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Kempthorne's (1952) formulation of the randomization test is extended to yield a permutational analog of 

the bootstrap significance test. In the new test, residuals of a multiple regression are permuted instead 
of being bootstrapped. The test is an attractive alternative for Oja's test that permutes predictors 
(Austr. J. Statist. 29, 91-100, 1987). 

 
 
 
1. Introduction 
 
 
 Permutation tests have a long history dating back at least to Neyman (1923). As there were no 
computers at that time, permutation tests were not much used, but served as an additional rationale for the 
validity of the ANOVA F-test. Pitman (1937) and Kempthorne (1952) showed that, in simple cases, the F-
test yielded an approximation to the full permutation test. Permutation tests have a simple basis for their 
validity: randomization in experimental design (Kempthorne 1952, Scheffé 1959) and the exchangeability 
assumption in observational studies. Permutation tests and related nonparametric tests based on ranks (Cox 
& Hinkley 1974, Lehmann 1975) exist only for simple cases and for these cases they give exact significance 
levels. Their application is, however, problematic both in regression (Brown & Maritz 1982, Oja 1987) and 
in more complex ANOVA situations, such as testing for interaction in factorial experiments. Despite the 
existence of Puri & Sen's (1971: section 7.7) rank test for interaction, Edgington (1987: 144) claimed that 
there is no valid permutation test for interaction, because "This H0 does not refer to measurements for 
individual subjects, and so there is no basis for generating data permutations for alternative subject 
assignments, a necessity for determining significance by data permutation".  
 The bootstrap is relatively recent (Efron, 1979). Its main strength lies in estimating standard errors 
and in constructing confidence intervals (DiCiccio & Romano 1988). Bootstrap significance tests can in 
principle be derived from confidence intervals, but a direct approach also exists (Beran 1986, 1988, Jöckel 
1990). Compared to permutation tests, the bootstrap significance test can be applied to much more complex 
problems, but despite the nice asymptotic properties proved by Hall & Titterington (1989) its validity in 
small samples is more speculative (Romano 1988, 1989). 



 
 
 

 In this paper, permutation tests are compared with bootstrap tests for use in (multivariate) regression 
and ANOVA. In both approaches, there is the choice what to permute or to bootstrap: the data values 
themselves or the residuals? In Kempthorne's (1952) formulation, the permutation test uses randomized 
"fixed plot errors". With errors replaced by residuals, Kempthorne's permutation test is shown to be very 
similar to the bootstrap test that uses residuals, the only difference being whether residuals are sampled with 
or without replacement. The new permutation test is briefly compared with Oja's (1987) permutation test that 
permutes predictors. 
 
 
2. Bootstrap significance test 
 
 
 We consider the regression model 
 
 y = Xβ + Zγ + ε (2.1) 
 
where y is a random n-vector of responses on n units, X and Z are fixed known n×p and n×q matrices, the 
columns of which contain explanatory variables, β and γ are p- and q-vectors of unknown, fixed regression 
coefficients and ε contains random errors with zero mean and unknown constant variance σ2. Our interest 
focuses on the effect of the variables in X on y in the presence of the covariables in Z. The parameter of 
interest is thus β, whereas γ and σ are nuisance parameters. In particular, we wish to test the hypothesis 
β=β0 using the F-ratio. 
 Efron (1982) proposes two bootstrap schemes for regression. The one-sample bootstrap that 
resamples the statistical units has no permutational analog and will therefore not be considered. The other 
scheme resamples the observed residuals. A Monte Carlo bootstrap significance test is obtained as follows 
(Hall & Titterington 1989): 
 
1. Regress y on X and Z, yielding estimates b and c for β and γ, and from these, fitted values 

ŷ =Xb+Zc and residuals e=y- ŷ . 
2. Calculate the F-ratio, Fobs say, based on y for testing the hypothesis β=β0. 
3. Draw a bootstrap sample e* from e and calculate 
 
 y* = Xb + Zc + e* (2.2) 
 
4. Regress y* on X and Z, yielding estimates b* and c*. 
5. Calculate the F-ratio, F* say, based on  y* for testing the hypothesis β=b. 
6. Repeat steps 3-5 until m bootstrap values of F* are calculated. 
7. The bootstrap estimate of the significance level is k/(m+1), where k is the rank of Fobs among the 

bootstrap values of F* when ranked from high to low. 
 



