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ABSTRACT 

A common bioassay problem in applied ecology is to estimate values of an environmen­
tal variable from species incidence or abundance data. An example is the problem of 
reconstructing past changes in acidity (pH) in lakes from diatom assemblages found in 
successive strata of the bottom sediment. The method of weighted averaging is based on 
indicator values, the indicator value of a species being, intuitively, the value of the 
environmental variable most preferred by that species. Indicator values of all species 
present in a site are averaged to give an estimate of the value of the environmental variable 
at the site. The average is weighted by species abundances, if known, with absent species 
having zero weight. Using field data, several authors have compiled lists of indicator values 
of species for various environmental variables for use in weighted averaging, e.g. pH 
indicator values of diatom species. In this paper the properties of the method of weighted 
averaging are studied, starting from the idea that indicator values are parameters of 
response curves that describe the expected abundance of each species in relation to the 
environmental variable. In practice the response curves must be estimated by regression 
methods. but here they are assumed to be known in advance. Conditions are derived under 
which the weighted average is a consistent and efficient estimator for the value of an 
environmental variable at a site. Because weighted averaging is central to the ordination 
technique known as reciprocal averaging or correspondence analysis, the conditions also 
define models that are implicitly invoked when reciprocal averaging is used in ecological 
ordination studies. 

1. INTRODUCTION 

Plant species need particular environmental conditions for regeneration, 
establishment, and growth. It should therefore be possible to infer the 
environmental conditions at a site from the species that occur there. This 
type of bioassay has become popular [3, 6, 9, 19] with the publication of lists 
of indicator values of species with respect to various environmental variables. 
For example, Ellenberg [8] has published indicator values of Central European 
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FIG. 1. Gaussian logit response curves of the probability P = 11• ( x) that a species ( k) 

occurs at a site, against environmental variable x. Two sets of species are displayed, each 
with t = 1 and optima with spacing d = 1, having maximum probabilities of .5 and .9, 
respectively. x 0 is the value of x at a particular site. 

plants with respect to site variables including soil moisture, pH, and nitrogen 
level. Ellenberg based the indicator values on his field observations of the 
conditions under which particular species occurred and, to a lesser extent, on 
laboratory experiments. For example, a plant species may prefer a particular 
soil moisture content, and not grow at all in places where the soil is either too 
dry and too wet. Intuitively, the indicator value is then the value most 
preferred by a species (cf. Figure 1). Ellenberg [8] did not give a precise 
definition of "indicator value." However, Ellenberg [7, 8] did describe a 
method to predict the value of an environmental variable: the method 
consists simply of averaging indicator values for the plant species that are 
present. For quantitative data, the average is weighted by species abundance, 
with absent species carrying zero weight. This method has been applied to 
vascular plants [12, 17, 21, 23, 25], to diatoms [20], and to aquatic organisms 
and the biological evaluation of water quality [19]. 

It might be thought easier to measure environmental variables at a site 
than to infer their values from the species that grow there. But often it is not. 
For example, total values over time may be required; repeated measurements 
are costly, while plants automatically integrate environmental conditions over 
time. This is one of the ideas behind biological evaluation of water quality 
and biomonitoring in general. There are also situations where it is impossible 
to measure environmental variables by direct means, whereas a biological 
record does exist. An example is the reconstruction of past changes in acidity 
(pH) in lakes, from diatom assemblages found in successive strata of the 
bottom sediment; this technique is an important tool in acid rain research. 
Most researchers in this area use the indicator values for acidity of diatom 
species as compiled by Hustedt in the 1930s [2]. A more sophisticated 
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method, yet to be implemented, is to build firstly a (nonlinear) regression 
model from data on species occurrences and present pH in lakes, which 
yields for each species an estimated response curve for the probability of 
occurrence versus pH; and secondly to use these response curves for the 
calibration of pH from species data, for example by maximum likelihood 
estimation. Here the indicator value of a species is just a parameter of the 
response curve of that species, the mode of the curve being one possible 
definition of the indicator value. 

