prec1sely. The aim is to estimate the systematic part from data 
while takmg. accou~t o!' the err?r part of the model. In fitting a straight line, 
the systematic part IS s1mply estimated by estimating the parameters b and b 

In the most common type of regression analysis, least-squares regres~ion, th~ 

y 

Ey at X=2 

-x 

Figure 3.1 Response model used in fitting a straight line to data points (•) by least 
squares regression. For explanation see Subsection 3.1.2. 
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distribution of the error is assumed to be the normal distribution (Subsection 
2.4.3). Abundance values of a species commonly show a skew distribution that 
looks like a log-normal distribution (Subsection 2.4.3), with many small to moderate 
values and a few extremely large values. Abundance values often show this type 
of distribution even among sites whose environmental conditions are apparently 
identical. By transforming the abundance values to logarithms, their distribution 
becomes more like a normal distribution (Williamson 1972). To analyse abundance 
values by least-squares regression, it is therefore often more appropriate to use 
Jog-abundance values. A problem then arises when the species is absent, because 
the abundance is then zero and the logarithm of zero is undefined. 

A regression technique appropriate for presence-absence data is logit regression. 
Logit regression attempts to express the probability that a species is present as 
a function of the explanatory variables. 

3.1.3 Types of explanatory variables and types of response curves 

The explanatory variables can be nominal, ordinal or quantitative (Subsection 
2.4.2). Regression techniques can easily cope with nominal and quantitative 
environmental variables, but not with ordinal ones. We suggest treating an ordinal 
variable as nominal when the number of possible values is small, and as quantitative 
when the number of possible values is large. 

Regression with a single quantitative explanatory variable consists of fitting 
a curve through the data. The user must choose in advance how complicated 
the fitted curve is allowed to be. The choice may be guided by looking at a scatter 

Figure 3.2 Shapes of response curves. The expected response (Ey) is plotted against the 
environmental variable (x). The curves can be constant (a: horizontal line), monotonic 
increasing (b: sigmoid curve. c: straight line), monotonic decreasing (d: sigmoid curve), 
unimodal (e: parabola. f: symmetric, Gaussian curve. g: asymmetric curve and a block 
function) or bimodal (h). 
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plot of the response variable against the explanatory variable or can be guided 
by available knowledge and theory about the relation. We denote the environmental 
variable by the letter x and the expected response by Ey, the expected value 
of the response y. We distinguish the following types of curves, often referred 
to as response curves (Figure 3.2): 
- constant: Ey is equal to a constant; the expected response does not depend 

on x (Figure 3.2a). 

- monotonically increasing (or decreasing): Ey increases (or decreases) with 
increasing values of x. Examples are straight lines and sigmoid curves (Figure 
3.2b,c,d). 

- unimodal (single-peaked): Ey first increases with x, reaches a maximum and 
after that decreases. Examples are the parabola with a maximum (Figure 3.2e), 
and a bell-shaped curve like the Gaussian curve (Figure 3.2f). The value of 
x where Ey reaches its maximum is termed the mode or optimum. The optimum 
does not need to be unique when the curve has a 'plateau' (Figure 3.2g). A 
unimodal curve can be symmetric (with the optimum as point of symmetry) 
or asymmetric (Figure 3.2g). 

- bimodal: Ey first increases with x, reaches a maximum, then decreases to a 
minimum, after which Ey increases to a new maximum, from which Ey finally 
decreases again (Figure 3.2h). 

- other: Ey has another shape. 

The types of curves are listed in order of their complexity. Only in the simplest 
case of a constant response curve does the environmental variable have no effect 
on the response of the species. Monotonic curves can be thought of as special 
cases of unimodal curves; when the optimum lies outside the interval that is actually 
sampled, then the unimodal curve is monotonically increasing or decreasing within 
that interval (Figure 3.3). Similarly, unimodal curves can be special cases of bimodal 
curves (Figure 3.3). Curves with a single minimum fall in our classification in 
the category 'other', but can also be thought of as special cases of bimodal curves 
(Figure 3.3). 

Ey 

I 
a b d e f 

---X 

Figure 3.3 R.esp~nse cur~es deriv~d from a bimodal curve by restricting the sampling interval. 
The curve IS bimodal m the Interval a-f, unimodal in a-c and in d-f, monotonic in 
b-e and c-e and almost constant in c-d. In the interval b-e, the curve has a single minimum. 
(Ey, expected response; x, environmental variable). 
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3.1.4 Outline of the chapter 

In this chapter, we introduce regression techniques for analysing quantitative 
abundance data (least-squares regression, Section 3.2) and presence-abse~ce d~ta 
(logit regression, Section 3.3). In both sections, we first prese~t a model m whtch 
the explanatory variable is nominal, and then models m whtch th7 exp~anatory 
variable is quantitative, in particular models that are based on stratght lmes and 
parabolas. 

From the straight line and the parabola, we derive curves that are more useful 
in ecological data analysis. For abundance data, we derive from them the 
exponential curve and the Gaussian curve, respective!~, and .for the analysis of 
presence-absence data, the sigmoid curve and the Gausstan logtt cu:ve. The curves 
based on a parabola allow estimation of the indicator value (optimum) and the 
ecological amplitude (tolerance) of the species. Problems involved in analysing 
quantitative data containing many zero values are dealt with in Section 3.4. In 
Section 3.5, both least-squares regression and logit regression are extended to 
multiple regression. Multiple regression can be used ~o stud~ the eff~ct .of many 
environmental variables on the response by the spectes, be 1t quantitative or of 
presence-absence type. The topic of Section ~.6 is model choice and regr~ssion 
diagnostics. Finally, we leave regression and mtroduce the method of wetgh~ed 
averaging, which is a simple method for estimating indicator values of spectes. 
This method has a long tradition in ecology; it has been used by Gause (1930). 
We compare the weighted averaging method with the regression method to estimate 
indicator values. 

3.2 Regression for quantitative abundance data: least-squares regression 

3.2.1 Nominal explanatory variables: analysis of variance 

The principles of regression are explained here using a fic.titious example, .in 
which we investigate whether the cover proportion of a particular plant spectes 
at sites systematically depends on the soil type of the sites. We distinguish three 
soil types, namely clay, peat and sand. The observed cover pr?portions showed 
a skew distribution within each soil type and therefore we dectded to transform 
them by taking logarithms. Before taking logarithms, we added the value I to 
the cover expressed in percentages, to avoid problems with the two zero. values 
in the data. Figure 3.4 displays the resulting response values for each sot! type. 

Our response model for this kind of data is as follows. The systematic part 
simply consists of three expected responses, one for each soil type, and the error 
part is the way in which the observed responses within. each s?il type va:y around 
the expected responses in each soil type. On the basts of Ftgure 3.4, 1t appears 
not unrealistic to assume for the error part of the response model that the 
transformed relative covers within each soil type follow a normal distribution 
and that the variance of this distribution is the same for each of the three soil 
types. We further assume that the responses ~re indep7ndent. These assum~tio~s 
constitute the response model of the analysts of vanance (ANOVA), whtch ts 
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Figure 3.4 Relative cover (log-transformed) of a plant species (•) in relation to the soil 
types clay, peat a~d san~. The horizontal arrows indicate the mean value in each type 
~Table 3.1). The solid vertiCal b~rs show the 95% confidence interval for the expected values 
Ill eac~ type and the da~~ed vertical bars the 95% prediction interval for the log-transformed 
cover Ill each type. (fictitiOus data). 

one particular form of least-squares regression. 
The first step in regression analysis is to estimate the parameters of the model. 

The parameters are here the expected responses in the three soil types. We estimate 
them by using the least-squar~s principle. We choose values for the parameters 
such that the sum (over all s1tes) of the squared differences between observed 
and expected responses is minimal. The parameter values that minimize this sum 
of squares, are simply the mean values of the transformed relative covers for 
~ach soil type. The expected response as fitted (estimated) by regression is, therefore 
JUSt the mean of the response in each soil type. The fitted values are indicated 
?Y a_rrows in Figure 3.4. The difference between an observed response (a dot 
m F1~ure ~.4) and the fitted value is termed a residual, which in Figure 3.4 is 
a vert~c~l distance. ~eas~-squares thus minimizes a sum of squared vertical distances; 
the mm1mum obtamed IS called the residual sum of squares. 

Regression analysis by computer normally gives not only parameter estimates 
but also an analysis-of-variance table (ANOVA table). From the ANOVA table 
(Ta_ble 3.1 ), we can derive how well the regression equation explains the response 
var_1able. In the example, the fraction of va~iance accounted for (Ridj ) is 0.25, 
Which means that only a quarter of the vanance in the responses is explained 
by the differences between soil types. The ANOVA table can further be used 
for t:sting statistically whether the expected responses differ among soil types; 
that IS, whether the mean values for each soil type differ more than could be 
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Table 3.1 Means and ANOVA table of the transformed 
relative cover of Figure 3.4. 

Term mean 

Clay 1.70 
Peat 3.17 
Sand 2.33 

Overall mean 2.33 

ANOVA table 

Regression 
Residual 
Total 

d.f. 
2 

17 
19 

s.e. 95% confidence interval 

0.33 ( 1.00, 2.40) 
0.38 (2.37, 3.97) 
0.38 (1.53, 3.13) 

s.s 
7.409 

14.826 
22.235 

m.s. 
3.704 
0.872 
1.170 

F 
4.248 

expected by chance if soil type did not affect the re~ative cov~:· For this test, 
the variance ratio F (Table 3.1) must be compared w1th the cntlcal value. of an 
F distribution with 2 and 17 degrees of freedom in the numerator and denommator, 
respectively (2 and 17 are the degrees of freedom for th_e r~gression and ~esidual 
in the ANOVA table). The critical value (at the 5% s1gmficance level) 1s 3.59. 
(Consult for this a table of the F distribution, for instance in Snedecor & Cochran 
1980.) In the example, the variance ratio (4.248) is larger than 3.59. Under the 
null hypothesis of equal expected responses, this happens in 5% of the cases only. 
So it is unlikely that the expected responses are equal. From the ANOVA table, 
we can thus conclude that the expected responses do differ and we say that the 
cover proportions differ significantly between soil types at the 5% level (P < 
0.05, F test). 

How precisely have we estimated the expected responses? An indication for 
this is the standard error of the estimates (Table 3.1 ). The standard error can 
be used to construct a confidence interval for the expected response. The end
points of a 95% confidence interval for a parameter (and the expected response 
is a parameter in this example) are given by 

(estimate)± 10_05(v) X (standard error of estimate) Equation 3.2 

The symbol ± is used to indicate addition or subtraction in order to obtain upper 
and lower limits. The symbol 10_05(v) denotes the 5% critical value of a two-tailed 
1 test. The value of 10_05(v) depends on the number of degrees of freedom (v) 
of the residual and can be obtained from a I table (e.g. Snedecor & Cochran 
1980). In our example, v = 17 and 10_05( 17) = 2.11, which gives the intervals 
shown in Figure 3.4 and Table 3.1. 
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We may also want to predict what responses are likely to occur at new sites 
of a particular soil type. A prediction interval for new responses is much wider 
~han the confidence interval for the expected response. To construct a prediction 
mterval, we need to know the residual standard deviation. This is the standard 
deviation of the residuals and is obtained from the ANOVA table by taking the 
square root of the 'mean square of the residual'. We obtain from Table 3.1 the 
residual standard deviation of V (0.872) = 0.93. In the example the residual 
standard deviation is simply an estimate of the standard deviati~n within soil 
types. The prediction interval within which 95% of the new responses fall is now 
given by 

(estimated response)± t0.05(v) y (s.d.2 + s.e.2) 
Equation 3.3 

where s.d. is the residual standard deviation and s.e. the standard error of the 
estimated response. Equation 3.3 yields for clay the interval 

1.70 ± 2.II v (0.9J2 + 0.332) = (-0.38, 3.78). 

If we had done many observations, the estimated response would be precisely 
the expected response. Then s.e. = 0 and t0.05 (oo) = 1.96, so that Equation 3.3 
reduces. to: expected response± 1.96 X s.d. Figure 3.4 also displays the prediction 
intervals for the three soil types. 

