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ABSTRACT 

Point qundrat sampling is a method for estimating the proportional 

cover p of a plant species over a planar region, whereby the pre:;ence or 

nbscnce of the species is recorded at each of X sample points. Then. if 

n is the number of points at .,.,.hich the species is present, P n/N is 

unbiased for p. Expressions for the variance of P are gi\•en for (1) .n 

~ snmple of s•'lmple points independently and unifo:nnly distributed 

over a region, (2) a svstemntic snmple or points in a rectangular lattice 

covering the region, (J) o. ~~of small randomly located fr<lmes, 

each with m points regulo:trly S:Paced .nlong o. line or in D.. squn.re lattice. 

The efficiency of systematic sampling .:md frrune sampling ·.rith 

respect to random sampling is evaluated for two classes of underlying 

mosaic processes, termed L-mosaics and C-mosaics. For frame sampling the 

optimum number of points per frame is t.nbub.ted, using<\ realistic co:-;t 

function. 

L-mosaics nnd C-mosnics induce n NnrkoY process nnd a rene,.,·D.l 

process on the line, r,;:spectiYely. These properties allo .... · likelihood 

based inference for data from linear frames. 

A map showing the incidence of heather (~ Yulqaris) >tnd the 

locations o! pines (Pinus silvcstris) on a 10mX20m nrca in Central Sweden 

is analysed to test !or association between pine and heather· The pines 

regener.nted from :o<eed trees .,.,,hich rcm;1.ined after clear-cutting 21 year:'> 

previously. Both parametric :md nonpD..rnmetric methods urc used to dcnlon­

gtratc :-:igni!icnnt .:~ssociation. Parametric models sho,.,• thnt the pinos 

are clustered even after this association is taken into account. An 

c:-:planation is •proposed · 



GENERAL INTRODUCTION 

Describing vegetation is not .nn eD.S)' task. Bro\>'n (1954), 

Greig~Smith (1964) and Tothill (1978)' among others' discuss various 

quantitative measures that have been proposed. The concepts involved 

suggest mathcmatica.l idealizations thnt cnn 'be used in models :ror the 

spatial distribution of the veget.:'ltion over the ground. 

Plants sometimes occur ns clenrly distinct individu<~.ls, t'or 

example pine seedlings. A natural measure of abundance, then, is number 

per unit area (density or intensity). ll'e may think o:C the species as a 

set o:C points in the plane, disregording the third dimension of .:J.crial 

parts or roots. The points may have a typical spatial distribution over 

the plane' :Cor example• a clustered as .:tgainst D. random or regular dis• 

tribution. A biological explnnation for u spatial distribution of a plant 

may be that the plant reacts to a. micro~pattern in the environment over 

the region: or that there is competition or, on the other end of the 

scale, mutual support between the plants; or that it is the dispersal of' 

seeds or the vegetative propagation that causes the spati.:~l distribution 

{Greig-Smith, 1979). Quanti:Cication of the spD.tia.l distribution ('pattern') 

mtlY help to distinguish betv.·een different patterns and' more ambitiously, 

to relate the type! of spatial distribution to possible caus.:tl fD.ctors · 

Quantification is most illuminated within a class of models in which ench 

model typi:Cies a pattern. !'lost patterns o:C vegetation D.rc not nt D.ll 

regular in .:t deterministic sense, hence stochastic models appear to be 

more appropriate than deterministic ones. 

A stochastic model consists o:r D. number o:C rules !rom v.•hich the 

pD.ttern can be generated. The d:~amic chnracter o:C the model is reflected 

in the a.lternath·e term stochastic process. For example, if plants occur 

as points, then D. stochastic model may be that v.·ithin nny given region 

the points arc uniformly distributed over the region, i.e. the plnntH 

do not rcnct to pattcrm• of other plnnt~ or f.:~ctors, nor do they 

interllct nmong e."lch other 1 ,"lnd thu.s occur nt complete!~· rnndom po.sition.s 

within the ore.:~. I!', in nddition1 the number of point~ in the region is 

distributed according to n Poisso!"l distribution ... ,.ith ,"1 fixed me,"ln, then 

this model is termed a Poisson process. The points arc said to constitute 

''Poisson process. This is one rnmous cxnmplc of n "'P·"ti."'l point procC~'<!'l' 

a process tha.t models the spntiol distribution o1' points· The points thnt 

.:tre generated nrc frcqrlently called events to distinguish them from 

arbitrary points (locD.tions) in a region (Cox and Levds1 1966; Diggle1 

1979). In pD.rt II a spatial point process is fitted to young pines 

occurring in a field partly covered • .. :ith he."'ther. Notice that though the 

model may have some d~mamic a.spect only one 'snapshot' of the pnttern is 

nnalyscd. 

Cover is another me.:tsurc of nbundance in \'Cgetntion. It is the 

arenl frnction of the ground occupied by the pl.:~nt. l;.'ith this definition 

the concept of a plant as a point no longer makes scn~e· Instend of 

being dimensionless, a plant is no1•: n tv:o~dimensional phc:1omenon' not 

too much an idealization for, for example, crustose lichens. For 

higher plnnts. either the vcrtic."ll projection of the aerinl part~ nrc 

considered as cover 1 or the basal area, i.e. the intersection of the 

pl.1nt at ground lC\'Cl (Brov.•n, 1954). A vegetation c.:tn then be thought 

ot as a mosaic, D. p."'tchv.·ork of occupied ."lrcas (patches) and unoccupied 

are.:ls (gaps) ,(Piclou 1 1964), as !'or example in a heathland only partinlly 

covered 'by heather (Cal luna vulg.:tris). The shapes and sizes of' the . 
patches and ga.ps 1 together with their intet"lningli!"lg, are visual phenomena 

that ask for further explnnation of their properties in te:nns of ccolo-

gicnl f.:tctors. Again quontificntion may be .'l rir~t step. Stochnstic 



models :for mosaics are called mosaic processes. I shall consider only 

one species at ,'\time, hence binary mosaic:;~, in "''hich each point of a 

region is classi:fied into one out of two categories, :for example, 

heather and not-heather. The categories nre as .... ·ell called pht\scs of 

a mosaic (Pie lou, 1977). 

Two other important measures to describe vegetation arc not 

mentioned further in this study. Frequency rc:fers to the probllbility 

of finding a species in an aren and is normally estimated by the frac­

tion or quadrats or some :fixed size and shape (sid) in which the 

species occurs. Frequency is thus a non-absolute mettsurc, i.e. it 

depends on the mode o:f sampling1 on t~e size and shape of the quadrat 

used {Greig-Smith, 1964). Its main advantnge is the ease .,.,.ith .... ·hich 

presence/absence in a quadrat is recorded. On the other hand, the 

measurement of biomass (dry matter) is in most ecological applications 

time-consuming. The mea~urement is precise, but destructive for the 

vegetation. 

The above mea.sures are not equiva.lent. Each one highlights a 

dif:ferent aspect o:r the vegetation that may be of ccologica.l importAnce. 

For example, cover can be an important measure of the effect of grazing 

management, fertilizing, burning and gro.,.,~h; the •cover' of bare ground 

(i.e. the absence of cover) may indicate da.nger of soil erosion or the 

amount of interception o:r rainfall by the vegctntion (Tothill, 1978). 

In part I the point quadrat method {Goodall, 1952 and references 

therein) to estimate cover is introduced. The method consists o:r 

recording at. say,~ points whether the species is present or llbscnt. 

