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ABSTRACT

Point quadrat sampling is a method for estimating the proportional
cover p of a plant species over a planar region, whereby the presence or
absence of the species is recorded at cach of N sample points. Theny ir
n is the number of points at which the species is presents d = n/N is
unbiased for p. Exprossions for the variance of p are givea tor (1) a
random sample of sample points independently and uniformliy distributed

over a regiony (2) a svstematic sample of points in a rectangular lattice

covering the regions (3) a frame sample of small randomly lecated fromess
each with m points regularly spaced along a line or in a square lattice.

The efficiency of systematic sampling and frame sampling with
respect to random sampling is evaluated ror two classes of underlying
mosaic processes; tormed L-mosaics and C-mosaies. For frame sampling the
optimum number ot points per Irame is tabulated» using a realistic cost
functien.

L-mogaics and Cemosaics induce n Markov process and a rengwal
process on the lines respectively. These properties allow likelihood
based inference for data from linear frames.

A map showing the incidence of heather (Calluna vulaaris) and the

i rerr———

locations of pines (Pinus silvestris) on a 10mX20m area in Central Sweden
ig analysed to test for association between pine and heather. The pines
regenerated Irom sced trees which remained after clear-cutting 21 years
previously. Both parametrie and nonparametric methods are used to demon-
strate significant association. Parametric models show that the pines
are clustered even after this essociation is taken into seccount. An

explanation is*propescd.




GENERAL INTRODUCTION

Deseribing vegetation is not an ecasy task. Brown {1954},
Greig-Smith {1564) and Tothill {(1978), among otherst discuss various
quantitative measures that have been proposed. The concepts invelved
suggest mathematical idealizations that can be used in models for the
spatial distribution of the vegetation over the ground.

Plants semetimes coeur as clearly distingt individualss tor
example pine seedlings. A natural measure of abundances thens is number
per unit area (density or intensity). We may think of the species as a
set of points in the planey disregarding the third dirmension of aerial
parts or roots. The points may have a typical spatial distribution over
the planes for examples a clustered as against a random ¢r regular dis-
tribution. & biological explanation for a spatial distributionofa plant
may be that the plant reacts to a micro-pattern in the environment over
the region: or that there is competition or: on the ether end of the
scaler mutual suppert between the plants; or that it is the dispersal of

seads or the vegetative propagatien that couses the spatial distribution

{Greig=Smith, 1679) . Quantification of the spatial distribution ('pattern')

may help to distinguish between different patterns and: more ambitiously,
te relate the type of spatial distribution to possible coausal factors.
Quantification is most illuminated within a class of models in which ecach
model tvpifies & pattern- Most patterns of vegetation are not ot all
regular in a deterministic senses hence stochastic models appear to be
more apprepriate than deterministic ones.

A stochastic medel consists of a number of rules from which the

pattern can be generated. The dynami¢ character of the model is reflected

in the alternative “erm stochastic process. For example: if plants occur

as pointss» then o stoghastic wmodel may be that within any given region

2

the points are uniformly distributed over the regiony i.e. the plants

do not recact to patterns of other plants or fagtors: nor do they

interact among each othery and thus occur at completely random positions
within the area. JIf: in additions the pumber of points in the region is
distributed according to a Poisson distribution with a fixed means then
this model is termed a Peisson process. The points are said to constitute
n Poisson proceas. This is one ramous example of a spatinl point process,
a process that models the spatial distribution of points. The points that
are generated are frequently called events to distinguish them from
arbitrary points (loecations) in & region (Cox and Lewiss 1966; Diggle:
1679). In part II a sgpatial point process is ritted to young pines
occurring in a rield partly covered with heather. Notice that though the
model may have some dynamic aspect only one 'snapshot' of the pattern is
analysed.

Cover is another measure of abundanee in vegetation. Tt is the
areal fraction of the ground occupicd by the plant. With this definition
the concept of a plant as a point no longer makes sense. Instead of
being dimensionless» a plant is now a two-dimensional phenomenens not
too much an idaalizotion for, ror example crustese lichems. For
higher plants: either the vertigal projection of the aerial parts are
considered as covers or the basal areas i.¢. the interscetion of the
plant at ground level (Browns 1954). A& vegetatien can then be thought
of a8 a mesaic: a patchwork of occupiced areas {patehes) and unoccupied
areas (gaps)»(Piclous 1954), as Ior example in a heathland only partially
covered by heather (Calluna vulgaris). The shapes and sizes of the
patches and ga;s: together with their intermingling, are visual phenomena
that ask for further explanation of their properties in terms of ecolo-

gical factors. Again quantification may be a rirst step. Stochastic




models for mosaics are called mosaic processes. I shall consider only
one species at a timer hence binary mosaicss in which each point or a
region is classified into one ocut of two categories, for examples
heather and net-heather. The categories are as well called phases of
a mosaic (Pielous 1977).

Two other important measures to deseribe vegetation are not
mentioned further in this study. Frequency refers te the probability
of finding a species in an area and is normally estimated by the frace
tion of quadrats of some Tixed size and shape {sic!) in which the
species occurs. Frequency is thus a non-absolute measure: i.o- it
depends on the mode of samplings on the size and shape of the guadrat
used (Greig-Smith, 1964). Its main advantage is the ease with which
presence/absence in a guadrat is recorded. On the other hand, the
measurement of bpiomass {(dry matter) is in most ecological applications
time-~consuming - The measurement is precises but destructive for the
vegetation.

The above measures are not equivalent. Each one highlights a
different aspect of the vegetation that may be of ccological importance.
For examples cover can De an important meassure ol the effect of grazing
managements fertilizing» burning and growthi the 'cover' of bare ground
{i.e. the absence ol cover) may indicate danger of soil erosion or the
amount of interception of rainfall by the vegetation (Tothills 1678).

In part I the point gquadrat method (Goodall, 1952 and references
therein) to estimate cover is introduced. The method consists of
recording ats says N points whether the species is present or absent.
The fraction of presences in the ¥ recordings estimates the cover and
is unbiased under conditions stated formally by Miles and Davy (1976)

in the context of stereclogical formulae. The point quadrat method

consists of dimensionless samples: point sampless to infer about the
cover in two dimensionss to which I restrict myself,; or volume in three
dimensions {see e.g. Hilliard and Cahn, 1961). The point samples or
point quadrats can be randomly distributed over an areas or arranged
into networks to somple the region systematically. Another methed is
to arrange the point samples into clusters: called fromess which can be
moved around to sample sections of a far larger area. In Chapter 2

I evaluate the efficiency of the latter two designs relative to random
sampling. Of courses the relative efficiency depends on the pattern of
the vegetation and in this study the pattern of the vegetation is
medelled by binary mosaic processes. The processes do model explicitly
the patches and gaps in & vegetation that cause the 'contagion' or
correlation between point samples that are not Tar apart. In carlier
work on sampling design (Matérn, 1960) the starting point was the cor-
relation beiween points at variocus distances aparts but without guarantee
that the correlation function considered corresponded to a feasible and
alsc reasonable model for the vegetation. The evaluation of relative
efficiency for these ideal models results in a number of guidelines

{(Ch 2 § &) for the cheice of sampling design in practices for real
vegetation. The statistical analysis of point quadrat data is dealt
with in chapter 3.

