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ABSTRACT 
 
 A multivariate calibration method is proposed that relates to correspondence analysis as 
partial least squares (PLS) relates to principal components analysis. The new method extends and 
improves the weighted averaging (WA) method for inferring values of environmental variables 
from biological species compositions, hence the name weighted averaging partial least squares 
(WA-PLS). WA-PLS is designed to cope with the special features of ecological data, namely, 
large numbers of species, many zero-abundance values and the non-linear, often unimodal 
response of species to environmental variables. In simulations of such data in which the species 
response is governed by two environmental variables, one of which is the variable of interest and 
the other a nuisance variable, the standard error of prediction (SEP) was reduced by a factor of 
ca. 0.5 by using WA-PLS instead of WA. The length of gradient of the data (between 2 and 8 
SD-units) had little influence on the relative performance as had the nuisance variable, except for 
a short calibration gradient (2 SD). Further comparisons were made with PLS and a maximum 
likelihood method (MLM) based on the Gaussian response model for compositional data. WA-
PLS outperformed PLS and MLM in all cases, the difference with MLM being small if the 
nuisance variable was unimportant. WA-PLS also compared favourably on a real data example 
from Imbrie & Kipp (1971) in which sea-surface temperature is reconstructed from fossil 
foraminiferal composition. 
 
KEYWORDS: Biomonitoring; Canonical Correspondence Analysis; Climate reconstruction; 
Compositional data; Gaussian response model; Multinomial logit model; No-modern-analogue 
problem; RC-Association model; Transfer function 
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1 INTRODUCTION 
 
 When direct measurement of environmental variables is impossible or too expensive, we 
need to resort to indirect methods. Species assemblage data may contain the relevant 
information. Each biological species requires particular environmental conditions for 
regeneration, establishment and growth. It should therefore be possible to infer the 
environmental conditions at a site from the species that occur there. This idea is used in the 
biological evaluation of water quality (Whitton and Rott 1991) and biomonitoring in general 
(Spellerberg 1991). Fossil species assemblages similarly can provide a record of the 
palaeoenvironment. Such records are valuable for a historical perspective of current 
environmental problems such as acid rain (Battarbee 1984) and global warming (Fritz et al. 
1991, Walker et al. 1991a,b) and for testing the accuracy of simulation models such as the 
general circulation models (COHMAP 1988, Sloan and Barron 1992). The ecological 
assumptions required for obtaining sound quantitative, palaeoenvironmental reconstructions are 
listed by Imbrie and Kipp (1971), Birks et al. (1990a) and Sloan and Barron (1992). We focus 
here on the statistical problems. 
 Inferring environmental variables from species assemblage data is a difficult multivariate 
calibration problem. It requires a representative training set consisting of data on species 
assemblages and associated environmental measurements. Species assemblage data have several 
features that make them special in a statistical sense (Jongman et al. 1987): 
 
I)The number of species is often large (10-300) which leads to multicollinearity. 
II)The data are either binary (presence/absence) or, if they are quantitative, they still contain 

many zero values for sites at which the species is absent. Measures of abundance, like 
counts, density or biomass, are highly variable and always show a skew distribution. 
Often the data are compositional; the site total is uninformative, if the total count per site 
is determined by the sampling design. 

III)Relationships between species and environmental variables are generally nonlinear. Because 
of Shelford's law of tolerance (Odum 1971) and niche-space partitioning (Whittaker, 
Levin and Root 1973), species abundance or probability of occurrence is often a 
unimodal function of the environmental variables. 

 
Proposed solutions start with Imbrie and Kipp (1971) who reconstructed past sea-surface 
temperature from assemblages of foraminifera using a form of principal components regression. 
This can be viewed as a variant of inverse regression (Brown 1982; Bartlein and Webb 1985) 
that takes account of the multicollinearity problem, if only a few components are utilized in the 
final regression. Roux (1979) improved the method by replacing principal components analysis 
by correspondence analysis so as to allow for the unimodality of the species-environment 
relationship (Ter Braak 1985) and for the compositional nature of the data. Gasse and Tekaia 
(1983) were concerned with the fact that some information on the species-environment 
relationship may be lost by retaining only the first few components. This is a potential problem 
in all two-step methods, known as indirect gradient analysis methods (Ter Braak 1986). Gasse 
and Tekaia (1983) therefore developed a direct gradient analysis method. In their method the 
environmental variable was divided into classes. Ter Braak (1986) recognized their method as a 
special case of canonical correspondence analysis in which there is a single nominal predictor. 
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But, in canonical correspondence analysis (that is, correspondence analysis constrained by a 
linear combination of predictor variables, usually environmental variables) predictors can also be 
quantitative, so that the division into classes is unnecessary. With a single quantitative predictor, 
canonical correspondence analysis reduces to the weighted averaging method (Ter Braak 1986, 
1987: pp. 74-75; Ter Braak and van Dam 1989). This method can be considered as an 
approximation to the statistically sound, but computationally intensive method of maximum 
likelihood calibration using Gaussian response curves (Ter Braak 1985; Ter Braak and 
Barendregt 1986; Birks et al. 1990a). Because of its ecological plausibility, its simplicity and its 
empirical predictive power, the weighted averaging method (WA) has gained popularity, 
particularly in palaeolimnology (e.g. Oksanen et al. 1988, Birks et al. 1990b, Cumming, Smol 
and Birks 1991; Dixit, Dixit and Smol 1991; Dixit et al. 1992; Walker et al. 1991; Fritz et al. 
1991; Hall and Smol 1992). 
 Multivariate calibration methods in chemometrics also started with principal component 
regression (PCR), but were developed further in another direction (Martens and Naes 1989). 
Here, PCR led to partial least squares regression (PLS) (Wold et al. 1984). Both PCR and PLS 
use mutually orthogonal components. In PCR, the components are selected to have maximum 
variance, whereas in PLS they are chosen to maximize the covariance with the regressand (Stone 
and Brook 1990). Consequently, PLS often needs fewer components and gives lower prediction 
error than PCR. In this paper, we consider the case where a single variable is to be calibrated. We 
therefore focus on univariate PLS regression, also known as PLS1. The multivariate version 
(PLS2) is briefly discussed at the end. 
 In this paper we develop a PLS regression method from correspondence analysis just as 
PLS regression can be derived from principal component analysis. We show that, if only the first 
component is retained, the new method reduces to the weighted averaging method. In the new 
method, further components utilize the residual structure in the data to improve the fit. Because 
each component is extracted by weighted averaging, we name the method weighted averaging 
partial least squares regression (WA-PLS). As in PLS, the number of useful components is 
estimated on the basis of the standard error of prediction (SEP) estimated by the leave-one-out 
method. 
 To evaluate the performance of WA-PLS, we carried out a simulation study and applied 
the method to the data from Imbrie and Kipp (1971). In the simulations we study the effect of 
three factors. 
I)Length of gradient. Length of gradient is a property of an environmental variable in a particular 

ecological community. If relationships are unimodal, the species' abundance curves rise 
and fall over shorter or longer ranges, depending on their niche widths. The length of 
gradient can be defined as the range of the environmental variable divided by the average 
range of the species. In the simulations, gradient length is varied by varying the species 
ranges while keeping the environmental range constant. So, narrow niches lead to long 
gradients. If the species range is larger than the environmental range, unimodal curves 
may appear sigmoidal or even linear. Is it then advantageous to use PLS instead of 
WA-PLS? 