In this paper we study the properties of weighted averaging of indicator 
values to estimate the value of a continuous environmental variable at a site. 
We do this by seeking conditions under which weighted averaging compares 
favorably with methods based on explicit response curves. We use assump­
tions (Section 2) that idealize the real world, among others that a single 
environmental variable determines the species composition at a site and that 
the response curves of the species with respect to this variable are already 
known. Certainly, weighted averaging is of little value if it has undesirable 
properties under ideal assumptions. On the other hand, there is no advantage 
in using an elaborate technique if a simpler one would be equally good. We 
answer two questions: 

(1) How should indicator values of species be defined in terms of re­
sponse curves to ensure that the weighted average is a consistent estimator? 
(The weighted average is called consistent if it converges in probability to the 
true value of the environmental variable as the number of species available 
increases.) 

(2) What should the response curves look like to ensure that the weighted 
average is an efficient estimator? (An estimator is called efficient if its mean 
squared error is minimum.) 

2. WEIGHTED AVERAGING AND RESPONSE CURVES: 
DEFINITIONS 

Let x denote a quantitative environmental variable, and x 0 the value of 
this variable at a particular site. We want to estimate this value x 0 by 
checking which species (out of a large number) are present at that site or, 
more generally, the abundance of each species. Let Yk be the abundance 
( Yk ~ 0) of the k th species ( k = 1, 2, 3, ... ), and let u k be its indicator value, 
usually taken from a published list of indicator values. To estimate x 0 , 

ecologists commonly use the weighted average [7-9] 

(2.1) 
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where summations are over all species. To make sense, xwA and hence the 
values for u, must have the same dimension as x. The indicator values are 
therefore location parameters on x. 

To be a potential indicator, a species must show a distinct relation to the 
indicated environmental variable x. We define the relations between species 
and the environmental variable by a statistical response model with a 
response curve p.,(x), a known function of x, for each species k. p.,(x0 ) 

specifies the expectation of the value Yk observed at the site with value x 0 for 
x. The observational data will be assumed to be independent random 
variables with variances depending on the expectations only. The variance of 
Y, is therefore a known function v k ( x) = v* ( p. k ( x)). For presence-absence 
data Y, is a Bernoulli variable and p.dx0 ) is the probability that the kth 
species is present at a site with x = x 0 . Then v*(p.) = p.(l-p.). For counts, 
the data may be assumed to have a Poisson distribution so that v*(p.) = p., 

whereas for continuous quantitative data with constant coefficient of varia­
tion [ v* ( p.) = cp.2 ] the data could have a Gamma distribution. 

We consider response curves that form a location family, i.e. have identi­
cal (but arbitrary) shape and different positions along the real line. Formally, 
I-Lk ( x) = p.( x- ud for some function p.( ·) that is almost everywhere continu­
ous, and with location parameters for which we take the indicator values 
{ u, } . It follows that v k ( x) = v ( x - u .), where v ( ·) is the variance function 
corresponding to p.( · ). We use asymptotics in which the number of species 
available for the estimation of x 0 increases indefinitely in such a way that the 
indicator values become increasingly densely spaced on every finite interval. 

3. CONSISTENCY AND THE DEFINITION OF INDICATOR VALUE 

Whether the weighted average is a "good" estimator depends on (1) the 
shape of the response curves, (2) the definition of indicator value, and (3) the 
distribution of the indicator values along the environmental variable. In this 
section we reverse the reasoning: we require that the weighted average be a 
consistent estimator of x0 , and from that requirement we derive conditions 
on the response curves, a definition of indicator value, and conditions on the 
distribution of the indicator values. 

We express the number of indicator values at the point x by A[H,~,(x)­
H,~,(x -0)], where A is the average number of indicator values per unit 
length, H,~, ( x - 0) =lim,.;, H,~, (y ), and H,~, ( ·) is a nondecrea.sing right-con­
tinuous stepfunction [in the terminology of measure theory, H~-. ( ·) is the 
distribution function of a discrete measure]. We suppose that for A---> oo 
H,~, ( ·) converges to a distribution function with bounded and continuous 
derivative h ( · ). h ( ·) is the limiting density function of the indicator values. 
Now, xwA = T / R, where T =A -t~k Yk uk and R =A -t~k Yk. It follows that 
T has expectation A- 1~kukp.(x0 - ud = fup.(x 0 - u) dH,~,(u), which for 
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J UJ.L(x0 - u)h( u) du = x0 j J.L(u)h(x0 - u) du- J UJ.L( u)h(x0 - u) du 