The fraction of presences in the :\ recordings estimates the cover and 

is unbiased under conditions stated formally by Hiles and Davy (1976) 

in the context of' stereological formulae. The point qundrat method 

'• 

consists of dimensionless samples, point samples, to infer nbout the 

cover in two dimensions, to which I restrict myscl:f 1 or volume in three 

dimensions (see e.g. Hilliard and Cahn, 1961). The point snmplcs or 

point quadrats can be randomly distributed over an area, or nrrangcd 

into net.,.,·orks to sample the region systematically. Another method is 

to arrange the point samples into clusters, called frames, .... ~ich can be 

moved around to sample sections of a far larger area. In Chapter 2 

I e\·aluate the efficiency o:r the latter t.,.,·o designs relntivc to rnndom 

sampling. Of course. the relative e:f:ficiency depends on the pattern o:r 

the vegetntion and in this study the pattern of the vegetation is 

modelled by binary mosaic processes. The processes do model explicitly 

the patches and gaps in a veget.::..tion that cause the 'contagion' or 

correlation between point samples that are not :far apart. In earlier 

work on s,:,.mpling design (Ha.t6rn, 1960) the starting point was the cor­

relation bet.,.,·een points at various distnnces apart, but .,.,•ithout guarantee 

that the corr~lation function considered corresponded to a feasible and 

also reasonable model :for the vegetation. The evaluution of relative 

efriciency :for these iden.l models results in ll number o:r guid·~lines 

(Ch 2 § 4) :for the choice of sampling design in practice. for real 

vegetation. The statistical ana.lysis of point quadrn.t d':l.ta is dealt 

with in chapter). 

In part II t'1e sampling design of the point samples .,.,,ns cho$en 

by Nature: pine seedling est.:tblishcd themselves llf'tcr .:l clear-cutting 

on .:l heathlund in Central Sweden. The young pines .,.,·ere recorded in a 

10m X 20m .:..rca to be either on henther, i.e. in a patch of~ 

vulgaris or off hcnther, i.e. in a gap. The question nt stake is 

whether there is st ~tistical evid(mce of association between pine and 

heather. If there is no association between pine .::..nd heather, the pines 
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are simply a point quadrat sample of the region, although, ns will be 

estnbli~hed' not a random sample. In fact, it is shown that there is 

statistical evidence of association and1 moreover, th~t the pines arc 

clustered, e\•en if the patchiness of the heD.ther and the nssocia.tion 

is taken into account. 
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PART II: ASSOCIA'l'ION BETWEE:-.1' PINE AND HEATHER IN A DEVELOPING STAND. 

CHAPl'ER 1 INTRODUCTION 

"Here nre some data. I mapped the occurrence of pine and heather 

.nnd I want to know "''hether there is association between pine and heather. 

I counted the number of pines on heather: the proportion on heuther is 

!'ar bigger than the cover of' henther. Is this significnnt?n. The map 

(Fig. 1) is inspected and .;,ur, of course, imng inary conversation may 

continue with: "Let's assume that the pines are random, then the n'..lmbcr 

of pines on heather is binomial with ... ", or "I can 1 t help you, I'm 

afraid; you have counted the number of pines in only one plot· Statistics 

can help you, if you do similar counts in a number of independent plots. 

Let's see, "''here do t:-tese data come from .•• ". The 1'o:nner approach 

assumes independence of the pine-locations and this assumption must be 

realistic or be consistent ...,·ith the available data, if valid conclusions 

are to be drawn. The latter approach states that the datn must be 

inconclusi\•e, that independence cnn be guaranteed by the design of the 

experiment or the observati<lns and probably assumes that similar data 

can be collected easily. The aim of thi:-> study is to show thllt spati:ll 

analysis can result. in insight in the data as presented, oven beyond 

the question o:r significance of' the associntion. The reader can judge 

whether the <t.Ssumptions made are relllistic. 

Fig. 1 concerns the same 10rnX20m llrea as Fig· 8 in b .2.4 of Pt I 

Ch 2 t~.nd has bee11 mllpped in lnte July 1978 llt Ivantjlirnheden in Centrnl 

s ... ·edcn. The hcllther "'"as coded into a 100X200 nrray with e.o.ch cell of 

size 10cmX 10cm. A cell is scored 'heather' {Callnun vulqaris) if the 

cover in U:e cell is more thnn 50'%. The location of the pines {~ 

silvestris) "'·ns r~corded to the nearest centimetr-:: llnd clnssified t\> be 

on heather or off heather. Then:: are 150 pines of which J6 are dead. 

Pt!ICh1 ;o 

The median height of the living pines is 5.6m "''ith interquartile range 

of 6-5m; their median age is 10 yr with interquartilc range of 5 yr. 

The pines on nnd off heather arc very simil-'lr, although there is a 

tendency that the age of pines off heather is less. In the soquel I 

confine llttention to the loclltions of the pincs-

Persson (1978) describes tho site in some detail. The st>~.nd "'"as 

regenerat~d from seed trees, "''hich remained nfter clear-cutting in 1957 · 

The soil surface had been treated ...-ith a tractor-scarifier, resulting 

in fairly rcgulm·ly distributed patches of exposed soil :coD.rse sD.nd 

...-ith fractions of median sand of glaci•!luvilll ori!,Jin). ~ 

V"..llqaris occupied llbout 50'% of t!1e area and "''as cvncentrD.ted, in the 

main 1 in the scarified patches. Persson {19i8) estimates the diameter 

of the scarified pAtches as 1m, in agree,nent ...,•ith the diJ\meter of the 

discs (O.Sm) in the model used in §J.2.4 of Pt I Ch 2. The 'gaps' wer~ 

co,rercd by reindeer lichens, c:Jp lichens, etc. Vaccinium \"itis-idae.-:t 

(Cowberry) "''as also llbundant. In 1972/197J parts of the stand were 

cleaned· I-r: is unkno"''Tl whether the area of Fig· 1 was cleD.ne.;., but I 

decided :,.creupon to inclndc the dead pines, including stumps' in the 

analysis. 

It stands out from the site description that the scarified patr~hes 

ttre importa~""lt for the occurrence of heather, and th~..:s possibly for the 

occurrence 'Jf pines, .:tnd might eventually explain the observed associ­

.:l.t.i.on tho1.t I shn.ll r;+.udy. It is im:>:~rtant to renlize right from the 

start this limitation that is common to all observational studies· On 

the other hand 1 once the observed features nre more clearly understood. 

experimental work mt~.y estllblish more effectively the causal relations· 

In Cht~.pter 2 it is established that the pine-locations :u-e neither com­

pletely random nor independent .,..hen the different. numbers of pines on 

.-:tnd of1' heather llre tn.kcn int'~ account. An nl"':.crnativc model allows for 
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the clusteri':lg of the pines and gives an acceptable fit. In Chapter) of s~ed in the ~m.-,11 n•·en "'C nre concen'led with. 

I show with both parametric and nonparametric methods that the data arP. likely to lnnd i:'l the lee and fixt•tion is more likdy in the- scnri:'ied 

not consistent .,..ith the hypothesis of no associ."ltion. A combined mod¢1 patche::;. Further, neither t'1~ germinntion c::mditions m,.,_y be- r.omogencou::; 

for pine and heather is proposed that accounts for their respective pat- nOl' the protection ngainst gevere climatic conditi•>nS or nnimals. The 

terns and the association. Finally a methodological point. The map occurrence .:>f heather mny be ir.1portant in nenrly all stages. :-loreover, 

sho""n as Fig. 1 is split into t"·o square plots, subsequently taken to be pine and heather both hn1·e laternl root systems so t.l~;..t nutrient !.;Om-

of unit side. The two plots, henceforth plot 1 {the left on¢) and plot petition tw•!' occur in !."Iter ·~to.ges of develop~lent. Surprisingly, the 

2 (the right one) are used for simple crosswvalidation. If in a test model 1:11nt attempts to ex;)lnin the clust.~red pattern of the pines from 

procedure parameters are to be specifi¢d ~priori, these parameters are the pntchiness of th~ heather mosaic ·'I lone does not fit. In the absence 

estim(;!ted from the other plot· This occurs in :-1onte-Carlo tests of of precise kno.,.•ledgc of other roctors that int'luence the final :.oc.:'l.tion, 

goodness-of-fit. Statistics for the two plots are as follows. In plot 1 we must restrict our~~lves to simple .nJdels that at le;.,.t ackno.,.·ledge 

there are 82 pines o:C .,.·h.ich 63 pines are t>!'• heather. The c~ver o:C the rnndom compon .. nts and describ<.> the observed clustered patterr-.. .l. 

heather is 0.4994. In plot 2 there are 68 pines o:C "'hich 48 pines arc t"·o p.:'l.rameter• •n·.Jdcl is found th'lt gi\·es a reasontl~)le f"it, "·itho•:t. v.se of 

on heather. The cover of heather is 0.4953· the hcntlh'!r- do.tn. 