II)Influence of a nuisance variable. The environmental variable we wish to calibrate should be 
an ecologically important variable in the system, but it will rarely be the only such 
variable. How do the methods behave if environmental variables other than the one of 
interest influence the species composition? In the simulations we introduce one other 
variable and vary the influence of this nuisance variable. The nuisance variable 
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introduces additional, structured noise in the data which, we hope, WA-PLS can exploit. 
III)Number of species. Weighted averaging methods appear to perform better with species-rich 

than with species-poor data. 
 
We restrict attention to compositional data, because many of the data for which WA-PLS is 
designed are expressed as percentages. The simulations were carried out using Minchin's (1987) 
COMmunity PAttern Simulator (COMPAS). We compare WA-PLS to WA and PLS and to a 
maximum likelihood calibration method based on the Gaussian response model for 
compositional data (Ihm and van Groenewoud 1984). The latter is a 'classical' approach to 
calibration in constrast to the inverse approaches of PLS and WA-PLS. It is a useful standard for 
comparison because it is the simplest unimodal model. The model is closely related to the RC-
association models of Goodman (1986, 1991). With the simulation study we attempt to delimit 
the domain where WA-PLS can usefully be applied and also to explore, what is termed in 
palaeo-reconstruction work, the no-modern-analogue problem by simulating sites at 
environmental conditions that are not represented in the training set. 
 
 
3 THEORY 
 
 
4.1 NOTATION 
 
 Let x denote the environmental variable to be calibrated on the basis of a training data set 
consisting of the environmental vector x = (xi), with xi the value of the environmental variable in 
site i, and the n × m matrix Y = (yik) with yik the abundance of species k in site i (yik≥ 0) (i = 1...n 
sites and k = 1...m species). [Note that the use of the symbols x and y is interchanged compared to 
a part of the literature on the inverse regression approach to calibration, especially PLS.] The 
estimated or inferred value of x in site i is denoted by i. Let R = diag(y1+,...,yn+) and K = 
diag(y+1,...,y+m) with yi+ and y+k the total abundance in site i and per species k, respectively. 
 
 
4.3 WA-PLS: DEFINITION 
 
 In this section we define WA-PLS by the following guideline: "WA-PLS relates to 
correspondence analysis (CA) as PLS regression (PLS) relates to principal component analysis 
(PCA)". Let us thus first examine how PLS relates to principal component analysis (PCA) (Stone 
and Brook 1990). PCA searches for a normed weight vector for the species, b say, such that the 
linear combination t = Yb has maximum norm or, in the most common variant of PCA in which 
the columns of Y are centred, maximum variance. This linear combination does not involve the 
variable to be predicted, x, and thus does not need to have any predictive power. In contrast, PLS 
selects the first component by maximizing the inner product between the linear combination and 
x. The inner product is precisely the covariance in the most common variant in which both x and 
the columns of Y are centred beforehand; we treat the centring operation as a particular form of 
preprocessing and, for greater generality, formulate the techniques without it. As formulae, PCA 
searches for a weight vector b that maximizes  
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PCA:  t't / b'b, where t = Y b,  (1) 
 
whereas the PLS searches for a weight vector b that maximizes 
 
PLS:  t'x / b'b, where t = Y b. (2) 
 
 Let us now examine how PCA and CA are related. Whereas PCA searches for optimal 
linear combinations, CA searches for an optimal weighted average [recall the alternative name of 
CA, reciprocal averaging (Hill 1973b, 1974, 1982)]. CA searches for a centred and normed 
weight vector for the species, u say, such that the vector of weighted averages, t = R-1 Y u, has 
maximum variance. Again, this weighted average does not involve the variable to be predicted, 
x, and thus does not need to have any predictive power. According to our guideline for defining 
WA-PLS, WA-PLS should now select the first component by maximizing the covariance 
between the vector of weighted averages and x. In the formulae, the logic of CA requires the use 
of weighted norms (R and K for sites and species, respectively; Greenacre 1984). Thus, CA 
searches for a centred weight vector u (1m'Ku = 0) that maximizes 
 
CA:  t'Rt / u'K u, where t = R-1Yu, (3) 
 
whereas WA-PLS searches for a centred weighted vector u that maximizes 
 
WA-PLS: t'Rx / u'Ku, where t = R-1Yu.  (4) 
 
This concludes the definition of the first component of the techniques. 
 The second, third and later components are chosen to maximize the same criterion as the 
first component with the additional restriction of orthogonality to earlier components. In CA and 
WA-PLS, the components are required to be R-orthogonal (ti'Rtj = 0 for all i ≠ j). 
 The choice of the number of components to use is an essential ingredient of both PLS 
and WA-PLS. The optimal number minimizes the prediction error of x and is estimated by cross-
validation (Wold et al. 1984; Stone and Brook 1990). 
 
4.5 WA-PLS: SOLUTION OF THE MAXIMIZATION PROBLEM 
 
 The maximization problem posed by WA-PLS can be solved as follows. Recall that the 
solution of CA can be obtained from a general computer program for PCA by pre- and 
postprocessing of the data (Greenacre 1984). Similarly, the solution of WA-PLS can be obtained 
from a PLS program by preprocessing not only Y (as in CA) but also x as follows, 
 
 Y* = R-½ Y K-½  and x* = R½ x (5) 
 
and by postprocessing the results of a PLS with Y* and x* by 
 
 u = K-½ b. (6) 
 
Thus, no special computer program is required for WA-PLS. When WA-PLS is carried out 
through a PLS-algorithm, x should be R-centred on input and the PLS-algorithm should neither 
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centre nor standardize the input variables. The proof is given in the Appendix. 
 Having defined WA-PLS and an algorithm to carry it out by computer, the questions 
remain whether it is an improvement and what the final predictor looks like. The first question is 
answered later on by analyzing simulated and real data. To answer the second question, an 
explicit algorithm for WA-PLS is given. 
 Maximizing (4) with the Lagrange multiplier method leads to the weight vector   
 
 u1 = K-1Y'x (7) 
 
and, thus, to the first component of WA-PLS 
 
 t1 = R-1Yu1. (8) 
 
