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List of symbols 

log,(x) 

m 

m.s. 

n 

p 

p (x) 

xvi 

analysis of variance. 

value of the regression coefficient for the k-th species; used when 
only one regression cOefficient is involved. 

coefficients {parameters) in a regression equation; b0 is usually the 
intercept. 

maximum of a response curve. Can be indexed by a species number 
(k). 

coefficients (parameters) in a regression equation. 

covariance function, i.e. function giving the covariance between Z(x1) 

and Z(x:J, where x 1 and x2 are two points. 

degrees of freedom. 

the exponential function or antilog of x (exp(log(x))=x). 

expected value of a random variable y. 

variance ratio in an ANOVA table. 

lag, distance. 

indices numbering sites in the data (i = 1, 2, ... , n; j = 1, 2, 
... , n), often used as subscript, e.g. x1 , the value of variable x 
in the i-th site. 

indices numbering the species in the data (k = I, 2, ... , m; l = 
l, 2, ... , m), often used as subscript, e.g. yk, the value of variable 
y of the k-th species. 

Naperian or natural logarithm of x (for x > 0). 

number of response variables (often equal to number of species). 

mean square in an ANOVA table. 

number of sites (statistical sampling units, objects, etc.). 

probability of occurrence of a species. 

probability of occurrence of a species as a function of the variable 
X. 

Pmax 

p 

q 

r 

R 

s 

s.e. 

s.d. 

s.s. 

I, I (v) 

var(y) 

vr 

5i 

x, 

maximum probability of occurrence. 

P value of a statistical test, e.g. P < 0.05. 

number of explanatory variables (often equal to number of envir­
onmental variables). 

coefficient of correlation (in a sample). 

multip"le correlation coefficient in regression; R2 is termed the 
coefficient of determination. 

adjusted R2, also termed percentage variance accounted for. A 
recommended modification of R2 to adjust for the number of 
parameters fitted by regression. For large sample sizes R2 d' is 
approximately equal to R2. a 

1 
. 

standard deviation of a sample, or residual standard deviation in 
regression. 

variance of a sample, or residual variance in regression. 

standard error. 

standard deviation of a sample. In Chapter 5, standard deviation 
of a unimodal response curve. 

sum of squares in an AN OVA table. 

tolerance, a measure of ecological amplitude, is the parameter for 
curve width in the Gaussian logit response model. It can be indexed 
by a species number (k). 

t or Student's distribution With v degrees of freedom: shows both 
the random variable and a particular or observed value. tn (v), or 
tn, is the critical value of a t distribution in a two-sided (two-tailed) 
statistical test with significance level a. 

optimum of a response curve, i.e. the value for which the response 
curve under consideration attains its maximum (when uniquely 
defined). Can be indexed by a species number (k). 

variance of a random variable y, also denoted by cr2 or V. 

variance ratio in an AN OVA table. 

arithmetlc mean of the variable x in a sample. 

value of the variable x at e~; particular site. 

value of the variable x at the i-th site. 

explanatory variables in a regression equation, often observed 
environmental variables. Also used for latent variables in ordination 
(i.e. theoretical, environmental variables) or variables indicating 
spatial position. 
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I. 

Y; 

Z(x) 

y(h) 

e 
1., 1., 

~(x) 

v 

p(h) 

(J 

cr' 

x' (v) 

x:viii 

value of a particular response variable y in the i-th site, used when 
it is clear from the context which variable is being considered. 

value from the k-th response variable (species) in a particular site, 
used when it is clear from the context which site is considered. 

value of the k-th response variable (species) in the i-th site. 

sum of Yki over the index k = I, ... , m; sum of Yki over the index 
i= 1, . .. ,n. 

j-th environmental variable (j = l, 2, ... , q). 

value ofj-th environmental variable in the i-th site. 

a spatial random variable, with x denoting the spatial position. 
z(x) is the value of Z(x) observed in x 

semivariance. 2y(h) = var(Z(x1)- Z(x,)], where x1 and x2 are points 
at distanc.e h apart. 

dissimilarity between sites i and j. 

error term in a regression equation. e is the random variable 
y-E(y). 

estimator of the parameter e. 
eigenvalue of a cross-product matrix; 'A.3 is the eigenvalue of the 
s-th axis or eigenvector. 

expected value of a random variable. 

degrees of freedom. 

correlation function p(h) = C(h)/ C(O). 

standard deviation of a random variable. 

variance of a random variable; often used for the error variance 
in regression. 

Chi-square distribution with v degrees of freedom: shows both the 
random variable and a particular or observed value. x2a,(v) is the 
critical value of a chi-square distribution in a statistical test with 
significance level cr. 

Dune Meadow Data 

In this book the same set of vegetation data will be used in the chapters on 
ordination and cluster analysis. This set of data stems from a research project 
on the Dutch island of Terschelling (Batterink 8i. Wijffels 1983). The objective 
of this project was to detect a possible relation between vegetation and management 
in dune meadows. Sampling was done in 1982. Data collection was done by the 
Braun-Blanquet method; the data are recorded according to the ordinal scale 
of van der Maarel (l979b). In each parcel usually one site was selected; only 
in cases of great variability within the parcel were more sites used to describe 
the parcel. The sites were selected by throwing an object into a parcel. The point 
where the object landed. was fixed as one corner of the site. The sites measure 
2x2·m2

• The sites were considered to be representative of the whole parcel. From 
the total of 80 sites, 20 have been selected to be used in this book (Table 0.1). 
This selection expresses the variation in the complete set of data. The names 
of the species conform with the nomenclature in van der Meijden et al. (1983) 
and Tutin et al. (1964-1980). . 

Data on the environment and land-use "that were sampled in this project are 
(Table 0.2): 
- thickness of the AI horizon 
- moisture content of the soil 
- grassland management type 
- agricultural grassland use 
- quantity of manure applied. 
The thickness of the Al horizon was measured in centimetres and it can therefore 
be handled as a quantitative variable. In the dunes, shifting sand is a normal 
phenomenon. Frequently, young developed soils are dusted over by sand, so that 
soil development restarts. This may result in soils with several AI horizons on 
top of each other. Where this had occurred only the AI horizon of the top soil 
layer was measured. 
The moisture content of the soil Was divided into five ordered classes. It is therefore 
an ordinal variable. 
Four types of grassland management have been distinguished: 
- standard farming (SF) 
- biological farming (BF) 
- hobby-farming (HF) 
- nature conservation management (NM). 
The grasslands can be used in three ways: as hayfields, as pasture or a COI!lbination 
of these (intermediate). Both variables are nominal but sometimes the use of the 
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grassland is handled as an ordinal variable (Subsection 2.3.1). Therefore a ranking 
order has been made from hay production (1), through intermediate (2) to 
grazing (3). 
The amount of manuring is expressed in five classes (0-4). It is therefore an ordinal 
variable. 

All ordinal variables are treated as if they are quantitative, which means that 
the scores of the manure classes. for example, are handled in the same way as 
the scores of the AI horizon. The numerical scores of the ordinal variables are 
given in Table 0.2. There are two values missing in Table 0.2 . Some computer 
programs cannot handle missing values, so the mean value of the corresponding 
variable has been inserted. The two data values are indicated by an asterisk. 

Table 0.1. Dune Meadow Data. Unordered table that contains 20 relev6es (columns) and 
30 species (rows). The right-hand column gives the abbreviation of the species names listed 
in the left-hand column: these abbreviations will be used throughout the book in other 
tables and figures. The species scores are according to the scale of van der Maarel (1979b). 

1 Rchillea miLLefoliwm 
2 Rgrostis stolonifera 
3 Rira praecox 
4 Rlcpecwrws genicwlatws 
5 Rnthcxanthum odoratwm 
6 BeLLis perennis 
7 Br-omws hordaceus 
8 Chenopodium album 
8 Cirsiwm arvense 
10 Eleocharis palustris 
11 Elymws repens 
12 6mpetrwm nigrum 
13 Hypochaeris radicata 
14 Jwncus articulatws 
15 Jwncws bwfonius 
16 Leontodon autwmnalis 
17 Lolium perenne 
18 Plantago lanceolata 
18 Pea pratensis 
20 Pea trivialis 
21 PotentiLLa palwstris 
22 Ranwnculus flammwla 
23 Rumex acetosa 
24 Sagina procumbens 
25 Salix repens 
26 Trifolium pratense 
27 Trifolium repens 
28 Vicia Lathyroides 
28 Brachvtheciwm rwtabwlum 
30 CalliergoneLLa cwspidata 

XX 

00000000011111111112 
12345678801234567880 
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................ 2.3. 
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..• 2 ..........••••.. 
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.52233332352222.2562 
75652664267 ...... 2 .. 
.... 555 .• 33 ..... 23 .. 
44542344444.2 ... 13 .. 
2765645454.49 .. 2 ... . 
............. 22 .... . 
....... 2 .... 2222 ... 4 
.... 563.2 .. 2 ....... . 
... 5 ... 22.242 ..... 3. 
................. 335 
.... 252 ......... ' .. . 
.52125223633261 .. 22. 
......... 12 ...... 1 .. 
.. 2226222244 .. 44. 634 
............. 4.3 ... 3 

Och mil 
Oge sto 
Rir pea 
Olo gen 
Ont odo 
BeL pee 
Beo hoe 
Che alb 
Cir aev 
ELe pal 
ELy rep 
Emp nig 
Hyp cad 
.Jun ad 
.Jun buf 
Leo aut 
Lol pee 
PLa Lan 
Poa pea 
Po a tri 
Pot pal 
Ran fla 
Rum ace 
Sag peo 
SaL eep 
Tri pea 
Tri rep 
Vic lat 
Bra cut 
Cal cus 

Table 0.2. Environmental data (columns) of 20 relevees (rows) from 
the dune meadows. The scores are explained in the description of the 
Dune Meadow research project above; asterisk denotes mean value 
of variable. 

Sample AI Moisture Management Use Manure 
number horizon class type class 

I 2.8 I SF 2 4 
2 3.5 I BF 2 2 
3 4.3 2 SF 2 4 
4 4.2 2 SF 2 4 
5 6.3 I HF I 2 
6 4.3 I HF 2 2 
7 2.8 I HF 3 3 
8 4.2 5 HF 3 3 
9 3.7 4 HF I I 

IO 3.3 2 BF I I 
II 3.5 I BF 3 I 
I2 5.8 4 SF 2 2* 
13 6.0 5 SF 2 3 
I4 9.3 5 NM 3 0 
I5 ll.5 5 NM 2 0 
I6 5.7 5 SF 3 3 
I7 4.0 2 NM I 0 
I8 4.6"' I NM I 0 
I9 3.7 5 NM I 0 
20 3.5 5 NM I 0 
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5 Ordination 

C.J.F. ter Braak 

5.1 Introduction 

5.1.1 Aim and usage 

Ordination is the collective term for multivariate techniques that arrange sites 
along axes on the basis of data on species composition. The term ordination 
was introduced by Goodall (1954) and, in this sense, stems from the German 
'Ordnung', which was used by Ramensky (1930) to describe this approach. 