Paramet·~:· 0.;.t:mation and goodne~s-of-fit te:>tl.ng for stochast:...: 

CHAPTER 2 FITTING A POI:-:T PROCESS HODEL TO THE PINES. :.--rocesses is hampc:·cd by the lnck <>f' manageable exp:·~-~·ions for the 

1· INTRODVCTION lilc¢l.,IIOOd function: hence must proc~ed along differc.1t lines. Diggle 

Features of a spatial pattern may ~e modelled by stochastic pro- (1')'79) discusses methods thnt involve c:1::oicc of a (function,'ll) summary 

ce::;ses, but their :i;."namic definition can contain only some major aspects description of pattern and a measure of discrepancy bct.,.·een summnry 

of the as:o;umed genesis of: the pattern, or - even "'orse - may bo irrclcvo.nt. descriptions. Estim.:~.tion of pnr.:~.meters then proceeds by minimizing the 

In either ca~c goc-dnes~-of-f:it mu~t necessarily be tested on the observed discrepancy bct.,.·ccn the summar;.· description expected under the model and 

the observed one. Testing is by Hontc Carlo methods' i.e. by simulnting 

A ne.,.·l~· established pine has at least sur•.-ivcd the following stttgcs the model nnd calculating the discrepancy of the expected summary 

(van der Pijl,1972): maturation of" the seed! dispersal, fixation to the description with the summnry description of the simulated patt¢rn. Under 

soil• germination ana establishment. The disp¢rsnl of: pine seed is mD-inly the hypothesis that the data arc consistent with the model the observed 

by wind but, :.~.t least in some ~ species, birds and sq1tirrcls are and simulnted aiscrepancy values are eXchangeable, hence the rank of the 

reported to act as planters b~· storing seeds. 'l>.'ind dispersal is over observed discrepancy provides the exact significance level of the test. 

distances up to 2 km (van der Pijl,1972). This suggests a 'Poisson-rt~.in' 
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2 • THEORY AND 1-lETHODS 

Summarv Descriptions 

As there are no clear large scale inhomogeneities in the data nor 

any obvious directionality, attention is restricted to stationary and 

isotropic point processes, i.e. translations and rotations do not change 

the statistical properties o~ the process. Under these assumptions 

in~ormative summary descriptions of' the processes are (Ripley, 1977; 

Diggle' 1979) 

:\ "' intensity, i .c. expected number o~ events per 
unit ar-ea; 

;, K(t) = expected number o~ :rurther events within distance 
t of' an arbitrary event; 

( 1) 

F(t) 

G(t) 

probability that the distance ~rom an arbitrary 
point to the nearest event is at most t; 

probability that the distance ~rom an arbitrary 
~to the nearest other event is at most t. 

The intensity describes the f'irst moment o~ the process and is 

estimuted by the observed number o~ events per unit urea. 

The K-~unction K(t) can be linked ... ·ith the second moment structure 
, 

o~ the process. Let N(A) denote the number o~ events in A C ~, and ~~ 

an infinitesimal region centred at z· 'v:e assume that the process is 

orderly, i.e. P{NC~) > 1} = o<\dz]) .,.here ].\ denotes areu, so thAt 

A= lim P{N(dX) > o}/\dX], and assume ~urthcr 
jdx[-o - -

that E[N("Z)N(d,tl]-

P{N(d;::_)> o, ~<d.z) > o} as\~\' \dzl ... o. These assumptions arc valid 

~or the processes that will be considered and ~acilitate the inter-

pretation o~ the second-moment fUnction 

g(t) lim 
1"..:;1 •\d_z[ -0 

E[N("Z)N(dzl] 

I "Zi I dz[ Cllz-xll t) (2) 

us the joint probability density for the occurrence of a pair of events 

distance t apart (Ripley, 1977). Because now g(t)/t. is the conditional 

Pt II Ch 2 

intensity of an event at x given an event at 0 (\\~!\ 

following relation between K(t) and g(t) 

21'. 

t) we helVe the 

fJ(( t) l J (l(;) r d9dr 
0 

g(r)r dr 
0 

or conversely (Ripley, 1977) 

A2 dK(t) 
g(t) ":;;:t ~ 

(J) 

(4) 

The advantage of K{t) over g{t) or the covariance density cCt) =g(t)-A2 

(Cox and Lewis, 1966) is that a cumulative ~unction like K(t) docs not 

need smoothing .,·hen estimated from data. Given the dcrinition of AK(t) 

it :f'ollo.,·s immediately that 

because 

, 
t,""'K{t) "'expected number o~ ordered pairs of events 

a distance at most t apart ... ·ith the first 
event of each pair in a given region o~ unit 
area, 

n}[>J<C tl] (5) 

This result suggests ho ... · K(t) can be estimated ~rom the empirical dis-

tribution or pairwise distances between events in the d~a. Given the 

sampling region, e.:~ch ordered pair of events (:;:s,;::.l is gi\·cn a ... ·eight 

k(::s,.zl which is the reciprocal of the proportion of: the perimeter of the 

circle centred on~ .'lnd p.::tssing through 2:' th.;J.t is "''ithin the s.'lmpling 

region. Then the sum of these weights over all ordered pairs 7 les~ than 

t apart, divided by the area of the sampling region is an unbiased esti-
, 

mator for A-K(t)' provided t is such that the above mentioned proportion 

o~ the perimeter cannot be zero ~or a.ny point in the sampling region 

(Ripley, 1977)~ ~or the unit square: t < !(2. I~ A is unknown its 

estimate is substituted, whence an estimator ~or K(tl that is slightly 

biased. 
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The F-function F(t) and G-function G(t) arc nearest-neighbour 

distribution functions. Unbiased estimators :ror the F- and G-runction 

are derived rrom the empirical sampling point-event distances and event-

event distances ... ·ith a correction for edge-efrects. The correction 

ignores sample points or events which are closer than t to the boundary 

or the sampling region. Ir xi and di arc the respective distances from 

the ith or m sample points to the nearest event and to the nearest point 

on the boundary of the sampling region then the unbiased estimator is 

(Ripley, 1977) 

(6) 

"''ith the analogous formula for GCt) .,.ith xi and di the distances of the 

ith event to the nearest neighbour and to the boundary, respectively. 

The F- and G-function restrict attention to one scale of spatial 

interaction7 the scale determined by the nearest-neighbour distributions. 

The K-function allo ... ·s inspection of different scales as in the nested 

block analysis of Greig-Smith (1964). 

In practice the summary-fUnctions are estimated for a finite number 

of equidistant \'a lues of t. The interval-... ·idth used for the pine data 

is 0.005 in terms of the unit square, i.e. 5 em intervals in the field. 

F(t) is estimated using a square grid of 9X9 points. 

2.2 Spatial Point Process Hodels 

The homoc;eneous planar Poisson process, shortly ~ process, 

is the simplest spatial point process. It has a single parameter, tho 

intensity ~.(> 0) , and lacks any form of spatial dependence. In a Poisson 

process the number of events in a region "''ith area A has a Poisson dis-

tribution ... ·ith mean M, .,•hile conditional on the number of events in a 

region, the e"·ents a.re distributed independently and identically, uni-

formly in the region. These characteristics ennble simuln.tion of a Poisson 

process. 

l'tiiCh-

It follo.,·.s from these definitions that the expected number of 

? 

further events in n circle centred ll.t an arbitrary event is t.::t- and 

that the probability that no :further e\•ents occur is exp(-Ant 2
). Hence 

the summary descriptions arc 

K(tl 

F(t) 
? 

G(t) "' 1 - cxp(-nAt ... ) 
(?) 