The fitted values based on the first component are 
 
 x̂ 1 = α0 + α1 t1 (9) 
 
obtained by a regression in the R-norm of x on to t1, i.e. by using weights yi+. In (7) we neglected 
the centring requirement on u1 and thus on t1; but, the centring is immaterial due to the intercept 
in (9). 
 The second weight vector u2 maximizes (4) subject to t2'Rt1 = 0. By the Lagrange 
multiplier method we obtain 
 
 u2 = K-1Y'(x - γ1 t1) (10) 
 
where γ1 is a constant to make t2 R-orthogonal to t1. After analogous extractions of s 
components the fitted values are 
 
 x̂ s = α0 + α1 t1 + ... + αsts = R-1 Y u* (11) 
 
in which the coefficients {αj} are obtained by a regression in the R-norm of x on t1, t2, ... , ts and  
 
 u* = α0 + α1 u1 + ... + αs us. (12) 
 
Equations (11) and (12) show that the WA-PLS predictor is still a weighted average, but one 
with an updated weight vector. If the site totals are constant (R = cI), the distinction between 
PLS and WA-PLS lies in the estimator for the weight vector only. 
 It is interesting to note that the WA-PLS predictor lies in the space spanned by the 
vectors 
 
 Ax, A2x, ...., Asx (13) 
 
where A is the reciprocal averaging operator R-1 Y K-1 Y'. This result can be shown by 
expanding the components in terms of x (see Stone and Brook 1990 for a PLS equivalent) and 
shows the relation between WA-PLS and the reciprocal averaging algorithm of correspondence 
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analysis (Hill 1982; Greenacre 1984). 
 Table 1 gives an example of the cross-validatory choice of the number of components 
using simulated data with 100 sites and 60 species. With each additional WA-PLS component, 
the root mean squared error (RMSE) steadily decreases, but at the danger of overfitting. Cross-
validation by leave-one-out shows that the standard error of prediction (SEP) is minimal at 7 
components (Table 1). Thus, the optimal number is 7. When the resulting transfer function is 
applied to an independent test set of 500 sites, it gives a slightly higher SEP than the leave-one-
out estimate. The last column of Table 1 shows that usage of only 5 components would have 
given an even lower SEP, but in real applications of the method this column is not available. 
 
 
 
4.7 RIVAL METHODS 
 
Weighted averaging method (WA)   
 
 The weighted averaging method (Ter Braak and van Dam 1989; Birks et al. 1990a), a 
precursor of WA-PLS, is based on the idea that species' abundance or probability of occurrence 
is a unimodal function of the environmental variable to be calibrated. The method consists of 
three parts: WA regression, WA calibration and an additional 'deshrinking' regression. The parts 
are motivated as follows. A species with a particular optimum will be most abundant in sites with 
x-values close to its optimum. This motivates WA regression: estimate species optima simply by 
weighted averaging of the x-values of the sites, i.e. by (7) (Ter Braak 1985; Ter Braak and 
Looman 1986). Species present and abundant in a particular site will tend to have optima close to 
its x-value. This motivates WA calibration: estimate the x-values of the sites by weighted 
averaging of the species optima, i.e. by (8) (Ter Braak and Barendregt 1986). Because averages 
are taken twice, the range of the estimated x-values in t1 is shrunken. The amount of shrinking 
can be estimated from the training set by regression, i.e. by (9). Therefore, the weighted 
averaging method is equivalent to 1-component WA-PLS. There is a quibble attached to this 
statement. In WA, there are two variants of the deshrinking regression, either an 'inverse' 
regression (x on t1) or a regression (t1 on x) (Birks et al. 1990a). Inverse regression minimizes 
the mean squared error in the training set, but at the cost of introducing bias at the endpoints. 
These issues are fully reviewed for linear calibration by Osborne (1991). WA-PLS uses the 
inverse regression. Thus, WA with inverse regression is equivalent to 1-component WA-PLS. 
WA-PLS shares the basic idea of WA, but with updated optima (12). 
 
Gaussian model and multinomial logit model (MLM) 
 
 Calibration by maximum likelihood requires a response model. We first consider the 
systematic part of the model. A simple and tractable unimodal model for the expected abundance 
is the Gaussian model (e.g. Ihm and Van Groenewoud 1984), namely 
 
 fk(x) = exp (ck - ½ (x - uk)2/wk

2) (14) 
 
where fk(x) is the expected value of the abundance of species k (k = 1...m) as a function of the 
environmental variable x, and uk, wk and ck  are species parameters called the optimum, the 



 

 
 
 9

tolerance (niche width) and the (log)maximum, respectively. As mentioned above, the vector of 
weighted averages u1 = (u11, ..., u1k, ... u1m)' in (7) can be viewed as a simple estimator of the 
optima-vector of species, hence the usage of the symbol u in (14). Model (14) is not complete for 
compositional data because of the constraint that the abundances of all species per site sum to 1. 
If we take equation (14) as a model for absolute abundances of species at a site, then a model for 
expected proportions, E yk, follows by division by their sum (Ihm and Van Groenewoud 1984) 
 
 E yk = exp (ηk) / { Σk' exp (ηk') } (15) 
 
with, in the terminology of GLM (McCullagh and Nelder 1989), a linear predictor that is a 
parabola in x,  
 
 ηk = ck - ½ (x - uk)2/wk

2. (16) 
 
For equal tolerances (wk = w), the linear predictor can be simplified considerably to  
 
 ηk = ak + bk x, (17) 
 
with ak = ck - ½ uk

2/w2 and bk = uk/w2; the quadratic term in x cancels out because it occurs in 
both the numerator and denominator of (15). We restrict attention to the equitolerance case in the 
parametrization of (17), because it combines unimodality (Anderson 1984), parsimony of 
parameters and computational tractability. The relation with Goodman's (1986, 1991) family of 
RC-association models follows by noting that 
 
 log (E yik)  = φi + ak + bkxi (18) 
 
with φi = - log(Σk exp(ηik)). It is a constrained association model, because xi is known in the 
training set. 
 For the stochastic part of the response model a multinomial distribution is assumed. 
Then, model (15) with (17) is known under the name of multinomial logit model (MLM) and can 
be fitted by maximum likelihood through fitting (18) by log-linear regression (McCullagh and 
Nelder 1989: pp. 211-212). This results in estimates of the species parameters {ak, bk}. An 
unknown x0 is estimated from the species data of a site by loglinear regression with the {bk} as 
values of the predictor variable and the {ak} as offset (i.e. a predictor with a unit regression 
coefficient). Sampling errors in {ak, bk} are ignored. WA can be considered as an approximation 
to this maximum likelihood method (Ter Braak 1988; Ter Braak and van Dam 1989). Classical 
calibration sometimes benefits from some form of shrinkage. We study the usefulness of an extra 
regression of {xi} on {i}. 
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5 METHODS 
 
