
4 Calibration 

C.J.F. ter Braak 

4.1 Introduction 

In Chapter 3.' we used regr~ssion analysis to analyse the way in which species 
respond to envtronme~tal vanables .. The goal of regression analysis is to express 
the response of a spectes as a functwn of one or more environmental variables 
In this c~apter, we con~ider the reverse problem: namely how to express value~ 
of an envtronmental vanable as a function of species data. This function is termed 
the 'transfer function' or 'biotic index' and its construction is termed calibration 
The cali.br~tion pr?blem differs from the regression problem, because the causai 
and sta.ttsttcal relatwns bet~een species and environment are asymmetric. 

It might be thought easter to measure environmental variables at a site than 
to infer their values from the species that occur there. But often it is not. For 
ex~mple, t?tal values o~er ti~e may be required; repeated measurements are costly, 
while spectes automatically mtegrate environmental conditions over time. This 
!s one of the ideas behind ~iolo?ical evaluation of water quality and bio-monitoring 
m general. There are also Situatwns where it is impossible to measure environmental 
~ariables by dire?t means, whereas a biological record does exist. An example 
ts the reconstructiOn of past changes in acidity (pH) in lakes from fossil diatoms 
from successive strata of the bottom sediment. 

An indi?ator species is ~d.eally a species that always occurs under a unique 
set of environmental condttwns and does not occur elsewhere. Such an ideal 
indicator species indicates its unique set of environmental conditions without error 
Ideal. indicato~ species do not exist, however. Species with narrow ecologicai 
am~htudes exist, but such species are not always present in their specific 
envtronment and many of th~m have a low probability of occurrence there, partly 
beca.use we do not know thetr .sp~cific environmental requirements fully. If such 
spec~es occur so~ewhere, they I.ndtcate the environmental conditions at that place 
precisely, but thetr absence provtdes hardly any information about the environment 
Th!s is :a major reaso~ to u~e the whole community composition at a site fo; 
cahbratwn purposes, mcludmg species with wider ecological amplitudes. In 
practice, .'community co~position' is restricted to mean species of a particular 
taxonomtc group, e.g. dtatoms or vascular plants. Our definition of indicator 
~pe~i~s is broade~ than th~ one used in standard bioassay applications, where 
mdtvtduals of a smgle spectes are put on test to determine the amount of some 
drug or pollutant. Environmental calibration can however be considered as a 
multi-species form of bioassay. ' ' 

In this chapter, we will introduce three calibration methods, one based on 
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response· functions, one on indicator values and one on inverse regression. In 
the first method (Section 4.2), the response functions can be of any type, whereas 
in the other two methods particular response curves are assumed, unimodal curves 
in the one based on indicator values (Section 4.3) and straight lines in the inverse 
regression method (Section 4.4). 

4.2 Maximum likelihood calibration using response functions 

4.2.1 Introduction 

Maximum likelihood calibration is based on response functions of species against 
environmental variables. We shall assume that these functions are known, i.e. 
they have already been estimated from an appropriate and sufficiently large set 
of data by regression analysis (Chapter 3). (This set of data is termed the training 
set.) For each set of values of environmental variables, we thus know what the 
probability is of observing a particular species composition. What we want is 
to predict the set of values of environmental variables at a particular site from 
its species composition. When the maximum likelihood principle is used, the 
prediction is the set of values that would give the maximum probability of observing 
that particular species composition, if that set of values were the true condition 
(cf. Subsection 3.3.2). This principle is illustrated in Subsection 4.2.2, together 
with the concept of a prior distribution and the loss in efficiency when ignoring 
possible correlations between species. In Subsection 4.2.2, we consider the problem 
of predicting a nominal environmental variable from presence-absence species 
data. This type of calibration is also known as discriminant analysis. How to 
discriminate between classes of a nominal variable by using abundance data will 
be discussed in the next chapter, in Subsection 5.5.5. In Subsection 4.2.3, the 
maximum likelihood principle is used to predict values of a quantitative envir­
onmental variable, first from presence-absence species data and then from 
abundance data. 