Instead of a constant intensit:-· the point process may have a 

variable intensity over the plane. This leads to inhomoqeneous planar 

~processes, determined by the intensity runction A(_:;), ... ·ith ~ a 

location in the plane. In an inhomogeneous Poisson process the number 

of events in disjoint regions are independent, ... ·hile the number of events 

in a region is Poisson distributed ... ·it.h n moan equal to the integral of 

the intensity !'unction /,(~_) over that region. ObYiously the inhomogeneous 

Poisson process is not st."J.tiona::-y. Ho.,·c,•crt the process c<~.n be m.:1de 

stationary by assuming a stochastic model A(;~) for the intensity function. 

The resulting point process is called a ~process or~ stochastic 

~process (!-lat'Crn, 1971: Grandcll. 1976). Gi,•cn .:l realisation of 

f.(!) a Cox process is an inho~ogeneous Poisson Proces~. 

2 
If t-.C;:) is. stationary and isotropic · .. rith mean A, Yari.:lnce c; 

and correlation function r(u), then the associated Cox process is stationary 

and isotropic "''ith joint density 

g(t) u) (8) 

"''hence .... ·ith (J) 

K(t) 

Explicit expressions for the nearest neighbour distributions n.re dirficult 

to obtain (~atCrn, 1971) · 
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The inhomogeneous Poisson process and the Cox process ~rc suitable 

models to express the dependence o~ the intensity o~ pines on the occur-

renee o~ heather. Let the intensity in the p~tches ~nd gaps be ~1 nnd ~0 , 

respectively. Conditionally on the number o~ events N, only the relative 

intensity is important. Assuming t.
0 

< \, we can simulate the process by 

locating successive pines completely at rnndom in the area while dis-

carding pines that fall in a g~p with probability 1 - ~of\. \l'e proceed 

in this ... ·ay until eventually N pines are produced. 1'hc ratio ~of\ is 

estimated by the observed intensity ratio. I~ the mosaic o~ the heather 

is kept ~ixed we htwe an inhomogeneous Poisson process, but if in each 

simulation the mosaic of the heather is taken to be an independent reali-

zation of~ mosaic process, .,..e have n Cox process. Diggle (in prop.) 

~itted success~ully ~ C-mosaic to the he~ther in which the p~tches of 

heather are the union o~ countably many closed discs with mutually indo-

pendent and identically distributed radii and centres determined by a 

Poisson process (cf. pt I Ch 2 §z .2 .4) • In the model fitted by Digg lo 

(in prep.) the distribution ot: the radii is a thrce-pnrametcr 'v.'oibull 

distribution, 

r > 6 (10) 

'!'he resulting Cox process mirrors the inhomogeneity of the environment 

for the pines: patches o~ heather arc more favourable for tho pines 

t!Htn gaps. Because Of the patchiness of tho heather the pattern o~ pines 

"'"ill be clustered relative to the Poisson process (r.(u) ~ 0 in (9) ) . 

Contagion is another cause of clustered patterns. Flexible and 

tractable models are the Poisson cluster models (Neyman nnd Scott, 1958) 

that produce aggregated patterns by the !ollo..,·ing mechanism: 

(1) Pnrent events constitute a Poisson process with 
intensity 1/p. 
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(2) Ench parent event produces a random number M 
of daughter events, independently nnd idonticnll)" 
distributed for each parent. 

(J) The position of each dnughter relative to her 
parent is independently and idontico.lly dis­
tributed according to a bivariate distribution 
G( .) • 

78 

I take the final process to consist of daughters only and o.ssumc that 

G( .) is ro.dio.lly symmetric and gives distribution H(t) o! the distnnce 

between two o.rbi t.rary sisters. Further, let " = E!-1 and f. "' ~ 0 then, 

with ::-.: an ~rbi trarv event, 

>J<(t) 

- . 
E(# of further event::;: ..,.ithin t !rom!) 

E(# or sisters within t from x) 

E(# o~ further events from other parents 1dthin t ~rom xi. 

The first term on the right-hand side is 

w 

2: P(1:, ha::;: (n-1) sisters)E(# of sisters "''ithin t ~rom~ n) 
n=O 

[<n-1)H(t)] 
E:-f(:-t-1) 

H(t) 

(11) 

(12) 

where P(n) is the probnbility thnt a parent has n d,"lUghtcrs, The ~<econd 

term is simpl~t ~r.t2 because the locntions of di~!erent 1'ttmilies are 

independent (Bartlett. 1975). Hence, 

K(t) = 1tt2 .. p E !>1(!-t-1) H(t) 
).:2 

For the pines I speci~y 1-t to be Poisson distributed and G( .) ns the 

radinlly symmetric G,.,uss:io.."'l distribution "''ith density 

2 -1 r 2 " ") g(x
1

, ::-.:
2

) "' (z:-~ ) expt-Cx
1 

.. :x:2)/3.:r-

Henco, E M(M-1) = ~2 , H(t) = 1 - oxp(-t2/4o 2 ) and thus 

K(t) 

(13) 

(14) 

( 15) 
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This ..:i 11 be referred to as the G.1ussian cluster process with parameters 

p and C• Note that~ is a redundant parameter because K(t) is scale~ 

invariant, that 1/p and '1/o are the number of clusters and their tightness, 

respectively and that, conditiOnD.lly on the number of events N and the 

number of parents' the N daughters lire D.lloc;1ted independently and 

randomly amongst the parents. Expressions for the nearest-neighbour dis-

tributions are availD.ble (Bartlett' 1975) but are not very enlightening. 

The Gaussian cluster process is formally equivalent to the Cox 

process "i th random intensity function 

" ~ g (x-;:;.) 
i=1 - l. 

h61 

... ·here the .¢.i are the points of a Poisson process. Any attempt to dis~ 

tinguish from the obsen .. ed pD.ttern bet ... ·een contagion :md heterogeneity 

is thus futile. 

From super-position of independent point processes we can derive 

new processes. Let the subscript i(i = 1, 2) refer to the defining pro-

cesse.s. The intensity o'f: the resulting process, .,.•ithout a subscript, is 

i, = 1\
1 

+ t..
2 

and the K-function is 

~.K{t) ' ~ {\K1(t) + /..2r.t2} 

K. (t) - 'F.t2 "'e get 
> 

(18) 

so that for a Poisson cluster process (i=l) superimposed .,..ith .:l Poisson 

process (ic2) 

K(t) 

2 
\E 
'2 

M(M-1) H(t) 
2 

" 
i.e. the K-function of the superposed process is indistinguish3ble from 

the K-!Unction of a Poisson cluster process with an identical distri-

2; 0 
bution of }I but a different number Of parents A ( A1. p) · For the pine-data 
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this property mny "''ell be .ndvnntngeous in that a Poisson rain of seed 

from "''ind di:;~persnl together with an independent disper:::o.l ngcnt that 

causes clustered pattern still gives a K-function "''ithin scope of the 

Kwfunction of a Gaussian cluster process. The F- and G-functions do not 

have this property. For example, .... e hnve 

1 - F(t) P (no event from either process "''i thin t from o) 

(2()) 

\o.'ith a Gaussinn cluster process nnd a Poisson process the parameter t..
2 

of the Poisson process cannot be absorbed in the parnmeters c, ;,J. or o. 

2·3 Discrepnncv Measure, Estimation and Testino 

P3rametcr cstimtttion and gooclness-of-fit testing ...-ill be bnscd on 

the K-function. ll'hen in Chapter 3 the fitted model is used to test the 

association~hypothesis, the inter-event distances of the pattern deter-

mine the vari.:mce of the number of pines on heather and the K-runction 

has been designed to summarize these distances. Fortunately, the K-

function is more trnctable than the F- and G-function. 

The discrepancy bet ... ·ccn model and data is taken to be 

dCe l "' 
0.1 1 

J {K"'Ctl 
o e 

...-here S is the parameter of the model. The square root transformation 

is chosen to stabilize the VD.riancc of KCtl, at least under the Poisson 

model (Besag .in discussion to Ripley, 1977; Silverm<ln' 1978). The effect 

of a different choice of transformation .:md upper bound of integration 

will be discussed for the Go.ussio.n cluster process. For the pine dD.ta 

the integration in (21) is replliCed by a summation .,..ith interval width 

o.oos. 
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Parameter ~stimation proceeds by numerical minimization of (21) 

with the Simplex algorithm (Nelder and Head, 1965). This method fails 

if (21) is insensitive to changes in e as for example in the model where 

a Gaussian cluster process is superposed with an independent Poisson 

process; the parameters A
2 

and p in §2.2 nre confounded in the K-runction, 

but not in the F- and G-runction. 