6.1 SIMULATIONS 
 
 The training set consists of 100 sites arranged in an L-shape with respect to two 
environmental variables, a calibration variable (x) and a nuisance variable (z) (Fig. 1): 10 × 5 
sites on a rectangular lattice in the area [0, 100] × [0, 25] and 5 × 10 sites in the area [0, 50] × [0, 
Lz]. The effect of z studied by varying Lz from 100 (L-shape, Fig. 1) to 50 and 25. The training 
set was designed by analogy with typical water chemistry data of pH and Al, in which Al is more 
variable at low pH than at high pH and in which there are more acid than alkaline sites. 
 The species compositional data were generated with COMPAS (Minchin 1987) in four 
steps. First, unimodal response surfaces with respect to x and z were generated that randomly 
vary in skewness and kurtosis among species. Secondly, the expected abundance of the k-th 
species at the i-th site, µik, was read off the unimodal response surface of the k-th species at the 
coordinates (xi, zi). Thirdly, a count was sampled from a Poisson distribution with expected value 
µik. Finally, the counts so derived were expressed as percentages of the total count per site. 
 The details of the generation of the response surfaces are as follows. In COMPAS, a 
species response surface is the product of two unidimensional curves where each curve is a 
unimodal, generalized beta function with four parameters, which vary randomly between species, 
independently for x and z. They are: the range (r) over which the curve rises and falls, the modal 
coordinate or optimum (u) and two shape parameters, α and γ, that govern the skewness and 
kurtosis. A final parameter is the maximum (Au) at the modal coordinates. The length of gradient 
can then be defined in Range (R) units as (environmental range)/ r , where r  is the mean range 
of the species curves. The gradient lengths of x and z, denoted by Rx and Rz, are varied between 
simulations. If R ≤ 0.5, most curves appear as being monotonic increasing or decreasing along 
the sampled interval, whereas if R ≥ 1, most curves have a clear optimum in the sampled interval. 
The following settings were used: r is uniform between 50/R and 150/R, u is uniform between -
75/R and 175/R (thus spaciously embracing the sampling interval), α and γ are independent 
uniform between 0.5 and 3.5 (giving skew and flat-topped curves) and Au is lograndom between 
10 and 80 (i.e. log(Au) is uniform on the interval [log(10), log(80)]). 
 Three series of comparisons were carried out. In the first series WA-PLS is compared 
with WA with special attention paid to the effect of the nuisance variable. If z influences the 
species composition more, the signal-to-noise ratio for calibrating x decreases, giving an increase 
in the prediction error. WA-PLS is designed to exploit the structure in the noise. It is thus 
expected that the relative performance of WA-PLS to WA will increase with the influence of z. 
In the second series WA-PLS is compared with autoscaled PLS with and without logarithmic 
transformation of the species data (ln(yik +1)). Attention focuses here on the effect of the lenght 
of gradient of x on the relative performance of WA-PLS. We expected that the relative 
performance of WA-PLS to PLS will increase with length of gradient. For the smallest value of 
R studied (R = 0.5), PLS is expected to outperform WA-PLS. In the third series, WA-PLS is 
compared with MLM. Because the nuisance variable is unknown in practice, we fit the model 
without it. Because of the multinomial assumption, the method disregards residual structure in 
the species data after fitting x. We thus expect WA-PLS to outperform MLM if z is influencial. 
 In the first simulation series, WA-PLS and WA were applied to 54 training sets. 
Underlying the 54 sets is a split-plot 2×32 experiment (Cochran and Cox 1957) with the number 
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of species (m) and the length of the calibration gradient Rx on whole plots and the influence of z 
(expressed as gradient length Rz) on subplots. A whole plot is one independently simulated set of 
species parameters across the (x,z)-plane. Each whole plot is divided in three subplots by varying 
Lz. Species data sets were generated independently for each subplot. The levels of the factors are: 
m = 60, 150; Rx = 0.5, 1.0, 2.0; Rz = 0.25, 0.5, 1.0. Rx is adjusted by varying the average species 
range, while keeping the range of x equal to 100. Rz is adjusted by varying Lz (Lz = 25, 50 and 
100), while keeping the average species range equal to 100. All factor combinations with m = 60 
were replicated four times, those with m = 150 twice. 
 The second simlation series consists of the data of series 1, but is restricted to Lz = 100. 
The two variants of PLS were carried out on these 18 data sets. In the third series MLM was 
applied to the 8 data sets of series 1 with m = 60, Rx = 1 and  Rz = 0.25 and 1. 
 The performance of the calibration methods is measured by the standard error of 
prediction (SEP), defined as the root mean squared prediction error and estimated either from the 
training set by leave-one-out (e.g. Hastie and Tibshirani 1990) or from an independent test set. 
Three test sets were used. Test set A consists of 500 sites arranged on a 100 × 5 rectangular 
lattice in the area [0, 100] × [0, 25]. This is the area that is common to all training sets. Test set B 
also consists of 500 sites and is a five-times replication of the L-shaped training set. Test set B is 
used in the second series of comparisons in which all training sets have this shape. Test set C 
consists of 125 sites arranged on a 25 × 5 rectangular lattice in the area [50, 75] × [30, 100]. 
There are no training sites in this area. With test set C we explore the danger of hidden 
extrapolation relevant to the no-modern analogue problem in palaeoenvironmental 
reconstructions. 
 
 
6.3 REAL DATA 
 
The methods were also applied to the Imbrie and Kipp (1971) data set collected to infer summer 
and winter sea-surface temperature (SST) and salinity from foraminifera in the CLIMAP 
program. The training set consists of 61 core top samples, most of them taken in the Atlantic 
Ocean between latitudes 60°N and 54°S, and contains 27 species of foraminifera. The abundance 
of each species is expressed as a percentage of the total count per core-top sample. Further 
details and the full data can be found in Imbrie and Kipp (1971). 
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6.5 DATA ANALYSIS 
 