(3.1) 

Moreover, var(T)-> 0 (A-> oo) if and only if fx 2v(x) dx exists; then T 
converges in probability to (3.1). Similarly, R =A -ILk Yk converges in prob­
ability to JJ.L(u)h(x 0 - u) du > 0. Therefore TjR converges to x 0 if and only 
if fuJ.L(u)h(x 0 - u) du = 0. The latter condition should hold for every value 
of x 0 ; this condition may be fulfilled if the function h ( x) is constant, i.e. if 
the indicator values are evenly distributed. For particular J.L( ·),certain almost 
periodic functions h( ·)might do as well, but we believe these functions to be 
of no practical importance. For some J.L( • ), e.g. the Gaussian curve [1, 9], 
constant h ( ·) is a necessary condition. If h ( x) = c, we get f UJ.L( u) du = 0: 
the centroid of J.L( ·) must be equal to zero. Consequently, the centroid of 
I-LA ( x) = J.L( x- uk) must be equal to uk, or rephrasing, the indicator values 
must be the centroids of their response curves, 

J XJ.Lk(x) dx 
uk = . 

J 1-Lk(x) dx 

(3.2) 

This definition of indicator value is necessary for the weighted average to be 
consistent. Note that defined in this way, the indicator value of a unimodal 
response curve is only equal to the most preferred value (mode or optimum) 
if the curve is symmetric. Note also that we had to assume in the derivation 
that both integrals in (3.2), and fx 2v(x) dx, exist. The weighted average is 
inconsistent for response curves that do not satisfy these conditions, e.g. 
monotone increasing or decreasing functions. The weighted average is also 
inconsistent for data with a constant variance function. 

In conclusion, the weighted average is a consist~nt estimator of x 0 (for 
A-> oo) provided (1) the three aforementioned conditio;)s 8il integrals of the 
response and variance curve hold, (2) the indicator values are centroids of 
the response curves, and (3) the indicator values are evenly distributed along 
the real line. Using central limit theorems and laws of large numbers valid for 
independent but nonidentically distributed random quantities [5], it follows 
that the weighted average is then asymptotically normal with variance [11, 
Equation (10.17), p. 247] 

(3.3) 
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4. THE MAXIMUM LIKELIHOOD APPROACH 

When response curves can be expressed in parametric form, x0 can be 
estimated by the method of maximum likelihood [4). Maximum likelihood 
estimators are often good estimators in large samples: under mild conditions 
they are consistent and asymptotically normal with minimal variance [4, 5]. 
These assertions hold for our applications; the proof thereof goes along 
similar lines as in the standard case of independent and identically distrib­
uted random variables. Maximum likelihood is more widely applicable than 
weighted averaging. 

For Bernoulli, Poisson, or Gamma random variables the maximum likeli­
hood estimator is the solution for x0 of the maximum likelihood equation 
[14) 

81ogL =I: IL'k(x0)[Y, -/L~,(xo)] =O 
8xo k uk( xo) ' 

( 4.1) 

where 11/.. ( x 0 ) denotes the derivative of !L" ( x) with respect to x, evaluated at 
x 0 • Often the solution of (4.1) can only be obtained by numerical methods. 
The asymptotic variance of the maximum likelihood estimator is, as usual, 
the inverse of the information [4) and equals 

( 4.2) 

When the distribution of Y, is not fully specified, Equation (4.1) is a 
quasi-likelihood equation, which often gives estimators with good asymptotic 
properties [14). This extension of (4.1) and (4.2) is important when count 
data are overdispersed with variance proportional to the mean. 