The result of ordination in two dimensions (two axes) is a diagram in which 
sites are represented by points in two-dimensional space. The aim of ordination 
is to arrange the points such that points that are close together correspond to 
sites that are similar in species composition, and points that are far apart correspond 
to sites that are dissimilar in species composition. The diagram is a graphical 
summary of data, as in Figure 5.1, which shows three groups of similar sites. 
Ordination includes what psychologists and statisticians refer to as multidimen­
sional scaling, component analysis, factor analysis and latent-structure analysis. 

Figure 5.1 also shows how ordination is used in ecological research. Ecosystems 
are complex: they consist of many interacting biotic and abiotic components. 
The way in which abiotic environmental variables influence biotic composition 
is often explored in the following way. First, one samples a set of sites and records 
which species occur there and in what quantity (abundance). Since the number 
of species is usually large, one then uses ordination to summarize and arrange 
the data in an ordination diagram, which is then interpreted in the light of whatever 
is known about the environment at the sites. If explicit environmental data are 
lacking, this interpretation is done in an informal way: if environmental data 
have been collected, in a formal way (Figure 5.1 ). This two-step approach is indirect 
gradient analysis in the sense used by Whittaker ( 1967). By contrast, direct gradient 
analysis is impossible without explicit environmental data. In direct gradient 
analysis, one is interested from the beginning in particular environmental variables, 
i.e. either in their influence on the species as in regression analysis (Chapter 3) 
or in their values at particular sites as in calibration (Chapter 4). 

Indirect gradient analysis has the following advantages over direct gradient 
analysis. Firstly, species compositions are easy to determine, because species are 
usually clearly distinguishable entities. By contrast, environmental conditions are 
difficult to characterize exhaustively. There are many environmental variables and 
even more ways of measuring them, and one is often uncertain of which variables 
the species react to. Species composition may therefore be a ·more informative 
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Figure 5.1 Outline of t~e role of ord~nation in community ecology. showing the typical 
form~t ~f data se~s obtamed. by samphng ecosystems and their analysis by direct gradient 
and mdtrect gradient analys1s. Also shown is the notation used in Chapter 5. Point of 
site in the ordination diagram ( • ). 

indicator of environment than any given set of measured environmental variables. 
Ordination can help to show whether important environmental variables have 
been overlooked: an important variable has definitely been missed if their is no 
relation between the mutual positions of the sites in the ordination diagram and 
the measured environmental variables. 

Secondly, the actual occurrence of any individual species may be too unpre­
dictable to discover the relation of its occurrence to environmental conditions 
by direct means (Chapter 3) and therefore more general patterns of coincidence 
of several species are of greater use in detecting species-environment relations. 

Thirdly, for example in landscape planning, interest may from the onset be 
focused more on the question of which combinations of species can occur, and 
less on the behaviour of particular species. Regression analysis of single species 
then provides too detailed an account of the relations between species and 
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environment. The ordination approach is less elaborate and gives a global picture, 
but - one hopes - with sufficient detail for the purpose in hand. 

Between regression analysis and ordination (in the strict sense) stand the canonical 
ordination techniques. They are ordination techniques converted into multivariate 
direct gradient analysis techniques; they deal simultaneously with many species 
and many environmental variables. The aim of canonical ordination is to detect 
the main pattern in the relations between the species and the observed environment. 

5.1.2 Data approximation and response models in ordination 

Ordination techniques can be viewed in two ways (Prentice 1977). According 
to one view, the aim of ordination is to summarize m'ultivariate data in a convenient 
way in scatter diagrams. Ordination is then considered as a technique for matrix 
approximation (as the data are usually presented in the two-way layout of a matrix). 
A second, more ·ambitious, view assumes from the beginning that there is an 
underlying (or latent) structure in the data, i.e. that the occurrences of all species 
under consideration are determined by a few unknown environmental variables 
(latent variables) according to a simple response model (Chapter 3). Ordination 
in this view aims to recover that underlying structure. This is illustrated in Figure 
5.2 for a single latent variable. In Figure 5.2a, the relations of two species, A 
and B, with the latent variable are rt::ctilinear. In Figure 5.2c they are unimodal. 
We now record species abundance values at several sites and plot the abundance 
of Species A against that of Species B. If relations with the latent variable were 
rectilinear, we would obtain a straight line in the plot of Species B against Species 
A (Figure 5.2b), but if relations were unimodal, we would obtain a complicated 
curve (Figure 5.2d). The ordination problem of indirect gradient analysis is to 
infer about the relations with the latent variable (Figures 5.2a,c) from the species 
data only (Figure 5.2b,d). From the second viewpoint, ordination is like regression 
analysis, but with the major difference that in ordination the explanatory variables 
are not known environmental variables, but 'theoretical' variables. These variables, 
the latent variables, are constructed in such a way that they best explain the 
species data. As in regression, each species thus constitutes a response variable, 
but in ordination these response variables are analysed simultaneously. (The 
distinction between these two views of ordination is not clear-cut, however. Matrix 
approximation implicitly assumes some structure in the data by the mere way 
the data are approximated. If the data structure is quite different from the assumed 
structure, the approximation is inefficient and fails.) 

The ordination techniques that are most popular with community ecologists, 
are principal components analysis (PCA), correspondence analysis (CA), and 
techniques related to CA, such as weighted averaging and detrended correspondence 
analysis. Our introduction to PCA and CA will make clear that PCA and CA 
are suitable to detect different types of underlying data structure. PCA relates 
to a linear response model in which the abundance of any species either increases 
or decreases with the value of each of the latent environmental variables (Figure 
5.2a). By contrast, CA is related, though in a less unequivocal way. to a unimodal 
response model (Figure 5.2c). In this model, any sPecies occurs in a limited range 
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Figure 5.2 Response curves for two species A and B against a latent variable x (a. c) 
~nd the expected abundan:es of the species plotted against each other (b. d), for the straight 
hne model (a, b) and a unxmodal model (c, d). The numbers refer to sites with a particular 
value for x. The ordination problem is to make inferences about the relations in Figures 
a and c from species data plotted in Figures band d. 

of valu_es of each of the.latent variable~. P<?A and CA both provide simultaneously 
an ordmatiOn for the Sites and an ordmahon for the species. The two ordinations 
may be ~lotted in t?e same diagram to yield 'joint plots• of site and species points, 
but the mterpretatiOn of the species points is different between PCA and CA. 
P~A .and CA operate directly on the species data. By contrast, multidimensional 

scahng IS a class ?f ordination techniques that operate on a table of dissimilarity 
values between Sites. To apply these techniques, we must therefore first choose 
an app~~priate dissimilarity coefficient to express the dissimilarity in species 
composition between any two sites (Subsection 6.2.2). After choosing one we 
can ~~culat7 the dis~imilarity values of all pairs of sites required as input' for 
multtdtmensiOnai scahng. CA and PCA may also be considered as multidimensional 
scaling techniques, but ones that use a particular dissimilarity coefficient. 
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5.1.3 Outline of Chapter 5 

Section 5.2 introduces CA and related techniques and Section 5.3 PCA. Section 
5.4 discusses methods of interpreting ordination diagrams with external (envir~ 
onmental) data. It is also a preparation for canonical ordination (Section 5.5). 
After a discussion of multidimensional scaling (Section 5.6), Section 5.7 evaluates 
the advantages and disadvantages of the various ordination techniques and 
compares them with regression analysis and calibration. After the bibliographic 
notes (Section 5.8) comes an appendix (Section 5.9) that summarizes the ordination 
methods described in terms of matrix algebra. 

5.2 Correspondence analysis (CA) and detrended correspondence analysis (DCA) 

5.2.1 From weighted averaging to correspondence analysis 

Correspondence analysis (CA) is an extension of the method of weighted 
averaging used in the direct gradient analysis of Whittaker (1967) (Section 3.7). 
Here we describe the principles in words; the mathematical equations will be 
given in Subsection 5.2.2. 

Whittaker, among others, observed that species commonly show bell~shaped 
response curves with respect to environmental gradients. For example, a plant 
species may prefer a particular soil moisture content, and not grow at all in places 
where the soil is either too dry or too wet. In the artificial example shown in 
Figure 5.3a, Species A prefers drier conditions than Species E, and the Species 
B, C and D are intermediate. Each of the species is therefore largely confined 
to a specific interval of moisture values. Figure 5.3a also shows presence-absence 
data for Species D: the species is present at four of the sites. 

We now develop a measure of how well moisture explains the species data. 
From the data, we can obtain a first indication of where a species occurs along 
the moisture gradient by taking the average of the moisture values of the sites 
in which the species is present. This average is an estimate of the optimum of 
the species (the value most preferred), though not an ideal one (Section 3.7). 
The average is here called the species score. The arrows in Figure 5.3a point 
to the species scores so calculated for the five species. As a measure of how well 
moisture explains the species data, we use the dispersion ('spread') of the species 
scores. If the dispersion is large, moisture neatly separates the species curves and 
moisture explains the species data well. If the dispersion is small, then moisture 
explains less. To compare the explanatory power of different environmental 
variables, each environmental variable must first be standardized; for example 
by subtracting its mean and dividing by its standard deviation. 

Suppose that moisture is the •best' single environmental variable measured in 
the artificial example. We might now wish to know whether we could in theory 
have measured a variable that explains the data still better. CA is now the technique 
that constructs the theoretical variable that best explains the species data. CA 
does so by choosing the best values for the sites, i.e. values that maximize the 
dispefsion of the species scores (Figure 5.3b). The variable shown gives a larger 
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Figure 5.3 ~rtificial_example of ~nim~dal response curves of five species (A~ E) with respect 
to sta?dardtzed ~anabl_es. showmg dtfferent degrees of separation of the species curves. 
a: Motsture. b: Ftr~t axts of CA. c: First axis of CA folded in this middle and the response 
~urves _of the. spectes lowered by a factor of about 2. Sites are shown as dots at y = 1 
tf Spect~S D IS present and at y = 0 if Species D is absent. For further explanation see 
Subsecttons 5.2.1 and 5.2.3. ' 

dispersion than moisture; _and consequently the curves in Figure 5.3b are narrower, 
and the ~resen_ces of ~pectes D are closer together than in Figure 5.3a. 

The tlieorehcal vanable constructed by CA is termed the first ordination axis 
of CA_ or, briefi:y, the first CA axis; its values are the site scores on the first 
CA ax1s. 

A .secon.d and further CA axes can also be constructed; they also maximize 
th.e d1sper~10n of the species scores but subject to the constraint of being uncorrelated 
With prevwus CA axes. The constraint is intended to ensure that new information 
is expressed on the later axes. In pr~cti~e. we want only a few axes in the hope 
that they represent most of the vanatlon m the species data. 

So we do not need environmental data to apply CA. CA 'extracts' the ordination 
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axes from the species data alone. CA can be applied not only to presence-absence 
data, but also to abundance data; for the species scores, we then simply take 
a weighted average of the values of the sites (Equation 3.28). 

