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OVERVIEW 

Aim 

A common problem in community ecology and ecotoxicology is to discover how a 
multitude of species respond to external factors such as environmental 
variables, pollutants and management regime, Data are collected on species 
composition and the external variables at a number of points in space and 
time. Statistical methods available so far to analyse such data either 
assumed linear relationships or were restricted to regression analysis of the 
response of each species separately. To analyse the generally non-linear, non 
monotone response of a community of species, one had to resort to the 
data-analytic methods of ordination and cluster analysis - "indirect" methods 
that are generally less powerful than the "direct" statistical method of 
regression analysis. Recently, regression and ordination have been integrated 
into techniques of multivariate direct gradient analysis, called canonical 
(or constrained) ordination. The use of canonical ordination greatly improves 
the power to detect the specific effects one is interested in. One of these 
techniques, canonical correspondence analysis, escapes the assumption of 
linearity and is able to detect unimodal relationships between species and 
external variables. The computer program CANOCO is designed to make these 
techniques available to ecologists studying community responses. CANOCO can 
carry out most of the multivariate techniques described inTer Braak (1987) 
and Ter Braak and Prentice (1988) using a general iterative ordination 
algorithm. 

Researchers in other fields may find CANOCO useful as well, for example, 
to analyse percentage data/compositional data, nominal data or (dis)­
similarity data in relation to external explanatory variables. such use is 
explained in separate sections in the manual. CANOCO is particularly suited 
if the number of response variables is large compared to the number of 
objects. 

Techniques covered 

1. CANOCO is an extension of DECORANA (Hill, 1979). CANOCO formerly stood for 
canonical correspondence analysis (Ter Braak, 1986a, b) and included 
weighted averaging, reciprocal averaging/[multiple) correspondence 
analysis, detrended correspondence analysis and canonical correspondence 
analysis. The program has been extended to cover also principal components 
analysis (PCA) and the canonical form of PCA, called redundancy analysis 
(RDA). Redundancy analysis (Van den Wollenberg, 1977; Isra~ls, 1984) is 
also known under the names of reduced-rank regression. (Davies and Tso, 
1982), PCA of y with respect to x (Robert and Escoufier, 1976) and mode C 
partial least squares (Wold, 1982), For these linear methods there are 
options for centring/standardization by species and by sites and for the 
method of scaling the species and site scores for use in the biplot. The 
eigenvalues reported in PCA/RDA are fractions of the total variance in the 
species data (percentage variance accounted for). Principal coordinates 
analysis and canonical variates analysis are also available. 
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2. CANOCO can also carry out "partial" analyses in which the effects of 
particular environmental, spatial or temporal "covariables" are eliminated 
from the ordination. A partial analysis allows one to display the residual 
variation in the species data and to relate the residual variation to the 
variables one is specifically interested in. Partial canonical 
correspondence analysis is the appropriate technique for the analysis of 
permanent plot data or for the joint analysis of data from several 
locations. 

3. CANOCO allows one to test statistically whether the species are related to 
supplied environmental variables. The test provided is a Monte Carlo 
permutation test (Hope, 1968). The effect of a particular environmental 
variable can be tested after elimination of possible effects of other 
(environmental) variables by specifying the latter as covariables. For the 
analysis of randomized-block experiments or data from several locations, 
there is an option to restrict the permutation to permutations among 
samples-within-blocks or samples-within-locations. 

~. CANOCO provides an alternative method of detrending which is intended to 
solve the problems reported to occur with the method used in DECORANA. 
CANOCO allows one to remove polynomial relations between ordination axes 
(up to order ~). Use of the old method of detrending by segments (Hill and 
Gauch, 1980) in partial and canonical analyses is not recommended. 

5. CANOCO has an option for nonstandard analyses. In one possibility, the 
reciprocal averaging algorithm is modified so that at each iteration the 
species and/or site scores are replaced by rank numbers. This procedure 
circumvents what is known as the "deviant sample/rare species problem" in 
correspondence analysis. 

Data input 

CANOCO can read species data, environmental variables and covariables that 
are either in Cornell condensed format or in full format. The machine 
readable copy of the analysis can be used again as input for subsequent 
analyses. This possibility allows one, for example: 

to use principal components extracted from environmental data as input for 
a later canonical analysis of species data, 
to extract more than four ordination axes - simply by supplying the 
extracted ordination axes as covariables in a subsequent analysis. 

Output options 

CANOCO can supply: 
means, variances and correlations of environmental variables, 
eigenvalues, the percentages of variance accounted for by the biplot of 
species-environment relations, 
scores of species and sites on the ordination axes, 
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canonical coefficients or regression coefficients of environmental 
variables with associated t-values, 
correlations of environmental variables with the ordination axes, 
scores of environmental variables for constructing the arrows in the 
species-environment biplot, 
centroids (weighted averages) of environmental variables in the ordination 
diagram (for variables with positive values), In particular, classes of 
nominal environmental variables are more naturally displayed by their 
centroid in the ordination diagram than by arrows. This option is also 
useful for displaying the results of a cluster analysis in an ordination 
diagram. 

CANOCO allows interactive data analysis: results of an analysis can be 
displayed at the terminal and after inspection the analysis can be pursued, 
for example, 

by changing from an indirect gradient analysis to a direct gradient 
analysis, 
by dropping environmental variables, 
by reading other environmental variables to be related to the current 
ordination axes or to be used in further canonical analyses, 
by changing detrending options, 
by changing scaling options of the ordination scores. 

Practical information 

CANOCO is written in standard FORTRAN 77 and can be supplied on 5.25 inch 
diskette for IBM-compatible PC's, on magnetic tape (800/1600 bpi, ASCI-code) 
or via BITNET/EARN. On an IBM-compatible PC with 6~0 Kb, CANOCO can analyse 
ca. 750 samples, 600 species, 60 environmental variables and 100 covariables 
(see Table 3.~). The one-time costs are specified on the order form. 
Researchers from countries with valuta problems may send in a request for a 
free copy. Documentation will be sent with the program. 
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1. INTRODUCTION 

1 .1 General objective 

CANOCO, an acronym of CANOnical Community Ordination, is 
designed for data analysis in community ecology. Researchers in other 
disciplines should consult Table 1.1 for the terminoloy used in this 
manual. Canonical ordination is a class of techniques for relating the 
composition of species communities to their environment. Data analysis by 
canonical ordination can either be exploratory or confirmatory. When used 
in an exploratory way, it leads to an ordination diagram of samples, 
species and environmental variables, which optimally displays how community 
composition varies with the environment. When used in a confirmatory way, 
it leads to statistical tests of the effects of particular environmental 
variables on community composition taking into account effect of other 
variables. The theory of this is given inTer Braak and Prentice (1987) and 
J ongman et al. ( 1987). 

1.2 Models, methods and algorithm 

Canonical ordination is a combination of ordination and multiple 
regression. Ordination techniques such as principal components and 
correspondence analysis (= reciprocal averaging) are commonly used to 
reduce the variation in community composition to the scatter of samples and 
species in an ordination diagram. Subsequently the diagram is interpreted 
with help of external data, for example, by calculating correlation 
coefficients between environmental variables and ordination axes, or by 
multiple regression of the ordination axes on environmental variables. 
A difficulty here is that the ordination axes are just particular 
orthogonal directions in the ordination diagram. Other directions may well 
be better related to the environmental variables. Canonical ordination is a 
solution to this difficulty. The regression model is inserted in the 
ordination model. As a result the ordination axes appear in order of 
variance explained by linear combinations of environmental variables. 

The ordination technique of correspondence analysis was introduced in 
ecology by way of the reciprocal averaging algorithm (Hill, 1973) or, for 
abundance data, the two-way weighted averaging algorithm. It is an 
iterative ordination algorithm: from initial arbitrary sample scores, 
species scores are obtained, from which new samples scores are derived, 
from which new species scores are derived, and so on. 
Principal components analysis can be obtained by a similar algorithm by 
taking weighted sums, instead of weighted averages (Jongman et al. 1987: 
section 5.3). Canonical ordination techniques can be obtained by carrying 
out multiple regressions within the iterative algorithm: each time new 
sample scores are derived, they are regressed on the environmental 
variables (instead of just once after an ordination). CANOCO uses this kind 
of iterative ordination algorithm. 

The resulting species scores are parameters of response curves of 
species with respect to the ordination axis. In linear methods to which 



Table 1.1 Terminology used in CANOCO, with commonly used synonyms. 

Community a set of species occurring together in a 
sample, 

Sample 

Species 

Abundance/response 

Environmental variable 

Covariable 

Indirect gradient analysis 

Direct gradient analysis 

Ordination 

Ordination axis 

Ordination diagram 

Canonical ordination 

Canonical axis 

sampling unit, individual, object, site. 

response variable, dependent variable in a 
regression equation, internal variable. 

value of a response variable, usually 
positive or 0; proximity. 

explanatory variable (of prime interest), 
independent variable in a regression 
equation, external variable, stimulus 
variable, treatment variable, 

concomitant variable, background variable, 
explanatory variables corresponding to 
incidental parameter or nuisance parameters, 
block factor in experimental design, 

internal analysis, "factor analysis", 
unconstrained ordination, unconstrained 
multidimensional scaling, possibly followed 
post-hoc by an regression analysis on 
external variables. 

external analysis, canonical ordination, 
ordination constrained by external variables, 
constrained multivariate regression, 
reduced-rank regression. 

see indirect gradient analysis. 

eigenvector, latent variable, theoretical 
explanatory variable. 

scatter plot of the eigenvector scores; used 
both for biplots and joint plots. 

an ordination in which the axes are 
constrained to be linear combinations of 
environmental variables. 

an ordination axis that is constrained to be 
a linear combination of environmental 
variables. 



Table 1.1: continued 

Eigenvalue 

Species score 

Sample score 

Biplot 

Joint plot 

Linear method 

Weighted averaging method 

importance measure of an ordination axis 
(section ~.2). 

eigenvector coefficient; loading in PCA, 
center of species curve in CA and DCA. 

Value of eigenvector in a sample. 

an ordination diagram of two kinds of 
entities, e.g. species and environmental 
variables, which has particular rules of 
interpretation because it is based on a 
bilinear model. Interpretation proceeds by 
projecting points on directions defined by 
arrows in the biplot (e.g. Fig. ~.2). 

an ordination diagram of two kinds of 
entities based on a weighted averaging 
method. 

method based on a linear model, e.g.: linear 
regression, multiple regression, principal 
components analysis, redundancy analysis. 

method based on a unimodal response model (= 

unimodal trace line) of which the optimum 
(mode, ideal point) is estimated by weighted 
averaging, e.g. correspondence analysis. 
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principal components analysis belongs, the response "curves" are straight 
lines (Fig. 1 .1) and the species score is the slope parameter. In weighted 
averaging methods to which correspondence analysis belongs, the response 
curves are unimodal (Fig. 1 .2) and the species score can be considered as 
the center of the curve or, for "central species", the optimum of the 
curve. 

On the basis of the linear and unimodal response models in Figs. 1.1 
and 1.2, we introduce six types of data-analysis problems (see Table 1 .2). 
When there is just a single, known explanatory variable, the slope of each 
line in Fig. 1.1 would have been estimated by simple linear regression and 
the center of each curve in Fig, 1.2 by weighted averaging "regression". 
Estimating such species parameters is a regression problem. If there are 
some samples for which the value of the explanatory variable is missing, 
the values can be estimated from the species composition of those samples 
by seeking for each such sample the value of the environmental variable 
that is most likely to give the observed species composition as judged by 
the response curves in the Figures. This is a calibration problem: linear 
calibration in Fig. 1.1 and weighted averaging "calibration" in Fig. 1.2. 
When all values of the explanatory variable are missing, one could still 
attempt to construct a theoretical variable that best fits the species data 
according to a linear model or a unimodal model. This is an ordination 
problem. The theoretical variable is the first ordination axis found by the 
iterative ordination algorithm. The algorithm is essentially a converging 
sequence of regressions and calibrations. The sample scores are the values 
that the theoretical variable takes in the samples. The theoretical 
variable/ordination axis has no environmental basis. Canonical ordination 
is ordination with the additional constraint that the ordination axis must 
be a linear combination of environmental variables. Canonical ordination is 
thus a particular form of constrained ordination. It has an environmental 
basis. One can also apply ordination to the variation in the community data 
that remains after known environmental variables have been fitted by 
regression. Ordination of residual variation is called partial ordination: 
the effect of particular variables is "partialled out" (eliminated) from 
the ordination. The variables that are partialled out are called 
covariables. Finally, when axes of a partial ordination are constrained to 
be linear combinations of particular environmental variables, we obtain a 
partial constrained ordination. CANOCO can perform the techniques listed in 
Table 1.2 in the columns "linear/least squares" and "unimodal/weighted 
averaging". They are obtainable as special cases of the iterative 
ordination algorithm used in CANOCO (section 8). Under particular 
conditions the weighted averaging methods are a close approximation of the 
methods listed in the column ·"maximum likelihood" (Ter·Braak 1986a). These 
are more formal statistical methods which require heavy computation and 
which are therefore less attractive for routine use. One cannot obtain them 
with CANOCO. But CANOCO is useful to obtain starting values for the maximum 
likelihood methods. 

It may come as a surprise that canonical correlation analysis 
(Gittins, 1985) is missing in Table 1.2, as this is the standard linear 
multivariate technique for relating two sets of variables (in our case, the 
set of species and the set of environmental variables). In its place comes 
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Fig,1.1 Straight lines for the abundance of six plant species along the first 
axis of principal components analysis (x), applied to the dune meadow 
data (Table 2.1), In linear ordination methods, the species score is 
the slope of the line of the corresponding species. The sample scores 
are shown by ticks below the abscissa. Also shown are the abundance 
values of Lolium perenne and their deviations from the fitted straight 
line. Abbreviations of spec! es names are given as underlying in Table 
2. 1. 

9 

Fig.1.2 Unimodal response curves for the count (1J) of 12 species of wolf 
spiders in a dune area along the first axis of detrended 
correspondence analysis (x) applied to data of Van der Aart and 
Smeenk-Enserink (1975). The position of the optimum of each curve is 
indicated by a tick near the maximum. In weighted averaging methods 
the species score is a rough estimate of the center of its response 
curve. The sample scores are indicated by ticks below the abscissa 
(length proportional to number). The species are: 
1 • Pardosa lugubris; 2 • Zora spinimana; 3 • Pardosa nigriceps; 
~ • Trochosa terricola; 5 • Pardosa pullata; 6 • Arctosa lutetiana; 
7 • Aulonia albimana; 8 • Alopecosa cuneata; 9 • Pardosa monticola; 
10 • Alopecosa accentuata; 11 a Alopecosa fabrilis; 12 a Arctosa 
perita (after Ter Braak, 1985). 



Table 1.2 Classification of gradient analysis techniques by type of problem, 
response model and method of estimation. The techniques listed under 
"linear/least-squares" and "unimodal/weighted averaging" can be carried 
out with CANOCO. 

RESPONSE MODEL: 
linear unimodal 

METHOD OF ESTIMATION: least-squares maximum likelihood weighted averaging 

TYPE OF PROBLEM: 
regression 

calibration 

ordination 

constrained1) 
ordination 

partial)ordi­
nation2 

partial con­
strained ~r­
dination3 

multiple regression Gaussian regression weighted averaging 
of site scores (WA) 

linear calibration; Gaussian calibration weighted averaging 
"inverse regression" of species scores 

(WA) 

principal components Gaussian ordination 
analysis (PCA) 

redung~ncy analysis 
(RDA) 

partial components 
analysis 

partial redundancy 
analysis 

Gaussian canonical 
ordination 

partial Gaussian 
ordination 

partial Gaussian 
canonical ordination 

correspondeQce ana­
lysis (CA)5J; detren­
ded correspondence 
analysis (DCA) 

canonical corres­
pondence analysis 
( CCA); 
detrended CCA 

partial correspon­
dence analysis; 
partial DCA 

partial canonical 
correspondence 
analysis; partial 
detrended CCA 

1) constrained multivariate regression= canonical ordination 
2) ordination after regression on covariables 
3) = constrained ordination after regression on covariables = constrained 

partial multivariate regression 
4) ="reduced-rank regression"= "PCA of y with respect to.x" 
5) multiple correspondence analysis = dual scaling = homogeneity analysis 
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the lesser known technique of redundancy analysis. The most important 
difference between these techniques is that redundancy analysis can analyse 
any number of species, whereas in canonical correlation analysis the number 
of species must be less than n-q with n the number of samples and q the 
number of environmental variables. The latter restriction makes canonical 
correlation analysis unattractive for most studies in communy ecology, More 
details about the difference are given in section 7,3, 

1.3 Terminology 

The terminology (Table 1.1) used in CANOCO stems from typical 
applications in community ecology, CANOCO operates on species, 
environmental variables and covariables (Table 1.1). Ordination is applied 
to the species data, which are typically data on abundances or incidences 
of a set of species in a set of samples. The variation in the species data 
is to be explained via the ordination axes by environmental variables and 
covariables. Environmental variables are the explanatory variables of prime 
interest. Covariables are concomitant variables whose effect must be 
partialled out when estimating the effects of the environmental variables. 
When one wants a constrained ordination, the number of environmental 
variables and covariables must be smaller than the number of samples. For a 
greater number of explanatory variables, constrained ordination and 
unconstrained ordination coincide, There is no restriction on the number of 
species, 

Of course, there is nothing special about the terms used. They have a 
formal meaning only (Table 1 .1). For example, if one wants an ordination of 
environmental variables, then this is easily done by entering the name of 
the data file containing these variables at the point where one usually 
specifies a file with species data. 

1.4 CANOCO's efficiency for ordination of community data 

CANOCO is particular efficient for ordination of "sparse" data sets 
(data containing many zero values compared to the number of nonzero 
values), It is quite common in community data that the average number of 
species present in a sample is in the order of 10-30, whereas the total 
number of species in the data set is in the order of 100-1000. Because the 
abundance of an absent species is, of course, zero, the data are sparse. 
By not storing zero values, a large saving of memory space and of 
computer time is achieved, The iterative ordination algorithm used by 
CANOCO (section 8) is specially designed so as to make storage of zero 
values unnecessary. It uses methods of calculation that are efficient for 
sparse data. This design makes CANOCO efficient also for ordination of 
nominal data (section 7.2). 

1.5 Outline of the manual 

The sections 2, 3 and 4 are the kernel of the manual. Section 2 
(input) should be consulted before running CANOCO. Section 3 helps the user 
to run CANOCO and section 4 describes the output. Section 6 is intended to 
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give the user a flavour of what can be achieved with CANOCO. The remaining 
sections including section 5 give further information on the capabilities 
of CANOCO and are somewhat more technical. The usual types of data in 
community ecology are abundance data and incidence data. The theory for 
applying ordination to these types of data is described in extenso in Ter 
Braak and Prentice (1987) and Jongman et al. (1987). Some theory for other 
types of data (percentage data/compositional data, nominal data and 
dissimilarity data) is given in section 7. It also discusses the 
relationships among the linear methods of regression analysis, redundancy 
analysis and principal components analysis. The description of the 
iterative ordination algorithm (section 8) requires a firm understanding of 
mathematics, but is not essential for the general user. Sections 9 and 10 
may be of help when installing CANOCO on a computer and when the user wants 
to make small modifications to the functioning of the program. 
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2. DATA INPUT 

The data input of CANOCO consists of species data and, optionally, 
environmental data and covariables. CANOCO will ask for the names of the 
computer files containing these types of data. This may be the same file 
for all three types, but this is not advisable. Often it is convenient to 
prepare one file for species data and a second file for both the 
environmental data and the covariables. 
CANOCO can read data that are either in Cornell condensed format or in full 
format. Species data which contain many zero abundance values (absences of 
species) are most efficiently stored on a file in Cornell condensed format. 
Environmental data are most efficiently stored on a file in full format, 
unless they contain many nominal variables. Cornell condensed format is 
also convenient when analyzing nominal variables by (multiple) 
correspondence analysis (section 7.2). 

In the preparation of data files it is useful to know that CANOCO has 
options for deleting samples, species and environmental variables from the 
analysis, some facilities for transformation of the species data, but that 
it has no facilities for transformation of the environmental data (see 
section 3.5 and 3.6). Note that the order or the numbering of covariables 
is important in Monte Carlo tests based on restricted permutation (see Q40 
in section 3.8). 

2.1 Cornell condensed format 

For users who are familiar with the program DECORANA (Hill, 1979), we 
can be short: CANOCO can use the same data files as DECORANA. The format as 
required by CANOCO is more flexible in one respect: it is allowed to 
specify the number of couplets per line in free format on line 3 instead of 
in columns 69-70 on line 2. 

Table 2.1 shows the dune meadow data used as example data in Jongman 
et al (1987) and Ter Braak (1986b) and Table 2.2 shows the same data in 
Cornell condensed format. In this format each sample and each species is 
given a number. Each line of the data begins with a sample number followed 
by a number of "couplets", each consisting of a species number and an 
abundance value. For example, line 9 of the data file shown in Table 2.2 
begins with the number 3, which means that this line gives data of the 
sample which is given number 3, shortly sample 3. This number is followed 
by the couplet 2 4.0, which says that the species which is given number 2 
(species 2) has abundance value 4.0 in sample 3. The next couplet says that 
species 4 has abundance value 7.0 in sample 3, etc. There are five couplets 
on this line. The next line again begins with a 3 followed by only one 
couplet (32 6.0), as an example that the number of couplets may vary among 
lines and that species numbers do not need to be arranged in increasing 
order. The data of sample 3 are on three lines. Species whose number does 
not appear on these lines are absent in sample 3. The program will assume 
that their abundance value is zero. 

By inspecting Table 2.2 one sees that the sample numbers are 
increasing. For CANOCO the samples must indeed be arranged in increasing 
order, but they don't need to be consecutive. After sample 30 there is 
"notional" sample 0, which indicates the end of the data. Thereafter, there 



Table 2.1 Dune meadow vegetation data of the island of Terschelling, The 
Netherlands (subset from M. Batterink and G. Wijffels, unpubl.). 
The table shows the abundance values (response values) of 33 
plant species (rows) in 21 sample plots (columns of one digit 
width). The values are on a 1-9 scale and replace the original 
codes of the Blaun-Blanquet scale. A blank (space) denotes 
absence. 

samples 

species 

1 Achillea millefolium 
2 Agrostis stolonifera 
3 Aira praecox 
4 Alopecurus geniculatus 
5 Anthoxanthum odoratum 
6 Bellis perennis 
7 Bromus hordaceus 
8 Chenopodium ~urn 
9 Cirsium arvense 

10 Eleocharis ~ustris 
11 Elymus repens 
12 Empetrum nigrum 
13 Hypochaeris radicata 
14 Juncus articulatus 
15 Juncus bufonius - -
16 Leontodon autumnalis - -
17 Lolium perenne 
18 Plantago lanceolata 
19 Poa pratensis 
20 Pea trivialis --
21 Potentilla ~ustris 
22 Ranunculus flammula 
23 Rumex acetosa 
24 Sagina £££Cumbens 
25 Salix repens 
26 Trifolium pratense 
27 Trifolium repens 
28 Vicia lathyroides 
29 Brachythecium rutabulum 
30 Calliergonella cuspidata 
31 ~pophae rhamnoides 
32 Pea ~ua 
33 Ranunculus ~is 

111111112223 
123456789012345670890 

1 3 222 4 2 
48 43 45447 5 

2 3 
272 53 85 4 

432 4 4 4 
3222 2 52 
4 32 2 4 

2 
4 458 4 

44444 6 
2 

2 2 5 
44 33 4 

2 4 43 
52233332352222 2 562 

75652664267 2 
555 33 2 3 

44542344444 2 143 
2765645454 49 2 

22 
2 2222 4 

563 2 2 3 
5 22 242 3 

335 
252 

52125223633261 22 
12 1 

2226222244 44 634 
4 3 3 

1 21 
3364 2 232 3 4 

232 2 11 



Table 2.2 The data of Table 2.1 .in Cornell condensed format. Each sample 
and each species is given a number (see Table 2.1). Abbreviations 
of species names below the data are given as underlining in full 
names in Table 2.1. The names of the samples show the number used 
for the corresponding samples in Jongman et al. (1987). In the 
analysis sample 20 named PAS SAMP and the species 31, 32 and 33 
are made passive. The file has in the example of section 3.9 the 
name "DUNEMEAD,SPE". 

SPECIES - DUNE HEADOW DATA (H. BATTERINK AND G. WIJFFEI..S, 1983) 
( l1 0 ;tX, 5 (! ij, FS. 0)) 
5 

1 1 1.0 11 ij,O 17 7.0 19 ij,O 20 2.0 
1 32 3.0 
2 1 3.0 ij 2.0 6 3.0 7 ij,O 11 ij,O 
2 16 5.0 17 5.0 19 ij,O 20 7.0 27 5.0 
2 32 3.0 
3 2 ij,O ij 7.0 6 2.0 11 ij,O 16 2.0 
3 32 6.0 
3 17 6.0 19 5.0 20 6.0 27 2.0 29 2.0 
ij 2 8.0 ij 2.0 6 2.0 7 3.0 9 2.0 
ij 11 ij,O 16 2.0 17 5.0 19 ij,O 20 5.0 
ij 2ij 5.0 27 1.0 29 2.0 32 ij,O 
5 1 2.0 5 ij,O 6 2.0 7 2.0 11 ij,O 

5 16 3.0 17 2.0 18 5.0 19 2.0 20 6.0 
5 23 5.0 33 2.0 26 2.0 27 2.0 29 2.0 
6 1 2.0 5 3.0 16 3.0 17 6.0 18 5.0 
6 19 3.0 20 ij,O 23 6.0 26 5.0 27 5.0 
6 29 6.0 33 3.0 
7 1 2.0 5 2.0 7 2.0 15 2.0 16 3.0 
7 17 6.0 18 5.0 19 ij,O 20 5.0 23 3.Q 
7 26 2.0 27 2.0 29 2.0 32 2.0 33 2.0 
8 2 ij,O ij 5.0 10 ij,O 1ij ij,O 16 3.0 
8 17 ij,O 19 ij,O 20 ij,O 22 2.0 2ij 2.0 
8 27 2.0 29 2.0 
9 2 3.0 ij 3.0 11 6.0 1ij ij,O 15 ij,O 

9 16 2.0 17 2.0 19 ij,O 20 5.0 23 2.0 
9 2ij 2.0 27 3.0 29 2.0 31 1.0 32 2.0 
9 33 2.0 

10 1 ij,O 5 ij,O 6 2.0 7 ij,O 16 3.0 
10 17 6.0 18 3.0 19 ij,O 20 ij,O 27 6.0 
10 28 1.0 29 2.0 32 3.0 
11 13 2.0 16 5.0 17 7.0 18 3.0 19 ij,O 
11 2ij 2.0 27 3.0 28 2.0 29 ij,O 32 2.0 
12 2 ij,O ij 8.0 15 ij,O 16 2.0 20 ij,O 
12 23 2.0 2ij ij,O 27 3.0 29 ij,O 
13 2 5.0 ij 5.0 8 1.0 15 3.0 16 2.0 
13 19 2.0 20 9.0 22 2.0 2ij 2.0 27 2.0 
13 32 3.0 
1ij 2 ij,O 10 ij,O 16 2.0 21 2.0 22 2.0 
1ij 27 6.0 30 ij,O 33 1.0 
15 2 ij,O 10 5.0 1ij 3.0 16 2.0 21 2.0 
15 22 2.0 27 1.0 29 ij,O 33 1.0 
16 2 7.0 ij ij,O 10 8.0 1ij 3.0 20 2.0 
16 22 2.0 29 ij,O 30 3.0 
17 1 2.0 3 2.0 5 ij,O 13 2.0 16 2.0 
17 18 2.0 19 1.0 
20 6 5.0 19 ij,O 23 3.0 
28 6 2.D 16 5.0 17 2.0 18 3.0 19 3.0 
28 25 3.0 27 2.0 28 1.0 29 6.0 31 2.0 
28 32 ij,O 
29 3 3.0 5 ij,O 12 2.0 13 5.0 16 6.0 
29 2q 3.0 25 3.0 27 2.0 29 3.0 31 1.0 
30 2 5.0 10 ij,O 1q q,o 16 2.0 22 q .0 
30 25 5.0 29 ij,O 30 3.0 
0 

ACH MIL AGR STO AIR PRA ALO GEN ANT ODO BEL PER BRO HOR CHE ALB CIR ARV ELE PAL 
ELY REP EHP NIG HYP RAD JUN ART JUN BUF LEO TAU LOL PER PLA LAN POA PRA POA TRI 
POT PAL RAN FLA RUM ACE SAG PRO SAL REP TRi PRA TRI REP VIC LAT BRA RUT CAL CUS 
HIP RHA POA ANN RAN ACR 
.••••• 1 •••••• 2 •••••• 3 •••••• ij ..•••• 5 ..•••• 6 •••••• 1 •••••• 8 •••••. 9 •••.• 10 
••••• 11 ••••• 12 •.••• 13 ••••• 1ij ••••• 15 ••••• 16 ••••• 17 PAS SAHP 

••••• 18 ••••• 19 •.••• 20 
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are abbreviations of the species names, for example ACH MIL stands for 
Achillea millefolium which is species 1. Each abbreviation must take 8 
positions including spaces and there are 10 abbreviated names on a line. 
(In the output the 8 positions are printed as 2 x 4 positions with a space 
inbetween.) Species 10 is thus ELE PAL and species 22 is EMP NIG (see 
legend Table 2.1). The highest species number in this data set is 33. 
CANOCO expects therefore four lines with abbreviations or species names 
(even if not all of these species are actually present in the data). 
Thereafter CANOCO expects sample names in the same format as the species 
names. (Samples names are printed in the output without an extra space). 
From Table 2.2 we see, for example, that sample 20 has the name "PAS SAMP" 
(abbreviation or passive sample; in our example in section 3.9 this sample 
is made passive) and sample 28 has the name " ••..• 18 11 (which demonstrates 
that numbers in names have meaning for the user only). 

The first three lines of a file in Cornell condensed format must look 
like this: 

Line must contain a title. The title is reproduced (except for the last 
space) in the output to remind the user which data where used in the 
analysis. 

Line 2 must contain a FORTRAN format which specifies how the data are 
stored on a line. Any FORTRAN format of maximal 80 positions which 
specifies the reading of the sample number and a number of couplets 
(species numbers and abundances) from a single line of 80 positions 
is acceptable. For example, the FORTRAN format in Table 2.2 is 
(I10, 1X, 5(I4, F5.0)). The format should always be enclosed between 
brackets. The letters I, X and F should be in upper case. 
- "I1 0" means that the sample number is in the first 10 positions of 

a line (with the last digit in position 10), 
- "1X" means that the eleventh position is skipped, 
- "5(I4, F5.0)" means that there are a maximum of five couplets on a 

line, each with 4 positions for the species number and 5 positions 
for its abundance value. The species number (and sample number) 
must be a whole number or Integer, whence "I4"; the abundance 
value is considered as a real value and must be given as an "F" 
followed by the number of positions, whence 11 F5.0 11 (the 11 .0 11 is 
required and guarantees that the values in the data file are being 
read without modification). 