In part II the sampling design of the point samples was chosen
by Nature: pine seedling established themselves after a clear-cutting
en a heathlangd in Central Sweden- The young pines were recorded in a
10m X 20m area to be either on heathers; i.e. in a pateh or Calluna
vulgaris or of} heathers i.e. in o gap- The question at stake is
whether there is statistical evidunce of associaticn between pine and

heather. Ir there is no association between pine and heather, the pines




are simply a peint quadrat sample of the regiens althoughsy as will be
establisheds not a random sample. In facty it is shown that there is
statistical evidence of association and: moreover, that the pines are
clustereds even ir the patchiness of the heather and the association

is taken into account.
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PART IT: ASSOCIATION BETWEEN PINE AND HEATHER IN A DEVELOPING STAND.

CHAPTER 1 INTRODUCTION

"Here are =ome data. I mapped the occurrvence of pine and heather
and I want to know whether there is association between pine and heather.
I counted the number of pines on heather: the propovtion on heather is
far bigger than the cover of heather. Is thisg sipnificant?”. The map
{Fig- 1) is inspected and curs of courses imaginary converszation may
continue with: '"Let's assume that the pines are randem, then the number
of pines on heather is binomial with ...": or "I can't help yous I'm
afraid:; you have counted the number of pines in only one plot. Statisties
can help your if you do similar counts in a number of independent plots.
Let's seesr where do these data come from ...". The former appreach
assumes independence of the pine-locations and this assumption must be
realistic or be consistent with the available datas if valid conclusions
are to be drawn. The latter appreach states that the data must be
inconclusives that independence can be guaranteed by the design of the
experiment or the observations and probably assumes that similar data
can be collected casily. The aim of this study is t¢ show that spatial
analysis can result in insight in the data as presented, even beyond
the guestion of significance of the association. The reader can judge
whether the assumptions made are realistic.

Fig. 1 concerns the same 10mX20m area as Fig. 8 in §3.2.4 of Pt I
Ch 2 and has been mapped in late July 1978 at Ivantjlrnheden in Central
Sweden. The heather was coded inte a 100X200 array with each cell of
size 10cmX 10cm. A gell is seored 'heather' (Calluna vulgariz) if the
cover in the cell is more than 50%. The location of the pines (Eiﬂﬂi
silvestris) was recorded to the nearest centimetre and classified tov he

on heather or off heather. There are 150 pines of which 36 are dead.
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The median height of the living pines is §5.6m with interquartile range
of 6.5m; their median age is 10 yr with interquartile range of 5 yr.
The pines on and off heather are very similar: although there is a
tendency that the age of pines off heather is less. In the sequel I
confine attention to the locations of the pines.

Persson (1978) describes the site in some detail. The stand was
regenerated from seed treess which remained after clear-cutting in 1957.
The soil surface had been treated with a tractor-scorifiers resulting
in rairly regularly distributed patches of exposed seil ‘eoarse sond
with fractions of median sand of glaci-Tluvial erigin). Calluna
valgaris occupied about 50% of the srea and was concentrated:r in the
mains in the scarified patches. Persson (1678) estimates the diameter
of the scarified patehes as ims in agreement with the diameter of the

discs (0.Bm) in the model used in $3.2.% or Pt I Ch 2. The 'gaps' wersa

covered by rcindeer lichens, cup lichens: etc- Yaccinium vitis-idaea

{Cowberry} was also abundant. In 19?2/19?3 parts of the stand were
cleaned. It is unknown whether the area of TFig. 1 was cleanceids but I
decided hereupon to include the dead pines: including stumps, in the
analysis-

It stands out from the site description that the scarified patches
are important for the ogcurrence of heathers and thus posgsibly for the
occurrence »f pines, and might eventually explain the observed associ-
ation that I shall siudy. It is important to realize right from the
stort this limitation that is commen to all observational studies. On
the other hands once the observed Teatures are more clearly understood:
experimental work may establish wore effectively the causal relations.
In Chapter 2 it is established that the pine-locations are neither com-
pletely random nor independent when the different numbers of pines on

and off heather arc taken inte account. An alternative model allows ror
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the clustering of the pines and gives an acceptable rit. In Chapter 3

I show with both parametric and nonparametric methods that the data are
not consistent with the hypothesis of no association. A combined model
for pine and heather is proposed that accounts for their respective pat-
terns and the association. Finally a methodolegical point. The map
shown as Fig. 1 is split inte two square plotss subsequently taken to be
©T unit side. The two plots: henceforth plot 1 {the left one) and plot
2 (the right one) are used for simple cross~validation. If in a test
procedure parameters are to be specified & prioris these parameters are
estimated from the other plot. This oc¢curs in Monte-~Carle tests of
goodness-of=-Tfit. Statistics for the twa plotsare as follows. In plot 1
there are 82 pines of which 63 pines are on heather. The aover of
heather iz 0-3994. In plot 2 there are 68 pines of which 48 pines are

on heather. The cover of heather is 0.4953.

CHAPTER 2 FITTING A PCINT PROCESS MODEL TO THE PINES.
1. INTRODUCT ION

Features of a spatial pattern may Ye modelled by siochastic pro-
cesses: but their Jynamic definition can contain only some major aspects
of the assumed genesis of the patterns or = oven worse ~ may be irrelevant.
In either case goodness-of=-rit mest necessarily be tested on tho observed
pattern.

A newly established pine has at least survived the following stages
{(van der Pijls1972): maturation of the seed; dispersal; Tixation to the
soil» germination and establishment. The dispersal of pine seed is mainly
by wind but, at least in some Pinus species, birds and squirrels are
reported to act as planters by storing seeds. Wind disperzal is over

distances up to 2 kKm (van der Pijl»1972). This suggects a 'Poisson-rain’
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of seed in the small area we are concerned with. Howevnir; the seeds are
likely to land in the lee and tixalion is more likely in the scaritfied
patches. Further; neither the germination conditions may be nomogencous
nor the protection against severe climatic conditions or animals. The
aecurrence of heather may be inpertant in nearly all stages. Moreover,
pine and heather both have lateral root systems so that nputrient vom-
petition muy occur in later wtages of development. Surprisingly: the
model that attempts to explain the clustered pattern of the pines from
the patchiness of the heather mosalc alone does not rit. In the absence
of precise knowledge of other Tactors that intluence the rinal Locations
we must restrict ourselves to simple mnodels that at lesst acknowledge
the random componuntis and describe the observed clustered pattern. A
two parameter model is found that gives a reasonuhle fit, without use of
the heather data.