5.2.2 Two-way weighted averaging algorithm 

Hill ( 1973) introduced CA into ecology by the algorithm of reciprocal averaging. 
This algorithm shows once more that CA is an extension of the method of weighted 
averaging. 

If we have measured an environmental variable and recorded the species 
composition, we can estimate for each species its optimum or indicator value 
by averaging the values of the environmental variable over the sites in which 
the species occurs. and can use the averages so obtained to rearrange the species 
(Table 3.9). If the species show bell-shaped curves against the environmental 
variable, the rearranged table will have a diagonal structure, at least if the optima 
of the curves differ between the species (Table 3.9). Conversely, if the indicator 
values of species are known, the environmental variable at a site can be estimated 
from the species that it contains, by averaging the indicator values of these species 
(Section 4.3) and sites can be arranged in order of these averages. But, these 
methods are only helpful in showing a clear structure in the data if we know 
in advance which environmental variable determines the occurrences of the species. 
If this is not known in advance. the idea of Hill ( 1973) was to discover the 'underlying 
environmental gradient' by applying this averaging process both ways in an iterative 
fashion, starting from arbitrary initial values for sites or from arbitrary initial 
(indicator) values for species. It can be shown mathematically that this iteration 
process eventually converges to a set of values for sites and species that do not 
depend on the initial values. These values are the site and species scores of the 
first CA axis. 

We illustrate now the process of reciprocal averaging. For abundance data, 
it is rather a process of two-way weighted averaging. Table 5. I a shows the Dune 
Meadow Data (Table 0.1 ), arranged in arbitrary order. We take as initial values 
for the sites the numbers l to 20, as printed vertically below Table 5.1a. As before, 
we shall use the word 'score·, instead of 'value'. From the site scores, we derive 
species scores by calculating the weighted average of the site scores for each species. 
If we denote the abundance of species k at site i by Yki• the score of site i by 
xi and the score of species k by uk> then the score of species k becomes the 
weighted average of site scores (Section 3. 7) 

Equation 5.1 

For Achillea millefolium in Table 5.1a, we obtain u1 = (1 X 1 + 3 X 2 + 2 
X 5 + 2 X 6 + 2 X 7 + 4 X 10 + 2 X 17)/(1 + 3 + 2 + 2 + 2 + 4 + 2) 
= 117/16 = 7.31. The species scores thus obtained are also shown in Table 5.1a. 
From these species scores, we derive new site scores by calculating for each site 
the weighted average of the species scores, i.e. 
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Table 5.la 

Species 

k 

1 Rch mil 
2 J=lgr sto 
3 Rir pra 
4 Rlo gem 
5 Rnt ado 
6 Bel per 
7 Bra hor 
8 [he alb 
9 Cir arv 
10 Ele pal 
11 Ely rep 
12 Emp nig 
13 Hyp rad 
14 Jun art 
15 Jun buf 
16 Leo aut 
17 Lol per 
18 Pla Lan 
19 Poa pra 
20 Paa tri 
21 Pot pal 
22 Ran fla 
23 Rum ace 
24 Sag pro 
25 Sal cep 
26 Tri pra 
27 Tri rep 
28 Vic lat 
29 Bra rut 
30 Cal cus 

X; 

Table S.!b 

Species 

k 

S Cir arv 
11 Ely rep 
7 Bro hor 

26 Tri pra 
17 Lol per 
6 Bel per 

23 Rum ace 
19 Pea pra 
20 Poa tri 

1 Rch mil 
4 Rlo gen 

18 Pla lan 
27 Tri rep 
24 Sag pro 
15 Jun buf 
16 Leo aut 
5 Rnt ado 
2 Rgr sto 

29 Bra rut 
28 Vic lat 

B'Che alb 
14 Jun art 
21 Pot pal 
10 Ele pal 
22 Ran fla 
30 Cal cus 
13 Hyp rad 

3 Rir pra 
12 Emp nig 
25 Sal rep 

X; 

Sites (1) 
00000000011111111112 
12345678901234567890 II{ 

13 222 4 
48 43 

272 53 
432 4 

3222 2 
4 32 2 4 

2 
4 

44444 6 

44 
2 

2 
45447 5 

2 3 
85 4 

1 

458 

4 4 
2 

4 

2 
2 5 

33 4 
2 4 43 

52233332352222 2562 
75652664267 2 

555 33 23 
44542344444 2 13 
2765645454 49 2 

22 
2 2222 

583 2 2 
5 22 242 

4 

3 
335 

252 
52125223633261 22 

12 1 
2226222244 44 634 

4 3 3 

11111111112 
12345678901234567890 

Sites (1) 
00000010011101111112 
12534706931288764580 

2 
44444 6 

42 324 
2 2 5 

752656662 7 42 
3222 2 2 

5 3 62 2 
44254443424 431 
2766554459 44 2 
132 242 2 
272 3585 4 
5535332 

5221265323322 612 
5 22242 3 

2 43 4 
53223332252352 2262 

4 243 4 4 
48 35 44 744 5 

2222262 4426 4 434 
1 2 1 

1 
4 4 3 3 4 

22 
4 845 4 

2 2 222 4 
34 3 

2 2 5 
2 3 

2 
3 35 

11111111 
67788888899900122234 

24801134867737868983 
56348878043849124796 

7.31 
11.33 
18.20 
9.03 

11.24 
6.62 
5.60 

13.00 
4.00 

14.84 
4.38 

19.00 
16.78 
13.39 
10.54 
10.84 
6.31 
9.27 
7.25 
7.25 

14.50 
15.14 
6.88 

10,35 
19.18 
6.00 
9.47 

12.50 
12.02 
16.40 

u, 
4.00 
4.38 
5.60 
6.00 
6.31 
6.62 
6.89 
7.25 
7.25 
7.31 
9.03 
9.27 
9.47 

10.35 
10.54 
10.94 
11.24 
11.33 
12.02 
12.50 
13.00 
13.39 
14.50 
14.84 
15.14 
18.40 
18.78 
18.20 
18.00 
19.18 

Table 5.1 Two-way weighted averaging algorithm of CA applied to 
the Dune Meadow Data presented in a preliminary section of this 
book. The site numbers and site scores are printed vertically. a: 
Original data table with at the bottom the initial site scores. b: Species 
and sites rearranged in order of their scores obtained after one cycle 
of two·way weighted averaging. c: Species and sites arranged in order 
of their final scores (CA scores). Note the minus signs in the site 
scores; for example, the score of Site 17 is -1.46. 

Table 5.lc 

Species 

k 

3 Rir pra 
5 Rnt ado 
1 Rch mil 

28 Tri pra 
13 Hyp rad 
18 Pla lan 
12 Emp nig 

7 Bro hor 
23 Rum ace 
28 Vic lat 

6 Bel per 
17 Lol per 
19 Poa pra 
11 Ely rep 
16 Leo aut 
20 Poa tr'i 
27 Tri rep 

9 Cir arv 
24 Sag pro 
15 Jun buf 
2S Bra rut 

4 Rlo gen 
8 Che alb 

25 Sal rep 
2 l=lgr sto 

14 Jun art 
22 Ran fla 
10 Ele pal 
21 Pot pal 
30 Cal cus 

x, 

~00 
10100011010001101121 
75076191283492385406 

2 3 
44423 4 
224221 3 

2 25 
2 52 
25355 3 3 

2 
242 4 3 
5 36 22 

1 2 1 
22 3222 
26667 752652 4 

124434 443544 24 
4 4 4 446 

23333 6555222223222 
64542 7 655494 2 
2625 235221332218 

2 
32 52422 

2 443 
2228 34 62224 24 44 

2 723855 4 
1 

3 3 5 
4834544457 

4 43 43 
222242 

45448 
22 

433 

10000000000000001112 

48888866631002479990 
65876284411698262250 

"• 
-0.89 
-0.86 
-0.91 
-0.88 
-0.84 
-0.84 
-0.67 
-0.66 
-0.65 
-0.64 
-0.50 
-0.50 
-0.39 
-0.37 
-0.18 
-0.18 
-0.08 
-0.06 
0.00 
0.08 
0.18 
0.40 
0.42 
0.62 
0.83 
1.28 
1.56 
1.77 
1.92 
1.86 



Equation 5.2 

For Site I in Table 5.1a, we obtain x 1 =(I X 7.31 + 4 X 4.38 + 7 X 6.31 
+ 4 X 7.25 + 2 X 7.25)/(1 + 4 + 7 + 4 + 2) = 112.5(18 = 6.25. In Table 
5. lb, the species and sites are arranged in order of the scores obtained so far. 
The new site scores are also printed vertically underneath. There is already some 
diagonal structure, i.e. the occurrences of each species tend to come together 
along the rows. We can improve upon this structure by calculating new species 
scores from the site scores that we have just calculated, and so on. 

A practical numerical problem with this technique is that, by taking averages, 
the range of the scores gets smaller and smaller. For example, we started off 
with a range of 19 (site scores from 1 to 20) and after one cycle the site scores 
have a range of 14.36- 6.25.= 8.11 (Table 5.1b). To avoid this, either the site 
scores or the species scores must be rescaled. Here the site scores have been rescaled. 
There are several ways, of doing so. A simple way is to rescale to a range from 
0 to 100 by giving the site with the lowest score the value 0 and the site with 
the highest score the value I 00 and by calculating values for the remaining sites 
in proportion to their scores; in the example, the rescaled scores would be obtained 
with the formula (x1 - 6.25)/0.0811. 

We shall use another way in which the site scores are standardized to (weighted) 

Table 5.2 Two~way weighted averaging algorithm of CA. 

a: Iteration process 

Step 1. Take arbitrary. but unequal, initial site scores (x;). 
Step 2. Calculate new species scores (uk) by weighted averaging of the site scores (Equation 5.1). 
Step 3. Calculate new site scores (x,) by weighted averaging of the species scores (Equation 5.2). 
Step 4. For the first axis, go to Step 5. For second and higher axes, make the site scores (x1) 

uncorrelated with the previous axes by the orthogonalization procedure described below. 
StepS. Standardize the site scores (x,). See below for the standardization procedure, 
Step 6. Stop on convergence, i.e. when the new site scores are sufficiently close to the site scores 

of the previous cycle of the iteration: ELSE go to Step 2. 

b: Orthogonalization procedure 

Step 4.1. Denote the site scores of the previous axis by}; and the trial scores of the present 
axis by xi. 

Step 4.2. Calculate v = !.p,,1 Y+, xi};/ Y++ 
where Y+,:;:;:: ~":or Ykt 
andY++= 'r.;::,r Y+1· 
Step 4.3 Calculate X1,new = X;,otd - V fi. 
Step 4.4 Repeat Steps 4.1-4.3 for all previous axes. 

c: Standardization procedure 

Step 5.1 Calculate the centroid, z, of site scores (x1) z = !.,~ 1 Y+l xd Y++· 
Step 5.2 Calculate the dispersion of the site scores sZ:::; L,g, 1 Y+; (x1 - z)2/ Y++· 
Step 5.3 Calculate X;,new = (x1,otd ~ z)/ s. 
Note that, upon convergence, s equals the eigenvalue. 
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mean 0 and variance 1 as described in Table 5.2c. If the site scores are so 
standardized, the dispersion of the species scores can be written as 

0 = LJ:;:_ 1 Yk+ ul/ Y++ Equation 5.3 

where 
Yk+ is the total abundance of species k 
Y++ the overall total. 