Line 3 contains the maximum number or couplets on a line. It is in 11 free 
format", which means that it can appear anywhere on the line. 

Line 4 is the beginning of the data. The data end with a notional sample 0 
(zero), without further data. The species names_ and sample names 
follow thereafter as described above. 



Table 2.3 Environmental variables in Cornell condensed format used as 
explanatory variables for the species data in Table 2.1. The 
variables are numbered as follows: 1 = Thickness of ~ horizon; 2 
= moisture; 3 = quantity of manure; ~ = hayfield; 5 = haypasture; 
6 = pasture; 7 = Qtandard farm; 8 = ~iodynamic farm; 9 = Bobby 
farm; 10 = ~ature ~anegement. The sample numbers and names are as in 
Table 2.2, except that sample 20 is missing. For explanation see 
text. 

ENVIRONMENTAL DATA IN CONDENSED FORMAT - DUNE MEADOW DATA 
(I5,1X,I1, F5.0,3(2X, I1, F2. 0) ,2X ,I2, F2. 0) 
5 

2.8 2 1 3 ~ 5 1 7 
2 3.5 2 1 3 2 5 1 8 
3 ~.3 2 2 3 ~ 5 1 7 
~ ~.2 2 2 3 ~ 5 1 7 1 
5 6. 3 2 1 3 2 ~ 9 1 
6 ~.3 2 1 3 2 5 1 9 
7 2.8 2 1 3 3 6 9 
8 ~.2 2 5 3 3 6 9 
9 3.7 2 ~ 3 1 ~ 1 9 

10 1 3.3 2 2 3 1 ~ 1 8 
11 1 3.5 2 1 3 1 6 8 
12 5.8 2 ~ 3 2* 5 7 
1 3 1 6.0 2 5 3 3 5 7 
1 ~ 1 9.3 2 5 3 0 6 1 0 
1 5 1 11.5 2 5 3 0 5 10 
1 6 1 5.7 2 5 3 3 6 1 7 
1 7 ~.0 2 2 3 0 ~ 1 10 
28 ~.6* 2 1 3 0 ~ 1 0 
29 1 3.7 2 5 3 0 ~ 10 1 
30 1 3.5 2 5 3 0 ~ 1 0 1 

0 
A1MOISTURE MANUREHAYFIELDHAYPASTU PASTURE SF BF HF NM 

••••••• 1 •••••• 2 .•...• 3 ...... 4 •••••• 5 •••••• 6 ...... 7 ••.••• 8 0 I 0 0 0 0 9 ••••• 1 0 
•••••• 11 ••••• 1 2 .•.•• 13 ••••. 14 ••••• 15 0 0 0 I 0 16 0 0 I 0 0 17 PAS SAMP 

..... 18 ••••• 1 9 ..... 20 
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It is also allowed to specify, as in DECORANA (Hill, 1979), the maximum 
number of couplets in the positions 69-70 of line 2 (or, if it is a number 
of one digit, in column 70). In this case line 3 is the beginning of the 
data. (Note that some FORTRAN-implementations allow to read more than 80 
positions per line; consult your FORTRAN-manual for this and see section 
1 0). 

The Cornell condensed format can also be used for environmental data 
and covariables. The description of the format given above is still valid. 
Just replace the term "species" by "environmental variable" or by 
"covariable" and "abundance value" by "value". Values of environmental 
variables or of covariables may be negative. Note however that numbers of 
variables that do not appear in a sample receive in the calculations the 
value 0 (zero), which is highly undesirable in most cases. For missing 
values, one should insert a best possible guess or the mean value of the 
corresponding variable. For nominal environmental variables, Cornell 
condensed format may be quite convenient (a nominal variable specifies a 
classification of samples; its "values" are thus classes). 

In the case of the dune meadow data five "environmental" variables 
were recorded at each site, two of which are nominal. The (semi-) 
quantitative variables are (1) A1: thickness of the A1 horizon (in mm), (2) 
MOISTURE: moisture content of of the soil scored on a five-point scale, (3) 
MANURE: quantity of manuring, also scored on a five-point scale. The 
nominal variables are (4) agricultural use, with the three classes 
hayfield, haypasture and pasture, and (5) management regime, with the four 
classes standard farming (SF), bio-dynamical farming (BF), hobby farming 
(HF) and nature management (NM). In CANOCO each class of a nominal variable 
must be coded as a separate variable. Table 2.3 shows the data in Cornell 
condensed format. Column 1 gives the sample numbers, which correspond to 
those in Table 2.2 except that sample 20 is absent. Columns 3, 5 and 7 give 
the values of the variables A1, MOISTURE, MANURE, which are the variables 
1, 2 and 3, respectively. Columns 8 and 9 specify the agricultural use 
(variable 4 = hayfield, variable 5 = haypasture and variable 6 = pasture) 
and columns 10 and 11 the management regime of the meadows (variable 7 = 
SF, variable 8 = BF, variable 9 = HF, variable 10 = NM). For example, 
sample 3 is a haypasture of a standard farm because the variables 5 (= 

haypasture) and 7 (=standard farming) have the value 1 (columns 9 and 11). 
The other classes of agricultural use and management regime are absent in 
sample 3 resulting in the value 0. The asterisks in Table 2.3 are there as 
a reminder for us that the preceding value is an insertion for a missing 
value. The asterisks in the data file present no problem in this case 
because their positions on the line are skipped by virtue of the FORTRAN 
format specified on line 2. 

When species data are in Cornell condensed format, the value 0 in a 
couplet may denote that the species is present with a small quantity. In 
the analysis these zeroes can be distinguished from true zeroes (absences), 
if desired, by choosing a particular transformation of the species data 
(see example in section 3.6: Question Q24), With environmental data or 
covariable data the value 0 in a couplet cannot be distinguished from 
zeroes in absent couplets. 



Table 2. ~ Environmental variables of Table 2.3 in full format. For explanation 
see text. The file has in the example of section 3.9 the name 
"DUNEFUL.ENV 11 • 

ENVIRONMENTAL DATA IN FULL FORMAT- DUNE MEADOW DATA 
(I5,F5.0,1X,2F3.0,3X,3F2.0/18X,~F2.0) 

10 
1 2.8 ~ 0 1 0 

0 0 0 
2 3.5 2 0 1 0 

0 1 0 0 
3 ~.3 2 ~ 0 1 0 

0 0 0 
4 ~ .2 2 ~ 0 1 0 

0 0 0 
5 6.3 2 1 0 0 

0 0 1 0 
6 4.3 2 0 1 0 

0 0 1 0 
7 2.8 3 0 0 1 

0 0 1 0 
8 ~ .2 5 3 0 0 1 

0 0 1 0 
9 3.7 ~ 0 0 

0 0 0 
10 3.3 2 0 0 

0 1 0 0 
11 3.5 0 0 1 

0 1 0 0 
12 5.8 ~ 2* 0 1 0 

0 0 0 
13 6.0 5 3 0 1 0 

0 0 0 
1~ 9.3 5 0 0 0 1 

0 0 0 1 
15 11.5 5 0 0 1 0 

0 0 0 1 
16 5.7 5 3 0 0 1 

1 0 0 0 
17 ~.0 2 0 1 0 0 

0 0 0 1 
28 ~.6* 0 0 0 

0 0 0 1 
29 3.7 5 0 0 0 

0 0 0 1 
30 3.5 5 0 1 0 0 

0 0 0 1 
0 o.o 0 0 0 0 0 

0 0 0 0 
A1MOISTURE MANUREHAYFIELDHAYPASTU PASTURE SF BF HF NM 

I I I I I I 1 I I I I I I 2 I 0 I I I I 3 I I I I I o 4 ...... 5 I I 0 I I I 6 I I I I I I 7 I I I 0 o I 8 1 I I I I I 9 I I I I I 1 0 

I I I I I 11 •.••• 12 ••••• 13 ••••• 14 ••••• 15 I I I I I 16 I I I I I 17 PAS SAMP 
.•••• 1 8 I I I I I 1 9 I I o I I 20 
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2.2 FUll format 

Full format means that all values must be given, including all zero 
values, as is common in most statistical packages. In the full format of 
CANOCO a sample number appears once, followed by its values of all 
variables in a fixed format a.nd a fixed order. Abbreviations of the names 
of the variables and of the samples are given at the end of the data, just 
as in Cornell condensed format. Table 2.4 shows the environmental data of 
Table 2.3 in full format. Variable 1 is A1, variable 2 is MOISTURE, ••• , 
and variable 10 is NM (for Nature Management). The values of the 10 
variables of sample 3 are given on the lines 8 and 9: the first 6 variables 
on line 8 and 4 more variables on line 9. In sample 3 the A1 horizon was 
thus 4.3 mm, its moisture content was scored the value 2, etc., ••• 
Continuing on line 9 we see that sample 3 is of a standard farm: its value 
is 1 whereas the other management classes have the value 0 in sample 3. 

We see the same sample numbers in Table 2.4 as in Table 2.3. After 
sample 30 there is again a "notional" sample 0, which indicates the end of 
the data. But, because each sample occupies two lines in this example, the 
notional sample 0 must also occupy two lines. For clarity its values are 
given the value 0, but these values could equally well be replaced by 
spaces ("blanks"). The rule is that the notional sample 0 in a full format 
file must occupy the same number of lines as the other samples. How many 
lines a sample occupies is implicit in the FORTRAN-format on line 2 and the 
number of variables specified on line 3. 
Missing values are not allowed. For missing values one may insert a best 
possible guess or the mean value of the corresponding variable. 
The first three lines of a data file in full format must look like this: 

Line must contain a title (see section 2.1). 
Line 2 must contain a FORTRAN format which specifies how the data are 

stored for a sample. Any FORTRAN format of maximal 80 positions 
which specifies the reading of a sample number (by an "I-format") 
and the values (in "F-formats") of all variables is acceptable, with 
the proviso that one cannot read more than 80 positions per line. 
For example, the FORTRAN format in Table 2.4 is (I5, F5.0, 1X, 
2 F3. 0, 3X , 3F2. 0 I 1 8X , 4 F2. 0) • 
- "I5 11 means that the sample number is in the first 5 positions of 

the first line for a sample (with the last digit in position 5). 
- 11 F5.0 11 reads a value from the next five positions (A1). 
- 11 1X" means that position 11 is skipped. 
- 11 2F3. 011 reads two values of three positions each (MOISTURE and 

MANURE). 
- "3X, 3F2.0 11 skips the next three positions and reads three values 

of two positions each (HAYFIELD, HAYPASTURE and PASTURE). 
- 11 I 18X" means go to the beginning of the next 1 ine and skip the 

first 18 positions of this line; thereafter 
- 11 4F2.0 11 reads four values of two positions each (SF, BF, HF, NM). 

A FORTRAN format of a full format file thus contains precisely one 
I-format. 



Table 2.5 Nominal data to be subjected to multiple correspondence analysis in 
Cornell condensed format. The file gives data on three nominal 
variables A, Band C with 3, 4 and 2 categories, respectively. The 
value 1 in each couplet is omitted (see text for explanation). 

DATA ON THREE NOMINAL VARIABLES TO BE SUBJECTED TO CA 
(I2, 1X, 3(I2, F1.0)) 

3 
12 21 32 

2 13 23 32 
3 12 21 32 
4 11 22 31 
5 11 23 31 
6 13 24 32 
7 12 24 31 
8 12 23 31 
9 1 3 21 31 

1 0 12 22 32 
11112431 

0 
(this line is for names of the non-existing variables 1-10) 

A1 A2 A3 
B1 B2 83 84 
C1 C2 
•••••.• 1 ••••••. 2 .••..•• 3 ....... 4 •.•.••. 5 •..•.•• 6 ••••••• 7 ••••••• 8 •.••••• 9 .•••.•. 10 
••••••• 11 
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Line 3 contains in free format the number of variables read by F-formats in 
the FORTRAN format of line 2. (The data file may contain more 
variables, if they are skipped by the FORTRAN format). 

Line 4 is the beginning of the data. The data end with a notional sample 0, 
which occupies as many lines as a normal sample. The names of the 
variables and sample names follow thereafter, as in Cornell 
condensed format. 

It is also allowed to specify the number of variables in the positions 
69-70 of line 2 (or, if it is a number of one digit, in column 70). In this 
case line 3 is the beginning of the data. 
Full format can also be used for species data and for covariables. Just 
replace "variable" by "species" or "covariable" and "value" by "abundance 
value" or "value of covariable". 

Important: CANOCO will transform full format species data internally to 
condensed format for reasons described in section 1.4. Because zero 
abundance values are not stored in the computer memory, zero values cannot 
be transformed to a non-zero value later on in the program, even if 
requested so in Q24-Q25. If the user wants to transform a zero abundance 
value to a non-zero value in full format species data, the zeroes should be 
specified in the full format data by a small quantity, e.g. 0.01. 

2.3 Presence/absence and nominal data for ordination 

When storing presence/absence data or purely nominal data in condensed 
format, each couplet consists of the num'ber of a variable and the value 1. 

The 1 •s are then more of less redundant and can be omitted if the data are 
to be subjected to ordination only. Table 2.5 shows an example. The FORTRAN 
format on line 2 specifies that each couplet consists of three positions, 
namely two for the number of the variable present and one for the abundance 
value. As there is a blank after each variable number, CANOCO will read the 
value 0 for each abundance. Because each couplet in a condensed format file 
is stored, these zeroes are stored as well and can be transformed to the 
required value 1 by typing in response to question Q24 (section 3.6): 

0 

-1 0 

However, when the data are in this form, they cannot be entered as 
environmental data or covariable data. 

2.4 Linking up samples in different data files 

Important: Species data, environmental data and covariable data are 
commonly stored in different files. CANOCO determines which samples in 
different files correspond to the same physical sampling unit on the basis 
of the sample number (not the sample name). The sample names in the species 
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data file serve to label the samples in the output. The sample names in the 
environmental data and covariable data are used merely to check whether the 
sample numbers in different files have the same name. If differences in 
names are detected, an error message is given but the program continues 
regardless. 
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3. TERMINAL DIALOGUE 

3.1 How to activate CANOCO 

CANOCO is designed as an interactive computer program: the program 
asks questions and the user types answers in response. At first use, this 
dialogue between CANOCO and the user can best take place at a computer 
terminal (console or personal computer). Later on, it may be useful to run 
CANOCO in batch. How to activate CANOCO depends on how CANOCO is installed 
at your computer; see Table 3.1. The person installing CANOCO (see 
Installation Notes) is requested to complete Table 3.1. 

3.2 Input and output 

During the dialogue CANOCO asks for names of input and output files. 
The answers must be valid names of at most 40 characters. CANOCO itself 
creates one file which gives an annotated copy of the answers entered at 
the terminal. This file may help the user to do further analyses, for 
example, in batch jobs (see Table 3.1). Input for CANOCO are the answers 
entered at the terminal, and one to three data files (see DATA INPUT). 
Output of CANOCO is the output file that contains a comprehensive copy of 
the terminal dialogue and also all numerical results of CANOCO or a part of 
it, depending on the user's answers. This file has a maximum of 132 
positions per line. Additional output files, containing a machine readable 
copy of the ordination results, are optional. One to many of such files can 
be created after each activation of CANOCO. These files have a maximum of 
80 positions per line and can be used as data input for CANOCO instead of a 
file containing environmental data or covariables. They are also useful as 
input to programs for preparing ordination diagrams. All output can also be 
displayed at the terminal. 

3.3 Ways to answer the questions 

In posing a question CANOCO indicates the range of valid answers by 
ending the question with a phrase like this: 

Range of valid answers: 0 [1] 3 
Type your answer or merely press RETURN for default, indicated by []. 

In this example valid answers are obtained by typing one of the values 0, 
1, 2 and 3 followed by pressing the RETURN key (sometimes termed the ENTER 
key), If one merely presses the RETURN key, the implied answer is the 
"default" answer indicated by "[ )" in the range. In the example the default 
answer is the value 1. If the range is indicated like this: 

Range of valid answers: [1] 3 

then the default value is 1 and coincides with the minimum value of valid 
answers. It the range is given as 11 1 [3)", the default value is 3 and 



Table 3.1. How to activate CANOCO at the terminal and in batch. 

To be filled in by the person who installs CANOCO 

Computer o 0 0 0 0 o 0 o o 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 

To activate CANOCO at a terminal type: ....................... . 

The answers entered while running CANOCO appear in annotated form on a file 

named: o o o o 0 o o o o o o 0 0 0 0 0 0 0 0 0 I t 0 0 0 o o o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 I 

To activate CANOCO in batch, you must submit a batch job. The file which 

specifies the batch job must begin with the following lines 

(command) (comment) 

0 0 0 0 I 0 0 0 0 t 0 o o o 0 o o 0 o 0 o ••••••••••••••• 0 •••••• 

••• 0 •• 0 0 •••• 0 ••• 0 ••••• 

• • • • • • • • • • • • • • • • • • 0 0 0 • • • • 0 0 ••••••••• 0 • 0 •••• 

•••••••••••••••• 0 •••• 

The job is submitted by typing: 

0 o 0 o o o o o o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 o 0 o o o 0 o o 0 I 0 0 0 o o 0 o 0 0 0 0 0 0 0 t t 

Programs that use the machine readable copy of CANOCO/DECORANA are 

(name) (purpose) (contact) 

. . . . . . . . . . . . . . • • 0 •••••••••••• ............... 
0 0 0 0 0 0 0 I 0 I 0 0 0 o •••••••••••• 0 •• 

• • • • • • 0 ••••••• ............... 0 0 0 0 I 0 I 0 0 0 0 0 0 o o 
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coincides with the maximum value of valid answers. If an invalid answer is 
given, the question is posed again. Real values like 2.5 are permitted only 
when the values in the range have a decimal point, e.g. 

Range of valid answers: 1.0 (3.0] 

If the program indicates that the answer must consist of two values, the 
values must be entered on the same line and be separated by one or more 
blanks (spaces) and/or by a comma. In this case the range of each of the 
values is indicated separately like this: 

Ranges of valid answers: [-1] 10, and [o) 10 

By pressing RETURN, the implied answers are thus the values -1 and o. If 
a comma is used in the answer, missing entries are replaced by the default 
value. In the example the answer 11 ,3 11 is interpreted as the values -1 and 
3. 

CANOCO starts with the question 

TYPE 0 FOR INPUT FROM CONSOLE 
1 FOR INPUT FROM FILE 

Range of valid answers: [o] 
Type your answer(s) or merely press RETURN for default, indicated 
by[]. 

By pressing RETURN (or typing 0) CANOCO continues the terminal dialogue by 
asking further questions (see the next sections). But if the answer is 1, 
then the user needs to answer only one more question from the terminal: 

TYPE NAME OF FILE WITH ANSWERS TO THE QUESTIONS 

If the user types, for example, CANOCO.CON, then the program reads the 
answers to subsequent questions from the file CANOCO.CON and the analysis 
proceeds automatically. Commonly, the file specified here is a modification 
of the file which contains the annotated copy of answers of an earlier 
analysis. An example of such a file is given later on (Table 3.3). It may 
happen that the file contains too few answers, for example, because some of 
the answers were found invalid. In that case, the terminal dialogue with 
user starts again at the question left unanswered. 

3.4 Questions to specify the type of analysis and in- and output files 

Which questions are posed depends on the type of analysis. The 
questions following those of the previous section are numbered as Q1, Q2, 
••• , in the order in which they are posed. The answer to, for example, 
question Q5 is indicated by 11 Q5 = .... 11 , where 11 11 is the answer. 
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An example is given in section 3.9. The file with the annotated copy of 
answers entered from the terminal contains the answers frcm question Q1 
onwards (see Table 3.3). 

Q1. TYPE NAME OF OUTPUT FILE 

If the name is a valid name, CANOCO attempts to "open" a new file with this 
name and, if opened, write output to this file. The lines of this output 
file have a maximum length of 132 characters. 

Q2. *** TYPE OF ANALYSIS *** 
MODEL GRADIENT ANALYSIS 

INDIRECT DIRECT HYBRID 
LINEAR 1=PCA 2~ RDA 3 
UNIMODAL ~= CA 5= CCA 6 

II 7~DCA 8=DCCA 9 
10=NON-STANDARD ANALYSIS 

TYPE ANALYSIS NUMBER 
Range of valid answers: [5] 10 

The analysis types are arranged in a 3 x 3 table of type-of-model by type­
of-gradient-analysis. For more information than can be supplied here 
consult Jongman et al. (1987) and Ter Braak and Prentice (1987). 
The first column refers to indirect gradient analysis techniques: 
ordination techniques, which search for major gradients in the species data 
irrespective of any environmental variables. The entries under this heading 
are 

1 PCA Principal Components Analysis 
~ CA Correspondence Analysis 
7 DCA Detrended Correspondence Analysis 

PCA assumes a linear model (row 1) for the relationship between the 
responses of each species and the ordination axes; CA and DCA assume a 
unimodal model (rows 2 and 3) for the relationship between the responses of 
each species and the ordination axes. Ordination axes can be thought of as 
being theoretical environmental variables or underlying gradients. The 
linear model is fitted by the method of two-way weighted summation which 
leads to the least-squares solution. The unimodal model is fitted by the 
method of two-way weighted averaging. Use of DCA is advised if an 
ordination by CA shows the arch effect, i.e. if the sample scores on the 
second ordination axis are approximately a quadratic function of the sample 
scores .on the first axis. (The arch effect is also termed the Guttman 
effect.) Use of PCA is advised in particular if in ordinations by CA or DCA 
the range of the sample scores is 1 ess than 1 .5 SD (see section ~. 3). This 
advice is applicable to each choice between techniques of rows 1, 2 and 3. 
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Other names for CA are reciprocal averaging and- outside ecology, 
in particular when analysing nominal response variables (section 7.2)­
dual scaling, optimal scaling, homogeneity analysis and multiple 
correspondence analysis (Gifi, 1981; Greenacre, 1984). 

The choice between variants of PCA, like non-centred PCA, species­
centred PCA, standardized PCA, double centred PCA, is relegated to section 
3.6 as these variants are obtainable by transformation of the species 
data. Principal coordinates analysis can also be obtained as a variant of 
PCA (see section 7.4). 

CANOCO calculates in a simple run at most four ordination axes. See 
Q7 for a method to obtain more ordination axes with CANOCO. 

The second column refers to (multivariate) direct gradient analysis 
techniques (canonical ordination). They attempt to explain the species 
responses by ordination axes that are constrained to be linear combinations 
of supplied environmental variables. The ordination diagram obtained from a 
direct gradient analysis has therefore a known environmental basis. The 
entries under this heading are 

2 = RDA 
5 = CCA 
8 =DCCA 

Redundancy Analysis 
Canonical Correspondence Analysis 
Detrended Canonical Correspondence Analysis 

When CCA is applied to nominal response variables it is termed redundancy 
analysis for qualitative variables (section 7.2; Isra~ls, 1984). 

The maximum number of constrained ordination axes (= canocial axes) 
is in general equal to the number of environmental variables, unless 
"detrending" is in force (see for this exception Q9). Because CANOCO 
calculates in a single run at most four ordination axes, CANOCO will in 
general determine four constrained ordination axes, unless the number of 
environmental variables (q) is less than 4. If q is less than 4, CANOCO 
will extract, after the q constrained ordination axes, one or more 
unconstrained ordination axes (see below). 

The third column refers to hybrid direct/indirect gradient analysis 
techniques. If the user chooses a technique from this column, CANOCO will 
ask later on, how many canonical axes are to be extracted. If two such axes 
are required, for example, the first two ordination axes will be 
"canonical", i.e. be constrained to be linear combinations of supplied 
environmental variables and the third and fourth ordination axis will be 
unconstrained, apart from being uncorrelated to the first two ordination 
axes. The unconstrained ordination axes represent residual variation in the 
species data that remains after extracting the constrained axes, and are 
therefore "partial" ordination axes. Another method to obtain partial 
ordination axes is by specifying covariables (see Q6). 

Analysis number 10 stands for nonstandard analysis in which the user 
can specify unusual options or unusual combinations of options (see 
section 5). 

The methods of row 1 will be called linear methods while the methods 
of rows 2 and 3 will be called weighted averaging methods, in accordance 
with the terminology in Ter Braak and Prentice (1987). 
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Q3, TYPE NAME OF FILE WITH SPECIES DATA 

Ordination (PCA, CA, DCA, RDA, CCA, etc.) is applied to the data of the 
file specified here. In community ecology it are typically the species 
data, but if one wants, for example, a PCA of environmental data, the 
environmental data file should be specified here. 

If the name is a valid name, CANOCO will attempt to read the species 
data from the file. The data can be either in Cornell condensed format or 
in full format (see DATA INPUT). 

Note that the data should not contain negative values if a weighted 
averaging method (CA, DCA, CCA, DCCA) is chosen; if a negative value is 
encountered, CANOCO stops with an error message saying so. 

Q4. TYPE 1 IF THE ORDINATION AXES - AFTER EXTRACTION -
ARE TO BE RELATED TO ENVIRONMENTAL VARIABLES 

ELSE TYPE 0 
Range of valid answers: [ 0) 

This question is posed only if an indirect gradient analysis technique is 
chosen at the first time Q2 appears. If the answer is 1, a file with 
environmental data is asked for (Q5) and CANOCO will calculate, among other 
things, correlation coefficients between the unconstrained ordination axes 
and the environmental variables of this file. Because environmental 
variables entered in this way do not influence the ordination axes (these 
remain unconstrained), the result is a "passive" analysis of environmental 
variables. Another method to obtain passive analyses is via Q35. 

Q5. TYPE NAME OF FILE WITH ENVIRONMENTAL DATA 

This question is posed only for analysis techniques requiring environmental 
data (see Q2) or if Q4 = 1. The data of the file specified here are used to 
interpret or to constrain the ordination of the data of Q3. In community 
ecology, it are typically environmental data. In general the file should 
contain "external" explanatory variables, i.e. variables by which one wants 
to explain the variation in the data specified in Q3. Explanation proceeds 
by way of a multiple regression of each ordination axis on the explanatory 
variables and by way of correlation coefficients. In a partial RDA and CCA 
the file should contain the explanatory variables of prime interest. 

If the name is a valid name, CANOCO will attempt to read the 
environmental data from the file. The data can either be in Cornell 
condensed format or in full format. Here the user may also specify a file 
containing the machine readable copy of a previous analysis. The sample 
scores on the ordination axes will then be treated as the values of four 
variables named AX1, AX2, AX3 and AX4. 
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The file with environmental data may contain more variables than can 
actually be analysed by CANOCO, provided the excess variables are deleted 
later on in Q20. 

Q6, TYPE 1 IF YOU HAVE COVARIABLES, ELSE TYPE 0 
*EXPLANATION* COVARIABLES ARE: 

VARIABLES WITH KNOWN OR UNINTERESTING EFFECTS ON THE 
SPECIES. 
THEIR EFFECTS ARE ELIMINATED WHEN EXTRACTING ORDINATION 
AXES. 

Range of valid answers: [ 0) 

If the answer is 1, then the types of analyses in Q2 need the prefix 
"Partial": the effect of covari ables is parti alled out from the ordination 
diagram. With covariables, CANOCO will give an ordination of the residual 
variation in the species data that remains after fitting the effects of the 
covariabl es. The ordination axes will be made uncorrel ated to the 
covariables. Further, environmental variables (if present) will be 
regressed on the covariables and the residuals of these multiple 
regressions will take the place of the original environmental values. In 
this way, the effect of the environmental variables on the species is 
"corrected" for the effect that the covariables have on the species. 
Constrained ordination axes will therefore represent the effect that is 
"uniquely" attributable to the environmental variables- and not to (linear 
combinations of) covariables. With environmental variables in the analysis, 
covariables play the role of concomitant regressors in the multiple 
regression of the ordination axes on the explanatory variables specified in 
Q5. See sections 4.11 and 6 for examples of the use of covariables. 

Q7. TYPE NAME OF FILE WITH COVARIABLES 

This question is posed if Q6 = 1. See Q6 for explanation. If the name is a 
valid name, CANOCO will attempt to read the covariables from the file. See 
Q5 for the data formats allowed. By specifying a machine readable copy of a 
previous analysis CANOCO can extract further axes beyond the first four: 
if, for example, the covariables are the first four ordination axes of the 
SRecies data, then the four ordination axes to be extracted will be made 
uncorrelated to these covariables and will thus be equivalent to ordination 
axes 5 to 8 of the previous analysis. 

The file with covariables may contain more variables than can 
actually be analysed by CANOCO, provided de excess variables are deleted 
later on in Q22. 
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Q8. TYPE NUMBER OF CANONICAL AXES (1, 2 OR 3) 
Range of vall d answers: [ 2) 3 

This question is posed only for hybrid gradient analyses. See Q2 for 
explanation. 

Q9. TYPE FOR DETRENDING BY SEGMENTS 
2 FOR DETRENDING BY 2ND ORDER POLYNOMIALS [ J 
3 FOR DETRENDING BY 3RD ORDER POLYNOMIALS 
4 FOR DETRENDING BY 4TH ORDER POLYNOMIALS 

Range of valid answers: 1 [2) 4 

This question is asked in DCA, DCCA and analysis numbers 9 and 10. 
Detrending is a method for removing the arch effect inCA and CCA (see Q2). 
Detrending-by-segments is the method of detrending proposed by Hill and 
Gauch (1980) and used in the computer program DECORANA (Hill, 1979). 
Minchin ( 1986) found that this method sometimes flattens out some of the 
variation associated with one of the underlying gradients. He ascribed this 
to an instability in the detrending-by-segments method (see also Kenkel and 
Orl6ci, 1986). Detrending.-by-polynomials is a more stable method of 
detrending. In the usual reciprocal algorithm of CA, trial site scores for 
a particular axis are made uncorrelated to the ordination axes already 
extracted in each iteration step. With detrending-by-polynomials they are 
also made uncorrelated to k-th order polynomials of the axes already 
extracted (k = 2, 3 or 4) and to first-order cross products of these axes. 

When the arch effect crops up, the second CA-axis is approximately a 
quadratic function (= a second-order polynomial) of the first CA-axis. 
Detrending by second-order polynomials therefore specifically removes the 
arch effect. But this may not be enough because when there is a dominant 
first gradient, the third CA-axis is also a function of the first axis, 
namely a cubic function; and the fourth axis is a quartic function, etc., 
which may also obscure a true second underlying gradient. As the 
eigenvalues of these polynomial axes steadily decrease, detrending by 
fourth-order polynomials is presumably sufficient in most applications. 