One is commonly interested in a single environmental variable, whereas the 
species might respond to many more environmental variables. This problem can 
be solved in maximum likelihood calibration by using response functions of all 
the important environmental variables; the principles remain the same. But the 
response functions have first to be estimated from data by regression (Chapter 
3), and the size of the training set of data will put a limit on the number of 
environmental variables that can be taken into account. 

4.2.2 Predicting a nominal environmental variable 

As an example, suppose we want to estimate the unknown value of soil type 
from the presence of a particular species. Let us assume that soil type has three 
classes, clay, peat and sand, and that the probabilities that the species occurs 
on a field of a given size are 0.1 for clay, 0.2 for peat and 0.4 for sand. If this 
species is encountered, then the maximum likelihood estimate of the soil type 
is sand, because sand is the soil type on which the species occurs with the highest 
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probability. ~f the s~ecies is absent, the maximum likelihood estimate is clay, 
because clay IS the soil type where the species is absent with the highest probability. 
These are the rules of assignment or classification. When the species is present, 
the proportion of wrong assignments is (0.1 + 0.2)/(0.1 + 0.2 + 0.4) = 0.43. 
If the species is absent, the proportion of wrong assignments is (0.8 + 0.6)/ (0.9 
+ 0.8 + 0.6) = 0.61, a small reduction compared to random assignment, so then 
the assignment procedure is not very effective; note also that the rules defined 
above never assign to soil type peat. 

In these rules, it was implicit that clay, peat and sand occurred equally frequently. 
This may not be so. If we know beforehand that soil type clay is encountered 
three times as often as peat or sand, then we could bet on the soil type being 
clay without any further information. This knowledge about the soil types a priori 
is termed the 'prior distribution', which is 0.6, 0.2, 0.2 in the example. If we 
also know that the species is present in a particular field, the probability that 
its soil type is clay is (apart from a normalizing constant) the product of the 
prior probability of clay and the probability that the species occurs on clay, that 
is: 0.6 X 0.1 = 0.06, compared to 0.2 X 0.2 = 0.04 for peat and 0.2 X 0.4 = 
0.08 for sand. From these values, we obtain 'posterior probabilities' by dividing 
these values by their sum, 0.06 + 0.04 + 0.08 = 0.18 in the example, so that 
the posterior probabilities for clay, peat and sand are 0.33, 0.22 and 0.44, 
respectively. The maximum of these probabilities is 0.44 for sand. The extra 
information that the species is present in the field changes our preference a priori 
from clay to sand. If the prior distribution is, however, 0.8, 0.1 and 0.1, then 
the maximum likelihood estimate is always clay, even if the species is present 
at the field. It is therefore important for the construction of the assignment rule 
for what frequencies the soil types are expected to be encountered on when the 
assignment rule will be used. The prior distribution is said to be uniform when 
the frequencies are equal. This distribution is often assumed when the true 
distribution is unknown. Many of the controversies in the statistical literature 
about calibration concern the question whether it is prudent to use the distribution 
of the fields in the training set as a prior distribution (Brown 1979). Rules based 
on the maximum likelihood principle have the attractive property that they 
minimize the number of wrong assignments (misclassifications). As a consequence, 
each wrong assignment is counted equally. There are, however, situations where 
one wrong assignment (e.g. assignment to peat instead of to clay) has more serious 
consequences than another (e.g. assignment to peat instead of to sand). This aspect 
of costs can be incorporated in the construction of assignment rules (e.g. 
Lachenbruch 1975). 

In the following, we will assume equal costs for wrong assignments and a uniform 
prior distribution unless explicitly stated otherwise. So environmental conditions 
will be predicted on the basis of the response function of the species only. 

We now extend the example. Apart from the species of that example, Species 
A, there is a second species, Species B, that only occurs rarely on clay or peat 
(p = 0.01) but often on sand (p = 0.98). If a field only contains Species A, 
then the absence of Species B indicates that its soil type is not likely to be sand; 
peat is then the most logical bet. Peat is also the maximum likelihood estimate 
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if the resp~nses of the species are independent; the probabilities of 'Species A 
present and Species B absent' for the three soil types are 0.1 X 0.99 = .0.099, 
0.198 and 0.008, respectively, the maximum being for peat. The proportiOn of 
wrong assignment (0.35) is less than in the first example with Species A only. 
In this example (and also in the previous one), the absence of a species thus 
provides information on the environment. 

