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Constrained multidimensional scaling was put on a firm theoretical basis by Jan De 
Leeuw and Willem Heiser in the 1980's. There is a simple method of fitting, based on 
distance via innerproducts, and a numerically more complicated one that is truly based on 
least-squares on distances. The unconstrained forms are known as principal coordinate 
analysis and nonmetric multidimensional scaling, respectively. Constraining the solution 
by external variables brings the power of classical regression analysis back into 
multidimensional data analysis. This idea is developed and illustrated, with emphasis on 
constrained principal coordinate analysis. 
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1 Introduction 
 
SMACOF is a Dutch invention. It is a model for constructing convergent algorithms to 
solve the multidimensional scaling problem (J. De Leeuw et al. 1977, 1980; J. De Leeuw, 
1988). SMACOF is an acronym for 'Scaling by Majorizing a COmplicated Function' (W. 
Heiser, 1987; J. Meulman, 1986). SMACOF is also the name of a series of computer 
programs that uses this type of algorithm. They attempt to give least-squares solutions by 
minimizing STRESS (J. Kruskal, 1964), but may get trapped in a local minimum. 
SMACOF avoids the problems of differentiability and step-size in the usual gradient 
methods. In my opinion, the prime importance of SMACOF is that it can deal with many 
types of constraints on the multidimensional scaling solution. 
 With my background in agronomy and statistical ecology, I am familiar with the 
power of the analysis of variance and of regression methodology. Faced with a 
multivariate research problem, I therefore tend to cast it into the framework of regression 
analysis. What is to be explained by what? Which are response variables (criterion 
variables) and which are explanatory variables (regressors)? Regression methodology can 
be integrated in multidimensional scaling by imposing the constraint that the coordinates 
of the solution are a (preferably) linear combination of external variables. The external 
variables thus take the role of regressors. The importance and/or statistical significance of 
particular regressors can be judged by comparing the fit with and without these regressors. 
Of course, not all problems can be formulated in this way but in applied work many can. 
 I focus in this paper on constraining principal coordinate analysis by a regression 
model, because this serves well to illustrate the general idea. The theory is not new - J. De 
Leeuw et al. (1982: pag. 304) provide a brief description, acknowledging a conference 
contribution by J. Carroll et al. (1976). P. Digby et al. (1981) considered a special case in 
which the analysis is constrained by a one-way classification (i.e. by a one-way analysis of 
variance rather than by a regression model). Two examples illustrate the theory. The final 
section reviews Dutch contributions to constrained multidimensional scaling. 
 
2 Principal coordinate analysis constrained by regression models 
 
Principal coordinate analysis (PCO; J. Gower, 1966), alias classical scaling (W. 
Torgerson, 1958) is a simple form of metric multidimensional scaling. PCO is based on 
principal component analysis (PCA), but is more general in that it can deal with other 
measures of dissimilarity than just the Pythagorean dissimilarity implicit in PCA. The 
constrained form of PCO is first derived in an informal way and thereafter a more formal 
definition is given. 
 The basic assumption of PCO is that there exists, in principle, an exact 
representation of the dissimilarities Δ = {δij} [i,j =1, 2, ..., n] in a high-dimensional 
Euclidean space, i.e. there exist a dimension q and an n×q matrix Y such that 
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 δij
2 = (yi - yj)'(yi - yj), or shortly, Δ2 = D2(Y), (1) 