In DCCA and partial DCA, the method of detrending-by-segments is 
unattractive on theoretical grounds, but the method of detrending-by­
polynomials can be modified into an acceptable method (see Appendix A). Use 
of detrending-by-segments is therefore not recommended in DCCA and partial 
DCA. When detrending-by-polynomials is used in a direct gradient analysis, 
then the number of canonical axes that can be extracted is less than 
without detrending. Less than four canonical axes can be extracted if there 
are less than 10, 13 or 16 environmental variables depending on whether the 
order of polynomials is 2, 3 or 4 respectively. Detrending is, however, 
almost never needed in CCA if only a few environmental variables are 
included in the analysis. Moreover if the arch effect does occur in a CCA, 



- 22 -

it is an indication that some environmental variable is superfluous. 

**Questions Q10- Q13 are posed only if detrending-by~ ** 
** segments is asked for and in some nonstandard analyses. ** 

Q10. SPECIFY NUMBER OF SEGMENTS FOR USE IN THE DETRENDING PROCESS 
Range of valid answers: 10 [26] 46 

This question is familiar to users of DECORANA (Hill, 1979). The default 
value is 26. The maximum permissible value is 46. 

Q11. IS NONLINEAR RESCALING OF AXES REQUIRED? 
TYPE 0 (NO RESCALING), OR NUMBER OF TIMES TO BE DONE 
Range of valid answers: 0 [4] 20 

This question has the same effect as the corresponding one in DECORANA 
(Hill, 1979). As in DECORANA, the default value is 4. The nonlinear 
rescaling of an ordination axis attemps to equalize the breadth of species 
response curves along the axis by means of equalizing the within-sample 
variances of the species scores. For this purpose a heuristic method is 
used in which the axis is divided into small segments; segments with 
samples with a small within-sample variance are expanded whereas segments 
with samples with a large within-sample variance are contracted. For 
further details see Hill (1979). 

Q12. SPECIFY RESCALING THRESHOLD 
Range of valid answers: [o.o] 1 oo.o 

Hill (1979) writes: "If the rescaling threshold is set tot, then axes with 
length less than t SD will not be rescaled, while those with length greater 
than t will be rescaled. The default value is t • 0". Here SD stand for the 
Standard Deviation unit, a measure of the length of an ordination axis 
compared to the average breadth of the species' response curves; (see also 
section 4.5 around equation (4.7)). 

Q13. TYPE NUMBER (1-4) OF AXES FOR SPECIES-ENVIRONMENT BIPLOT 
Range of valid answers: 1 [ 2] 4 

Answer here the number of axes of a planned ordination diagram. The 
question is needed when detrending-by-segments is in force, because the 
ordination axes are then in general slightly correlated. The optimal biplot 
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scores for the environmental variables will therefore depend on the number 
of axes chosen. 

Q14. ***SCALING OF ORDINATION SCORES *** 
=SAMPLE SCORES ARE WEIGHTED MEAN SPECIES SCORES (] 

2 = SPECIES SCORES ARE WEIGHTED MEAN SAMPLE SCORES 
3 = SYMMETRIC SCALING 
Range of valid answers: [ 1] 3 

This question is posed for weighted averaging methods but not if 
detrending-by-segments is in force (because then Q14 = 1 is implied). This 
question is needed because there is some arbitrariness inCA and derived 
methods of how to scale the sample scores with respect to the species 
scores (Ter Braak 1985; Heiser 1986). It was shown inTer Braak (1985) that 
under particular conditions CA provides an approximate solution to a 
unimodal model. When such a model holds, the distances in the ordination 
diagram between sample points and a species point are inversely related to 
the abundance of the corresponding species. The scaling of odination scores 
asked for in this question influences sample-species distances in the 
ordination diagram. Unfortunately, CA gives no clue to what the optimal 
scaling is (this is an awkward consequence of the approximate nature of the 
solution provided by CA) and CANOCO contains no facility to automatically 
choose the optimal scaling (see Ter Braak (1985) for a proposal for a 
solution to this problem). The choice of scaling is the less critical the 
higher the eigenvalues of the ordination axes. Limited guidance is as 
follows: Answer 1 is standard in DECORANA and assumes that some species• 
optima lie outside the range of the sample scores. Answer 1 ensures that 
the range of the species scores is greater than that of the sample scores. 
Answer 2 assumes that the species' optima all lie inside the range of the 
sample scores (which is unrealistic in many ecological applications). 
Answer 3 is a compromise between 1 and 2. 

Note that, if the answer is 1 and covariables are present, the sample 
scores that are "weighted mean species scores" are also made uncorrelated 
to the covariables. For more details about the scaling see sections 4.5 -
4. 6. 

Q15. *** SCALING OF ORDINATION SCORES *** 
EUCLIDEAN DISTANCE BIPLOT (] 

2 ~ COVARIANCE BIPLOT 
3 = SYMMETRIC SCALING 
Range of valid answers: [ 1 l 3 

This question, posed for linear methods, addresses the same arbitrariness 
noted in the previous question. The answer to this question affects the 
inter-sample and inter-species interpretation of the ordination diagram, 
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but the joint interpretation of the sample and species points by the rules 
of the biplot is unaffected. Answer 1 leads to a biplot which is optimal 
for interpreting distances between samples as these approximate Euclidean 
distances in species-space (see e.g. Ter Braak, 1983). Answer 2 leads to a 
biplot which is optimal for interpreting angles between arrows of species 
as these angles approximate (linear) correlations between species (for a 
somewhat more precise statement see Corsten and Gabriel, 1976 or Jongman et 
al., 1987, section 5.3.4). Answers 1 and 2 are asymmetric scalings similar 
to those in Q14, whereas a symmetric scaling can be obtained by the answer 
3. For more details about the scaling see sections 4.5 - 4.6. 

Q16. TYPE 1 FOR A MACHINE READABLE COPY OF THE SOLUTION 
Range of valid answers: [ 0) 

For explanation see next question and section 3.2. 

Q17. TYPE NAME OF FILE FOR MACHINE READABLE COPY 

The question is posed if the previous answer is affirmative. If the name is 
a valid name, CANOCO attemps to "open" a new file with this name. This 
question is repeated later on if further analyses are wished. If the same 
name is entered then, CANOCO will not open a new file and will copy output 
to the existing file. If requested later on, CANOCO will write the 
ordination results to this file. 

Q18. TYPE NAME OF FILE FOR MACHINE READABLE COPY OF THE 
ENVIRONMENTAL SCORES 

N.B. This question is deleted in the latest version of CANOCO. All 
ordination is written to the file specified in Q17. 

This question is posed if there are environmental variables in the 
analysis and Q16 = 1. The remarks of the previous question apply also to 
this file. If requested later on, CANOCO will write part of the ordination 
results to this file: biplot scores of environmental variables, centroids 
of environmental variables in the ordination diagram ani:l the sample scores 
which are linear combinations of environmental variables. 
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3.5 Questions to omit samples and to manipulate environmental variables 
and covariables 

Q19. ENTER NUMBER (NOT NAMES) OF SAMPLES TO BE OMITTED 
ONE AT A TIME, ENDING LIST WITH A ZERO 
Range of valid answers: [o] n 

n ~ highest sample number in the species data 

CANOCO asks this question after reading the file with the species data. 
Type only one sample number per line. For example, if samples 4, 7 and 10 
are to be omitted, then these numbers should be entered as follows: 

4 
7 

10 
0 

If no samples are to be omitted, then it suffices to press RETURN. Samples 
can also be omitted at a later stage (see Q28). The advantage of doing it 
here, is that omitted samples are skipped when reading the environmental 
data and covariables. 

Q20. ENTER NUMBERS (NOT NAMES) OF ENVIRONMENTAL VARIABLES 
TO BE OMITTED ONE AT A TIME, ENDING LIST WITH A ZERO 
Range of valid answers: ( 0] q 

q = highest number of environmental variable 

CANOCO asks this question just before the actual reading of the file with 
the environmental data (if there is one). Type one number per line as in 
the previous question. Deleted variables do not occupy data space in the 
computer. If a nominal variable has ~classes, only ~-1 dummy variables 
should be in the analysis to avoid multicollinearity among the 
environmental variables. The user should therefore delete one of the k 
dummy variables at this point; which one is arbitrary from the mathematical 
point of view (but, for numerical stability it is advisable to delete a 
class with many samples; and for ease of interpretation of regression 
coefficients it may be helpful to delete the class which is the natural 
reference class). If this is forgotten, CANOCO will automatically delete 
the highest class number of each nominal variable. The automatic procedure 
costs extra computation. 
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Q21, *** INTERACTIONS OF ENVIRONMENTAL VARIABLES *** 
ENTER PAIRS OF NUMBERS OF ENVIRONt1ENTAL VARIABLES IF YOU 
WISH TO DEFINE PRODUCT VARIABLES 
ENTER -1 0 IF NO (FURTHER) PRODUCT VARIABLES ARE DESIRED 
Range of valid answers: [ -1] q, and [o) q 

q = highest number of environmental variable 

CANOCO also asks this question before the actual reading of the file with 
the environmental data, Type two numbers per line only. For example, 
suppose that a data file contains 20 environmental variables, number 1-20. 
Suppose that variable 2 is MOISTURE and variable 3 is MANURE; then entering 

2 3 
2 2 
2 22 

-1 0 (or merely press RETURN) 
has the effect that CANOCO creates three new variables with numbers 21, 22 
and 23. Variable 21 is obtained by calculating for each sample the product 
of its MOISTURE value and its MANURE value, Variable 22 will contain 
squared moisture values and variable 23 will contain (MOISTURE)'. It is 
also possible to use numbers of variables that were deleted in the previous 
question, 

By defining product variables, the user can investigate in very much 
the same way as in multiple regression analysis whether the effect of one 
variable depends on the value of another variable (see Jongman et al., 
1987, section 3.5.~). In other words, this is a way to investigate 
interaction of effects. In the example just given, the effect that MANURE 
has on the species can be shown to depend on the value of MOISTURE if the 
first eigenvalue of the analysis turns out to be considerably higher than 
in the analysis without this product variable and if the t-value associated 
with this product variable is appreciably larger than 2 in absolute value. 
Inclusion of squared variables may alleviate the restriction that only 
linear combinations of environmental variables are considered in the 
analyses provided by CANOCO. The user should, however, be cautious in 
defining too many product variables, to avoid "data dredging". 

After reading, CANOCO standardizes the environmental variables and 
their products (if defined), to mean 0 and variance 1. 

Q22. ENTER NUMBER (NOT NAMES) OF COVARIABLES TO BE OMITTED ONE AT 
A TIME, ENDING LIST WITH A ZERO 
Range of valid answers: [ 0) p 

p = highest number of covariable 

This question is analogous to Q20, but is asked now for covariables, when 
present. The remarks on nominal variables in Q20 also apply to the present 
question. 
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Q23. *** INTERACTIONS OF COVARIABLES *** 
ENTER PAIRS OF NUMBERS OF COVARIABLES IF YOU WISH TO DEFINE 
PRODUCT VARIABLES 
ENTER -1 0 IF NO (FURTHER) PRODUCT VARIABLES ARE 
Range of valid answers: [-1] p, and [o] 

p = highest number of covariables 

DESIRED 
p 

This question is analogous to Q21 but is asked now for covariables, when 
present. Squares (and products) of covariables may be useful in partial CA 
or partial DCA to prevent that the ordination axes fran being a quadratic 
function of the covariables. This may happen if the covariables represent a 
long gradient in the species data and subsequent gradients are much 
shorter. See the DETRENDING question Q9. 

After reading the covariables, CANOCO makes the covariables mutually 
uncorrelated by the Gram-Schmidt orthogonalization process (Rao, 1973: 
section 1a.~). If environmental variables are present, they are each 
regressed on the covariables and their values are replaced by the residuals 
of these regressions (without an extra standardization). 

3.6 Questions to specify transformation of species data 

The questions in this section are posed in order of their execution by 
CANOCO. This order settles any ambiguity in case of order dependency. 

Q2~. *** TRANSFORMATION OF SPECIES DATA *** 
TYPE -1 0 IF NO TRANSFORMATION IS REQUIRED() 
TYPE -2 0 FOR THE SQUAREROOT~TRANSFORMATION 
TYPE .-3 0 FOR LN(Y+C )-TRANSFORMATION 
OR 
ENTER COUPLETS OF OLD AND NEW VALUES FOR PIECEWISE 
LINEAR TRANSFORMATION, ENDING WITH -1 0 
IF NO TRANSFORMATION IS DESIRED, MERELY PRESS RETURN 

Range of valid answers: -3.0 [~1.0] 999.9, and xxx [o.o] 999.9 

xxx -999.9 in linear methods 
xxx = 0.0 in weighted averaging methods 

The transformation that is chosen is applied to all species values (in 
general terms: to all response variables). If a logarithmic transformation 
is chosen by typing -3 0, the value of c is asked for next (Q25). Natural 
logarithms are taken. No transformation is applied to zero values unless 
they are explicitly included in a Cornell condensed format file (section 
2) • 

The piecewise linear transformation works as in DECORANA (Hill, 
1979). The following description of this transformation is copied from the 
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DECORANA manual, A typical transformation might be 
0 
2 2 
5 3 

10 ~ 

20 5 
-1 0 (or merely press RETURN) 

The negative number -1 serves to terminate the transformation data, and it 
must be followed by a dummy value such as o. The meaning of this 
transformation is that a quantity 0 in the data is transformed to 1, 2 to 
2, 5 to 3, etc, 
For other numbers the transformation is interpolated linearly. Thus 6.9 is 
transformed to 

3.0 + (6.9-5.0)*(~.0-3.0)/(10,0-5.0) = 3.38. 
Non-integer values can be entered in the transformation, so that 

20.3 5.2 
would be a perfectly acceptable couplet. 

Values outside the range of the transformation are converted to the 
same values as the extreme values of the transformation. Thus in the 
example considered above, numbers bigger than 20 would all be transformed 
to 5. Likewise, if the transformation 

1.2 1.2 
2.3 2.3 

-1.0 0.0 
is entered, all numbers less than 1.2 would be transformed to 1.2, all 
numbers greater than 2.3 would be transformed to 2.3, and numbers between 
1.2 and 2.3 would be transformed to themselves (i.e, left unaltered)." 
"Three restrictions should be noted: 
1, Negative numbers cannot be considered for transformation, as any 

negative number automatically terminates the transformation data. [But, 
one may transform to negative numbers in linear methods]. 

2, Values to be transformed must be entered in ascending order. If this 
rule is violated, the console message "ENTER TRANSFORMATION •.• 11 is 
repeated, and the transformation must be entered again from the 
beginning. This feature can be used to correct mistakes. For example, if 
instead of the transformation considered above, the user mistakenly 
types 

0 
2 

then this can be put to rights by typing the couplet 
0 0 

which is not in ascending order, and which therefore nullifies the 
transformation that has been fed in so far. 

3. Not more than ~6 couplets can be entered to define the transformation. 
If more are entered, the program will proceed to the next stage 
regardless." 



Table 3.2. Variants of PCA (also available in RDA if Q27 = 1 or 3). See also Noy-Meir et al. (1975) and Prentice 
(1980). Irrespective of the scaling (Q15) the species and sample points form a biplot which displays 
approximate abundance values~after-transformation by "innerproducts" (see Jongman et al, 1987) 
References are given by letters between brackets. 

Ordinary PCA 

Standardized PCA 

Double centred PCA 

PCA standardized by 
sample norm 

PCA standardized by 
sample norm and 
centred by 
species 

PCA centred and 
standardized by 
samples 

Noncentred PCA 

Q26 
(samples) 

0 

0 

2 

2 

3 

0 

Principal coordinates 
analysis 

References: 

ANSWERS TO 

Q27 
(species) 

3 

0 

0 

0 

Q15 
(scaling) 

1 
2 

1 

2 

3 

1 

1 ;3 

Interpretation of ordination diagram by distances (points] 
and arrows [inner products or angles] 

Euclidean distance between samples (points] (a,c) 
covari ances between species [arrows] (b) 

standardized Euclidean distance between samples 
(points] (c) 
correlations between species [arrows] (b) 

after ln-transformation: appropriate for percentage data 
(e; see section 7.1) and can fit a unimodal model (d) 

cosine theta similarity between samples [arrows] (a, c) 
= angular separation (f) 

cosine theta distance (c) between samples [points] 

"correlation coefficient" between samples [arrows] (c, f); 
controversial! 

(g' h) 

3 dissimilarity between sites when input is -(squared dissimi­
larity) between samples (section 7.4) 

(a) Jongman et al. (1987); (b) Corsten and Gabriel (1976); (c) Prentice (1980); (d) Kooijman (1977); 
(e) Aitchison (1983); (f) Gordon (1981); (g) Noy-Meir (1973); (h) Ter Braak (1983). 
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If the minimum abundance value is> 1, the transformation 
0 0 

1 
-1 0 

transforms abundance to presence/absence. 

Q25. TYPE VALUE OF C FOR USE IN LN(Y+C)-TRANSFORMATION 
Range of valid answers: xxx [1.0] 999.9 

xxx 0.0 in linear methods 
xxx 1.0 in weighted averaging methods 

The value of c must be chosen so that y+c (where y is a species value) is 
strictly positive, otherwise an arithmetic FORTRAN error will occur later 
on. For weighted averaging methods, c is required to be greater than or 
equal to 1 because there is likely to be at least one absence (y=O) in the 
data and ln(y+c) is not allowed to be negative in weighted averaging 
methods. 

Q26. *** CENTRING/STANDARDIZATION BY SAMPLES (IN THE SPECIES 
DATA) *** 
0 =NONE (STANDARD) () 
1 CENTRING (FINE FOR LOGPERCENTAGE DATA) 
2 STANDARDIZATION BY SAMPLE NORM 
3 = BOTH 1 AND 2 

Range of valid answers: (o] 3 

This question is posed for linear methods and defines, in conjunction with 
the next question which variant of PCA/RDA is chosen (Table 3.2). The 
default is that neither centring nor standardization by samples is applied. 
Let yik be the current value of species kin sample i (k = 1, ••. , m; i = 
1, ••• , n) and let wk be the weight of species k. Unless requested 
otherwise in Q28 and Q29: wk = 1. By answering 1, 2 or 3, the value Yik is 
replaced by the value of 

(answer= 1), 

(answer= 2), 

(answer= 3). 

where yik is the value obtained after centring by samples (see this 
question, answer= 1). 
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Q27. *** CENTRING/STANDARDIZATION BY SPECIES *** 
0 = NONE (NON-CENTRED PCA) 
1 = CENTRING (PCA/RDA ON A COVARIANCE MATRIX) () 
2 = STANDARDIZATION BY SPECIES NORM 
3 = BOTH 1 AND 2 (PCA/RDA ON A CORRELATION MATRIX) 

Range of valid answers: 0 [1] 3 

This question is posed for linear methods and defines, in conjunction with 
previous question, which variant of PCA/RDA is chosen. The default is 
centring by species only. Let yik be the value obtained after the centring/ 
standardization by samples and let wi be the weight of sample i. Unless 
requested otherwise in Q30 and Q31: wi = 1. By answering 1, 2 or 3 the 
value of yik is replaced by the value of 

n .l. 

Y. k; ( I w. yi•k l • 
1 i=1 1 

(answer = 1), 

(answer = 2), 

(answer = 3). 

where yik is the value obtained after centring by species (see this 
question, answer= 1). 

Some of the variants of PCA that can be obtained by answering Q26 and 
Q27 are listed in Table 3.2. Note that in RDA centring by species is 
implicit because of the intercept in the regression of the sample scores on 
the environmental variables. 

After centring and standardization by samples and species, CANOCO 
calculates the Total Sum of Squares of the species data by 

TSS =I I w.wky~k' 
i k 1 1 

Subsequently, all species values are divided by the squareroot of TSS. 
After division, the total sum of squares of the species data is equal to 1. 
This has the advantage that the eigenvalues issued by PCA and RDA are 
fractions of the total sum of squares and that the sum of all eigenvalues 
in a PCA is equal to 1, except when centrin~ by samples is used in 
conjunction with standardization by species • 

* Footnote: Use of this exceptional case is discouraged.; the sample means 
are equal to 0 after Q26 but non zero after Q27; the iterative ordination 
algorithm will nevertheless calculate an analysis centred by samples. The 
eigenvalues are fractions of TSS as defined in Q27 but do not add to 1. 
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When multiplied by 100, these fractions are usually refered to as 
percentages of variance accounted for by the ordination axes. Note that in 
a partial PCA and in a RDA the sum of all eigenvalues is less than or equal 
to 1. 

Q28. TYPE NON-NEGATIVE WEIGHT TO BE GIVEN TO 
*SAMPLES* THAT YOU WILL BE ASKED TO SPECIFY NEXT, OR 
TYPE 0.01 TO GIVE ITEM NEGLIGIBLE WEIGHT 
TYPE 0 TO DELETE ITEM 
Range of valid answers: 0.0 [1.0] 100.0 

Weights (w) can be assigned to samples in order to give particular samples 
more (w > 1) or less (w < 1) emphasis in the analysis, to delete particular 
samples (w = 0) or to make particular samples passive (w = 0.01). A 
"passive" sample has no influence on the extraction of ordination axes, but 
is added to the ordination afterwards by use of the transition formulae 
(see section ~.6; see also Jongman et al., 1987; exercises 5.2 and 5.3). 
Passive samples will appear after the other samples in the output. For w > 
0.01, the weight of a sample can be interpreted as "the number of times" 
the sample is included in the analysis. For example, if w = 2 for a sample, 
the same ordination could also have been obtained from an unweighted 
analysis by including that particular sample twice in the data file(s). 
This interpretation is, of course, strictly valid only for integer weights 
(w = 1, 2, 3, ..• ), but the mathematics works through equally well for any 
positive weight (see Section~). 

Q29. ENTER NUMBERS (NOT NAMES) OF ITEMS TO BE WEIGHTED ONE PER 
LINE. ENDING LIST WITH A -1. 
OTHER NEGATIVE NUMBERS DENOTE SEQUENCES. FOR EXAMPLE A ~ 
FOLLOWED BY A -8 WEIGHTS ITEMS ~ THROUGH 8. 
Range of valid answers: -n [-1] n 

n = highest sample number 

This question is posed if Q28 is not answered by a 1, For example, to give 
sample number 3 and the sample numbers 11, 12, 13, ••• , 20, 21 double 
weight, Q28 should be answered by typing a 2 and giving a RETURN; then Q29 
appears and should be answered by typing 

3 
11 

-21 
-1 (or merely press RETURN) 

i.e. one number per line. Next, Q28 appears again in order to allow the 
user to give a different weight to other samples. If a sample is given 
weight more than once, the last given weight is decisive. 
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Q30. TYPE NON-NEGATIVE WEIGHT TO BE GIVEN TO 
*SPECIES* THAT YOU WILL BE ASKED TO SPECIFY NEXT, OR 
TYPE 1 FOR DEFAULT WEIGHTS (=1) FOR THE (OTHER) ITEMS 
TYPE 0.01 TO GIVE ITEM NEGLIGIBLE WEIGHT 
TYPE 0 TO DELETE ITEM 
Range of valid answers: 0.0 [1.0] 100.0 

This question is similar to Q28, but with species replacing samples. 
Passive species are not placed after the other species in the output, but 
can still be recognized as such by the weight per species shown in the list 
of species scores displayed at the terminal or on the machine readable 
copy. 

Q31. ENTER NUMBER (NOT NAMES) OF ITEMS TO BE WEIGHTED 
ONE PER LINE, ENDING LIST WITH A -1 
OTHER NEGATIVE NUMBERS DENOTE SEQUENCES. FOR EXAMPLE 
A 4 FOLLOWED BY A -8 WEIGHTS ITEMS 4 THROUGH 8 
Range of valid answers: -m [-1] m 

m = highest species number 

This question is the same as Q29, but now applies to species. 
How Q26 and Q27 interact with Q28- Q31, can be deduced from the following 
example. Suppose Q27 = 3, i.e. the values of each species are standardized 
to mean 0 and variance 1, so that they have equal weight (in a particular 
sense). If a species is now given double weight in Q30 and Q31, the 
weighted analysis gives the same results as an unweighted analysis in which 
that species is included twice in the data and the same standardization 
(Q27 = 3) is in force. 

Q32. IS OOWNWEIGHTING Of RARE SPECIES REQUIRED? 
TYPE 1 If YES, TYPE 0 If NO 
Range of vall d ana wers: [ 0) 

This question is posed only for weighted averaging methods and is 
familiar to users of DECORANA (Hill, 1979). Hill (1979~ writes: "In some 
applications individual samples with rare species may distort the analysis. 
If it is desired to give rare species less weight, while still retaining 
them in the analysis, then the downweighting parameter can be set to 1. Let 
AMAX be the frequency of the commonest species. Then the effect of 
downweighting is to reduce the abundance of species rarer than (AMAX/5) in 
proportion to their frequency. Species commoner than (AMAX/5) are not 
downweighted at all." For further details see Hill (1979). Downweights have 
a similar interpretation to the weights in Q30- Q31. Their joint effect is 
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multiplicative. The downweight times the weight given in Q30 - Q31 is 
listed for all species numbers on the output file in a format of 20 species 
per line. 

Note that rare species can distort the analysis only if they appear 
in samples with few other, more common species. These are, by definition, 
deviant samples. The same effect can therefore often be achieved more 
elegantly by deleting these deviant samples, or by making them passive. 

3.7 Questions to specify the output 

Q33. **** OUTPUT OPTION FOR **** 
CORRELATION MATRIX OF EIGENVECTORS AND ENVIRONMENTAL VARIABLES 
TYPE 0 FOR NO OUTPUT 

1 {4) OUTPUT ON FILE ..•• (name entered at Q1) 
OR THE VALUE BETWEEN BRACKETS FOR OUTPUT TO THE SCREEN AS WELL 
Range of valid answers: 0 [ 1] 4 

This question, posed only if there are environmental variables in the 
analysis, allows the user to see the correlation matrix, means and standard 
deviations of eigenvectors (ordination axes) and environmental variables at 
the terminal and to write them to the output file specified in Q1. 

If there is not enough data space available to calculate the (full) 
correlation matrix, a warning is given; some ordination results cannot be 
computed either in this case. 

Q34. **** OUTPUT OPTION FOR **** 
ORDINATION RESULTS 

TYPE 0 FOR NO OUTPUT 
( 4) 

2 ( 5) 
3 ( 6) 

OUTPUT ON FILE 
OUTPUT ON FILE 
OUTPUT ON BOTH 

.... 
I I I I 

(name entered at Q1) 
(name entered at Q17) 

OR THE VALUE BETWEEN BRACKETS FOR OUTPUT TO THE SCREEN AS WELL 
ENTER YOUR CHOICE FOR EACH OF THE FOLLOWING ITEMS; ON A SINGLE LINE 
or merely press RETURN for default [1) for all values. 
missing values are replaced by 0 
So one 0 is sufficient for no output 
SPEC-SCOR SAMP-SCOR REGR-COEF T-VALUES INTER-COR ENVI-BIPL CENTROIDS LINEA-COM 

This question allows the user to see the ordination results of the 
analysis at the terminal and to write them to the output file and/or to the 
files for the machine readable copy (see Q17 and Q18). The answers for the 
items must be entered on a single line, for example, 

6 2 4 4 6 6 5 

ending by pressing the return-key. If more numbers are entered on a line 
than required, the superfluous numbers are ignored. If a machine readable 
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copy is not asked for in Q16, the lines beginning with 2(5) and 3(6) do not 
appear; if the answer given is nevertheless 2, or 3 (or 5 or 6), then 
CANOCO acts as if the answer 1 (or 4) was given. If an error is detected in 
the answer, the question appears again. 

The items listed in Q34 depend on the type of analysis. The 
abbreviations are (between brackets the symbol used in section 4). 

SPEC-S COR species scores (~k) 

SAMP-SCOR sample scores (xi) 
REGR-COEF regression coefficients (cj) of the environmental 

variables for an unconstrained ordination axis; 
canonical coefficients (cj) for a constrained 
ordination axis 

T-VALUES 

INTER-COR 

ENVI-BIPL 

CENTROIDS 

LINEA-COM 

t-values associated with the regression coefficients 
* cj in the multiple regression of xi on xi 

= inter-set correlations between the environmental 
variables and the ordination scores x1 

= scores of environmental variables for drawing a biplot 
(suitable for quantitative variables) 
centroids of environmental variables in the ordination 
diagram (suitable for qualitative (nominal) variables) 
sample scores which are linear combinations of the 
environmental variables (xi) 

See section 4 for further explanation. 

3.8 Questions to specify additional analyses 

The program automatically stops at this point if there is not enough 
data space available. Otherwise the program asks how to continue. 

Q35. TYPE 
0 = STOP 
1 MORE ANALYSIS WITH CURRENT DATA 
2 PASSIVE ANALYSIS OF OTHER ENVIRONMENTAL VARIABLES 
3 AS 2, BUT WITH REGRESSIONS 
Range of valid answers: [o] 3 

The user can stop the program by answering 0 or ask for additional 
analyses using the current species data and covariables. In additional 
analyses the answers concerning data transformation (Q24 - Q32) and 
covariables (Q22- Q23) and the output file (Q1) remain in force and are 
not posed again. 

After answering 1, the user can delete environmental variables (Q36), 
ask for a statistical test (Q37 - Q40) or modify the type of analysis (Q2, 
Q8- Q18). However, the user cannot switch between linear methods and 
weighted averaging methods and cannot delete samples. If there are no 
environmental variables, the program continues immediately with Q2, else 
with Q36. 
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After answering 2 or 3, CANOCO asks for a (new) set of environmental 
variables which are used to interpret the current ordination axes and on 
request later on to extract ordination axes which are linear combinations 
of them (i.e. to extract new canonical axes). By answering 3 the current 
sample scores (xi) which are linear combinations of the previous set of 
environmental variables, are replaced by fitted values of the regression of 

* the current sample scores (xi) on the newly entered environmental • 
variables. If the answer is a 2, then the current sample scores xi and xi 
remain unchanged, In either case, CANOCO will ask for a file name with 
environmental data (of. Q5), which environmental variables are to be 
deleted (Q20), whether interactions are to be included (Q21), which output 
is required (Q33 and Q3~) and how to continue (Q35). 

Q36. TYPE 1 IF YOU ONLY WISH TO DELETE ENVIRONMENTAL VARIABLES, 
ELSE TYPE 0 
Range of valid answers: [ 0) 

If Q36 answered in the affirmative way, CANOCO asks which numbers are 
to be deleted (Q20), calculates a new ordination according to the current 
type of analysis using the remaining environmental variables, asks what 
output is required (Q33 - Q3~) and how to continue (Q35). If Q36 is 
answered negatively, the next question appears in direct or hybrid gradient 
analyses and Q2 in indirect gradient analyses. 