In this example, an extra assumption was needed to calculate the probability 
of 'Species A present and Species B absent', namely that the responses of the 
two species were independent, so that the joint probability could simply be obtained 
by multiplication of the probability of 'Species A present' and the probability 
of 'Species B absent'. However the example was constructed in such a way that 
the best assignment rule would not change, even if the responses of the species 
were interdependent. In the next example, the assignment rule can be improved 
considerably if we account for known correlation between the responses of species. 

For simplicity, this example includes only two soil types, clay and sand, with 
equal probabilities of occurrence of Species A (p = 0.2) and of Species B 
(p = 0.4). If the responses of Species A and Species B are independent, there 
is no way of discriminating between clay and sand on the basis of their responses; 
each assignment rule is wrong for half the cases. But suppose now that these 
species have preference for a different water-table when on sand, and are indifferent 
to the water-table when on clay. If both species are encountered in a field, its 
soil type is not likely to be sand. The probability of both species being present 
is close to zero on sand, whereas this probability is much larger on clay (0.2 
X 0.4 = 0.08). It is therefore possible to improve the assignment rule by using 
the (negative) correlation between the species. To construct this improved rule, 
we must know four probabilities: 

- the probability of A only 
- the probability of B only 
- the probability of A and B 
- the probability of neither A nor B. 
If there are m species, we need to know 2111 probabilities to construct the maximum 

likelihood assignment nile. All these probabilities must be estimated from the 
training set, an impossible task if the number of species exceeds 10, even if the 
training set is huge. Lachenbruch ( 1975, p. 41-46) described solutions to this problem 
when the dependence between species is simple. If the dependence between responses 
is caused by another environmental variable, it is most natural to incorporate 
this variable explicitly in the response function and to maximize the likelihood 
for both environmental variables jointly. 

4.2.3 Predicting a quantitative environmental variable 

Presence-absence species data 

Assume that the response curve of the probability that a particular species 
is present is unimodal. Further assume that the environmental variable to be 
inferred takes the value x0 for a particular field. If the species is present, the 
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maximum likelihood estimate of x0 is then the optimum of the curve. At the 
optimum, the probability of occurrence of the species is clearly maximum. If 
the species is absent, there are two maximum likelihood estim~tes, -oo and +oo. 

Suppose now that there are m species that respond to a single quantitative 
environmental variable x only and suppose that the responses of the species are 
mutually independent for each fixed value of x. Denote the response curve of 
the probability of occurrence of the k-th species by Pk(x). The probability that 
the k-th species is absent also depends on x and equals I - Pk(x). 

The probability of a combination of species is, by their independence, the product 
of the probabilities of occurrence of the species that are present and the probabilities 
of absence of the species that are absent. The maximum likelihood estimate of 
x0 is, again, the value for which the probability of the observed combination 
of species is maximum: In principle, we can calculate this probability for any 
value of x and determme the value of x that gives the highest probability. In 
practice, we need to write a computer program to do so. 

The ratios of probabilities for different values of x, and not the absolute 
probabilities, are relevant in the estimation because a product of probabilities 
is calculated for every value of x. For rare species, whose maximum probability 
of occurrence is small, the ratio of the probabilities of occurrence for two values 
of x can still be very large. But the probability that a rare species is absent is 
always close to I, irrespective of the value of x. The ratio of the probabilities 
of absence for different values of x is therefore always close to I. Consequently, 
absences of rare species cannot influence the maximum likelihood estimate very 
much and so provide hardly any information on the environment at a site. 