The dispersion will steadily increase in each iteration cycle until, after about lO 
cycles, the dispersion approaches its maximum value. At the same time, the site 
and species scores stabilize. The resulting scores have maximum dispersion and 
thus constitute the first CA axis. 

If we had started from a different set of initial site scores or from a set of 
arbitrary species scores, the iteration process would still have resulted in the same 
ordination axis. In Table 5.Ic, the species and sites are rearranged in order of 
their scores on the first CA axis and show a clear diagonal structure. 

A second ordination axis can also be extracted from the species data. The 
need for a second axis may be illustrated in Table 5.lc; Site I and Site 19 lie 
close together along the first axis and yet differ a great deal in species composition. 
This difference can be expressed on a second axis. The second axis is extracted 
by the same iteration process, with one extra step in which the trial scores for 
the second axis are made uncorrelated with the scores of the first axis. This can 
be done by plotting in each cycle the trial site scores for the second axis against 
the site scores of the first axis and fitting a straight line by a (weighted) least­
squares regression (the weights are Y+dY++)· The residuals from this regression 
(i.e. the vertical deviations from the fitted line: Figure 3.1) are the new trial scores. 
They can be obtained more quickly by the orthogonalization procedure described 
in Table 5.2b. The iteration process would lead to the first axis again without 
the extra step. The intention is thus to extract information from the species data 
in addition to the information extracted by the first axis. In Figure 5.4, the final 
site scores of the second axis are plotted against those of the first axis. Site I 
and Site 19 lie far apart on the second axis, which reflects their difference_ in 
species composition. A third axis can be derived in the same way by makmg 
the scores uncorrelated with the scores of the first two axes, and so on. Table 
5.2a summarizes the algorithm of two-way weighted averaging. A worked example 
is given in Exercise 5.1 and its solution. 

In mathematics, the ordination axes of CA are termed eigenvectors (a vector 
is a set of values, commonly denoting a point in a multidimensional space and 
"eigen • is German for •self). If we carry out an extra iteration cycle, the scores 
(values) remain the same, so the vector is transformed into itself, hence, the term 
eigenvector. Each eigenvector has a corresponding eigenvalue, often denoted by 
A (the term is explained in Exercise 5.1.3). The eigenvalue ~s a~tually.equal t.o 
the (maximized) dispersion of the species scores on the ordmatlon axts, and IS 

thus a measure of importance of the ordination .axis. The first o!dination axis 
has the largest eigenvalue (A.1), the second axis the second largest eigenvalue (1..2), 
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Figure 5.4 CA. ordina~ion. diag~am of the Dune Meadow Data in Hill's scaling. In this 
and. the follo':"mg ordmat10n d1agrams, the first axis is horizontal and the second axis 
vertt.cal; the Sites are re~resented by crosses and labelled by their number in Table 5.1; 
spectes names are abbreviated as in Table 0.1. 

and so on. The eigenvalues of CA all lie between 0 and 1. Values over 0.5 often 
denote a good separation of the species along the axis. For the Dune Meadow 
Data. l., = 0.53; l., = 0.40; l., = 0:26; l.4 = 0.17. As l.3 is small compared to 
A, and Az, we x~nor~ the thxrd and htgher numbered ordination axes, and expect 
the first two ordmatwn axes to display the biologically relevant information (Figure 
5.4). 

When preparing an ordination diagram. we plot the site scores and the species 
sc:ores .of .one ordination axis against those of another. Because ordination axes 
dtffer m .Importance, .one would wish the scores to be spread out most along 
the most Im~ortant axxs. But our site scores do not do so, because we standardized 
them to vanance 1 for convenience in the algorithm (Table 5.2). An attractive 
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standardization is obtained by requiring that the average width of the species 
curves is the same for each axis. As is clear from Figure 5.3b, the width of the 
curve for Species D is reflected in the spread among its presences along the axis. 
Therefore. the average curve width along an axis can be estimated from the data . 
For example, Hill (1979) proposed to calculate, for each species, the variance 
of the scores of the sites containing the species and to take the (weighted) average 
of the variances so obtained, i.e. Hill proposed to calculate 

To equalize the average curve width among different axes, we must therefore 
divide all scores of an axis by its average curve width (i.e. by the square root. 
of the value obtained above). This method of standardization is used in the computer 
program DECO RAN A (Hill 1979a). Other than in Table 5.2, the program further 
uses the convention that site scores are weighted averages of species scores; so 
we must iterate Step 3 of our algorithm once more, before applying the stan­
dardization procedure just described. This scaling has already been used in 
preparing Figure 5.4 and we shall refer to it as Hill's scaling. A short cut to 
obtain Hill's scaling from the scores obtained from our algorithm is to divide 
the site scores after convergence by .J (I - /..)/"A and the species scores by 
.Jt..( 1 - A). The scores so obtained are expressed in multiples of one standard 
deviation (s.d.) and have the interpretation that sites that differ by 4 s.d. in score 
tend to have few species in common (Figure 5.3b). This use of s.d. will be discussed 
further in Subsection 5.24. 

CA cannot be applied on data that contain negative values. So the data should 
not be centred or standardized (Subsection 2.4.4). If the abundance data of each 
species have a highly skew distribution with many small values and a few extremely 
large values, we recommend transforming them by taking logarithms: 
lo&- (yki + 1), as in Subsection 3.3.1. By doing so, we prevent a few high values 
from unduly influencing the analysis. In CA. a species is implicitly weighted by 
its relative total abundance Yk+IY++ and, similarly, a site is weighted by Y+dY++· 
If we want to give a particular species, for example, triple its weight, we must 
multiply all its abundance values by 3. Sites can also be given greater or smaller 
weight by multiplying their abundance values by constants (ter Braak 1987b). 

5.2.3 Diagonal structures: properties and faults of correspondence analysis 

Table 5.3a shows artificial data in which the occurrences of species across sites 
appear rather chaotic and Table 5.3b shows the same data after arranging the 
species and sites in order of their score on the first CA axis. The data are rearranged 
into a perfectly diagonal table. also termed a two-way Petrie matrix. (A Petrie 
matrix is an incidence matrix that has a block of consecutive ones in every row; 
the matrix is two-way Petrie if the matrix also has a block of consecutive ones 
in every column, the block in the first column starting in the first row and the 
block of the last column ending in the last row.) For any table that permits 
such a rearrangement, we can discover the correct· order of species and sites from 
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the scores of the first axis _of CA. This property of CA can be generalized to 
quantitative data (Gifi 1981) and to (one-way) Petrie matrices (Heiser 1981; 1986). 
For two-way Petrie matrices with many species and sites and with about equal 
numbers of occurrences per species and per site, the first eigenvalue is close 
to I; e.g. for Table 5.3. 1..1 = 0.87. 

Note that CA does not reveal the diagonal structure if the ones and zeros 
are interchanged. Their role is asymmetrical, as is clear from the reciprocal averaging 
algorithm. The ones are important; the zeros are disregarded. Many ecologists 
feel the same sort of asymmetry between presences and absences of species. 

The ordination of Table 5.3 illustrates two 'faults' of CA (Figure 5.5). First, 
the change in species composition between consecutive sites in Table 5.3. Cotumn 
b is constant (one species appears; one disappears) and one would therefore wish 
that this constant change were reflected in equal distances between scores of 
neighbouring sites along the first axis. But the site scores at the ends of the first 
axis are closer together than those in the middle of the axis (Figure 5.5b). Secondly, 
the species composition is explained perfectly by the ordering of the sites and 
species along the first axis (Table 5.3, Column b) and the importance of the second 
axis should therefore be zero. However A.2 = 0.57 and the site scores on the 
second axis show a quadratic relation with those on the first axis (Figure 5.5a). 
This fault is termed the arch effect. The term "horseshoe' is also in use but is 
less appropriate, as the ends do not fold inwards in CA. 

Table 5.3 CA applied to artificial data (- denotes absence). Column a: The table looks 
chaotic. Column b: After rearrangement of species and sites in order of their scores on 
the first CA axis (uk and x,.), a two-way Petrie matrix appears: A.1 ::::: 0.87. 

Column a Column b u, 
Species Sites Species Sites 

I 234567 I 724653 

A I ------ A I ------ -1.40 
B 1----- I B I I - - - - - -1.24 
c I I - - - - I c I I I -1.03 
D - - - I I I - E - I I I - - - -0.56 
E - I - I - - I F - - I I I 0.00 
F - I - I - I - D - - - I I I - 0.56 
G - - I - I I - G - - - - I I I 1.03 
H I - I - - H -----1 I 1.24 
1 - - I - - - - 1 ------ I 1.40 

I I 0 0 0 I 
.. 

x, 4 0 6 0 6 0 4 
0 8 0 0 0 8 0 
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Figure 5.5 Ordination by CA of the two-way Petrie matrix of Table 5.3 .. a: Arch effect 
in the ordination diagram (Hiirs scaling; sites labelled as in Table 5.3; species not shown). 
b: One-dimensional CA ordination (the first axis scores of Figure a, showing that sites 
at the ends of the axis are closer together than sites near the middle of the axis. c: One­
dimensional DCA ordination, obtained by nonlinearly rescaling the first CA axis. The 
sites would not show variation on the second axis of DCA. 

Let us now give a qualitative explanation of the arch effect. Recall that the 
first CA axis maximally separates the species curves by maximizing the dispersion 
(Equation 5.3) and that the second C~ axis also tri.es to do s? but subject to 
the constraint of being uncorrelated wtth the first axts (SubsectiOn 5.2.1). If the 
first axis fully explains the species data in the w_ay_ of Figu:e 5.3b, then .a ~ossible 
second axis is obtained by folding the first axts m the mtddle and bnngmg the 
ends together (Figure 5.3c). This folded axis has ~o linear correlation wit? the 
first axis. The axis so obtained separates the spectes curves. at least Spectes C 
from Species B and D, and these from Species A an~ E. an~ is t_hus a stron_g 
candidate for the second axis of CA. Commonly CA will modify thiS folded axiS 
somewhat, to maximize its dispersion, but the order of the site and species scor~s 
on the second CA axis will essentially be the same as that of the folded ax1s. 
Even if there is a true second underlying gradient. CA will not take it to be 
the second axis if its dispersion is less than that of the modified folded first axis. 
The intention in constructing the second CA axis is to express new information, 
but CA does not succeed in doing so if the arch effect appears. 