Q37. ***MONTE CARLO PERMUTATION TEST*** 
0 NO SIGNIFICANCE TEST 
1 TEST OF SIGNIFICANCE OF FIRST CANONICAL AXIS 
2 OVERALL TEST USING THE TRACE STATISTIC 
3 = BOTH 1 AND 2 

Range of valid answers: [o] 3 

This question is posed in direct or hybrid gradient analyses. If the 
answer is 0, then the program continues with Q2. The other answers lead to 
Monte Carlo significance tests. The tests are carried out by randomly 
permuting the sample numbers in the environmental data: the environment 
data are randomly linked to the species data, giving rise to a "random data 
set". For each random data set, CANOCO calculates one or two test 
statistics, namely the first eigenvalue and/or the sum of all eigenvalues 
(= the trace). (The number of permutations is to be specified in the next 
question.) If the species react to the current environmental variables, 
then the test statistic calculated from the data-as-observed will be larger 



M 36 " 

than most of test statistics calculated from the random data. If the 
observed value is among the 5% highest values, then the species are 
significantly related to the environmental variables. Taking the trace as a 
test statistic gives an overall test of the effect of the environmental 
variables on the species. Canonical ordination is particular effective if 
the species~environment relationships can be displayed in one or two 
dimensions (an ordination diagram). A potentially more powerful test is 
therefore obtained by using the first eigenvalue rather than the trace as 
test statistic. In particular, this test shows whether the first canonical 
axis is significant. To test the significance of the second canonical axis, 
a separate analysis. is needed in which the first ordination axis is entered 
as a covariable. 

The overall test (answer 2) costs less computing time-than the test 
of significance of the first canonical axis (answer 1). 

The effect of a particular set of environmental variables can be 
tested, while taking into account the effect of other variables, by 
specifying the latter as covariables. 

If there is only one environmental variable, then the answers 1, 2 
and 3 are equivalent, because the trace is then equal to the first 
eigenvalue, To save computing time, CANOCO will act in this case as if 
answer 2 had been given. 

Q38. TYPE NUMBER OF RANDOM PERMUTATIONS 
Range of valid answers: [ 99] 999 

For a test at the 5%~significance level, minimally 19 permutations are 
required (the result is then significant if the test statistic for the data 
is larger than that for any of the 19 permutations, because 1/20 = 0.05). 
The power of the test can be increased by increasing the number of 
permutations (Hope, 1968). As each extra permutation costs computer time, 
taking a number larger than 99 will not usually be worthwhile, whereas 99 
permutations is the minimum number of permutation which may result in a 
significance level of 0.01, because 1/100 = 0.01. 

Q39. TYPE TWO INTEGERS (1~30000) AS SEEDS FOR THE RANDOM SEQUENCE, 
ON A SINGLE LINE OR PRESS RETURN FOR DEFAULT SEEDS. 
Range of valid answers: 1 [23239] 30000, and 1 [945] 30000 

A Monte Carlo test needs pseudO'"random numbers as input. To start a 
sequence of pseudo~random numbers, seeds are required. The default seeds 
are 23239 and 945. To get a different sequence of pseudo-random numbers one 
needs to specify other values. If more than one test is applied to the same 
data, the user is advised to specify new seeds for each test. 
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Q40. IF YOU WANT RESTRICTED PERMUTATION, TYPE THE NUMBER OF 
COVARIABLES ON TO WHICH THE PERMUTATION MUST BE 
CONDITIONED, ELSE TYPE 0 
Range of valid answers: (o] 

p = highest number of covariable 

p 

This question is posed only if there are covariables in the analysis. 
An example is given in section 4.11. Restricted permutation is appropriate 
for analysing data from randomized block experiments (see Cochran and Cox, 
1957; Cox, 1958). In such experiments treatments are assigned randomly to 
samples within each block (= randomization of treatments among samples 
within each block), instead of being completely randomized among all 
samples. To test for treatment effects by a permutation test, randomization 
must be restricted similarly to samples within blocks. In field research 
(observational research) restricted permutation is called for if samples 
are taken in a number of different locations and interest focusses on the 
common variation within the locations. The locations then act as "blocks" 
in the sense used above. 

Data from such experiments can be analysed in CANOCO by taking as 
covariables a series of dummy variables representing blocks (one for each 
block) and as environmental variables the treatment variables (commonly 
also a series of dummy variables). If there are .!5. blocks, .!5_-1 dummy 
variables are required (delete therefore one of the dummy variables for 
blocks - which one is completely arbitrary) and answer to the present 
question with .!5_-1 (see Table 4.13). 

CANOCO can only condition the permutation on the first~ covariables. 
If there are more covariables in the analysis, those representing blocks 
should therefore come first. If the order of the variables in a full format 
data file happens to violate this requirement of order, the order in which 
the variables are being read by CANOCO can sometimes be changed by using 
the so-called T-descriptor in the FORTRAN-format (see any text on FORTRAN, 
e.g. Metcalf, 1985). If the numbering of variables in a datafile in Cornell 
condensed format violates this requirement of order, the variables must be 
renumbered so that the covariables on to which permutation must be 
restricted receive the lowest numbers. 

The user is advised not to condition on a quantitative variable which 
takes many different values. The test result will then be non-significant 
anyway. 

3.9 Example 

As an example of a terminal dialogue, the dune meadow data of Table 
2.1 are analysed by canonical correspondence analysis (CCA). Table 3.3 
shows the numbers (not the text) of the questions that appear at the 
terminal and the answers given (the part before the "="-sign, the rest of 
each line is annotation). Part of the terminal dialogue is shown in Table 
3.4. CANOCO starts with reporting how much space for data is available, 
i.e. how many samples, species, etc., can be analysed. The dimensions 



Table 3.3 Annotated copy, as produced by CANOCO (see Table 3.1), of the answers 
entered at the terminal to obtain a canonical correspondence analysis of 
the dune meadow vegetation data (Table 2.2) using the environmental data 
in Table 2.4 as explanatory variables. Sample 20 and species 31, 32 and 
33 are made passive. The question numbers are added here for convenience 
of reference. 

QUESTION - INPUT AT TERMINAL = ANNOTATION 

DUNE.OUT OUTPUT FILE 

FILE WITH SPECIES DATA 

Q1 
Q2 
Q3 
Q5 
Q6 
Q14: 

5 = ANALYSIS NUMBER 
DUNEMEAD.SPE 
DUNEFUL.ENV = FILE WITH ENVIRONMENTAL DATA 

Q16: 
Q19: 
Q20: 

0 = COVARIABLES? 
1 = SCALING OF SAMPLE AND SPECIES SCORES? 
0 = MACHINE READABLE COPY OF SOLUTION? 

0 = SAMPLE NUMBER TO BE OMITTED 
4 ENVIRONMENTAL VARIABLE TO BE OMITTED 
7 ENVIRONMENTAL VARIABLE TO BE OMITTED 
0 ENVIRONMENTAL VARIABLE TO BE OMITTED 

Q21: -1 0 =PRODUCT OF ENVIRONMENTAL VARIABLES 
Q24: -1.00 0.00 =TRANSFORMATION OF SPECIES DATA 
Q28: 0.01000 = WEIGHT ( NOWEIGHT=-1) 
Q29: 20 = ITEM GIVEN NONSTANDARD WEIGHT 

-1 = ITEM GIVEN NONSTANDARD WEIGHT 
Q28: 1.00000 =WEIGHT ( NOWEIGHT= 1) 
Q30: 0.01000 =WEIGHT ( NOWEIGHT= 1) 
Q31: 31 ITEM GIVEN NONSTANDARD WEIGHT 

32 ITEM GIVEN NONSTANDARD WEIGHT 
33 ITEM GIVEN NONSTANDARD WEIGHT 
-1 = ITEM GIVEN NONSTANDARD WEIGHT 

Q30: 1.00000 =WEIGHT ( NOWEIGHT= 1) 
Q32: 0 = DOWNWEIGHTING OF RARE SPECIES? 
Q33: 4 = OUTPUT OF CORRELATIONS? 
Q34: 4 4 4 4 4 4 4 4 = ORDINATION OUTPUT 
Q35: 2 = STOP, MORE ANALYSES, OTHER ENV. DATA? 
Q5 : DUNEFUL.ENV = FILE OF PASSIVE VARIABLES 
Q20: 0 ENVIRONMENTAL VARIABLE TO BE OMITTED 
Q21: -1 0 =PRODUCT OF ENVIRONMENTAL VARIABLES 
Q33: 0 = OUTPUT OF CORRELATIONS? 
Q34: 4 4 4 = ORDINATION OUTPUT 
Q35: 0 =STOP, MORE ANALYSES, OTHER ENV. DATA? 
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listed in Table 3.4 can easily be increased when they are too low for a 
particular data set (see section 9.1). The output is written to the file 
with name 11 DUNE.OUT 11 , the analysis number is 5, the species data are on the 
file "DUNEMEAD.SPE" (Table 2.2) and the environmental data on the file 
"DUNEFUL.ENV" (Table 2.4), etc. (Table 3.3). There are no covariables. 
After question 16, CANOCO starts reading the species data. It reports (see 
Table 3.4) title and data format of the data file, the number of samples 
(21), the maximum species number encountered (33) and the number of 
occurrences (219 = total number of couplets in the file). Of the 
environmental variables on file DUNEFUL.ENV (Table 2.4), the dummy 
variables 4 and 7 are deleted because they are redundant for specifying the 
nominal variables agricultural use and management regime, respectively. The 
species data are not transformed, except that sample 20 and species 31, 32 
and 33 are made passive (Table 3.3). There remain 20 active samples, 1 
passive sample and 30 active species (Table 3.4). The ordination axes are 
extracted subsequently. The iteration report monitors the convergence of 
the iterative ordination algorithm for extracting the ordination axes; the 
residual usually is not of great interest to the user. Of more interest is 
the eigenvalue, in the example 0.46121. 

After the CCA ordination axes have been extracted the ordination 
results are displayed at the terminal (Q34). The output of this analysis is 
taken as example in the next section in which the output of CANOCO is fully 
explained. The last six lines of Table 3.3 show how to obtain the interset 
correlations, the biplot scores and the centroids of all environmental 
variables, including the deleted variables 4 and 7. 



Table 3.4 Part of the terminal dialogue of the canonical correspondence 
analysis specified in Table 3.3 

**** CANOCO ****VERSION 2.1 ****MARCH 1987 **** 

PROGRAM CANOCO ~ WRITTEN BY CAJO J.F. TER BRAAK 
COPYRIGHT (C) 1987 TNO INSTITUTE OF APPLIED COMPUTER SCIENCE, 
BOX 100, 6700 AC WAGENINGEN, THE NETHERLANDS. 
CANOCO PERFORMS (PARTIAL) (DETRENDED) (CANONICAL) CORRESPONDENCE ANALYSIS, 
PRINCIPAL COMPONENTS ANALYSIS AND REDUNDANCY ANALYSIS. 
THE PROGRAM IS AN EXTENSION OF CORNELL ECOLOGY PROGRAM DECORANA (M.O. HILL, 1979) 

**** MAXIMUM DIMENSIONS OF PROGRAM AS COMPILED **** 
SYMBOL MAXIMUM NUMBER OF 
MMAX 750 - SAMPLES 
NMAX 600 - SPECIES 
NZMAX = 68 - ENVIRONMENTAL VARIABLES 
INTMAX 30 - INTERACTION TERMS 
NAMAX 100 - COVARIABLES 
IDMAX = 17500 - PRESENCES IN THE SPECIES DATA 
NZDAT 
NADAT 

12000- ENVIRONMENTAL VALUES 
9000 - VALUES OF COVARIABLES 

TYPE 0 FOR INPUT FROM CONSOLE 
FOR INPUT FROM FILE 

Range of valid answers: [o] 
Type your answer(s) or merely press RETURN for default, indicated by[] 
0 
ANSWERS ARE WRITTEN TO FILE CANOCO.CON 

TYPE NAME OF OUTPUT FILE 
DUNE.OUT 

*** TYPE OF ANALYSIS *** 
MODEL GRADIENT 

INDIRECT 
LINEAR 1=PCA 
UNIMODAL 4= CA 

" ?=DCA 

ANALYSIS 
DIRECT 
2= RDA 
5= CCA 
8=DCCA 

10=NON-STANDARD ANALYSIS 
TYPE ANALYSIS NUMBER 

HYBRID 
3 
6 
9 

Range of valid answers: [5] 10 
Type your answer(s) or merely press RETURN for default, indicated by[] 

5 
ANSWER = 5 



Table 3.~ (continued/1) 

TYPE NAME OF FILE WITH SPECIES DATA 
DUNEMEAD.SPE 

TYPE NAME OF FILE WITH ENVIRONMENTAL DATA 
DUNEFUL.ENV 

TYPE 1 IF YOU HAVE COVARIABLES, ELSE TYPE 0 
*EXPLANATION* COVARIABLES ARE: 

VARIABLES WITH KNOWN OR UNINTERESTING EFFECTS ON THE SPECIES. 
THEIR EFFECTS ARE ELIMINATED WHEN EXTRACTING ORDINATION AXES. 

Range of valid answers: [o] 1 
Type your answer(s) or merely press RETURN for default, indicated by[] 
0 
ANSWER = 0 

*** SCALING OF ORDINATION SCORES *** 
SAMPLE SCORES ARE WEIGHTED MEAN SPECIES SCORES 

2 =SPECIES ,, ,, WEIGHTED MEAN SAMPLE 
" 3 = SYMMETRIC SCALING 

Range of valid answers: [1] 3 
Type your answer(s) or merely press RETURN for default, indicated by[] 
1 
ANSWER 

TYPE 1 FOR A MACHINE READABLE COPY OF THE SOLUTION 
Range of valid answers: [o] 1 
Type your answer(s) or merely press RETURN for default, indicated by[] 
0 
U~R 0 

FILE DUNEMEAD.SPE 
TITLE SPECIES - DUNE MEADOW DATA (M. BATTERINK AND G. WIJFFELS, 
1983) 
FORMAT (I10,X,5(I~,F5.0)) 

NO. OF COUPLETS OF SPECIES NUMBER AND ABUNDANCE PER LINE 5 

ENTER NUMBERS (NOT NAMES) OF SAMPLES TO BE OMITTED 
ONE AT A TIME, ENDING LIST WITH A ZERO 
Range of valid answers: [o] 30 
Type your answer(s) or merely press RETURN for default, indicated by [] 

0 
0 

NUMBER OF SAMPLES 21 
NUMBER OF SPECIES 33 
NUMBER OF OCCURRENCES 219 





Table 3.4 (continued/2) 

FILE DUNEFUL.ENV 
TITLE ENVIRONMENTAL DATA IN FULL FORMAT- DUNE MEADOW DATA 

NO. OF ENVIRONMENTAL VARIABLES : 10 
FORMAT : 

(I5,F5.0,X,2F3.0,3X,3F2.0/18X,4F2.0) 

............................... 

..•.. Q20- Q31 not shown •.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
IS DOWNWEIGHTING OF RARE SPECIES REQUIRED? 
TYPE 1 IF YES, TYPE 0 IF NO 
Range of valid answers: [o] 
Type your answer(s) or merely press RETURN for default, indicated by[] 
0 
ANSWER = 0 

NO. OF ACTIVE SAMPLES: 20 
NO. OF PASSIVE SAMPLES: 1 
NO. OF ACTIVE SPECIES: 30 

................................................ 
•.••• Q33 and correlation matrix not shown ..•.• 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ITERATION REPORT AXIS 
RESIDUAL 0.073511 
RESIDUAL 0.000315 
RESIDUAL 0.000001 
EIGENVALUE 0.46121 

ITERATION REPORT AXIS 2 

AT ITERATION 0 
AT ITERATION 
AT ITERATION 2 

RESIDUAL 0,045239 AT ITERATION 0 

•• 0 ••••••••••••••••• 

..... ectetera ..... 
o o o o o e e o o o o o o o o o o o o o 
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~. OUTPUT 

~.1 Samples and species in the analysis 

The first output of CANOCO is already shown in Table 3.~ and reports, 
among other things, how many samples and species are in the analysis. The 
active samples and species jointly determine the ordination. In contrast, 
passive samples and species do not influence the ordination (their scores 
on the ordination axes are calculated afterwards). Unless the user 
specifies otherwise, a sample is active when it occurs (1) with non-zero 
values for active species in the species data and (2) where relevant, 
in the environment data and the data for the covariables. A sample is 
passive when it is made so by the user in Q28 ~ Q29, or when the sample is 
not encountered either in the file with environment data or in the file 
with the covariables. Active species are species that have non-zero values 
for active samples in the species data and which are not deleted or made 
passive. The number of active species can be lower than the highest species 
number encountered in the species data, because some species numbers may be 
absent in the data. 

~.2 Iteration report, eigenvalue and length of gradient 

The iteration report (Table 3.~) monitors the convergence of the 
iterative ordination algorithm for extracting the ordination axes. The 
residual shown is the root mean square difference between the current 
sample scores and their predecessor trial scores. Convergence is reached if 
the residual is less than 0.000050. A maximum of 17 residuals is printed 
and if the residual is after that still not below 0.000050, a warning is 
given and the current trial scores are taken as the final sample scores. In 
general, the algorithm converges quickly, unless the eigenvalues of 
subsequent axes are nearly equal or very close to 0. When close eigenvalues 
turn out to cause the problem of non-convergence, the results can 
nevertheless be trusted; but discard ordination axes with very low 
eigenvalues (<0.02). The eigenvalues usually are in order of decreasing 
value, unless the first ordination axes are constrained (canonical) and 
subsequent axes are unconstrained. Small eigenvalues however sometimes do 
not appear in the correct order. 

The eigenvalue is always a number between 0 and 1 ; the higher the 
value, the more important the ordination axis. In linear methods, the 
eigenvalue is the fraction of the Total Sum of Squares in the species data 
(after data transformation) extracted by the ordination axis (see Q27; of. 
Jongman et al. 1987; section 5.3.2). Multiplied by 100, it is usually 
referred to as the "percentage variance accounted for" by the axis. In 
weighted averaging methods, the eigenvalue is a measure of separation of 
the species' distributions along the ordination axis (Jongman et al., 1987, 
section 5.2.2). Formally, it is the ratio of the dispersion of the species 
scores and that of the sample scores, if Q1~ = 2, and the inverse of this 
ratio if Q1~ = 1. Eigenvalues of ca. 0.3 and higher are quite common in 
ecological applications. 



Table ~.1 Weighted correlations, means, standard deviations and variance 
inflation factors of environmental variables in the CCA of the dune 
meadow data. Note that the dummy variables hayfield and SF are not in 
the list of variables because they were deleted to avoid 
multicollinearity (see Q20). The variables manure and NM have the 
highest variance inflation factors, partly because their correlation 
is quite high in absolute value (r ~ -o.7~). 

**** WEIGHTED CORRELATION MATRIX (WEIGHT SAMPLE TOTAL) **** 

A1 1.00 
MOISTURE 0.~2 1.00 

MANURE -0.23 -0.22 1.00 
HAYPASTU o. 16 -0.17 o. ~8 1.00 

PASTURE 0.02 o. 16 0.12 -0.48 1.00 
BF -o. 31 -0.38 -0.18 -0.05 0.03 1.00 
HF -o. 14 -o. 18 0.1 ~ -0.26 0.20 -0.30 1.00 
NM 0.36 0.36 -0.7~ -0.28 -o. 11 -0.24 -0.36 

A 1 MOISTURE MANURE HAYPASTU PASTURE BF HF 

VAR (WEIGHTED) MEAN STAND. DEV, INFLATION FACTOR 

A1 4.6850 1. 861 3 1. 7 81 4 
MOISTURE 2.8015 1. 7312 1. 8500 

MANURE 1. 9022 1.3629 8.3034 
HAYPASTU 0.~146 0.4927 3.087~ 

PASTURE 0.2~67 0.~311 2.2~51 

BF 0.1708 0.3763 4. 71 39 
HF 0. 3109 o. 4629 3.2716 
NM 0.220~ 0.~145 7.5705 
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The length of gradient (in SO-units) is reported only if non-linear 
rescaling of ordination axes is in force, i.e. usually only in DCA with 
detrending-by-segments. The non-linear rescaling proceeds by iteratively 
expanding and contracting segments of the ordination axis (see Q11). This 
process is reported on the output file (LENGTH OF SEGMENTS), The change in 
length (and the number of segments) is shown by printing the length per 
segment before and after rescaling (see Hill, 1979). 

4.3 Correlation matrix, means, standard deviations and inflation factors 

At the terminal two correlation matrices are shown in response to Q33, 
one for the correlations between environmental variables, displayed before 
the calculation of ordination axes (Table 4,1) and one displayed thereafter 
for the correlations between ordination axes (Table 4.2), A single, complete 
correlation matrix is written to the output file (if enough dataspace is 
available), For linear methods, one obtains the usual matrix of Pearson 
correlation coefficients. But if weights are specified for samples in Q28 -
Q29, these weights are used in calculating the means, standard deviations 
and correlation coefficients in the obvious way (Kendall and Stuart, 1973, 
p, 301). In weighted averaging methods the total abundance in a sample (yi+) 
acts as a sample weight, even if default weights are used in Q28 - Q29 
(wi = 1), In general, weighted means, weighted standard*deviations and 
weighted correlation coefficients are calculated with wi = wiE wkyik acting 

k 
as sample weight. 

If covariables are present, partial correlations (Kendall and Stuart, 
1973, Chapter 27) are displayed on the output file. Partial covariances are 
displayed at the terminal. 

Table 4.1 also shows a column head "INFLATION FACTOR". It is the 
Variance Inflation Factor (YIF) of a variable in a multiple regression 
equation (Montgomery and Peck, 1982: section 8.4.2), The name derives from 
the fact that the variances of estimated regression coefficients !cj) are 
proportional to their YIF's, namely 

var(cj) = YIF x (residual variance)/(n-q-1) ( 4 • 1 ) 

where n is the number of samples and q the number of environmental variables 
in the equation. The YIF is related to the (partial) multiple correlation Rj 
between environmental variable j and the other environmental variables in 
the analysis: 

YIF = 1 - Rj ( 4. 2) 

If the YIF of a variable is large, say YIF > 20, then the variable is almost 
perfectly correlated with the other variables and therefore has no unique 
contribution to the regression equation. As a consequence, its regression 
coefficient (or its canonical coefficient in canonical ordination) is 
unstable and does not merit interpretation (Ter Braak, 1986a), 



Table 4.2 Weighted correlations between ordination axes, percentages variance 
accounted for by the species-environment biplot and the trace (= sum 
of all canonical eigenvalues). The species-environment correlations 
are 0.96, 0.90, 0.86 and 0.89, respectively. 
(SPEC AX= species axis jx~}; ENVI AX= environmental axis jxi}). 

**** WEIGHTED CORRELATION MATRIX (WEIGHT SAMPLE TOTAL) **** 

SPEC AX1 1.00 
SPEC AX2 -0.04 1.00 
SPEC AX3 0.08 -0.04 1.00 
SPEC AX4 -0.05 0. 13 -o. 11 1.00 
ENVI AX1 0.96 0.00 o.oo o.oo 1.00 
ENVI AX2 0.00 0. 90 o.oo o.oo 0.00 1.00 
ENVI AX3 o.oo 0.00 0.86 o.oo o.oo o.oo 1.00 
ENVI AX4 0.00 o.oo 0.00 0.89 0.00 o.oo 0.00 

SPEC AX1 SPEC AX2 SPEC AX3 SPEC AX4 ENVI AX1 ENVI AX2 ENVI AX3 

PERCENTAGE VARIANCE ACCOUNTED FOR BY FIRST S AXES OF SPECIES-ENVIRONMENT BIPLOT 
S PERC 

37.8 
2 62.3 
3 75.4 
4 86.3 

SUM OF ALL CANONICAL EIGENVALUES: TRACE 1.21967 
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High VIF's indicate multicollinearity among the environmental 
variables. If an environmental variable is completely multicollinear, it will 
automatically be removed. VIF's are always greater than 1.0. For mutually 
uncorrelated environmental variables all VIF's are equal to 1.0, but this 
happens only in designed experiments. If all VIF's are given as 1.0000, then 
CANOCO probably did not calculate them at all. 

Table 4.2 shows the correlation matrix of the ordination axes. "SPEC 
AXk", abbreviation of "species axis number k", stands for the sample scores 
~ . -

!xi} on ~-th ordination axis which are derived from the species scores by 
weighted averaging or weighted summation (section 4,6) whereas "ENVI 
AXk",abbreviation of "environmental axis number k", stands for the sample 
scores !xi} on the ~-th ordination axis which are linear combinations of the 
environmental variables (section 4.7). The correlation between SPEC AX~ and 
ENVI AX~ is the species- environment correlation (Ter Braak, 1986a). 

In an indirect gradient analysis the species axes are mutually 
uncorrelated, whereas in a direct gradient analysis the environmental axes 
are mutually uncorrelated (unless detrending-by segments is in force). In a 
hybrid analysis the environmental axes of the constrained (canonical) axes 
have correlation 0 to the species axes of the later unconstrained axes. 

If a diagonal element of the correlation matrix is equal to 0.0000, 
then the corresponding axis was not calculated or had negligible variance. 

The means and standard deviation of the ordination axes are reported 
below the full correlation matrix on the output file. The means usually are 
equal to 0, except when nonlinear rescaling of axes is in force or, in linear 
methods, when the data are not centred by species (Q27 = 0 or 2). Each 
standard deviation is a simple function of the eigenvalue and the species­
environment correlation (see sections 4.6 and 4.7). The standard deviation of 
the environmental axis is always R x (standard deviation of species axis) 
where R is the species-environment correlation of the corresponding axis. 

4.4 Percentage variance accounted for by first s axes of species­
environment biplot 

Table 4.2 also shows at the bottom the percentage variance accounted 
for by the first~ axes of the species-environment biplot. The species­
environment biplot is an ordination diagram in which the environmental 
variables are represented by arrows (Figs. 4.1 and 4.2). The arrow roughly 
points in the direction of maximum variation in value of the corresponding 
variable. The scores from which Fig. 4.2 is prepared are given in the Tables 
4.4, 4.5, 4.10 and 4.11. 

In linear methods, the species are often also represented by arrows 
(Fig. 4.1). By looking at the angles between arrows one may get an idea of 
the correlations between a species' abundance and the environmental variables 
(Jongman et al., 1987, section 5.5.3; Ter Braak and Prentice, 1987). The plot 
of arrows of species and environmental variables also allows a qualitative 
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Fig. 4.1 Biplot based on redundancy analysis of the aune meadow vegetation 
data with respect to three environmental variables (arrows: manure, 
moisture and thickness of the A1 horizon) in dune meadows (o) on the 
island of Terschelling, The Netherlands. The arrows for plant species 
and environmental variables display the approximate (linear) 
correlation coefficients between plant species and the envirollllental 
variables. Abbreviations are given as underlying in Table 2. 1 
(~ 1 • 0.23, ~ 2 • 0.15. scaling a • 1). 
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Fig.4.2 Ordination diagram based on canonical correspondence analysis of the 
dune meadow vegetation data with respect to three quantitative 
environmental variables (arrows: manure, moisture and A1) and two 
nominal variables (agricultural use and management regime) of which 
the classes are shown by their centro! ds (II) in the diagram. The 
coordinates of species (&), sample (t) and class <•l points are given 
in Tables 4.4, 4.5 and 4.11 respectively. The heads of arrows are at 
the coordinates given by Table 4.10 (after division by 2.0). 
Abbreviations of species and environmental variables are given in 
Tables 2.2 and 2.3, respectively, 0 1 • 0.46, 1. 2 • 0.30, scaling 
a • 1). 



Table ~.3 Species scores as displayed at the terminal. The scores have been 
multiplied by the multiplier (100) shown at the bottom (N = species 
number; AX = ordination axis; EIG = eigenvalue; WEIGHT is explained 
in the text). Species 31, 32 and 33 have weight 0 because they were 
made passive. The eigenvalues show that the axes 3 and ~ are of 
minor importance compared to the first two axes. 

SPECIES SCORES 

N NAME AX1 AX2 AX3 AX~ WEIGHT 

EIG 0. ~6 0.30 0.16 0.1 3 

1 ACH MIL -169 83 8 -98 16 
2 AGR STO 155 -109 -31 -2~ ~8 

3 AIR PRA 1~8 391 -29~ 156 5 
~ ALO GEN 71 -212 -95 ~1 36 
5 ANT ODO -77 170 -11 66 21 
6 BEL PER -1~3 37 -70 -211 13 
7 BRO HOR -167 ~ -~~ -252 15 
8 CHE ALB 187 -360 -189 8 1 

................... ' ................ ..... species 9- 26 not shown ••••• . . . . . . . . . . . ' ........................ 
27 TRI REP -5 2~ 82 -37 ~7 
28 VIC LAT -108 222 87 -200 ~ 
29 BRA RUT 27 55 38 66 ~9 
30 CAL cus 332 99 105 -75 10 
31 HIP RHA 21 319 -111 2~2 0 
32 POA ANN -85 -17 -128 -110 0 
33 RAN ACR -71 ~ 275 207 0 

MULTIPLIER 100 
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interpretation by the rules of a biplot (Jongman et al., 1987, section 5.3.4 
and 5.9.3-4; Gabriel, 1981), leading to approximate values of the covariances 
between species and environmental variables. The word "approximate" means 
that the biplot does not display the exact values and, therefore, does not 
"explain" the total (weighted) variance in all these covariances, but just a 
fraction thereof. What fraction is given here as a percentage. In RDA, the 
fraction simply is (A 1 + ••• + As)/(sum of all canonical eigenvalues), A 
being the eigenvalue of a canonical axis and s being the number of axes of 
the biplot. 

In weighted averaging methods, the species are represented by points in 
the ordination diagram (Fig. 4.2). The joint plot of species points and 
environmental arrows forms also a biplot (Ter Braak, 1986a; Jongman et al., 
1987, section 5.5.2). This biplot leads to approximate values of the 
(centred) weighted averages of the species with respect to the (standardized) 
environmental variables. The word "approximate" again means that the biplot 
does not display the exact values and, therefore, does not "explain" the 
total (weighted) variance in all these weighted averages, but just a fraction 
thereof. What fraction is given as a percentage (see appendix inTer Braak, 
1986a). In CCA, the fraction simply is (A 1 + + As)/(sum of all canonical 
eigenvalues). 

The bottom line in Table 4.2 shows the sum of all canonical eigenvalues 
(without detrending), also termed the trace (Appendix C). In linear methods, 
the trace is always less than or equal to 1. 

In interpreting the percentages of variance accounted for, it must be 
kept in mind that the goal is not 100%, because part of the total variance is 
due to noise in the data. Even an ordination that explains only a low 
percentage may be quite informative. Moreover, the percentage is dependent on 
the number of variables in the analysis. For example, with only two 
environmental variables in the analysis, two canonical axes always explain 
100%, regardless of whether the result is ecologically meaningful. The 
numerical importance of an axis is better judged by looking at its eigenvalue 
or its standard deviation, and its statistical validity by a significance 
test (Q37). 

