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CANONICAL CORRESPONDENCE ANALYSIS: 
A NEW EIGENVECTOR TECHNIQUE FOR MULTIVARIATE 

DIRECT GRADIENT ANAL YSIS 1 

CAJO J. F. TER BRAAK 
TNO Institute of Applied Computer Science, P. 0. Box 100, 6700 AC Wageningen, 

The Netherlands, and Research Institute for Nature Management, Leersum, 
The Netherlands 

Abstract. A new multivariate analysis technique, developed to relate community composition to 
known variation in the environment, is described. The technique is an extension of correspondence 
analysis (reciprocal averaging), a popular ordination technique that extracts continuous axes of vari
ation from species occurrence or abundance data. Such ordination axes are typically interpreted with 
the help of external knowledge and data on environmental variables; this two-step approach (ordination 
followed by environmental gradient identification) is termed indirect gradient analysis. In the new 
technique, called canonical correspondence analysis, ordination axes are chosen in the light of known 
environmental variables by imposing the extra restriction that the axes be linear combinations of 
environmental variables. In this way community variation can be directly related to environmental 
variation. The environmental variables may be quantitative or nominal. As many axes can be extracted 
as there are environmental variables. The method of detrending can be incorporated in the technique 
to remove arch effects. 

(Detrended) canonical correspondence analysis is an efficient ordination technique when species 
have bell-shaped response curves or surfaces with respect to environmental gradients, and is therefore 
more appropriate for analyzing data on community composition and environmental variables than 
canonical correlation analysis. The new technique leads to an ordination diagram in which points 
represent species and sites, and vectors represent environmental variables. Such a diagram shows the 
patterns of variation in community composition that can be explained best by the environmental 
variables and also visualizes approximately the "centers" of the species distributions along each of 
the environmental variables. Such diagrams effectively summarized relationships between community 
and environment for data sets on hunting spiders, dyke vegetation, and algae along a pollution gradient. 

Key words: biplot; canonical correlation analysis; canonical correspondence analysis; detrended 
correspondence analysis; Gaussian model; gradient analysis; ordination; reciprocal averaging; regres
sion; species-environment relations; urifolding; weighted averaging. 

INTRODUCTION 

Problems in community ecology often require the 
inferring of species-environment relationships from 
community composition data and associated habitat 
measurements. Typical data for such problems consist 
of two sets: data on the occurrence or abundance of a 
number of species at a series of sites, and data on a 
number of environmental variables measured at the 
same sites. (A "site" is the basic sampling unit, sepa
rated in space or time from other sites, e.g., a quadrat, 
a woodlot, a light trap, or a plankton sample.) When 
the data are collected over a sufficient habitat range for 
species to show nonlinear, nonmonotonic relationships 
with environmental variables, it is inappropriate to 
summarize these relationships by correlation coeffi
cients or to analyze the data by techniques that are 
based on correlation coefficients, such as canonical cor
relation analysis (Gauch and Wentworth 1976, Gittins 
1985). An alternative, two-step approach has become 
popular: (I) extract from the species data the dominant 
pattern of variation in community composition by an 
ordination technique, such as (detrended) correspon-

1 Manuscript received 18 March 1985; revised 12 Novem
ber 1985; accepted 22 January 1986. 

dence analysis, and (2) attempt to relate this pattern 
(i.e., the first few ordination axes) to the environmental 
variables (Gauch 1982a). The particular merit of de
trended correspondence analysis in this context is that 
it removes nonlinear dependencies between axes (Hill 
and Gauch 1980) and has been shown to be an efficient 
technique to extract one or more ordination axes ("gra
dients") such that species show unimodal (bell-shaped) 
response curves or surfaces with respect to these axes 
(Ter Braak 1985b). The axes can be thought of ashy
pothetical environmental gradients, which are subse
quently interpreted in terms of measured environmen
tal variables in the second step of the analysis. This 
two-step approach is essentially Whittaker's ( 1967) in
direct gradient analysis. 

What can be inferred from indirect gradient analysis? 
If the measured environmental variables relate strong
ly to the first few ordination axes, they can "account 
for" (i.e., they are sufficient to predict) the main part 
of the variation in the species composition. If the en
vironmental variables do not relate strongly to the first 
few axes, they cannot account for the main part of the 
variation, but they may still account for some of the 
remaining variation-which can be substantial. Fur
ther, it is nontrivial to detect by indirect gradient anal-
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ysis the effects on community composition of a subset 
of environmental variables in which one is particularly 
interested (Carleton 1984). These limitations can only 
be overcome by methods of direct gradient analysis, 
in which species occurrences are related directly to en
vironmental variables (Gauch 1982a). Methods of di
rect gradient analysis in current use consider essentially 
one species at a time. Simple methods involve plotting 
species abundance against a single environmental vari
able, or isopleths in a space of two environmental vari
ables (Whittaker 1967). More elaborate methods use 
(generalized linear) regression methods (Austin et a!. 
1984, Bartlein et a!. 1986) and are useful in studying 
simultaneously the effect of more than one environ
mental variable. Regression methods allow fitted re
sponse surfaces to assume a wide variety of shapes. 
However, when the number of species is large, separate 
regression analysis for each species may be impracticaL 
Moreover, separate analyses cannot be combined eas
ily to get an overview of how community composition 
varies with the environment (in particular, when the 
number of environmental variables exceeds two or 
three), and a multivariate method (based on a common 
response model) is required. 

In this paper a multivariate direct gradient analysis 
technique is developed, whereby a set of species is 
related directly to a set of environmental variables. The 
new technique identifies an environmental basis for 
community ordination by detecting the patterns of 
variation in community composition that can be ex
plained best by the environmental variables. In the 
resulting ordination diagram, species and sites are rep
resented by points and environmental variables are 
represented by arrows. Such a diagram shows the main 
pattern of variation in community composition as ac
counted for by the environmental variables, and also 
shows, in an approximate way, the distributions of the 
species along each environmental variable. The tech
nique thus combines aspects of regular ordination with 
aspects of direct gradient analysis. The rationale of the 
technique is derived from a species packing model 
wherein species are assumed to have Gaussian (bell
shaped) response surfaces with respect to compound 
environmental gradients. These gradients are assumed 
to be linear combinations of the environmental vari
ables. The new technique is called canonical corre
spondence analysis, because it is a correspondence 
analysis technique in which the axes are chosen in the 
light of the environmental variables. Examples dem
onstrate that canonical correspondence analysis allows 
a quick appraisal of how community composition var
ies with the environment. 

THEORY 

Data and model 

Suppose a survey of n sites lists the abundances or 
occurrences (presence scored as I, absence as 0) of m 

species and the values of q environmental variables 
(q < n). Let y,, be the abundance or presence/absence 
(1/0) of species k (y,, :::=: 0), and z,, the value of envi
ronmental variable j at site i. 