Quantitative abundance data 

We now consider the estimation of an unknown value of a quantitative 
environmental variable (x) from a quantitative response (y) of a single species. 
If the response function is Ey = f(x) and the error is normally distributed, we 
obtain the maximum likelihood estimate by solving the equation y = f(x

0
) for 

x0• In a graph of the response curve, this simply means drawing a horizontal 
line at the level of the value y and reading off x where this line cuts the response 
curve. For the straight line (Figure 3.1), this gives the estimate 

If the response curve is unimodal, the horizontal line cuts the response curve 
twice so that we obtain two estimates. This problem has led de Wit et al. (1984) 
to suggest that an indicator species should have a monotonic relation with the 
environmental variable of interest. But, if more than one species is used for 
calibration, the problem generally disappears (Brown 1982). 

For later reference (Subsection 5.3.2), we consider the case where each of n; 
species shows a straight-line relation with x, and we want to predict x

0 
frorr 

the m abundance values at the site. Reading off the graph for each species woulc 
give m possibly different estimates of x0 , and we want to combine them. Th1 
model for the data can be written as 
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where 
Yk is the response of species k, 
ak its intercept and 
bk its slope parameter. 

Equation 4.1 

By minimizing the sum of squares of differences between the observed and expected 
responses, we obtain the combined estimate (as Equation 3.6): 

Equation 4.2 

This is the maximum likelihood estimate only in the special case that the species 
are independent and have equal error variances. For the general case see Brown 
(1982). 

4.3 Weighted averaging using indicator values 

In this calibration method, the relation between a species and a (semi-) 
quantitative environmental variable (x) is summarized by a single quantity, the 
indicator value. Intuitively, the indicator value is the optimum, i.e. the value most 
preferred by a species. The value of the environmental variable at a site (x0) 

is likely to be somewhere near the indicator values of the species that are present 
at that site. The method of weighted averaging takes it to be the average of these 
indicator values. If we have recorded abundances of the species, we may take 
a weighted average with weighting proportional to species' abundance and absent 
species carrying zero weight. The weighted average of indicator values is thus 

where 
y 1, y 2, ••• , Ym are the responses of the species at the site, 
u1, u2, ••• ,urn are their indicator values. 

Equation 4.3 

For presence-absence data, the average of the indicator values of the species present 
is also called 'weighted' because absent species implicitly carry zero weight. Note 
that the method of weighted averaging is also used in Section 3.7 to estimate 
the indicator value of a species, in particular, by taking a weighted average of 
values of an environmental variable (Equation 3.28). 

The weighted average was proposed as a biotic index for many types of organisms: 
for vascular plants by Ellenberg (1948) and by Whittaker (1956); for algae by 
Zelinka & Marvan (1961); and for faunal communities in streams and rivers by 
Chutter (1972). A typical example is Ellenberg's (1948; 1979) system for predicting 
soil acidity, reviewed by Boeker et al. (1983). Ellenberg has grouped Central 
European plants into nine preference groups of soil acidity and assigned the scores 
1 to 9 to these groups, the score 1 to the group with species that preferred the 
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most acid conditions and the score 9 to the group with species that preferred 
the most alkaline conditions. Ellenberg based this grouping on his field observations 
of the conditions under which particular species occurred and, to a lesser extent, 
on laboratory tests. The scores are thus the indicator values and are used to 
derive site scores by weighted averaging. In Ellenberg's system, the indicator values 
are ordinal and the resulting weighted average is a semiquantitative estimate of 
soil acidity. Ellenberg ( 1979), Rogister ( 1978) and Vevle & Aase (1980) demonstrated 
a strong relation between the weighted average for acidity based on plant 
composition and acidity actually measured in the field, thus confirming the empirical 
predictive value of the weighted average in Ellenberg's system. 

From a theoretical viewpoint, it is surprising that the absent species have been 
disregarded in the weighted average, Apparently it is supposed that absent species 
do not provide information on the environment of a site (cf. Subsection 4.2.3). 
Further, each species is regarded as an equally good indicator in weighted averaging, 
whereas it is intuitively reasonable to give species with a narrow ecological amplitude 
more weight than species with a broader ecological amplitude. Ellenberg (1979) 
circumvented this problem by disregarding indifferent species; they were not 
assigned an indicator value. Zelinka & Marvan (1961) solved this problem in 
a heuristic way by assigning species not only an indicator value but also an indicator 
weight. Finally, because the indicator values are ordinal, calculating averages is 
a dangerous arithmetic operation; ordinal scale values are rather arbitrary, so 
they could be transformed monotonically without change of meaning. However 
the order of weighted averages calculated for different sites can be scrambled 
by such a transformation. 