That procedure is sufficient for ANOVA by computer and for interpretation 
of the results. But for a better understanding of the AN OVA table, we now show 
how it is calculated. After we have estimated the parameters of the model we 
can write each response as ' 

observed value= fitted value+ residual. 
Equation 3.4 

For example, one of the observed responses on peat is 3.89 (corresponding to 
a ~over ?f 48%). Its fitted value is 3. I 7, the mean response on peat, and the 
residual Is thus 3.89- 3.I7 = 0.72. We therefore write this response as 3.89 = 
3.I7 + 0.72. 

Each term in Equation 3.4 leads to a sum of squares; we first subtract the 
overall mean (2.33) from the observed and fitted values and then calculate (over 
all sites) sums of squares of the observed values and of the fitted values so corrected 
and of. the residuals. These sums of squares are the total sum of squares, the 
r~gres~ron sum of s~uares and the residual sum of squares, respectively, and are 
giVen m Table ~·I m the column labelled with s.s. (sum of squares). The total 
sum of squares IS always equal to the regression sum of squares and the residual 
sum of squares added together. Each sum of squares is associated with several 
degrees of freedom (d.f. in Table 3.I). The number of degrees of freedom equals 
n - I ~or the total sum of squares (n being the number of sites), q - 1 for the 
re~resswn sum of squares (q being the number of estimated parameters, the value 
I Is subtracted because of the correction for the overall mean) and n - q for 
the residual sum of squares. 
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In the example, n = 20 and q = 3. The column labelled m.s. (mean square) 
is obtained by dividing the sum of squares by its number of degrees of freedom. 
The mean square of the residual is a measure of the difference between the observed 
and the fitted values. It is the variance of the residuals; hence its usual name 
residual variance. Similarly, the total variance is obtained; this is just the sample 
variance of the responses, ignoring soil type. The fraction of variance accounted 
for by the explanatory variable can now be defined as 

R;di = I (residual variance/ total variance), 

which is also termed the adjusted coefficient of determination. In the example, 
R;di = I - (0.872/ 1.170) = 0.25. The original, unadjusted coefficient of determination 
(R2) does not take into account how many parameters are fitted as compared 
to the number of observations, its definition being 

R2 = I -(residual sum of squares/ total sum of squares). 

When a large number of parameters is fitted, R2 may yield a value close to 
I, even when the expected response does not depend on the explanatory variab~es. 
The multiple correlation coefficient, which is the product-moment correlatiOn 
between the observed values and the fitted values, is just the square root of the 
coefficient of determination. Finally, the ratio of the mean squares of the regression 
and the residual is the variance ratio (F). If the expected responses are all equal, 
the variance ratio randomly fluctuates around the value I, whereas it is system
atically greater than I, if the expected values differ; hence its use in statistical 
testing. 

3.2.2 Straight lines 

In Figure 3.5a, the explanatory variable is mean water-table, a quantitative 
variable that enables us to fit a curve through the data. A simple model for these 
data is a straight line with some scatter around the line. The systematic part 
of the response model is then 

Equation 3.5 

in which 
Ey denotes the expected value of the response y 
x denotes the explanatory variable, the mean water-table 
b0 and b 1 are the parameters that must be estimated 
b0 is the intercept (the value at which the line cro~ses the vertica! axis) 
b 1 is the slope parameter or the regression coefficient of the straight !me 

(Figure 3.1) 
b 1 is the expected change in y divided by the change in x. 

The error part of the model is the same as for ANOVA (Subsection 3.2.I), I.e. 
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Figure 3.5a Straight line fitted by least-squares regression of log-transformed relative cover 
on mean water-table: ~he vertical bar on the far right has a length equal to twice the 
sample st~ndard devmtwn ~ T '. the other two smaller vertical bars are twice the length 
of the residual standard devtatwn (a R). The dashed line is a parabola fitted to the sa 
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Figure 3.5b Relative cover in relation to water-table with curves obtained by back 
transformation of the straight line and parabola of Figure 3.5a. 
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the responses are taken to be mutually independent and are normally distributed 
around their expected values (Ey) as specified by the straight line (Equation 3.5). 
The errors are thus taken to follow a normal distribution and the variance of 
the errors to be independent of the value of x. 

We again use the least-squares principle to estimate the parameters. That is, 
we choose arbitrary values for b0 and b 1, calculate with these values the expected 
responses at the sites by Equation 3.5, calculate the sum of squared differences 
between observed and expected responses, and stop when we cannot find values 
for b0 and b1 that give a smaller sum of squared differences. In Figure 3.5a, 
this procedure means that we choose the line such that the sum of squares of 
the vertical distances between the data points and the line is least. (Clearly, any 
line with a positive slope is inadequate!) For many regression models, the estimates 
can be obtained by more direct methods than by the trial and error method just 
described. But, the estimates are usually obtained by using a computer program 
for regression analysis so that we do not need to bother about the numerical 
methods used to obtain the least-squares estimates. For the straight-line model, 
we need, for later reference, the equations for estimating b0 and b1 

Equation 3.6a 

Equation 3.6b 

where 
Y; and X; are the values of y and x at the i-th site 
)i and ~Yare the mean values of y and x, respectively. 

Table 3.2 shows standard output of a computer program for regression analysis, 
in which b0 is estimated at 4.411 and b1 at -0.0370. The ANOVA table can in 

Table 3.2 Straight line fitted by least-squares: parameter 
estimates and AN OVA table for the transformed relative 
cover of Figure 3.5. 

Term Parameter estimate s.e. 

Constant bo 4.411 0.426 10.35 
Water-table b, -0.0370 0.00705 -5.25 

ANOVA table 
d.f. s.s m.s. F 

Regression l 13.45 13.45 27.56 
Residual 18 8.78 0.488 
Total 19 22.23 1.170 

R;dJ = 0.58 
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pr!nciple be obtained by the rules of Subsection 3.2.1 below Equation 3.4, by 
usmg fitted values as calculated from Equation 3.5. The following statistics are 
derived from the ANOVA table as in Subsection 3.2.1. The residual standard 
deviation is V0.488 = 0. 70, which is much smaller than the standard deviation 
of the observed response, VTTIO = 1.08. 

The fraction of variance accounted for by the straight line is 0.58. The multiple 
correlation coefficient reduces in straight line regression to the absolute value 
of the product-moment correlation between x and y (0. 78 in Figure 3.5a). The 
variance ratio can again be used for statistical testing, here for testing whether 
the expected responses depend on the mean water-table. The critical F at the 
5% significance level is now 4.41, because there is only I degree of freedom for 
the regression (Snedecor & Cochran 1980). Because the variance ratio (27.56) 
exceeds this F, the expected response does depend on the mean water-table. An 
alternative for this F test is to use a two-tailed t test of whether b

1 
equals 0; 

if b 1 were 0, the straight line would be horizontal, so that the expected response 
would not depend on x. This t test uses the t of b1, which is the estimate of 
b 1 divided by its standard error (Table 3.2). This value ( -5.25) is greater (in absolute 
value) than the critical value of a two-tailed t test at the 5% level obtained from 
a t table: to.os08) = 2.10, and so b 1 is not equal to zero; thus the relative cover 
of our species does significantly depend on the mean water-table. Yet another 
way of testing whether b 1 = 0 is by constructing a 95% confidence interval for 
b1 with Equation 3.2. The result is the interval-0.037± 2.10 X 0.00705 = (-0.052, 
-0.022). 

The value 0 does not lie in this interval and 0 is therefore an unlikely value 
for b 1• Which of the three tests to use (F test, t test or test through the confidence 
interval) is a matter of convenience; they are equivalent in straight-line regression. 

After regression analysis, we should make sure that the assumptions of the 
response model have not been grossly violated. In particular, it is useful to check 
whether the variance of the errors depends on x or not, either by inspecting Figure 
3.5a or by plotting the residuals themselves against x. Figure 3.5a does not give 
much reason to suspect such a dependence. 

In the analysis, we used transformed relative covers. The data and the fitted 
straight line of Figure 3.5a are back-transformed to relative covers in Figure 3.5b. 
The fitted line is curved on the original scale: it is an exponential curve. Note 
that in Figure 3.5b, the assumption that the error variance is independent of 
x does not hold; this could have been a reason for using a transformation in 
the first place. It may be instructive now to do Exercise 3.1. 

3.2.3 Parabolas and Gaussian curves 

In Subsection 3.2.2, we fitted a straight line to the responses in Figure 3.5a. 
But wouldn't a concave curve have been better? We therefore extend Equation 
3.5 with a quadratic term in x and obtain the parabola (Figure 3.2e) 

Equation 3.7 
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Table 3.3 Parabola fitted by least-squares regression: 
parameter estimates and ANOVA table for the trans
formed relative cover of Figure 3.5. 

Term Parameter estimate s.e. 

Constant b0 

Water-table b 1 

(Water-table)2 b2 

ANOVA table 

Regression 
Residual 
Total 

R}di = 0.57 

d.f. 
2 

17 
19 

3.988 0.819 
-0.0187 0.0317 

4.88 
-0.59 

-0.000169 0.000284 -0.59 

s.s 
13.63 
8.61 

22.23 

m.s. 
6.815 
0.506 
1.170 

F 
13.97 

We again use the least-squares principle to obtain estimates. The estimates are 
given in Table 3.3. The estimates for b0 and b 1 change some~hat from Table 
3.2; the estimate for b2 is slightly negative. The parabola fitted (Ftgu_re 3.~, dashed 
line) gives a slightly smaller residual sum of squares than the str~tght !me. But, 
with the change in the number of degrees of freedom of the restdual (from 18 
to 17), the residual variance is greater and the fraction of variance accou~ted 
for is lower. In the example, the advantage of the parabola over the stratght 
line is therefore doubtful. A formal way to decide whether the parabola significantly 
improves the fit over the straight line is by testing whether the extra parameter 
b is equal to 0. Here we use the t test (Subsection 3.2.2). The t of b2 (Table 
3~3) is much smaller in absolute value than the critical value, 2.11; hence .the 
data provide no evidence against b2 being equal to 0. We conclude that a stra.tght 
line is sufficient to describe the relation between the transformed cover proportwns 
and mean water-table; a parabola is not needed. 

Generally the values of t for b0 and b 1 in Table 3.3 are not used, because 
they do not test any useful hypothesis. For example, the t test of whether b 1 
is equal to 0 in Equation 3. 7 would test a particular kind of parabola against 
the general parabola of Equation 3.7, quite different from the meaning of the 
t test of the slope parameter b 1 in Table 3.2. 

In principle, we can extend the response function of Equation 3. 7 to higher
order polynomials in x by adding terms in x3, x\ .... There is no advantage 
in doing so for the data in Figure 3.5a. Polynomial regression of species data 
has limited use except for one special case. When we fit a parabola to log
transformed abundances, we actually fit a Gaussian response curve to the original 
abundance data. The Gaussian response curve has the formula 

Equation 3.8 
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species abundance -c 

environmental variable 

Figu.re 3.6 Gauss.ian response curve with its three ecologically important parameters: 
max.tmum (c), .opttm~m (u) and tolerance (1). Vertical axis: species abundance. 
Honzontal axts: envtronmental variable. The range of occurrence of the species i 
to be about 4t. s seen 

where 
z is the original abundance value 
cis the species' maximum abundance 
u.is_its optimum (the value of x that gives maximum abundance) 
tIS Jts tolerance (a measure of ecological amplitude). 

Note t?at in this c~apter the symbol t is used in two ways: the 1 of a regression 
coefficient (Subsectwn 3.2.2) and the t of a Gaussian curve. Which 1 is intended 
sho~ld be clear. from the context of the passages concerned. 