The first step in indirect gradient analysis is to sum
marize the main variation in the species data by or
dination. The method of Gaussian ordination (Gauch 
eta!. 1974) does this by constructing an axis such that 
the species data optimally fit Gaussian response curves 
along this axis. Then the response model for the species 
is the bell-shaped function 

E(y,k) = ckexp[Ih(x, - uk)2/tk2], (1) 

where E(y,J denotes the expected (average) value of 
y,k at site i that has score x, on the ordination axis. The 
parameters for species k are Cc. the maximum of that 
species' response curve; Uc. the mode or optimum (i.e., 
the value of x for which the maximum is attained); 
and t" the tolerance, a measure of ecological ampli
tude. Ter Braak (1985b) showed that correspondence 
analysis approximates the maximum likelihood solu
tion of Gaussian ordination, if the sampling distribu
tion of the species abundances is Poisson, and if: 

Cl) the species' tolerances are equal (t, = t, k = 1, 
... 'm), 

C2) the species' maxima are equal (ck = c, k = I, 
... 'm), 

C3) the species' optima { uk i are homogeneously dis
tributed over an interval A that is large com
pared tot, 

C4) the site scores {x,i are homogeneously distrib
uted over a large interval B that is contained 
in A. 

(The wording "homogeneously distributed" is used to 
cover either of two cases, namely (I) that the scores 
are equispaced, with spacing small compared to t, or 
(2) that the scores are drawn randomly from a uniform 
distribution.) Conditions Cl-C3 imply a species pack
ing model (Whittaker et a!. 1973) with respect to the 
ordination axis. The species scores resulting from a 
correspondence analysis actually estimate the optima 
of the species in this model. Ter Braak (1985b) pro
vided a similar rationale for correspondence analysis 
of presence-absence data. Conditions C I and C2 are 
not likely to hold in most natural communities, but 
the usefulness of correspondence analysis in practice 
relies on its robustness against violations of these con
ditions (Hill and Gauch 1980). 

The second step of indirect gradient analysis is to 
relate the ordination axis to the environmental vari
ables, for example graphically, or by calculating cor
relation coefficients, or by multiple regression (see 
Montgomery and Peck 1982) of the site scores on the 
environmental variables 

q 

x, = b0 + ~ b1z,,, 
j=l 

(2) 
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where b0 is the intercept and b1 is the regression coef
ficient for environmental variable j. Note that the 
species optima u, and sites scores x, are estimated from 
the species data first; the regression coefficients b1 are 
estimated next, keeping x, (and uk) fixed. The species 
data are thus indirectly related to the environmental 
variables, via the ordination axis. 

The technique proposed in this paper simultaneously 
estimates the species optima, the regression coefficients 
and, hence, the site scores by using the model described 
by Eq. I, in conjunction with Eq. 2. Simultaneous es
timation turns the technique into a direct gradient anal
ysis method. In principle the method of maximum 
likelihood could be used to obtain the estimates. This 
analysis could be called Gaussian canonical ordination. 
It requires excessively heavy computation. The com
putational task can, however, be alleviated consider
ably if conditions C 1-C4 hold. The reasoning that led 
from Gaussian ordination to correspondence analysis, 
now leads to the transition formulae of canonical cor
respondence analysis (see Appendix): 

AU, = ~ Y,kX/Y+k 
i=l 

x,* = ~ y,,ukly,. 
k=\ 

x = zb, 

(3) 

(4) 

(5) 

(6) 
where y +' and y,. are species and site totals, respec
tively, R is a diagonal n x n matrix withy,+ as the (i, 
i)-th element; z = {z,1 i is ann x (q + 1) matrix con
taining the environmental data and a column of ones; 
and b, x and x* are column-vectors: b = (b0 , bi, ... , 
b4)', x =(xi, ... , x")', and x* =(xi*, ... , Xn*)'. The 
transition formulae define an eigenvector problem (see 
Appendix) that is akin to the eigenvector problem posed 
by canonical correlation analysis, A in Eq. 3 being the 
eigenvalue. As in correspondence analysis, the equa
tions have a trivial solution in which all site and spe
cies scores are equal and A = 1; this trivial solution 
can either be disregarded or be excluded by requiring 
that the site scores are centered to zero mean, 
i.e., ~,y,+x, = 0. 

Algorithm: reciprocal averaging and regression 

The transition formulae can be solved by the follow
ing iteration algorithm of reciprocal averaging and 
multiple regression. 

S1) Start with arbitrary, but unequal, initial site 
scores. 

S2) Calculate species scores by weighted averaging 
of the site scores (Eq. 3 with A= 1). 

S3) Calculate new site scores by weighted averaging 
of the species scores (Eq. 4). 

S4) Obtain regression coefficients by weighted mul-

tiple regression of the site scores on the envi
ronmental variables (Eq. 5). The weights are the 
site totals (y<+ ). 

S5) Calculate new site scores by Eq. 6 or, equiva
lently, Eq. 2. The new site scores are in fact the 
fitted values of the regression of the previous 
step. 

S6) Center and standardize the site scores such that 
~.Y,. x, = 0 and ~.Y,+ x,2 = 1. (7) 

S7) Stop on convergence, i.e., when the new site 
scores are sufficiently close to the site scores of 
the previous iteration; otherwise go to S2. 

This procedure is akin to the reciprocal averaging 
algorithm of correspondence analysis, but steps S4 and 
S5 are additional. The new technique is a correspon
dence analysis technique with restrictions (S4 and S5) 
on the site scores (cf. DeLeeuw 1984). The final regres
sion coefficients will be called canonical coefficients, 
and the multiple correlation coefficient of the final 
regression will be called the species-environment cor
relation. The species-environment correlation is a 
measure of how well the extracted variation in com
munity composition can be explained by the environ
mental variables and is equal to the correlation be
tween the site scores {x,*}, which are weighted mean 
species scores (calculated by Eq. 4), and the site scores 
{x,}, which are a linear combination of the environ
mental variables (calculated by Eq. 2 or Eq. 6). This 
equality requires the assumption that sites are weighted 
proportional to y,_ , as in steps S4 and S6. and this 
weighting of sites is assumed in the calculation of means, 
variances, and correlations throughout the paper. 

The standardization of the site scores in S6 is con
venient in the algorithm, but it has more meaning eco
logically to rescale the solution according to Eq. A.8 
of the Appendix, as proposed by Hill ( 1979). Then, the 
tolerance of the fitted Gaussian response curves is (on 
average) about 1 unit, and a species' response curve 
can be expected to rise and decline over an interval of 
about 4 units. 