Assessm~nt of the goodness-of-fit of a model with a prescribed 

value of S proceeds by a Honte Carlo test. A simulation of the model 

results in a pattern of events from which the K-function can be estim.:J.ted. 

Then the discrepancy (21) is calculated· The discrepancy calculated ror 

the data and the values of discrepancy for m-1 simulations give m values 

that are exchangeable under the hypothesis. The rank of the discrepancy 

for the data pro,· ides the exact significance level of the Honte Carlo test. 

The limitations of a Monte Carlo test are clear. It tests only a 

simple hypothesis and parameters need to be given a priori. The last 

problem is circumvented by estimation of parameters in one plot or the 

data and testing th~ goodness-of-fit "''ith these estimates in the other 

plot. The (overall) intensity param~ter, however, is removed by con-

di tioning on the observed number of events. The tests arc therefore con-

ditional tests' that may differ from unconditional tests (cr. Ripley, 

1977). 

For the Cox process the expression for the K-function is rather 

inconvenient. Therefore, inst~ad of the theoretical K-function the 

mean of the m estim~ted K-functions of simulations and data is used 

in the goodness-of-fit test· This does not affect the exchangeability 

of the discrepancy values. 

The Monte Carlo test depends in its detail on the formal definition 

of the discrepancy. A more informal assessment may supplement the test 

as provided by a graph of the theoretical summary description, its esti-
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mate from the data and the upper and lower simulation envelopes (Ripley, 

1977). The envelopes arc pointwise minima and maxima of tho functional sum-

mary description. The number or simulations in this study is either 19 

T I or 99· ests for the pine data are accompanied by grnphs based on K(t)-jrr, 

which is linear in t for the Poisson process. Disadvantages of the simu-

lation envelopes are that they depend on the number of simulations and 

have a high point..,•i:.;e variance. Alternatively, lo-..·er nnd upper qunrtiles, 

or the percentage point that is chosen to be relevant for the tests, can be 

given. 

2.4 Confidence Reqions 

Lack of knO\o'ledge of the distribution of the statistics ..,,e use for 

point estimation hampers extension to interval estimation. I propose a 

prctgmatic npproach that has attractive properties und~r idenl conditions. 

A 95% confidence region is a stochastic region in the parameter 

spa·ce that contains the true parameter o1' the process \o'ith 95% probability. 

A confidence region can be constructed by a possibly infinite number or 

tests. one for each e in the p<lrameter space, of the simple hypothesis 

that 9 is the true parameter of the process. The confidence region con-

sists of those values of e for \o'hich the hy"pothesis is not rejected at 

the 5% level of significance. The construction of the test is arbitrary 

as long as no optimum properties for the confidence regions are required. 

As such the Nonte Carlo tests based on (21) could be used • ..,.ith a minimum 

of 19 simulations for each 6 to guarantee tho 95%-coverage property of 

the confidence region. 

In constructing a confidence region we partition the parameter space 

into two exclusive sets' the act S of pl<J.usible values or e and the set S 

of implausible values or 6. If S is closed, possibly after redefinition 
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of boundary points' then we want in fact to map a binary mosaic with a 

minimal number o:f sample points, i.e· tests for values of S. As our 

test would be a ~onte Carlo test, 'observation errors' occur; the pro-

blem of mapping a mos.:~ic is discussed by Switzer (1971). Happing S 

would be enormously facilitated if S is convex, so that a crude search 

over the parameter space suffices in practice. This approach is not 

followed up any :rurther. 

The problem to which confidence regions are an answer, is in general 

ho"' precisely parameters can be estimated given an estimation procedure 

and how the precision can be estimated from the data. Given a model "'ith 

prescribed parrumeters the distribution of the estimator of the parameters 

can be determined in principle by simulation of the model. The 'sprend' 

of this distribution determines ho"· precisely the parnmeters cnn be 

estimated for this model, for a given estimntion procedure· The point 

estimate derived for the data provides under suitable conditions the 

approximate v.o.lue of the true parameter. Simulntion of the distribution 

for the process "'ith this point estima.tc as true par.o.meter "'ill be 

particularly revealing. Under a number of assumptions this distribution 

can be used to construct a confidence region. 

Suppo::~e that for every 6 the distribution of' a is a bivnriate Norm;;~.l 

distribution with mean 9 and covariance matrix S thnt docs not depend on 

the value of e - a rather restrictive assumption. Then, e as estimated 

n·om the data, is a bivariate No:nnal quantity, while S can be estimated 

from, say, m simulations. The ellipsoid 

(22) 

o.o5 
is a 95% confidence region for 9 where F 2 ,m-Z is the 5% point of the 

F-distribution with 2 and m-2 degrees of' freedom. 

!'i. It Ch :.! 

To S<:~tisfy the normality as:::umption transformation of the parn-

meter mny help. In the pine d.:~.ta a con:fidence ellipsoid is constn..~cted 

for the logarithm of the parameters of the Gaussian cluster process. 

The assumption that S does not depend on e should at least hold in the 

region of the parameter space to which point estimates are confined 

"'ith high probability. I recommend that S is estimated from simulations 

"'ith the point estimate as true parameter. 1-:o further checks on the 

assumptions have been made for the pine~data. Note that the total number 

of events is treated as an ancillary statistic on "i'lich is conditioned· 

2.5 Numerical Procedures 

Simulations of the processes are conditioned on the number of 

events observed in the plots. If necessnry, periodic boundnry condition:,; 

arc imposed, i.e. the unit squnro is "'rD.ppcd D.round a torus and the 

location 01· nn event is (=-:
1 

modulo 1, x2 ~ 1). These conditions 

avoid edge-distortion. 

Computer progrnms were written in FORTRAN IV and APL and run on the 

IBM .370 of the ;\orthumbri;;~.n Universities Nultiplc Access Computer (KU!>tAC) 

at Newcastle upon Tyne. Routines for random number generation nnd the 

Simplex .'\lgorithm were taken from the NAG FORTRAN librnry (Anon, 1977). 

New FORTRAN programs (FGHAT and KHAT) were "'ritten to cttlculatc the F•, 

G- and K-function. Riple~.- (1977) reported numerical instability in his 

procedure to estimate K(t). This instability arose from the "''ay in which 

the weights for each pair of events were calculated· In KHAT the problem 

is avoided and•thc result is a far more efficient progrnm. As the prnctical 

interest in K(t) is limited to the smaller values oft, KHAT is written 

for t ~ 0.5 with Arbitrnry interval width· Note thnt the "''eights thus 

cannot exceed four. 
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3· RESULTS 

3·1 Summary Statistics· 

Fig. 1 shows the positions of the pines in plot 1 and plot 2· 

Figs. 2 and 3 give the F- and G-functions of nearest neighbour distances 

fOr the t.,.,·o plots. For comparison the theoroticnl curve for the Poisson 

process (7) is given in Fig. 2 while this curve is used as abscissa in 

Fig. 3· The number of event-to-nearest-event distanccs7 .:lS shown by G(t), 

fOr values of t below 0.1 (1m in the field) exceeds the expected number 

under complete spatial randomness. The distribution of point-to-nearest-

e\·ent distances, F( ) , does show clustering but not as markedly as G( .) • 

Figs. 4a and 5a shO\oo' the estimated K-function of event-event dis-

tanccs "''ith for comparison the parabolic K-function of the Poisson process 

and the K-function of a Gaussian cluster process. In Figs. 4-b, c and 5b, c 

transformations arc shO\oo'l'l for "'hich the Poisson process is the zero-

function. ~otice the similarity bet .... ·cen the overall shape of the K-

function in plot 1 and plot 2. On small scale (below t = 0.05) there is 

marked clustering but on a larger sc.:1le (t bcb·een about 0.1 and Q.2) there 

o.ppears to be some regularity in the pattern of the pines that is inter-

esting in view of earlier rem~rks .:1bout scarification. 