F~gure 3.6 displays the Gaussian curve and its parameters. The curve is seen 
to nse a~d fall over a le?gth of about 4t. If we take the logarithm on both 'd 
of Equatwn 3.8, we obtam Sl es 

log, z =log, (c)- 0.5 (x- u) 2/ t 2 = b0 + b
1 

x + b
2 

x2 

where the third form follows by expanding 

(x- u) 2 = x 2 - 2 u x + u 2 

and by setting: 

Equation 3.9 

Equation 3.10 

b BJ fittdinbg a parabol.a to log-abundances, we obtain least-squares estimates for 
O• 1 an 2• from wh1ch we can obtain estimates of 

the optimum, u = -b 1j(2b2) 

the tolerance, t = I 1 V( -2b2) 

the maximum, c = exp (b0 + b1 u + b2 u 2). 
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Equation 3.lla 

Equation 3.1 I b 

Equation 3. I lc 

These equations are derived from Equation 3.10 where b2 < 0. If the estimate 
of b2 is positive, the fitted curve has a minimum instead of a maximum. Approximate 
standard errors of the estimated optimum and tolerance can be derived from 
the variances and covariances of b1 and b2 that are provided as options by statistical 
packages. A confidence interval for the optimum can also be calculated. Details 
of these calculations are given in Section 3.9. 

It may be instructive now to do Exercise 3.2 (except Part 3.2.8). 

3.3 Regression for presence-absence data: logit regression 

3.3.1 Nominal explanatory variables: chi-square test 

Table 3.4 shows the numbers of dune meadow fields in which the plant species 
Achillea ptarmica was present and in which it was absent. The fields are divided 
into four classes depending on agricultural use. The relevant question for these 
data is whether the frequency of occurrence of Achillea ptarmica depends 
systematically on agricultural use. This question is analogous to the question that 
was studied in Subsection 3.2.1, although here the response of the species is not 
relative cover, but merely presence or absence. The usual thing to do is to calculate 
the relative frequency in each class, i.e. the number of fields of a given class 
in which the species is present divided by the total number of fields of that class 
(Table 3.4). But relative frequency of occurrence is simply the mean value when 
we score presence as 1 and absence as 0. Calculating means was what we did 
in Subsection 3.2.1. The response is thus y = 1 or y = 0, and the expected response, 
Ey, is the expected frequency, i.e. the probability of occurrence of the species 
in a field randomly drawn from all fields that belong to the class. Relative frequency 
is therefore an estimate of probability of occurrence. 

Table 3.4 Numbers of fields in which Achillea ptarmica 
is present and absent in meadows with different types 
of agricultural use and frequency of occurrence of each 
type (unpublished data from Kruijne et al. 1967). The 
types are pure hayfield (ph), hay pastures (hp), alternate 
pasture (ap) and pure pasture (pp). 

Achillea ptarmica 

present 
absent 
total 

frequency 

Agricultural use 

ph hp ap pp 

37 40 27 9 
109 356 402 558 
146 396 429 567 

0.254 0.101 0.063 0.016 

total 

113 
1425 
1538 

0.073 
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If the probabilities of occurrence of Achillea ptarmica were the same for all 
four classes, then we _could say that its occurrence did not depend on agricultural 
use. We shall test this null _hypothesis by the chi-square test. This test proceeds 
as follows. Overall, the relati~e frequency of occurrence is 11311538 = 0.073 (Table 
:-~). Under the null hypothesis, the expected number of fields with Achillea ptarmica 
IS m pure hayfield 0.073 X 146 = 10.7 and in hay pasture 0.073 X 396 = 29.1 
and so on for the remaining types. The expected number of fields in which Achillea 
ptarmica is absent is therefore in pure hayfield 146 10.7 = 135.3 and in hay 
pasture 396- 29.1 = 366.9. 

We now measure the deviation of the observed values (o) and the expected 
values (e) by the chi-square statistic, that is the sum of (o - e)ll e over all cells 
of Table 3.4. We get (_37 - 10.7)11 10.7 + (109 - 135.3)21 135.3 + (40 _ 29.1)21 
29.1 + ... = 102.1. This value must be compared with the critical value X2(v) 
of a ~hi-square distribution with v degrees of freedom, where v = (r ~ I)a(c ~ 
1), r IS the number of rows and c the number of columns in the table. In the 
example, v = 3 and the critical value at the 5% level is x2 (3) = 7.81. Consult 

2 bl f . 0.05 
a X ta. e, or mstance Snedecor & Cochran (1980). The chi-square calculated, 
102.1, IS much greater than 7.81, and we conclude therefore that the probability 
of occurrence of Achillea ptarmica strongly depends on agricultural use. Notice 
that the chi-square statistic is a variant of the residual sum of squares: it is a 
weighted sum of squares with weights 11 e. 

The chi-square test is an approximate test, valid only for large collections of 
data. The test should not be used when the expected values in the table are small. 
A rule_ of thumb is that the test is accurate enough when the smallest expected 
value IS at least 1. A remedy when some expected numbers are too small is to 
aggregate classes of the explanatory variable. 

3.3.2 Sigmoid curves 

V:e now look at the si~ua~ion in which we have a presence-absence response 
vanable (y) and a quantitative explanatory variable (x). Data of this kind are 
shown _i~ Figure 3.7. Just as in Subsection 3.3.1, the expected response is the 
probability of occurrence of the species in a site with a particular value of the 
environmental variable. This probability will be described by a curve. Probabilities 
always have values between 0 and I. So a straight-line equation 

Equation 3.12 

is not acceptable, because b0 + b 1 x can also be negative. This difficulty could 
be solved by taking the exponential curve 

Ey = exp (b0 + b, x) Equation 3.13 

However the right side of Equation 3.13 can be greater than 1, so we adapt 
the curve once more to 

Ey = p = [exp (b0 + b1 x)]l [I + exp (b0 + b 1 x)] 
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Equation 3.14 

0.5-

8 
---pH 

Figure 3. 7 Sigmoid curve fitted by logit regression of the presences • at p = I) and absences 
(• at p = 0) of a species on acidity {pH). In the display, the sigmoid curve looks like 
a straight line but it is not. The curve expresses the probability {p) of occurrence of the 
species in relation to pH. 

This curve satisfies the requirement that its values are all between 0 and I. The 
only further reason to take this curve, and not another one, is mathematical 
convenience. The curves representing Equations 3.12-3.14 are shown in Figure 
3.8; Equation 3.14 represents a sigmoid curve. All three curves are monotonic 
and have two parameters, namely b0 and b 1• The part b0 + b 1 x is termed the 
linear predictor. For probabilities, we use the symbol p instead of Ey (Equation 
3.14). 

The systematic part of the response model is now defined. Next, we deal with 
the error part. The response can only have two values, hence, the error distribution 
is the Binomial distribution with total I (Subsection 2.4.3). So the variance of 
y is p( I - p ). We have now completed the description of the model. 
- To estimate the parameters from data, we cannot use ordinary least-squares 
regression because the errors are not normally distributed and have no constant 
variance. Instead we use logit regression. This is a special case of the generalized 
linear model (GLM, McCullagh & Neider 1983). The term logit stems from logit 
transformation, that is the transformation of p 

loge [pI (1 - p )] = linear predictor Equation 3.15 

which is just another way of writing 

p = [ exp (linear predictor)]/ [I + exp (linear predictor)] Equation 3.16 

The solution to Exercise 3.3 shows that Equations 3.15 and 3.16 are equivalent. 
The left side of Equation 3.15 is termed the link function of the GLM. Logit 
regression is sometimes called logistic regression. 

In GLM, the parameters are estimated by the maximum likelihood principle. 
The likelihood of a set of parameter values is defined as the probability of the 
responses actually observed when that set of values were the true set of parameter 
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straight line 

Ey exponential curve b 

sigmoid curve 

~x 

Figure 3.8 Straight line (a), exponental curve (b) and sigmoid curve (c) representing Equations 
3.12, 3.13 and 3.14, respectively. 

values. The maximum likelihood principle says that we must choose that set of 
parameter values for which the likelihood is maximum. A measure for the deviation 
?f the observed responses from the fitted responses is the residual deviance which 
IS -2 loge L, where L is the maximized likelihood. The residual devianc~ takes 
the place of the residual sum of squares in least-squares regression. The least
square principle (Subsection 3.2.1) is equivalent to the maximum likelihood 
principle, if the errors are independent and follow a normal distribution. Least
squares regression is thus also a special case of GLM. In general, the parameters 
of a GLM must be calculated in an iterative fashion; provisional estimates of 
parameters are updated several times by applying repeatedly a weighted least
~quares re~ression, in which responses with a small variance receive a larger weight 
m the .res1dual su~ of squares than responses with a large variance. In logit 
regressiOn, the vanance of the response was p(l - p). So the weight depends 
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parabola 

Gaussian curve 

Ey 

1 

c 

Gaussian logit curve 

Figure 3.9 Parabola (a), Gaussian curve (b) and Gaussian logit curve (c) representing 
Equations 3.7, 3.8 and 3.17, respectively. 

on the fitted value of p and hence on the parameter estimates; calculations must 
therefore be iterative. Computer programs for logit regression are available in 
statistical packages including GUM (Baker & Nelder 1978), GENSTAT (Alvey 
et al. 1977), BMDP (Dixon 1981, subprogram PLR) and SAS (Harrell 1980). 
Ter Braak & Looman (1986) give an example of a program in GUM. 

We fitted the sigmoid curve of Equation 3.14 to the data of Figure 3.7 by 
1ogit regression. Table 3.5 shows the estimated parameter and the residual deviance; 
its number of degrees of freedom is n - q, where q is the number of estimated 
parameters (Subsection 3.2.1 ). The resulting curve (Figure 3. 7) does not differ 
significantly (P > 0.05) from a horizontal line, as judged by a t test of whether 
b 1 equals 0. All tests in logit regression are approximate, because the error 
distribution is not normal (cf. the chi-square test of Subsection 3.3.1). Apart from 
this, there is no difference from the t test described in Subsection 3.2.2. 
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Table 3.5 Sigmoid curve fitted by logit regression: parameter 
estimates and deviance table for the presence-absense data of Figure 
3.7. 

Term Parameter estimate s.e. 

Constant bo 2.03 1.98 1.03 
pH b, -0.484 0.357 -1.36 

d.f. deviance mean deviance 
Residual 33 43.02 1.304 

3.3.3 Gaussian logit curves 

When we take for the linear predictor in Equation 3.16 a parabola, we obtain 
the Gaussian logit curve 

p = [exp (b0 + b 1 x + b2 x2)]/[1 + exp (b0 + b 1 x + b2 x2)] 
= c exp [ -0.5 (x- u)2/ t2]/ [1 + c exp (-0.5 (x- u)2/ t2)] Equation 3.17 

The third form of the equation follows from Equations 3.8-3.10 and shows the 
·relation to the Gaussian curve (Equation 3.8). The relation between parabola, 
Gaussian curve and Gaussian logit curve is shown graphically in Figure 3.9 (contrast 
Figure 3.8). The Gaussian logit curve has a flatter top than the Gaussian curve 
but the difference is negligible when the maximum of the Gaussian logit curve 
is small (< 0.5). The Gaussian logit curve was fitted to the data in Figure 3.7 
by using GENSTAT and the result is shown in Figure 3.10. Table 3.6 gives the 
parameter estimates of b0, b 1 and b2, from which we obtain estimates for the 
optimum and the tolerance by using Equations 3.lla,b. The· result is u = 5.28 
and t = 0.327. The maximum of the fitted curve in Figure 3.10 is the (estimated) 
maximum probability of occurrence of the species (pmax) and can be calculated 

0. 5-
p 

l 

3 u 8 
~pH 

Figure 3.10 Gaussian logit curve fitted by logit regression of the presences (• at p = I) 
and absences (• at p = 0) of a species on acidity (pH). Same data as in Figure 3.7. u 
= optimum; I= tolerance; Pmax = maximum probability of occurrence. 
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Table 3.6 Gaussian logit curve fitted by logit regression: parameter 
estimates and deviance table for the presence-absence data of Figure 
3.10. The data are the same as in Figure 3.7. 

Term Estimate s.e. 