5. EFFICIENCY AND SHAPE 

For large numbers of species maximum likelihood will in general be more 
efficient than weighted averaging, but the latter method is much ea!;ier to use. 
It is therefore of interest to investigate whether there exists a shape of the 
response curves for which weighted averaging achieves, in terms of mean 
squared error, asymptotically unit efficiency with respect to maximum likeli­
hood. With the species packing model [13, 22] in view, we adopt the location 
family of Section 2 with equispaced indicator values. In this situation both 
methods are consistent. It is therefore sufficient to compare the variances 
(3.3) and (4.2) for spacing d--+ 0. It is proved in the Appendix that, 
asymptotically, uML.;;;; VwA with equality if and only if 

( 5.1) 
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for t a nonzero constant. The differential equation (5.1) has a solution of the 
form 

( 5.2) 

where the function f( ·)depends on the variance function. The curves in (5.2) 
form a generalized linear model [14, 16}, and the function /( ·) is precisely the 
"natural" link function of such a model: the logistic function f(P-) = 

log[P-/(1- /1-)] for Bernoulli variables, the logarithmic function f(P-) = log/1-
for Poisson variables, and the inverse function f(P-) = -1/P- (and a< 0) for 
Gamma variables. In (5.2) the parameter a is the maximum of/(·) attained 
at the indicator value, mode, or optimum uk, and t, termed the tolerance, is a 
measure of curve width. For Poisson variables (5.2) is precisely the Gaussian 
response curve that is frequently invoked in plant ecological studies [1, 9]. 

For presence-absence data we propose to term (5.2) the Gaussian logit 
re:>ponse curve (Figure 1). Its formula is 

( 5 .3) 

Instead of a we may use the parameter Pmax =1/(1+ e-a), the maximum 
probability of occurrence. If Pmax ..... 0, 11-dx) approaches the Gaussian curve. 
Thus for many rare species, the two models are effectively the same. Using 
(3.3) and (4.2), we found numerically that for Bernoulli variables and 
Gaussian rather than Gaussian logit curves, the efficiency ( v ML I v WA) of 
weighted averaging decreased from 1.0 to 0.8 when Pmax was increased from 
near zero to 0.9. 

The maximum likelihood variance (4.2) can be simplified by substitution 
of (5.1), which gives 

(5.4) 

Because of the equal spacing of the indicator values, 

L(uk-xo)
2
vk(xo)'"'f 2 LP.k(xo). ( 5.5) 

k k 

For integrals the approximation (S.S) is an equality, as follows from (5.1) and 
integration by parts. Numerical calculations showed that the approxima­
tion in (5.5) is quite good, provided the indicator values are equispaced 
on a "large" interval I around x 0 with spacing less than t, where I= 
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{ u I1L(x0 - u) > 8, u E IR} for small 8. With (5.5) we obtain 

( 5.6) 

Substitution of (5.5) in (3.3) gives the same result for VwA· A sample-based 
version of ( 5.6) is t 2 j'E.k Y,. 

We carried out a simulation study in which presence-absence data were 
generated according to the model (5.3) with t = 1, equispaced optima ( d ~ 1: 
d = 1, 0.5, 0.25, 0.12, 0.06, or 0.03) on the interval (- 5, 5) and maximum 
probability either .1 or .5 or .9. The minimum number of species was 
therefore 10. x 0 was always chosen close to the center of the interval, 
between 0 and d j2. The simulations were constrained to give at least two 
species occurrences per sample. In each case 1000 samples were generated. 
For each sample x 0 was estimated by weighted averaging and by maximum 
likelihood. All cases showed an efficiency in terms of mean squared error of 
1.00, even when only 10 species were positioned on the interval. In most 
cases the mean squared error of both iwA and .XML exceeded the theoretical 
variance (5.6), but the excess was less than 12% when the average number of 
species occurrences per sample was larger than 5. 