 In the training sets the number of species present in a site was always below 50. For 
weighted averaging methods, the number of species in a site is, however, not an appropriate 
statistic.  For example, if there are three species present with abundances 100, 1, and 1, 
respectively, the first species takes nearly all the weight so that the effective number of species is 
close to 1. A good measure for this effective number is Hill's (1973a) N2 measure of diversity, 
which is the reciprocal of Simpson's diversity index. We report the median and range of the 
effective numbers of species per site and of the effective number of occurrences per species 
(defined analogously). To further characterize the training sets in data-analytical terms, we 
carried out a detrended canonical correspondence analysis using the program CANOCO 3.1 (Ter 
Braak 1987-1990) with x as the only environmental variable. Detrending-by-segments was used. 
The length of gradient of the first axis of this analysis is the gradient length of x in SD-units (Hill 
and Gauch 1980). We also report the gradient length of the second, unconstrained axis, the first 
two eigenvalues (λ1 and λ2) and the percentage variance explained by the constrained axis (100 
* λ1/total inertia). 
 PLS and WA-PLS were carried out using the program CALIBRATE (Juggins and ter 
Braak 1992). The Gaussian model in parametrization (18), i.e. MLM, was implemented using 
GENSTAT 5 (1987). The simulation results were analyzed by analysis of variance (ANOVA) 
with GENSTAT 5. Standard errors of prediction were transformed to natural logarithms prior to 
the analysis. Results are reported after backtransformation, i.e. as geometric means and 
coefficients of variation (CV) (Aitchison and Brown 1969). The standard error of differences of 
means of the ANOVA is backtransformed similarly to the coefficient of variation of a ratio 
(CVR). The tables of means that we report, contain significant effects as judged on the basis of 
the usual F-test at the 5% level. The relative performance of WA-PLS with respect to a method 
M, say, is expressed as the geometric mean of the ratio of the SEP of M to that of WA-PLS. 
 
 
7 RESULTS 
 
8.1 SIMULATIONS 
 
Data summary 
 
 Fig. 2 shows typical examples of the relationship of species with the calibration variable 
x in the simulations with Rx = Rz = 1. With Rx = 1, the unimodal curves span, on average, 100 x-
units, as exemplified by Fig. 2b which rises and falls approximately between x= 10 and 110, but 
can be partly (Fig. 2d) or fully (Fig. 2a) truncated depending on the position of the mode of the 
response surface. The truncation at x = 50 in Fig. 2c is an effect of the L-shaped site 
configuration; the mode of the species in Fig 2c lies at coordinates (78, 63) in Fig. 1. Thus, the 
scatter is due to both the nuisance variable z and the random noise. 
 Tables 2 and 3 summarize the training sets in data-analytical terms. If the gradient 
lengths (Rx and Rz) increase, the average curve width decreases. Each curve then covers fewer 
sites so that the effective number of occurrences per species (mean ca. 20) decreases (Table 
2a,b). In the simulations with 60 species (m = 60), the effective number of species per site is on 
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average ca. 6. It depends most on Rx (Table 2c); the effect of Rz is minor. For m = 150, the 
effective number is about twice as large. As expected, the constrained first eigenvalue of the 
canonical correspondence analysis increases with Rx, the unconstrained second eigenvalue 
increases with Rz (Table 3). The length of the first gradient in SD-units increases with Rx from 
ca. 2 SD to 8 SD. For m = 150, the length is on average 0.4 SD higher than for m = 60. The 
percentage variance explained by the calibration variable varies among training sets between 13 
and 41%.  
 
Simulation series 1: comparison of WA-PLS and WA 
 
 Fig. 3 shows for the example simulation data set of Table 1 and Fig. 2 how WA-PLS 
reduces the residuals. After extraction of the first component (i.e. in WA), the sites with large 
values of the nuisance variable (z) and average values for the calibration variable (x) have large 
negative residuals. Extraction of further components reduces the residuals and the structure 
therein (Figs 3b-3d). From Table 1, the optimal number of components is estimated as 7, giving a 
relative performance of WA-PLS with respect to WA of 2.37 (= 5.94/2.51) in the training set and 
of 2.14 (=  5.68/2.65) in test set B. 
 In simulation series 1, the SEP of WA-PLS as estimated by leave-one-out varies between 
1.0 to 5.5 among the training sets, the geometric mean being 2.5. The SEP is thus, at most, 5% of 
the range of the calibration variable. The effects of the design variables, as detected by ANOVA, 
are as follows. The SEP decreases by a factor of ca. 2 with both the number of species and the 
length of the calibration gradient (Tables 4a and 4c). The length of the nuisance variable has a 
minor effect (< 12%) (Table 4b). The optimal number of components varies between 2 and 10 
(the maximum, attained once, in our simulations) with an average of 6. WA (i.e. 1-component 
WA-PLS) thus never performed best as assessed by the SEP. For a short nuisance gradient the 
optimal number is two smaller than for a long one (P<0.03). The optimal number is quite 
variable. The coefficient of variation among replications with the same species parameters is 
30%. 
 The relative performance of WA-PLS with respect to WA as based on their SEP's is 
about 2.0 and was influenced little by the length of the calibration gradient. The length of the 
nuisance gradient had little effect on the relative performance as well, except for a short 
calibration gradient. If Rx is 0.5, the relative performance increases with Rz (Table 4d). Similar 
values and trends were found in the test set A. The poor performance of WA for a short 
calibration and a long nuisance gradient (Rx = 0.5 and Rz  = 1.0) is largely due to bias. In this 
instance the bias in the WA-predictor in the interval [0,25] in test set A is a large as 11!  
 With test set C the prediction error in no-analogue situations (extrapolation) is explored. 
The extrapolation is less severe for Rz = 1.0. The standard error of prediction decreases 
correspondingly with Rz from 14 to 7 (Table 5). The predictions for set C may thus be 
unacceptably bad, thus highlighting the importance of the no-analogue problem. In the very bad 
cases (Rz = 0.25), WA-PLS performs worse than WA (rp = 0.63). If Rz = 0.5 and 1.0, the relative 
performances are on average 1.16 and 2.23, respectively, and decrease with Rx. It appears that 
WA-PLS deteriorates quicker than WA with increasing extrapolation. 
 
Simulation series 2: comparison of WA-PLS and PLS 
 
 The comparison is based on all L-shaped training sets with Rz = 1.0 and test sets B and C. 
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The variants of PLS (with and without logarithmic transformation) did not differ significantly in 
performance. We report the relative performance with respect to untransformed PLS only. In test 
set B, WA-PLS outperformed PLS in all cases, except one in which the SEP's were about equal. 
The geometric mean of the relative performances of WA-PLS compared to PLS is 1.33. The 
relative performance increases with the length of the calibration gradient and the number of 
species (Table 6). The optimal number of components did not differ much between methods. 
WA-PLS performed marginally better under extrapolation: the relative performance in test set C 
was 1.15 (CV = 8%), which is just significantly different from 1 at the 10% level. The length of 
the calibration gradient and the number of species have no significant effect on the relative 
performance in test set C. 
 It is interesting to see how far the SEP, as estimated from the training set by leave-one-
out, is a good estimator of the real SEP. For this, we compared the leave-one-out SEP with the 
SEP as estimated from test set B (which has the same distribution as the training set). To our 
initial surprise, the leave-one-out estimator gave an overestimation of 7% of the real SEP (CV = 
3%, P<0.05) for both WA-PLS and PLS. We could have known better: Hastie and Tibshirani 
(1990) proved that the leave-one-out SEP is overpessimistic for all biased regression methods. 
The overpessimism is apparently greater than the optimism introduced by the cross-validatory 
choice of the optimal number of components. 
 