Ter Braak & Barendregt (1986) provided a theoretical justification of using 
the weighted average (Equation 4.3). For presence-absence data, the weighted 
average of indicator values is about as efficient as the maximum likelihood estimate 
of x0 if the response curves of the species are Gaussian logit curves (Equation 
3.17) with equal tolerances and the species presences are independent and if, in 
addition: 
- either the maximum probability of occurrence is very small for any species 

so that absent species provide no information on the environment (Subsection 
4.2.3) 

- or as illustrated in Figure 4.1, the indicator values (optima) are homogeneously 
distributed over a large interval around x0 

- and the maxima of the response curves of species are equal. 
If the condition of equal tolerances does not hold true, we must take a tolerance­
weighted version of the weighted average 

Equation 4.4 

to retain high efficiency. Here, tk is the tolerance of species k (Equation 3.17). 
For quantitative abundance data, the method of weighted averaging can be 

justified analogously (ter Braak & Barendregt 1986). If the abundances follow 
a Poisson distribution· and the response curves are Gaussian curves (Equation 
3.8) with homogeneously distributed optima, equal tolerances and maxima, the 
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weighted ::j.Verage again approximates the maximum likelihood estimate. This result 
may help to decide whether it is prudent to transform to presence-absence before 
the weighted average is calculated. 

The conditions (homogeneously distributed optima, equal to~er~nces and m.ax­
. ) together make a species packing model (Figure 4.1). Th1s IS an ecological 
Jma . l . h 

odel based on the idea that species evolve to occupy maximal Y separate me es 
:ith respect to a limiting resource. Christiansen & Fenchel (1977, Chapter 3) 
provide a lucid introduction here. This i?ea applie~ also to the occurrence of 
competing species along environmental vanables (Whittaker et al. 1973). Response 
curves should therefore have minimum overlap. . . 

Despite its theoretical basis, the species packi~g model IS not hk~ly to hold 
in real life. Nevertheless, the derivation of the we1ghted average prov1ded above 
indicates the kind of situation in which the weighted average pe.rforms ~easonably 
well. Species may not really be distributed according to the sp~c1es packu~g model, 
but neither are they tightly clumped along environmental.g.radJents; t~ere IS usually 
a fairly even turnover of species alo.ng gradients. ~n addJt!O.n, Equ.atwn 4.4 ~hows 
how one can incorporate informatwn on ecological amplitudes Ill the we1ghted 

average. . 
In lists of indicator values, the values are often expressed on an ord1~al .scale. 

For weighted averaging to be useful, the scale values (a?d, hence, th.e md1cator 
values) must be chosen such that most species sho~ fa1r~y symm~tnc re~ponse 
curves. If this can be achieved, the weighted average IS an mfo:m~tJVe semJqua~­
titative biotic index. The method of weighted averaging of md1cator values IS 

p 

1 

xo 

Figure 4.1 Species packing model: Gaussian l~git curves of the probability (p). that a 
species occurs at a site against environmental vanable x. The curves shown have eqmspaced 
optima (spacing= 1), ~qual tolerances (I= I) and equal maximum probabilities of occurrence 
(pmax = 0.5). x0 is the value of x at a particular site. 
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also attractive to reveal a possible structure in data tables such as Table 0.1 of 
this book. We simply rearrange the species in order of their indicator value for 
a particular environmental variable and the sites in order of their weighted average, 
as in Section 3.7. 