5.2.4 Detrended correspondence analysis {DCA) 

Hill & Gauch (1980) developed detrended correspondence analysis (DCA) as 
a heuristic modification of CA. designed to correct its two major "faults': (I) that 
the ends of the axes are often compressed relative to the axes middle; (2) that 
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the second axis frequently shows a systematic, often quadratic relation with the 
first axis (Figure 5.5). The major of these is the arch effect. 

The arch effect is 'a mathematical artifact., corresponding to no real structure 
in the data' (Hill & Gauch 1980). They eliminate it by 'detrending'. Detrending 
is intended to ensure that, at any point along the first axis, the mean value of 
the site scores on the subsequent axes is about zero. To this end, the first axis 
is divided into a number of segments and within each segment the site scores 
on Axis 2 are adjusted by subtracting their mean (Figure 5.6). In the computer 
program DECO RAN A (Hill 1979a), running segments are used for this purpose. 
This process of detrending is built into the two-way weighted averaging algorithm. 
and replaces the usual orthogonalization procedure (Table 5.2). Subsequent axes 
are derived similarly by detrending with respect to each of the existing axes. 
Detrending applied to Table 5.3 gives a second eigenvalue of 0, as required. 

The other fault of CA is that the site scores at the end of the first axis are 
often closer together than those in the middle of the axis (Figure 5.5b). Through 
this fault, the species curves tend to be narrower near the ends of the axis than 
in the middle. Hill & Gauch (1980) remedied this fault by nonlinearly rescaling 
the axis in such a way that the curve widths were practically equaL Hill & Gauch 
(1980) based their method on the tolerances of Gaussian response curves for the 
species, using the term standard deviation (s.d.) instead of tolerance. They noted 
that the variance of the optima of species present at a site (the 'within~site variance') 
is an estimate of the average squared tolerance of those species. Rescaling must 
therefore equalize the within-site variances as nearly as possible. For rescaling, 
the ordination axis is divided into small segments~ the species ordination is expanded 
in segments with sites with small withinwsite variance and contracted in segments 
with sites with high within-site variance. Subsequently, the site scores are calculated 
by taking weighted averages of the species scores and the scores of sites and 
species are standardized such that the within-site variance equals I. The tolerances 
of the curves of species will therefore approach 1. Hill & Gauch (1980) further 
define the length of the ordination axis to be the range of the site scores. This 
length is expressed in multiples of the standard deviation, abbreviated as s.d. 
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~ 

c " 0 
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u 
w 
> 

• 
:5 

axis 
Figure 5.6 Method of detrending by segments (simplified). The crosses indicate site scores 
before detrending: the dots are site scores after detrending. The dots are obtained by 
subtracting, within each of the five segments, the mean of the trial scores of the second 
axis (after Hill & Gauch 1980). 
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The use of s.d. is attractive: a Gaussian response curve with tolerance I rises 
and falls over an interval of about 4 s.d. (Figure 3.6). Because of the rescaling. 
most species will about have this tolerance. Sites that differ 4 s.d. in scores can 
therefore be expected to have no species in common. Rescaling of the CA axis 
of Table 5.3 results in the desired equal spacing of the site scores (Figure 5.5c); 
the length of the axis is 6 s.d. 

DCA applied to the Dune Meadow Data gives, as always, the same first eigenvalue 
(0.53) as CA and a lower second eigenvalue (0.29 compared to 0.40 in CA). The 
lengths of the first two axes are estimated as 3. 7 and 3. I s.d., respectively. Because 
the first axis length is close to 4 s.d., we predict that sites at opposite ends of 
the first axis have hardly any species in common. This prediction can be verified 
in Table 5.lc (the order of DCA scores on the first axis is identical to that of 
CA); Site 17 and Site 16 have no species in common, but closer sites have one 
or more species in common. The DCA ordination diagram (Figure 5.7) shows 
the same overall pattern as the CA diagram of Figure 5.4. There are, however, 
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Figure 5. 7 DCA ordination diagram of the Dune Meadow Data. The scale marks are 
in multiples of the standard deviation (s.d.). 
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differences in details. The arch seen in Figure 5.4 is less conspicuous, the position 
of Sites 17 and 19 is less aberrant. Further, Achillea millefolium is moved from 
a position close to Sites 2. 5, 6, 7 and 10 to the bottom left of Figure 5.7 and 
is then closest to Site I: this move is unwanted, as this species is roost abundant 
in the former group of sites (Table 5.1). 

In an extentive simulation study, Minchin (1987) found that DCA, as available 
in the program DECO RAN A, can flatten out some of the variation associated 
with one of the underlying gradients. He ascribed this loss of information to 
an instability in either, or both, detrending and rescaling. Pielou (1984, p. 197) 
warned that DCA is 'overzealous' in correcting the 'defects' in CA and that it 
'may sometimes lead to the unwitting destruction of ecologically meaningful 
information'. 

DCA is popular among practical field ecologists; presumably because it provides 
an effective approximate solution to the ordination problem for a unimodal 
response model in two or more dimensions - given that the data are reasonably 
representative of sections of the major underlying environmental gradients. Two 
modifications might increase its robustness with respect to the problems identified 
by Minchin ( 1987). First, nonlinear rescaling aggravates these problems~ since 
the edge effect is not too serious, we advise against the routine use of nonlinear 
rescaling. Second, the arch effect needs to be removed, but this can be done 
by a more stable, less 'zealous' method of detrending, which was also briefly 
mentioned by Hill & Gauch ( 1980): detrending-by-polynomials. The arch is caused 
by the folding of the first axis (Figure 5.3c), so that the second CA axis is about 
a quadratic function of the first axis, the third CA axis a cubic function of the 
first axis, and so on (Hill 1974). The arch is therefore most simply removed by 
requiring that the second axis is not only uncorrelated with the first axis (x), 
but also uncorrelated with its square (x/) and. to prevent more folding, its cube 
(x?). In contrast with 'detrending-by-segments', the method of detrending-by­
polynomials removes only specific defects of CA that are now theoretically 
understood. Detrending by polynomials can be incorporated into the two-way 
weighted averaging algorithm (Table 5.2) by extending Step 4 such that the trial 
scores are not only made uncorrelated with the previous axes, but also with 
polynomials of previous axes. The computer program CANOCO (ter Braak 1987b) 
allows detrending by up to fourth-order polynomials. 

5.2.5 Joint plot of species and sites 

An ordination diagram mirrors the species data (although often with some 
distortion). so we can make inferences about the species data from the diagram. 
With Hill's scaling (Subsection 5.2.2), site scores are weighted averages of the 
species scores. Site points then lie in the ordination diagram at the centroid of 
the points of species that occur in them. Sites that lie close to the point of a 
species are therefore likely to have a ~igh abundance of that species or, for 
presence-absence data, are likely to contain that species. Also, in so far as CA 
and DCA are a good approximation to fitting bell-shaped response surfaces to 
the species data (Subsection 5.2.1 and Section 5.7), the species points are close 
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to the optima of these surfaces; hence, the expected abundance or probability 
of occurrence of a species decreases with distance from its position in the plot 
(Figure 3.14). 

Using these rules to interpret DCA diagrams. we predict as an example the 
rank order of species abundance for three species from Figure 5. 7 and compare 
the order with the data in Table 5.1. The predicted rank order for }uncus bufonius 
is Sites 12. 8, 13, 9. 18 and 4: in the data Juncus bufonius is present at four 
sites, in order of abundance Sites 9, 12. 13 and 7. The predicted rank order for 
Rumex acetosa is Sites 5, 7, 6, 10, 2 and II; in the data R. acerosa occurs in 
five sites. in order of abundance Sites 6, 5, 7, 9 and 12. Ranunculus jlammula 
is predicted to be most abundant at Sites 20, 14, 15, 16 and less abundant, if 
present at all, at Sites 8, 12 and 13~ in the data, R. jlammula is present in six 
sites, in order of abundance Sites 20, 14, 15, 16, 8 and 13. We see some agreement 
between observations and predictions but also some disagreement. What is called 
for is a measure of goodness of fit of the ordination diagram. Such a measure 
is, however, not normally available inCA and DCA. 

In interpreting ordination diagrams of CA and DCA, one should be aware 
of the following aspects. Species points on the edge of the diagram are often 
rare species. lying there either because they prefer extreme (environmental) 
conditions or because their few occurrences by chance happen to be at sites with 
extreme conditions. One can only decide between these two possibilities by 
additional external knowledge. Such species have little influence on the analysis; 
if one wants to enlarge the remainder of the diagram, it may be convenient not 
to display them at alL Further. because of the shortcomings of the method of 
weighted averaging. species at the centre of the diagram may either be unimodal 
with optima at the centre. or bimodal, or unrelated to the ordination axes. Which 
possibility is most likely can be decided upon by table rearrangement as in Table 
5.1 c or by plotting the abundance of a species against the axes. Species that 
lie between the centre and the outer edge are most likely to show a clear relation 
with the axes. 

5.2.6 Block structures and sensitivity to rare species 

CA has attractive properties in the search for block structures. A table is said 
to have block structure if its sites and species can be divided into clusters, with 
each cluster of species occurring in a single cluster of sites (Table 5.4). For any 
table that allows such a clustering, CA will discover it without fail. With the 
four blocks in Table 5.4, the first three eigenvalues of CA equal I and sites from 
the same cluster have equal scores on the three corresponding axes. An eigenvalue 
close to l can therefore point to an almost perfect block structure or to a diagonal 
structure in the data (Subsection 5.2.3). The search for block structures or •near­
block structures'by CA forms the basis ofthecluster~analysis program TWINS PAN 
(Chapter 6). 

This property of CA is. however, a disadvantage in ordination. If a table contains 
two disjoint blocks, one of which consists of a single species and a single site, 
then the first axis of CA finds this questionably uninteresting block. For a similar 
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Table 5.4 Data table with block structure. Outside the Sub-tables A1, A2, A3 
and A4 , there are no presences, so that there are four clusters of sites that 
have no species in common ().1 =I, A2 = I, A3 = 1). 

Sites 

A, 

0 

A, 

Species 

A, 

0 

A, 

reason, CA is sensitive to species that occur only in a few species-poor sites. 
In the 'down-weighting' option of the program DECO RAN A (Hill I979a), species 
that occur in a few sites are given a low weight, so minimizing their influence, 
but this does not fully cure CA's sensitivity to rare species at species-poor sites. 