Parameter vstimation and goodness~of-Tit testing for stochastic
Jrocesses 1s hampored by the lack of manageable exprasi-iens Tfor the
likelftood function: hence must proceed along differe.t lines. Diggle
{197%) discusses methods that invelve chzice of a (functional) summary
deseription of pattern and a measgure of discrepancy between summary
descriptiong. Estimation of parameters then proceeds by minimizing the
diserepancy between the summary description expected under the model and
the observed one. Testing is by Monte Carle wmethods: i.e. by simulating
the model and caleulating the disecrepancy of the expected summary
description with the summary description of the simulated pattern. Under
the hypoethesis that the data are consistent with the model the observed
and simulated fliscrepancy values are exchangeable» hence the rank of the

observed diserepancy provides the exaet significance level of the test.
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2. THEQRY AND METHODS

2.1 Summarv Descriptions

As there are no clear large scale inhomogeneities in the data ner
any obvious directionality, attention is restricted to stationary and
isotropic point processess i.e. translations and rotations do not change
the stotistical properties of the process. Under these assumptions
informative summary descriptions of the processes are (Ripley: 1977:
Diggle: 1979}

A = intensity» i.¢. expected number of events per
unit areaj;

% K(t) = expected number of further events within distance
t of an arbitrary event; I
1
F(t) = probability that the distance from an arbitrary
point to the nearest event iz at most t;

3

G(t) = probability that the distance from an arbitrary
event to the nearest other event is at most t.

The intensity describes the first moment of the process and is
estimated by the observed number of events per unit area.

The Kefunction K(t) ecan be linked with the second moment structure
of the process. Let N{A) denote the rumber of events in A O ﬁz: and dx
an infinitesimal region centred at‘i. We assume that the process is
orderly: i.e- P{N(dﬁ) > 1} = 0(145}) where | .| denotes areas so that
A= lim  P{N(ax) > 0}/ldx] and assume rurtner that E(N(axIN(ay) ]~
P{N(L%?l;.g, N(dz) > 0} as 1@51, \qii ~ 0. These assumptions arce valid
ror the processes that will be considered and facilitate the inter-
pretation of the second-moment function

E[x{axiN(ay) ]
gl(t) = lim —Ta-xf-{'m:"‘ (“35-"1“ = t) (2)
lax] eyl -0 L

as the joint probability density for the occurrence of a pair of events

distance t apart (Ripley, 1977). Because now g(t)/A is the conditiomal
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intensity of an event at X given an event at C (|lxl| = £) we have the

following relation vetween K(t} and g(t)

v o2n ot
(L) = I I ﬁj?‘ r dadr = %3 j glrir dr (3
0o o

or conversely (Ripley, 1977)

2
A gK(t)
sle) = o5 =57 {(4)

The advantage of K{t) over g(t) or the covariance density cl(t) =g (t)-2>
(Cox and Lewiszy 1966) is that & cumulative function like K(t) does not
need smoothing when estimated from data. Given the definition of AK{t)
it follows immediately that
2
NK(t) = expected number of ordered pairs of events
a distance ot wmost t apart with the first
event of each pair in a given region of unit

areds

because

g

a (N =} (e ) = 23 |alk(e) . (s)
n=0

q

This result suggests how K(t) can be estimated from the empirigal dis-
tribution orf pairwise distances between events in the data. Given the
sampling region, each ordered pair of events (x,v) is given a weight
k{xsy) which ix the reciprocal of the proportion of the perimeter of the
¢ircle centred on X and passing through y; that is within the sampling
region. Then the sum of these weights over all ordered pairs: less than
t aparts divided by the area of the sampling regien is an unbiased esti-
mator Tor sz(t), provided t is such that the above mentioned proporiion
of the perimeter cannot be zero for any point in the sampling region
(Ripleys 1977)% for the unit square: t < %/2. If A is unknown its
estimate is substituted, whence an estimator for K(t) that is siightly

biased.
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The F-function F(t) and G-function G{t) are nearest-ncighbour
distribution functions. Unbiased estimators tor the F- and G-function
are derived rrom the empirical sampling point-event distances and event-
event distances with a correction for edge-effects. The correction
ignores sample points or events which are closer than t to the boundary
of the sampling region. I *, and d.i are the respective distances from
the ith of m sample points to the nearest event and to the nearest point
on the boundary of the sampling region then the unbiased estimator is
(Ripley, 1977

Ble) = Hx, <t 8 > £)Fe > 1), {6)

with the analogous formula for G(t) with *y and di the distances of the
ith event te the nearest neighbour and to the boundarys respectively.

The F- and G-function restrict attention to one scale of spatial
interactions the scale determined by the nearest-neighbour distributions.
The K-function allows inspection of different scales as in the nested
block analvsis of Greig-Smith (196%).

In practice the summary-~functions are estimated for o finite number
of equidistant values of +. The interval-width used for the pine data
is 0.005 in terms of the unit squares i.e. 5 em intervals in the fieid.

F(t) is estimated using a square grid of 9X9 points.

2.2 Spatial Point Process Models

The homogencous planar Poisson precess» shortly Poisson processs

is the simplest spatial point process. It has a single parameters the
intensity A({® 0}, and lacks any form of spatial dependence. In a Poisson
process the number of events in a region with area A has a Poisson dis-
trivution with mean M while conditional on the number of events in a
regiony the events are distributed independently and identicallys uni-

formly in the region. Thesec characteristics enable simulation of o Poisson

Process .
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)

It Tollows from thesc definitions that the expected number of

el
further events in a circle centred at an arbitrary event is Lot° and

that the probability that ne further events occur is cxp(~lnt2). Hence

the summary descriptions are

-
R{t) = =™
(7}

hel
Fit} = G(t) = 14 = expl{-1ht”)} .
Instead of a constant intenaity the point process may have a

variable intensity over the plane. This leads to inhomegeneous planar

Poisson processess determined by the intensity function h(x)s with x a

~

logation in the plane. In an inhomogenecous Poisson process the number

of events in disjoint regions are independent, while the number of events
in a region is Poisson distributed with a mean equal te the integral ef
the intensity runction A{x) over that region. Obviously the inhomogeneous
Poisson process 1s not stationary. Howevers the process can be made
stationary by assuming a stoechastic model A(z) for the intensity function.