 
 
 

The method works, at least in large samples, because the variability in b around the true value β is mimicked 
by the variability of b* around the true value b in the bootstrap samples. Similarly, the variability in Fobs for 
testing β=β0 is mimicked by the variability in F* for testing β=b. The mimicking is good because the test 
statistic is asymptotically pivotal (Hall & Titterington 1989): for normal errors, the distribution of the F-ratio 
does not depend on β, γ and σ and for nonnormal errors this will be asymptotically true. The procedure uses 
residuals under the alternative hypothesis (value of β unconstrained) to increase the power compared to a 
procedure using residuals from the null model (Hall & Titterington 1989). 
 The calculation of F* can be simplified. Step 4 uses model (2.1) with y* replacing y. Therefore, 
 
 e* = y* - ŷ  = X(β-b) + Z(γ-c) + ε (2.3) 

 
F* in step 5 can thus be obtained from testing the hypothesis β-b=0 in (2.3), i.e. by regressing e* on Z and 
then adding X to the regression, giving residual sums of squares RSSZ and RSSX+Z, respectively. Then, 
 
 F* = { (RSSZ - RSSX+Z) / p } / { RSSX+Z / (n-p-q) } (2.4) 
 
 
 
3. Permutation tests 
 
  
 For investigating the validity of the F-test in the analysis of randomized block experiments, 
Kempthorne (1952: section 8.2) proposed a randomization model in which a fixed plot error is randomly 
assigned to treatments. He writes 
"If we denote the observed yield of treatment k in block i by yik, we may write 
 
 yik = μ + bi + tk + Σ j δk

ij eij (3.1) 
 
where δk

ij is equal to unity if treatment k occurs on plot j in the ith block and is zero otherwise. The random 
error attached to any observed yield is the whole expression  Σ j δk

ij eij. Any particular eij is a fixed variable 
which we do not know. The random variable in the expression (3.1) is the term δk

ij, and its distribution is 
determined by the randomization procedure which is used in obtaining the particular experimental plan." 
Notice that the random error in (3.1) specifies a permutation of the fixed plot errors within each block. With 
complete randomization, the model entails that we could equally well have observed, using our regression 
notation, 
 
 y+ = Xβ + Zγ + ε+ (3.2) 
 
where ε+ denotes a permutation of the error vector ε. By replacing the unknown β,γ and ε by their 
estimates, we obtain the permutational analog of (2.2) 



 
 
 

 
 y+ = Xb + Zc + e+ (3.3) 
 
yielding estimates b+ and c+. We consider this analog further in section 4. 
 In developing a permutation test for use in multiple regression and covariance analysis, Oja (1987) 
rejected (3.2) on the basis that the errors in (3.2) are unknown, but required for his test statistic. Instead, he 
stressed that randomization randomly assigns treatment values to units, so that the model becomes 
 
 y = X+β + Zγ + ε (3.4) 
 
where X+ is obtained by permuting the rows of the matrix X (see also Collins 1987). This model underlays 
the permutation test in the computer program CANOCO version 2.1 (ter Braak 1988a,c). For use in 
observational studies, this model can be motivated by assuming exchangeability of the rows of X. 
 If permutations are carried out under the null hypothesis β=β0=0 (as is usual), then the distinction 
between (3.2) and (3.4) vanishes if γ=0 and also if permutations are restricted within blocks, as in 
Kempthorne (1952). Then, it is immaterial whether y or the rows of X or the residuals y- are permuted. 
 Model (3.4) is perfect for covariance analysis applied to randomized experiments where the 
covariates Z are measured before the random assignment of treatments to experimental units: the covariates 
are fixed and permutation of the rows of X mimics the randomization at the design stage. But, model (3.4) 
has a disadvantage with multiple regression: each permutation modifies the design matrix. Therefore, with 
each permutation the F-ratio measures the effect of another contrast (specified by the projection of X+ on the 
orthocomplement of Z). To say the same more theoretically, model (3.4) violates the principle that the 
design is ancillary (Welch 1990), whereas model (3.3) obeys the ancillarity principle. Moreover, (3.4) does 
not allow for a permutation test of interaction1, whereas (3.3) does. 
 