More than one dimension and detrending 

Second and additional axes can be extracted as in 
correspondence analysis by adding to the algorithm, 
after S5, a step that makes the trial site scores uncor
related with the previous axes. The two-dimensional 
solution is intended to fit bivariate Gaussian response 
surfaces to the species data (Ter Braak 1985b) but often 
gives a bad fit because of the arch effect, an approxi
mately quadratic dependence between the scores of the 
first two axes. This effect crops up whenever a short 
gradient is dominated by a long gradient (Gauch 1982a). 
The modifications of correspondence analysis that led 
to detrended correspondence analysis (Hill and Gauch 
1980) can also be incorporated in canonical corre
spondence analysis; the rationale for detrending is the 
same. Detrending removes the arch effect and im-
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Pard lugu 
FALLEN TWIGS A 

WATER CONTENT 

COVER HERBS 

Arct peri 
A 

AlopfabrZ \ 
0 0 J ____ j __ 

BARE SAND 

FIG. I. The distribution of 12 species of hunting spiders caught in pitfall traps in a Dutch dune area. Canonical corre
spondence analysis (CCA) ordination diagram with pitfall traps (0), hunting spiders(~). and environmental variables (arrows); 
first axis is horizontal, second axis vertical. Shown also are the projections of the spider points labelled Arct peri, Alop fabr, 
Alop acce, and Pard mont onto the trajectory of the arrow of bare sand; the order of the projection points indicates the 
approximate ranking of the centers of the distributions of these spiders along the variable "percentage bare sand," Arctosa 
perita being found in habitats with the highest percentages of bare sand. The spider species are: Alop acce = Alopecosa 
accentuata, Alop cune = Alopecosa cuneata, Alop fabr = Alopecosafabrilis, Arct lute= Arctosa lutetiana, Arct peri= Arctosa 
perita, Aulo albi = Aulonia albimana, Pard lugu = Pardosa lugubris, Pard mont = Pardosa monticola, Pard nigr = Pardosa 
nigriceps, Pard pull = Pardosa pullata, Troc terr = Trochosa terricola, Zora spin = Zora spinimana. The environmental 
variables are: Water Content = percentage of soil dry mass, Bare Sand = percentage cover of bare sand, Fallen Twigs = 
percentage cover of fallen leaves and twigs, Cover Moss = percentage cover of the moss layer, Cover Herbs = percentage 
cover of the herb layer, and Light Ref! = reflection of the soil surface with cloudless sky. 

proves the fit to the Gaussian model considerably in 
simulations where the true site and species scores are 
homogeneously distributed in a rectangle (the exten
sion to two dimensions of conditions C3 and C4; Ter 
Braak 1985b). Detrending, however, also attempts to 
impose such a homogeneous distribution of scores on 
the data where none exists. The computer program 
CANOCO (Ter Braak l985a) will also perform de
trended canonical correspondence analysis. For a com
parison of the detrended analysis with the non-detrend
ed analysis, see Tests on Real Data. 

Canonical coefficients and intraset correlations 

For interpreting the ordination axes one can use the 
canonical coefficients and the intraset correlations. The 
canonical coefficients define the ordination axes as linear 
combinations of the environmental variables through 
Eq. 2, and the intraset correlations are the correlation 
coefficients between the environmental variables and 
these ordination axes. (The term intraset is used here 
to distinguish these correlations from the interset cor
relations between the environmental variables and the 
site scores {x,*} that are derived from the species data.) 
For the rest of the analysis it is assumed that the en
vironmental variables have been standardized to zero 
mean and unit variance prior to the analysis. This stan-

dardization removes arbitrariness in the units of mea
surement of the environmental variables and makes 
the canonical coefficients comparable to each other, 
but does not influence other aspects of the analysis. 

By looking at the signs and relative magnitudes of 
the intraset correlations and of the canonical coeffi
cients so standardized, we may infer the relative im
portance of each environmental variable for predicting 
the community composition. The canonical coeffi
cients give the same information as the intraset cor
relations in the special case that the environmental 
variables are mutually uncorrelated, but may provide 
rather different information when the environmental 
variables are correlated with each other, as they usually 
are in field data. Both a canonical coefficient and an 
intraset correlation coefficient relate to the rate of change 
in community composition per unit change in the cor
responding environmental variable, but in the former 
case it is assumed that other environmental variables 
are being held constant, whereas in the latter case the 
other environmental variables are assumed to covary 
with that one environmental variable in the particular 
way they do in the data set. When the environmental 
variables are strongly correlated with each other-for 
example, simply because the number of environmental 
variables approaches the number of sites-the effects 
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of different environmental variables on community 
composition cannot be separated out and, consequent
ly, the canonical coefficients are unstable. This is the 
multicollinearity problem, well known to occur in mul
tiple regression analysis (see Montgomery and Peck 
1982). When this problem arises (the program CAN
OCO [Ter Braak 1985a] provides statistics to help de
tect it) one should abstain from attempts to interpret 
the canonical coefficients. Fortunately, the intraset cor
relations do not suffer from this problem and can still 
be used for interpretation purposes. One can also re
move environmental variables from the analysis, keep
ing at least one variable per set of strongly correlated 
environmental variables; the eigenvalues and species
environment correlations will usually decrease only 
slightly. If the eigenvalues and species-environment 
correlations drop considerably, one has removed too 
many (or the wrong) variables. 

In contrast to canonical correlation analysis, canon
ical correspondence analysis is not hampered by mul
ticollinearity in the species data; the number of species 
is therefore allowed to exceed the number of sites. 

Ordination diagram 

The solution of canonical correspondence analysis 
can be displayed in an ordination diagram with sites 
and species represented by points, and environmental 
variables represented by arrows (see Fig. I). The species 
and site points jointly represent the dominant patterns 
in community composition insofar as these can be ex
plained by the environmental variables, and the species 
points and the arrows of the environmental variables 
jointly reflect the species' distributions along each of 
the environmental variables. For example, when an 
arrow refers to "water content," the diagram allows us 
to infer-by rules explained in the following para
graphs-which species largely occur in the wettest sites, 
which in the driest sites, and which in sites with in
termediate moisture values. We shall limit the discus
sion to two-dimensional diagrams because these are 
the most convenient to visualize. The rules for con
struction and interpretation of higher-dimensional or
dination diagrams are the same. 

For the diagram to represent the approximate com
munity composition at the sites, we must plot species 
scores and site scores that are weighted mean species 
scores, as in Hill's ( 1979) program DECO RAN A. Be
cause each site point then lies at the centroid of the 
species points that occur at that site, one may infer 
from the diagram which species are likely to be present 
at a particular site. Also, insofar as canonical corre
spondence analysis is a good approximation to the fit
ting of Gaussian response surfaces, the species points 
are approximately the optima of these surfaces; hence 
the abundance or probability of occurrence of a species 
decreases with distance from its location in the dia
gram. 

At which values of an environmental variable a 

species occurred in the data can conveniently be sum
marized by the weighted average. The weighted av
erage of a species distribution (k) with respect to an 
environmental variable U) is defined as the average of 
the values of that environmental variable at those sites 
at which that species occurs, the weighting of each site 
being proportional to species abundance, i.e., 

zk, = ~ y,k.:::,/y+k· (8) 
i= I 

The weighted average indicates the "center" of a species' 
distribution along an environmental variable (Ter Braak 
and Looman 1986), and differences in weighted av
erages between species indicate differences in their dis
tributions along that environmental variable. The or
dination diagram of canonical correspondence analysis 
can be supplemented by arrows for the environmental 
variables to give a graphical summary of the weighted 
averages of all species with respect to all environmental 
variables. 