The resulting point process is called a CoX process or doubly stechastic

Poissen process {MatSrn, 19711 Grandell, 1976} . Given a realisation of
A(E) a Cox process s an inhomogensous Poisson process.
Ir A(i) ie stationary and isotropie with mean X, wvariance c2
and correlation function r{ul, then the associated Cox process is stationary

and isotropic with joint density

s(t) « Blatoaly ] = 2%« 2% rlw eyl = w) (8
whence with {3)
o sl .t
K(t) = »t"7 + = : J ur{uldu (9)
AT o)

.
Explicit expressions for the nearest neighbour distributions are dirfficult

to obtain (Matdrn, 1971).
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The inhomogeneous Poisson process and the Cox process are suitsble
models te express the dependence of the intensity of pines on the occcur-
rence of heather. Let the intensity in the patches and gaps be hi and AO’
respectively. Conditionally on the number of evenis N» only the relative
intensity is important. Assuming ?'O < ?\1; we ¢an simulate the process by
locating successive pines completely at random in the arcay while dis-
carding pines that Tall in a gap with probability 1 - Rofli. We procecd
in this way until eventually N pines are produced. The ratio lo/hl is
estimated by the observed intensity ratio. If the mosaie of the heather
is kept fixed we have an inhomogeneous Poisson processs but if in each
simulation the moesaic of the heather is taken to be an independent reali-
zation of a mosaic process: we have & Cox process. Diggle (in prep.)
ritted successfully a C-mosaic to the heather in which the patches of
heather are the union of countably many closed disecs with mutually inde-
pendent and identically distributed radii and centres determined by a
Poiszon process (ef. P£ I Ch 2 §2.2.4). In the model fitted by Diggle
(in prep.) the distribution of the radii is a three-parsmeter Weibull
distribution,

H(r) = 1 = expl-p(r-5)" r>b . {107
The resulting Cox process mirrors the inhomogencity of the environment
for the pines: patches of heather are more favourable for the pines
than gaps. Because of the patchiness of the heather the pattern of pines
will be clustered relative to the Poisson precess (r{u) > 0 in (g) ).

Contagion is another cause of clustered patterns. Flexible and
tractable models are the Poisson cluster models (Neyman and Scott, 1958)
that produce aggregoted patterns by the following mechanism:

{1) Parent events congtitute a Poisson process with
intensity 1/p.
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(2) Ench parent event produces a random number M
of daughter eventss independently nnd identicnlly
distributed for each parent.
(3) The position of each daughter relative to her
parent is independently and identically dis-—
tributed according to a bivariate distribution
G(.).
I take the final process to consist of daughiers only and assume that
G(.) is raodially symmetric and gives distribution H{t) of the distance
between two arbitrary sisters. Further: let y = EM and M = /5 then,

with X an arbitrary event,
~

M{t) = E(# of further events within t from 5}

#

E(# of sisters within t from 53 (11)
+ E(# of further ecvents from other parents within t fromii)-

The first term on the right-hand side is

@0
I P(x has (n-1) sisters)E(# of sisters within t from xfn)
n=0

_ EM(M-1)

I

B ﬂf-f‘-’- [(n-1)H(t)) H{t) (12)

nz0
where P{n) is the probability that a parent has n daughters. The sccond
term is simply Rﬁtg because the logations of different families are
independent (Bartletts 1975). Hence,

E MO gy (13)

K(E) = me2 v p

n
For the pines I specify M to be Poisson distributed ang G(.) as the
radially symmetric Gaussian distribution with density
[ .
-)‘1

2 k=4 el
g(xiv x,) = (2% exp{—(x; N x;)/zj'} (1%)

bed - e
Hencer B M(M=1) = u7y H{t) = 1 - exp{-t“/%0"} and thus

K{t) = 711:2 - p{1 - exp(-tz/’ﬂz)} . {15)
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This will be referred to as the Gaussian cluster process with parameters
p and ¢. Note that ju is a redundant parameter because K(t) is seale-
invariants that 1/p and 1/¢ are the number of clusters and their tightness.
respectively and that: conditionally on the number of events N and the
number of parentss the N daughters are allecated independently and
randemly amongst the parents. Expressions for ithe nearest-neighbour disw-
tributions are available (Bartlett: 1975) but are not very enlightening.

The Gaussian ¢luster process ig formolly equivalent to the Cox
process with randem intensity function

k-1
Alx) = .E g(}:—zi) (16
i=l
where the ggi are the points of a Poisson process. Any attempt to dis«
tinguish from the observed pattern between contagion and hetercgeneity
is thus rfutile.

From super-position of independent point processes we can derive
new processes. Let the subscript 1(i = %+ 2) refer to the defining pro-
cesses. The intensity of the resulting process: without a subsceripts is
A= A, 4 XE and the Kerunctioen is

1
A A

hed

. 1 2 2 ; 2
ML) = == {J\lkict) + hyTt j . - {Aaha(t) . AT } (17}
with KE(t) = Ki(t) - ﬁtz we get
2 3., 2 2
R(£) = nt” o« {ATK () « AJKR(£)}/A 18)

so that for a Poisson cluster process (is=1) superimposed with a Poisson

process (i=2)
2

A
K(t) = Tttz - p —;-E—ﬂf—-il-ﬂ(t) (19)
X uw

i.g2+ the K-fungtion of the superpesed precess is indistinguishable frem
the K-function of a Poisson cluster process with an identical distri-

2,042 .
bution of M but a different number of parents X /(?~1 p}. TFor the pine-data
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this property may well be advantageous in that a Poisson rain of sced
from wind dispersal together with an independent dispersal agent that
causes clustered pattern still gives a K-runmction within scope of the
Kefunetion af a Gaussian ¢cluster process. The F- and G-functions do not
have thig property. For examples we have

1 - F(t) = P {no event from either process within t from 2)

= {1 - Fi(t)}{1 - FECt)} {z20)

With a Gaussian cluster process and a Poissen proccss the parameter lﬁ

of the Poisson process cannot be absorbed in the parameters o» uor o.

2.3 Discrepancy Measure, Egtimation and Testing

Parameter cstimation and goodness-of-Tit testing will be based on
the K-function. When in Chapter 3 the fitted model is used to test the
association-hypothesis, the inter-cvent distances of the pattern deter-
mine the wvariance of the number of pines on heather and the K-runction
has been designed to summarize these distances- Fortunatelys the K-
function is more tractable than the F- and G-function.

The discrepancy between model and data is taken to be

°-1 1 s

atg) = | {K;(t) - R¥(e)}%as {(21)

0
where § is the parameter of the model. The square root transformation
is chosen to stabilize the variance of K(t), at least under the Poisson
model (Besag.in discussion to Ripleys 19%7: Silvermans 1978). The effect
of a differcnt choice of transformation and upper bound of integration
will be discussed for the Goussian cluster process. For the pine data

S

the integration in (21) is replaced by a summation with interval width

0.005.
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Parameter estimation proceeds by numerical minimization of (21)
with the Simplex algorithm (Nelder and Mead, 1965). This mothod rails
ir (21) is insensitive to changes in § as for example in the model where
a Gaussian cluster process is superposed with an independent Poisson
process; the parameters hz and p in §2.2 are confounded in the K-functions
tut not in the F- and G-function.

Assessment of the goodness-of-fit of a model with a prescribed
value of § proceeds by a Monte Carlo test. A simulation of the model
results in a pattern of events from which the K-function can be estimated.
Then the discrepancy (21) is caleulated- The discrepancy calculated for
the data ang the values of discrepancy for m-1 simulations give m values
that are exchangeable under the hypothesis. The rank of the discrepancy
for the data provides the exact significance level of the Monte Carlo test.