 
 
4. Bootstrap versus permutation 
 
 
 In this section, the bootstrap (2.2) is compared with its permutational analog (3.3). In the bootstrap 
(2.2), residuals are resampled with replacement, whereas in permutation (3.3) the same residuals are 
resampled without replacement, resulting in correlation -(n-1)-1 between the errors (Lehmann 1975: (A.41)). 
Because the error covariance matrices of e* and e+ are known, standard linear model theory (Seber 1977: 
section 3.7.1) can be used to obtain the expected value and the variance of b* and b+. The essential formulae 
were given by Efron (1982: example 5.6) for the bootstrap and by Cox & Hinkley (1974: example 6.2) and 

                                                 
    1 For example, when the columns z1 and z2 are kept fixed, permutation of the column x12 
which contains their elementwise product, yields an unfeasible design: x+

12 is not an interaction 
term. 



 
 
 

Lehmann (1975: (A48-49)) for permutation. The comparison is simplified if we assume that the constant 
vector is one of the columns in Z. Excluding regression through the origin, we obtain 
 
 E*(b*) = E+(b+) = b (4.1) 
 
 var*(b*) = (1 - 1/n) var+(b+) = s2 ( X


' X


)-1 (4.2) 
 
where s2 is the mean square of the residuals e and X


 is obtained by projection of X on the orthocomplement 

of Z. Second and higher order moments of b* and b+ differ by O(1/n). Equations (4.1-2) plus this order 
property form the justification for proposing the permutation model as alternative for the bootstrap model. It 
remains to be studied how the distributions of F* and F+ differ. Using permutations and bootstraps under the 
null hypothesis, Romano (1989) proved that the corresponding tests yield asymptotically the same critical 
values under quite general conditions. His results can probably be extended to our tests. 
 
 
 
5. Discussion 
 
 
 Traditionally, permutation is always performed under the null hypothesis and then only if the 
residuals are exchangeable (e.g. Puri & Sen 1971, Romano 1989, Welch 1990). Our results (4.1-2) show the 
validity of permutation under the alternative hypothesis, even if residuals are not exchangeable because of 
differences in their variances. It is thus not needed to studentize residuals. If, however, the variance of ε is 
heterogeneous, this knowledge can be used to standardize the residuals (Hinkley 1988: 331). In the program 
CANOCO version 3.1 (ter Braak 1988a,c) this device is used to obtain permutation tests for use in partial 
canonical correspondence analysis (ter Braak 1988b). 
 Freedman & Lane (1983) used a model similar to (3.3). Their proposal differs from (3.3) in that e is 
estimated under the null hypothesis β=β0. But, the expectation and variance of b+ have the classical form 
(4.1-2) only when using e from the alternative hypothesis. By contrast, in developing a permutation test for 
generalized linear models, Gail et al (1988) used Oja's (1987) approach (3.4) of permuting the treatment 
variables. 
 In the traditional permutation tests, the test statistic can often be simplified, e.g. from an F-ratio to a 
sum of squares (Edgington 1987). Using (3.3), there is no such simplication. Hall & Titterington (1989) 
show the gain in level accuracy by using an asymptotically pivotal statistic such as the F-ratio.  
 If randomization is used to obtain the data, reference to an underlying population model can be 
avoided by using the permutation approach (cf Pitman 1937, Cox & Hinkley 1974) instead of the bootstrap. 
In principle, the randomization model, whence permutation, also forms a basis for constructing confidence 
regions.  
 In practice, bootstrap and permutation are often carried out by Monte Carlo methods. Balanced 
bootstraps and other variance reduction techniques may then help to increase the power when only a limited 



 
 
 

number of bootstrap samples can be made (Hinkley 1988). Permutation may have some advantage here 
because there is maximum balance in each random permutation. 
 Notice that the set of all permutations is a proper subset of the set of all bootstrap samples. As a 
result, permutation is sometimes not applicable, e.g. in one-sample problems where all permutations yield 
the same mean value. For the rest, bootstrap and permutation tests are just different but related tests. 
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