The arrows for the environmental variables must be 
added in the following way. The position of the head 
of the arrow for an environmental variable depends on 
the eigenvalues of the axes and the intraset correlations 
of that environmental variable with the axes (see Ap
pendix). The coordinate of the head of the arrow on 
axis s must be [i\( 1 -.\)]';,times the intra set correlation 
of the environmental variable with axis s, where .\, is 
the eigenvalue of axis s and it is assumed that the 
species scores are standardized according to Appendix 
Eq. A.8, as before. By connecting the origin of the plot 
(the centroid ofthe site points) with each of the arrow
heads, we obtain the arrows representing the variables 
(Fig. 1). How to construct such a diagram from a de
trended canonical correspondence analysis is described 
in the Appendix. Only the directions and relative lengths 
convey information, so one can increase or reduce the 
lengths of all arrows to fit conveniently in the ordi
nation diagram. 

The ordination diagram so constructed allows the 
following interpretation. Each arrow determines a di
rection or axis in the diagram, obtained by extending 
the arrow in both directions (in your mind or on paper). 
From each species point we must drop a perpendicular 
to this axis. Fig. I shows an example. The arrow for 
water content has been extended (the axis happens to 
coincide with the arrow for bare sand) and perpendic
ulars have been dropped to this axis from four species 
points. The endpoints indicate the relative positions 
of the centers of the species distributions along the 
water content axis or, more precisely, they indicate in 
an approximate way the relative value of the weighted 
average of each species with respect to water content. 
From Fig. I we thus infer that Arctosa perita has the 
lowest weighted average with respect to water content 
(i.e., it largely occurs at the driest sites), Alopecosafa
brilis the second lowest value, and so on to Arctosa 
lutetiana, which is inferred to have the highest weight-
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TABLE I. Comparison of the results of ordinations by de
trended correspondence analysis (DCA). canonical corre
spondence analysis (CCA), and detrended canonical cor
respondence analysis (DCCA) of hunting spider data (see 
Fig. 1): eigenvalues and species-environment correlation 
coefficients for the first three axes. 

Axis 

2 3 

Eigenvalues 
DCA 0.58 0.16 0.02 
CCA 0.53 0.21 0.06 
DCCA 0.53 0.13 0.02 

Correlation coefficients 
DCA 0.96 0.92 0.88 
CCA 0.96 0.93 0.64 
DCCA 0.97 0.94 0.90 

ed average (i.e., to occur largely at the wettest sites). 
In general, the approximate ranking of the weighted 
averages for a particular environmental variable can 
be seen easily from the order of the endpoints of the 
perpendiculars of the species along the axis for that 
variable. Further, the weighted averages are approxi
mated in the diagram as deviations from the grand 
mean of each environmental variable, the grand mean 
being represented by the origin of the plot. A second 
useful rule for interpreting the diagram is therefore that 
the inferred weighted average is higher than average if 
the endpoint of a species lies on the same side of the 
origin as the head of an arrow does, and is lower than 
average if the origin lies between the endpoint and the 
head of the arrow. 

These rules for interpreting the joint plot of species 
points and environmental arrows are identical to the 
rules for interpreting a biplot (Gabriel 1971). Biplots 
have been used so far primarily in connection with 
principal components analysis (Ter Braak 1983), but 
a biplot is essentially just a joint plot of two kinds of 
entities that allows a particular kind of quantitative 
interpretation (Gabriel 198 l, Ter Braak 1983). The 
joint plot of species and environmental variables is, in 
fact, a biplot. This biplot provides a weighted least 
squares approximation of the weighted averages of the 
species with respect to the environmental variables (see 
Appendix). The measure of goodness offit, 100 x (/- 1 + 
,\c)/(sum of all eigenvalues), expresses the percentage 
variance of the weighted averages accounted for by the 
two-dimensional diagram. In interpreting percentages 
of variance accounted for, it must be kept in mind that 
the goal is not 100%, because part of the total variance 
is due to noise in the data (cf. Gauch 1982b). Even an 
ordination diagram that explains only a low percentage 
may be quite informative. 

Finally, the length of an arrow representing an en
vironmental variable is equal to the rate of change in 
the weighted average as inferred from the biplot, and 
is therefore a measure of how much the species dis-

tributions differ along that environmental variable. Im
portant environmental variables therefore tend to be 
represented by longer arrows than less important en
vironmental variables. 

Relation of canonical correspondence analysis 
with weighted averaging ordination and 

discriminant analysis 

Canonical correspondence analysis generalizes two 
existing techniques for direct gradient analysis. When 
a single quantitative environmental variable is consid
ered, it reduces to weighted averaging ordination (Gauch 
l982a), because x, in Eq. 1 is then simply the value of 
this variable at site i, and fitting this model simplifies 
under condition C4 to weighted averaging (cf. Ter Braak 
and Looman 1986). With two quantitative environ
mental variables, the technique represents the same 
information in a two-dimensional diagram as weighted 
averaging ordination with respect to these variables, 
although the variables are not necessarily displayed as 
orthogonal directions in the ordination diagram. With 
a single nominal environmental variable, canonical 
correspondence analysis is a variant of discriminant 
analysis (canonical variate analysis) that is appropriate 
to a unimodal response model, and which can be ob
tained more simply from a correspondence analysis of 
a two-way table of species by (classes of1 the nominal 
variable (Greenacre 1984: section 7 .1). The cells of the 
table must contain the total abundances of each of the 
species in each of the classes. In the resulting ordination 
diagram the classes are represented by points. This 
equivalence suggests that it can be more natural to 
represent nominal environmental variables by points 
instead of arrows. The point for a class of a nominal 
environmental variable must be located at the centroid 
(the weighted average) of the sites belonging to that 
class. Classes consisting of sites with high values for a 
species will then tend to lie close to that species' point. 
Gasse and Tekaia ( 1983) applied this technique toes
tablish a transfer function for estimating paleo-envi
ronmental conditions from diatom assemblages. 

TABLE 2. Hunting spider abundance data from Fig. I: ca
nonical coefficients and the intraset correlations of envi
ronmental variables with the first two axes of canonical 
correspondence analysis (CCA). The environmental vari
ables were standardized to unit variance after log-transfor
mation. For a description of variables, see Fig. I legend. 

Canonical Correlation 

Axis 
coefficients coefficients 

variable 2 I 2 

Water Content -0.51 -0.41 -0.93 -0.08 
Bare Sand 0.33 -0.10 0.73 0.06 
Fallen Twigs -0.14 0.37 -0.43 0.78 
Cover Moss 0.05 -0.27 0.69 -0.30 
Cover Herbs ·-0.28 -0.15 -0.32 -0.78 
Light Refl 0.27 -0.03 0.64 -0.59 
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TABLE 3. Hunting spider abundance data, with species (rows) and sites (columns) arranged in order of the scores for the 
first axis of canonical correspondence analysis (CCA). Site numbers correspond to those of Van der Aart and Smeenk
Enserink (1975: Table 4). The species abundance data have been transformed by taking square roots; the integer part is 
shown, a blank denoting absence of the species and 9 denoting > 80 individuals captured. For this table, the range of each 
environmental variable was divided into 10 equal-sized classes (denoted by 0-9) after the data were transformed. Abbre
viations and a description of the biological system are given in legend of Fig. I. 