4.4 Inverse regression 

In Subsection 4.2.3, we discussed a calibration method for when abundance 
values of a species show a linear relation with the environmental variable of interest. 
An attractive alternative method is then inverse regression. In inverse regression, 
the training set is not used to construct response curves by regressing the responses 
of the species on the environmental variable; instead the environmental variable 
is taken as the response variable and the responses of the species as the explanatory 
variable. The regression equation so constructed is then directly the transfer function 
that is used for prediction. This method has attractive properties if the prior 
distribution of the environmental variable equals the distribution in the training 
set (Brown 1979). 

The method of inverse regression can easily be extended to prediction on the 
basis of the responses of more than one species. Each species then makes an 
explanatory variable, so that the inverse regression is a multiple (least-squares) 
regression of the environmental variable on the response variables of the species. 
Predictions are again derived directly from the multiple regression equation so 
obtained. This method is most efficient if the relation between each of the species 
and the environmental variable is a straight line with a normal distribution of 
error (Equation 4.1) and if the environmental variable too has a normal distribution 
(Brown 1982). 

However species do not in general have monotonic relations with environmental 
variables. For example, response surfaces of pollen types with respect to summer 
temperature and annual precipitation over large geographic regions are strongly 
non-linear (Bartlein et a!. 1986). Inverse regression could not therefore be used 
to build one generally applicable transfer function to reconstruct past climates 
from pollen data. But response curves could be made about linear by limiting 
the geographic area and transforming the pollen data (Howe & Webb 1983). 
Therefore Bartlein & Webb (1985) subdivided a large geographic area into regions 
and, for the actual climatic reconstruction, chose among the transfer functions 
obtained separately for different regions by using an analogue method (a method 
to decide to which training set of modern pollen data (i.e. to which region) a 
fossil pollen sample is most similar). Inverse regression was thus just one step 
in the whole calibration procedure. A simpler procedure would be to fit non­
linear response functions first, as described by Bartlein et a!. (1986), and to use 
these to reconstruct past climates by use of the maximum likelihood principle 
(Section 4.2). 
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4.5 Bibliographic notes 

The history of the method of weighted averaging has been sketched in Section 
4.3. Other biotic indices are listed in Sheenan (1984). Battarbee (1984) reviews 
various biotic indices for pH reconstruction from diatoms, including one based 
on inverse regression (see also Davis & Anderson 1985). 

Much of the statistical literature on calibration is devoted to the prediction 
of a single quantitative variable on the basis of a single quantitative response 
variable, assuming a straight-line relation and a normal distribution of error. Brown 
(1979) compared the method of inverse regression with the Classical approach 
by first fitting response functions (Subsection 4.2.3). Calibration with polynomial 
response functions is treated, for instance, by Scheffe (1973), Schwartz (1977) 
and Brown (1982). Williams (1959, Chapter 9), Brown (1979), Brown (1982), and 
N aes & Martens (1984) discuss linear multivariate calibration, the prediction of 
one or more quantitative variables from more than one quantitative response 
variable, assuming a linear model. 

Discrimination (calibration of a nominal explanatory variable) is treated by 
Lachenbruch (1975) in a general statistical context, by Titterington et a!. (1981) 
in a medical context and by Kana! (1974) in electrical engineering. 

4.6 Exercises 

Exercise 4.1 Weighted averaging and maximum likelihood calibration with 
Gaussian logit curves 

With data from Kruijne et a!. (1967) on the occurrence of plant species and 
soil acidity (pH) in meadow fields, ter Braak & Looman (1986) fitted a Gaussian 
logit curve with respect to pH for each of the species. The curves of seven of 
the species are shown in Figure 4.2. Their parameters are: 

Species name Code Optimum Tolerance Maximum 

Agrostis canina AC 3.4 1.1 0.84 

Stellaria graminea SG 5.7 0.4 0.38 

Alopecurus geniculatus AG 5.8 0.6 0.58 

Plantago major PM 6.2 0.7 0.34 

Bellis perennis BP 6.4 0.5 0.89 

Hordeum secalinum HS 7.1 0.7 0.57 

Glechoma hederacea GH 8.1 1.5 0.55 

Although the parameters were estimated from only 100 fields, w~ treat them in 
this exercise as the true parameters. For three meadow fields With a unknown 
soil acidity, we want to predict the soil acidity from the yres.ences and absences 
of these seven species. The species that are present are m Fle.ld 1 AC, S~ and 
BP, in Field 2 AG and BP, and in Field 3 HS and BP (species not mentwned 
are absent). Predict the pH of each of these fields: 
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1.0 p 