 
Simulation series 3: comparison of WA-PLS and MLM  
 
 Assessed by the SEP in test set A, WA-PLS outperforms MLM for a long nuisance 
gradient (Rz = 1), and performs about equally well if the nuisance gradient is short (Table 7). The 
extra inverse regression step in MLM improves the results a little. With extrapolation (set C), 
WA-PLS performs significantly better if Rz = 1, but worse (P<0.07) if Rz = 0.25. We experienced 
convergence problems in prediction with MLM. A good initial estimate is needed for which we 
used perturbated true values (in practice one could use the WA-PLS estimate). In one case of Rz 
= 0.25, the iterations nevertheless diverged for some sites in test set C. This case was treated as a 
missing value in Table 7b. 
 
 
8.3 REAL DATA 
 
Table 8 summarizes the Imbrie and Kipp (1971) data. The effective numbers of species per site 
are similar to those in the simulation data. The gradient length of ca. 4 SD of summer and winter 
sea-surface temperature (SST) demonstrates the unimodal nature of the abundance data. For 
salinity the gradient length is smaller. In comparison with the simulation data, the secondary 
gradient is short. Summer and winter SST are highly correlated (r = 0.97) and their correlation 
with salinity is ca. 0.7. A detrended canonical correspondence analysis of the species with all 
three as explanatory variables gives the eigenvalues 0.75, 0.13 and 0.01. The fourth, 
unconstrained axis has a small eigenvalue (λ4 = 0.05). These results demonstrate the essential 
one-dimensionality of these data. Thus, seasonality (Summer - Winter SST) does not have a 
strong signal in the abundance data.  
 Table 9 shows the RMSE and, if available, the leave-one-out SEP for various methods. 
The optimum number of components in WA-PLS is 3 for all three variables. On the basis of the 
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SEP, the relative performance of WA-PLS with respect to WA is 1.22, 1.48 and 1.13 for summer 
SST, winter SST and salinity, respectively. Fig. 4 shows the predicted values and prediction 
residuals for winter SST after 1 (WA) and 3 components. The curvature in Fig 5a (WA) is 
largely removed after extraction of three components. The bias that WA gives in the range 3 - 
15°C is diminished after extracting 3 components. The residuals after three components still 
show structure, but taking more than three components increases the prediction error. The plot of 
the first two components of WA-PLS (Fig. 5) shows a parabolic relation that is well known from 
correspondence analysis (arch or Guttman effect; Greenacre 1984). Apparently the arch effect is 
exploited in WA-PLS to improve the prediction. The optimum number of components in PLS is 
higher than in WA-PLS for summer SST and winter SST. Despite the low RMSE, the SEP of 
PLS is higher than that of WA-PLS, most notably for winter SST. Despite its sophistication, 
MLM performs slightly worse than WA-PLS. 
 For the remaining six methods, applied by other authors, we have no leave-one-out SEP's 
available. This complicates the comparison with the previous methods. Following Ter Braak and 
van Dam (1989), Birks (unpubl.) fitted, for all species, Gaussian logit curves to each calibration 
variable in turn. With respect to winter SST, for example, 21 of the 27 species showed a 
significant optimum, 3 species showed a significantly increasing sigmoid logit curve, one species 
a significantly decreasing curve and 2 species showed no significant relation. Subsequently, 
winter SST was reconstructed for each training site from its abundance data by maximum 
likelihood with use of the fitted curves (with the help of a special-purpose numerical 
optimization program incorporated in WACALIB; Line and Birks 1990) and by weighted 
averaging with use of the estimated optima or estimated optima and tolerances (Ter Braak and 
van Dam 1989, Birks et al. 1990a). The latter method, WAtol calibration, uses the squared 
tolerance to downweight a species with a large curve width (more specifically, in the weighted 
average (17), each abundance value yik is replaced by yik/wk

2). Surprisingly, the ML calibration 
variant is outperformed by the weighted averaging variants. None of them is expected to 
outperform WA-PLS in terms of SEP. Imbrie and Kipp (1971) applied a form of principal 
components analysis, called Q-mode factor analysis (QFA; Klovan and Imbrie 1971), to the 
abundance data and regressed the calibration variables on to the first four components in both a 
linear and a quadratic model. Roux (1979) replaced the factor analysis by correspondence 
analysis and used forward selection in the subsequent linear regression on the components. The 
RMSE's for these methods are corrected for the number of parameters in the regression phase of 
the model, but disregard the random nature of the components and the selection process. For 
these data, Roux's correspondence analysis regression outperforms Imbrie and Kipp's method 
and ranks with WA-PLS among the best. Being an ancestor to WA-PLS this is no surprise, 
especially for a data set in which the first correspondence analysis axis is so highly correlated 
with the calibration variables. 
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9 DISCUSSION 
 