15 19 20 16 I 7 18 

Species 
Arct lute 
Pard lugu 2 3 3 2 2 
Zora spin I I I 2 
Pard nigr I I 
Pard pull 
Aulo albi 
Troc terr 5 4 4 5 4 5 
Alop cune I I I I 
Pard mont 
Alop acce 
Alop fabr 
Arct peri 

Environmental variable 
Water Content 
Bare Sand 
Cover Moss 
Light Reft 
Fallen Twigs 
Cover Herbs 

9 7 8 8 9 8 
0 0 0 0 0 0 
I 3 I I I 0 
I 0 0 0 2 2 
9 9 9 9 9 9 
5 2 0 0 5 5 

TESTS ON REAL DATA 

Hunting spider data 

2 8 21 5 6 

I 2 
I 7 4 I 
3 I I 4 5 
3 I 9 5 
6 I 8 4 
5 2 3 2 
8 5 4 9 7 
I 3 I 4 2 
I I I I 3 

I 

8 6 7 8 9 
0 0 0 0 5 
2 2 I 0 5 
3 I 0 5 I 
3 9 9 0 7 
9 6 2 9 6 

The first data set, taken from Van der Aart and 
Smeenk-Enserink (1975), concerns the distributions of 
12 species of hunting spiders (Fig. I) in a Dutch dune 
area, in relation to environmental data. The species 
data are the numbers of individuals of each species 
caught in pitfall traps over a period of 60 wk. Twenty
six environmental variables were measured at 28 of 
the pitfall traps. This number of variables is too large 
to sort out their independent effects on community 
composition. Eighteen variables were removed on a 
priori grounds, and two more variables were removed 
because they were strongly correlated with one of the 
remaining six variables (Fig. 1). The species data were 
transformed by taking square roots to down-weight 
high abundances; the environmental data were trans
formed by taking logarithms, as in the original paper. 

The ordinations by detrended correspondence anal
ysis (DCA), canonical correspondence analysis (CCA), 
and detrended canonical correspondence analysis 
(DCCA) are very similar for these data. The first ei
genvalue of CCA is only slightly lower than the first 
eigenvalue of DCA, and the species-environment cor
relations of the first three axes are all high (Table 1). 
Apparently the measured environmental variables are 
sufficient to explain the major variation among the 
spider catches. From Table 2 we infer that the first axis 
is a moisture gradient, on which the drier sites have a 
high percentage of bare sand or of moss. The corre
lations of the second axis show a contrast between sites 

Site numbers 

14 4 7 13 3 9 12 25 II 10 28 23 22 27 24 26 

I l 3 I I 
I I I I I I 
5 5 4 4 I 2 2 
3 5 9 7 4 3 I 2 
8 9 9 8 6 6 2 I 
2 4 4 4 3 2 I I 
9 9 9 9 8 7 I 3 4 2 
I 2 2 6 4 3 I 3 I I 
3 2 5 4 5 7 5 9 3 9 4 2 2 I I I 

I I I 3 5 I 4 3 3 I 3 4 2 5 3 
I I 3 I I 3 3 4 3 4 2 

I 2 I 2 2 4 

8 6 8 9 6 5 5 5 3 4 4 0 0 I 0 2 0 
0 0 0 3 0 0 0 0 7 0 8 7 6 7 5 7 9 
4 5 I I 5 7 9 8 2 9 7 8 9 9 8 9 4 
2 6 5 7 8 8 7 8 5 8 8 8 9 8 8 9 9 
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 9 9 9 9 9 6 8 8 7 5 6 6 0 6 5 2 

with a high cover of leaves and twigs and sites with a 
well-developed herb and moss layer. 

From the species and site points in the CCA ordi
nation diagram (Fig. I) we infer, for example, that 
Arctosa perita and Alopecosu fabri/is reached their 
maximum abundance in the six pitfall traps repre
sented on the right-hand side of the diagram, that Par
dosa monticola had maximum abundance in the pitfall 
traps shown in the middle, and that Pardosa /ugubris 
was most abundant in the cluster of pitfall traps rep
resented in the top-left of the diagram. These inferences 
from the diagram largely agree with the data (cf. Table 
3). 

The arrows for environmental variables in Fig. I 
account, in conjunction with the species points, for 
87% of the variance in the weighted averages of the 12 
spiders with respect to the six environmental variables, 
the sum of all eigenvalues being 0.85. For example, 
projecting the spider points on the axis of percentage 
bare sand shows that Arctosa pcrita and Alopecosafa
brilis were mainly found in habitats with the highest 
percentages of bare sand, Alopecosa accentuata and 
Pardosa monticola in habitats with intermediate bare 
sand percentages, and the species on the left-hand side 
of the diagram in habitats with the lowest percentages 
ofbare sand. For Ar. perita, Al.fabrilis, AI. accentuata, 
and P. monticola, the same ranking applies with respect 
to the cover of the moss layer. The ranking is more or 
less the reverse with respect to soil water content. Arc
tosa lutetiana, Pardosa pull at a, Purdosa nigriceps, Au
Ionia albimana, and Pardosa monticola occurred in 
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TABLE 4. Comparison of the results of ordinations by de
trended correspondence analysis (DCA). canonical corre
spondence analysis (CCA). and detrended canonical cor
respondence analysis (DCCA) of dyke vegetation data (see 
Fig. 2): eigenvalues and species-environment correlation 
coefficients for the first four axes. 

Axis 

2 3 4 

Eigenvalues 
DCA 0.34 0.25 0.22 0.19 
CCA 0.20 0.13 0.12 0.07 
DCCA 0.20 0.12 0.09 0.05 

Correlation coefficients 
DCA 0.52 0.40 0.58 0.22 
CCA 0.82 0.81 0.80 0.77 
DCCA 0.83 0.81 0.76 0.66 

habitats with a well-developed herb layer. Pardosa lu
gubris occupies an aberrant position in the diagram, 
being the single spider species that occurred mainly in 
habitats with a high cover of fallen leaves and twigs 
(i.e., in woods). Trochosa terricola, Zora spinimana, 
and Alopecosa cuneata occupy an intermediate posi
tion between the woody and grassier sites. Vander Aart 
and Smeenk-Enserink (1975) gave a similar descrip
tion, but the CCA ordination diagram tells the main 
story at a glance. The DCCA ordination diagram pro
vided essentially the same information. The main 
structure in the data is also clear from Table 3, where 
species and sites are reordered according to their scores 
on the first CCA axis. The species data show a diagonal 
band; soil water content decreases along the first axis, 
whereas percentage bare sand, cover of moss, and light 
reflection increase along this axis. 