The limitations of a Monte Carlo test are clear. It tests only a
simple hypothesis and parameters need to be given a priori. The last
problem is circumvented by estimation of paramcters in one plot of the
data and testing the goodness-of«rit with these estimates in the other
plot. The {overall) intensity parameters howevers is removed by con-
ditioning on the observed number of events. The tests are therefore con-
ditional tests: that may differ from unconditional tests (ef. Riplev:
1577) -

For the Cox process the expression for the K-function is rather
inconvenient. Therefore; instead of the theoretical K-funetion the
mean of the m estimated K-functions of simulations and data is used
in the goodness-of-fit test. This does not affect the exchangeability
of the discrepancy values.

The Monte Carlo test depends in its detail on the formal definition
of the discrepancy. A more infermal assessment may supplement the itezt

as provided by a graph of the theoretical summary descriptions its esti-
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mate from the data and the upper and lower simulation envelopes (Ripley,
1977}. The envelopes are pointwise minima and moxima of the functional sum-
mary description. The number of simulations in this study is either 19

or 9. Tests for the pine data are accompanied by graphs based on K(t)%/n,
which is linear in t for the Poisson process. Disadvantages of the simu~
lation envelopes are that they depend on the number of simulations and

have a high pointwise variance. Alternativelys lower and upper quartiless
or the percentage point that is cheosen to be relevant for the tests can be

given.

2.4 Confidence Regions

Lack of knowledge of the distribution of the statistics we use for
point estimation hampers cxtension to interval estimation. I propose a
pragmatic approach that has attractive propertics under ideal conditions.

A 95% confidence region is a stochastic region in the parameter
space that contains the true parameter of the process with 95% probability.
A confidence region can be constructed by a possibly infinite number of
testsy one for each 8§ in the parameter space, of the simple hypothesis
that 9 i3 the true paramcter of the process. The conlidence region con-
sists of those values of 6 for which the hypothesis is not rejected at
the 5% level of signiricance. The construction of the test is arbitrary
as long as no optimum properties for the confidence regions are required.
As such the Monte Carlo tests based on (21) could be useds with a minimum
of 19 simulations for each § to guarantee the §5%-coverage property of
the cenridence regicn.

In constructing a contidence region we partition the parameter space
inte two exclusive setss the set § of plausible values of § and the set g

of implaousible values orf §. If 5 is closed, possibly arfter redefinition
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of boundary points; then we want in Tact to map a binary mosaic with a
minimal nuwber of sample pointsy i.e. tests for values of §. As our
test would be a Monte Carlo test 'observation errors' occur; the pro-
blem of mapping a mosaic is discussed by Switzer (1971}. Mapping S
would be enormously facilitated if 5 is convex: so that a crude search
ocver the parameter space suffices in practice. This approach is not
followed up any further.

The problem to which confidence regilens are an answers is in general
how precisely parameters ¢an be estimated given an estimation procedure
and how the precision can be estimated from the data. Given a model with
prescribed parameters the distribution of the estimator of the parameters
can be determined in principle by simulation of the model. The 'spread!
of this distribution determines how precisely the parameters can be
estimated for this medel: for a given estimation procedure. The point
estimate derived for the data provides under suitable conditiens the
approxXimate value of the true parameter. Simulation of the distribution
for the process with this point estimate as true parameter will be
particularly revealing. Under a number of assumptions this distributien
can be used to construct a confidence region.

Suppose that for every § the distribution erf 6 iz a vivariate Normal
distribution with mean § and covariance matrix & that does not dopend on
the value of § - a rather restrictive assumption. Thens § as estimated
rrowm the datar is a bivariate Normal quantitys while 5 can Be estimated

froms says m simulations. The ellipsoid

0.05
658105 < 2m= p (22)
- m=-2
2 m-2
: ; : . 0.05 . .
is a 95% confidence region Tor 8§ whore FO,m—z is the 5% point of the

F-distribution with 2 and m-2 degrees of freedom.

M. Il Ch

t

Hh

To satisfy the normality assumption transformatien eof the para-
meter may help. In the pine data a confidence cllipsoid is constructed
for the logarithm of the parameters of the Gaussian cluster process.

The assumption that $ does not depend on § should at least hold in the
region of the parameter space to which point estimates are confined

with high probability. 1 recommend that 5 is estimated rrom simulations
with the point estimate as true parameter. No further checks on the
assumptions have been made for the pine-data. Note that the total number

of events is treated as an ancillary statistic on which is conditioned.

2.5 Numerical Procedures

Simulations of the processes are conditioned on the number of
events obscerved in the plots. If necessary: periodic boundary conditions
are imposedy i.e. the unit square is wrapped around a torus and the

location of an event is (x1 modulo 1y x, modulo 1). These conditions

avoid edge-distertien.

Computer programs were written in FORTRAN IV and APL and run on the
IBM 370 of the Northumbrian Universities Multiple Access Computer (NKUMAC)
at Newcastle upon Tyne. Routines for random number geéneration and the
Simplex algerithm were taken from the NAG FORTRAN library (Anon, 1977).
New FORTRAN programs (FGHAT and FHAT) were written to galculate the F-,
G- and K-function. Ripley (1977) reported numerical instadility in his
procedure to estimate K(t). Thiz instability arose from the way in which
the weights for each pair of events were calculated. In KHAT the problem
is avoided and*the result ig a far more erficient pregram. As the practical
interest in K(t) is limited to the smaller values of %, KHAT is wriiten

for t £ C.5 with arbitrary interval width. Note that the weights thus

cannot exceed four.
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1.  RESULTS

3.1 Summary Statistics-

Fig. 1 shows the positions of the pines in plet 1 and plot 2.
Figs. 2 and 3 give the F- and G-functions of ncarest neighbour distances
Tor the two plots. For comparison the theorotical curve for the Poisson
process (7) is given in Fig. 2 while thiz curve ig used as abscissa in
Fig. 3. The number of event-to-nearcsi-event distancess as shown by G{t),
for values of t below 0.1 (im in the field) exceecds the expected number
under complete spatial randomness. The distribution of point-to-nocarest-
event distancess F( )i does show c¢lustering but not as markedly as G(.).

Figs. 4a and 5a show the estimated K-function of event-event dis-
tances with for comparison the parabolic K-function of the Poisson process
and the K-function of a Gaussian cluster process. In Figs. 4bs ¢ and 5b: ¢
transformations are shown for which the Poisson process is the zero-
function. Notice the similarity between the overall shape of the K-
funetion in plot 1 and plot 2. On small scale (below t = 0.05) there is
marked clustering but on a larger scale {t between about 0.1 and 0.2) there
appears to be some regularity in the pattern of the pines that is inter-

esting in view of carlier remarks about scarification.