where yi' denotes the i-th row of Y (J. Gower et al., 1986). Such a matrix Y can be 
obtained with PCO. If the primary data were not Δ but Y, PCO is equivalent with a PCA 
of Y. A constrained form of PCO can thus be obtained from the constrained form of PCA, 
i.e. by a reduced-rank regression/redundancy analysis (RDA) (e.g. R. Jongman et al., 
1987) of Y with respect to the n×p matrix X. In regression terminology, the columns of X 
and Y contain p regressors and q response variables, respectively. To obtain a constrained 
PCO, the full q-dimensional PCO-solution should therefore be subjected to redundancy 
analysis. Constrained PCO so defined requires two eigen analyses, a PCO of 
dissimilarities Δ, resulting in a high-dimensional coordinate matrix Y, followed by a RDA 
of Y with respect to the regressor matrix X. An interesting question is whether the same 
result can be obtained from a single eigen analysis. To show that it can, note that the final 
redundancy analysis is equivalent to a PCA of the fitted values, = XY with X = 
X(X'X)-1X' (P. Davies et al., 1982). The solution can thus be obtained from the eigen 
analysis of XYY'X. The desired single eigen analysis now follows from the basic 
relation between squared distance and innerproduct that underlies PCO, 
 YY' = -½ J Δ2 J, (2) 
where J is the matrix which centres each n-vector, i.e. J = I - n-1 1n1n'. This relation, 
which originated in the 1930's (J. De Leeuw et al., 1982), can be verified by expanding 
the inner product in (1) and taking the centroid of the points as the origin, e.g. 1n'Y = 0q. 
If the regressors are centred, i.e. 1n'X = 0p, then JXJ = X, so that constrained PCO 
reduces to the eigen analysis 
  -½ X Δ2 X P = P Λ, (3) 
where P contains the eigenvectors and Λ the eigenvalues. For an r-dimensional 
ordination, the required coordinate matrix F is equal to the first r columns of P Λ½ 
(typically r=2). Finally, C is obtained by regressing F on X, i.e. C = (X'X)-1 X'F. 
 More formally, PCO can be defined as finding an n×r matrix F that minimizes (J. 
Meulman, 1986) 
 L(F) = ║ -½ J{Δ2 - D2(F)} J ║2, (4) 
where ║A║2 = trace(A'A). Constrained PCO is now defined as the technique that 
minimizes L(F), subject to the constraint F = XC. In the Appendix it is shown that (3) 
gives the solution to this constrained minimization problem and that the solution can also 
be obtained from an eigen analysis of order p, rather than n. 
 A series of regressions allows the construction of an accumulated analysis of 
variance. In the context of multidimensional scaling, we would rather have an analysis of 
distance (P. Digby et al., 1981). For constrained PCO, this analysis can be defined 
analogously to the analysis of variance, because  
 ½ ΣiΣj δij

2 = ½ 1n' Δ2 1n = n trace(Y'Y ) = n Σk {Σi yik
2} (5) 

and a similar relation holds after projection, both in q-space and in r-space. B. McArdle 
(1990) noted that the trace of the regression sum of squares matrix can be written in the 
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form of the Mantel statistic (N. Mantel, 1967; P. Legendre et al., 1989): 
 ║ Ŷ ║2 = tr(Y'XY)= tr(YY'X)= Σij (YY')ij(X)ij =-½Σij δij

2(X)ij.  (6) 
The 'natural' Mantel statistic, wholly based on distances, is 
 ΣiΣj δij

2 D2(X(X'X)-½)ij = 4║ Ŷ ║2  + 2p1nα + n tr(αh'), (7) 
where α and h are the vectors taken from the diagonal of YY' and X, respectively. For 
many balanced experimental designs, test statistics (6) and (7) are thus equivalent. 
 
Example 1: genetic distances explained by environmental variables 
 
 This example concerns the genetic variability in 21 colonies of butterfly 
Euphydryas editha in California and Oregon in relation to 11 quantitative environmental 
variables. B. Manly (1985: pag. 168-184) applied multiple regression and the Mantel test 
to these data. C. Ter Braak (1987) analyzed the gene frequencies on three loci by 
canonical (multiple) correspondence analysis. The implied dissimilarity coefficient herein 
is, however, not the one preferred by most geneticists. Here this defect is circumvented by 
applying constrained PCO on Nei's standardized genetic distances (B. Manly 1985: Δ2 
taken from Table 6.8) using the environmental variables as regressors. Summary statistics 
of both the constrained and unconstrained analysis are given in Tab. I. There are some 
small negative eigenvalues in both analyses pointing to the fact that the squareroot of 
Nei's genetic distance is not perfectly embeddable in Euclidean space (J. Gower et al., 
1986; perhaps I should have analyzed squared Nei's distances instead). The environmental 
data explain ca. 88% (155/1.77) of the mean pairwise genetic distance (cf. (5)). The gain 
of constrained analysis over unconstrained analysis is, however, small, because the first 
two dimensions of the unconstrained analysis are very well explained by the 
environmental variables (R2 = .92 and .89, respectively, compared to R2 = 1.0, by 
definition, in the constrained analysis). Fig. 1 shows the constrained configuration which 
displays 71% ((126+25)/1.77) of the mean pairwise genetic distance and 97% 
((126+25)/1.55) of the mean pairwise fitted distances. The weights C of the linear 
combination are not interpretable for these data, because of their high multicollinearity. 
Instead, Fig. 1 displays the environmental variables by their correlation with the axes. (I 
displayed correlations because they allow interpretation of the strength of the relationship 
because of their fixed range [-1,1], but theoretically it makes more sense to display 
regression coefficients A from the regression of X on F, cf. R. Jongman et al., 1987: pag. 
135). Fig. 1 is remarkably similar to the ordination based on canonical correspondence 
analysis (C. Ter Braak, 1987: Fig. 6.3). 
 