Constant bo -128.8 51.1 -2.52 
pH b, 49.4 19.8 2.50 
pW b2 4.68 1.90 -2.47 

d.f. deviance mean deviance 
Residual 32 23.17 0.724 

from the second form of Equation 3.17 by inserting the value of u (5.28) for 
x and the values of b0, b1 and b 2 from Table 3.6; we obtain Pmax = 0.858. 

We can decide whether the Gaussian logit curve significantly improves the fit 
over the sigmoid curve by testing whether b2 equals 0. Here we use the t test 
again (Subsection 3.2.3). The t of b2 is -2.47 (Table 3.6) and we conclude that 
the fitted curve differs significantly from a sigmoid curve. It is justified to use 
a one-tailed t test here, if we only want to detect unimodal curves, i.e. curves 
with b2 < 0 (Snedecor & Cochran 1980, Section 5.5). If b2 is significantly smaller 
than 0, then the optimum is said to be significant. An approximate 95% confidence 
interval for u is (5.0, 5.8), obtained from Section 3.9. 

A more general method of statistical testing in GLM is by the deviance test, 
in which the residual deviance of a model is compared with that of an extended 
model. The additional parameters in the latter model are significant when the 
drop in residual deviance is larger than the critical value of a chi-square distribution 
with k degrees of freedom, k being the number of additional parameters. As 
an example, the drop in deviance going from the sigmoid curve to the Gaussian 
logit curve (Tables 3.5 an.d 3.6) is 43.02 - 23.17 = 19.85. This drop is larger 
than x6.05 (1) = 3.84. Hence the single additional parameter b2 is significant. The 
deviance test replaces the F test of least-squares regression. 

An example of analysing presence-absence data is provided in Exercises 3.4 
and 3.5. 

3.4 Regression for abundance data with many zero values 

Abundance data with many zero values (i.e. absence) always show a skew 
distribution. So one should transform them before analysing them by least-squares 
regression. But the logarithmic transformation does not work, because the 
logarithm of zero is undefined. The value 0 might be caused by rounding error, 
but even then one often does not know whether the original value was 0.1, 0.01 
or even smaller. On a log scale the difference between these values is large, and 
one does not know which value to choose. A common practice is to add a small 
value to the abundance data before logs are taken, as was done in Subsection 
3.2.1, but this is somewhat arbitrary; different values may lead to different results 
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of analysis if there are many zeros among the data. An additional problem is 
that in the model abundance values may be negative, which does not make sense 
(e.g. the prediction interval for clay in Figure 3.4). Other transformations do 
not work either. 

In least-squares regression after logarithmic transformation, the implicit assump
tion is that the abundance data follow a log-normal distribution. The probability 
of observing the value 0 from a log-normal distribution is, however, zero. A 
distribution that allows zero values is the Poisson distribution (Subsection 2.4.3). 
Observations arising from a Poisson distribution can take the integer values 0, 
1, 2, 3, ... and have a variance that is equal to the mean. Counts of the number 
of animals in a region, for example, take integer values only. We assume for 
a moment that the data follow a Poisson distribution and seek appropriate response 
curves. The curves must not be negative, but may rise above the value 1. The 
exponential transformation used in Equation 3.13 is therefore sufficient. The 
exponential curve can be fitted to data by log-linear regression, which is again 
a special case of GLM (Subsection 3.3.2). The regression is termed log-linear 
because another way of writing Equation 3.13 is 

loge Ey = linear predictor Equation 3.18 

By using b0 + b 1 x + b2 x2 in the linear predictor, we again obtain the Gaussian 
curve provided b2< 0 (Equations 3.8-3.11). The Gaussian curve can thus be fitted 
to abundance data with zero values by carrying out a log-linear regression. In 
this way we circumvent the problem of having to take logarithms of zeros. The 
optimum, tolerance and maximum are derived from the estimates of b0, b1 and 
b2 as in Subsection 3.2.3. 

The assumption that abundance data follow a Poisson distribution is often 
false (Subsection 2.4.3). Fortunately, the assumptions of log-linear regression can 
be relaxed. It is sufficient that the variance in the data is proportional to the 
mean (McCullagh & Neider 1983). When this weaker assumption is also inap
propriate, a possible ad-hoc method is to transform the species data to presen
ce-absence. This method sacrifices all the quantitative information. The quantitative 
information can be retained partly by also analysing 'pseudo-species' (Hill et a!. 
1975). A pseudo-species is a presence-absence variable that is defined, for instance, 
by a cut-level value Yc· The pseudo-species at cut-level value Yc is present if the 
abundance of the species exceeds the cut-level value Yc, and is absent if the 
abundance is less. By choosing a set of cut levels, we get a set of pseudo-species, 
each of which can be analysed separately by logit regression. An attractive property 
of the method of pseudo-species is that the response curve of each pseudo-species 
is unimodal whenever the response curve for the original abundances is unimodal. 
Then, the tolerances of the response curves of the pseudo-species decrease with 
increasing value of the cut level; their optima may shift when the response curve 
for abundance is asymmetric. A disadvantage of the method is that the choice 
of cut levels is arbitrary and that the results of the separate analyses cannot be 
combined easily into a simple description of the relation between the abundance 
of the species and the environmental variable under consideration. 
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In some ecological applications the quantitative information on abundance is 
of the type 'absent, a few, many'. We suggest transforming such data to 'Is the 
species present?' and 'Is the species abundant?', and to analyse each variable 
separately by logit regression. The second variable is a pseudo-species. 

3.5 Multiple regression 

3.5.1 Introduction 

In the previous sections, the response variable was expressed in various ways 
as a function of a single environmental variable. A species may, however, respond 
to more than one environmental variable, To investigate such a situation, we 
need multiple regression. In multiple regression, the response variable is expressed 
as a function of two or more explanatory variables (response-surface analysis). 
Separate analyses of the response for each of the environmental variables cannot 
Feplace multiple regression if the environmental variables show some correlation 
with one another and if there are interaction effects, i.e. if the effect of one variable 
depends on the value of another variable. 

We will show how least-squares regression and logit regression can be extended 
to study the effect of two environmental variables. The extension to more than 
two variables will then be obvious. Typical cases of multiple regression will be 
illustrated in the section on multiple logit regression, although they occur equally 
in multiple least-squares regression. In separate subsections, we will discuss the 
analysis of interaction effects and the inclusion of nominal explanatory variables 
in multiple regression. 

3.5.2 Multiple least-squares regression: planes and other surfaces 

An extension of the straight line to two explanatory variables is a plane (Figure 
3.11 ). A plane has the formula 

Equation 3.19 

where 
x 1 and x2 are two explanatory variables 
b0, b1 and b2 are parameters or regression coefficients. 

b
0 

is the expected response when x 1 = 0 and x2 = 0. b 1 and b2 are the rates 
of change in the expected response along the x 1 and x 2 axes, respectively. b1 

thus measures the change in Ey with x 1 for a fixed value of x2, and b2 the change 
in Ey with x 2 for a fixed value of x 1• 

The parameters are, again, estimated by the least-squares method, i.e. by 
minimizing the sum of squares of the differences between the observed and expected 
response. This means in geometric terms (Figure 3.11) that the regression plane 
is chosen in such a way that the sum of squares of the vertical distances between 
the observed responses and the plane is minimum. 
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Xz 

Figure 3.11 Three-dimensional view of a plane fitted by least-squares regression of responses 
(•) on two explanatory variables x 1 and x2 • The residuals, i.e. the vertical distances between 
the responses and the fitted plane are shown. Least-squares regression determines the plane 
by minimization of the sum of these squared vertical distances. 

A multiple regression analysis carried out by computer not only gives estimates 
for b0, b1 and b2, but also standard errors of the estimates and associated values 
of t (Table 3.3). Fitting a parabola is a special case of multiple regression analysis 
where x 1 = x and x2 = x2

• The values oft can be used to test whether a coefficient 
is zero (Subsection 3.2.1), i.e. whether the corresponding variable contributes to 
the fit of the model in addition to the fit already provided by the other explanatory 
variable(s). 

By extending the parabola we obtain the quadratic surface 

Equation 3.20 

which has five parameters. When y in this model is the logarithm of abundance, 
we are fitting through multiple regression a bivariate Gaussian response surface 
to the observed abundances, provided b2 and b4 are both negative. With t tests, 
we can see whether one of the parameters is equal to zero. In particular, to detect 
whether the surface is unimodal in the direction of x

1
, we test the null hypothesis 

(b2 ;? 0) against the alternative hypothesis (b2 <O) through the t corresponding 
to the coefficient b2, as in Subsection 3.3.3. Similarly, we use the t corresponding 
to b4 to test whether the surface is unimodal in x

2
• 

The optimum and tolerance of the species with respect to x
1 

are calculated 
as in Subsection 3.2.3 by inserting in Equation 3.lla,b the values of b

1 
and b

2 
obtained from fitting Equation 3.20. Standard errors and the confidence interval 
for the optimum can still be obtained by using the equations given in Section 
3.9. The optimum and tolerance with respect to x2 are obtained analogously by 
replacing b 1 by b3 and b2 by b4• 

To investigate whether x2 in this model influences the abundance of a species 
in addition to x 1, we need to test whether both b3 and b

4 
equal 0. This test 

requires simultaneous testing of two parameters, which cannot be done with two 
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separate t tests. For this, we need the F test. For an F test, we must fit two 
regression equations, a simple one with only x 1 an~ x 1

2 and an extended one, 
in which x2 and x2

2 are added, and compare the residual sum of squares, RSS, 
and RSS 2, respectively, by calculating 

Equation 3.21 

where df1 and df2 are the degrees of freedom of RSS 1 and RSS2, respectively. 

Under the null hypothesis that the additional parameters b3 and b4 equal 0: F 
follows an F distribution with df1 - df2 and df2 degrees of freedom (SubsectiOn 
3.2.1). The null hypothesis is rejected if the calculated. F exceeds the critical value 
of this distribution. This test can be used whenever Simple and extended models 
are to be compared in multiple least-squares regressio~. Our. previous. applications 
of the F test were special cases of Equation 3.21, m which the Simple model 
was the no-effect model 'Ey is constant'. 

3.5.3 Multiple logit regression: logit planes and Gaussian logit surfaces 

In Subsection 3.3.2, logit regression was obtained from least-squares. regress.ion 
by replacing Ey by loge [pj(l- p)] and there is no reason not. to do so.m multipl.e 
regression. This replacement transforms the plane of Equatwn 3.19 mto a loglt 
plane defined by the equation 

Equation 3.22 

We will now show what multiple regression can add to the information provided 
by separate regressions with one explanatory variable. Fig~re ~.12 di~play~ the 
values of x 1 and x2 in a sample of 35 sites and also shows wh~ch s1tes an imagm~ry 
species is present at. Fitting Equation 3.22 to the data by usmg GLM (Subsectwn 
3.3.2) gives the results shown in the first line of Table 3.7. Judged by t tests, 
both b 1 and b2 differ significantly from 0, a~d we conclu~e that the prese?ce 
of the species depends both on x 1 and x2• By fittmg. a model w1th -:! only (Equatwn 
3.14), we obtain the second line of Table 3. 7. The estJ.ma.ted probability of occ.urrence 
increases somewhat with x 1 (b 1 = 0.16), but not s1gmficantly (the t of~~ IS .1.33). 
We would thus have concluded wrongly that the presence of the species d1d not 
depend on x 1• From fitting a model with x2 only, we would als? have conclu~ed 
wrongly that x2 was irrelevant for predicting presence of the species. By companng 
the residual deviances of the models fitted (Table 3.7), we see that x 1 and x2 
are good explanatory variables only when taken together. Such variables are said 
to be complementary in explanatory power (Whitt~ker 1984). . 