5.2:7 Gaussian ordination and its relation with CA and DCA 

In the introduction to CA (Subsection 5.2.1), we assumed that species show 
unimodal response curves to environmental variables, intuitively took the dispersion 
of the species scores as a plausible measure of how well an environmental variable 
explains the species data, and subsequently defined CA to be the technique that 
constructs a theoretical variable that explains the species data best in the sense 
of maximizing the dispersion. Because of the shortcomings of CA noted in the 
subsequent sections, the dispersion of the species scores is not ideal to measure 
the fit to the species data. We now take a similar approach but with a better 
measure of fit and assume particular unimodal response curves. We will introduce 
ordination techniques that are based on the maximum likelihood principle 
(Subsections 3.3.2 and 4.2.1), in particular Gaussian ordination, which is a 
theoretically sound but computationally demanding technique of ordination. We 
also show that the simpler techniques of CA and DCA give about the same result 
if particular additional conditions hold true. This subsection may now be skipped 
at first reading; it requires a working knowledge of Chapters 3 and 4. 

liO 

One dimension 

In maximum likelihood ordination, a particular response model (Subsection 
3.1.2) is fitted to the species data by using the maximum likelihood principle. 
In this approach, the fit is measured by the deviance (Subsection 3.3.2) between 
the data and the fitted curves. Recall that the deviance is inversely related to 
the likelihood, namely deviance = -2 log, (likelihood). If we fit Gaussian (logit) 
curves (Figure 3.9) to the data, we obtain Gaussian ordination. In Subsection 
3.3.3, we fitted a Gaussian logit curve of pH to the presence-absence data of 
a particular species (Figure 3.10). In principle. we can fit a separate curve for 
each species under consideration. A measure of how badly pH explains the species 
data is then the deviance (Table 3.6) summed over all species. Gaussian ordination 
of presence-absence data is then the technique that constructs the theoretical 
variable that best explains the species data by Gaussian logit curves, i.e. that 
minimizes the deviance between the data and the fitted curves. 

A similar approach can be used for abundance data by fitting Gaussian curves 
to the data, as in Section 3.4, with the assumption that the abundance data follow 
a Poisson distribution. A Gaussian curve for a particular species has three 
parameters: optimum, tolerance and maximum (Figure 3.6), for species k denoted 
by uk> tk and ck, respectively. In line with Equation 3.8, the Gaussian curves 
can now be written as 

EYk; = c, exp [ -O.S(x; - u,)2 I r,2] Equation 5.4 

where X; is the score of site ion the ordination axis (the value of the theoretical 
variable at site r). 

To fit this response model to data we can use an algorithm akin to that to obtain 
the ordination axis in CA (Table 5.2). 
Step I: Start from initial site scores x,.. 
Step 2: Calculate new species scores by (log-linear) regression of the species data 

on the site scores (Section 3.4). For each species, we so obtain new values 
for uk, tk and ck. 

Step 3: Calculate new site scores by maximum likelihood calibration (Subsection 
4.2.1). 

Step 4: Standardize the site scores and check whether they have changed and, 
if so, go back to Step 2, otherwise stop. 

In this algorithm, the ordination problem is solved by solving the regression 
problem (Chapter 3) and the calibration problem (Chapter 4) in an iterative fashion 
so as to maximize the likelihood. In contrast to the algorithm for CA, this algorithm 
may give different results for different initial site scores because of local maxima 
in the likelihood function for Equation 5.4. It is therefore not guaranteed that 
the algorithm actually leads to the (overall) maximum likelihood estimates; hence, 
we must supply 'good' initial scores, which are also needed to reduce the 
computational burden. Even for modern computers, the algorithm requires heavy 
computation. In the following, we show that a good choice for initial scores are 
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the scores obtained by CA. 
The CA algorithm can be thought of a simplification of the maximum likelihood 

algorithm. In CA, the regression and calibration problems are both solved by 
weighted averaging. Recall that in CA the species score (uk) is a position on 
the ordination axis x indicating the value most preferred by that particular species 
(its optimum) and that the site score (x;) is the position of that particular site 
on the axis. 

We saw in Section 3.7 that the optimum or score of a species (uk) can be 
estimated efficiently by weighted averaging of site scores provided that (Figure 
3.18b): 
A I. the site scores are homogeneously distributed over the whole range of 
occurrence of the species along the axis x. 

In Section 4.3, we saw that the score (x) of a site is estimated efficiently by 
weighted averaging of species optima provided the species packing model holds, 
i.e. provided (Figure 4.1): 
A2. the species' optima (scores) are homogeneously distributed over a large interval 
around xi. 
A3. the tolerances of species tk are equal (or at least independent of the optima~ 
ter Braak 1985). 
A4. the maxima of species ck are equal (or at least independent of the optima; 
ter Braak 1985). 

Under these four conditions the scores obtained by CA approximate the 
maximum likelihood estimates of the optima of species and the site values in 
Gaussian ordination (ter Braak 1985). For presence-absence data, CA approx­
imates similarly the maximum likelihood estimates of the Gaussian Iogit model 
(Subsection 3.3.3). CA does not, however, provide estimates for the maximum 
and tolerance of a species. 

A problem is that assumptions A 1 and A2 cannot be satisfied simultaneously 
for all sites and species: the first assumption requires that the range of the species 
optima is amply contained in the range of the site scores whereas the sec~nd 
assumption requires the reverse. So CA scores show the edge effect of compressiOn 
of the end of the first axis relative to the axis middle (Subsection 5.2.3). In practice, 
the ranges may coincide or may only partly overlap. CA does not give any clue 
about which possibility is likely to be true. The algorithm in Table 5.2 results 
in species scores that are weighted averages of the site scores and, consequently, 
the range of the species scores is contained in the range of the si~e scores. But 
it is equally valid mathematically to stop at Step 3 of the algonthm. so that 
the site scores are weighted averages of the species scores and thus all lie within 
the range of the species scores: this is done in the computer program DECO RAN A 
(Hill 1979). The choice between these alternatives is arbitrary. It may help 
interpretation of CA results to go one step further in the direction of the maximum 
likelihood estimates by one regression step in which the data of each species are 
regressed on the site scores of CA by using the Gaussian response model. This 
can be done by methods discussed in Chapter 3. The result is new species scores 
(optima) as well as estimates for the tolerances and maxima. A~ an example, 
Figure 5.8 shows Gaussian response curves along the first CA ax1s fitted to the 
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Figure 5.8 Gaussian response curves for some Dune Meadow species, fitted by log-linear 
regression of the abundances of species (Table 5.1) on the first CA axis. The sites are 
shown as small vertical lines below the horizontal axis. 

Dune Meadow Data in Table 5.1. The curve of a particular species was obtained 
by a log-linear regression (Section 3.4) of the data of the species on the site scores 
of the first CA axis by using b0 + b1 x + b2 :x2 in the linear predictor (Equation 
3.18). 

Two dimensions 

In two dimensions, Gaussian ordination means fitting the bivariate Gaussian 
surfaces (Figure 3.14) 

Equation 5.5 

where 
(ukb uk2J are the coordinates of the optimum of species kin the ordination diagram 
ck is the maximum of the surface 
tk is the tolerance 
(x,. 1, x,..l) are the coordinates of site i in the diagram. 

These Gaussian surfaces look like that of Figure 3.14, but have circular contours 
because the tolerances are taken to be the same in both dimensions. 

One cannot hope for more than that the two-axis solution of CA provides 
an approximation to the fitting of Equation 5.5 if the sampling distribution of 
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the abundance data is Poisson and if: 
AJ. site points are homogeneously distributed over a rectangular region in the 
ordination diagram with sides that are long compared to the tolerances of the 
species, 
A2. optima of species are homogeneously distributed over the same region, 
A3. the tolerances of species are equal (or at least independent of the optima), 
A4. the maxima of species are equal (or at least independent of the optima). 

However as soon as the sides of the rectangular region differ in length, the 
arch effect (Subsection 5.2.3) crops up and the approximation is bad. Figure 5.9b 
shows the site ordination diagram obtained by applying CA to artificial species 
data (40 species and 50 sites) simulated from Equation 5.5 with ck = 5 and tk 

= 1 for each k. The true site points were completely randomly distributed over 
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Figure 5.9 CA applied to simulated species ?ata. a: True configuration of sites (•): b: 
Configuration of sites obtained by CA, showmg the arch effect. The data were obtat~ed 
from the Gaussian model of Equation 5.5 with Poisson error. ck = 5. tk ;;;;; I and opuma 
that were randomly distributed in the rectangle [-1,9) X [-0.5.4.5]. The vertical lines in 
Figures a and b connect identical sites. 
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a rectangular region with sides of 8 and 4 s.d. (Figure 5.9a). The CA ordination 
diagram is dominated by the arch effect, although the actual position of sites 
within the arch still reflects their position on the second axis in Figure 5.9a. The 
configuration of site scores obtained by DCA was much closer to the true 
configuration. DCA forcibly imposes Conditions AI, A2 and A3 upon the solution, 
the first one by detrending and the second and third one by rescaling of the 
axes. 

We also may improve the ordination diagram of DCA by going one step further 
in the direction of maximum likelihood ordination by one extra regression step. 
We did so for the DCA ordination (Figure 5. 7) of Dune Meadow Data in Table 
0.1. For each species with more than 4 presences, we carried out a log-linear 
regression of the data of the species on the first two DCA axes using the response 
model 

Equation 5.6 

where xil and x,2 are the scores of site i on the DCA axes l and 2, respectively . 

If b4k < 0, this model is equivalent to Equation 5.5 (as in Subsection 3.3.3) . 
The new species scores are then obtained from the estimated parameters in Equation 
5.6 by ukl = -blkj (2b4k), u,2 = -b2/ (2b4k) and t, = 1/V( -2b4k). 

If b4k > 0. the fitted surface shows a minimum and we have just plotted the 
DCA scores of the species. Figure 5.10a shows how the species points obtained 
by DCA change by applying this regression method to the 20 species with four 
or more presences. A notable feature is that Achillea millefolium moves towards 
its position in the CA diagram (Figure 5.4). In Figure 5.10b, circles are drawn 
with centres at the estimated species points and with radius tk. The circles are 
contours where the expected abundance is 60% of the maximum expected 
abundance ck. Nate that exp ( -0.5) = 0.60. 

From Figure 5.10b, we see, for example, that Trifolium repens has a high tolerance 
(a large circle, thus a wide ecological amplitude) whereas Bromus hordaceus has 
a low tolerance (a small circle, thus a narrow ecological amplitude). With regression, 
the joint plot of DCA can be interpreted with more confidence. This approach 
also leads to a measure of goodness of fit. A convenient measure of goodness 
of fit is here 

Equation 5.7 

where Dko and Dk1 are the residual deviances of the kth species for the null model 
(the model without explanatory variables) and the model depicted in the diagram 
(Equation 5.6), respectively. These deviances are obtained from the regressions 
(as in Table 3.7). We propose to term V the fraction of deviance accounted for 
by the diagram. For the two-axis ordination (only partially displayed in Figure 
5.10b) V = (I - 360/987) = 0.64. For comparison,, V = 0.51 for the one-axis 
ordination (partially displayed in Figure 5.8). 
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Figure S.IO Gaussian response surfaces for several Dune Meadow species fitted by log­
linear regression of the abundances of species on the site scores of the first two DCA 
axes (Figure 5.7). a: Arrows for species running from their DCA scores (Figure 5.7) to 
their fitted optimum. b: Optima and contours for some of the species. The contour indicates 
where the abundance of a species is 60% of the abundance at its optimum. 

The regression approach can of course be extended to more complicated surfaces 
(e.g. Equation 3.24), but this will often be impractical, because these surfaces 
are more difficult to represent graphically. 