3.2 Goodness-of-Fit of Poisson Process and Heather-Based Cox Process.

The discrepancy (21) between the data and the Peisson process is
0.026 and 0.030 Yor plot 1 and plot 2, respectively. The Monie Coarlo test
based on 99 simulations hag a level of significance of 0.01 for both
plots; hences the hypothesis» that the pines are completely randomly
distributed, is rejected. The simulation envelopes arc shown in Fig. 6.
The K-function of the data lies outside the simulation envelopes for

values of t below about 0.08.
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The hypothesis that the pines are completely randemly distributed,
but with different intensities on and off henther:; is tested by simu-
lation of the Cox process with a C-mosaiec for the heather as random two-
state intensity function. Diggle (in prop.) estimated the intensity of
the ceontres of the dises as 221 and 211 and the parameters of the
Weibull distribution (10) of the radii as (&, ¥» p) = (0.02B1, 0.8471,
144.7) and {0.0226, 1.011: 128.4) for plot 1 and plet 2 respectively-

The intensities of pines off heather relative to the intensities on
heather are estimated as 0.300¢ and C.4089 for plot 1 and plot 2»
respectively. The Monte Carle test in which the parameter estimates of
the plots are not exchanged has level of significance 0.01 for both plots.
Exchanging parameter cstimates would give a worse fit. The envelopes

and mean of 99 simulations are shown in Fig. 7. The discrepancies are
0.024 and 0.02%. XNote that the K-function of the Poisson process and this
Cox process hardly differ, hence estimation or the relative intensities

via the K-function would lead to unsatisfactory estimates.

3.3 Goussian Cluster Process

2.5.1 Estimation

The two parameters of the Gaussian cluster progess are {pe) with
o the reciprocal of the intensity of the parent process and ¢ the standard
deviation of the normal distribution whieh governs the spread of daughters
around a parent. Estimotes for {(py) arc derived by minimizing the dis-
erepancy (21). To avoid negative estimates for p or ¢ during the search
of the Simplex algorithm the parameter-space is transformed to (log p»
log ¢). A con;enient initial estimate for p can be derived by noting
that max {K(t)—ﬂtg} = p. A number of initial estimates (o and ¢ both

t
ranging between £.01 and 0.10) were tried to enhance the chance of finding
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5. TABLES AND FIGURES

Table 1 Point estimation of (g s} of Gaussian cluster Progesses ‘

Upper limit

of integration K(.) {Ke .)}% log {x(.}}

plet 1 plot 1 plot 2 plot ) ‘

P < p T p c o} o |
0.025 -035 0.027 0.01¢ ©.011 0C.008 0.010 0.01% 0.019
Q.05 -010  ©.012 ©.01C 0.011 0.011 0.01% 0.010 0.014
0.075 010 0.011 0.010 0.012 0.011 0.013 0.010 0O.01k
0.1 008 0.011 ©.009 0.012 0.01¢ 0.012 0.010 0.013
0.2 -002  0.004 ©.006 0.008 0.007 0.009 0.008 0.012
0.3 002 0.00% -005 008 0.006 0.008 0.008 0.012
0.4 003 0.007 -005 008 0.006 0.009 0.008 0.012
0.5 -010 0.1B0 0.005 008 0.006 0.008 0.008 (0.012

: off heather).

and Caltuna vulgaris {dots} in a 100¥%20m area at Ivantjfrnieden in
-

: on heather;

Pinus silvestris {crosses)

Central Sweden (+

Figure t
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the global minimum. Table 1 shows the effect on the estimates of
slightly different definitions of the discrepancy. Use of K(.) instead
or K%(-) in (21) increoses the dependence of the ecstimates on the range
of integration. The estimates with K%(.) and a range of integration of
0.1 were chosen as final estimates. Note that above t = 0.1 the eosti-
mated K«function lies for some t below the K-function of the Poisson
processy while this is impossible for the theoretical K-functioen of a
Poisson cluster process- Extending the range of integration means
trying to let the model fit over o range of distances that cannot be
ritied properly. The final estimates, used throughout Part IX,are
{pss) = 0.009, 0.012) and (0.010; 0.012) for plot 1 and 2 respectively:

with discrepancies of €¢.0005 and 0.0008.

3.3.2 Goodnesg-of«fit

The parameter estimates of plot 2 were used in simulations to
assess the goodness-of-rit of the model in plet 1 and vice-versa. With
either a fixed or Poisson number of parents in 19 simulations the Monte
Carlo test based on (21) has levels of significance of 0.95 and 1.0 for
plot 1 and 2. However: the simulation envelopes (Fig. 8) touch the K-
function of the data for values of t of about C.15. If the range of
integration in (21} is increased to 0.25 the Monte Carle test gives still
levels of significance of 0.75 (2 times) in plot 1 and C.55 and 0.75 in
plot 2 for 19 simulatiens with a Poisson and rixed number of parents
respectively. Statisticallyr the second order properties of data appear
to be consistent with & Gaussian cluster process.

In plot 2 the envelepes of the simulations with a Poisson number
of parents are much wider than of the simulations with a fixed number of

parents (Fig. 8b). Obvicusly the introduction of variability in the
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rumber of parents inereases the overall variability. However:; further
simulations showed that Fig. Bb is untypical: the pointwise standard
deviations in K{t) based on 100 simulations are almost equal for simu-

lations with fixed and Poisson number of percnts.

3.3.3 Contfidence regions

Fig- 9 shows o¢stimates of the logarithms of the parameters for
100 simulations of the Gaussian cluster process (Poisson number of parents) .
The true parameters of the process are the point estimates (0.009, 0.012)
and (C.010: 0.012) for plet 1 and 2 respectively. The 95% confidence
ellipsoids assume Normality in the logarithm of the parameters. With
a Tixed number of parents (Fig. 10) the confidence ellipseids have a
smaller area. The confidence ellipseid in Fig. 9b is distorted by an

extreme estimate. Itf this estimate is exeluded the Figs. suggest plausible

s

values between 44 and 270 ror the number of clusters (g- } and between Scm

and 30cm for the spread () of the clusters around their cenire.

4, DISCUSSION

The shape of the distribution of inter-pine distances: K{.) is very
similar in the two plots and indicates clustering on small scale and
regularity on larger scale. The amoll scale clustering has been modelled
by a Gaussian cluster process. The large scale regularity appears to be
compatible with sampling fluctuaticns in simulations of this model. That
the regularity occurs in both plots of pines is discomforting but shows
the value of the data-splitting exercise. The Redwood data discussed in
Ripley (1977) *and Diggle {1978) show a similar shape of K(.).

The parameter estimates for the Gaussian cluster model guantify

concisely the second-order properties of the observed pattern ands
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together with their confidence regions provide a basis for comparison of
pattern in other developing stands of pine or in other variables. The
clustering is much more pronounced than expected on the basis of the
mosalc pattern of the heather (Figs (8)-(8)) and its seale is much
smaller than the scale of patches of heather. The model is formulated
in terms of contagion but {16) shows that an imterpretation in terms of
heterogeneity is equally satisfactory. Note that it is possible to sub-
Jject the model to further tests based on the nearest-neighbour distri-
butions or any other relevant summary description but the danger of

data-dredging should be recognised.