The values of b and b in the multiple regressiOn clearly descnbe the pattern 
of species occurre~ce in Figure 3.12. In words, for any given val~e of X2, the 
probability of occurrence. strongly !ncreases with x 1, and

0 

~or ~ny g1ven value of 
x 1, it strongly decreases w1th x2• A !me drawn at about 45 m F1gure 3.12 actually 
separates most of the species presences from the absences. 
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Figure 3.12 Data illu~trating that explanatory variables can be complementary in explanatory 
power. The scatter diagram of x1 and x2 shows the sites where a particular species is present 
(•) and absent (•). 
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Figure _3. 13 Dat~ illustrate that ex~lanatatory variables can replace each other in multiple 
regr~ss1?n equatwns. The scatter diagram of x 1 and x2 shows the sites where a particular 
spec1es 1s present (•) and absent (•). 
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Table. 3.7 Multiple logit regressions of the data of Figure 3.12 to 
illustrate that explanatory variables can be complementary in 
explanatory power (d(res) = residual deviance) . 

Terms in b1 b2 1 value 1 value d(res) d.f. 
model of b1 of b2 

x 1, x2 1.53 -1.66 2.98 -2.96 23.99 32 
XI 0.16 1.33 45.25 33 
x2 -0.15 -1.17 45.69 33 
none 47.11 34 

Table 3.8 Multiple logit regressions of the data of Figure 3.13 to 
illustrate that explanatory variables can substitute each other in 
a model (d(res) =residual deviance). 

Terms in b! b2 1 value 1 value d(res) d.f. 
model of b1 of b2 

x 1, x2 -0.61 -0.625 -1.63 -1.59 17.47 32 
XI -0.94 -2.85 20.57 33 
x2 -1.016 -2.88 20.82 33 
none 41.88 34 

Figure 3.13 shows the occurrence of another species. When x 1 and x2 are used 
to explain this species' occurrence, the t 's (first line of Table 3.8) show that 
neither b 1 nor b2 differs significantly from 0. It should not be concluded now 
that neither x 1 nor x2 has an effect on the species' presence. These t tests only 
say that we do not need both x 1 and x2 in the model. The fits with x1 only 
and with x2 only show that, taken singly x 1 and x2 have both an effect. Moreover, 
these fits give about the same deviance; hence, x 1 can substitute x2 in the model 
(Whittaker 1984). We observe in Figure 3.13 that the species occurs at low values 
of x 1 and x 2, but cannot say which variable this is caused by, because there were 
too few sites where x 1 was low and x2 high or vice versa. We cannot distinguish 
their effects. This problem often arises when explanatory variables are highly 
correlated in the sample. This problem is known as the multicollinearity problem. 
For example, we may wish to know whether the probability of occurrence of 
a certain rare meadow plant decreases with potassium or with phosphate. But, 
in a survey potassium and phosphate will be strongly correlated, because they 
are usually applied simultaneously; so the question cannot be answered by a survey. 
Multicollinearity also arises when the number of explanatory variables is only 
slightly less than the number of sites. 

Figures 3.12 and 3.13 illustrate the cases that create the most surprise at first. 
Less surprising are the cases in which neither multiple regression nor separate 
regressions show up any effects, or in which the techniques demonstrate the same 
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Figure 3.14a Three-dimensional view of a bivariate Gaussian logit surface with the probability 
of occurrence (p) plotted vertically and the two explanatory variables x 1 and x2 plotted 
in the horizontal plane. 

effects. Finally, it may also happen that both xi and x 2 show an effect on the 
species in the separate regressions, whereas in multiple regression only one of 
them shows an effect. This happens, for example, when xi is the only effective 
variable, and x 2 is correlated with xi. The possible effect of x 2 in the regression 
with x 2 only is then due to its correlation with xi, as multiple regression may 
show. 

In multiple regression with more than two explanatory variables, all the previous 
cases may occur together in one analysis. Further, instead of pairs of variables 
that are substitutable or complementary, we may have triplets, quadruplets, etc. 
(Whittaker 1984). These concepts are important when one wants to select the 
best set of explanatory variables in a regression equation (Montgomery & Peck 
1982; Whittaker 1984). 

We now proceed to quadratic models. By inserting the quadratic surface of 
Equation 3.20 in Equation 3.15, we obtain a bivariate Gaussian logit surface, 
provided both b2 and b4 are negative (Figure 3.14a). This surface has ellipses 
as contour lines (lines of equal probability) with main axes parallel to the xi 
and x2 axis (Figure 3.14b). The parameters of this models can again be estimated 
by GLM. Further analysis proceeds as from Equation 3.20, except that the F 
test must be replaced by the deviance test (Subsection 3.3.3). 

3.5.4 Interaction between explanatory variables 

Two explanatory variables show interaction of effects if the effect of the one 
variable depends on the value of the other. We can test for interaction by extending 
regression equations with product terms, like xi x 2. 

By extending Equation 3.19 in this way, we obtain 
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Figure 3.14b Elliptical contours of the probability of occurrence p plotted in the plane 
of the explanatory variables x

1 
and x2• One main axis of the ellipses is parallel to the 

x 1 axis and the other to the x2 axis. 

The final expression in Equation 3.23, obtained by simple algebra, shows that 
the relation between Ey and xi in this model is still a straight line, but that 
the intercept and slope and hence the effect of xi depend on the value of X2. 

Conversely, the effect of x 2 depends on the value of xi. The parameters bi> b2 
and b in Equation 3.23 can be estimated by using any multiple regression program 
and c~lculating the new variable x 3 = xi x 2 and specifying xi, x 2 and X3 as the 
explanatory variables. The interaction can be tested by a t test whether b3 
equals 0. 

By extending the Gaussian model of Equation 3.20 with a product term, we 
obtain in the logit case 

Equation 3.24 

If b2 + b4 < 0 and 4 b2 b4 - b5
2 > 0, Equation 3.24_ describes a un~m?dal surface 

with ellipsoidal contours as in Figure 3.14b, but Without t~~ rest:Ictwn th~t the 
main axes are horizontal or vertical. If one of these conditiOns IS not satisfied, 
it describes a surface with a single minimum or one with a saddle point (e.g. 
Carroll 1972). When the surface is unimodal, the overall optimum (ui, U2) can 
be calculated from the coefficients in Equation 3.24 by 

Equation 3.25a 

Equation 3.25b 
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Figure 3.15 Interaction in the Gaussi.an logit model. The elliptical contours of the probability 
of occurrence p with respect to the explanatory variables x 1 and x2 are shown. The main 
axes of the ellipses are not parallel to either the x 1 axis or the x 2 axis. uA and u8 are 
the optima with respect to x2 that correspond to levels A and B of x 1• 

The optimum with respect to x 1 for a given value of x 2 is -(b 1 + b5 x 2)/ (2 b2) 
and thus depends on the value of x2 if b5 ¥- 0. The expression is obtained by 
rearranging Equation 3.25 in the form of a parabola and using Equations 3.10 
and 3.11. Figure 3.15 clearly shows this interaction. We can test this interaction 
by using a 1 test whether b5 equals 0. 

3.5.5 Nominal explanatory variables 

Multiple regression can also be used to study the simultaneous effect of nominal 
environmental variables or of both quantitative and nominal environmental 
variables. To show how nominal variables may enter the multiple regression 
equation, we express the ANOVA model of Subsection 3.2.1 as a regression 
equation. In the example of Subsection 3.2.1, the nominal variable soil type had 
three classes: clay; peat; sand. We take clay as the reference class and define 
for peat and sand two dummy variables, x2 and x3, the values of which are either 
0 or I. The dummy variable for peat x2 takes the value I when the site is on 
peat and the value 0 when the site is on clay or sand. The dummy variable for 
sand x3 takes the value I when the site is on sand and the value 0 when the 
site is on clay or peat. A site on clay thus scores the value 0 for both dummy 
variables, a site on peat scores the value I for x2 and 0 for x3, etc. The systematic 
part of the model of Subsection 3.2.1 can be written as 

Equation 3.26 

The coefficient b 1 gives the expected response on the reference class clay, the 
coefficient b2 the difference in expected response between peat and clay, and 
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coefficient b 3 the difference between sand and clay. The coefficients b 1, b2 and 
b can be estimated by multiple least-squares regression. For the data of Figure 
3~4, we obtain b 1 = 1.70, b2 1.47, b3 = 0.63. The mean is then on clay b1 
= 1.70 on peat b 1 + b2 = 3.17 and on sand b 1 + b3 = 2.33, as can be checked 
with T~ble 3.1. The AN OVA table of this multiple regression analysis is precisely 
that of Table 3.1. When a nominal variable has k classes, we simply specify 
k- I dummy variables (Montgomery & Peck 1982, Chapter 6). 

The next example concerns the presence-absence of the plant species Equisetum 
fluviatile in fresh water ditches in the Netherlands. We will investigate the eff~ct 
of electrical conductivity (mS m-1) and of soil type (clay, peat, sand) on the spectes 
by logit regression, using the model 

Equation 3.27 

where x 1 is the logarithm of electrical conductivity and x 2 and x 3 are the dummy 
variables defined in the previous example. Here b3 and b4 represent the effect 
of the nominal variable soil type. Figure 3.16 shows that this model consists of 
three curves with different maxima but with identical optima and tolerances. The 
coefficient b3 is the difference between the logits of the maxima of the curves 
for peat and the reference class clay; the coefficient b4 is the analogous difference 
between the curves for sand and clay. We can test whether the maxima of these 
curves are different by comparing the residual deviance of the model with X1 

and x 2 with the residual deviance of Equation 3.27. The difference is a chi-square 
with t

1
wo degrees of freedom if soil type has no effect. This is another example 

of the deviance test. 
To calculate the optimum and tolerance in Equation 3.27, we simply use Equation 

3.11; to calculate standard errors and a confidence interval for the optimum, we 
can use the equations of Section 3.9. Exercise 3.6 may serve as an example. 
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1 og EC 

Figure 3. I 6 Response curves for Equisetum fluviatile fitted by multipl.e logit regress.ion 
of the occurrence of E. fluviatile in freshwater ditches on the loganthm of electncal 
conductivity (EC) and soil type surrounding the ditch (clay, peat, sand). Data from de 
Lange (1972). 
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3.6 Model choice and regression diagnostics 

Many things can go wrong in regression analysis. The type of response curve 
or the error distribution may have been chosen incorrectly and there may be 
outliers that unduly influence the regression. To detect such faults is the purpose 
of regression diagnostics (Belsley et a!. 1980; Cook & Weisberg 1982; Hocking 
& Pendleton 1983). What we can do, for instance, is to plot the residuals of 
a regression against the fitted values or against each of the explanatory varia?les 
and look for outliers and systematic patterns in these plots. The references JUSt 
given deal mainly with regression diagnostics for quantitative response variables. 
Here we focus on presence-absence data and response curves of species. 

One would like to base the shape of a response curve of a species on physiological 
and ecological theory. But there is no generally accepted theory (Austin 1980) 
and therefore no ubiquitously applicable response curve. In the absence of theory, 
one can still proceed by empirical methods and decide upon an applicable curve 
on the basis of many empirical results. Early studies by Gause (1930), Curtis 
& Mcintosh (1951) and Whittaker (1956) showed that monotonic response curves 
are too simple as an ecological response model and that a unimodal model is 
more appropriate. Simple ecological reasoning shows that also bimodal curves 
are a realistic option: a species can be outcompeted near its physiological optimum 
by more competitive species whereas the species may be able to cope with less 
favourable environmental conditions when competition is less. The response curve 
applicable to field conditions is then the result of the physiological response curve 
and competition between species (Fresco 1982). Hill (1977) suggested, however, 
that a good ecological variable, minimizes the occurrence of bimodal species 
distributions. 

When there are no ideas a priori of the shape of the response curve, one can 
best divide the quantitative environmental variable into classes and calculate the 
frequency of occurrence for each class as in Subsection 3.3.1 (Gounot 1969; Guillerm 
1971}. By inspection of the profiles of the frequencies for several species, one 
may get an idea which type of response curve is appropriate. . . . 