BP 

0.5 GH 

4.8 5. 2 5. 6 6.0 6.4 6.8 7. 2 soil pH 

1 3 28 24 1 0 10 

Number of sites in each class 

Figure 4.2 Probability of occurrence of seven contrasting species in relation to soil acidity 
(pH) in meadows, as fitted by logit regression. The curves can be identified by the code 
near their optimum indicated by dotted lines. The species arranged in order of their optima 
are: Agrostis canina (A C); Stellaria graminea (SG); Alopecurus genicula/us (AG); Plantago 
major (PM); Bellis perennis (BP); Hordeum secalinum (HS); Glechoma hederacea (GH). 
Nomenclature follows Heukels-van der Meijden (1983). 

Exercise 4.1.1 By the method of weighted averaging using the optima as indicator 
values. 

Exercise 4.1.2 By the tolerance-weighted version of the method of weighted 
averaging (Equation 4.4). 

Exercise 4.1.3 By the method of maximum likelihood. Hint: calculate the 
likelihood for a limited number of pH values, for example, pH = 5.0, 5.5, 6.0, 
6.5, 7.0, 7.5 and next for the most likely value of these plus and minus 0.1. Use 
Equation 3.17 of Chapter 3 to calculate probabilities of occurrence. In that equation: 
c =maximum/(!- maximum). 

Exercise 4.2 Calibration using a straight line 

Predict, by using the results of Exercise 3.1, the relative sulphate concentration 
of a moorland pool in which Frustulia rhomboides var. saxonica occurs with 
70 frustules. 
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Exercise 4.3 Calibration using a Gaussian response curve 
Predict, by using the results of Exercise 3.2, the February sea-surface temperatures 

of two samples in which the abundances of Spongotrochus glacialis are 20% and 
60%, respectively. 

4.7 Solutions to exercises 

Exercise 4.1 Weighted averaging and maximum likelihood calibration with 

Gaussian logit curves 

Exercise 4.1.1 The weighted average (Equation 4.3) is for Field I 
x

0 
= (I X 3.4 + I X 5.7 + 0 X 5.8 + 0 X 6.2 + I X 6.4 + 0 X 7.1 + 0 

X 8.1)/(1 +I+ 0 + 0 +I+ 0 + 0) = 15.5/3 = 5.17. 
The prediction is thus pH 5.17. Analogously, the weighted average for Field 2 

is 6.10 and for Field 3 is 6.75. 

Exercise 4.1.2 The tolerance weighted version of the weighted average (Equation 
4.4) gives for Field I 
.X

0 
=(I X 3.4/1.12 +I X 5.7/0.42 + 0 X 5.8/0.62 + ... + 0 X 8.1/1.5

2
)/(1/ 

1.J2 + 1/0.42 + ... + 0/1.52) = 64.03jll.08 = 5.78. For Field 2 we obtain 6.15 
and for Field 3 we obtain 6.64. 

Exercise 4.1.3 With Equation 3.17, we obtain the probability of occurrence (pk) 
at pH 5.0, which is for AC 0.646, for SG 0.117, for AG 0.362, for PM 0.106, for 
BP 0.138 for HS 0.015 and for GH 0.126. The probability that the k-th species is 
absent is' 1 -Pk· For pH 5.0, the likelihood of the species combination of Field I 
(AC, SG and BP present) is therefore 0.646 X 0.117 X (I - 0.362) X (I - 0.106) X 
0.138 =(I- 0.015) X (I- 0.126) = 0.0051. 
For pH 5.5, 6.0, 6.5, 7.0 and 7.5, we obtain likelihoods of 0.0244, 0.0094, 0.0008, 
0.0000, 0.0000, respectively. The maximum of these likelihood~ i~ 0.0244, a~ pH 
5.5. The likelihoods at pH 5.4 and 5.6 are slightly lower and, wtthm the prectston 
of 0.1, 5.5 is the maximum likelihood prediction of the pH of Field I. 