Example 2: analysis of an ecological experiment 
 
G. Dirkse et al. (1989) studied the effects of experimental fertilization on forest 
undergrowth in stands of Scots Pine. Here we analyze the data on plant composition from 
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a 4 × 3 factorial experiment in 4 complete blocks in Lisselbo (Sweden). Such an 
experiment is traditionally analyzed by analysis of variance. Because of the large number 
of plant species compared to the number of units, classical multivariate analysis of 
variance is impossible. Instead I present in Tab. II an analysis of distance based on (5) and 
(6) using Pythagorean dissimilarity. Therefore, Tab. I is equivalent to an analysis of 
variance totalled across plant species. The significance values were obtained using Monte 
Carlo permutation of the residual distances (C. Ter Braak, 1991) with the first eigenvalue 
of the constrained analysis as test statistic. Apparently, Nitrogen (N) has a major effect but 
the small effect of Phosphorous (P) is found to be significant also. There is no evidence 
for an interaction effect. In this example, the 2-d unconstrained PCO shows the effects of 
blocks and Nitrogen only. The effect of Phosphorous shows up only in a 2-d constrained 
ordination of N + P with block effects partialled out. This is achieved by requiring that the 
ordination axes should lie in the subspace spanned by N + P orthogonal to blocks (C. ter 
Braak, 1987). This example demonstrates how constraints brings the power of the 
analysis of variance and regression back into multidimensional scaling. 
 
3 Nonmetric multidimensional scaling constrained by regression models 
 
 PCO and constrained PCO approximate distances via innerproducts. By 
consequence, distances are approximated from below: the represented distances are all 
smaller than or equal to the dissimilarities, because the techniques perform a projection in 
the full q-space to a smaller r-space (J. Meulman, 1986). This is a serious disadvantage 
when the fit is poor. The disadvantage is overcome by the scaling techniques that are 
based on least-squares on distances. For the nonmetric case, the loss-function is 
 L(F) = min ║  ∆~ - D(F) ║2, (8) 
   ∆~∈ Γ(Δ) 

where Γ(Δ) denotes the set of dissimilarity matrices that are normalized monotone 
transformations of the original dissimilarities. Constrained MDS is obtained with the 
additional constraint that F = X~ C, with  X~ ∈ Ω(X), where Ω is the set of matrices that are 
admissible transformations of the original regressors. The solution is no longer a simple 
eigen analysis, but must be searched for with a SMACOF-algorithm. Each iteration 
consists of an unconstrained update (a so-called Guttman transform of the previous F) and 
a metric projection onto the constrained configuration space. The metric projection 
problem does not need to be solved completely. Convergence of the algorithm is still 
retained if a step in the right direction is taken which satisfies the constraints (J. De 
Leeuw et al., 1980). The steps can often be solved by alternating least-squares. Theory 
and applications using the SMACOF-II program are given by W. Heiser et al. (1983) and 
J. Meulman et al. (1984). 
 Classical multivariate analysis gives an optimal fit of innerproducts, correlations 
and primary data, but, like PCO, not of distances. This led J. Meulman (1986) to propose 
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alternative methods that are truly based on least-squares on distances. For example, 
distance-based PCA of an n×q matrix Y minimizes (8) with Γ(Δ) consisting of one 
element, namely D(Y). In the nonlinear case, also optimal transformations on Y are 
admitted. Distance-based redundancy analysis could be defined likewise with an 
additional external constraint on F as below (8). J. Meulman (1988) proposes, however, a 
definition which stems from another way of imposing constraints (I. Borg et al., 1980). 
Constrained PCA is in this definition 
 L(F) = min min {║Y - FB║2 + b2║F - XC║2} (9) 
   B C 