Curves have several advantages over frequency profiles for quantitative envir
onmental variables: 
- curves when kept simple, provide through their parameters a more compact 

description than frequency profiles 
there is no need to choose arbitrary class boundaries 

- there is no loss of information because the environmental variable is not divided 
into classes 

- when the Gaussian model applies, statistical tests based on curves have greater 
power to detect that the environmental variable influe~c~s the species tha~ 
the chi-square test based on the frequency profile. Th1s IS because the chi
square test of Subsection 3.3.1 is an omnibus test that is able to detect ~any 
types of deviations from the null hypothesis, whereas the t tests and devmnce 
tests of Subsections 3.3.2, 3.3.3 and Section 3.5 test the null hypothesis against 
a specified alternative hypothesis. . 

A clear disadvantage of curves is that one is forced to choose a model wh1ch 
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Figure 3.17 The change in a fitted Gaussian logit curve by adding an influential point. 
Adding a single presence at pH = 7.6 (indicated by an arrow) to Figure 3.10 considerably 
decreases the estimated maximum and increases the estimated tolerance and optimum. 

may be wrong for the data at hand. For example, is the true response curve 
symmetric? When asymmetry is suspected, one can transform the explan~tory 
variable, for example by taking logarithms, and one can compare the residual 
deviances before and after transformation. The detection of a deviation from a 
supposed response curve may aid our understanding of the relation of the species 
with the environment and in general triggers off a new cycle in the process of 
model building. 

Data points that unduly influence the regression require special attention with 
presence-absence data. For example, adding a presence to Figure 3.10 at pH 
7.6 drastically changes the fitted response curve (Figure 3.17). When there are 
two or more explanatory variables, we suggest you plot the variables in pairs 
as in Figures 3.12 and 3.13 and inspect the plots for outlying presences. When 
such an outlier is spotted, you must attempt to find out whether it is a recording 
error or whether the site was atypical for the conditions you intended to sample, 
and decide after such attempts whether or not to retain the outlier in the data. 
We also suggest that you always try to remove the lowest or highest x where 
the species is present to check that the fitted response stays roughly the same 
(cf. the jackknife technique, Efron 1982). 

3.7 The method of weighted averaging 

This section is devoted to estimation of species indicator values (Ellenberg 1982). 
In terms of response curves, there are two possible definitions of species indicator 
value: it is either the optimum or the centroid of the species response curve. 
These definitions coincide only if the response curve is symmetric. In Subsections 
3.2.3 and 3.5.2, we have shown how an optimum can be estimated by fitting 
a curve or a surface to the species data by regression. In the regression method, 
we have to assume a particular response curve. Ecologists have long used a simpler 
method for estimating indicator values (Ellenberg 1948; 1979). This is the method 
of weighted averaging, which circumvents the problem of having to fit a response 
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curve. When a species shows a unimodal curve against a particular environmental 
variable, the presences of the species will most frequently occur near the optimum 
of the curve. An intuitively reasonable estimate of the indicator value is therefore 
obtained by taking the average of the values of the environmental variable over 
those sites where the species is present. For abundance data, a weighted average 
may be taken in which values are weighted proportional to the species' abundance, 
i.e. 

u' = U'I XI+ Y2 X2 + ... + Yn Xn)f(yi + Y2 + ... + Yn) Equation 3.28 

where 
u' is the weighted average 
YI, y2, ... , Yn are the abundances of the species 
xi, x2, ... , X

11 
the values of the environmental variable at the Sites 1, 2 ... n. 

The weighted average disregards species absences. An unpleasant consequence 
of this is that the weighted average depends on the distribution of the environmental 
variable in the sample (Figure 3.18). Highly uneven distributions can even scramble 
the order of the weighted averages for different species (Figure 3.18). 

Ter Braak & Looman (1986) compared the performance of the methods of 
weighted averaging and of Gaussian logit regression to estimate the optimum 
of a Gaussian logit curve from presence-absence data. Through simulation and 
practical examples, they showed that the weighted average is about as efficient 
as the regression method for estimating the optimum: 
- when a species is rare and has a narrow ecological amplitude 
- when the distribution of the environmental variable among the sites is reasonably 

homogeneous over the whole range of occurrence of the species along the 
environmental variable. 

In other situations, weighted averaging may give misleading results (Exercise 3.2.8). 
Similar conclusions also hold for quantitative abundance data; for quantitative 
abundance data, the weighted average efficiently estimates the optimum of the 
Gaussian response curve, if the abundances are Poisson-distributed and the sites 
are homogeneously distributed over the whole range of the species. 

Despite its deficiencies, the method of weighted averaging is a simple and useful 
method to show up structure in a data table such as Table 0.1 by rearranging 
species and sites on the basis of an explanatory variable. As an example, we 
shall demonstrate this by rearranging the Dune Meadow Data in Table 0.1 on 
the bi!sis of the moisture value of the sites (releves). For each species, we calculate 
its weighted average for moisture, e.g. for A ira praecox 

u' = (2 X 2 + 3 X 5)/(2 + 3) = 3.8 

and arrange the species in order of the values so obtained and the sites in order 
of their moisture value (sites with equal moisture are arranged in arbitrary order). 
The result is shown in Table 3.9. Plantago lanceolata is clearly restricted to the 
driest sites, Ranunculus flam mula to the wettest sites, and Alopecurus genicula/us 
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Figure 3.18 The response curves of imaginary species A and B (a); the occurrence of these 
species in two samples of 80 sites, in which the environmental variable is distributed evenly 
(b) or unevenly (c). The weighted averages are indicated with lines. The two sampling 
designs yield weighted averages that are in reverse order. p = probability of occurence; 
N = number of sites; x = environmental variable. 

to sites with intermediate moisture. In Table 3.9, most of the abundance values 
( > 0) are arranged in a band along the 'diagonal'. The method of weighted averaging 
tends to show up such a diagonal structure in a table, when species show unimodal 
curves for the environmental variable. This idea is extended in Section 5.2. 

3.8 Bibliographic notes 

The least-squares technique dates back to the early nineteenth century with 
the work of K.F. Gauss. The principle of maximum likelihood was founded by 
R.A. Fisher in the 1920s. The generalized linear model (GLM) was introduced 
by Neider & Wedderburn (1972) and made it easy to fit a major class of non
linear models to data. Among the many statistical textbooks on least-squares 
regression are Draper & Smith ( 1981 ), Seber ( 1977), Montgomery & Peck (1982) 
and Mosteller & Tukey (1977). Useful more general statistical texts for biologists 
are Parker (1979), Sokal & Rohlf ( 1981) and Snedecor & Cochran ( 1980). Dobson 
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Table 3.9 Weighted averaging used for rearranging species and sites 
in Table 0.1. The sites (columns) are arranged in order of moisture 
and the species (rows) in order of their weighted average (u*) with 
respect to moisture. Species abundance is printed as a one-digit 
number, a blank denoting absence. Site identification numbers are 
printed vertically. For abbrevations of species names see Table 0.1. 

species sites 
11 11 1 111112 

12567183407828345680 u* 
26 Tri pra 252 1. 0 
18 Pla lan 55533 32 1 .2 
28 Vic Lat 21 1 1.3 

1 Rch mil 13222 42 1.4 
6 Bel per 32 2222 1.5 
7 Bro hor 42 2 34 1.5 

23 Rum ace 563 22 1. 7 
17 Lol per 7526672656 2 4 1. 7 

8 Cir arv 2 2.0 
11 Ely rep 444 44 6 2.0 
18 Po a pra 442344354414 42 2.0 

5 Rnt odo 432 44 4 2. 1 
20 Po a tri 27645 654 5448 2 2.6 
16 Leo aut 5333552232223222 62 2.6 
27 Tri rep 525232216 332261 2 2.7 
28 Bra rut 26246222 242 4434 2.8 
13 Hyp rad 2 2 5 3.4 
24 Sag pro 2 5 2422 3 3.5 

4 Rlo gen 2 72 3855 4 3.7 
15 Jun buf 2 44 3 3.8 

3 Rir pra 2 3 3.8 
25 Sal rep 3 35 3.8 

2 Rgr sto 48 3445447 5 4.1 
14 Jun art 4 4 33 4 4.8 
8 [he alb 1 5.0 

10 Ele pal 4 458 4 5.0 
12 Emp nig 2 5.0 
21 Pot pal 22 5.0 
22 Ran fla 22222 4 5.0 
30 Cal cus 4 3 3 5.0 

MOISTURE 11111112222445555555 

(1983) and McCullagh & Neider (19~3) provide an introduction to GLM. 
A major contribution to the analysis of species-environment relations was made 

by Whittaker (1956; 1967). His direct gradient analysis focused on response curves 
and surfaces of species with respect to a complex of environmental variables 
that chan'ged gradually in geographic space. The term 'gradient' therefore the~ 
had a geographical meaning, but in recent use the term is equivalent to 'envir
onmental variable'. Whittaker used simple smoothing methods to fit the curves 
and surfaces. Following Gleason (1926), Ramensky (1930) and Gause (1930), he 
stressed that species react 'individualistically' to environmental variables and that 
;,esponse surfaces o~ species ar~ often unimodal. Whittaker's view opposed the 
mtegrated-commumty hypothests' of Clements (1928), which viewed communities 
of species as organisms of a higher scale. The integrated-community hypothesis 

64 

stimulated much work on succession and on the interrelations between species, 
disregarding environmental variables. Conversely, the individualistic concept (in 
its most extreme form, at least) disregards direct relations between species. 
Mcintosh (1981) discussed these apparently contrasting views. Fresco (1982) 
attempted to incorporate species-environment and inter-species relations into a 
single regression equation. 

Whittaker (1956; 1967) dealt with gradients, i.e. ordinal or quantitative en
vironmental variables. Gounot (1969) and Guillerm (1971) proposed methods 
similar to that of Subsection 3.3.1, which are applicable for presence-absence 
species data and nominal environmental variables. They divided environmental 
variables into classes when the variables were quantitative. Our approach of using 
logit regression makes it possible to deal with quantitative and nominal variables 
in a single analysis. 

An early ecological example of fitting sigmoid curves to presence-absence data 
is found in Jowett & Scurfield (1949). They applied probit analysis (Finney 1964), 
an alternative for logit regression that usually gives similar results. Polynomial 
least-squares regression was advocated by Yarranton (1969; 1970). He noticed 
the problem of absences of species (zero abundance values). Austin (1971) stressed 
the power of regression analysis and gave several examples from plant ecology 
where abundance data were first transformed logarithmically and then analysed 
by least-squares regression using parabolas and second-order response surfaces. 
Alderdice (1972) explained and applied second-order response surfaces in marine 
ecology. Gauch & Chase (1974) provided a computer program to fit the Gaussian 
response curve by least squares to ecological data that might include zero 
abundances. Their approach has become outdated with the advent of GLM. Austin 
et al. (1984) showed the usefulness of GLM in direct gradient analysis, using 
log-linear regression and logit regression, with second-order polynomials as linear 
predictors. We believe that GLM (Section 3.5) should become a standard tool 
in applied ecology. Response surfaces fitted by GLM are particularly useful in 
models simulating the impact of various options in environmental management. 

3.9 Standard errors of estimated optimum and tolerance; confidence interval for 
the optimum 

We denote the variance of the estimates of bi and b2 in Equations 3.9, 3.17, 
3.20 or 3.24 by vii and v22 and their covariance by v12• Using Taylor expansion, 
we calculate the approximate variance of the estimated optimum and tolerance: 

var (u) =(vii+ 4 u vi 2 + 4 u2 v22)/(4 b2
2) 

var (I) = vnf ( -8 b2
3) 

Equation 3.28 

Equation 3.29 

An approximate 100(1 - a)% confidence interval for the optimum is derived 
from Fiellers theorem (Finney 1964, p.27-29). Let Ia be the critical value of a 
two-sided I test at chosen probability level a with n - 3 degrees of freedom, 
where n is the number of sites. For example, 1 = 2.00 for a 95% confidence 
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interval and 63 sites. Calculate 

Equation 3.30a 

and 

Equation 3.30b 

Equation 3.31 

where the symbol ± indicates addition and subtraction in order to obtain the 
lower and upper limits of the confidence interval, respectively. If b2 is not 
significantly different from zero (g > 1), then the confidence interval is of infinite 
length and, taken alone, the data must be regarded as valueless for estimating 
the optimum. 