4.5 Species scores 

The species scores are displayed on the terminal in the form shown in 
Table 4.3. Before display the scores have been multiplied by a multiplier 
that is chosen in such a way that the scores as displayed lie between -999 
and 999. The multiplier is shown at the terminal below the scores. In the 
example of Table 4.3 the multiplier is 100. The original scores that result 
from the ordination algorithm are in the example thus a factor 100 lower, 
e.g. for species 1 (ACH MIL) the original scores are -1.69, 0.83, 0.08 and 
-0.98. Always note the multiplier when interpreting scores. The column 
"WEIGHT" gives in linear methods the weights iwkj given to species in 
Q30 - Q31 and in weighted averaging methods wk = wk f wiyik' the weighted 

total abundance of a species (where wi denotes sample weight). Passive 
species are recognizable by weight 0 (species 31, 32 and 33 in Table 4.3). 
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Fig.~.3 A straight line displays the linear relation between the abundance 
value (y) of a species and an environmental variable (x), fitted to 
artifical data (o). (a • intercept; b = slope or regression 
cceff icient). 
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Fig.~.~ A unimodal relation between the abundance value (y) of a species and 
an environmental variable (x). (u • optimum or mode; t • tolerance; 
c • maximum.) 



They happen in the example to be at the bottom of the table but this is not 
the general rule. The weights are useful in interpreting ordination diagrams: 
in weighted averaging methods species at the edge of the diagram often carry 
low weights; such peripheral species have little influence on the analysis 
and it is often convenient not to display them at all. 

Table 4.4 shows the format in which ordination results are written on 
the output file. The multiplier used is at the righthand top of the table. 
The format on the machine readable copy is similar to that shown in Table 
4.3. 

If a column contains zeroes only, then the column was not calculated. 
This applies to all ordination results in CANOCO. 

The scores of species and samples on the ordination axes depend on each 
other according to the transition formulae (see e.g. Jongman et al., 1987, · 
exercise 5.1.3 and section 5.9). The precise form of these formulae is 
governed by the answer to Q14 or Q15. Let a= 1, 0, ~depending on whether 
Q14/Q15 is answered by 1, 2 or 3, respectively. In linear methods, the 
species score (bk) with respect to an ordination axis is a weighted sum of 
the sample scores lxi} if a = 0; in general: 

(4.3) 

where Yik is value of species k in sample i after data transformation and A 
is the eigenvalue of the axis. In weighted averaging methods, the species 
score (uk) on the ordination axis is a weighted average of the sample scores 
lxi} if a = 0; in general 

( 4. 4) 

Note the subtle difference between the formulae for bk and uk, which is 
partly implicit because in (4.3) yik is usually centred by species whereas in 
(4.4) yik is nonnegative. The difference has a dramatic effect: bk is 
(proportional to) the slope of the regression line of a species' abundance 
values versus the ordination axis (Fig. 4.3), whereas uk is the centre of the 
species' distribution along the axis (=approximate optimum; Fig. 4.4); of. 
Jongman et al. (1987) and Ter Braak and Looman (1986). This difference is the 
major reason for using different symbols. 

In indirect gradient analysis the sample scores denoted above by xi are 
the scores jx;J which are "derived from the species scores" (section 4.6) 
whereas in direct gradient analysis they are the scores jxi} which are linear 
combinations of environmental variables (section 4.7). ·The former scores make 
the species axis, the latter the environmental axis (section 4.3). 

The formulae (4.3) and (4.4) also define how to obtain the scores of 
species excluded from the ordination (passive species). 

In linear methods the (weighted) sum of squares of the species soores 
is set equal to 



Table 4.4 Ordination results as listed on the output file. The table shows species scores on four ordination axes 
(AX1, ••• , AX4). The same scores are also arranged in order of their rank order on axis kin the 
columns with heading "RANKED k". The title of the species data file is shown at the top,-followed by 
the options in force. The options listed are: the ANALYSIS number (Q2) is 5 (m CCA), the number of 
CANONICAL AXES is 4 (because CCA is a direct gradient. analysis technique), the number. of COVARIABLES is 
0, and the SCALING of the ordination scores (Q14 or Q15) is 1. The centring and standardization 
(CENT./STAND.) by samples and by species is applicable only in linear methods; it gives the answers to 
Q26-Q27. The·scores have been multiplied by the MULTIPLIER 100. The analysis is without DETRENDING 
(Q9), DOWNWEIGHTING of rare species (Q32) and nonlinear RESCALING of axes (see Q11, except that o 
means: no rescaling). The number of SEGMENTS (Q10) and the rescaling THRESHOLD (Q12) are therefore 0. 
The iterative ordination algorithm is not modified by an extra RANKING step in which sample and/or 
species scores are replaced by rank numbers (see section 5). If the number following "CANONICAL AXES" 
is negative, then the axes were extracted as linear combinations of a previous set of environmental 
variables. After TRANSFORMATION the answer to question Q24 is given. 

SPECIES - DUNE MEADOW DATA (M. BATTERINK AND G. YIJFFELS 1983) 
CANOCO -- ANALYSIS 5 CANONICAL AXES 4 COVARIABLES 0 SCALING 1 CENT./STAND. BY SAMPLES: 0/0 BY SPECIES: 0/0 MULTIPLIER 100. 

DETRENDING 0 DOYNYEIGHTING 0 RESCALING 0 SEGMENTS 0 THRESHOLD 0.00 RANKING BY SAMPLES/SPECIES: OJO TRANSFORMATION -1.00 0.00 . 
SPECIES SCORES 

N NAME 

1 ACH MIL 
2 AGR STO 
3 AIR PRA 
4 ALO GEN 
5 ANT ODO 
6 BEL PER 
7 BRO HOR 
8 CHE ALB 
9 CIR ARV 

10 ELE PAL 
11 ELY REP 
12 EMP NIG 
13 HYP RAD 
14 JUN ART 
15 JUN BUF 
16 LEO TAU 
17 LOL PER 
18 PLA LAN 
19 POA PRA 
20 POA TRI 
21 POT PAL 
22 RAN FLA 
23 RUM· ACE 
24 SAG PRO 
25 SAL REP 
26 TRI PRA 
27 TRI REP 
28 VIC LAT 
29 BRA RUT 
30 CAL CUS 
31 HIP RHA 
32 POA ANN 
33 RAN ACR 

AX1 AX2 ~3 AX4 I 
I 

·169 83 8 -98 I 
155 -109 -31 -24 I 
148 391 -294 156 I 

71 -212 -95 41 I 
-77 170 ·11 66 I 

-143 37 -70 -211 I 
-167 4 -44 -252 ! 
187 -360 -189 8 I 
-80 -185 -269 -196 I 
300 -20 157 -113 I 

·128 -83 -101 -1 I 
242 339 -396 164 I 
112 325 -192 64 I 
193 -10 13 96 I 

41 -176 -34 325 I 
0 94 9 -20 I 

·125 -9 -18 -83 I 
·161 125 160 55 I 

-92 -9 -35 -46 I 
-53 -116 -35 -10 I 
407 87 583 -253 I 
276 15 32 -46 I 

·165 -45 215 283 I 
60 -95 -122 84 I 

157 385 -298 153 I 
·223 -13 277 274 I 

-5 24 82 -37 I 
·108 222 87 -200 I 

27 55 38 66. I 
332 99 105 -75 I 

21 319 ·111 242 I 
-85 -17 -128 -110 I 
-71 4 275 207 I 

21 
30 
10 
22 
12 
14 

8 
25 
2 
3 

13 
4 

24 
15 
29 
31· 
16 
27 
20 
33 

5 
9 

32 
19 
28 
17 
11 

6 
18 
23 

7 
1 

26 

RANKED 1· I 
EIG-0.461 I 

POT PAL 407 I 
CAL CUS 332 I 
ELE PAL 300 I 
RAN FLA 276 I 
EMP NIG 242 I 
JUN ART 193 I 
CHE ALB 187 I 
SAL REP 157 I 
AGR STO 155 I 
AIR PRA 148 I 
HYP RAD 112 I 
ALO GEN 71 I 
SAG PRO 60 I 
JUN BUF 41 I 
BRA RUT 27 I 
HIP RHA. 21 I 
LEO TAU. 0 I 
TRI REP ·5 I 
POA TRI ·53 I 
RAN ACR -71 I 
ANT ODO ·17- I 
CIR ARV -80 I 
POA ANN ·85 I 
POA PRA -92 I 
VIC LAT.-108 I 
l.OL PER -125 I 
ELY REP -128 I 
BEL PER ·143 I 
PLA LAN -161 I 
RUM ACE -165 I 
BRO HOR -167 I 
ACH MIL -169 I 
TRI PRA -223 I 

3 
25 
12 
13 
31 
28 

5 
18 
30 
16 
21 

1 
29 

6 
27 
22 

7 
33 
17 
19 
14 
26 
32 
10 
23 
11 
24 

2 
20 
15 

9 
4 
8 

RANKED 2 I 
EIG-0.298 I 

AIR PRA 391 I 
SAL REP 385 I 
EMP NIG 339 I 
HYP RAD 325 I 
HIP RHA 319 I 
VIC LAT 222 I 
ANT ODO 170 I 
PLA LAN 125 I 
CAL CUS 99 I 
LEO TAU 94 I 
POT PAL 87 I 
ACH MIL 83 I 
BRA RUT 55 I 
BEL PER 37 I 
TRI REP 24 I 
RAN FLA 15· I 
BRO HOR 4 I 
RAN ACR 4 I 
LOL PER -9 I 
POA PRA -9 I 
JUN · ART -10 I 
TRI PRA -13 I 
POA ANN -17 I 
ELE PAL -20 I 
RUM ACE -45 I 
ELY REP -83 ! 
SAG PRO -95 I 
AGR STO -109 I 
POA TRI -116 I 
JUN BUF -176 I 
CIR ARV -185 I 
ALO GEN -212 I 
CHE ALB -360 I 

21 
26 
33 
23 
18 
10 
30 
28 
27 
29 
22 
14 
16 

1 
5 

17 
2 

15 
19 
20 

7 
6 
4 

11 
31 
24 
32 

8 
13 

9 
3 

25 
12 

RANKED 3 
EIG-0.160 

POT PAL 583 
TRI PRA 277 
RAN ACR 275 
RUM ACE 215 
PLA LAN 160 
ELE PAL 157 
CAL CUS 105 
VIC LAT 87 
TRI REP 82 
BRA RUT 38 
RAN FLA 32 
JUN ART 13 
LEO TAU 9 
ACH MIL 8 
ANT ODO -11 
LOL PER -18 
AGR STO -31 
JUN BUF -34 
POA PRA -35 
POA TRI -35 
BRO HOR -44 
BEL PER -70 

·~~ i~ -i6~ 
HIP RHA -111 
SAG PRO -122 
POA ANN -128 
CHE ALB -189 
HYP RAD -192 
CIR ARV -269 
AIR PRA -294 
SAL REP -298 
EMP NIG -396 

15 
23 
26 
31 
33 
12 

3 
25 
14 

·24 
5 

29 
13 
18 

4 
8 

11 
20 
16 

2 
27 
19 
22 
30 
17 

1 
32 

·10 
9 

28 
6 
7 

21 

RANKED 4 
EIG-0.134 

JUN BUF 325 
RUM ACE 283 
TRI PRA 274 
HIP RHA 242 
RAN ACR 207 
EMP NIG 164 
AIR PRA 156 
SAL REP 153 
JUN ART 96 
SAG PRO 84 
ANT ODO 66 
BRA RUT 66 
HYP RAD 64 
PLA LAN 55 
ALO GEN 41 
CHE ALB 8 
ELY REP -1 
POA TRI ·10 
LEO TAU -20 
AGR STO -24 
TRI REP -37 
POA PRA -46 
RAN FIA -46 
CAL CUS -75 
LOL PER -83 
ACH MIL -98 
POA ANN -110 
ELE PAL -113 
ClR ARV -196 
VIC LAT -200 
BEL PER -211 
BRO HOR -252 
POT PAL -253 
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to obtain valid biplots of species and samples (of. Laurec et al., 1979). In 
weighted averaging methods the weighted~ square of the species scores is 
set equal to 

( ~. 6) 

* with wk as defined above. The factor (1-~) in (~.6) together with the 
definition of xi ensures that the species and sample scores are in Standard 
Deviation units (SD). Species scores in SD-units on average have, by 
definition, unit within-sample variance: 

( ~. 7) 

With this scaling, the length of the ordination axis is, by definition, the 
range of the sample scores {xi). For the scores as displayed by CANOCO to 
conform the scaling defined by (~.5)-(4.7), the scores must be divided by the 
multiplier given with each table of scores (e.g. Tables 4.3 and~.~). 

When nonlinear rescaling of axes is in force (Q11), then uk is not a 
simple function of {xi) and (~.6) does not hold, but the axis is in 
SD-uni ts. 

In weighted averaging methods (except when nonlinear rescaling is in 
force) the species scores have weighted mean 0, whereas in linear methods 
they have mean 0 only if the species data are centred by samples (Q26 = 1 or 
3) • 

~.6 Sample scores 

The sample scores that are derived from the species scores are simply 
called SAMPLE SCORES in the output, abbreviated to SAMP-SCOR in Q3~. They 
make the species axis in section ~.3. The format is similar to that of the 
species scores. The column "WEIGHT" (Table ~.5) gives in linear methods the 
w;ights {wi) given to samples in Q28- Q29 and in weighted averaging methods 
wi = wi ~wkyik' the weighted total abundance in a sample (where wk denotes 

species weight!). Passive samples are always placed at the bottom of the 
table (see sample 20, "PAS SAMP", in Table ~.5). 

The sample scores are derived from the species scores by the following 
transition formulae, where a is again 1, 0, 7 depending on whether Q1~/Q15 is 

* answered by 1, 2 or 3, respectively. In linear methods, the sample score (xi) 
on an ordination axis is a weighted sum of the species scores {bk) if a = 1; 
in general 

(~.8) 



Table 4.5 Sample scores {x~] on each of the ordination axes as displayed at 
the terminal (N = sample number; WEIGHT is explained in the text). 
Sample 20 (PAS SAMP) is placed at the bottom because it is passive 
(weight= 0). These sample scores form the species axes. 

SAMPLE SCORES 

N NAME AX1 AX2 AX3 AX4 WEIGHT 

EIG 0.46 0.30 0.16 0.13 

•••••• 1 -113 -32 -41 -49 18 
2 0 0 0 o 0 I 2 -80 -16 -23 -67 42 
3 I I I o o o 3 -29 -66 -39 -25 40 
4 I I 0 I 0 I ~ -22 -61 -55 -41 45 
5 I I I I I I 5 -106 16 40 25 43 
6 I I I I I I 6 -95 24 79 59 48 
7 I I I I I 0 7 -96 10 42 25 40 
8 0 I I o I I 8 65 -47 -5 -11 40 
9 o 0 I I I I 9 -5 -65 -21 49 42 

10 I o I o o 1 0 -89 39 10 -57 43 
11 I I I 1 o 11 -47 61 6 -20 32 
12 o I 0 I I 1 2 33 -94 -23 72 35 
1 3 I 0 I I I 1 3 44 -105 -40 26 33 
1 4 o I 0 I o 1 ~ 187 17 111 -71 24 
15 I o 0 0 0 1 5 1 81 3 95 -34 23 
16 o I I o 0 1 6 179 -45 35 -21 33 
17 I I I I I 17 -36 181 -47 36 1 5 
28 I I 0 I 0 18 -29 97 -6 -3 27 
29 I I I o 0 19 61 187 -116 68 31 
30 ..... 20 185 65 -12 13 31 
20 PAS SAMP -132 1 3 -33 0 

MULTIPLIER 100 
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* the sample score (xi) is a weigh ted average of 
1; in general 

( 4. 9) 

If there are covariables in the analysis, the scores !x~) are made 
uncorrelated to the covariables before they are printed in order to avoid 
distortion by the effects of covariables. The sample scores printed are the 
residuals of a regression of the scores in (4.9) on the covariables. Scores 
of passive samples for which the values of covariables are available are 
adjusted by use of the equation of the regression just mentioned. 

In weighted averaging methods (except with nonlinear rescaling) the 
sample scores have weighted mean 0, whereas in linear methods they have mean 
0 only in RDA or if the species data are centred by species (Q27 ~ 1 or 3). 

In indirect gradient analyses: Xi =X~ with Xi as used in the previous 
section. The transition formulae consist then of the two formulae (4.3) and 
(4.8) for linear methods and (4.4) and (4.9) for weighted averaging methods. 
The (weighted) mean square of the sample scores follows then in linear 
methods from (4.3) and (4.5), giving 

(4.10) 

and in weighted averaging methods from (4.4) and (4.6), giving 

*- * ex ~wixl/~wi =A /(1-A) 
1 1 

(4.11) 

* where w1 as defined above (except when nonlinear rescaling of axes is in 
force). 

4.7 Regression/canonical coefficients, t-values and linear combinations of 
environmental variables 

The regression/canonical coefficients (Table 4.6) are the coefficients 
of a weighted multiple regression of the sample scores !x~) from the previous 
section on the standardized environmental variables. There are four columns 
of coefficients because the regression is calculated for each ordination axis 
separately. Let zi.l ~e the value of environmental variable j (j = 1, ••• , q) 
in sample i and let zj and sj be the mean and standard deviation of variable 
j as defined in section 4.3 (Table 4.1). The environmental variable is 
standardized to mean 0 and variance 1: 

( 4. 12) 

The regression/canonical coefficients are now derived from the weighted least 
squares fit of the multiple regression model 



Table 4.6 Regression/canonical coefficients jcjl for each of the ordination 
axes as displayed at the terminal. They are actually canonical 
coefficients because the example concerns a direct gradient 
analysis by CCA. 

REGRESSION/CANONICAL COEFFICIENTS FOR STANDARDIZED VARIABLES 

N NAME AX1 AX2 AX3 AX4 

EIG 0.46 0.30 0.16 0.13 

A1 115 -172 326 -222 
2 MOISTURE 633 -240 -206 -6 
3 MANURE -29 -82 -232 -678 
5 HAYPASTU 60 -140 107 171 
6 PASTURE 247 11 248 60 
8 BF -87 111 -2 -552 
9 HF -194 72 178 -51 

10 NM 188 583 -92 -502 

MULTIPLIER 1000 

Table 4.7 T-values of regression coefficients corresponding to Table 4.6. 
(N = variable number; FR EXPLAINED = fraction of variance 
explained, see text). Because Table 4.6 contains canonical 
coefficients this table has exploratory value only. Tables 4.6 and 
4.7 jointly show that moisture is important in defining the first 
axis: the canonical coefficient of moisture (0.633) is the largest 
in absolute value 
and its t-value (5.57) is appreciably higher than 2.1. On the 
second axis nature management has a high canonical coefficient but 
its t-value is only 2.25. 

T-VALUES OF REGRESSION COEFFICIENTS 

N NAME AX1 AX2 AX3 AX4 

FR EXPLAINED 0.38 0.24 0.13 0.11 

A1 103 -137 306 -273 
2 MOISTURE 557 -188 -190 -7 
3 MANURE -12 -30 -101 -385 
5 HAYPASTU 41 -84 76 159 
6 PASTURE 197 8 207 66 
8 BF -48 54 -1 -416 
9 HF -128 42 123 -46 

1 0 NM 82 225 -42 -299 

MULTIPLIER 100 
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where c0 is the intercept, cj the regression coefficient of environmental 
variable j and ei is the error term with mean 0 and variance inversely 
proportional to wi in linear methods and to w~ in weighted averaging methods. 
Because the environmental variables are centred to mean 0, the intercept c0 
is equal to the mean of the species axis, i.e. c0 = 0 except when nonlinear 
rescaling is in force. The other coefficients are estimated - using matrix 
notation - by 

(~.1~) 

w~ere g*and*~ are co~umn ~ectors, Q = (c1 , c2, •.• , cq)',_ 
II = (x1, X2 1 ,,, Xn)', Z is a nxq matrix with elements Zij and W is a nxn 
diagonal matrix with as i-th diagonal element wi in linear methods and w~ in 
weighted averaging methods. The fitted values of the regression are 

q 
L c .zi .. 

j=1 J J 
(~.15) 

Note that the /cj} in (~.15) are estimates whereas in (~.11) they represent 
the true values, but this difference is not made explicit in the notation; 
the error term in (~.13) says enough. The fitted values /xi} are termed 
sample scores which are linear combinations of environmental variables (Table 
~.8), abbreviated to LINEA-.COM in Q3~. They constitute the environmental axis 
of section ~.3. The correlation between the species axis /x~) and the 
en~ironmental axis /xr} is the multiple correlation between the species axis 
!xi) and the environmental variables (= species-environment correlation). 

In indirect gradient analyses, the sample scores /x~) are derived from 
the species data regardless of any environmental variables. The regression is 
calculated after extraction of the species and sample scores. The 
coefficients /c~) are therefore regression coefficients and have the 
well-known stat1stical properties of regression coefficients (see e.g. 
Mongomery and Peck, 1982). In contrast, the sample scores /x~) in direct 
gradient analyses also depend on the environmental variables in the analysis. 
The regression is calculated within the iterative ordination algorithm. The 
coefficients /cj) have been chosen so as to optimize the fit of the 
en~ironmental axis !xr) to the species data (and not just to the species axis 
!xi}). The coefficients are therefore given a different name: canonical 
coefficients. They do not have the same statistical properties as regression 
coefficients. In particular, canonical coefficients have a larger variance 
than regression coefficients. 

Table ~.7 shows t-values of regression coefficients. Because the 
multiplier is given to be 100, the t-values are actually a factor 100 lower 
than displayed; the t-value of MOISTURE on the first axis, for example, is 



Table 4.8 Sample scores lxi} on each of the ordination axes as displayed at 
the terminal. These scores scores form the environmental axes. 
They can be calculated from the regression/canonical coefficients 
and the standardized environmental variables by using equation 
(4.15). 
Passive samples are not in this table; hence, sample 20 "PAS SAMP" 
is missing. The column WEIGHT is as in Table 4.5. In the CANOCO 
output this table appears after the centroid scores (Table 4.11). 

SAMPLE SCORES - WHICH ARE LINEAR COMBINATIONS OF ENVIRONMENTAL VARIABLES 

N NAME AX1 AX2 AX3 AX4 WEIGHT 

EIG 0.46 0.30 0.16 0.13 

••• 0 •• 1 -82 -28 -56 -9 18 
2 • 0 •• 0 • 2 -96 7 -10 -65 42 
3 0 ••••• 3 -36 -56 -41 -27 40 
4 ••••• 0 1.1 -37 -55 -43 -26 45 
5 ...... 5 -11 0 -5 56 3 43 
6 0 ••••• 6 -110 -15 43 61 48 
7 0 0 0 I 0 0 7 -77 24 36 9 40 
8 ••• 0 0 • 8 78 -44 13 -9 40 
9 • 0 0 ••• 9 -15 -16 -8 83 42 

1 0 ••••• 1 0 -71 29 -30 -48 43 
11 ••• 0 • 11 -49 44 43 ,-,36 32 
12 ••••• 1 2 50 -86 -5 54 35 
13 I I I I I 1 3 86 -107 -30 1 33 
1 4 o 0 I I o 1 4 203 52 92 -31 24 
15 0 I I o o 1 5 172 0 95 -37 23 
16 0 o I 0 0 16 129 -74 0 -16 33 
17 o o I I I 1 7 4 140 -22 19 1 5 
28 ••••• 1 8 -29 148 0 12 27 
29 I 0 I 0 I 1 9 112 1 01 -63 22 31 
30 •••• 0 20 110 103 -67 24 31 

MULTIPLIER 100 
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thus 5.57. The t-value of a regression coefficient cj of variable j on an 
ordination axis is equal to cj/se(cj), where se(cj)- the standard error of 
the estimate cj- is the square root of var (cj) given in (4.1). If the (cjl 
are regression coefficients, then the t-values can be used in Student t-tests 
in the usual way (e.g. Montgomery and Peck, 1982; Jongman et al., 1987, 
sections 3.2.1 and 3.5.2). To test the null hypothesis that the true 
coefficient of a particular variable on an axis is equal to 0, the t-value of 
the variable should be compared with the critical value of a Student 
t-distribution with n-q-1 degrees of freedom (n = number of samples, q = 

number of environmental variables). A variable is shown to contribute 
significantly to the regression if its t-value in absolute value exceeds the 
critical value (the critical value for a t-test at the 5% significance level 
is ca. 2. 1 , if n- q-1 > 18). 

The Student t-test is not appropriate for tests of significance of 
canonical coefficients, because they have a larger variance. But the t-values 
still have an exploratory use. In particular, when the t-value of a variable 
is less than 2.1 in absolute value, then the variable does not contribute 
much to the fit of the species data in addition to the contributions of the 
other variables in the analysis. The variable then does not have an effect 
that is uniquely attributable to that particular variable (see Jongman et al. 
1987, section 3.5.3) and can be deleted without much affecting the canonical 
eigenvalues. The t-values are therefore of help when one wants to select a 
subset of environmental variables that explains the species data almost 
equally well as the full set. The t-values are unimportant, when the only aim 
of the analysis is to prepare a species-environment biplot. 

Note that a table of regression/canonical coefficients of a direct 
gradient analysis may contain both canonical coefficients and regression 
coefficients: the first column(s) contain(s) canonical coefficients whereas 
the later columns may contain regression coefficients. How many columns 
contain canonical coefficients is indicated by the number of "CANONICAL AXES" 
given in the heading of a table on the output file. The different columns of 
the corresponding table of t-values then have different statistical 
pro per ties! 

The fraction of variance that an ordination axis explains in the 
species-environment biplot is also given in the table of t-values (FR 
EXPLAINED). It is the same information as given cumulatively in section 4. 4 
(at the bottom of Table 4.2). In CCA and RDA the fraction explained by axis !5. 
is simply >.k/(sum of all canonical eigenvalues). See section 4.4 for further 
explanation:-

If there are covariables in the analysis, then the values zij in (4.13) 
are replaced by the residuals of a multivariate multiple regression of the 
standardized environmental variables on the covariables (without any further 
standardization). The regression in (4.13) is then a partial multiple 
regression (Kendall and Stuart, 1973, sections 27.8 and 27.25; Seber, 1977, 
Theorem 3,7 (ii); note that there is no need to regress the species data on 
the covariables). In the variance of the partial regression coefficient cj 
( 4.1) and in the Student t-test, q must be replaced by q+p, where p is the 
number of covariables. When the partial regression is performed after 



Table 4.9 Inter-set correlations of the environmental variables with the 
species axes as displayed at the terminal (FR EXTRACTED = fraction 
of variance in environmental data extracted by axis, see text). 
Moisture has the largest correlation on the first axis. Both 
manure and nature man.agement are strongly correlated with the 
second axis. Note that the importance of manure on the second axis 
was not obvious from Tables 4.6 and 4.7, presumably because of its 
correlation with nature management. 

INTER SET CORRELATIONS OF ENVIRONMENTAL VARIABLES WITH AXES 

N NAME AX1 AX2 AX3 AX4 

FR EXTRACTED 0.22 0.16 0.07 0.07 

Al 539 -156 504 -97 
2 MOISTURE 883 -153 -120 151 
3 MANURE -296 -690 -169 -160 
5 HAYPASTU -165 -499 -113 -77 
6 PASTURE 268 -28 366 -188 
8 BF -349 158 -25 -520 
9 HF -346 -105 376 464 

1 0 NM 546 666 38 

MULTIPLIER 1000 

Table 4.10 Biplot scores of environmental variables as displayed at the 
terminal (R(SPEC, ENV) = species-environment correlation, see 
table 4.2). The scores are used in the construction of the arrows 
in Fig. 4.2. For explanation see text. 

BIPLOT SCORES OF ENVIRONMENTAL VARIABLES 

N NAME AX1 AX2 AX3 AX4 

R(SPEC,ENV) 0.96 0.90 0.86 0.89 

Al 281 -79 216 -37 
2 MOISTURE 460 -78 -51 58 
3 MANURE -154 -350 -72 -61 
5 HAYPASTU -86 -253 -48 -29 
6 PASTURE 139 -1 4 157 -72 
8 BF -182 80 -11 -199 
9 HF -180 -53 161 178 

1 0 NM 284 338 0 14 

MULTIPLIER 1000 
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extracting the ordination, we obtain an indirect analysis of a partial 
component analysis, a partial CA or a partial DCA; when it is incorporated 
within the .iterative ordination algorithm, we obtain a direct analysis: 
partial RDA, partial CCA or partial DCCA. 

In section ~.5 it was discussed how the species scores were derived and 
how they were scaled. In direct gradient analyses the species scores are 
derived from the sample scores that are linear combination of the 
environmental variables, i.e. the {xi} in section 4.5 are then equal to the 
{xi} of the present section. With xi =xi, four formulae jointly constitute 
the transition formulae, for linear methods the formulae (~.3), (~.8), (~.1~) 
and (~.15) and for weighted averaging methods the formulae(~.~). (~.9), 

(~.1~) and (~.15). The scaling of the {xd follows from these formulae and 
the scaling of the species scores given in (~.5) and (~.6). It can be shown 
that the (weighted) mean square of the sample scores xi = xi satisfies for 
linear methods (~.10) and for weighted averaging methods (~.11) [except when 
nonlinear rescaling is in force]. The weighted mean square of the sample 
scores {xi} is always a factor R2 smaller than the mean square of the sample 
scores {xi} where R is the species- environment correlation of the 
corresponding axis (this follows from the regression in (~.13- ~.15)), For 
(partial) CCA and DCCA, (~.7) holds with xi =xi' 

For interpretation purposes it is sometimes of interest to obtain the 
regression/canonical coefficients, {cl*J say, corresponding to the 
environmental variables in their orig nal units of measurement, i.e. without 
the standardization in (~.12). By inserting (~.12) in (~.15) we obtain after 
some elementary algebraic manipulation 

X = I c -i 0 

q 
l: 

j=1 
r (~.16) 

j=1 

* The desired coefficients are thus cj = cj/sj. The value of sj is found in the 
table of means and standard deviations (section ~.3). 

~.8 Inter~set correlations of environmental variables with axes 

The inter-set correlations of environmental variables with axes (Table 
~.9) are the correlation coefficients between the environmental variables and 
the species axes consisting of the sample scores /x1J (section ~.6). The 
same correlations can also be found in the full correlation matrix on the 
output file (section ~.3). If there are covariables in the analysis, the 
correlations given are partial correlations. 

In indirect gradient analyses the species axes do not depend on the 
environmental variables. The inter-set correlation for a particular variable 
is then not dependent on which other environmental variables are included in 
the analysis. But in direct gradient analyses, the species axes may depend on 
the environmental variables included and therefore the inter-set correlations 
may also change. 