 The simulations and the real data show that, for compositional data, WA-PLS is a better 
species-environment calibration method than either WA or PLS. It performs equally well or, if 
there are secondary gradients, better than MLM, the maximum likelihood method based on the 
equitolerance Gaussian model for multinomial data. In cases where no modern analogues exist 
(hidden extrapolation), all methods perform poorly and no uniform winner emerges. For very 
strong extrapolation, WA may perform better than WA-PLS. 
 We expected that PLS would outperform WA-PLS for short gradients. But the 
simulations show good a performance for WA-PLS even for the shortest gradient length tested 
(0.5 Range units, ca. 2 SD units). Apparently, WA-PLS is well-suited for compositional data. 
 Another expectation was that the relative performance of WA-PLS to simple WA would 
increase with the importance of the nuisance gradient. In the simulations, however, this relation 
was barely visible, except for short primary gradients. In hindsight, the result is not so surprising. 
The expectation was formulated on the assumption that WA-PLS would not improve WA in a 
system governed by a single environmental variable. But, this assumption proved to be false. In 
one-dimensional simulations (Ter Braak and Juggins 1993), WA-PLS also improves WA in that 
it corrects the edge effects (and related non-linear distortions) that occur in WA. In these cases, 
both WA-PLS and correspondence analysis yield components that are polynomials of the first 
(e.g. Fig. 5), an phenomenon known as the Guttman effect (Greenacre 1984) or arch effect (Hill 
and Gauch 1980). The higher components achieve a non-linear rescaling of the first component, 
i.e. of the simple weighted average estimate. Apparently, Ter Braak and van Dam (1989) were 
wrong in believing that those 'spurious' axes of a correspondence analysis were useless for 
prediction. However, in noisy data sets little can be gained. Ter Braak and Juggins (1993) varied 
the amount of qualitative noise in simulations by randomly replacing abundance values by 
zeroes. If the probability thereof is increased to 75%, the gain of WA-PLS over WA vanishes. 
Only if the noise is highly structured, as in our simulations, does the gain of WA-PLS over WA 
continue. 
 It might be useful to combine (non)linear regression and WA-PLS. In pollution studies, a 
major part of the information could come from the total abundance and number of species. In 
other studies one might ask whether one needs the full species assemblage for calibration or 
whether a summary statistic, like the diversity or total biomass, would suffice. Such problems 
ask for a combination of regression and WA-PLS. The natural approach to this problem is first to 
fit the regression followed by a WA-PLS in which the components are restricted to be orthogonal 
to the regressor variables of the first step. In this approach it would be unnatural if the implicit 
site weights would differ among the steps. With unequal weights, what would orthogonality 
mean?. One therefore needs to make the weights equal, preferably, by transforming the WA-PLS 
data to compositions. 
 Would knowledge of other environmental variables than the one of interest have helped 
to reduce the prediction error? In practice such nuisance variables are typically known in the 
training set only and should be estimated during reconstruction. This requires simultaneous 
calibration of several variables by classical multivariate calibration. Brown (1982) and Lorber et 
al. (1987) argue that this has no advantage over inverse regression for multivariate linear models 
with normal error. But does this carry through to nonlinear, unimodal models with Poisson or 
multinomial error? In attempts to develop practical methods for joint calibration based on the 
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Gaussian model (14), we considered the utility of canonical correspondence analysis, which is an 
approximation to this model (Ter Braak 1986, 1988). Classical calibration with (full-rank) 
canonical correspondence analysis amounts to a multivariate linear regression of the columns of 
Y* (5) on the environmental variables transformed as x* in (5). Turning this classical calibration 
model upside down leads to an inverse regression of x* on Y*, but would fail because of 
multicollinearity problems. WA-PLS is the inverse regression approach that guards against this. 
It remains to be seen whether joint calibration has advantages in the original Gaussian model 
(14) - (18). 
 We see no advantage in using the multivariate version of PLS or WA-PLS (PLS2 and 
WA-PLS2, respectively) for joint calibration of environmental variables; it is a form of inverse 
regression, albeit multivariate, instead of being a form of multivariate classical calibration. 
Perhaps WA-PLS2 has advantages in multiple discriminant problems that use species 
composition data. 
 As the simulations show, the theoretical advantages of maximum likelihood calibration 
based on (18) are outweighed by the disadvantages of the assumptions of a multinomial 
distribution and the rigid functional form of the response functions. The development of 
generalized linear mixed models and generalized estimation equations (Shall 1991; Engel and 
Keen 1992) may alleviate the multinomial assumption and allow the use of the residual 
correlations among species caused by unknown nuisance variables. Moreover, spline models 
(Hastie and Tibshirani 1990) may allow less rigid functional forms. Until the time that such 
sophisticated methods mature and demonstrate their power for species-environment calibration, 
WA-PLS is recommended as a simple and robust alternative. 
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15 APPENDIX 
 
THEOREM: The solution of WA-PLS can be obtained from a PLS program by preprocessing Y 
and x by (5) for an R-centred x and by postprocessing the results by (6).  
 
For the proof we need the  
 
LEMMA: The centring constraint on u in criterion (4) of WA-PLS is automatically fulfilled by 
R-centring x as a preprocessing step.  
 
PROOF of the LEMMA: For an R-centred x (1'R x = 0), t'Rx, the numerator of the criterion (4), 
is invariant under translation of t = R-1Yu, and thus under translation of the weights u, whereas 
the minimum of the denominator is attained for centred u; hence the criterion (4) is maximized 
for centred u.  
 
PROOF of the THEOREM: The proof is by inserting the transformation (5) in criterion (2) of 
PLS and rewriting it in the form of criterion (4) of WA-PLS. For the denominator of (2) we have, 
with (6), b'b = u' K u and for the numerator, with (5) and (6), 
 
 (Y* b)' x* = (R-½ Y K-½ b)' x* = (R-1 Y u)' R x 
 
which shows the equivalence, except for the extra constraint, 1'K u = 0. But, from the lemma, the 
constraint in (4) is automatically taken care of with an R-centred x. Finally, because of the pre- 
and postprocessing steps (5) and (6) an inner product in PLS translates into an R-weighted inner 
product; for example, for components i and j, with ui = K-½ bi  and  uj = K-½ bj 
 
 (Y* bi)' (Y* bj) = (R-1 Y ui)' R (R-1 Y uj). 
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Therefore, orthogonality of the linear combinations in PLS translates into R-orthogonality of the 
corresponding weighted averages in WA-PLS, as required. This completes the proof. 
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Table 1. Effect of the number of components (s) on the apparent error (RMSE) and prediction 
error (SEP) of WA-PLS in a simulated training set (n = 100, m = 60, Rx = Rz = 1) and test set (n 
= 500). The estimated optimum number of components is 7 because this number gives the lowest 
SEP, estimated by leave-one-out, in the training set. The last column is not available in real 
applications. For further explanation, see text. 
  
 
         Training set  Test set B 
     -----------------------------------    ---------------- 
  s RMSE SEP SEP  
 
  1 5.62 5.94 5.68 
  2 3.60 3.91 3.84 
  3 2.91 3.34 3.25 
  4 2.41 2.89 2.80 
  5 2.09 2.67 2.53 
  6 1.82 2.55 2.59 
  7 1.76 2.51 (*) 2.65 
  8 1.72 2.53 2.66 
  9 1.67 2.53 2.74 
 10 1.65 2.57 2.76 
 
 



 

 
 
 23

Table 2. Simulated training sets: the effect of the gradient lengths Rx (a) and Rz (b) on the 
effective number of occurrences per species (N2) and (c) the effect of Rx on the effective number 
of species per site (M2). Tabulated are means of the minimum (min), median (med) and 
maximum (max) of N2 and M2 per training set, in (c) restricted to the replications with 60 species 
(m = 60). 
 