3.10 Exercises 

Exercise 3.1 Straight line regression 

In a study of the impact of acid rain on diatoms, van Dam et a!. (1981) collected 
data on diatom composition and water chemistry in Dutch moorland pools. For 
each sample, a total of 400 diatomaceous frustules were identified under a 
microscope. The numbers of frustules of the species Frustulia rhomboides var. 
saxonica and the relative sulphate concentrations S,,1 = [SOi·]j ([CJ-] + [SOi· 
] + [HC03·]) in the 16 samples taken in 1977 and 1978 were as follows (van 
Dam et a!. 1981, Tables 2 and 5): 

pool Y2 B6 B3 B4 VI B5B B8 Bl D6 B7 B2 D3 D2 D1 D5 D6 
Frustulia 
count 0 0 14 3 0 5 6 21 62 26 14 48 97 99 28 202 
srel 0. 78 0.64 0.69 0. 70 0.64 0. 77 0. 73 0. 77 0.58 0.44 0.44 0.37 0.23 0.19 0.31 0.23 

Exercise 3.1.1 Construct a graph of the data, plotting log, [(Frustulia count)+ 
I] on the vertical axis. Note that the relation looks linear. 
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Exercise 3.1.2 Fit a straight line to the data taking log, (Frustulia count+ 1) as 
the response variable and the relative sulphate concentration as the expl~natory 
variable. Use a pocket calculator or a computer for least-squares regresswn to 
verify the following results. 

estimate s.e. 

constant bo 5.848 0.806 7.26 

s,el bl -5.96 1.41 -4.22 

ANOVA table 
d.f. s.s. m.s. 

regression 1 24.34 24.340 

residual 14 19.11 1.365 

total 15 43.45 2.897 

Exercise 3.1.3 What are the systematic part and the error part of the _response 
model fitted in Exercise 3.1.2? What are the fitted value and the restdual for 

Pool B2? 

Exercise 3.1.4 What are the residual sum of squares, the residual variance, the 
residual standard deviation and the fraction of variance accounted for? How many 
degrees of freedom are there for the residual sum of squares? 

Exercise 3.1.5 Calculate a 95% confidence interval for the regression coefficient 
b

1
• Is the estimate of b 1 significantly (P < 0.05) different from 0? 

Exercise 3.1.6 Estimate the expected responses when the relative con~entrations 
of sulphate equal 0.25, 0.50 and 0.75. Calculate the 95% confid~nce mterval of 
each of these expected responses. The standard err?rs of the e~ttmates are 0.49, 
0.30 and 0.42, respectively. Back-transform the estimates obtamed to counts of 

Frustulia. 

Exercise 3.1.7 Calculate 95% prediction intervals when the relative sulphate 
concentrations are equal to 0.25, 0.50 and 0.75. 
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Exercise 3.2 Parabola, Gaussian response curve and weighted averaging 

In a study aimed at reconstructing past temperatures of the sea-surface from 
fossil distributions of Radiolaria, Lozano & Hays (1976) investigated the relation 
between different taxa of Radiolaria and sea-surface temperature in present-day 
samples. The following data extracted from their Figure 11 concern the abundance 
(%) of Spongotrochus glacialis and February sea-surface temperature (temp., 0 C) 
at 34 sites in the Atlantic and Antarctic Oceans. 

site 1 2 3 4 5 6 7 8 9 10 11 12 
abundance 12 14 13 22 18 19 7 8 11 15 12 14 
temp 0.8 1.1 1.6 1.8 1.7 2.0 1.6 1.9 2.0 2.5 3.7 4.2 

site 13 14 15 16 17 18 19 20 21 22 23 24 
abundance 16 21 35 30 34 48 47 63 54 62 56 52 
temp. 4.1 5.8 6.1 6.6 7.9 10.2 11.0 11.9 12.8 14.8 15.9 18.1 

site 25 26 27 28 29 30 31 32 33 34 
abundance 41 38 30 18 25 35 37 38 42 41 
temp. 16.9 17.1 18.0 18.5 20.0 21.0 19.4 19.8 19.0 21.6 

Exercise 3.2.1 Construct a graph of the data, plotting the abundance on the 
vertical axis. Note that the relation looks unimodal. Plot also the logarithm of 
abundance against temperature. 

Exercise 3.2.2 Use a computer program for least-squares regression to verify 
the following results. Fitting a parabola to the logarithm of the abundances gives: 

estimate s.e. t 
constant bo 2.119 0.133 15.95 
temp. bJ 0.2497 0.0356 7.01 
temp. squared bz -0.00894 0.00164 -5.46 

ANOVA table 
d.f. s.s. m.s. 

regression 2 9.42 4.7101 
residual 31 3.06 0.0988 
total 33 12.48 0.3783 

Exercise 3.2.3 Estimate the expected responses when the temperatures are 5, 
10, 15 and 20 °C, calculate the optimum, tolerance and maximum of the fitted 
parabola and use the results to sketch the fitted parabola. 

Exercise 3.2.4 What is the residual standard deviation and the fraction of variance 
accounted for? 
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Exercise 3.2.5 Calculate a 95% confidence interval for the regression coefficient 
b

2
• Would a straight line be statistically acceptable for these data? 

Exercise 3.2.6 Calculate a 95% confidence interval for the optimum using Equation 
3.31. Here one needs to know also that covariance between the estimates of b1 

and b2 equals -0.00005704; the variances required can be obtained from the table 
of regression coefficients. Hint: write a computer program for the calculations 
required in order to avoid lengthy hand-calculation. 

Exercise 3.2. 7 Back-transform the expected responses of Exercise 3.2.3 to 
abundance and sketch the fitted curve. 

Exercise 3.2.8 Calculate (after reading Section 3.7) the weighted average of 
Spongotrochus with respect to temperature, using the abundances and, a second 
time, using log abundances. Explain the difference from the optimum estimated 
above. Is the difference large? 

Exercise 3.3 Logit link function 

Verify the equivalence of Equations 3.15 and 3.16 by showing that 
loge [pf(l- p)] = c if and only if p = (exp c)/(1 + exp c). 

Exercise 3.4 Chi-square test and logit regression 

A sample of 160 fields of meadow is taken to investigate the occurrence of 
the grass species Elymus repens in relation to agricultural use (hayfield or pasture). 
The data, based on the study of Kruijne et a!. ( 1967), are summarized in the 
following 2 X 2 table of number of fields. 

E. repens agricultural use 

hayfield pasture total 
present 12 96 108 
absent 16 36 52 
total 28 132 160 

Exercise 3 .4.1 Estimate the probability of occurrence of E. repens in hayfield 

and in pasture. 

Exercise 3.4.2 Is there evidence that the probability of occurrence in hayfield 
differs from that in pasture? Apply here the chi-square test of Subsection 3.3.1, 
using a significance level of 5%. 
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Exercise 3.4.3 Instead of the chi-square test we can use logit regression of the 
presences and absences of E. repens in the 160 fields on the nominal explanatory 
variable agricultural use. Agricultural use has two classes in this problem and 
therefore we define a single dummy variable USE, which takes the value I if 
the field is a pasture and the value 0 if the field is a hayfield. A computer program 
for logit regression gave the following output with the response variable 
presence-absence of E. repens: 

estimate s.e. 

constant co -0.28 0.38 -0.74 
USE cl 1.27 0.42 3.02 

d.f. deviance mean deviance 
residual 158 192.9 1.221 

The model corresponding to this output is loge [pj(! - p)] = c0 + c1 X USE. 

Exercise 3.4.3.1 Calculate from the output the estimates for the probability of 
occurrence of E. repens in hayfield and in pasture. Hint: use Exercise 3.3. Compare 
the estimates with those of Exercise 3.4.1. 

Exercise 3.4.3.2 Show by 1 test whether the probability of occurrence in hayfield 
differs from that in pasture. Compare the conclusion with that of Exercise 3.4.2. 

Exercise 3.4:3.3 The deviance corresponding to the model loge [pj(l - p)] = 
c equals 201.7 with 159 degrees of freedom. Apply the deviance test instead of 
the 1 test of the previous exercise. 

Exercise 3.5 Gaussian logil regression 

The acidity (pH) of the fields was recorded also for the sample of the previous 
exercise. Spatial heterogeneity in acidity was disregarded; pH was the mean of 
several systematically located points in the field. To investigate the effect of acidity 
on the occurrence of E. repens, a Gaussian logit regression was carried out. The 
results were: 

estimate s.e. 

constant bo -57.26 15.4 -3.72 
pH bl 19.11 5.3 3.61 
pW b2 -1.55 0.44 -3.52 

d.f. deviance mean deviance 
residual !57 176.3 1.123 
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Exercise 3.5.1 At what pH did E. repens occur with the highest probability? 
Calculate also the tolerance and the maximum probability of occurrence. 

Exercise 3.5.2 Calculate from the output the estimated probabilities of occurrence 
of E. repens at pH 4.5, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 and use the results to sketch 
the response curve of E. repens against pH. 

Exercise 3.5.3 Is the estimated Gaussian logit response curve significantly different 
(P < 0.05) from a sigmoid response curve; hence, is the optimum significant? 
Hint: use a one-tailed I test. 

Exercise 3.6 Multiple logil regression 

When considered separately, agricultural use and acidity appear to influence 
the occurrence of E. repens in fields (Exercises 3.4 and 3.5). Hayfield and pasture 
differ, however, in acidity; hayfields tend to be more acid than pastures. It is 
therefore of interest to investigate whether this difference in acidity between 
hayfields and pastures can explain the difference in probability of occurrence of 
E. repens between hayfields and pastures. This problem can be attacked by multiple 
(logit) regression. We fitted the model 

to the data and obtained the following results: 

estimate s.e. 

constant co -57.82 17.10 -3.38 

USE cl -0.04 0.57 -0.07 

pH bl 19.30 5.81 3.32 
pH2 b2 -1.56 0.49 -3.18 

d.f. deviance mean deviance 

residual !56 176.2 1.129 

Exercise 3.6.1 Calculate the estimated probabilities of occurrence in hayfields 
and pastures for pH 5 and for pH 6. Calculate also the optimum pH and the 
maximum probabilities of occurrence in hayfields and pastures, and the tolerance. 
Compare the results with those of Exercise 3.5.1 and 3.5.2, and sketch the response 
curves. 

Exercise 3.6.2 Show by a 1 test whether the probability of occurrence in hayfields 
differs from that in pastures after correction for the effect of acidity. Can acidity 
account for the difference found in Exercise 3.4.2 
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Exercise 3.6.3 Use the deviance test instead of the t test in Exercise 3.6.2. Does 
the conclusion change? 

Exercise 3.6.4 Show by a deviance test whether acidity has an effect on the 
probability of occurrence of E. repens after correction for the effect of agricultural 
use. Are the variables acidity and agricultural use substitutable in the sense of 
Subsection 3.5.3? 

3.11 Solutions to exercises 

Exercise 3.1 Straight-line regression 

Exercise 3.1.3 The systematic part is Ey = b0 + b1 S,e1 and the error part is 
that the error (y - Ey) follows a normal distribution with mean at zero and a 
variance that does not depend on Srel· Pool B2 has a count of 14 (hence, y = 
2.71) and S,e1 = 0.44; hence, the fitted value is 5.848 - 5.96 X 0.44 = 3.23 and 
the residual is 2.71 - 3.23 = -0.52. The fitted number of Frustulia frustules is 
thus exp (3.23) 1 = 25 - 1 = 24. 

Exercise 3.1.4 From the ANOVA table, we obtain the residual sum of squares 
19.11, the residual variance 1.365, the residual standard deviation Jl.365 = 1.17 
and the fraction of variance accounted for is I - (1.365/2.897) = 0.529. The 
residual sum of squares has 14 degrees of freedom. 

Exercise 3.1.5 In Equation 3.2 with t0.05(14) = 2.145, we insert the estimate for 
b 1 and its standard error and obtain a lower bound of -5.96 - (2.145 X 1.41) 
= -8.98 and an upper bound of -5.96 + (2.145 X 1.41) = -2.94. The 95% confidence 
interval for b1 is therefore (-8.98, -2.94). The value 0 does not lie in this interval. 
Alternatively, the t for b 1 ( -4.22) is greater in absolute value than the critical 
t (2.145); hence, the estimate of b 1 is significantly (P < 0.05) different from 0. 