In contrast to regression/canonical coefficients, the inter-set 
correlations do not become unstable when the environmental variables are 
strongly correlated with each other, i.e. when the VIF's of section ~.3 are 
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large. See also section 7.3 and Ter Braak (1986a: canonical coefficients and 
intra set correlations). 

Table 4.9 also shows the fraction of the total variance in the 
standardized environmental data that is extracted by each species axis (FR 
EXTRACTED). The fraction extracted is equal to the mean squared inter-set 
correlation, 1rj/q, where rj is the inter set correlation of variable j (cf. 

Gittins, 1985, section 3.2.2). 

4.9 Biplot scores of environmental variables 

In the species-environment biplot (section 4.4) environmental variables 
are represented by arrows. The biplot scores of environmental variables 
(Table 4.10) give the coordinates of the heads of the arrows, the coordinates 
of the species being given in section 4.5. Another way to display nominal 
environmental variables is described in the next section. 

The rules for constructing and interpreting species-environment biplots 
are the same as those given in Jongman et al. (1987, section 5.3.4) for 
PCA biplots. Because the scores for species and for environmental variables 
are often of a different order of magnitude, the biplot is constructed most 
easily by drawing separate plots of species and of environmental variables on 
transparent paper, each one with its own scaling. But note that within each 
plot the scale units of the axes must have equal physical length. The biplot 
is obtained by superimposing the plots with the axes aligned and the origins 
of the coordinate systems coinciding. 

However, there is an exception on the rule that the origins must 
coincide: when the mean of a species axis is nonzero (section 4.3), then the 
origin of the "environmental plot" must coincide with the point in the 
"species plot" whose coordinates are equal to the means of the species axes 
(SPEC AX~) given in section 4.3. This exception happens in linear methods 
when the species data are not centred by species (Q27), and in weighted 
averaging methods when nonlinear rescaling of axes is in force (Q11). In both 
cases there is an extra line below the species and sample scores, starting 
with the word "CENTROID" which specifies the means of the species axes. (Note 
that in the linear case this centroid is not necessarily equal to the mean of 
the species scores.) If one does not want to draw separate plots, the head of 
an environmental arrow can be added to the plot of the species at the point 
whose coordinates are obtained by the formula 

(Y x bi plot-score-of-environmental-variable)+ (mean-of-species-axis) 

where Y is a constant to be chosen by the user such that all heads of arrows 
fit in the species diagram. 

As noted in section 4.4, the species-environment biplot serves to give, 
in linear methods, a display of approximate values of covariances between 
species and environmental variables and, in weighted averaging methods, of 
weighted averages of species with respect to environmental variables. The 
biplot scores of environmental variables can in principle be obtained by a 
weighted multi variate multiple regression of these covariances/weighted 
averages on the species scores (see Ter Braak 1986a). This regression is 
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actually calculated in CANOCO when detrending-by-segments or nonlinear 
rescaling of axes or a ranking method (a nonstandard analysis) is in force. 
But for other methods CANOCO uses a short-cut: as shown in Appendix C the 
regression gives biplot scores that are a simple function of the inter--set 
correlations (section 4.8), the standard deviations of the species axes 
(section 4. 3) and the eigenvalues, namely 

(inter-set correlation) x (standard deviation of species axis) x a (4.17) 

where for linear methods a = 1 and for weighted averaging methods a = 1-Ak 
where Ak is the eigenvalue of axis k. 

If there are covariables in the analysis, (4.17) is multiplied by the 
residual standard deviation of the regression of each standardized 
environmental variable on the covariables (= the square root of the diagonal 
element of the partial covariance matrix displayed at the terminal). In this 
way, the arrow of an environmental variable becomes shorter, the higher the 
correlation between this environmental variable and the covariables, (i.e., 
the more the variation in the environmental variable is already explained by 
the covariables). The arrow is unaffected when the environmental variable is 
not correlated to the covariables, i.e. when it contributes entirely new 
information about the environment. With covariables in the analysis the 
species-environment biplot approximates in linear methods partial covariances 
and, in weighted averaging methods, weighted averages with respect to 
residuals of environment variables (i.e. the environmental variables after 
eliminating covariable-effects). See Appendix C. 

Environmental variables with long arrows are the most important in the 
analysis; the larger the arrow, the more confident one can be about the 
inferred covariances (correlations) or weighted averages. Table 4.10 also 
shows the species-environment correlations, R(SPEC,ENV). A value of 0.00, 
would indicate that the correlation could not be calculated by CANOCO. 

4.10 Centroids of environmental variables in the ordination diagram 

Nominal environmental variables can naturally be represented by points 
in the ordination diagram (Ter Braak, 1986a). Each class of a nominal 
variable gives one point which is located at the centroid of the sample 
scores belonging to the class. The centroid on the ordination axis with 
sample scores !x11 is given by 

(4. 18) 

where zij is (as in section 4.7) the value of environmental variable j in 
sample i and wi = wi (Q30- Q31) in linear methods and w~ = wi ~ wkyik in 

weighted averaging methods, In contrast to biplot scores, the centroids must 
be plotted in the ordination diagram in the same scale as the sample scores 
(Fig. 4.2). Representing environmental variables by points is not only useful 
for classes (dummy variables with zi.l = 0 or 1) but sometimes also for 
nonnegative quantitative variables that can be absent, i.e. where the value 0 
has a special meaning. 



Table 4.11 Centroids of environmental variables (with positive mean values) 
in the ordination diagram. The scores are used for the points of 
classes of nominal variables in Fig. 4.2. For explanation see 
text. 

CENTROIDS OF ENVIRONMENTAL VARIABLES (MEAN.GT.O) IN ORDINATION DIAGRAM 

N NAME AX1 AX2 AX3 AX4 

R(SPEC,ENV) 0.96 0.90 0.86 0.89 

Al 207 -45 102 -17 
2 MOISTURE 527 -69 -38 41 
3 MANURE -205 -357 -62 -51 
5 HAYPASTU -189 -429 -68 -40 
6 PASTURE 452 -36 326 -145 
8 BF -743 251 -29 -506 
9 HF -497 -113 286 306 

10 NM 992 904 31 

MULTIPLIER 1000 

Table 4.12 Effect of ploughing times on weeds in a barley crop: data file in 
full format with covariables (4 blocks) and environmental 
variables (3 treatments = 3 ploughing times) representing a 
randomized block experiment of 12 sample units laid out in 4 
blocks of 3 sample units each. The experiment, which is analyzed 
further in section 6, is used to illustrate the Monte Carlo 
permutation test for testing the effect of environmental variables 
(here: treatments) on species composition. The file has the name 
''PLOUGH.EXP" in Table 4.13 

PLOUGH TIMES IN A 4X3 RANDOMIZED BLOCK EXPERIMENT (DATA B.J.POST) 
(I3,X,4F1.0,X,3F1.0) 
7 

1 1 000 100 
2 1000 010 
3 1000 001 
4 0100 100 
5 0100 010 
6 0100 001 
7 0010 100 
8 0010 010 
9 001 0 001 

1 0 0001 100 
11 0001 01 0 
12 0001 001 
00 
BLOC BLOC 2 BLOC 3 BLOC 4 PLTIME 1PLTIME 2PLTIME 3 
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CANOCO calculates the centroids defined by (4.18) for all environmental 
variables whose mean is positive. The value assigned to the other 
environmental variables is the mean of the species axis, i.e. the value 
assigned is 0, unless the species data are not centred or nonlinear rescaling 
of axes is in force. For variables whose mean is positive but which have some 
negative values, (4.18) is nonsensical yet given by CANOCO. 

CANOCO uses a short-cut to calculate (4.18): 

( inter set ) (standard deviation) (standard deviation ) 
( mean ) correlation x species axis x environmental variable 
species axes + mean of environmental variable . 

(4.19) 

the entries of which are all given in section 4.3. With covariables in the 
analysis, the standard deviation of the environmental variable in (4.19) is 
replaced by the residual standard deviation of the regression of the 
uns tandardi zed environmental variable on the covari abl es (see Append! x C). 

It is of some interest to note that we obtain the same value if we 
insert xi for x~ in (4.18), i.e. the centroid of sample scores {x1} for a 
class is equal to the corresponding centroid of the sample scores {x~}. This 
is, however, not true in general in additional passive analyses of (other) 
environmental variables (Q35). 

Why nominal variables are naturally represented by points is best seen 
when there is a single nominal environmental variable, i.e. when there is a 
single pre-defined classification of samples, CCA with a series of dummy 
variables reflecting this classification provides an ordination to show 
maximum separation among the pre-defined groups of samples. This analysis is 
mathematically equivalent with Feoli and Orl6ci' s (1979) "analysis of 
concentration" and also with a simple CA of a two-way table of 
species-by-groups, the cells of which contain the total abundance of each of 
the species in each of the groups of samples (Greenacre 1984, section 7.1) In 
the CA ordination diagram the groups would be represented by points as they 
take the place of the samples. So why not represent the groups by the same 
points in a CCA? Similarly, RDA with a series of dummy variables is a variant 
of canonical variates analysis/multiple discriminant analysis, in which the 
groups are always represented by group means, i.e., by centroids (4.18). 

The species points and the environmental points jointly reflect the 
relative abundance of species among the environmental classes. The 
interpretation is the same as that of a diagram of species and sites 
resulting from a PCA for linear methods and from a CA for weighted averaging 
methods. 

To obtain a direct gradient analysis or a regression analysis 
subsequent to an indirect analysis, one dummy variable per nominal variable 
must be removed from the analysis (Q20). In consequence, CANOCO does not give 
the centroids for the deleted dummy variables. To obtain their centroids, it 
is most convenient to ask subsequently for an additional passive analysis, 
(Q35 = 2) in which the same environmental data are entered again, but now 
without deleting dummies (see Table 3,3). This gives a complete list of 
centroids and, if wanted, of inter-set correlations and biplot points. 



Table ~.13 Annotated copy of the answers entered at the terminal to obtain a Monte 
Carlo permutation test with covariables in the analysis. The file 
"PLOUGH.EXP" is shown in Table ~.12. For explanation see text. 

QUESTION - INPUT AT TERMINAL c ANNOTATION 

Q1 PLOUGH.OUT = OUTPUT FILE 
Q2 2 = ANALYSIS NUMBER 
Q3 PLOUGH83. SPE FILE WITH SPECIES DATA 
Q5 PLOUGH.EXP FILE WITH ENVIRONMENTAL DATA 
Q6 1 = COVARIABLES? 
Q7 PLOUGH. EXP = FILE WITH COVARIABLES 
Q15: 1 = SCALING OF SAMPLE AND SPECIES SCORES? 
Q16: 0 =MACHINE READABLE COPY OF SOLUTION? 
Q19: 0 =SAMPLE NUMBER TO BE OMITTED 
Q20: 1 ENVIRONMENTAL VARIABLE TO BE OMITTED 

2 ENVIRONMENTAL VARIABLE TO BE OMITTED 
3 ENVIRONMENTAL VARIABLE TO BE OMITTED 
~ ENVIRONMENTAL VARIABLE TO BE OMITTED 
7 ENVIRONMENTAL VARIABLE TO BE OMITTED 
0 ENVIRONMENTAL VARIABLE TO BE OMITTED 

Q21: -1 0 = PRODUCT OF ENVIRONMENTAL VARIABLES 
Q22: ~ COVARIABLE TO BE OMITTED 

5 COVARIABLE TO BE OMITTED 
6 COVARIABLE TO BE OMITTED 
7 COVARIABLE TO BE OMITTED 
0 COVARIABLE TO BE OMITTED 

Q23: -1 0 = PRODUCT OF COVARIABLES 
Q2~: -1.00 0.00 =TRANSFORMATION OF SPECIES DATA 
Q26: 0 = CENTRING/STANDARDIZATION BY SAMPLES 
Q27: 1 = CENTRING/STANDARDIZATION BY SPECIES 
Q28: 1.00000 c WEIGHT ( NOWEIGHT=1) 
Q30: 1.00000 =WEIGHT ( NOWEIGHT=1) 
Q33: 1 = OUTPUT OF CORRELATIONS? 
Q3~: 1 1 1 1 1 1 1 0 = ORDINATION OUTPUT 
Q35: 1 = STOP, MORE ANALYSES, OTHER ENV. DATA? 
Q36: 0 = ONLY ENV. VARS TO BE DELETED? 
Q37: 1 = MONTE CARLO PERMUTATION TEST? 
Q38: 99 = NUMBER OF PERMUTATIONS 
Q39: 23239 945 = SEEDS FOR RANDOM NUMBERS 
Q40: 3 = COVARIABLES TO RESTRICT PERMUTATION 
Q35: 0 =STOP, MORE ANALYSES, OTHER ENV. DATA? 
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4.11 Monte Carlo permutation test 

The Monte Carlo permutation of samples can either be restricted or 
unrestricted (Q40). In restricted permutation CANOCO determines classes of 
samples within which samples are randomly permuted, The classes, termed 
permutation classes, are constructed from the conditioning covariables: 
samples belong to the same permutation class if they have identical values on 
the conditioning covariables. 

For example, Table 4.12 shows the covariables and environmental 
variables of an experiment to test the effect of month of ploughing (three 
ploughing times) on the subsequent composition of weeds in a barley crop. The 
experiment was a randomized block experiment of 12 sample units laid out in 
four blocks of three sample units each. The three treatments (ploughing 
times) were randomized within each block. The first four dummy variables in 
Table 4.12 each represent a block, and the last three dummy variables each a 
ploughing time. We are interested in the effect of ploughing time and want to 
eliminate possible effects of blocks. The block variables (variables 1-4) 
should thus be entered in CANOCO as covariables, and the ploughing time 
variables (variables 5-7) as environmental variables (to avoid collinearity 
one variable of both sets should be deleted; of. Q20 and Q22), This is 
achieved in the terminal dialogue, of which an annotated copy is shown in 
Table 4.13, by specifying the name of Table 4.12 (PLOUGH.EXP) as both the 
file with environmental data (Q5) and the file with covariables (Q7). 
Subsequently, all environmental variables except the variables 5 and 6 
(ploughing time 1 and ploughing time 2) are deleted and all covariables 
except the variables 1, 2 and 3 (block 1, block 2 and block 3) are deleted 
(Table 4.13). In this way the ploughing times 1 and 2 become the 
environmental variables and the blocks 1, 2 and 3 become the coyariables. 
It is further asked for (Table 4.13) to carry out 99 permutations and, in 
response to question Q40, to condition permutations on three covariables, 
i.e. on the first three covariables which are in this case the variables 1, 2 
and 3. From Table 4.12 it is seen, for example, that the samples 1, 2 and 3 
have identical values on these three variables (namely 1 0 0) and therefore 
belong to the same permutation class. No other samples belong to this 
permutation class. Similarly, the samples 7, 8 and 9 score values 0 0 1 on 
covariables 1, 2 and 3 (because they belong to block 3) and thus belong to 
the same permutation class. The user can check in the output of CANOCO (Table 
4.14) that these are actually the permutation classes reconstructed by 
CANOCO. 

Samples in a permutation class will be randomly permuted. For example, 
the species data and covariable data of the samples 7,-8 and 9 will be linked 
in a particular permutation to, for example, the environmental data of the 
samples 8, 9 and 7 respectively. In this way sample 7 in the species data is 
assigned notionally to ploughing time 2 (whereas it was actually ploughed at 
the first date), etc. If also the samples in the other permutation classes 
are permuted, a random dataset is obtained. If different ploughing times 
result in large differences in weed composition, then the differences between 
ploughing times after permutation, as measured by the trace or the first 
eigenvalue, are likely to be smaller than in the data observed. This is 



Table 4.14 Test of significance of the first canonical ordination axis. Report 
of permutation classes used in restricted permutation and of the 
first eigenvalue of the current data (DATA) and of the random data 

'sets generated by Monte Carlo permutation. The values below TRACE 
are all 0.000 because an overall test of significance was not 
requested (Q37 = 1). P-value =exact Monte Carlo significance 
level. Because P = 0.05, the first ordination axis is just 
significant at the 5% significance level. The effect of ploughing 
time on weed composition is therefore just significant. For 
explanation see text. 

*** THE PERMUTATIONS ARE CONDITIONED ON THE FIRST 3 COVARIABLE(S) *** 

PERMUTATION CLASS 1 CONTAINS THE SAMPLES NUMBERED: 
1 2 3 

PERMUTATION CLASS 2 CONTAINS THE SAMPLES NUMBERED: 
4 5 6 

PERMUTATION CLASS 3 CONTAINS THE SAMPLES NUMBERED: 
7 8 9 

PERMUTATION CLASS 4 CONTAINS THE SAMPLES NUMBERED: 
10 11 12 

NO TRACE FIRST EIGENVALUE 

DATA 0.000 0.162 
1 0.000 0. 081 
2 o.ooo 0.108 
3 0.000 0.098 
4 o.ooo o. 115 
5 o.ooo 0.059 

I 0 0 0 0 I I 0 I 0 0 I I I I o o I I 0 o o I I I 0 o I 0 I o o I o I 0 o o I I 

.••.• simulations 6- 94 not shown •.•.• 
I I 0 I I I I I I 0 0 o o I 0 I o I I I 0 0 I I I 0 I I o I 0 0 0 o I I I o I I 

95 o.ooo 0.109 
96 o.ooo 0.095 
97 o.ooo 0.074 
98 o.ooo 0.090 
99 0.000 0.082 

P-VALUE 1.00 0.05 
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indeed what happens in the example (Table ~.1~). The first eigenvalue in the 
data as observed is 0,162 (see the line in Table ~.1~ which begins with 
DATA); the value of trace is set equal to 0, because the test does not 
concern the trace (Q37=1). The first permutation results in a data set whose 
first eigenvalue is 0.081. Further permutations result in first eigenvalues 
0.108, 0.098, 0.115, 0.059, ... -all smaller than the observed value 0.162. 
After 99 permutations, four permutations have resulted in a value larger than 
or equal to 0.162, so the exact Monte Carlo significance value is 
(~+1)/(99+1) = 0.05 (Table ~.1~: P-value; see Hope, 1968). 

After a permutation test has been carried out, CANOCO again calculates 
the eigenvalues and ordination axes of the data as observed. The iteration 
report and eigenvalues are displayed at the terminal and the output file to 
enable the user to check that the current data as held by CANOCO are still 
all right. This is important if there are covariables in the analysis. If 
there are covariables, the data may have been obstructed during the 
permutation test by cumulative rounding errors in the calculations. In the 
limited experience so far with the permutation test (with FORTRAN REALS of 16 
bits on a VAX-canputer) no such obstruction was detected, but nevertheless 
the user is warned! If the eigenvalues displayed are identical to those 
before the permutation test, the analysis can be continued through question 
Q35. 
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5. NONSTANDARD ANALYSES 

A nonstandard analysis may be obtained by typing the number 10 in 
response to Q2. The user is warned that the program has been tested with 
less regard to nonstandard analyses than to standard analyses, and that the 
nonstandard analyses do not have a secure theoretical basis. In a 
nonstandard analysis the user is allowed to combine options in a 
nonstandard way. For example, the question about nonlinear rescaling (Q11) 
is posed standardly only when detrending-by-segments is in force, but in a 
nonstandard analysis this question is posed for all weighted averaging 
methods. In this way the user may specify an analysis in which nonlinear 
rescaling of axes is used in combination with detrending-by-polynomials or 
without detrending. (In DECORANA the rescaling question was also posed in 
basic correspondence analysis, but had no effect.) Nonlinear rescaling of 
axes is also possible in CCA and DCCA, but its use is somewhat illogical: 
the optimal linear combinations of environmental variables are searched 
for, but after these combinations have been determined, they are modified 
by the nonlinear rescaling of axes, so destroying their optimality 
property. 

The only additional question in a nonstandard analysis, which is 
posed immediately after Q2 is: 

ITY 

NEIGZ 

lORD 

JORD 

Q41, TYPE VALUES OF ITY, NEIGZ, lORD, JORD 

Allowed values are -100, -4, -3, -2, -1, 0, 1, 2, 3, 4. 
The sign of ITY discriminates between linear methods (ITY < 0) 
and weighted averaging methods (ITY ~ 0). The absolute value of 
ITY determines the order of the polynomial used for detrending. 
The usual orthogonalization procedures in PCA and CA are thus in 
force if ITY = -1 and 1, respectively. The values ITY = 0 and 
-100 have a special meaning: if ITY ~ 0, then detrending-by­
segments is in force; ITY = -100 corresponds to the option in 
Q27 requiring no centring by species. 
Allowed values are 0, 1, 2, 3, 4, Type 0 for an indirect 
gradient analysis, 4 for a direct gradient analysis, and 1, 2 or 
3 for a hybrid analysis (cf. Q8). 
Allowed values are 0 and 1. Type 1 to replace the samples scores 
in each step of the iterative ordination algorithm by their rank 
number, else type 0. For technical reasons, IORD = 1 should not 
be used in conjunction with detrending-by-segments. 
Allowed values are 0 and 1. Type 1 to replace the species scores 
in each step of the iterative ordination algorithm by their rank 
number, else type o. For technical reasons, JORD = 1 should only 
be used if the species are numbered consecutively; it should not 
be used if some species numbers are absent from the data. 
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The major additional possibility in nonstandard analysis is thus to 
modify the iterative ordination algorithm so that at each iteration the 
species scores and/or the site scores are replaced by rank numbers. This 
modification is described by Ihm and Van Groenewoud (198~: p. 29-30) under 
the name "reciprocal ranking". This procedure is a heuristic way to 
circumvent the problem that CA is sensitive to the occurrence of deviant 
samples and rare species in the data set (Jongman et al, 1987: section 
5.2.6). For solving this problem, ranking of either sample scores or 
species scores will be sufficient in most cases. It may be more appealing 
to rank species scores than to rank sample scores: ranking of species 
scores imposes upon the solution a species packing model in which the 
species' optima are equally spaced (of. Hill and Gauch, 1980: p. 49). 

I do not know whether the reciprocal ranking algorithm gives unique 
species and samples scores, irrespective of the initial scores. To lessen 
this possible dependency on initial scores, ranking of scores is performed 
after two iterations of the iterative ordination algorithm starting from 
the usual initial scores. (Note that one iteration of this algorithm as 
implemented in CANOCO involves 4 passes of the data.) For technical 
reasons, the reciprocal ranking algorithm usually does not converge in 15 
iterations; nevertheless the final scores are precise enough for most 
practical purposes. The final iteration is performed without ranking. If 
lORD or JORD is equal to 1, then it is implied that samples scores are 
derived from the species scores (Q14/15 = 1). By consequence, the final 
scores satisfy the equations (4.8), (4.9), (4.14) and (4.15) with a= 1. 
However, the species scores are not a simple function of the samples 
scores; the equations (4.3) and (4.4) do not hold. In linear methods the 
mean square of the sample scores is set to 1 (of. (4.10)). In weighted 
averaging methods the sample and species scores are scaled to SO-units, 
either by nonlinear rescaling of axes or by using equation (4.7). 

Question 41 also allows detrending-by-polynomials to be used in 
linear methods. This use is, however, not supported by theory and therefore 
not recommended: linear methods applied to data arising from unimodal 
models produce a "horseshoe" which scrambles the order of samples along the 
first axis, In contrast, the "arch" produced by weighted averaging methods 
does not scramble the order of samples along the first axis. 
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6. EXAMPLES 

6.1 Dune meadow data 

The dune meadow data (section 2.1) were collected to investigate the 
differences in vegetation among dune meadows that have been subjected to 
different management regimes, namely standard farming, biodynamic farming, 
hobby farming and nature management. To obtain a display of the 
differences, we applied canonical correspondence analysis to the vegetation 
data (Table 2. 2) with three of the four dummy management variables as 
environmental variables (variables 7-10 of Table 2.3), Fig. 6.1 displays 
the ordination diagram of the species scores, sample scores and centroids 
of the management variables on axes 1 and 2. The first axis <• 1 = 0.32) is 
seen to separate the meadows receiving nature management from the remaining 
meadows and the second axis <• 2 = 0.18) separates the meadows of standard 
farms from those of hobby farms and biodynamical farms, although the 
separations are not perfect. The species displayed on the right-hand side 
of the diagram occur mainly in the meadows receiving nature management, and 
those on the upper-left in the meadows of standard farms, and so on. To 
investigate whether the observed differences could be accounted for by pure 
chance, we used the Monte Carlo permutation test with the first eigenvalue 
as test statistic. The 99 random data sets generated by random permutation 
of meadows all yielded a lower eigenvalue. It is therefore concluded that 
there are significant differences in vegetation among the management 
regimes ( P .S 0. 0 1). 

A further question of interest is whether the differences in 
vegetation can be fully accounted for by three environmental variables 
related to soil characteristics; (1) thickness of the A1 horizon, (2) 
moisture and (3) quantity of manuring, whose effects are clear fran 
Fig. 4.2, or whether the variation that remains after fitting these three 
environmental variables is systematically related to management regime. To 
answer this question a partial canonical correspondence analysis was 
carried out with the three environmental variables as covariables and the 
dummy management variables as the variables-of-interest ( = environmental 
variables in CANOCO). The first eigenvalue of this analysis <• 1 = 0.15) was 
subjected to the Monte Carlo permutation test (99 unrestricted 
permutations) leading to a P-value of 0.20. The variation in vegetation 
that remains after fitting thickness of the A1 horizon, moisture and manure 
is therefore not significantly related to management regime. In conclusion, 
the three soil characteristics are sufficient to explain the vegetation 
differences between management regimes. 

6.2 Weeds in summer barley 

Post ( 1986) carried out a randomized block experiment to investigate, 
among other things, the effect of time of ploughing on the subsequent weed 
vegetation canposi tion in summer barley. The experimental design has 
already been described in section 4.11, the plot size was 3 x 2m 2

• The 
ploughing times were in 1983 March 9, March 23 and April 6. The log-



Alo gen 
Cir arv 
Che alb 

I 

A 
Jun buf 

Ely rep 
A 

A 
Poa tri 

-1.0 

• SF 

A 
Lol per 

l ! 
Tri pra Bro hor 

Sag pro A 

eSF 

•SF 

BSF 

- 59 -

2.0 N AAgr sto 
~ ·x .. 

1.0 •sF 
Ele paiA 

SF• 

SFe eHF 

oHF NMe 

BF aHF 
• A 

Bel per 

HF • •• BF 
HF • 0

BF HF 

-1.0 

1 l 
Ach mil Pia ian 

•NM 

Bra rut A 
aNM 

A 1.0 Jun art 

NMe 
eBF A leo aut 

ATri rep 

•NM 

i l 
Vic lat Ant odo 

- Calcus 

A Ran fla 

eNM 

Air pra 
Emp nig 
Pot pal 
Sal rep 

axis 1 2.0 

eNM 

-Hyprad 

Fig.6.1 Ordination diagram based on canonical correspondence analysis of 
the dune meadow vegetation data with respect to management regime. 
The diagram optimally displays the differences in species 
composition among different types of management. The types of 
management (II) are located in the diagram at the centroids of the 
samples (e) belonging to that type (see section 4.10). For 
abbreviations of species (.!.) and management types see Table 2.1 and 
2.3 (~ 1 • 0.32, ~ 2 • 0.18, scaling a • 1). 
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Fig.6.2 Ordination diagram based on partial redundancy analysis of the 1983 
weed composition data with respect to ploughing times (P1 • March 
9, P2 • March 23, P3 • April 6; data from Post, ·1986), the 
covariables being formed by the blocks of the experiment (81, 82, 
83, 8~). The diagram shows species (arrows), plots (e) labeled by 
ploughing time and block number, and the centroids (B) of the 
ploughing times. Abbreviations of species names are: 
Ape spi • Apera spica-venti; Cap bur~ Capsella bursa pastoris; 
Che alb - Chenopodium album; Gal par ~ Galinsoga parviflora; Gna 
uli = Gnaphalium uliginosum; Mat reo ~ Matricaria recutita; Pol avi 
• Polygonum aviculare; Pol per • Polygonum persicaria; Ror pal = 

.Rorippa palustris; Sol nig • Solanum nigrum; Spe arv • Spergula 
arvensis; Ste med • Stellaria media; Vic arv • Viola arvensis 
0. 1 • 0.16, ~ 2 - 0,06, scaling a • 1 ), 
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transformed counts (ln(y+1)) of 13 weed species in May 1983 were subjected 
to partial canonical correspondence analysis, as specified in section 4.11. 
The length of the first ordination axis was as low as 0.3 SD, so that use 
of a linear method appeared more appropriate. Fig. 6.2 shows the ordination 
diagram resulting from a partial redundancy analysis and visualizes, for 
example, that Chenopodium album and Spergula arvensis are most abundant 
after ploughing on March 9 (P1) whereas Capsella bursa pastoris is most 
abundant after ploughing on March 23 (P2). 

A restricted Monte Carlo permutation test (Table 4.14) showed that the 
effect of ploughing time on weed composition was on the margin of 
significance (P ~ 0.05). 

In spring 1984 the plots were all cultivated by rotary tillage on a 
single day (to obtain a more even distribution of seeds in the seed bank). 
The counts made thereafter in May 1984 were subjected to the same analysis 
as the 1983 counts (A 1 = 0.069) but failed to show significant differences 
(P = 0.45, test on first eigenvalue). Apparently the one single date of 
rotary tillage cancelled the effects of the previous treatments and/or 
recruted the same seedlings from the field seed bank. 

Experimental data are standardly analyzed by the analysis of 
variance. Because the interest was not directed to one particular weed 
species, multivariate analysis of variance is called for, yet cannot be 
used, because the number of response variables (13 species) is larger than 
the number of experimental units (12). Partial redundancy analysis combined 
with Monte Carlo permutation tests is an attractive alternative escaping 
the restriction on the number of response variables. 