(a) 
 
Rx 0.5 1.0 2.0 
 
N2min 1 1 1 
  med 20 13 12 
  max 86 71 44 
 
(b) 
 
Rz 0.25 0.50 1.0 
 
N2min 1 1 1 
  med 19 15 11 
  max  74 69 59 
 
 
(c)  
 
Rx 0.5 1.0 2.0 
 
M2min 5 3 1 
  med 8 6 5 
  max 12 10 9 
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Table 3. Simulated training sets: effect of Rx (a) and Rz (b) on the eigenvalue (λ) and the length 
of gradient in Standard Deviation units (SD) of the first and second axes (subscripts 1 and 2) of a 
detrended canonical correspondence analysis of the simulated species data with respect to x. V2 
is the percentage variance of the species data explained by the first two components. Tabulated 
are means with standard error of differences of means (sed). 
 
 
(a) 
 
Rx 0.5 1.0 2.0 sed 
 
λ1 0.35 0.68 0.89 (0.03) 
SD1 2.38 4.48 8.08 (0.17) 
V2 25.97 26.86 19.14 (1.51) 
 
 
(b) 
 
Rz 0.25 0.50 1.0 sed 
 
λ2 0.26 0.37 0.71 (0.03) 
SD2 2.22 2.86 5.21 (0.14) 
V2 31.37 24.43 16.18 (0.54) 
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Table 4. Simulation series 1: the effect of Rx (a), Rz (b) and m (c) on the SEP of WA-PLS in the 
training sets and (d) the effect of Rz on the relative performance (rp) of WA-PLS with respect to 
WA in the training sets with Rx = 0.5. If Rx = 1 or 2, rp ≈ 2.0, irrespective of Rz. (CV(R): 100 
times the coefficient of variation (of a ratio) of the table entries). 
 
 
(a) 
 
Rx 0.5 1.0 2.0 CVR CV 
 
SEP 3.7 2.4 1.8 8 6   
 
 
(b) 
 
Rz 0.25 0.50 1.0 CVR CV 
 
SEP 2.4 2.6 2.7 4 4 
 
 
(c) 
 
m 60 150  CVR CV 
 
SEP 3.0 1.7  8 5 
 
 
(d) 
 
 
Rz 0.25 0.50 1.0 CVR CV 
rp w.r.t. 
WA 1.74 2.06 2.93 9 10 
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Table 5. Simulation series 1: effect of Rz on the SEP of WA-PLS in test set C (extrapolation) and 
the corresponding relative performance with respect to WA. 
 
Rz 0.25 0.50 1.0 CVR CV 
 
SEP 14.1 11.5 6.6 18 15 
rp w.r.t. 
WA 0.63 1.16 2.23 20 14 
 
 
 
Table 6. Simulation series 2 (Rz = 1): effect of Rx (a) and m (b) on the SEP of WA-PLS in test set 
B and the corresponding relative performance (rp) with respect to PLS. CV and CVR are about 7 
and 10%, respectively. 
 
 (a)  (b) 
 
 Rx    m 
 0.5 1.0 2.0  60 150  
 
SEP 3.60 2.40 1.78  3.10 1.60 
rp w.r.t.  
PLS  1.21 1.23 1.60  1.24 1.54 
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Table 7. Simulation series 3 (m = 60, Rx = 1): effect of Rz on the SEP of WA-PLS in test sets A 
(a) and C (b) and the corresponding relative performance (rp) with respect to the MLM with 
(+R) and without an extra inverse regression. 
 
(a) 
 
Rz 0.25 1.0  CVR CV 
 
SEP 2.75 2.78  9 6 
 
rp w.r.t.    
MLM 1.11 1.26  14 9 
MLM+R 1.06 1.20  9 6 
 
(b) 
 
Rz 0.25 1.0  CVR CV 
 
SEP 12.8 5.87  17 12 
 
rp w.r.t.    
MLM 0.631 1.86  32 22 
MLM+R 0.621 1.82  32 22 
 
1) one missing value because of nonconvergence of MLM for some sites 
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Table 8. Summary of the Imbrie and Kipp (1971) data. (SST: sea-surface temperature in °C and 
Salinity in 0/00, sd : sample standard deviation).  For explanation of abbreviations, see Table 2 
and 3. 
 
 min med max 
N2 5 20 45 
M2 1 4 11 
 
 Summer SST Winter SST Salinity 
 
range 2 - 29 -1.0 - 26.5  33.5 - 37.2 
sd 7.02 8.00 0.99 
 
λ1 0.72 0.73 0.53 
λ2 0.14 0.08 0.41 
 
SD1 3.85 4.25 2.87 
SD2 2.21 1.60 2.51 
 
V2 37.5 37.9 27.5 
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Table 9. Imbrie and Kipp (1971) data: apparent (RMSE) and prediction (SEP) error for winter 
sea-surface temperature (SST), summer SST and salinity using various methods. Superscripts 
denote number of components used in the estimation. (QFA: Q-mode factor analysis; CA: 
Correspondence Analysis; +R: followed by an inverse regression; WAtol: tolerance 
downweighted weighted averaging calibration). For further explanation, see text. 
 
  Summer SST Winter SST Salinity 
 RMSE SEP RMSE SEP RMSE SEP 
 
1. WA 2.02 2.21 1.97 2.14 0.57 0.60 
 
2. WA-PLS 1.533 1.81 1.173 1.45 0.453 0.53 
 
3. PLS 1.297 2.03 0.998 2.05 0.413 0.55  
 
4. MLM 1.82 1.95 1.51 1.65 0.81 0.85 
5. MLM+R 1.70  1.38  0.61 
 
Birks (unpubl.) 
Gaussian logit regr. 
6. + ML calibration 2.09  3.21  0.71 
7. + WA     ,, 1.94  1.56  0.56 
8. + WAtol   ,, 1.80  1.25  0.53 
 
Imbrie & Kipp 1971 
9. QFA+R  2.554  2.574  0.574 
10. QFA+R (quadr.) 2.15  1.54  0.57 
 
Roux 1979 
11. CA+R  1.723  1.373  0.503 
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Figure 1. L-shaped configuration of sites in the training set used in the simulations with x the 
environmental variable to be calibrated and z a nuisance environmental variable (Lz = 100). 
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Figure 2. Abundance (percentage of the total count per site) versus the calibration variable x for 
selected species in a simulated training set for which Rx = Rz = 1. 
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Figure 3. Residual (r) versus x after extraction of s WA-PLS components (s = 1, 2, 3 and 7). The 
optimal number of components is 7 (see Table 1). Data as in Figure 2. 
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Figure 4. Predicted values (a, b) and leave-out residuals (c, d) of winter sea-surface temperature 
as predicted from species compositions of foraminifera after extraction of 1 (a, c) and 3 (b, d) 
components. The optimal number of components is 3. Data from Imbrie and Kipp (1971). 
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Figure 5. Plot of the first two components of WA-PLS in calibrating winter sea-surface 
temperature. The parabolic relation is similar to that commonly found in correspondence 
analysis. Data from Imbrie and Kipp (1971). 
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