3·2 Goodness-of-Fit of Poisson Process and Heather-Bo.sed Cox Process. 

The discrepancy (21) bet.,.,·een the data tlnd the Poisson process is 

0-026 and 0.030 for plot 1 and plot 2, respectively. The Honte Carlo test 

based on 99 simulations has a level of significance of 0.01 for both 

plots; hence, the hypothesis, that the pines o.re completely randomly 

distributed, is rejected. The simulation envelopes arc shown in Fig. 6· 

The K-runction of the data lies outside the simulation envelopes for 

values oft below about o.oa. 
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The hypothesis that the pines arc completely randomly distributed, 

but with different intensities on o:~nd off heather, is tested by simu-

lo:~tion of the Cox process with a C-mosaic for the heather ~s r.:~ndom two-

state intensity function. Digglc (in :prep.) c~timntcd the intensity of 

the centres or the discs as 221 and 211 and the partlmeters of the 

Weibull distribution (10) of the radii as (6, ~~ p) ~ (0.0281, 0.8471, 

144,7) nnd (0.02:::6, 1.0111 128.4) for plot 1 and plot z, re::;pcctb•cly. 

The intensities of pines off heather relative to the intensities on 

heather are estimated as 0.3009 and 0.4089 for plot 1 and plot 2, 

respectivelY· The l-1onte C.:lrlo test in which the parameter estimates of 

the plots .:lrC not exch.:lnged h~s level of significance 0.01 for both plots. 

Exchanging p.:lr.'lmeter estimates would giYe .:l .... ·orse fit. The cm·clopcs 

and mc.:ln of 99 simulations are sho~~ in Fig. 7· The discrepancies arc 

0.024 and 0.027. ~ote that the K-runction of the Poisson process and this 

Cox process hltrdly differ, hence estim.:1tion of the relative intensities 

via the K-function "''OUld lead to unsa.tisfactory estimates· 

3·3 Gaussian Cluster Process 

3·3·1 Estimation 

The t.,.,•o parameters of the Gaussian cluster process arc (p ,::;) "''ith 

p the reciprocal of the intensity of the parent process and :: the standard 

devi.ation of the normal distribution .,.,-hich governs the spread of daughters 

around o parent. Estimates for ( p ~) arc derived by minimizing the dis-

crcpancy (21). Tc• avoid negative estimates for or o during the seD.rch 

of the Simplex algorithm the parameter-space is transformed to (log P' 

log c;r), A convenient initial cstim.:~te for p c.:~n be derived by noting 

that max {K(t)-r.t2 } = P· A number of initial estimates (p and= both 
t 

rnnging bct .... ·cen 0.01 and o.tQ) ...-ere tried to enhance the chance of finding 
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5· TABLES A~O FIGUHES 

~ Point estimation of Cp ,c) of Gaussian cluster processes 

Upper limit 
( K( •)) !r of integration K(.) log ( K( • ) ) 

plot 1 plot 1 plot 2 plot I 

c a p 0 p 0 

0.025 0.035 0.027 0.010 0.011 o.oos o.oto 0-01?. 0.019 

o.os o.oto 0.012 0.010 0-011 0.011 0.014 0.010 Q.014 

0.075 o.oto 0.011 0.010 0.012 0.011 0.013 0.010 0.014 

0.1 o.oos Q.011 0.009 0.012 0.010 0.012 0.010 0-01) 

0.2 0-002 Q.QQ4 o.oo6 o.oos O.OOi 0.009 o.oos 0.012 

Q.J 0.002 o.oo4 o.oos o.oos o.oo6 o.oos o.oos Q.012 

o.• o.OoJ 0.007 o.oos o.ooa 0.006 0.009 o.oos 0.012 

0.5 0-010 0-180 0-005 o.ooe o.oo6 o.oos o.oos 0.012 
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the global minimum. Table 1 sho-..·s the effect on the estimates of 

slightly different definitions of the discrepancy. Usc of K(.) instead 

'· of K~(.) in (21) increases the dependence of the estimates on the range 

of integration. The estima.tes .,..ith K!( .) and a r.:tnge of integration of 

0.1 were chosen as final estimates. Note that above t = 0.1 the csti-

mated K-function lies :for some t belo ... · the K-function or the Poisson 

process, while this is impossible for the theoretical K-function of .o. 

Poisson cluster process- Extending the range of integration means 

trying to let the model fit over a range of distances that cannot be 

fitted properly. The final estimates, used throughout Part II,are 

(p ,a) = 0.009, 0.012) and (0.010, 0-012) for plot 1 and 2 respectively, 

with discrepancies of o.ooos and o.oooa. 

3·3·2 Goodness-of-:rit 

The pt~.rameter estimates o:r plot 2 -..·ere used in simulations to 

assess the goodness-of-fit of the model in plot 1 and vice-versa. \o.'ith 

either .o. fixed or Poisson number of parents in 19 simulations the 1-lonte 

Carlo test based on (21) has levels of significnnce of 0 ·95 and t.O for 

plot 1 and 2. However• the simulation envelopes (Fig. 8) touch the K-

function of the data for values oft of nbout 0.15. If the range of 

integration in (21) is increased to 0.25 the Nontc Carlo test gives still 

levels of significance of 0·75 (2 times) in plot 1 and 0.55 and 0·75 in 

plot 2 for 19 simulations -..·ith a Poisson and fixed number of parents 

respectively. Statistically, the second order properties of d.:;~.ta appear 

to be consistent with a Gaussian cluster process. 

In plot 2 the envelopes of the simulations with D. Poisson number 

of pftrents are much ··rider than of the simulations -..·ith n :fixed number of 

parents (Fig. 8b). Obviously the introduction of varinbility in the 
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number of pnrcnts incrcnscs the overall variability. Jto~o.·cvcr, further 

simulntionl'< ~hO\o/Cd that Fig. 8b is untypical: the point'd~c 1-ltnnd.,rd 

deViations in K(t) based on 100 simulations nrc almost equal for simu-

lations -..·ith fixed and Poisson number of pcrcnts. 

3·3·3 Confidence rcqions 

Fig. 9 sho...:s estimntes of the logarithms of the pnrnmetcr:,; for 

100 simulations of the G.:mssinn cluster process (Poisson number of parents) 

The true parameters of the process arc the point estimates (0.009, 0.012) 

and (0.010 1 0.012) for plot 1 and 2 respectively. The 95% confidence 

ellipsoids nssume Nonnnlity in the logarithm of the parnmeters. \lith 

n fixed number of parents (Fig. 10) the confidence ellipsoids hnve " 

smaller are.o.. The confidence ellipsoid in Fig. 9b is distorted by an 

extreme estimnte. If this estimnte is excluded• the Figs. >:uggcst plnusiblc 

vo:~lues bct;.,•een 44 o.nd 270 :for the number of clusters Co - 1 ) and bet-..·een Scm 

and :)Ocm for the sprea.d k) of the clusters nround their centre· 

4. DISCUSSIO!'J 

The shnpe of the distribution of inter-pine dist<lnces' K( · l is very 

similar in the two plots and indicates clustering on small scale and 

regularity on larger scale. The small scale clustering has been modelled 

by a Gaussian cluster process. The large scale regularity appears to be 

compatible ...:ith sampling fluctuations in simulations of this model. That 

the regularity occurs in both plots o:r pines is discomforting but sho .... ·s 

the value of the d<lt.:J.-splitting exercise. The Rcd-..·ood datn discussed in 

Ripley (1977) •and Diggle (1978) sho-..· a similnr sh.o.pe of K(.). 