Dyke vegetation 

De Lange (1972) studied the occurrences of mac
rophytes in dykes in the Netherlands in relation to 
electrical conductivity, phosphate and chloride con
centration in the water, and soil type (clay, peaty soil, 
sand). A total of 125 fresh water dykes (conductivity 
< 126 mS/m) were selected, with in total 133 plant 
species. Conductivity data were transformed by taking 
logarithms, because of a skewed distribution, and chlo
ride concentration was transformed to chloride ratio 

(the share of chloride ions in the electrical conductivity; 
G. Van Wirdum, personal communication). The nom
inal variable "soil type" (with three classes) was dealt 
with, as in multiple regression (see Montgomery and 
Peck 1982: chapter 6), by defining two dummy envi
ronmental variables "peat" and "sand." (The variable 
"peat" takes the value 1 when a dyke has soil type 
"peat" and the value 0 otherwise. The variable "sand" 
is defined analogously. A dyke in clay thus scores the 
value 0 on each of the two variables. The canonical 
coefficient of "peat" then measures the difference in 
expected site scores between peaty and clay soils. Other 
choices of dummy variables could have been used 
equivalently, e.g., "clay" and "sand.") 

Table 4 shows that the environmental variables are 
poorly related to the first four species axes of DCA. 
But by choosing the axes in the light of the environ
mental variables, by applying CCA or DCCA, the 
species-environment correlations increase consider
ably. The interpretation of the axes is unambiguous 
(Table 5): the first axis is defined by conductivity and 
phosphate, the second by the chloride ratio and soil 
type; the soil types further differentiate on the third 
and fourth axes. CCA and DCCA do not differ much 
for this data set. On the CCA ordination diagram (Fig. 
2) the dykes are not displayed because the diagram 
would have been too crowded; the undisplayed dykes 
all lie in the open center region of Fig. 2. Fig. 2 accounts 
for 56% of the variance and shows that the weighted 
averages of the species with respect to conductivity and 
phosphate result in similar rankings; this similarity 
cannot be explained by the correlation between these 
variables in the data set, because this correlation is 
only 0.44. In contrast, the ranking with respect to chlo
ride ratio is different. The soil types are also represented 
by arrows (Fig. 2). Species whose distribution is the 
most restricted to peaty soils lie somewhat to the top
left-hand corner of the diagram. Analogously, species 
with a distribution mainly on clay tend to lie somewhat 
to the bottom-right-hand corner of the diagram. 

The eigenvalues (Table 4) show that the extracted 
gradients are quite short (cf. Gauch and Stone 1979). 
The scores (optima) of most species therefore lie out
side the center region where the sites lie, and the prob
ability of occurrence of such species simply increases 

TABLE 5. Dyke vegetation data from Fig. 2: canonical coefficients and intraset correlations. as in Table 2. For a description 
of variables see Fig. 2 legend. 

Axis 
Canonical coefficients Correlation coefficients 

variable 2 3 4 I 2 3 4 

EC 0.27 0.03 -0.02 0.10 0.83 0.17 -0.25 0.20 
Phosphate 0.30 0.01 0.16 -0.15 0.86 -0.08 0.30 -0.21 
Chloride Ratio 0.01 0.30 -0.09 0.09 0.14 0.86 -0.30 0.29 
Clay 0 0 0 0 0.27 -0.21 -0.89 -0.31 
Peat* -0.09 0.44 0.78 -0.03 -0.38 0.49 0.72 -0.17 
Sand* 0.01 -0.30 0.58 0.99 0.13 -0.40 0.40 0.78 

*Not standardized to unit variance. 
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FIG. 2. Dyke vegetation data: CCA ordination diagram with plant species (L.) and environmental variables (arrows); first 
axis is horizontal, second axis vertical. Species with positions near the center and some other species elsewhere are not shown 
because the diagram would have become too crowded. The plant species shown are: Acor cala =Acarus calamus, Alop geni = 
Alopecurus genicula/us, Azol fili = Azolla.filiculoides, Bide trip = Bidens tripartita, Call hamu = Callitriche hamulata, Call 
herm = Callitriche hermophroditica, Call obtu = Callitriche obtusangula, Cata aqua = Catabrosa aquatica, Cera subm = 
Ceratophyllum submersum, Cole -sp = Coleochaete sp., Lyco euro = Lycopus europaeus, Meny trif = Menyanthes trifoliata, 
Nuph lu;s = Nuphar lutea (submerged form), Nymp alba = Nymphaea alba, Pota acut = Potamogeton acut({olius, Pota cris = 
Potamogeton crispus, Pota *dec= Potamogeton decipiens, Pota perf= Potamogeton perfoliatus, Pote palu = Potentilla palustris, 
Ranu aqua = Ranunculus aquatilis s.l., Ranu flam = Ranunculus flam mula, Ranu ling = Ranunculus lingua, Ranu see! = 
Ranunculus sceleratus, Schi gela = Schizochlamys gelatinosa, Scir mari = Scirpus marilimus, Stra al;s = Stratiotes a/aides 
(submerged form), Trib bomb= Tribonema bombycinum, Vero anag = Veronica anagallis-aquatica, Vero cate = Veronica 
catena/a, Wolf arrh = Wolffia arrhiza, Zann palu = Zannichellia palustris. The environmental variables are: EC = electrical 
conductivity, Phosphate= orthophosphate concentration, Chloride ratio =share of chloride ions in the electrical conductivity, 
and Clay, Peat, Sand (=type of soil surrounding the dyke). 

or decreases monotonically along the gradients actually 
sampled, instead of being unimodal as required (see 
Theory). Condition C4 is clearly violated in this data 
set; nevertheless CCA worked well. 

Algae along a pollution gradient 

Fricke and Steubing ( 1984) sampled 25 sites in rivu
lets near the Ederstausee (Western Germany), recorded 
the abundances of 34 algae on a scale from 0 to 5, and 
measured seven environmental variables (Fig. 3), six 
of which (all but 0 D) were transformed by taking log
arithms in our analysis because of skewed distribu
tions. The first axis of DCA and that of CCA nearly 
coincided (Table 6), being a clear pollution gradient: 
positive correlations with ammonium, phosphate, bi
ological oxygen demand (BODS), and electrical con
ductivity, and a negative correlation with oxygen (Ta
ble 7). Although the ordination diagram of CCA (Fig. 

TABLE 6. Comparison of the results of ordinations by de
trended correspondence analysis (DCA). canonical corre
spondence analysis (CCA), and detrended canonical cor
respondence analysis (DCCA) of data on algae along a 
pollution gradient: eigenvalues and species-environment 
correlation coefficients for the first three axes. 