with b an extra parameter that governs the strength of the constraint. For b→∞, (9) yields 
redundancy analysis (C. Bijleveld, 1989, pag. 38-42). However, J. Meulman (1988) bases 
her distance-based redundancy analysis on b=1 to allow for errors in the regressors. This 
idea works for regression (q=1, J. Meulman et al., 1988), but does it work generally? The 
solution of (9) can be obtained via a PCA of the n×(q+p) matrix (Y │ X(X'X)-½). If p=1 
and q»1, the solution is therefore very similar to an unconstrained PCA. 
 Unfolding is a special case of MDS (W. Heiser, 1981). As with square symmetric 
matrices, the problem can be solved heuristically using a loss-function which has some 
disadvantages but results in simple eigen analysis, or it can be solved more rigorously 
using a direct least-squares approach. For unfolding, the heuristic approach leads to 
correspondence analysis (W. Heiser, 1981, 1987) with as constraint form canonical 
correspondence analysis (C. Ter Braak, 1986, 1988; Y. Takane et al., 1991). The direct 
least-squares approach with constraints can be solved using SMACOF-III (W. Heiser, 
1981, 1987). The program PROXSCAL, announced in 1988 to contain all previous 
SMACOF-programs, has not yet been released, unfortunately. I am looking forward to 
having something like SMACOF 1-2-3 on my desktop computer! 
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Appendix  [Patrick Groenen pointed out that the result holds true but that the proof is not. 
The proof contains an error [the second equality in (A.1)]. For a correct proof see Borg, I., 
Groenen, P J. F. (2005) Modern Multidimensional Scaling, Springer Springer Series in 
Statistics.] 
http://www.springer.com/west/home/statistics/social?SGWID=4-10137-22-52088824-0 
 
 
 
By setting B = -½ J Δ2 J and expanding -½ J D2(F)J we obtain, successively, 
 L(F) = L(XC) = ║B - X B X + X B X - XCC'X'║2 =  
 ║(I - X)B(I - X) + X(B - XCC'X')X ║2 = 
 ║(I - X)B(I - X)║2 + ║ X(B - XCC'X')X ║2 (A.1) 
so the minimum is obtained by minimizing the second term on the last line of (A.1), 
which is achieved by the eigen analysis in (3). Note that C can also be obtained from the 

http://www.springer.com/west/home/statistics/social?SGWID=4-10137-69-173621571-0
http://www.springer.com/west/home/statistics/social?SGWID=4-10137-69-173621571-0
http://www.springer.com/west/home/statistics/social?SGWID=4-10137-22-52088824-0
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spectral decomposition of the p×p matrix 
 A ≡ (X'X)-½ X B X'(X'X)-½ = Q Λ½ Q', (A.2) 
by setting C = (X'X)-½ Q. This can verified by expanding 
 X'(X'X)-½ A (X'X)-½ X = X B X = P Λ P'  (A.3) 
where P = X(X'X)-½ Q = XC. Because P'P= I and the unicity of the spectral 
decomposition, P is also the solution of (3). 
 
Table I. Eigenvalues of unconstrained and constrained principal coordinate analysis 
(PCO) on Nei's genetic distance beteen butterfly colonies with respect to environmental 
variables (see text and Figure 1). 
 
 
eigenvalues  PCO  constrained PCO 
λ1     1.37    1.26 
λ2     0.28    0.25 
λ3     0.12    0.04 
sum of λ's    1.77    1.55 
sum of negative λ's -0.09   -0.03 
 
 
Table II. Analysis of distance of a 4 × 2 factorial experiment in 4 complete 
blocks (see text). 
 
   mean pairwise P-value 
Source df distance (%) based on λ1 
 
Blocks  3   10  
+ N   3   43  .01 
+ P   1    4  .01 
+ N.P   3    5  .36 
residual 21   38  
total  31  100  
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Fig. 1. Ordination diagram based on constrained principal coordinate 
analysis of Nei's genetic distances between 21 colonies with respect to 11 
environmental variables (data from B. Manly, 1985). The environmental 
variables are (arrows): altitude, latitude, annual precipitation 
(ANNUPREC), annual maximum and minimum temperature (MAX TEMP, 
MIN TEMP), highest and lowest temperature in the post-diapause (H-
POSDIA, L-POSDIA), the adult phase (H-ADUL, L-ADUL). The two short 
arrows without names are the highest and lowest temperature in the pre-
diapause. The two- and three-letter abbreviations of colony names follow 
B. Manly (1985). The scale-marks apply to the arrows. 
 
 