The parameter estimo.tes for the Gnussian cluster model quantify 

concisely the second-order properties of the obser"\·ed pattern nnd, 
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together with their con:fidence reg ion, provide a basis :ror compnrison of 

pattern in other developing stands o:f pine or in other variables. The 

clustering is much more pronounced than expected on the basis or the 

mosaic pattern of the heather (Figs (6)-(8)) and its scale is much 

smaller than the scale of patches of heather. The model is :formulated 

in terms of contagion but (16) sho ..... ·s that an interpretation in terms of 

heterogeneity is equally satisfactory. Note that it is possible to sub­

ject the model to further tests bD.sed on the nearest-neighbour distri­

butions or any other relevant summary description, but the danger of 

data-dredging should be recognised. 

CHAP'l'ER 3 TESTS FOR ASSOCIATION 

1· INTRODUCTION 

In this chapter the question is examined whether there is statist­

ical evidence that there is association between pine and heather in Fig.1. 

Among possible measures of association I choose the number of pines on 

heather. 

Assume temporarily that the pines arc completely randomly distri­

buted in the gaps with intensity ~O and completely randomly distributed 

in the patches or he.:lther with intensity ~1 . Then the hypothesis or no 

association is equivalent with the h)"P¢thesis ~0 .. ~1 , \o.'hich can be tested 

with a binomial test, because x 1 , the number o:f pines in heather is 

binomially distributed "·i th parameters n and p. Here n is the total 

number o:f pines and p = ~1p1/0.0p0+~1p1 ) "'ith p1 the cover or heD.ther and 

Po= 1-P1 • I:f ~O = ~1 then P = p1 . For the data, standardized Normal 

deviates are on this basis 4.86 and ).40 for plots 1 and 2, thus the 

hypothesis is convincingly rejected. Ho ..... ·cvor, tho assumptions arc falsi­

:ried in the previous chapter, ""here the heather-based Cox process has 
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been rejected ns a plausible model. Because tho pine~ nrc clu~tered the 

variance of N
1 

will be greater than under the binomial model and it is 

not clear beforeho.nd how l.'l.rge the e1·fcct or clustering on the varinnce 

"'ill be. What is needed is a more reasonable model for pine and heather 

expressing the hypothesis o:f no association. I sh<J.ll consider a permu­

tation model based on random shifts or the observed patterns and a para­

metric model based on independent processes, the C~mosaic process for the 

heather and the Gaussian cluster process for the pines as described in 

the preYious chapter. The variance of N
1 

under these models • .. :ill be com­

pared "·ith the variance under simpli:fied models :for .,..hich the distri-

but ion theory is known. 

2. THEORY A.\IO HETHODS 

..... ithout modelling the patterns of pine and heather tho minimal 

assumption under "·hich a test is available is stationarity. Station-

arity implies that the inter~pine dirference-... ·ectors arc complete minimo.l 

sufficient statistics. Conditionally on these differences ...... e mny think 

of the pines as a fixed irregular network of points. Under the null 

hypothesis o:f no association every shift ot: the nct ..... ·ork "'ith respect to 

the mosaic of the heather is equally probable, hence these shirts specify 

a permutntion distribution (Cox nnd Hinkley, 1974, §6.2). I base a Hontc 

Carlo test on the permutation distribution. If the observed number o:f 

pines on heather is extreme with respect to the number on heather after 

each of, say, 19 random shifts the datil are not consistent with the null 

hypothesis at 5% level of signific<J.nce in a one-sided test. Let X be 

bivariate uni:fbrmly distributed in tho unit square, then <1 random shift 

is de:fined by adding X to the locations or the pines and o.pplying the 

periodic boundary conditions (Ch 2 §2.5). The border effect violates 

the conditionnlity argument slightly but apart from this, the p(\tterns 
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of pine and heather arc kept unchanged. 

In the parametric approach the patterns arc taken to be renli-

.sations of stochastic models. Under the null hypothesis the two stoch-

astic processes are independent so that the definition of the processes 

implies the null distribution of the number of pines on heather. The 

Monte Carlo test is based on simulations of the Gaussian cluster process 

for the pines and the C-mosaic process of the heather (Ch 2) and counts 

for each simulation the number of pines on ~cather. 

The parametric approach has the disadvantage that more assumptions 

arc needed before the test can be carried out, but the advantage that 

the patterns are summarized in parameters that give insight into their 

nature and allow comparison with ostensibly similar data-sets. 

If the variance of the number of pines on heather (N
1

) is thought 

to be n sufficient bas:i,s for a test, then a number of other approaches nrc 

possible that do not require simulations. The variance of N
1 

has been 

derived analytically under simplified models· The simplest model is' 

of course, the binomial model with 

More realistic models can be derived from the Gaussian cluster process. 

Fitting the Gaussian cluster process for the pines gives a value foro 

{O.Q12) • .. rhich suggests .._.ery ~ight clusters. Consequently, if' the parent 

is on Co:r:r) heather, then tho daughters nrc on(of:f) heather with high 

probability. 

Under the assumption that this probability equals unity (o = O) 

more tractable models are obtained. The number of parents will be based 

on the pre .... iously fitted value or p. Attention is restricted here to 

the hypothesis or no associntion. Three models are considered. In 

the first two models I condition on the observed number or events, ..,•hile 
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the number of parents is either a fixed number or is Poisson distributed. 

In the third model I do not condition nnd both the number of pnrcnt.s nnd 

total number of events ..,.ill be Poisson distributed. 

In the first model both the number of parents nnd the number of 

events is fixed. The number of parents on heather, Q, then is binominlly 

distributed, 0 ...... Bi(m,p
1

) ..,·ith m (for the unit region) the nearest integer 

-1 
to p , the total number of parents, and p

1 
the cover or henther. The n 

events observed nrC> to be assigned a.t random to the p.:trcnts' thus' given 

o, the number of pines is binomial, N1 - Bi(n, 0/m) · The marginal dis­

tribution of :-;
1 

is n. compound distribution ..,•hich I co.ll the binomin.l­

binomial distribution, symbolically (cr. Johnson and Kotz, 19691 

Ei(n, 0/m) A Bi(m,p
1

) 
0 

(1) 

This distribution is not mentioned in Johnson nnd Kotz (1969)' but the 

· or N c n be der'ved bv standard methods bnscd on the prob:J.bility vnrJ.ance • 
1 

a ... · 

generating function, or directl~r from the conditionnl mean nnd \".:lri;mcet 

(2) 

In the second model the number of parents is not fixed but is 

-1 
Poisson distributed ..,•ith mean p Therefore the previous distribution 

is compounded over m, symbol icnlly 

Bi(n, 0/M) A Bi(!-1, p
1

) 1\ Poi(p -i) 

0 N 
(J) 

Here a slight problem arises ror N:O, ns there "''ns (unmentioned) in the 

simulations; I discard such realizntions and modify thC> Poisson distri-

bution n.ccordingly. The variance or N
1 

then becomes 

• 
n p

1
(1-p

1
){1 ~ (n-i)[exp(p-1 ) - 1]-1 Z 

m=1 

-m 

~ m~} 

The summation in (4) C>quals Ei{p -i) - y ~ log p ..,•here Ei( .) is the 

(4) 

cxponcntit'll intcgrill andy Euler's constant (AbrD.Il\0\<,'itz & Stcgun, 196~, 
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5·1-10). For small p (say p < o.02) 

hardly differs from (2). 

In the third model both the number of parents and the number of 

daughters are Poisson distributed. Then the distribution of N1 is a 

generalized distribution, the Poisson-Poisson distribution, 

-1 
"'"here p

1
o is the mean number of parents on heather and ).l. tho moan 

(6) 

number of daughters per parent. The variance of N
1 

is (Johnson nnd Kotz, 

1969; Pielou, 1977) 

whore n now is the expected number of pines in the area; thus (?) is 

greater than {2) and (5) and shows the effect of conditioning. 

Notice that in the above described 1"ormulae for the vari.o.nce of N1 

the areal proportion of heather is fixed .,.i'l.ile this proportion is stoch-

astic in the simulations. 

3· RESULTS 

The distribution of N1 , the number of pines on hcnther is shown 

in Fig. 1 based on 250 simulntions of the population model with C-mosaie 

and Gaussi.o.n cluster process (Poisson number of parents). Note that no 

parameters of C-mosaic or cluster process arc exchanged between the plots. 