5.3 Principal components analysis (PCA) 

5.3.1 From least-squares regression to principal components analysis 

Principal components analysis (PCA) can be considered to be an extension 
of fitting straight lines and planes by least-squares regression. We will introduce 
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PCA. assuming the species data to be quantitative abundance values. 
Suppose we want to explain the abundance values of several species by a 

particular environmental variable, say moisture, and suppose we attempt to do 
so by fitting straight lines to the data Then, for each species, we have to carry 
out a least-squares regression of its abundance values on the moisture values 
and obtain, among other things, the residual sum of squares, i.e. the sum of 
squared vertical distances between the observed abundance values and the fitted 
line (Figure 3.1~ Subsection 3.2.2). This is a measure of how badly moisture explains 
the data of a single species. To measure how badly moisture explains the data 
of all species. we now use the total of the separate residual sums of squares over 
all species. abbreviated the total residual sum of squares. If the total residual 
sum of squares is small, moisture can explain the species data well. 

Now, suppose that, among a set of environmental variables, moisture is the 
variable that best explains the species data in the sense of giving the least total 
residual sum of squares. As in all ordination techniques, we now wish to construct 
a theoretical variable that explains the species data still better. PCA is the ordination 
technique that constructs the theoretical variable that minimizes the total residual 
sum of squares after fitting straight lineS to the species data. PCA does so by 
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choosing best values for the sites, the site scores. This is illustrated in Figure 
5.11 for the Dune Meadow Data. The site scores are indicated by ticks below 
the horizontal axis. The fitted lines are shown for six of the 30 species and the 
observed abundance values and residuals for one of them. Any other choice of 
site scores would result in a larger sum of squared residuals. Note that Figure 
5.11 shows only 20 out of all 20 X 30 = 600 residuals involved. The horizontal 
axis in Figure 5.11 is the first PCA axis, or first principal component. The score 
of a species in PCA is actually the slope of the line fitted for the species against 
the PCA axis. A positive species score thus means that the abundance increases 
along the axis (e.g. Agrostis stolonifera in Figure 5.11); a negative score means 
that the abundance decreases along the axis (e.g Lolium perenne in Figure 5.11) 
and a score near 0 that the abundance is poorly (linearly) related to the axis 
(e.g. Sagina procumbens in Figure 5.11). 

If a single variable cannot explain the species data sufficiently well, we may 
attempt to explain the data with two variables by fitting planes (Subsection 3.5.2). 
Then, for each species we have to carry out a least-squares regression of its 
abundance values on two explanatory variables (Figure 3.11), obtain its residual 
sum of squares and, by addition over species, the total residual sum of squares. 
The first two axes of PCA are now the theoretical variables minimizing the total 
residual sum of squares among all possible choices of two explanatory variables. 
Analogously, the first three PCA axes minimize the total residual sum of squares 
by fitting the data to hyperplanes, and so on. PCA is thus a multi~species extension 
of multiple (least~squares) regression. The difference is that in multiple regression 

Figure 5.11 Straight lines for several Dune Meadow species, fitted by PCA to the species 
abundances of Table 5.1. Also shown are the abundances of Lolium perenne and their 
deviations from the fitted straight line. The horizontal axis is the first principal component. 
Fitting straight lines by least~squares regression of the abundances of species on the site 
scores of the first PCA axis gives the same results. The slope equals the species score 
of the first axis. The site scores are shown by small vertical lines below the horizontal 
axis. 
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the explanatory variables are supplied environmental variables whereas in PCA 
the explanatory variable are theoretical variables estimated from the species data 
alone. It can be shown (e.g. Rao 1973) that the same result as above is obtained 
by defining the PCA axes sequentially as follows. The first PCA axis is the variable 
that explains the species data best, and second and later axes also explain the 
species data best but subject to the constraint of being uncorrelated with previous 
PCA axes. In practice, we ignore higher numbered PCA axes that explain only 
a small proportion of variance in the species data. 

5.3.2 Two~way weighted summation algorithm 

We now describe an algorithm that has much in common with that of CA 
and that gives the ordination axes of PCA. The algorithm also shows PCA to 
be a natural extension of straight~line regression. 

If the relation between the abundance of a species and an environmental variable 
is rectilinear, we can summarize the relation by the intercept and slope of a straight 
line. The error part of the model is taken to consist of independent and normally 
distributed errors with a constant variance. The parameters (intercept and slope) 
are then estimated by least~squares regression of the species abundances on the 
values of the environmental variable (Subsection 3.2.2). Conversely. when the 
intercepts and slopes are known, we can estimate the value of the environmental 
variable from the species abundances at a site by calibration (Subsection 4.2.3). 
If it is not known in advance which environmental variable determines the 
abundances of the species, the idea is as in CA (Subsection 5.2.2) to discover 
the "underlying environmental gradient' by applying straight-line regression and 
calibration alternately in an iterative fashion, starting from arbitrary initial values 
for sites or from arbitrary initial values for the intercepts and slopes of species. 
As in CA, the iteration process eventually converges to a set of values for species 
and sites that does not depend on the initial values. 

The iteration process reduces to simple calculations when we first centre the 
abundances of each species to mean 0 and standardize the site scores to X = 
0 and L1 (x1 - i)2 = I. Then, the equations to estimate the intercept and the 
slope of a straight line (Equations 3.6a,b) reduce to b0 = 0 and b1 = L1 y1 x1, 

because in the notation of Subsection 3.2.2 .Y = 0, X = 0 and L1 (x1 - .X)2 = 
I. Hence We ignore the intercepts and concentrate on the slope parameters. From 
now on, bk will denote the slope parameter for species k and Yki the centred 
abundance of species k at site i (i.e. Yk+ = 0). In this notation, the slope parameter 
of species k is calculated by 

Equation 5.8 

As an example, Table 5.5a shows the Dune Meadow Data used before with 
an extra column of species means and, as arbitrary initial scores for the sites. 
values obtained by standardizing the numbers I to 20 (bottom row). For Achillea 
millefolium, the mean abundance is 0.80 and we obtain 
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Table 5.5a 

Species 

k 

1 Rch mil 
2 l=lgr sto 
3 Rir pra 
4 Rlo gen 
5 Rnt odo 
6 Bel pre 
7 Bro hor 
8 Che alb 
s Cir arv 
10 Ele pal 
11 Ely rep 
12 Emp nig 
13 Hyp rad 
14 Jun art 
15 Jun buf 
16 Leo aut 
17 Lol per 
18 Pla Lan 
18 Poa pra 
20 Poa tri 
21 Pot pal 
22 Ran fla 
23 Rum ace 
24 Sag pro 
25 Sal rep 
26 Tri pra 
27 Tri rep 
28 Vic lat 
28 Bra rut 
30 Cal cus 

Xi 

Table 5.5b 

Species 

k 

17 Lol per 
20 Poa tri 
11 Ely rep 
19 Poa pra 
7 Bro hor 
23 Rum ace 
4 t=llo gen 
1 ~ch mil 
8 Bel per 
27 Tri rep 
28 Tri pra 
18 Pta lan 
9 Cir arv 
24 Sag pro 
15 Jun buf 
8 [he alb 
28 Vic lat 
5 Rnt odo 
21 Pot pal 
12 Emp nig 
16 Leo aut 
3 Rir pra 
2 Rgr sto 
14 Jun art 
13 Hyp rad 
30 Cal cus 
22 Ran fla 
28 Bra rut 
25 Sal rep 
10 Ele pal 

X; 
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2 3 
272 53 85 4 
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Si~OO 
00010000011011111112 
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566657262 74 2 
7654528459 44 
44 444 8 
454444234244 31 
4 243 2 

3 562 2 
27 2 3558 
3 24 122 2 
32 22 2 2 
52281 25323232 52 

2 25 
5355332 

2 

2 
5 22224 

43 4 
1 
2 1 

3 

2 

4 

1 
24 43 4 4 

2 2 
2 

52332 33225325228 22 

4 8 35 44 
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2 3 
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334 
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2 2 2 224 

2222 282 4248 3444 

4 
3 3 5 

4 854 

oooooooooooooooooooo 

32221111100001122334 
38109987454174888220 

mean bk 

b, 

0.80 
2.40 
0.25 
1.80 
1.05 
0.65 
0.75 
o.os 
0.10 
1.25 
1.30 
0.10 
0.45 
o.so 
0.65 
2.70 
2.90 
1.30 
2.40 
3.15 
0.20 
0.70 
0.90 
1.00 
0.55 
0.45 
2.35 
0.20 
2.45 
0.50 

-9.42 
-7.83 
-8.17 
-6.05 
-2.85 
-2.52 
-2.08 
-1.88 
-1.86 
-1.88 
-1.57 
-1.24 
-0.50 
-0.12 
0.02 
0.10 
0.31 
0.60 
0.62 
0.66 
0.93 
1.49 
1.55 
2.02 
2.19 
2.29 
2.52 
2.89 
3.70 
4.21 

-1.88 
1.55 
1.49 

-2.06 
0.60 

-1.86 
-2.85 
0.10 

-0.50 
4.21 

-6.17 
0.66 
2.19 
2.02 
0.02 
0.93 

-9.42 
-1.24 
-6.05 
-7.93 
0.62 
2.52 

-2.52 
-0.12 
3.70 

-1.57 
-1.88 
0.31 
2.89 
2.29 Table 5.5 Two~way weighted summation algorithm of PCA 

applied to the Dune Meadow Data. a: The original data table 
with at the bottom the initial site scores. b: The species and 
sites rearranged in order of their scores obtained after one cycle 
oftwo~way weighted summation. c: The species arranged in order 
of their final scores (PCA scores). 

Table 5.5c 

Species 

k 

17 Lol per 
18 Pla lan 
19 Poa pra 
20 Poa tri 
1 ~ch mil 
23 Rum ace 
27 Tri rep 
5 Rnt ado 
7 Bra hor 
16 Leo aut 
11 Ely rep 
28 Tri pra 
6 Bel per 
28 Vic lat 
13 Hyp rad 
9 Cir arv 
12 Emp nig 
8 Che alb 
3 Rir pra 
15 Jun buf 
29 Bra rut 
24 Sag pro 
21 Pot pal 
25 Sal rep 
4 s:llo gen 
30 Cal cus 
22 Ran fla 
14 Jun art 
10 Ele pal 
2 Rgr sto 

.<, 

Sites (t) 
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333535 252226232222 

44 44 64 
5 2 2 
232222 
1 2 1 

2 25 

2 
6'22 24 

2 

2 

2 

4 
2622 

25 

3 
732 

4 

438 

2 
1 

23 
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4 343 
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5444457 

oooooooooooooooooooo 
33222110000001112334 
10866647401151464075 

b, 

-9.21 
-5.77 
-5.69 
-4.80 
-3,81 
-3.68 
-3.67 
-3.52 
-3.31 
-2.86 
-2.86 
-2.63 
-2. 11 
-0.67 
-0.08 
0.01 
0.09 
0.11 
0.15 
0.40 
0.84 
0.98 
1.07 
1,88 
3.33 
3.40 
3.85 
4.29 
8.08 
8.87 



b, = (I - 0.80) X (-0.37) + (3 - 0.80) X (-0.33) + (0 - 0.80) X (-0.29) + ... 
+ (0- 0.80) X (0.37) = -1.98. 