For Field 2, the likelihood at pH 5.0 becomes 0.0121; the maximum (0.083) 
occurs at pH 6.0. Slightly lower likelihoods are obtained for pH 5.9 and 6.1. 
The maximum likelihood prediction is thus 6.0. 

For Field 3 the likelihood at pH 5.0 becomes 0.0003; the maximum of the 
six likelihoods occurs at pH 7.0. pH 7.1 gives a slightly higher likelihood, whereas 
for pH 7.2 the likelihood decreases again. The maximum likelihood prediction 

is thus 7.1. 

Exercise 4.2 Calibration using a straight line 

In Exercise 3.1, the regression equation E loge (Frustulia count+ 1) = 5.848-
5.96 S,e

1 
was obtained. In the pool under study, the count is _70, so that Y =loge c:o 

+ I)= 4.263. Replacing the left side of the regression equatwn by 4.263, we obtam 
srel = (5.848- 4.263)/5.96 = 0.27. 
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Exercise 4.3 Calibration using a Gaussian response curve 

For the sample with 20% S. glacialis, we have to solve the quadratic equation 
-0.00894 temp2 + 0.2497 temp+ 2.119 =loge (20) = 2.996. There are two solutions, 
temp 4.1 oc and 23.8 °C. The temperatures on which the regression equation 
is based lies between 0.8 and 21.6 °C. If this range is relevant prior information, 
the prediction of 23.8 ° C can be discarded and the remaining prediction is 
4.1 oc. 

For the sample with 60% S.glacialis, the quadratic equation for temperature 
has no solution. This is not surprising, because the maximum of the Gaussian 
curve was 48%, which was obtained at 14 ° C. The most likely temperature is 
therefore 14 °C. 
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5 Ordination 

C.J.F. ter Braak 

5.1 Introduction 

5.1.1 Aim and usage 

Ordination is the collective term for multivariate techniques that arrange sites 
along axes on the basis of data on species composition. The term ordination 
was introduced by Goodall (1954) and, in this sense, stems from the German 
'Ordnung', which was used by Ramensky (1930) to describe this approach. 

The result of ordination in two dimensions (two axes) is a diagram in which 
sites are represented by points in two-dimensional space. The aim of ordination 
is to arrange the points such that points that are close together correspond to 
sites that are similar in species composition, and points that are far apart correspond 
to sites that are dissimilar in species composition. The diagram is a graphical 
summary of data, as in Figure 5.1, which shows three groups of similar sites. 
Ordination includes what psychologists and statisticians refer to as multidimen­
sional scaling, component analysis, factor analysis and latent-structure analysis. 

Figure 5.1 also shows how ordination is used in ecological research. Ecosystems 
are complex: they consist of many interacting biotic and abiotic components. 
The way in which abiotic environmental variables influence biotic composition 
is often explored in the following way. First, one samples a set of sites and records 
which species occur there and in what quantity (abundance). Since the number 
of species is usually large, one then uses ordination to summarize and arrange 
the data in an ordination diagram, which is then interpreted in the light of whatever 
is known about the environment at the sites. If explicit environmental data are 
lacking, this interpretation is done in an informal way; if environmental data 
have been collected, in a formal way (Figure 5.1). This two-step approach is indirect 
gradient analysis in the sense used by Whittaker ( 1967). By contrast, direct gradient 
analysis is impossible without explicit environmental data. In direct gradient 
analysis, one is interested from the beginning in particular environmental variables, 
i.e. either in their influence on the species as in regression analysis (Chapter 3) 
or in their values at particular sites as in calibration (Chapter 4). 

Indirect gradient analysis has the following advantages over direct gradient 
analysis. Firstly, species compositions are easy to determine, because species are 
usually clearly distinguishable entities. By contrast, environmental conditions are 
difficult to characterize exhaustively. There are many environmental variables and 
even more ways of measuring them, and one is often uncertain of which variables 
the species react to. Species composition may therefore be a more informative 
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