6. VARYING SPACING, MAXIMA, AND TOLERANCES 

For the "optimal" response curves (5.2) the weighted average still has 
asymptotically unit efficiency when the species can be divided into sets such 
that within each set the species have equal maxima and equispaced optima 
with spacing less than t (Figure 1). An important example arises when the 
species are divided into sets on the basis of their response to another 
environmental variable. The result follows from (5.5): for each set of species 
(5.5) holds and can be substituted for each set in (3.3) and (5.4), which leads 
to (5.6) in both cases. However, this trick does not carry through when the 
tolerance varies between species, because substitution of (5.5) now involves 
different tolerances for different sets. As a result the efficiency can drop 
considerably when the tolerance varies. For example, with two tolerances 
differing by a factor of two, the efficiency drops to ca. 0.6 in the logistic 
model with maximum probability of occurrence .5. Full efficiency can then 
be retained by using a tolerance-weighted version of the weighted average, 

( 6.1) 

In (6.1) good indicator species get more weight than bad ones, an intuitively 
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reasonable idea used already by Zelinka and Marvan [24]. The results of this 
section suggest that equality of tolerances is a more critical assumption in the 
weighted average (2.1) than equality of maxima and equal spacing. 

7. RANDOM INDICATOR VALUES AND RANDOM RESPONSE 
CURVES 

The shapes of response curves may vary between species. In this section 
we mimic this variability by assuming that response curves arise from a 
"superpopulation" model consisting of three parts: 

(1) A Poisson point process P that generates indicator values { u, } on the 
real line with intensity function Ah(x) [A> 0 and h(x) > 0 for every x]. 

(2) A stochastic process S that generates shapes M(x) for response 
curves, independently for any indicator value u, generated by P. Any 
realization of M(x) is a bounded, nonnegative continuous function on the 
real line such that x 2 M(x) and x 2 V(x)EL1(-oo,oo), where V(-) is the 
variance function corresponding to M ( · ), and f xM ( x) dx = 0. Expectation 
and variance with respect to S are denoted by Es and vars. 

(3) A translation of M(x) over u,: Mdx) = M(x- u, ). 

The model will be termed the translation model. It is proved in the 
Appendix that the weighted average is consistent (A ...... oo) if h ( x) = 1. Then 
P is a homogeneous Poisson process, and the indicator values are said to be 
randomly spaced. The asymptotic variances are then 

j(u-x0 )
2
Es{V(u)+M2 (u)} du 

vwA= A[!EsM(u)dur 
(7 .1) 

and 

[ {
[M'(u)]2} l-1 

vML = A J Es V( u) du (7 .2) 

respectively. VwA is always strictly greater than vML· For the response curves 
(5.2) (process S degenerate) and random spacing, the efficiency of weighted 
averaging increases to unity when the maximum of !L( ·) decreases to 0, as 
shown in Figure 2 for logistic /( · ). To obtain the variances in the case of 
equal instead of random spacing between the indicator values, M 2 ( u) in 
(7.1) must be replaced by vars{M(u)}, whereas (7.2) remains the same. In 
this case vML,;;; VwA with equality if and only if the response curves are 
nonrandom and satisfy (5.2). 
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eff. 

1.0 

0. 5 

0 0. 5 1.0 

Pmax 

FIG. 2. The efficiency of weighted averaging with respect to maximum likelihood 
against the maximum probability of occurrence ( Pma.x) for Gaussian logit curves with 
randomly spaced optima and equal maxima and tolerances [eff = ~'ML/t'wA = ( t jT) 2 ]. 

To simplify (7.1) for Bernoulli variables we define the commonness a and 
the standard deviation T of the expected response curve !-L(X) = E, { M(x)} 
by 

and (7 .3) 
a 

From (7.1) we obtain [cf. (5.6)] 

(7.4) 

An unbiased estimator for (7.4) is the usual sample variance of the mean of 
the indicator values of the species present at the site. It is only in this special 
case that the indicator values might be considered as independent "samples"' 
from a probability distribution. 
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Simulations, as in Section 5, with Gaussian logit curves (5.3), but with 
random, instead of equispaced, optima showed calculated efficiencies that 
agreed with the asymptotic efficiencies shown in Figure 2. The mean squared 
errors exceeded the theoretical variances (5.6) and (7.4), the convergence to 
the theoretical variances being slower than in Section 5. For random optima 
the excess was less than about 15% when the average number of species 
occurrences per sample was larger than 10. 