Exercise 3.1.6 In a pool with S,e1 = 0.25 the expected response is estimated by 
5.848 - 5.96 X 0.25 = 4.36. The standard error of this estimate is 0.49 and the 
95% confidence interval is therefore (4.36 - 2.145 X 0.49, 4.36 + 2.145 X 0.49) 
= (3.31, 5.41). For Srel = 0.50 and 0.75 the estimates are 2.87 and 1.38, with confidence 
intervals of (2.23, 3.50) and (0.47, 2.29), respectively. Notice that the interval is 
shortest near the middle of the interval of the relative sulphate values actually 
sampled. For S,e1 = 0.25, 0.50, 0.75 back-transformation to counts gives the estimates 
exp (4.36)-1 = 77, 17 and 3, respectively. 

The latter values estimate the median number of frustules at the respective 
relative sulphate concentrations, and not the expected number of frustules. We 
assumed that the log-transformed data do follow a normal distribution. In the 
normal distribution, the mean is equal to the median (50-percentile) and trans
formations do not change percentiles of a distribution. Back-transforming the 
limits of the 95% confidence intervals gives 95% confidence intervals for the median 
counts. For S,e1 = 0.25 this interval is (26, 223). 
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Figure 3.19a Parabola (solid line) fitted by least-squares regression of log-transformed relative 
abundance of Spongotrochus glacialis (•) on February sea-surface temperature (temp). 95% 
confidence intervals (dashed curve) and 95% prediction intervals (dotted line) are shown. 
Data from Lozano & Hays (1976). 
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Figure 3.19b Gaussian response curve with 95% confidence and 95% prediction intervals 
obtained by back-transforming the curves of Figure 3.19a. Vertical axis: abundance (%) 
of Spongotrochus g/acialis. Horizontal axis: February sea-surface temperature. 
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Exercise 3.1.7 With Equation 3.3 and S,e1 = 0.25 we obtain the interval 4.36 
± 2.145 X .J (1.172 + 0.492) = 4.36 ± 2.145 X 1.27 = (1.63, 7.08). 
Back-transforming to counts shows that 95% of the counts are expected to lie 
between 4 and 1187. The latter value is nonsensical as the maximum count is 
400. 

For Srel = 0.50 and 0. 75 we obtain 95% prediction intervals for the transformed 
counts of (0.28, 5.46) and ( -1.28, 4.05), respectively. 

Exercise 3.2 Parabola, Gaussian response curve and weighted averaging 

Exercise 3.2.1 See Figure 3.19a,b. 

Exercise 3.2.3 The expected response at temp. = 5 is estimated by 
2.119 + 0.2497 X 5 - 0.00894 X 52 = 3.14. For temp. = 10, 15 and 20 the 
estimates are 3. 72, 3.85 and 3.54, respectively. It is of interest to note that the 
standard errors of the estimates are 0.07, 0.10, 0.09 and 0.11 at temp. 5, 10, 
15 and 20, respectively. 

\Yith Equations 3.11 a and 3.11 b, the optimum is estimated by u = -b
1
/ 

(2 b2) = -0.2497/ ( -2 X 0.008?4) = 1~ that the optimum temperature is 
14.0 oc and the tolerance by t = l/y(-2 b2) = 7.48, so that the tolerance of 
temperature is 7.48 oc. The maximum of the parabola (Figure 3.9a) is estimated 
by 2.119 + 0.2497 X 14.0-0.00894 X 14.02 = 3.86. 

Exercise 3.2.4 The residual standard deviation is .J0.0988 = 0.314 and the fraction 
of variance accounted for is 1 - (0.0988/0.3783) = 0.739, using the results of 
the ANOVA table. 

Exercise 3.2.5 With Equation 3.2 and t0.05(31) = 2.04, a 95% confidence interval 
for b2 is (-0.00894 - 2.04 X 0.00164, 0.00894 + 2.04 X 0.00164) = (-0.0122, 
-0.0056). The estimate for b2 is thus significantly (P < 0.05) different from 0, in 
agreement with the 1 of -5.46; hence, the null hypothesis thast the relation is a 
straight line (b2 = 0) is rejected in favour of a parabola (b2 op 0). A straight line is 
thus statistically unacceptable for these data. 

Exercise 3.2.6 A 95% confidence interval for the optimum temperature IS 

(12.8 °C, 16.2 °C). 

Exercise 3.2.7 The median abundances of Spongotrochus at temp. = 5, 10, 15 
and 20 are exp (3.14) = 23, 41, 47 and 34, respectively. The fitted Gaussian curve 
with the data points and 95% confidence and 95% prediction intervals (obtained 
also by back-transformation) is plotted in Figure 3.19b. 
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Exercise 3.2.8 The weighted average is (12 X 0.8 + 14 X 1.1 + ... + 41 
X 21.6)/ (12 + 14 + ... + 41) = 12.7, so that the weighted average temperature 
is 12.7 °C. 

With log-transformed abundance data the weighted average temperature is 
smaller, namely 11.0 °C. Both values are smaller than the optimum (14.0 °C) 
estimated by regression, because the temperatures are not homogeneously dis
tributed over the range of the species; in particular, the lower temperatures are 
over-represented and the optimum lies at the higher end of the temperature interval 
that was actually sampled. So the weighted average estimator is biased. The 
difference is large in a statistical sense: the weighted averages fall outside the 
95% confidence interval for the optimum calculated in. Exercise 3.2.6. 

Exercise 3.3 Logit /ink function 

loge [p/(1- p)] = c- pf(I- p) = exp c 
- p = (exp c) (I - p) = exp c- p exp c- p + p exp c = exp c. 
- p(I + exp c)= exp c- p = (exp c)/ (I+ exp c). 

The arrows hold true also in the reverse direction; hence, the equivalence. 

Exercise 3.4 Chi-square test and logit regression 

Exercise 3.4.1 The estimated probability of occurrence is: in hayfield 12/28 = 
0.43; in pasture 96/132 = 0.73. 

Exercise 3.4.2 When the probability of occurrence in hayfield equals that in 
pasture, this probability is estimated by 108/160 = 0.675. Then, we expect that 
out of 28 fields 0.675 X 28 = 18.9 fields contain E. repens, and 28 - 18.9 = 
9.1 fields do not contain E. repens. 

With 132 fields (pastures) the expected numbers are: 89.1 with E. repens and 
42.9 without E. repens. Inserting the observed and expected numbers in the equation 
for chi-square gives (12 - 18.9)2/18.9 + ... + (36 - 42.9)2/42.9 = 9.39 which 
is much greater than the critical vaiue at the 5% significance level of a chi-square 
distribution with (2 - I) X (2 - I) = I degree of freedom: xJ.05 (I) = 3.841. 
The conclusion is that there is strong evidence (P < 0.01) that the probability 
of occurrence in hayfield differs from that in pasture. 

Exercise 3.4.3.1 For hayfield the model reads: loge [pf(I - p)] = c0 because 
USE = 0 for hayfields. c0 is estimated by -0.28; hence the estimated probability 
of occurrence is p = exp (-0.28)/[1 + exp (-0.28)] = 0.43. For pastures, the 
model reads: loge [pf(I p)] = c0 + c1 because USE = I for pastures. 
c0 + c1 is estimated as -0.28 + 1.27 = 0.99, which gives p = exp 0.99/(1 + 
exp 0.99) = 0.73. The estimates equal those of Exercise 3.4.1, because the regression 
model simply specifies two probabilities, one for hayfields and one for pastures. 
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Exercise 3.4.3.2 The estim~te of the coefficient c1 of USE differs significantly 
(P < 0.05) from 0, t = 3.02 bemg greater than t0 05(158) = 1.98· hence the estimated 
probabilities differ significantly. The conclusi~n is identicai to th~t of Exercise 
3.4.2; we applied a different test for the same purpose. 

Exercise 3.4.3.3 The difference in deviance between the model with and without 
the variable USE is 201.7 - 192.9 = 8.8, which is to be compared with a chi
square distribution with one degree of freedom. 

Exercise 3.5 Gaussian logit regression 

Exercise 3.5.1 From Equation 3.lla, the estimated optimum of pH is u = -19.11/ 
(-2 X 1.55) = 6.16. 

~ith u = 6;16 in Equation 3.17, the maximum probability of occurrence is 
estimated by p = (exp 1.641)/(1 + exp 1.641) = 0.84, because -57.26 + 19.11 
X 6.16 - 1.55 X 6.162 = 1.641. The tolerance is t = 0.57 (Equation 3.11 b). 

Exercise 3.5.2 Inserting pH = 4.5, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 in Equation 
3.17, we obtain estimated probabilities of 0.07, 0.39, 0.72, 0.83, 0.81, 0.64 and 
0.25. 

Exercise 3.5.3 The estimate of b2 is significantly (P < 0.05) smaller than 0 because 
the t ( -3.52) is much greater in absolute value than the critical value ~f a one
tailed t test (1.65. at P ~ ~.05, one-tailed); hence, the estimated Gaussian logit 
response curve d1ffers s1gmficantly from a sigmoid response curve so that the 
optimum is significant. ' 

Exercise 3.6 Multiple logit regression 

Exercise 3.6.1 In hayfield (USE = 0) with pH = 5: loge [p((l - p)] = -57.82 
+ (19.3~ X 5) - (1.56 X 52

) = -0.32, which gives fi = 0.421. In pasture (USE 
~_I) With pH = 5: loge [p((l - p)] = -0.32 - 0.04 = -0.36, which gives 
p-0.411. 

For pH = 6, the estimated probabilities of occurrence are 0.860 and 0.855 
in hayfield and pasture, respectively. The optimum pH is now estimated as -19.30/ 
(-2 X 1.56) = 6.18 and the tolerance as 0.57, identical for hayfields and pastures. 
The maximum yrobabilitie.s of occurrence are 0.867 and 0.862 in hayfield and 
pasture, respectively. The d1fference between the estimated curves is small (Figure 
3.20), the difference from the curve estimated in Exercise 3.5 is small too. 
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Figure 3.20 Gaussian logit curves of probability of occurrence of Elymus repens in hayfield 
(solid line) and pasture (broken line) against acidity (pH), as fitted by multiple logit regression. 
The probability of occurrence of Elymus repens at pH= 5 is estimated at 0.421 in hayfield 
and 0.411 in pasture; the difference is not statistically significant. Data from Kruijne et 
al. (1967). 

Exercise 3.6.2 The t of the coefficient c1 of USE is much smaller than the critical 
t at 5%. Therefore there is no evidence from these data that the probability of 
occurrence in fields with the same pH differs between hayfields and pastures. 
Acidity can therefore account for the overall difference between hayfields and 
pastures found in Exercise 3.4. The test result is not surprising after our observation 
in the previous exercise that the difference between the estimated response curves 
is small. 

Exercise 3.6.3 The deviance of the model with acidity and agricultural use is 
176.2; dropping agricultural use (variable USE) gives us the model with acidity 
only (Exercise 3.5), whose deviance is 176.3. The change in deviance (0.1) is much 
smaller than the critical value of a chi-square distribution with one degree of 
freedom, the change in the number of parameters between the models being one. 
The conclusion is the same as in Exercise 3.6.2. 

Exercise 3.6.4 The deviance of the model with acidity and agricultural use is 
176.2; dropping acidity (pH and pH2) gives us the model with agricultural use 
only (Exercise 3.4), whose deviance is 192.9. The change in deviance is 16.7, which 
must be compared with a chi-square distribution with two degrees of freedom: 
x6,05 (2) = 5.99. 

The conclusion is that acidity has an effect after correction for the effect of 
agricultural use. Acidity and agricultural use are not substitutable in the sense 
of Subsection 3.5.3; agricultural use cannot replace acidity in explanatory power, 
as judged by the deviance tests. 
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