The associated Monte Carlo test (one-sided) rejects the hypothesis of 

no association bolo.,.• the 1% level, as does the test based on the randomi-

zation model or the model with fixed instead of Poisson number of parents. 

The variances of N
1 

as estimD.ted from these 250 simulations of each model 

are given in Table 1. In addition the variance of N1 is estimated ns 

based on the binomial, Poisson-Poisson and binomial-binominl distributions 

(Table 1) • For comparison the population model with fixed number of 

parents nnd o very small (c = Q.QQ01) is included. 

It is surprising thnt the vnriance of N
1 

with a fixed number of 

parents is much sm.aller (F-test, P < 0.05, two-sided) thfl.n with n Poisson 

number of parents as the difference is negligible if o = 0 (cr. (2) with 

(S)). Ho.,.•ever, two additional runs of simulations give variances 01: 27 ·7 

and 33·4 for the model with Poisson number of pnronts and 30·3 ~nd 34.0 

for the model with fixed number of parents. The difference is thus .,.·ell 

... ·ithin the simulation fluctuation. The difference bet...·cen the varinnce 

for o "' 0 (binomial-binomial distribution) and o c: 0.012 must be due to 

the varintion in proportion of heather in the simulntions. The Poisson-

Poisson distribution gives, of course, the largest variance. Stnndard 

normal deviates ttre for this model 2.62 and 1-901 the latter just not 

significnnt at 5% in a two-sided test. 

4. DISCUSSION 

The model fitting in Chnpter 2 could just be seen as gb.oing a con-

cise description or the observed pattern or the second order statistics 

thereof. Ho.,.•ever, when the models are used in statistical tests this 

restrictive vie"'· is not enough: the variability of the relovnnt p:)enomcna 

should be mirrored in the model. This variability determines the dis-

tribution of N
1 

"''ith .,.•hich the observed number of pines on heather is 

compared. 

The range of models con:::idered all reject the h)·pothesis of no 

association. The permutntion model requires minimnl ~ssumptions, it 

does not even assume isotropy. It is nt first sight surprising how close 

the varinnce of N
1 

for this model is to the vari.:mcc for the par.'lmctric 

models. The explnnation is that 1 under the assumptions of stntionarity, 
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isotropy and no association, the variance of N
1 

depends only on the 

covariance function c(t) of the heather mosnic and the distribution or 

inter-pine distances (Pt I Ch 2 (5)) 

where the { x.} nrc the locations of the pines. As both pnramctric _, 

(8) 

models are fitted to match the second-order properties, they give about 

the same \'ariance as the non-po.rnmetric model. Moreover 1 with tho 

pines nn irregular but fixed net .... ·ork of pins that sample a stntionary 

mosaic process, the covariance !Unction of the mosaic can be estimated, 

preferably from o. sepnrate point Q.uadrat sample, and hence (8) (cr. 

Pt I Ch J §2.4). Or course, this approach gives a test of significance 

of the association only, while the parametric approach gave insight into 

the patterns of pine and heather as "'ell. 

Estimation of (8) with sample points distributed according to n 

Gaussian cluster process - a rather curious sampling design - is not 

easy: the distribution of inter-event distances .,.,.ithin the unit-square 

differs from its stationary analog K't) and the annlytical expression for 

it will be complex (cf. Bartlett' 1964). 

The statistical evidence for association motivntes the construction 

of a combined model for pine and heather that describes their pattern 

and accounts for the association. Such a model can be based on the iden 

of an interrupted point process (Stoyan, 1979). Assume we have two 

stationary, isotropic spatial processes, Il n point process .:lnd Z(x) 

.:l stochastic process with realized values bct.,.,·ecn 0 and 1 (O ::f z(~) :5. 1). 

The interrupJ;ed process n1 is defined by the rule: retain an event .:lt 

!, .,.,.ith probability z{!,) and discard it with probability 1 ~ z(~). We 

have already seen one example: the he.:..thcr-bnscd Cox process (Ch 2) was 

an interrupted point process with TI a Poisson process .,..•ith intensity :'\ 
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Md ZC;::,) defined by the binary mosaic process z
0

C;::,l of the hettther: 

C;::, on hcnthcr) • If TI is replaced by the Gauss inn cluster process then 

the second-order statistics fit. and the number of pines on heather as well. 

The K-function of an interrupted point process can be derived­

Let C*(t) = E{ZCz)ZC,rl} with \lz-zi', = t, then C*(t) is the probability 

that t\ofO C\'ents Of TI, dist.:lncc t apart, both survive. ll'ith g(t) and 

g 1 (t) the joint probnbility densities of the occurrence of n pair of 

events, distance t ap.:lrt, or n nnd n
1

, respectively ((2) inCh 2), ,.,.e 

have 

g
1

Ctl = g(t)c~ Ct) 

Let Z(~_) ha ... •e expected Ynlue p, variance c; and correlation function r(t), 

so that c• Ctl = p2 

(4)inCh2, 

2 
• 0 

z 
r(t) . Define K

1 
(t) dK(t) 

dt ' then "'ith (J) nnd 

0 a; ,.t 
K(t) •--;;- J K'(u)r(u)du 

p- 0 
(10) 

The parameter estim:ltcs of TI1 can be based on (10), and .,.,.ill in genernl 

not be identical ""ith the par.:lmcter estimntcs of TI· I expect thnt up~ 

dating the par.:lmeter estimates for p .:lnd o for the pines chttnges the 

estimates only slightly because the K-runction of n
1 

in (tO) docs not 

chango much (cf. K-functions or Poisson process and he.:lthcr-b,1 scd Cox 

process in Ch .3) • Unfortun.:ltely, we can still not fit the large-scale 

regularity in the point pattern in this "·ay; the C-mosaic hns correlation 

function r(u) > O, hence K (t) > K(t) > nt2 
- I - -
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CHAPTER ~ DISCUSSION 

Statistical analysis of contagion and heterogeneity where the 

latter is caused by a known process is difficult but the present n.nalysis 

shows that it is possible. The ann.lysis has not explained the genesis of 

Fig. 1 but has shown that thore is evidence of association between pine 

and heather and, moreover, that the pattern of the pine is clustered 

beyond the ef:fect o:r association; hence' that the pattern o:r pine is 

subject to other factors as well· The conclusions o:f an observational 

study cannot reach :fUrther and experiments, if ... ,.ell designed, may proceed 

from here to establish the causal :factors involved. 

Now the formal conclusions have been stated I propose an 

explanation :for the pattern. A tractor scari:fied the :field parallel 

to the long side and made fUrrows at 2m distance o:r each other. The 

fixation and germination conditions :for the pines and possibly the heather 

were more favourable in the furrows than outside· On the map 

the pines tend to lie along lines (more evidently in plot 1 than in plot 2) 

while the K-runction o:f both plots is periodic· (The permutation test 

did.!!£.:!:. assume isotropy~) The association with heather is due to the 

furro-...·s, but the heather has gro-...·n out of the :rurro-...· to cover the rest 

o:r the scarified patches and possibly beyond. Of course, my explanation 

is no better than any one elses, until more is known either o:r the 

history of Fig. 1 or o:r the ecology of pine and heather by designed 

experiments. 
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Tnble 1. V.:~rinnce of number ol' pines on heather under hypothesis of 
no nssociation. 

1-lodel Plot 1 Plot 2 

Parametric Models: 

c-mosaic and Gau8sian cluster proccsg 

Poisson no. of parents 37-9 28-3 

fixed no. of parents 27-2 24-3 

fixed no. of parents, small o (0.0001) 4-1-8 34·9 

Pcrmut.:ttion Nodel 39-4 29-5 

Simplified l-1odels: 

binomial 20-5 1{.0 

binomi.:tl-binomial (-Poisson) 35-4 28.4 

Poisson-Poisson 71-1 56.6 
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FiQure 1 Null distribution of number of pines on heather in p."lrn.mctric 
model. (C-mosaic llnd G11ussian cluster model "'ith Poi:o:son number 
of p~rents)( • :the observed number). 

(n.) Plot 1 

" 
(b) Plot 2 
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