8. DISCUSSION 

This paper shows that a method proposed and used by community 
ecologists, namely weighted averaging, performs well under a model advo­
cated by evolutionary ecologists, namely the species packing model [13]. This 
model is based on the idea that competing species evolve to occupy maxi­
mally separated niches with respect to a limiting resource. This idea applies 
as well to the occurrence of competing species along habitat variables [22]. 
Response curves should therefore have minimal overlap; hence, equally 
spaced indicator values. It should be noted that our asymptotic theory 
ignores another consequence of this model, namely that there exists a limiting 
similarity beyond which competing species cannot coexist. The minimal 
spacing derived by MacArthur and Levins [13] is about equal to the standard 
deviation of the response curves. But direct gradient analyses often show 
much closer spacings than that [9, 22]. Moreover, in lists of indicator values 
such as Ellenberg [8], the values coincide for many species. Of course, many 
species are coexisting without seriously competing. 

Our results suggest that the distribution of the indicator values along the 
indicated variable should be even. But for Ellenberg's [8]list with about 2000 
plant species the indicator values show uneven and markedly skew distribu­
tions [6, Figure 11]. A change of scale of the environmental variables could 
alleviate this problem. However, such a change modifies the response curves 
as well as their centroids. If the indicator values are centroids on the present 
scale, a nonlinear change of scale would destroy this desirable property. An 
alternative estimator is obtained by replacing Yk with YA/h(ud in (2.1). 
This estimator can be shown to be consistent under the model of Section 7. 
However, when the species packing model does hold in a part, say A, of a 
multidimensional habitat space, possibly uneven marginal distributions of 
indicator values do not destroy the attractive properties of the usual weighted 
average (2.1 ). More specifically, when the indicator values are regularly 
spaced and the value x0 of the site lies well within A (i.e., there is a subset B 
of A such that B = { u I JL(X 0 - u) > 8, x 0 E IR n, u E IR n } for small 8 ), then 
for decreasing spacing along all n environmental variables: 

(1) The weighted average is consistent if each indicator value is the 
centroid of the response curve that is obtained after integration of 
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the corresponding response surface over the remaining n - 1 dimensions, and 
the integrals, defined in Section 3, of the "marginal" response curve exist. 

(2) The weighted average has asymptotically unit efficiency with respect 
to maximum likelihood if the response surfaces are the multivariate extension 
of (5.2), namely 

where x1 , x 2 , ... , X
11 

are the variables of a n-dimensional habitat space, u,. 
1 

and ti are the optimum and tolerance of the k-th species with respect to x
1 

and /( ·) is as in Section 5. [With maximum likelihood based on (8.1) the 
values of x 1,x2 , ... ,x

11 
at the site are estimatedjointly.] 

The first assertion can easily be verified. The second assertion follows from 
Section 6: for fixed, but unknown values of x 1, x 2 , ... , X

11 
the species have 

different maxima with respect to x1 , but can be divided into sets of species 
with equal maxima because of the regular spacing in multidimensional 
habitat space. 

Weighted averaging ignores species that are absent, whereas the maximum 
likelihood method uses the response curves of all species. In maximum 
likelihood, absent species do potentially provide information on the environ­
ment. This paper shows that this information is negligible under the (multidi­
mensional) species packing model. Another, more informal model under 
which absent species do not add much information arises when the maximum 
probability of occurrence is close to zero. Then, the probability of absence is 
close to unity-irrespective of the value of the environmental variable-and 
hence cannot strongly influence the likelihood (see also Figure 2). The 
probability of occurrence of a species, given the value of a factor, will be 
small in practice for most species, just because in most sites with that value 
the species will be absent due to other, unfavorable factors (cf. the effect of 
neglecting other variables in a multidimensional species packing model). 
Absences therefore often indicate little. 

Weighted averaging is central to the algorithm of the ordination technique 
known as reciprocal averaging or correspondence analysis. Reciprocal aver­
aging is commonly used in ecological ordination studies to analyse data on 
the incidence or abundance of species in samples [9]. The first few ordination 
axes are often interpreted as latent variables and are presumed to relate to 
underlying habitat variables. The results of this paper can be extended to 
provide a theoretical basis of the model that is implicitly invoked when 
reciprocal averaging is used. Under the conditions of the species packing 



WEIGHTED AVERAGING OF INDICATOR VALUES 69 

model it can be shown that reciprocal averaging approximates the maximum 
likelihood solution of Gaussian-like response models in one latent variable. 
The stochastic model of Section 7 is an explicit formulation of the model that 
is used by Hill and Gauch [10] to scale the axes of (detrended) correspon­
dence analysis. 