CHAPTER 3 TESTS FOR ASSOCIATION
1. INTRODUCTION

In this chapter the question is examined whether there is statist-
ical evidence that there is association between pine and heather in Fig.1.
Among possible measures of association I choose the number of pines on
heather.

Assume temporarily that the pines are completely randomly distri-
buted in the gaps with intensity KO and completely randomly distributed
in the patches of heather with intensity li- Then the hypothesis of no
association is equivalent with the hypothesis lo=h1, which ¢an bhe tested
with a binomial test: because Nl, the number of pines in heather is
binemizlly distributed with parameters n and p. Here n is the total
number of pines and p = Aipi/(lopo+kip1) with p, the cover of heather and
By = 1-p1- It AO = Al then p = py- For the dota, standardized Normal
deviates are on this basis %.86 and 3.40 for plots 1 and 2: thus the

hypothesis is convinecingly rejected. Howevers: the assumptions are falsi-

fied in the previous chapter: where the heather-based Cox process has
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been rejected as a plousible model- Begause the pines nre clustered the
variance or Ni will bo greater than under the binomial medel and it is
not clear berlorehand how large the effect of clustering on the variance
will be. What is needed js a more reasonable model for pine and heather
expressing the hypothesis of no association. I shall consider a permu-
tation model based on random shifts of the observed patterns and a para-
motric model based on independent processes: the C-mosaic process feor the
heathor and the Gaussian e¢luster proeess ror the pines as described in
the previous chapter. The variance of Nl under these models will be com-

pared with the variance under simplified models for which the distri-

tution theory is known.

2- THEQORY AND METHODS

Without modelling the patterns of pine and heather the minimal
assumption under which 2 test is available is stationarity. Statione
arity implies that the inter-pine difference-vectors are complete minimal
sufficient statisticsg. Conditionally on these differences we may think
of the pines as a rixed irregular network of points. Under the null
hypothegis of no association every shift of the network with respect to
the mosaic of the heather is equally probables hence these shirfts specify
& permutation distribution (Cox and Hinkleys 1674s §6.2). T base a Monte
Carle téest on the permutation distribution. If the observed number of
pines on heather is extreme with respect to the number on heather afier
each ofy say; 19 random shifts the data are not consistent with the null
hypothesis at 5% level of significance in a one-sided test. Let X bve
pivariate uniférmly distributed in the unit square:» then a random shirt
is defined by adding X to the locations of the pines and applying the
pericdic boundary conditions (Ch 2 §2.5). The border effect violates

the conditionality argument slightly but apart from this. the patterns
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of pine and heather are kept unchanged.

In the parametric approach the patterns are taken to be reali-
sations of stochastic models. Under the null hypsthesis the two stoch-
astic processes are independent so that the definition of the processes
implies the null distribution of the number of pines on heather. The
Monte Carle test is based on simulations of the Gaussian cluster process
for the pines and the C-mosaic process of the heather (Ch 2) and counts
for each simulation the number of pines on heather.

The parametric approach has the disadvantage that more assumptions
are needed before the test can be carried outs but the advantage that
the patterns are summarized in parameters that give insight into their
nature and allow comparison with ostensibly similar data-sets.

If the variance of the number of pines on heather (Nl) is thought
to be nsurficientbgsis ror a tests then a number of other approaches are
possible that do not require simulatiens. The variance of N1 has been
derived analytically under simplified models. The simplest model is»
of courses the binomial model with

var(Ni) = np{l-p)

More reglistic models can be dorived from the Gaussian cluster process.
Fitting the Gaussion cluster process for the¢ pines gives a value for g
(C.012) which suggests very tight clusters. Consequentlys if the parent
iz on(oft) heather: then tho daughters are onloff) heather with high
probability.

Under the assumption that this probability egquals unity (o =0)
more tractable models are obtained. The number of parents will be based
on the previously fitted value of p. Attention ig restricted here to
the hypothesis of no associatioen. Three models are considered. In

the first two models I condition on the observed number of eventss while
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the number of parents is either a fixed number or is Poigsson distributed.
In the third model I do not condition ond both the number of parents and
total number of events will be Peisson distributed.

In the tirst model both the number of parents and the number of
events ig fixed. The number of parents on heather: Qs then is binemially
distributed, O -Bi(mvp1) with m (for the unit region) the nearest integer
to p—i, the total number of parents, and p, the cover of heather. The n
events observed are to be assigned at randoem to the parents: thus, given
0; the number of pines is binemial, N1 ~ Bil{n, 0/m). The marginal dis-
tribution of Ni is a compound distribution which I call the binemial-
pinomial diztributions symbolically (e¢f. Johnson and Kotz. 1969)

Biln, O/m) A Bi(m:p,l) (1)
¢

This distribution is not mentioned in Johnson and Kotz (1969), but the
variance of Ni can be derived by standard methods based on the probabiliiy

genersting functions» or directly from the conditional mean and variance:
var(¥,) = n p (1-p,) (1 = 2=3) (2
b 1 1 ™

In the second model the number of parents is not fixed but is
-1 . . : :
Poisson distributed with mean p ~+» Therefore the previous distribution
is compounded over m»r symbolically

Bilns 0/¥) A Bi(Ms p,) A Poilp ™) (3)
O M

Here a slight problem arises for M=0; as there was {unmentioned) in the
simulations; I discard such realizations and modify the Polsson distri-
bution acgordingly. The variance of N1 then becomes
1 1%
var(.) = n p, (1-p, 3{1 + {n=D[exp(p™) - 1177 2 &—, ()
1 1 1 -
m=l
=1 . .
The summation in (4) equale Ei{p ) - ¥ + log p where Ei{.) is the

exponential integral and vy Euler's constant (Abramowitz & Steguns 1064,
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5.1.10). For small p (say p < 0.02)
var{Ni) M n pi(I—pi)(i + pln=-1)) (5}
hardly differs from (2).
In the third model both the number of parents and the number of
daughters are Peisson distributed. Then the distribution of N1 is a

generalized distributions the Poisson~Poisson disiributions
: -1 .
Poz(pip YV Poily) (&)

_'1_
where pia is the mean number of parents on heather and p the mean
number of daughters per parent. The variance of N1 is {Johnson and Kotz»
1669; Pielous 1977)

var (Nl) = pig-ip(1+;) s pin(i + pn) (7

where n now is the expected number of pines in the area; thus (7) is
greater than {2) and (5) and shows the effect of conditioning.
Notice that in the above described formulae for the variance of N1

the areal proporiion ¢f heather is fixed while this proportion is stoch-

astic in the simulatiens.