6.3 Gene frequency data 

McKecknie et al. (1975) studied the genetic variability in 21 
colonies of the butterfly Euphydryas editha in relation to 11 environmental 
variables (Fig. 6.3). The genetic data consist of the frequencies of 
different alleles at various loci. Manly (1985) used the Mantel test (Sakal, 
1969) and multiple regression to analyse data from three loci (Pgm 6 alleles; 
Pgi, 8 alleles; Hk, 3 alleles). We use the same data as Manly (1985) in this 
example. The data are percentages; for example, the frequencies of the three 
alleles of Hk in the colony named AF are 37, 59 and 4% and in the colony SL 
16, 84 and 0%. As the data contain many zero values, CCA is an appropriate 
technique for analyzing these data (see section 7.1). The ordination diagram 
based on CCA (Fig. 6.3) shows how the allele frequencies vary along the 
environmental variables. For example, Hk2 has its highest percentages at 
higher altitudes and lower latitudes than Hk1, and Pgi5- has its peak 
frequency at higher levels of precipitation that Pgi4 whereas Pgi6 is 
intermediate. The first eigenvalue (A 1 = 0.16) is significant (P = 0.01, 
Monte Carlo test) and there is thus evidence for a statistical relation 
between allele frequency and the environmental variables. The effects of 
different environmental variables cannot be separated out, however, because 
of their high multicollinearity: is it altitude, the annual minimum or 
maximum temperature or the minimum temperature during the post-diapause that 
is responsible for the variation along their common dimension in the diagram? 
The example shows that CCA is not just a way of testing statistical 
significance as is done in the Mantel test but that it also gives a neat 
display of the relation being put to test. 
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Fig.6.3 Ordination diagram based on canonical correspondence analysis of 
allele frequencies in the butterfly Euphydryas editha in 21 colonies 
(e) with respect to 11 environmental variables (data from McKecknie 
et al., 1975). The alleles (A) from the three loci Pgm, Pgi and Hk, 
are numbered in order of increasing mobility class. Infrequent 
alleles are displayed by a dot. The environmental variables (arrows) 
are: altitude; latitude; annual precipitation (Annuprec), annual 
maximum and minimum temperature (Max-temp, Min-temp); highest and 
lowest temperature in the post-diapause (H-Posdia, L-Posdia), the 
adult phase (H-Adul, L-Adul) and the pre-diapause (H-Predia, 
L-Predia). The abbreviations of colony names follow Manly (1985). 
(A 1 ~ 0.16, A2 • 0.07, scaling a • >/ 2 ), 
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7. MISCELLANEOUS TOPICS 

7.1 Percentage data/compositional data 

Percentage data are obtained, for example, when for each sampling unit 
a fixed number of individuals is counted and each individual is identified to 
belong to one of m species. This sampling method is common in palynology and 
diatom research. Information from such a sample resides in the fraction of 
individuals belonging to each of the species. Percentage data also frequently 
arise in chemistry and geology where a sample is analyzed into its 
constituents (compositional data). In this section we present two alternative 
methods of analysis of such data. The first method, based on a series of 
papers by Aitchison (1982-4), amounts to applying linear methods to 
log-percentage data which are centred both by samples and by species (see 
also Aitchison, 1986). Because the logarithm of the percentages is analyzed, 
the method is attractive only when the data contain few zero values. The 
second method derives from a generalized linear model and amounts to applying 
weighted averaging methods to the untransformed percentage data. It is 
appropriate when the data contain many zeroes. 

Percentage data containing no zeroes 
-~~------~------~---~~-~~-~-------~-

Let pik be the fraction of species k in sample i ( ~ pik ~ 1; Pik > 0) • 
k=1 

Because the fractions are positive, it is not acceptable to model them 
by a linear model such as 

( 7. 1 ) 

because there is nothing to prevent the righthand side from resulting in a 
negative value. Equation (7.1) is the familiar straight line regression 
model with ak the intercept, bk the slope parameter or regression 
coefficient, xi the value of an explanatory variable x and cik an error 
term with mean zero and variance ak. The problem that the equation can 
result in negative values could be solved by modeling the fractions by 

e nik, but then the model values still do not need to sum to 1. This problem 
n·k is solved by dividing thee 1 by their sum, yielding 

( 7. 2) 

The fractions !Pikl are said to follow a logistic normal distribution if 
the error £ik in (7.1) follows a normal distribution with mean 0 and 
covariance matrix I (Aitchison, 1982: p. 162). 

Now we have posed a model for fractions, we derive a method of 
analysis, Retracing the steps of the preceding argument, we take logarithms 
of fractions and obtain fran (7.1) and (7.2): 

(7.3) 
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n·J where Yi = -log (Ej e 1 
) is an incidental parameter. Interestingly, the 

incidental parameters {Yil can be removed by centring the log-fractions by 
samples. When the data are also centred by species we obtain quantities 
y ik' say' 

Pik - pi. - p .k + p .. 
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Fig.7.1 Ordination diagram based on a hybrid of redundancy analysis and 
principal components analysis on the geochemical composition of 25 
samples (o) of "coxite" (artificial data from Aitchison, 1984a). 
The analysis is on log-percentages which are double centred and 
thereby overcomes the constant sum problem of percentage data. The 
first axis is constrained by porosity (the scale values shown are 
porosity values); the second axis displays residual variation in 
the composition of coxite, i.e. variation not explained by 
porosity. The five constituents of coxite (A, B, c,.D, E,) are "hown 
by arrows <>- 1 = 0.39, >- 2 = 0.48, scaling a= 1). 

axis 1 
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where pik = log pik and a dot replacing an index denotes that the average 
is taken over the index. On inserting (7.3) in (7.4) we obtain a linear 
model for the quantities {y ik), 

(7.5) 

* * * where bk = bk -b,, xi =xi- x. and eik = eik- £i. - £.k + £ •• is still an 
error term with mean 0. Note that there is nothing in the above derivation 
which prevents us from using more than one explanatory variable in (7.1). 
Percentage data without zero values can thus by analyzed with the linear 
methods available in CANOCO by using the logtransformation and centring both 
by samples and by species. When using principal components analysis (PCA), 
one obtains what Aitchison (1984b: p. 622) calls loglinear-contrast principal 
components. Use of redundancy analysis (RDA) opens up the possibility of 
applying regression analysis to percentage data (cf. section 7.3). The Monte 
Carlo permutation test is then useful to test the effect of particular 
environmental variables. 

As an example we use the boxite and coxite data sets presented by 
Aitchison (1984a: pp. 535-536) which each consist of the percentages of five 
chemical constituents in 25 samples of rock taken at different depths. We 
tested the hypothesis whether the chemical composition of the rock samples 
depends on depth. For the boxite and coxite data we obtain p-values of 0.59 
and 0.21 respectively. Using a different test statistic, Aitchison (1984: p. 
553) obtained P-values of ca. 0.35 and 0.001, respectively. There is a 
discrepancy for the coxite data which is caused by the large residual 
correlations among the constituents in these data. The type I error of both 
tests is the same, but the type II error of the test in CANOCO is larger than 
of Aitchison's test statistic. Aitchison's test which is based on the 
standard multivariate linear hypothesis is more powerful when there are large 
residual correlations. Although Aitchison's test detects that the composition 
of coxite is significantly related to depth, depth explains only 6% of the 
variance (because , 1 = 0.06), The other variable given by Aitchison, porosity 
of the rock, is much more strongely related to composition: it explains 39% 
of the variability and is significant (P = 0.01 in 99 Monte Carlo 
permutations). Fig. 7.1 show the ordination diagram of RDA on porosity; the 
first axis (A 1 = 0.39) displays the relabon of composition with porosity; 
the second axis displays residual variation <•2 = 0.48). Porous rocks lie on 
the left hand side of the diagram and contain the largest percentages of 
constituent A. The least porous rocks lie on the right hand and contain the 
largest percentages of constituent C. 

Finally we can note that Kooijman (1977) proposed transformation (7.4) 
to perform a Gaussian ordination of abundance data (not percentages) via 
linear methods. 

Percentage data containing zeroes 

Zero values present a problem in the preceding approach because the 
logarithm of 0 is -~. When the data contain few zeroes the problem may be 
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circumvented by replacing zeroes by an arbitrary small value, but this is 
unattractive when there are many zeroes because the result may depend 
considerably on the choice of the value replacing zero. 

An alternative approach can be based on a generalized linear model 
(McCullagh and Nelder, 1983) for percentage data. Instead of defining a model 
for observed fractions as is done in (7.2) we define a model for expected 
fractions. Let yik from now on be the fraction of species k in sample i and 
Eyik the expected fr.action. In analogy, with (7.1) and (7.2) we define the 
multinomial legit model (e.g. McCullagh and Nelder, 1983: p. 106; Anderson, 
1984: p. 5) 

Eyik 
e nik 

m niJ 
I e 

(7.6) 

j=1 

where nik is a 1 inear predictor, e.g. 

11 ik = ak + bkxi. (7.7) 

In comparison with (7.1), the error term has been dropped in (7.7). As 
McCullagh and Nelder (1983: p. 142) note, the regression coefficients in 
(7.7) can be estimated from data jyik} and known lxd by using standard 
computer packages by transforming (7.6) to a loglinear model (see below: 
(7.11)). 

When both the jbk} and the jxi} are unknown, Eqs. (7.6) and (7.7) 
define an ordination model for percentage data. There are then two routes 
which show that approximate estimates of the unkown parameters can be 
obtained by applying correspondence analysis to the fractions jyik}. 

The first route begins by rewriting (7.6) and (7.7) and using a first 
order Taylor approximation ( Ihm and van Groenewoud, 1984: p. 49) 

* where yi = 

yi+Y+k1Y++ 
[ n ij ]- * ak * * l: je 1 and ak = e When for Y i ak the simple 
is inserted we obtain (with yik replacing Eyik) 

(7. 8) 

estimate 

(7.9) 

This is the reconstitution formula of correspondence analysis (Greenacre, 
1984: p. 93; Ter Braak, 1985: p. 861). This similarity was noted also by 
Goodman (1981); the equality in (7.8) defines Goodman's RC-model. 

The second route begins by noting that (7.6) does not change when (7.7) 
is replaced by (Fig. 7 .2) 

* with ak 

(7.10) 

bk; the missing term in (7.7), + xf, cancels 
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Fig.7.2 The top figures display the Gaussian model Eyik a exp(nik) for the 
abWJdance of two and three species along a gradient x (m = 2, left; 
m = 3, right) and the bottom figures display the corresponding model 
for percentage data, i.e. the multiple logit model (7.11). (After Ihm 
and Van Groenewoud, 198~.) 

out because it occurs in both the numerator and denominator of (7.6). 
Further, (7.6) and (7.10) can be written as the general loglinear model 
(McCullagh and Nelder, 1983: p. 106, p. 1~2) 

* log Eyik • Y1 + ak- -t (xi- uk) 2 (7.11) 

where Yi =-log (Ejen1J) is an incidental parameter (c.f. (7.3)). (We can 
take the logarithm of Eyik because Eyik is a positive value even if some of 
the jyik) are 0). Except for the incidental parameter, model (7.11) was 
taken as the starting point by Ter Braak (1985) in showing that 
correspondence analysis gives Wlder particular conditions an approximate 
solution to the fitting of a unimodal model by maximum. likelihood. It turns 
out that the derivation carries through also with incidental parameter 
included. In calibration context (with known values of !a~) and !uk)), the 
weighted averages ( ~. 9) with a • 1 are under the same conditions efficient 
estimators of the sample scores lxd; of. Ter Braak and Barendregt (1986). 
Moreover, the derivation of canon! cal correspondence analysis given in Ter 
Braak (1986a) carries through equally for percentage data using model (7.6) 
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and (7.10) and the constraint that xi is a linear combination of 
environmental variables. Note that (7.6) and (7.10) together define Ihm and 
Van Groenewoud's model B. 

The model can be extended to two~dimensions by taking 

(7.11) 

Again correspondence analysis can be used to obtain approximate estimates, 
except that detrending may be required to remove the arch effect when it 
occurs (section 3.~). 

Paradox 

It is rather paradoxical that the generalized linear model (7.6) with 
(7.7) is identical to the unimodal model (7.6) with (7.10). This apparent 
paradox was already noted to occur in correspondence analysis in the 
discussion of Ter Braak (1985). It entails that for percentage data an 
ordination diagram of correspondence analysis can equally well be interpreted 
by the rules of a bi plot as by the rules of a joint plot (Jongman et al. 
1987, sections 5.2.5 and 5.3.~). The problem is of course that to infer from 
the plot the percentage value of a particular species in a sample, the values 
of all remaining species data are required also. 

In section 3.~ (question Q1 ~) it was noted that there is some 
arbitrariness in correspondence analysis of how to scale the sample scores 
jxrJ with respect to the species scores jur). The scaling is governed by 
the value of a in the sections 4.5 and 4.6. For incidence and abundance 
data there exists a best fitting value of a (which is unfortunately unknown 
in general). But for percentage data a is completely arbitrary: in (7.6) 
w~th (7.10) the model does not change*if we take auk, xi/a and 
ak + -t(a-1)u~ instead of uk, xi and ak, respectively. Moreover, the optima 
juk} may be shifted arbitrarily with respect to the sample scores lxd; 
wi t\a shi't from uk to uk + d for a constant d just change also the value 
of ak to ak + duk. 

These puzzling properties appear to be inherent to percentage data; 
they are shared by both the linear approach and the weighted averaging 
approach presented in this section. In contrast, the location and scale of 
the optima jak} are well determined for abundance data and incidence data 
(of. Kooi jman, 1977) • 

7.2 Nominal response data 

Outside ecology, correspondence analysis is most frequently applied to 
nominal data (Gifi, 1981, Greenacre, 1984). Nominal data arise when each 
response variable consists of a series of mutually exclusive categories or 
classes. For example, vegetation type and soil type are nominal variables. 
Correspondence analysis can be applied to nominal variables to investigate 
their interrelations. It is termed multiple correspondence analysis 
(Greenacre, 198~) or homogeneity analysis (Gifi, 1981) if there are more than 
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two such variables. When interest focusses on how the nominal response 
variables depend on external explanatory variables, one can use canonical 
correspondence analysis. Applied to such data, it is equivalent to redundancy 
analysis of qualitative variables (Isra<Hs, 1984). Torgerson (1958: p. 338) 
already described the types of data which can be analysed by what is now 
called correspondence analysis. In biology, nominal data are encountered 
frequently in numerical taxonomy and genetics. 

To analyze nominal response variables with CANOCO, each nominal 
variable must be represented by a series of dummy variables each representing 
a category: yik = 1 or 0 depending on whether sampling unit i belongs or does 
not belong to category k (of. section 2.1), Each category is thus a species 
in the terminology of CANOCO and each individual a sample. For the analysis 
by CANOCO the categories of different nominal variables must be assigned 
different numbers. One can number them consecutively from 1 to m with m the 
total number of categories. Alternatively, if the maximum number of 
categories per variable is less than 10, one can reserve the number 11-19 to 
the categories of nominal variable 1, the numbers 21-29 to the categories of 
nominal variable 2, etcetera. Nominal response data are best supplied to 
CANOCO in Cornell condensed format (sections 2.1 and 2. 3). If one has, as in 
Table 2.5, 3 nominal variables one needs to specify 3 couplets per sampling 
unit (= individual). With nominal data, the species scores are category 
quantifications in the sense of Gifi (1981). For each nominal variable, the 
weighted mean of its category scores is equal to 0. 

The theory of section 7.1 can be applied to nominal data, With such 
data, (7.6) models the probability that sample i belongs to category k. In 
applying multiple correspondence analysis conditional independence is 
assumed, i.e. the joint probability that a sample belongs to the categories 
k1 , k2 , k3' ••• of nominal variables 1, 2, 3, .•• is simply the product of 
each of the category probabilities given by (7.6). The logarithm of the joint 
probability can therefore be expressed as E1 q, 11 + nik(l) where 1 indexes the 
nominal variables. By modeling nik(l) by (7.10) and using the approach of Ter 
Braak ( 1985) we obtain an alternative derivation of multiple correspondence 
analysis. This approach shows that the category quantification can equally 
well be considered optima of response curves (Fig. 7.2) with respect to the 
ordination axes. 

In some applications a sampling unit may belong partly to one category 
and partly to another one. For such data, fuzzy coding has been proposed: for 
example, the sample is assigned the value 0.5 for both categories (see 
Greenacre, 1984: p. 159, codage flou in French). Obviously fuzzy coding is 
allowed in CANOCO. Percentage data are of this form (sections 6.3 and 7.1). 

If one has aggregated data on nominal response variables, the data 
become the number of individuals belonging to each category. This type of 
data presents no problem for CANOCO. It is similar to abundance data which 
list, for example, the number of organisms belonging to each of m species. 

If the Guttman effect (= the arch effect) crops up, detrending-by­
polynomials is appropriate to remove it. The simple explanation of the 
Guttman effect given by Jongman et al. ( 1987: section 5. 2. 3) applies equally 
well to nominal data. 
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7.3 Multiple regression, redundancy analysis, principal components 
analysis and canonical correlation analysis 

Redundancy analysis (RDA) can be expressed as a constrained form of 
multiple regression of the species' responses on the explanatory 
(environmental) variables. This type of regression is called reduced rank 
regression (Davies and Tso, 1982). Estimates of the regression coefficients 
can be obtained from the CANOCO output. 

Let yik be the response value of species k in sample i (i = 1, •.. , n; 
k = 1, ••• , m), let zij be the value of environmental variable j in sample 
i (j = 1, ••• , q) and assume for convenience of notation that the 
environmental variables are standardized to mean 0 and variance 1 as in 
equation (4.12). The usual model of a multiple regession of the responses of 
species k on the q environmental variables is 

(7.12) 

where akO is the intercept, akj the regression coefficient of environmental 
variable j of the regression for species k and Eik an error term with mean 
0. Model (7.12) represents m separate multiple regressions, one for each 
species, on the q environmental variables. We want to estimate the 
coefficients {akjl by way of redundancy analysis. Because the environmental 
variables are standardized to zero mean, the estimate of akO is equal to 
Y .k• the mean value of the k-th species variable. 

The rank of reduced rank regression is the number of ordination axes 
used to estimate the regression coefficients. For convenience of notation, we 
take rank = 2; the general case follows without problems. With two ordination 
axes, the model of redundancy analysis can be written as 

q 
= I cj1z .. 

j=1 lJ 
and xi 2 = 

q 

I c 2z. j 
j=1 q 1 

(7.13) 

where bk 1 and bk 2 are the scores of species k on axis 1 and axis 2 (section 
4.5), xi 1 and xi 2 are the scores of sample i which are linear combinations 
of the environmental variables (section 4.7), cj 1 and cj 2 are the canonical 
coefficient of environmental variable j for axis 1 and axis 2 (section 4.7, 
confer (4.15) where c0 = 0 in RDA) and~ is a constant to be defined below. 
On inserting (7.14) in (7.13) we obtain after rearranging terms 

(7.15) 

The redundancy analysis model implies therefore a model for the regression 
coefficients akj in (7. 12), namely the "rank 2 model" 
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Estimates of the regression coefficients jakjl can thus be obtained from 
estimates of the species scores jbk1 , bk 2) and the canonical coefficients 
lcj 1 , cj 2) ,given by CANOCO (sections ~.5 and ~.7). It are "rank 2 
estimates"; The constant T is n- 1 ITSS where TSS is the Total Sum of 
Squares in the species data given in the output (see section 3.6, question 
Q27). When samples and species have equal weight (in Q27: wi = 1, wk = 1), 

then, in the present notation, T = n-'!Ei,k (yik-y,k)•)+. [The constant T 

arises from the particular scaling of the species data (see Q27), of the 
species scores (~.5) and of the sample scores (~.10) ]. 

Users who wish to calculate the regression coefficients for 
unstandardized environmental variables, can use the procedure explained in 
section ~.7 above equation (~.16), If there is just a single response 
variable (m = 1) and the scaling Q15 = 1 is chosen, then the canonical 
coefficients are actually the regression coefficients of the regression of a 
standardized response variable on standardized explanatory variables. The 
eigenvalue is then simply R2 , the squared multiple correlation between the 
response variable and the explanatory variables. 

The above formulae give insight in the properties of the ordination 
diagram of RDA, The sample and species scores in (7.13) can be used to 
construct a biplot (Gabriel, 1971, Jongman et al. 1987: section 5.3.~). As 
follows from (7.13), the fitted values of the regression can be inferred from 
the biplot (of course, up to the proportionality constant T and the means 
jy k/). The RDA biplot gives a least-squares approximation of the fitted 
vaiues of (7.12) (Davies and Tso, 1982). By plotting the sample score jx:l 
(section ~.6) instead of jxil (section ~.7) one obtains a biplot which 
attempts to approximate the observed values rather than the fitted values of 
model (7.12). A biplot which gives a still better approximation to the 
observed values can be obtained by principal components anallsis (PCA). The 
PCA model with two ordination axes is equation (7.13) with xi replacing xi' 
PCA is thus RDA without the constraint (7.1~) on the sample scores. The PCA 
biplot gives a least squares approximation of the observed values jyik ). 

The standard RDA biplot contains arrows for environmental variables 
based on the biplot scores of environmental variables (section ~.9). Together 
with the species points they allow inference of the covariances between 
species and environmental variables (section~.~). Equation (7.16) suggests 
another biplot. By plotting the canonical coefficients and the species 
scores, one obtains a biplot which approximates the regression coefficients 
of the environmental variables for each of the species. This plot displays 
the partial effects of each environmental variable taking into account the 
effect of the other variables, whereas the standard RDA biplot displays 
"marginal" effects. The partial effect is the effect of the variable with the 
other variables being held constant, whereas the marginal effect is the 
effect of the variable with the other variables covarying in the particular 
way they do in the dataset. This distinction parallels the distinction 
between canonical coefficients and inter-set correlations (Ter Braak, 1986a). 
The biplot of regression coefficients is useless when the regression 



- 72 -

coefficients are unstable due to multicollinearity between the environmental 
variables. The standard RDA biplot is not hampered by multicollinearity 
between the environmental variables. 

Tso (1981) showed that canonical correlation analysis is also a 
technique for reduced rank regression. The difference with redundancy 
analysis lies in the assumptions about the error term in (7.13). If the 
errors follow a multivariate normal distribution, both techniques are maximum 
likelihood techniques but under different assumptions, In redundancy 
analysis, being a least-squares technique, it is assumed that the errors are 
uncorrelated and have the same variance, i.e. that the covariance matrix of 
the errors is of the form a 2 I, In canonical correlation analysis no 
assumptions are made about the covariance matrix of the errors, except that 
the matrix is nonsingular, 

In canonical correlation analysis the covariance matrix of the errors 
must therefore be estimated from the data. Because the estimated covariance 
matrix must be nonsingular, the number of samples in canonical correlation 
analysis must be greater than m+q+1 where m is the number cf species and q 
the number of environmental variables. This sets a restriction on the number 
of species compared to the number of samples that can be analysed by 
canonical correlation analysis. In redundancy analysis there is no such 
restriction because there is only one parameter to estimate in the covariance 
matrix, namely a2 , In most studies in community ecology the number of samples 
is small compared to the number of species. This makes canonical correlation 
analysis unattractive for such studies. 

7.4 Principal coordinates analysis (PCO) 

Principal coordinates analysis, alias classical scaling (Gower, 1966; 
Torgerson, 1958: p. 254-259; Jongman et al., 1987: section 5.6) is a simple 
method for multidimensional scaling, It takes as input a table of 
dissimilarities or similarities between samples and derives from it a sample 
ordination. In the ordination diagram the sample points are arranged such a 
way that sample points which are close together correspond to samples that 
are similar, and samples which are far apart correspond to samples that are 
dissimilar. 

A principal coordinate analysis (PCO) can be obtained with CANOCO by 
taking as "species data" a square table of similarities or a square table 
with elements -6ij where 6ij is the dissimilarity between sample i and sample 
j (i = 1, ••• , n; j = 1, ••• , n). In the ''species data" there are thus as 
many species as there are samples, the j-th species corresponding to the j-th 
sample. The further specifications are: 

Q2 = 1 
Q15 3 
Q26 1 
Q27 = 1 

- principal components analysis (PCA) 
- symmetric scaling 
- centring by samples 
- centring by species 

If one has a data file with the 
transformation of Q24 to obtain 

values of 6ij' one can use the 
the values of -6ij by specifying 0 0 
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followed on the next lines: by 100 -100 and -1 
are smaller than 100). 

0 (assuming that all oij 

If the input dissimilarities !oij) are in fact computed as squared 
Euclidean distances from species data, the resulting sample scores are 
identical to a PCA applied to the species data using centring by species and 
the scaling of a Euclidean distance biplot (Q15 = 1). Principal coordinate 
analysis is based on this similarity to PCA, but is more general, because one 
can use other measures of (dis)similarity than Euclidean distance. 

Unfortunately CANOCO cannot be used to obtain the solution of a 
constrained PCO. When choosing the RDA-option (Q2 = 2) in the above setting, 
CANOCO solves the wrong eigenvalue equation (Appendix B). Partial PCO is not 
available either in CANOCO. 

7.5 Interchanging species and samples; weighted averaging ordination 

Frequently ecologists wish to interpret ordination diagrams by using 
external data on the species, for example indicator values which characterize 
their habitat requirements (Persson, 1981). Such data can be used in CANOCO 
either by deriving sample values from such data by calibration (Jongman et 
al., 1985; chapter 4) or by interchanging species and samples in the input 
data files. Because weighted averaging methods treat species and samples in a 
symmetric way (unless detrending is in force) there is nothing against an 
interchange. In linear methods this is possible too, when the user takes care 
in choosing the options for centring and standardization (Q26 and Q27) so as 
to leave the analysis unaffected. In this way one can also obtain ordinations 
which are constrained by linear combinations of species properties.*) With 
one or two such properties, this is a way to obtain weighted averaging 
ordinations of samples (Gauch, 1982; Jongman et al., 1987: section 4.3) by 
using CCA. 

Weighted averaging ordinations of species can be obtained by a CCA with 
just one or two environmental variables (Ter Braak, 1986a). 

7.6 Weighting samples and species 

If environmental data are to hand, the standard way to "focus" the 
ordination on particular gradients or particular research questions is, of 
course, to include such data in a direct gradient analysis. If no such data 
are to hand, the ecologist can still focus the analysis on particular 
gradients by assigning large weights to samples and species that are 

*) Footnote: In constrained linear analyses the species scores will be 
centred automatically because it are CANOCO-sample-scores (Table 3.2 
and section 4.6). This may be undesirable as it implies centring by 
samples of the data in the original unconstrained analysis (without 
interchanging species and samples). 
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considered as extremes on the gradients of interest. This option can have a 
similar effect as an expert choice of end points of ordination axes in a 
polar ordination (Gauch, 1982). 

7.7 Calibration by CANOCO 

CANOCO is not designed for calibration, yet can be used for it. The 
disadvantage is that the output requires post-processing. Calibration in 
CANOCO can proceed either by inverse regression or by constrained ordination. 
In both cases one needs a training set of species data with corresponding 
values of the variable to be calibrated. With inverse regression CANOCO can 
be used to obtain the transfer function, but not to obtain inferred values. 

In inverse regression, the calibration variable is taken as the 
response variable and the species are taken as explanatory variables. The 
resulting regression equation is the transfer function. 
The name "inverse regression" typifies quite well how to obtain the 
transfer function in CANOCO: the variable to be calibrated must be entered 
as species data (Q3) and the species data as environmental data (Q5)! By 
asking for a RDA and Q15 = 1, canonical coefficients are obtained which are 
the coefficients of the regression of the standardized calibration variable 
on standardized species variables. Unstandardized coefficients can be 
obtained in a similar way as in (4.16). Unthinking use of inverse regression 
is particularly dangerous when the species variables show high 
multicollinearity (section 4.3). In general, the multiple correlation 
coefficient (square root of first eigenvalue) gives an overoptimistic 
impression of the precision when using the transfer function. 

Calibration by constrained ordination proceeds by taking the 
calibration variable as the only environmental variable. All samples with 
known species composition are included in the species data, and the samples 
with known value of the calibration variable are included in the 
environmental data. Samples of which the value of the calibration variable is 
to be inferred, will therefore be passive samples in CANOCO. One can choose 
between RDA and CCA. We limit the discussion here to the CCA case. See Ter 
Braak and Prentice (1987) for the RDA case and Naes et al. (1986) for a 
related linear method. 

The CCA case reduces to two-way weighted averaging followed by simple 
linear regression. On using the notation of section 4.7, let zi 1 be the value 
of the calibration variable of sample i of the training set. A simple method 
to estimate the optimum of species k with respect to the calibration variable 
is by taking the weighted average 

u = 
k 

(7.17) 
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Similarly, the value of the calibration variable can be inferred by taking 
the weighted average, i.e. the (preliminary) estimate is 

m 
L y.k 

k=1 1 

m 
Uk/ L y.k. 

k=1 1 
(7.18) 

Because averages are taking twice, the range of the calibration variable is 
shrunken. To undo this and to obtain a best fitting equation we regress the 
inferred values for the training set on the observed values using the 
model 

(7.19) 

Inverting (7.19), we obtain the estimate 

est(zi 1 ) = (7.20) 

As follows from the similarity between (4.4), (4.9) and (4.13) with (7.17), 
(7.18) and (7.19), the estimate in (7.20) can be obtained from the CANOCO 
output by the formula 

est(zi 1 ) ( 7. 21 ) 

where z1 and s 1 are the mean and standard deviation of the calibration 
variable (given by CANOCO; see Table 4.1), c1 is the canonical ~oefficient 
for the standardized calibration variable (~ee Table 4.6) and xi is the 
sample score on the first axis. The score xi is given by CANOCO for both 
active and passive samples (section 4.6). Equation (7.21) can thus be used to 
infer missing values of the calibration variable. 

The correlation between est(zi 1) and zi 1 in the training set is given 
by the species-environment correlation of the first axis. For the calibration 
to be useful, the first constrained eigenvalue should be large compared to 
the other eigenvalues, because only then the calibration variable is the 
dominant variable determining the species composition. 

Gasse and Tekaia (1983) proposed a similar procedure, the main 
difference being that the calibration variable is first" divided in classes 
and CCA is applied with respect to the resulting nominal variable. They 
obtain the transfer function by regressing the cali.bration variable on the 
sample scores (x~) on a number of axes (not only the first axis). 

Ter Braak and Van Dam (in prep.) applied these procedures to infer 
past-pH values in soft water lakes and pools from diatom assemblages and 
compared them with a more formal statistical procedure based on maximum 
1 i keli hood • 
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7.8 Canonical variates analysis (CVA) 

A canonical variates analysis (CVA), alias Fisher's linear discriminant 
analysis, can be obtained with CANOCO, because CCA is a generalization of CVA 
(Chessel et al. 1987, Lebreton et al. 1988). Suppose you want a CVA to see 
which linear combinations of environmental variables discriminate best 
between clusters of samples, e.g. obtained by a cluster analysis on species 
data. For this, specify the clusters as dummy variables in a file, for 
example CLUSTERS.DAT. This is easily done in condensed format (see Table 
2.5). 

A CVA is obtained by 
asking for a CCA at Q2 
entering CLUSTERS.DAT as species data at Q3 
entering the environmental data at Q5 
asking for "species scores which are weighted mean sample scores" at 
Q14 (Q14=2). 

The species scores are the cluster means in the CVA ordination 
diagram. 

The sample scores that are linear combinations of environmental 
variables are the individual points in the diagram. 

The biplot scores for the environmental variables form with the species 
scores a biplot of the cluster means of each of the environmental variables 
(a weighted least-squares approximation) and form with the individual points 
a biplot of the environmental data (a least-squares approximation with the 
individual points given a priori). The percentage variance accounted for by 
the species-environment biplot reported by CANOCO is, however, not the usual 
percentage reported for a CVA. See section 9.5. 