Axis 

2 3 

Eigenvalues 
DCA 0.70 0.17 0.09 
CCA 0.67 0.14 0.10 
DCCA 0.67 0.08 0.05 

Correlation coefficients 
DCA 0.97 0.50 0.67 
CCA 0.98 0.72 0.89 
DCCA 0.98 0.80 0.79 
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FIG. 3. Algae along a pollution gradient: CCA ordination diagram with algae (t::.), sites (0), and environmental variables 
(arrows); first axis is horizontal, second axis vertical. The algae are: Amph oval = Amphora ova/is, Audi viol = Audionella 
violacea, Batr moni = Batrachospermum moniliforme, Calo sili = Caloneis silicula, Clad frac = Cladophora fracta, Clad 
glom = Cladophora glomerata, Clos moni = Closterium moniliferum, Clos leib = Closterium leibneinii, Cyma sole = Cy
matopleura solea, Cymb pros = Cymbella prostata, Diat hiem = Diatoma hiemale mesodon, Diat vulg = Diatoma vulgare, 
Frag capu = Fragilaria capucina, Frag vire = Fragilaria virescens, Gyro atte = Gyrosigma attenuatum, Hant am ph= Hantzschia 
amphioxis, Melo vari = Melosira varians, Meri eire = Meridian circulare, Micr quad = Microspora quadrata, Navi cryp = 
Navicula cryptocephala, Navi radi = Navicula radiosa, Nizs pale = Nizschia palea, Nitz sigm = Nitzschia sigmoidea, Osci 
limo= Oscillatoria limosa, Phor fove = Phormidiumfoveolarum, Phor inun = Phormidium inundatum, Pinn viri = Pinnularia 
viridis, Rhoi curv = Rhoicophenia curvata, Seen quad = Scenedesmus quadricauda, Stau ance = Stauroneis anceps, Stig tenu = 
Stigeoclonium tenue, Syne ulna = Synedra ulna, Ulot zona = Ulotrix zonata, Zoog rami = Zoogloea ramigera. The environ
mental variables are: Oxygen = oxygen concentration, BOD5 = biological oxygen demand, Ammonium = ammonium 
concentration, Phosphate = orthophosphate concentration, Calcium = calcium concentration, •o = German standard measure 
for the total concentration of calcium and magnesium, and EC = electrical conductivity. 

3) explains most of the variance (73%), the diagram is 
unsatisfactory because of the arch effect (Gauch 1982a). 
The detrending in DCCA largely removes this effect 
(Fig. 4) and shows that the variation in species com
position on the second axis is small (A2 = 0.08). This 
variation has surprisingly high correlation with the en
vironmental variables (Table 6). The canonical coef
ficients of the second axis (Table 8) suggest that this 

Audi viol.6. 

OXYGEN 

Micr quad A 

minor component of the variation is related to the ratio 
of ammonium to phosphate. 

In this example the interpretations of the CCA dia
gram and the DCCA diagram (Figs. 3 and 4) are not 
very different, but in more complicated data sets the 
difference can be large. As in regular ordination, de
trending is a method to prevent the second axis from 
being obscured by dependence on the first. 

Clos moni 

A ACvma sole 
A 

Clad frac 

Stig tenuA 

FIG. 4. Algae along a pollution gradient: DCCA ordination diagram. For an explanation of symbols see Fig. 3 legend. 
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TABLE 7. Data on algae along a pollution gradient, from Fig. 
3: canonical coefficients and intraset correlations, as in Ta
ble 2. For a description of variables see Fig. 3 legend. 

Canonical Correlation 

Axis 
coefficients coefficients 

variable 2 2 

Oxygen -0.47 0.20 -0.81 -0.06 
BODS 0.06 -0.11 0.88 -0.08 
Ammonium 0.80 -0.07 0.94 0.09 
Phosphate -0.04 0.64 0.83 O.Sl 
Calcium -0.2S 0.28 -0.19 0.19 
OD -0.07 -0.10 -0.44 O.OS 
EC 0.28 -0.27 0.71 -0.09 

DISCUSSION 

Canonical correspondence analysis provides an in
tegrated description of species-environment relation
ships by assuming a response model that is common 
to all species, and the existence of a single set of un
derlying environmental gradients to which all the species 
respond. The same strong assumption is implicit in all 
ordination techniques. Canonical correspondence 
analysis has the advantage over other techniques in 
that it focuses on the relations between species and 
measured environmental variables and so provides an 
automated interpretation of the ordination axes. 

Canonical correspondence analysis derives theoret
ical strength from its relation to maximum likelihood 
Gaussian canonical ordination under conditions Cl
C4 and furthermore seems extremely robust in practice 
when these assumptions do not hold. The vital as
sumption is that the response surfaces of the species 
are unimodal, the Gaussian (bell-shaped) response 
model being the example for which the method's per
formance is particularly good. For the simpler case 
where species-environment relationships are mono
tone, the results can still be expected to be adequate 
in a qualitative sense (see Tests on Real Data: Dyke 
Vegetation). The method would not work if a large 
number of species were distributed in a more complex 
way, e.g., bimodally; the restriction to a unimodal model 
is necessary for practical solubility, but as Hill ( 1977) 
points out, a good choice of environmental variable 
should minimize the number of species with more 
complex distributions. Some care, however, is required 
with the interpretation of the ordination diagram when 
the additional assumptions (C l-C4) do not hold. Species 
in the center of the ordination diagram may then have 
their optima there, but may alternatively be unrelated 
to the axes. Which possibility is most likely can be 
decided upon by tabular rearrangement of the species 
data with respect to each axis, as is done in Table 3 
for the first axis. Further work still needs to be done 
on the statistical significance of eigenvalues, species
environment correlations, and canonical coefficients. 

As in correspondence analysis, any kind of trans
formation of the species abundance data may influence 
the results. When the abundance data have a very 

skewed distribution, it is recommended to transform 
them by taking square roots or logarithms. In this way 
we prevent a few high abundance values from unduly 
influencing the analysis. Because the compound en
vironmental gradients constructed by canonical cor
respondence analysis are required to be linear com
binations of environmental variables, nonlinear 
transformation of environmental variables can also be 
considered if there is some reason to do so. Prior 
knowledge about the possible impact of the environ
mental variables on community composition may sug
gest particular nonlinear transformations and partic
ular nonlinear combinations, i.e., environmental scalars 
in the sense of Loucks ( 1962) and Austin et a!. ( 1984 ). 
The use of environmental scalars can also circumvent 
the multicollinearity problem described in Theory: Ca
nonical Coefficients. In contrast to the ordination tech
niques in common use, canonical correspondence anal
ysis allows one to incorporate existing knowledge about 
species-environment relationships into the analysis and 
thus potentially is a more powerful tool to advance this 
knowledge. 

Canonical correspondence analysis can be used fruit
fully in combination with (detrended) correspondence 
analysis, as in the examples described. When the so
lutions do not differ much, we infer that the measured 
environmental variables can account for the main vari
ation in the species data. When the solutions do differ, 
we infer either that the environmental variables ac
count for less conspicuous directions of variation in 
the species data (when the correlations between species 
and environment axes are high) or that they cannot 
account for any of the variation (when the correlations 
are small). These possibilities considerably extend the 
analytical power of ordination by allowing comparison 
of results from indirect and direct gradient analysis 
techniques that have a common theoretical basis. Di
rect and indirect gradient analysis can also be com
bined in a single analysis to answer such questions as 
"Does the known environmental variation account for 
all the community variation, or is there a substantial 
residual variation?" Suppose we believe two environ
mental variables govern the species composition in a 

TABLE 8. Data on algae along a pollution gradient, from Fig. 
3: canonical coefficients and intraset correlations in DCCA. 
For a description of variables see Fig. 3 legend. 