3. RESULTS

The distribution of N1’ the number of pines on heathor is shown
in Fig. 1 based on 250 simulations of the population model with C-wmosaic
and Gaussian cluster process (Poisson number of parents). Note that no
parameters of C-mosaic or cluster process are exchanged between the plots.
The associated Monte Carlo test (one-sided) rejects the hypothesis of
no association below the 1% level: as does the test based on the randomi-
zation model or the model with fixed instead of Poisson number of parents.
The variances of N_ as estimated from these 250 simulations of each model

i

are given in Table 1. In addition the variance of N is estimated as

1

based on the binomials Poisson-Poisson and binomial-binomial distributions
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(Table 1). For comparison the population model with fixed number of
parents and ¢ very small (¢ = 0.0001) is included.

It is surprising that the variance of N1 with a fixed number of
porents is much smaller (Fetests P < 0.05, two-gided)! than with a Poisson
number of poarents as the difference is negligible i¥ g = 0 (ef. {2) with
(5)). However: twe additional runs of simulations give variances orf 27.7
and 33.4 for the model with Poisson number of parenis and 30.3 znd 3k.0
for the model with fixed number of parents. The difference is thus well
within the simulation fluctuation. The difference between the variance
for g = O (binomial-binomial distribution) and ¢ = 0.012 must be due to
the variation in proportion of heather in the simulations. The Poisson-
Poisson distribution givess of courses the largest variance. Standard
normal deviates are for this model 2.62 and 1.90 the latter just not

significant at 5% in a two-sided test.

[ DISCUSSION

The model fitting in Chapter 2 could just be secn as giving a con-
cise description of the observed pattern or the second order stotistics
thereof. Howevers when the models are used in statistical tests this
restrictive view is not encugh: the variability of the relevant paenomena
should be mirrored in the model. This variability determines the dis-
tribution or N1 with which the observed number of pines on hoather is
compared.

The range of models considered all reject the hypothesis of ne
association. The permutation model requires minimal pssumptions, it
does not even ;ssume isotropy. It iz at first sight surprising how close

the variance of Ni for this model is to the variance for the parametric

models. The explanation is that, under the assumptions of stationaritys
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isotropy and ne associations the variance of N1 depends only on the
covariance Tunction ¢{t) of the heather mosaic and the distribution of
inter-pine distances (Pt I Ch 2 (51

\'ar(Nl) =n clo) + Z L E{

:x } clllx '.’if,“) (8)

X, ~
~l

where the {fi} are the locations of the pines. As both parametric
models are fitted to match the second-order propertics, they give about
the gsame wvariange as the non-parametric medel. Moreovers with the

pines an irregular but fixed network of pins that sample a stationary
mesalc processs the covariance function of the mosaic can be estimated,
preferably from a sSeparate point quadrat sample, and hence (8) (ef.

Pt I Ch 3 #2.4). Of course, this approach gives a test of significance
of the association only, while the parametric approach gave insight inio
the patterns of pine and heather as well.

Estimation of {8) with sample points distributed according o 2o
Gouvssian cluster process -~ a rather curious sampling design - is not
easy: the distridvution of inter-event distances within the unii~square
differs from its statiomary analeg K{t) and the analytical expression for
it will be complex (cf. Bartletts 1964).

The statistical evidence for association motivates the construction
of a combined model for pine and heather that deseribves their pattern
and accounts for the association. Such 2 model can be based on the idea
of an interrupted point process (Stoyan, 1979). Assume we have two
stationary, isotropic spatial processess T a point process and ZQﬁ)

a stochastic process with realized values botween 0 and 1 (0 g z(x) g 1).
The interrupted process ﬁI is defined by the rule: retain an event at
X with probability z{x) and discard it with probability 1 - z(x). Ve
have already seen one example: the heather-based CoxX process (Ch 2) was

an interrupted point process with T o Poisson process with intensity 11

P11 Cho o3
3 3

and ZQ{) defined by the binary mosaic process ZO(E) of the heather:
Zix) = AO/?\i ir 20(33) = 0 {x off hoather) ang Alx) = 1 ir Zyx) = 1
(i on heather). If T is replaced by the Gaussian cluster process then
the second-order statistics fit» and the number of pines on heather as well.
The K-function of an interrupted point process can be derived-
Let ¢*{¢) = E{Z(E)Z(z)} with {lx-vll = t) then C*(¢) is the probability
that two cvents of [I; distance t aparts both survive. With g(t) and

gI(t) the joint prebability demsities of the occurrence of a pair of

eventsy distance t aparts of [l and HI, respectively ((2) in Ch 2), we

have
gI(t) = g{t)c=(¢) {9}
=l
Let Z{x} have expected value py variance o, and correlation function r(t),
) 2 X
so that C*(t) = p™ + 5 r(t). Define K'(¢) = i}é-ﬁ ; then with {3) and
(4) in ¢h 2,
2
cz *‘t t
KI(t) = K(+) « —= Jo K (uirluldn {10)
B

The parameter cstimates of HI can be based on {10); and will in general
not be identical with the paramoter estimates of i- 1 oxpect that up-
dating the parameter estimates for p and g for the pines changes the
estimates only slightly because the Ke-function of HI in {10) does not
change much (ef. K-functions of Poisson process and heather-based Cox
process in Ch 2}. Unfortunatelys we con still not fit the large-scale
regulority in the point pattern in this way: the C-mosaic has correlation

function r{u) > O; hence KI(t) Z R(t) > ntz.
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CHAPTER 4 DISCUSSION

o ) ) Table 1. Variance of number of pines on heather under hypothesis of
Statistical analysis of contagion and heterogeneity where the no association.

latter is caused by a known process is difficult bdut the present analysis

shows that it is possible. The analysis has not explained the genesis of
Fig. 1 put has shown that there is evidence o association between pine ! Model Plot 1 Plot 2
and heather and: moreover: that the pattern ¢f the pine is clustered : Parametric Models:
beyond the effect of association; hence, that the pattern of pine is . C-mosaic and Gaussian cluster process
subject to other factors as well. The conclusions of an observational Poisgon no. of parents 7.9 28.3
study cannot reach further and experiments, if well designed» may proceed rixed no. of parents 272 2L.3
from here to establish the causal factors involved. ’ fixXed no. of parents, small ¢ (0.0001) 41.8 3% .9
Now the formal ec¢onclusions have been stated I propose an

i Permutation Model 364 29.5
explanation for the pattern. A tractor scarified the rield parallel I
to the long side and made furrows at 2m distance or cach other. The Simplified Models:
fixation and germination conditions for the pines and possibly the heather Binomial 20.5 17.0
were more favourable in the furrows than outside. On the map binomial-binomial (-Poisson) 35 .4 28.4
the pines tend to lie along lines (more evidently in plot 1 than in plot 2} Poigson~Poisson 71-1 56.56

while the K-function of both plots is periodic. (The permutation test
did not assume isotropy!) The association with heather is duec to the
furrows: but the heather has grown cut of the furrew to cover the rest
of the scarified patches and possibly beyond. Of courser my explanation
is no better than any one elses» until more is known cither of the
history of Fig. % or of the ccolegy of pine and heather by designed

experiments.
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Figure 1 Null distribution of number of pines on heather in parametric
{C-mosaic and Gaussian cluster medel with Poisson number
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