The sample scores that are linear combinations of environmental 
variables are scaled so that the within-cluster variance equals 1 (in this 
variance the divisor is n and not n-g with g the number of clusters). See 
equation (4.7). 

The eigenvalues reported by CANOCO are those of the eigenvalue 
equation: 

(B - A T) Q = Q (7.22) 

where A is de eigenvalue, Q the vector of canonical coefficients (loadings), 
B the matrix of between-cluster sums of squares and products and T the matrix 
of total sums of squares and products. 

The permutation test can be used to see whether the difference between 
clusters are statistically significant. This test has the advantage over the 
usual tests in CVA in that it does not require the assumption that the 
environmental variables are normally distributed. 

By specifying covariables a partial CVA is obtained, Partial CVA is 
also known as one-way Multivariate ANalysis of covariance (MANOCO). This 
tests for discrimination between clusters in addition to the discrimination 
obtainable with the covariables. 
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8. ITERATIVE ORDINATION ALGORITHM 

In CANOCO a general iterative algorithm is used to solve the transition 
formulae of the linear and weighted-averaging methods described in the 
sections 3 and 4. Its essential features are described here. In the 
description, user-defined weights for sites and species (section 3.6: 
Q28-Q32) are excluded for clarity of exposition; they are set equal to 1. The 
algorithm operates on response variables, each recording the value, abundance 
or presence/absence of a species at various sites, and on two types of 
explanatory variables: environmental variables and covariables. By 
environmental variables we mean here explanatory variables of prime interest, 
in contrast with covariables which are "concomitant" variables whose effect 
is to be removed. When all three types of variables are present, the 
algorithm describes how to obtain a partial constrained ordination. The other 
linear and weighted averaging techniques are all special cases, obtained by 
omitting various irrelevant steps. 

Let Y ~ (yik] (i = 1, ••• , n; k = 1, ••• , m) be a site-by-species 
matrix containing the observations of m species at n sites and let 
z1 = [z111 ] (i = 1, ••• , n; 1 = o, .•. , p) and z2 = [z2ij] (i ~ 1, ••. , n; 
j = 1, ••• , q) be eite-by-covariable and site-brenvironmental variable 
matrices containing the observations of p covari abl es and q environmental 
covariables at the same n sites, respectively. The observations z111 and Zzij 
may take any real value. The observation yik may take any real value in 
linear methode but must be greater than or equal to 0 in weighted averaging 
methods. Further, denote the species and site scores on the s-th ordination 
by ll = (uk] (k ~ 1, ••. , m) and~ = [xrJ (i = 1, .•• , n), the canonical 
coefficients of the environmental variables by g = [ c j] (j ~ 1 , ••• , q) and 
collect the site scores on the (s- 1) previous ordination axes as columns of 
the matrix A. If detrending-by-polynomials is in force (Step A10), then the 
number of columns of A, sA say, is greater than s~1. In the algorithm we use 
the assign statement " := "• for example a := b means "a is assigned the 
value b". If the left hand side of the assignment is indexed by a subscript, 
it is assumed that the assignment is made for all permitted subscript values: 
the subscript k will refer to species (k = 1, ••• , m), the subscript i to 
sites (i = 1, ••. , n) and the subscript j to environmental variables 
(j=1, ••• ,q). 

Preliminary calculations 

Pl. Calculate species totals {y+k), site totals {yi+) and the grand total 
y++" If a linear method is required, set 

(8. 1 ) 

and if a weighted averaging method is required, set 

(8. 2) 
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P2. Standardize the environmental variables and covariables to zero mean 
and unit variance, e.g. for environmental variable j calculate its 
mean z and variance v 

(8. 3) 

and set z2ij := (z2ij - z)//v 

P3. Calculate for each environmental variable j the residuals of the 
multiple regression of the environmental variable on the covariables, 
i.e. 

(8.4) 

(8. 5) 

where z2 . ~ 
- J 

p-vector of 
(z21j' ... , z2nj)', 
the coefficients of 

* W = diag (w 1, ••• , wn) and Qj is the 

define z2 = [z2iJJ o = 1, .. ·• 
the regression of e2j on z1• Now 
n,i=j, ... ,q). 

Iteration algorithm 

Step AO 

Step A1 

Step A2 

Start with arbitrary, but unequal site scores~= [xi]. Set 
x? = xi. 

Derive new species scores from the site scores by 

( 8. 6) 

Derive new site scores / = [x~) from the species scores 

* xi := l: Yikuk/wi • 
k 

(8.7) 

Step A3 Make/ = [x~) uncorrelated with the covariab~es by calculating 
the residuals of the multiple regression of ;s on z1 : 

* * ,...1 * JS := ll - z1 (ZjWZ1) ZjW;s • (8.8) 

Step A4 * If q ~ sA , set xi := xi and skip Step A5. 

Step A5 * If q > sA , calculate a multiple regression of lS on Z2 

g := (Z2Wz2 )- 1Z2W;s*, (8.9) 
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Step A7 

Step A8 
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and take as new site scores the fitted values: 

JL:=Z 2g. (8.10) 

If s > 0, make ~ = [xi] uncorrelated with previous axes by 
calculating the residuals of the multiple regression of zonA: 

Standardize ~ = [xi] to zero mean and unit variance by 

Check convergence, i.e. if 

E w~(x9- x )2 < 10-10 
i 1 1 i 

goto Step A9, else set x? := xi and goto Step Al. 

(8.11) 

(8.12) 

(8.13) 

Step A9 S.et the eigenvalue>. equal to sin (8.12) and add~= [xrJ as a 
new row to the matrix A. 

Step AlO If detrending-by-polynomials is required, calculate polynomials 
of z up to order 4 and first-order polynomials of z with the 
previous ordination axes, 

X ·- x2 x ·- x3 x ·- x4 x ·- x a i2 .- i' i3 .- i' i4 .- i' i(b) .- i ib (8.14) 

where aib are the site scores of a previous ordination axis 
(b = 1, ••. , s-1). Now perform for each of the (s+2)-variables in 
(8.14) the Steps A3-A6 and add the resulting variables as new 
variables to the matrix A. 

Step All Sets := s+l and goto Step AO if required and if further 
ordination axes can be extracted, else stop. 

At convergence, the algorithm gives the solution with the greatest real 
value of>. to the following transition formulae [where R = diag(r 1 , .•• , 
rm) and_W = diag (w1, •.. , wn) and where the notation B0 is used to denote 
B(B'WB) 1s•w, the projection operator on the column space of a matrix B in 
the metric defined by the matrix w] 
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ll =~-a R-1y,~ (8.15) 

* ~a-1(I- z?>w-1yy (8.16) ll 

Q (Z'WZ )-1z•w/ 2 2 2 (8.17) 

ll (I - A 0 ) z2g. (8.18) 

(It follows from Appendix equation (A.5) that there is some freedom of 
choice how to distribute the eigenvalue ~ over these equations, e.g. Ter 
Braak and Prentice (1987) assigned the eigenvalue to (8.18).) The wiggle 
above z2 is there as a reminder that the original environmental variables 
were replaced by residuals of a regression on z1 in (8.5) i.e. in terms of 
the original variables 

(8.19) 

Remarks 

1. Note that uk in the algorithm takes the place of bk in section~. 

2. Special cases of the algorithm are: constrained ordination: p = 0; 
partial ordination: q = 0; (unconstrained) ordination: p = O, q = 0; 
linear calibration and weighted averaging: p = 0, q = 1; (partial) 
multiple regression: m = 1. The corresponding transition formulae 
follow from (8.15)" (8.18) with the proviso that, if q = 0, z2 in 
(8.19) must be replaced by the nxn identity matrix and generalized 
matrix inverses are used. 

3, The centring of ~ in step A7 and the centring of z1 in step P2 make 
redundant the centring-by-species of the species data in the linear 
methods. If centring-by-species is not required (for example in 
noncentred PCA), then the sample scores~ in step A7 are not centred, 
i.e. x in (8.12) is set equal to 0. If centring-by-samples is 
required, then this is accomplished by centring the new species scores 
obtained in step A1. This centring makes redundant the centring-by­
samples of the species data. In CANOCO the centred values yik in 
question Q26-Q27 (section 3.6) are canputed for the calculation of the 
total sum of squares (TSS), but they are not stored. This is the crux 
of the efficiency of CANOCO for community ordination: only the 
non-zero values in the species data Y need to be stored. 

4. The standardization in P2 removes the arbitrariness in the units of 
measurement of the environmental variables, and makes the canonical 
coefficients comparable among each other, but does not influence the 
values of~. y and~ to be obtained in the algorithm. 
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5. The Step A3 and A6 simplify considerably if the covariables and the 
columns of A are to W-orthonormal variables, i.e. when they are made 
uncorrelated. This is done in CANOCO. The steps A3~A6 form a single 
projection of z* on the column space of (I - A0)z2 if and only if A 
defines a subspace of z2• As each ordination axis defines a subspace 
of z2, this is trivially so without detrending. The method of 
detrending-by-polynomials as defined in step A10, ensures that A 
defines also subspace of z2 if detrending is in force. The transition 
formulae (8.15)- (8.18) define an eigenvalue equation of which all 
eigenvalues are nonnegative real values. For a proof see Appendix A. 

6. The algorithm is a kind of power algorithm to obtain eigenvalues 
(Gourlay and Watson, 1973: chapter 4). The convergence of power 
algorithms is slow. To speed up the convergence, the algorithm 
developed by Hill (1979) is used (subroutine EIGY). Each iteration of 
this algorithm consists of four iterations of Steps A1 ~ Step A7 
leading consecutively to four trial vectors z1 , ~2 • ~ 3 and ~4 • With X 
the nx4 matrix containing these trial vectors, the algorithm 
calculates the dominant eigenvector of the 4x4 matrix X'X and the 
dominant eigenvector is taken as the vector of trial scores in the 
next iteration. The eigenvalues of X'X are determined by reducing X'X 
to a symmetric tridiagonal form of which the dominant eigenvector can 
be calculated explicitly (Gourlay and Watson, 1973). The steps A1-A7 
are performed in subroutine TRANS. 

For the calculation of subdominant eigenvectors (axes 2, 3 and 4), 
step A6 in which trial vectors are made uncorrelated with previous 
axes, is essential. It replaces the "deflation" process described in 
many textbooks (e.g. Gourlay and Watson, 1973: chapter 5). By 
deflation, a new matrix is derived fran the original matrix in such a 
way that the dominant eigenvector of the new matrix is the second 
eigenvector of the original matrix. The disadvantage of deflation is 
that although the original matrix is sparse (i.e. contains few nonzero 
elements), the deflated matrix is not sparse in general. Replacing the 
deflation process by step A6 has the advantage that the species data 
can remain in condensed format when extracting the ordination axes 2, 
3 and 4. 

7. If a particular scaling of the biplot or the joint plot is wanted, the 
ordination axes may require linear rescaling. With linear methods one 
can choose between a Euclidean distance biplot and a covariance 
biplot, which focus on the approximate Euclidean distances between 
sites and correlations among species, respectively (Ter Braak, 1983). 
With weighted averaging methods it is customary to use the site scores 
Q* (8.16) and the species scores y (8.15) to prepare an ordination 
diagram after a linear rescaling so that the average within-site 
variance of the species scores is equal to 1 (see Eq. (4.9)). The 
1 in ear resealing involves multi plication of the species and sites scores 
of an ordination axis by a function of its eigenvalue. 
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9. TECHNICAL DETAILS 

9.1 Dimensioning 

The capacity of the program can be changed by changing the values in 
the PARAMETER statement on line 72-73 of CANOCO (see also Table 3.~). Note 
that NZMAX should always be 8 plus the maximum number of environmental 
variables one wants to analyze. The number of environmental variables and of 
covariables that can be 'read from file' is allowed to be ~ times larger. The 
number of variables analyzed is determined after deletion and after the 
definition of interaction terms. The maximum number of covariables includes 
the variables used in detrending by polynomials (maximum 12). Similarly, the 
maximum number of values of covariables include the polynomials used for 
detrending (maximum 12 x (number of samples)). The number of presences in the 
species data is equal to the number of non-zero values in a full format file 
or to the number of couplets specified in a Cornell condensed format file. 

9.2 Structure of the main program 

1. Input parameters are entered by subroutine AANVAN (Q1-Q18). 
2. The species data matrix is read by subroutine QUIKIN (Q19). 
3. The environmental data matrix is read by subroutine ENVIN (Q20-Q21). 
~. The covariable data matrix is read by subroutine ENVIN (Q22-Q23). The 

names of the variables are printed in the output file. 
5. The species data are transformed by subroutine SWEIGH (Q2~-Q32). This 

routine determines which samples and species are active and which are 
passive. 

6. Passive and deleted samples are removed from the environmental data 
(subroutine SAMDEL). Deleted samples are removed from the covariable 
data (subroutine SLUITA). 

7. For linear methods, the total sum of squares (Q27) is calculated in 
subroutine SPEVAR. 

8. The weights for species and samples (step P1, section 8) are 
calculated. (WEIGHX contains the sample weights of section ~.6; WEIGHY 
contains the species weights of section ~.5, both divided by their 
total). 

9. The covariables are made uncorrelated by the Gram-Smidt orthogonalization 
process (subroutine ORTHO). 

10. The covariance matrix and correlation matrix of the environmental data 
are calculated in the subroutines SSQPRO and SSPCOR (adapted fran 
Herraman, 1968). 

11. The environmental variables are standardized to mean 0 and variance 
(step P2, section 8). 

12. With covariables in the analysis, the environmental variables are made 
uncorrelated to the covariables by subroutine PROJCT. This amounts to 
step P3 (section 8). The new environmental values are residuals of a 
multiple regression on the covariables. A new covariance matrix of 
environmental variables is calculated. 
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13. The correlation matrix of the environmental variables (or, with 
covariables, the new covariance matrix) is displayed at the terminal by 
the subroutine PRIMAT, if desired (Q33). 

14. The inverse of the correlation matrix is calculated by the subroutine 
GSWEEP (Clarke, 1982). Multicollinearity between environmental variables 
is determined in this routine. The subroutines SSQPRO, SSSPCOR and GSWEEP 
are the only routines that use double precision. 

15. The trace (=sum of all canonical eigenvalues) is calculated in routine 
TRACES. 

16. The means, standard deviations and variance inflation factors of 
environmental variables are displayed at the terminal. The means and 
standard deviations refer to the original variables before 
standardization (step 10). 

17. The eigenvectors and eigenvalues are calculated by subroutines EIGY and 
TRANS (see section 8). The eigenvectors are in XENV~ and YEIG~ for 
samples and species, respectively(~= 1,2,3,4). The canonical 
coefficients are in BEIG~. In contrast to DECORANA, iteration is on the 
sample scores and not on the species scores. This is advantageous for 
linear methods as the species scores often have a nonzero mean. Moreover, 
the number of samples is usually less than the number of species. In 
contrast to samples, passive species and deleted species are not removed 
from the calculations (but their influence is made neglegible by the 
species weights). The scalar NEIGZ determines the number of constrained/­
canonical axes. 

18. If detrending-by-polynomials is required, step A10 (section 8) is carried 
out by subroutine POLXTZ. If a polynomial is linearly dependent to the 
covariables or the previous columns of the matrix A of section 8, this 
polynomial is not added to A. The condition q ~sA in step A4 and A5 is 
checked by adapting the value of NEIGZ. 

19. If detrending-by-segments is required, the segments used in the 
detrending process are determined in the subroutine CUTUP (Hill, 1979). 

* 20. After the eigenvectors have been calculated, the sample scores xi are 
determined for canonical ordination axes by weighted summation or 
weighted averaging of species scores (see section 4.6). They are 
centred, if required, and with covariables they are made uncorrelated 
to the covariables (subroutine ORTHO). For ordination axes that are not 
canonical, the sample scores xi are determined by regressing the 
eigenvectors on the environmental variables (in subroutine NOTCAN). The 
scores are linearly rescaled in subroutine POSMUL (section 9.3). 

21. The full correlation matrix of ordination axes and environmental 
variables is calculated, and if desired, printed on the output file 
(subroutine PRIMAT). It are partial correlations if there are 
covariables. 

22. The biplot scores and centroids of environmental variables are 
calculated as described in section 4.9. 

23. The percentage variance accounted for is calculated in subroutine 
TRACET (section 4.4) and is printed. 
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24. The ordination results are displayed at the terminal, printed on the 
output file and written to the machine readable files (Q34) by 
subroutine EIGOUT. This routine determines the multipliers (section 
4. 5). 

25. Further analyses are specified in subroutine MANIP (Q35-Q37). 
26. The Monte Carlo permutation test is directed by subroutine PERMUT 

(Q38-Q40). See section 9.4. 

9.3 Scaling of the axes 

In CANOCO the species and sample scores are scaled according to Eqs. 
(4.5)-(4.7) and (4.10)-(4.11). This is achieved by subroutine POSMUL. Users 
who wish another scaling may change the definition of the arrays FX and FY of 
this subroutine. The scalar IBI contains the answer to Q14/Q15; a= 1, 0, + 
for IBI = 1, 2 and 3, respectively. On entry the eigenvector sample scores xi 
(section 4.5) have a weighted mean square of 1 (of. Eqs. (4.10) and (4.11)) 
and are derived from the species scores, i.e. the left hand sides of (4.5) 
and (4.6) are equal to A;~. The arrays YEIG~, XEIG~, XENV~ and BEIG~ contain 
the scores uk (or bk), xi, xi and ck as defined in section 4. In POSMUL 
XEIG~, XENV~ and BEIG~ are multiplied by FX~, and YEIG~ by FY~. 

If nonlinear rescaling of axes is in force (usually in DCA with 
detrending-by-segments), then the minimum or the scores X~ is determined for 
each axis and used to make the minimum of xi equal to 0 in the output. For 
details of the nonlinear rescaling see Hill (1979). 

9.4 Monte Carlo permutation test 

CANOCO uses the pseudo-random generator described by Wichman and Hill 
(1982). It is a multiplicative congruential generator (Zeisel, 1986): 
Xn+ 1 = a Xn modulo m with a = 1655 54252 64690 and m = 2781 71856 04309. 
Its period is 6.95 x 10 12

• The generator uses three seeds, two of which can 
be specified by the user in response to Q39. The third seed is set to 15357 
and cannot be modified by the user. 

In contrast to the description of the permutation test in section 4.11, 
the samples in the environmental data are kept fixed and the samples in the 
species data and covariable data are permuted. The permutation is applied to 
the covariables via the array INPERM which contains sample indices and to the 
species data by the arrays IBEGIN and IEND which specify the beginning and 
end of the data of each sample in the condensed arrays IDAT and QIDAT (which 
contain the species numbers and species values, respectively). 

Subroutine CONDPR determines the permutation classes (section 4.11). It 
takes a linear combination of the conditioning covariables and determines 
which samples have the same value for this linear combination. A random 
permutation is determined by drawing n pseudo random values between 0 and 
and ordering the sample numbers in parallel with the values obtained within 
each permutation class (this is achieved by a single ranking by adding the 
permutation class numbers to the pseudo random numbers and some housekeeping 
of sample indices). 

With covariables, in the analysis, the environmental variables must 
be regressed on the covariables (step P3, section 8). The residuals of this 
regression replace the environmental variables. This regression must be 
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carried out in each permutation. Because no copy is being hold of the 
original environmental variables, they are reconstituted from the residuals, 
the regression coefficients and the covariables. The latter two determine the 
fitted values. Adding to these the residuals restores the original values 
(subroutine RESTOZ). Step P3 (section 8) is carried out by the steps 9 and 12 
of section 9. 2. 

In each permutation, the inverse of covariance matrix of the (residual) 
environmental variables is determined (steps 12 and 14 of section 9.2). If 
Q37 = 1, then the first eigenvalue of the data after permutation is 
calculated (subroutine EIGY and TRANS). If Q37 = 2, then the trace statistic 
is calculated (subroutine TRACES). The printing of results and the 
calculation of the P-value is done in subroutine PERMUT. 

9.5 Some points concerning CVA 

Most computer programs calculate the eigenvalue of 

ca - a w) Q = Q ( 9. 1 ) 

where W is the matrix of within-cluster sums of squares and products. Because 
T=B+W it can be shown that: 

e = AI (1 - >.). (9.2) 

e is closely related to an F-ratio. CVA can be defined as the technique that 
chooses the linear combination of environmental variables that gives the 
highest F-ratio in a one-way analysis of variance (with clusters as 
'treatments•). It can be shown that the maximized F-ratio is equal to 

F = ( ( n- g ) I ( g- 1 ) ) 6 (9.3) 

with n the number of samples and g the number of clusters. Note however that 
this F-ratio does not follow an F-distribution. Use the permutation test 
instead. 

The percentage variance accounted for in CVA is, for a two-dimentsional 
ordination diagram, usually taken to be 

V = (6 1 + 62) I (sum of all 6's) ( 9. 4) 

The percentage variance accounted for by the species-environment biplot as 
given by CANOCO is however 

C = CA 1 + >. 2) I (sum of all i.'s) ( 9. 5) 

V and C are both percentages of weighted variances, but the weights differ. 
With V, the inverse of the within-cluster matrix W is used for weights, 
whereas with C the inverse of the total matrix T is used. 
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From the CANOCO output, V can be calculated when there are less than 
six clusters by calculating all e•s from the canonical eigenvalues A given by 
CANOCO. With six or more clusters, a lower and upper bound for V can be 
derived as follows (for two dimensions): 

lower bound for v 
upper bound for v 

where a e1 + e2 + e3 + 
b (trace - a)/ ( 1 
d = trace - a 

<e1 
< e1 

e4 
- A4) 

+ e2)/(a+b) 
+ e2)/(a+d) 

(9.6) 
(9.7) 

with trace the trace reported by CANOCO (=sum of all A's) and 6 is 
calculated from A by formula (9.2). With six clusters the actual V is 
precisely equal to the lower bound given by (9.6). 

10. INSTALLATION NOTES 

CANOCO consists of ca. 5000 lines of code written in standard 
FORTRAN77. You may need to adapt the following features to let the program 
run on your computer system. 

Input from the terminal is assumed to come from unit number SYSIN. 
Output to the terminal is assumed to be written to unit number SYSOUT. The 
values of SYSIN and SYSOUT can be changed in the main program (line 160-161). 
For VAX-computers and IBM-mainframe one should set SYSIN to 5 and SYSOUT to 
6. For IBM-PC's with MS-FORTRAN, SYSIN and SYSOUT should both be set to 0. 

The input and output files of CANOCO are described in section 3.2. 
Unit numbers of input files are: 

INPENV = 2 (file of environmental data and of covariables; see Q5, 
Q7 and Q35) 

SPECIN 3 (file of species data; see Q3) 

Unit numbers of output files are: 
ICONS = 1 (annotated copy of terminal dialogue; see sections 3.2 and 

3.3 and Table 3.3) 
IPRN = 4 (output file for line printer; see Q1) 
IPUN = 7 (file with machine readable copy; see Q17) 
IPUN2 8 (file with machine readable copy; see Q18) 

The unit numbers can be changed in the main program (after line 168). The 
names of the files are asked for in the terminal dialogue, except the name of 
the annotated copy. This file is given a name in the main program (line 155) 
by the statement 

CANOIN = 'CANOCO.CON'. 

You must change the name CANOCO.CON, if this name is not a valid file 
name on your computer system. You have then also to make a change in 
subroutine ERRORF where CANOIN is assigned the name 'CANOC2.CON' on line 14. 
File are actually opened in subroutine OPENF. If your system has an option 
for READONLY files, you can add such option in subroutine OPENF. 
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Some systems require that SYSIN (the console) is rewinded each time a 
question is answered by RETURN (see section 3.3). If so, change line 153 of 
the main program to 

IBMMFR = 1. 

If this does not help, adapt the subroutine ERRORF which is called from the 
subroutines READI, READF and READC (these subroutines read the answers to 
questions from the terminal). 
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APPENDIX A 

Theorem :The equations (8.15)- (8.18) define an eigenvalue equation whose 

eigenvalues are nonnegative real values. 

Proof: Note the following relations for the projection operator 8°, with 

W a positive definite diagonal matrix: 

B• B(B'WB)- 1 B'W (A. 1 ) 

8°8° B• (idempotent) (A.2) 

WB• ( 8°) I w (A.3) 

s·w-• (8°W- 1 )'W(B 0 W- 1 ) (A.4) 

(A.1) is the definition of s•. (A.2) is a consequence of B• being a 

projector. (A.3) follows (A.1) and W ~ W'. (A.4) follows by algebraic 

manipulation using (A.2) and (A.3). 

Starting from (8.15) we obtain by successive insertions: 

u (A.5) 

Because of (8.19), z2 is a subspace of I-zo so that Z0 (I-Z 0 ) 
1 - 2 1 Z2• Further, 

because of (8.10) and step A10,Aisa subspace of z2, so that 

(I-A 0 )Z• 2 = (CI-A•)z2)•. 

On using these equations and (A.4) with B = (I-A 0 )Z2 , we obtain 

(A.6) 

= c•cu, say 

(A.6) defines a generalized eigenvalue problem. Because R is symmetric and 

positive definite and c•c is symmetric and semi-positive definite, its 

eigenvalues are real and nonnegative. 
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APPENDIX B 

Constr•ained principal coordinates analysis 

We develop a principal coordinates analysis in which the ordination 

axes are constrained to be linear combination of external variables. The 

form of constrained principal coordinates analysis that we define relates 

to principal coordinates analysis as principal components analysis relates 

to reduced-rank regression (Davies and Tso, 1982) which is better known as 

redundancy analysis (Van den Wollenberg, 1977; Isra~ls, 1984). Other 

approaches to constrained principal coordinates analysis are given by 

Meulman ( 1986). 

Let D = lo .. } be a nxn matrix of dissimilarities between sample i and 
lJ 

sample·j (oij ~ 0; oii = 0) and z a nxq matrix of n observations of q 

explan•a.tory variables (q < n). Let A be a nxn matrix whose elements laij} 

are derived from D by 

(B. 1 ) 

Definition: Constrained principal coordinates analysis of the dissimilarity 

matrix D with respect to the q explanatory variables in Z is the eigen 

analysis of the matrix Z(Z'Z)- 1 Z'A with A defined in (B.1). 

Theorem: If there exists a nxm matrix Y for some integer m ~ 0, such that D 

is the matrix which elements contain the squared Eucledean distances 

between the rows of Y, then constrained principal coordinates analysis of D 

with respect to Z is identical to redundancy analysis of Y with respect to z. 

Proof: The crux of principal coordinates analysis is that under the 

assumptions of the theorem A= YY', where it is assumed that the column 

means of Y have been substracted already (Gower, 1966 )·. This can be shown 

from the relation [with ~(i) the i-th row of Y) 

(B. 2) 

Because aij = Y(i)Y(j)' we have from (8.2) 

(B.3) 
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Moreover, when Y is centred by columns, a.j = 
can be obtained by double centring the matrix 

(B. 1). 

0 and ai = 0, so that a· .. '· • lJ 
with elements -t 6 ij, whence 

Let zo denote the symmetric idempotent projection operator on the 

columns of z, i.e. zo = Z(Z'Z)-'Z'. Redundancy analysis of Y with respect 

to Z is identical to principal components analysis of the matrix·z•y which 

contains the fitted values of multiple regressions of each column of Y on 

the columns of Z (Davies and Tso, 1982). The sample scores are thus·: the 

eigenvectors of zoyy•z•, i.e. the sample scores satisfy the eigenvector 

equation (with !. the eigenvalue) 

(B. 4) 

New note that x lies in the column space of Z because of the left mos~ z• 
in (B.4). Ther•efore x Z•J:!, so that 

z•YY'x = !.J:! (B .5) 

Under the assumptions of the theorem 

·(B.6) 

Hence, constrained principal coordinates analysis of D with respect to Z 

results in the same sample scores and eigenvalues as redundancy analysis of 

Y with respect to z. 

Important: Unfortunately CANOCO cannot solve the eigenvalue equation (8.6). 

When a dissimilarity matrix is analysed with CANOCO using RDA and double 

centl'ing, then CANOCO solves the eigenvalue equation 

(B.7) 

In general, (B.6) an (B.7) have different solutions. It is therefore 

strongly recommended to use neither RDA nor the associated Monte Carlo 

permutation test when analysing a dissimilarity matrix with CANOCO. 

,·•' ' 
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APPENDIX C 

Trace and short-cut formulae (4.17) and (4.19) 

The notation of section 8 is US\)d in this Appendix. The trace calculated by 

, ~ANOCO is. in ~his notation 
,. 
' 

(c. 1) 

The trace is the sum of the canonical eigenvalues (without detrending) as 

follows from the eigenvalue equation in (A.5) with I-A 0 =I. 

* . To obtain (4.17), let U and X be the mxs and nxs matrices whose 
* columns contain the species scores and sample scores {xi}, respectively, on 

·S ordination axes and let A be the sxs diagonal matrix A = diag0
1

, >.
2

, 

••• , As). The weighted averages of the species with respect to the 

environmental variables in z
2 

are given by the mxq matrix 

(C. 2) 

In linear methods s
12 

contains (partial) covariances multiplied by n. The 

biplot scores of the environmental variables are obta.ined by fitting the 

model 

UC' + error ·e (C. 3) 

by a weighted multiple regression of s
12 

on U. The estimator for the qxs 

Jnatrix Ge of bJ.plot scores is 

' ' ·,;' 

(C. 4) 

wher,e ·R is the weight matrix. Unless detrending-by-segments.or; nonlinear 

rescaling of axes is in force, we have [with A= I in linear methods and 

A = (:I-A)": 1 in weighted averaging methods) 

because U 

(4.6) [in 

(A.3) 

contains orthogonal 
* section 4.5: ~kwk = 

'' . 
. (C,,5) 

eigenvectors scaled according to (4.5) and 

* ~iwi]. Further note that on using (8.16) and 
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(C. 6) 

so that (C.ij) can be simplified to 

(C. 7) 

whence (ij.17) when z
2 

is standardized. If there are covariables, z2 is not 

standardized after the regression on the covariables and (ij.17) must 

therefore be multiplied by the residual standard deviation. These formulae 

carry through in passive analysis of environmental variables (section 3.8: 

Q35 = 2 or 3), in contrast to formulae that use the environmental axes and 

the intra set correlations. --
We now derive (ij.19) from (ij.18). Let z2 contain the values of the 

environmental variables before standardization. In matrix notation the 
• numerator in. ( ij. 18) is then Z:ZWX • From. (8. 16) we know that the columns of . . . 

X are orthogonal to the covariables; therefore 

* z•wx 
2 

• = Z 'W(I-z• )X 
2 1 

(C.8) 

With (C.8), (ij.19) follows from (4.18) by noting that if the species axis 

has a nonzero mean, .the mean value carries through additi vely in ( ij. 18) • . · 