APPENDIX 

Proof of (5.1). We prove that 

[! JL(x) dx r 
--------"---------"----- ~ 1 

J x 2v ( x) dx -j {[ ~-t' ( x) f / v ( x) } dx 
(A1) 

with equality iff ~-t'(x) =- xv(x)jt 2
. The left hand side in (A1) is the 

asymptotic (d-> 0) efficiency vML/vwA, because summations in (3.3) and 
(4.2) approach integrals for d-> 0, and after translation, x 0 = 0. We use the 
Cauchy-Schwartz inequality 

(A2) 

for arbitrary functions p ( x) and q( x) E L 2 (- oo, oo ). Equality in (A2) holds 
iff p(x) = cq(x) with c a constant. By setting 

p ( x) = xj v ( x) and 
~J.'( X) 

q( x) = ,---­
yv( x) 

and assuming that XIJ.( x) -> 0 for x -> ± oo, so that 

J X~J.'(x) dx =-J ~-t(x) dx, 

(A3) 

(A4) 

we obtain (A1) with equality iff xu(x) = C~J.'(x), from which (5.1) follows 
with c =- t 2

. The condition c < 0 arises from the assumption above (A4). 

Outline proof of (7.1). Expectations and (co)variances are required of 
R = L:" Y" and T = L:" Yk uk. These are calculated by dividing the real line into 
small intervals with midpoints uu> (i = ... , -2, -1,0,1,2, ... ) and width~. 
The expectations correspond to the formulae in Section 3 with !-'( u) replaced 
by A.E,M(u); hence .XwA is consistent if h(x) is constant. We show the 
derivation of the variances for x 0 = 0 and h ( x) = 1. Repeated use is made of 
the decomposition of the variance as the sum of two components: (a) the 
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average conditional variance, and (b) the variance of the conditional average 
[18, Equation (2b.3.6), p. 97). Species with indicator values that lie in the ith 
interval contribute to var( R) an amount 

and to var(T) an amount u~;Jc;. The last two terms in (AS) can be combined 
to give £{ M 2(u<,l)}. The total variance can be obtained by summing over 
all intervals, because the data from different intervals are independent, due to 
the properties of the Poisson process. Replacing sums by integrals gives, with 
g(u) = E5 { V(u)+ M 2 (u)}, 

var( R) = A j g( u) du, 

var( T) =A j u 2g( u) du, (A6) 

cov( R, T) =A jug( u) du. 

Because u 2 M(u) and u 2 V(u) E L1
(- oo, oo), we have var(T/A), var(R/A), 

and cov(R/A, T/A) ~ 0 for A~ oo; this and Taylor expansion of TjR [11, 
Equation (10.17), p. 247] yield (7.1). 

Outline proof of (7.2). Let .X denote the maximum likelihood estimator, 
D, the first x derivative of the log likelihood (4.1) evaluated at y, and I the 
total information evaluated at x 0 . Without confusion, the symbol x will now 
be used for x 0 . A first order Taylor expansion of D, in x 0 gives [4, Chapter 
9.2, Equation (19)] 

D, = D, - ( x - x) I. (A7) 

Equating (A7) to zero, as in (4.1), and solving for x- x shows that, 
asymptotically (A ~ oo ), 

A var( D,) 
var( x) = 7 • 

I-
(A8) 

Conditionally on S and P, the expectation of D, is equal to zero and its 
variance is the inverse of (4.2). Unconditionally, the variance of D, is 
therefore equal to the quantity between square brackets in (7.2). The total 
information is the expectation over S and P of the conditional information. 
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This expectation is equal to the variance of D,; hence, from (A8) we obtain 
(7.2). 

We would like to thank Drs. I. C. Prentice, M. 0. Hill, and J. A. Hoekstra 
for valuable comments. Drs. T. A. B. Snijders and M. J. M. Jansen contributed 
to Section 3. 
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