Canonical Correlation 

Axis 
coefficients coefficients 

variable 2 2 

Oxygen -0.37 O.OS -0.81 0.04 
BODS 0.07 0.21 0.88 -0.40 
Ammonium 0.6S -0.60 0.9S -0.47 
Phosphate 0.10 O.SO 0.86 0.06 
Calcium -0.22 0.23 - 0.19 0.37 
OD -0.06 -0.07 -0.43 0.18 
EC 0.22 -0.17 0.70 --0.22 
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region. We may choose two ordination axes in the light 
of these variables, then extract further axes as in de
trended correspondence analysis by reciprocal aver
aging and detrending with respect to all previous axes. 
The lengths of the extra axes measure the residual vari
ation. The program CANOCO (Ter Braak 1985a) has 
an option to do such combined analyses. The same 
option allows analysis of nested data (subplots within 
plots. e.g., yearly vegetation records from several per
manent plots, or bird records from woodlots in several 
regions). The first axes can be chosen to represent vari
ation between plots, so that the further axes represent 
variation between subplots. Swaine and Greig-Smith 
( 1980) used a variant of principal components analysis 
in this way to obtain an ordination of within-plot vege
tation change in permanent plots; canonical corre
spondence analysis could be used for the same purpose 
but is not hampered by the unwarranted assumption 
of a linear relationship between species abundance and 
environment. 
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APPENDIX 

Here canonical correspondence analysis is shown to be (I) 
an approximation to Gaussian canonical ordination, (2) an 
eigenvector technique akin to canonical correlation analysis, 
and (3) a method for weighted least squares approximation 
of weighted averages of species with respect to environmental 
variables. For an explanation of the notation, see Theory. 

The model of Gaussian canonical ordination is Eq. I in 
conjunction with Eq. 2 (see Theory). It is assumed that the 
species data are Poisson-distributed counts with E(y,,) = !l,, 
and that the species tolerances are all equal to I. Then the 
maximum likelihood equations for u, and b, are, after some 
rearrangement, respectively: 
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u, = ~ }';0/Y+k- [~(X,- uk)JL,kiY+k] 

~ Zu[~ Y,k(X; - Uk)] = ~ [~ (X; - Ud!L;k]z,1. 
I k I k 

(A. I) 

(A.2) 

Under conditions Cl-C4 and Eq. 7, we may use the approx
imations 

(A.3) 

(A.4) 

because JL,, is symmetric about x, and about uk; the propor
tionality constant X* comes in because the species' curves are 
the more truncated the more their optima lie towards or be
yond the edge of the sampling interval (Ter Braak 1985b). 
The transition formulae Eqs. 3-6 now follow from Eqs. A. I 
and A.2 by using Approximations A.3 and A.4 and the equa
tion X = I - X*. 

Starting from Eq. 5 we substitute for x* (Eq. 4), uk (Eq. 3), 
and finally x, (Eq. 6) and obtain 

(A.5) 

where S 21 = Z 1Y, s 12 = v'z, S 11 = diag (y+ b Y+ 2 , • .• , Y+m), S22 = 

z'Rz and v = {y,,}. Similarly, successive substitutions in Eq. 
3 lead to 

(A.6) 

where u = (u 1 ••••• u'")'. Apart from the particular definitions 
of the matrices in Eqs. A.5 and A.6, these equations are the 
eigenvector equations of canonical correlation analysis, and 
the eigenvalue X lies between 0 and I (Gittins 1985). The 
eigenvectors are all uncorrelated; using subscripts rand s for 
different axes we obtain that u,'s 11u, = 0, b,'s22b, = 0 and 
x,'Rx, = 0. Algorithms based on Eq. A.5 or Eq. A.6 will in 
general be more efficient than the algorithm developed in 
Theory. 

The first axis of canonical correspondence analysis does not 
maximize the species-environment correlation, i.e., the cor
relation between x and x*. I have also developed an eigen
vector technique that maximizes the species-environment 
correlation. This technique requires that the number of species 
is smaller than the number of sites. This requirement is often 
a nuisance in ecological research. As we have seen, the ratio
nale for canonical correspondence analysis is different: it is, 
under conditions Cl-C4, almost a maximum likelihood tech
nique. 

The weighted averages of the species with respect to the 
environmental variables in Eq. 8 are, in matrix notation, 
w = S11 - 1Y'z = s~~- 1 s 1 , where w = {zk)· We want a least 
squares approximation ofw in an ordination diagram. How
ever, when a species total is low, the weighted average is 

imprecise (cf. Ter Braak and Looman 1986), so that it is not 
worthwhile to approximate that species' weighted averages 
very accurately in the diagram. This consideration suggests 
giving the species weights that are proportional to the species 
totals contained in S 11 • The result would still depend on the 
scale of measurement of the environmental variables. To make 
the method scale-invariant we use S22 - 1 as weights for the 
environmental variables. The desired weighted least squares 
approximation ofw follows now from the singular value de
composition (see for example Greenacre 1984: Appendix A). 

(A.7) 

where P and Q are orthonormal m x q and q x q matrices 
(respectively) and A = diag (X 1, ••• , >--.). For convenience of 
notation it is assumed here that q ::s m. This singular value 
decomposition is just another way to solve Eqs. A.5 and A.6 
(see Mardia eta!. 1979: chapter I 0). With Hill's ( 1979) scaling 
of site and species scores, namely 

~ y,,(x,- u,)l = y.,, (A.8) 
i,k 

the coordinates of the species points are the first two columns 
of the matrix 

(A.9) 

and the coordinates of the points for the environmental vari
ables are the first two columns of the matrix 

Be = y ++ -'~> s2/'Q(I - A)'l'A'~> = y ++-I z'Rx(I - A), (A.IO) 

where the second equality follows after some algebra, with x 
the matrix whose s•• column is x,. In this scaling u's 11 U = 

Y++(I- A)- 1 and x'Rx = y .. A(l- A)- 1 • It is easy to verify 
using Eqs. A.7, A.9, and A.IO that w = UB,-'. Therefore the 
points for species and environmental variables form a bi
plot (Gabriel 1971) in the sense that inner products approx
imate the elements of the matrix w, leading to a two-dimen
sional approximation w,, say. A measure of goodness of fit 
is (X 1 + X,)/(sum of all eigenvalues), which is equal to 
trace (s 11 W 2S22 -I w2')/trace (S 11 w s22 -I w') and is, loosely speak
ing, the percentage variance in the weighted averages ac
counted for by the biplot. When the environmental variables 
are scaled to zero mean and unit variance (using y,+ as site 
weights), we obtain from Eq. A.IO that the coordinate ofthe 
point for environmental variable) on axis s must be [X_,(! -
X,)]'~> times the correlation coefficient of the environmental 
variable with the site scores x,. In detrended canonical cor
respondence analysis the coordinates of the points for the 
environmental variables are obtained from a multivariate 
regression of w on the first two columns of u, u 2 say: 

B, = w'sllu,(u,'sllu,)- 1 = z'Rx(u,'sllu,)-- 1 , (A. II) 

which reduces to Eq. A.! 0 in canonical correspondence anal
ysis. 