From the slopes thus obtained (Table 5.5a, last column), we derive new site 
scores by least-squares calibration (Equation 4.2 with ak = 0). The site scores 
so obtained are proportional to 

Equation 5.9 

because the denominator of Equation 4.1 has the same value for each site. This 
denominator is unimportant in PCA, because the next step in the algorithm is 
to standardize the site scores, as shown in Table 5.6c. For Site 1 in Table 5.5a, 
we get from Equation 5.9 the site score x, = (I - 0.80) X (-1.98) + (0- 2.40) 
X (1.55) + (0 - 0.25) X (1.49) + ... + (0 - 0.50) X (2.29) = -0.19. Note that 
the species mean abundance is subtracted each time from the abundance value. 
In Table 5.5b, the species and sites are arranged in order of the scores obtained 
so far, in which the slopes (bk) form the species scores. The abundance of the 
species in the top row (Lolium perenne) has the tendency to decrease along the 
row, whereas the abundance of the species in the bottom row ( Eleocharis palustris) 
has the tendency to increase across the row. The next cycle of the iteration is 
to calculate new species scores (bk), then new site scores, and so on. As in CA, 
the scores stabilize after several iterations and the resulting scores (Table 5.5c) 
constitute the first ordination axis of PCA. In Table 5.5c, the species and sites 
are arranged in order of their scores on the first axis. Going from top row to 
bottom row, we see first a decreasing trend in abundance across the columns 
(e.g. for Lolium perenne), then hardly any trend (e.g. for Sagina procumbens) 
and finally an increasing trend (e.g. for Agrostis stolonifera). A graphical display 
of the trends has already been shown in Figure 5.11. The order of species in 
Table 5.5c is quite different from the order in the table arranged by CA (Table 
5.lc), but the difference in ordering of the sites is more subtle. 

In the above iteration algorithm of PCA (Table 5.6), weighted sums (Equations 
5.8 and 5.9) replace the weighted averages in CA (Table 5.2; Equations 5.1 and 
5.2). For this analogy to hold, let us consider the data Yki as weights (which 
can be negative in PCA), so that the species scores are a weighted sum of the 
site scores and, conversely. the site scores are a weighted sum of the species scores 
(Table 5.6). The standard terminology used in mathematics is that X; is a linear 
combination of the variables (species) and that bk is the loading of species k. 

After the first axis, a second axis can be extracted as in CA, and so on. (There 
is a subtle difference in the orthogonalization procedure, which need not concern 
us here.) The axes are also eigenvectors to which correspond eigenvalues as in 
CA (Subsection 5.2.2). The meaning of the eigenvalues in PCA is given below. 
The axes are ·also termed principal components. 

So PCA decomposes the observed values into fitted values and residuals 
(Equations 3.1 and 3.2). In one dimension, we have the decomposition 

Yki = bk x,. +residual Equation 5.10 
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Table 5.6 Two-way weighted summation algorithm of PCA. 

a: Iteration process 

Step 1. Take arbitrary initial site scores (x;), not all equal to zero. 
Step 2. Calculate new species scores (bk) by weighted summation of the site scores (Equation 5.8). 
Step 3. Calculate new site scores (x1) by weighted summation of the species scores (Equation 5.9). 
Step 4. For the first axis go to Step 5. For second and higher axes, make the site scores (x1) 

uncorrelated with the previous axes by the orthogona1iz:ation procedure described below. 
StepS. Standardize the site scores (x1). See below for the standardization procedure. 
Step 6. Stop on convergence. i.e. when the new site scores are sufficiently close to the site scores 

of the previous cycle of the iteration; ELSE go to Step 2. 

b: Orthogonalization procedure 

Step 4.1. Denote the site scores of the previous axis by f. and the trial scores of the present 
axis by x1• 

Step 4.2. Calculate v = k1~q xJ;. 
Step 4.3 Calculate x1.~w = x1,old- v jj. 
Step 4.4 Repeat Steps 4.14.3 for all previous axes. 

c: Standardization procedure 

Step 5.1 Calculate the sum of squares of the site scores s2 = :Ep, 1 xl. 
Step 5.2 Calculate xl.ncw = xl.oldfs. 
Note that, upon convergence, s equals the eigenvalue. 

where Yki is the (mean corrected) observed value and bk x,. the fitted value. 

As an example, the values fitted by the first PCA axis (Table 5.5c) for the 
centred abundances of Agrostis stolonifer{J (b2 = 8.67) at Site 6 (x6 = -0.31) 
and Site 16 (x 16 = 0.45) are: 8.67 X (-0.31) = -2.75 and 8.67 X 0.45 = 3.99, 
respectively. Adding the mean value of A. stolonifera (2.40), we obtain the values 
-0.35 and 6.39, respectively, which are close to the observed abundance values 
of 0 and 7 at Site 6 and Site 16. In PCA, the sum of squared residuals in Equation 
5.10 is minimized (Subsection 5.3.1). Analogously, one can say that PCA maximizes 
the sum of squares of fitted values and the maximum is the eigenvalue of the 
first axis. In two dimensions (Figure 5.12), we have the decomposition 

Yki = (bkl Xn + bk2 xrJ) +residual Equation 5.11 

where 
bk1 and bk2 are the scores of species k 
x,-1 and x 12 are the scores of site ion Axis 1 and Axis 2, respectively. 

On the second axis, the score of A. stolonifera is 6.10 and the scores of Sites 
6 and 16 are -0.17 and 0.033 (Figure 5.12), so that the fitted values become 8.67 
X (-0.31) + 6.10 X (-0.17) = -3.72 and 8.67 X 0.45 + 6.10 X 0.033 = 4.10. 
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Figure 5.12 PCA-ordination diagram of the Dune Meadow Data in covariance.biplot sca!ing 
with species represented by arrows. The b scale applies to species, the x scale to s1tes. 
Species not represented in the diagram lie close to the origin (0,0). 

The first two PCA axes thus give approximate abundance values of -3.72 + 2.40 
::: -1.3 and 4.10 + 2.40 = 6.5, slightly worse values than those obtained fro~ 
the first axis, but most of the remaining abundance values in the data table wtll 
be approximated better with two axes than with a single axis. The sum of squares 
of fitted values now equals A. 1 + /...2• Further, the total sum of squares (LkLi Yi) 
equals the sum of all eigenvalues. (This equality means that we can reconstruct 
the observed values exactly from the scores of species and sites on all eigenve~tors 
and the inean abundance values.) The fraction of variance accounted for (explamed) 
by the first two axes is therefore (>. 1 +>-,)/(sum of all eigenvalues). This measure 
is the equivalent of R2 in Section 3.2. For the Dune Meadow Data, At = 471, 
).

2 
= 344 and the total sum of squares= 1598. So the two-axes solution explains 

(471 + 344)/1598 =51% of the variance. ~e first axis actually explains 471/ 
1598 = 29% of the variance and the second ax1s 344/1598 = 22%. 
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5.3.3 Best lines and planes in m~dimensional space 

Here we present a geometric approach to PCA. In this approach, the aim of 
PCA is seen as being to summarize multivariate data in a graphical way. The 
approach is best illustrated with data on two species only. Figure 5.13a displays 
the abundances of Species A and B at 25 sites in the form of a scatter diagram, 
with axes labelled by the species names. The simplest summary of data is by 
the mean abundances of A (25) and B (15). Knowing the means, we may shift 
the axes to the centroid of the data points, i.e. to the point with the coordinates 
(25, I 5), provided we remember that the origin (0,0) of the new coordinate system 
is the point (25, 15) in the old coordinate system. Next we draw a line through 
the new origin in the direction of maximum variance in the plot. This line is 
the first principal component (PCI), or first PCA axis, and perpendicularly we 
draw PC2. Next we rotate the plot, so that PCI is horizontal (Figure 5.13b). 
Figure 5.13b is an ordination diagram with arrows representing the species. These 
arrows are the shifted and rotated axes of the species in the original diagram. 
PC2 shows so much less variation than PCI that PC2 can possibly be neglected. 
This is done in Figure 5.13c showing a one-dimensional ordination; the points 
in Figure 5.l3c were obtained from Figure 5.13b by drawing perpendicular lines 
from each point on the horizontal axis (projection onto PCI). In this way, the 
first coordinate of the points in Figure 5.13b is retained in Figure 5.13c; this 
coordinate is the site score on PC I. The first coordinate of the arrows in Figure 
5.13b is the species loading on PCT, which is also represented by an arrow in 
Figure 5.13c. These arrows indicate the direction in which Species A and Species 
B increase in abundance~ hence Figure 5.13c still shows which sites have high 
abundances of Species A and of Species B (those on the right side) and ·which 
sites have low abundance (those on the left side). 

The example is, of course, artificial. Usually there are many species (m ~ 3), 
so that we need an m-dimensional coordinate system, and we want to derive 
a two-dimensional or three-dimensional ordination diagram. Yet the principle 
remains the same: PCA searches for the direction of maximum variance; this 
is PCL the best line through the data points. It is the best line in the sense 
that it minimizes the sum of squares of perpendicular distances between the data 
points and the line (as is illustrated in Figure 5.I3a for m = 2). So the first 
component in Figure 5.13a is neither the regression line of Species B on Species 
A nor that of Species A on Species B, because regression minimizes the sum 
of squares of vertical distances (Figure 3.1). But, as we have seen in Subsection 
5.3.1, PCA does give the best regression of Species A on PCI and of Species 
B on PCJ (Figure 5.11). After the first component. PCA seeks the direction of 
maximum variance that is perpendicular onto the first axis; that is PC2, which 
with PCI forms the best plane through the data points, and so on. In general, 
the site scores are obtained by projecting each data point from the m-dimensional 
space onto the PCA axes and the species scores are obtained by projecting the 
unit vectors: for the first species (1,0,0, ... ); for the second species (O,l,O,O, ... ), etc., 
onto the PCA axes (Figure 5.13). 
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Figure 5.13 Artificial abundance data for two species A and B at 25 sites. a: First principal 
component, running through the centroid of the sites in the direction of the greatest variance 
(at 34° of the axis of Species A). b: Rotated version of Figure a with the first principal 
component horizontally. c: One·dimensional PCA ordination with species represented by 
arrows. The scores are simply those of the first axis of b. 
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5.3.4 Biplot of species and site scores 

The scores obtained from a PCA for species and sites can be used to prepare 
a biplot (Gabriel 1971). The biplot serves the same function as the joint plot 
in CA (Subsection 5.2.5), but the rules to interpret the biplot are rather different. 
We limit the discussion to the two-dimensional biplot as it is more difficult to 
visualize three-dimensional or higher ones. The prefix 'bi' in biplot refers to the 
joint representation of sites and species, and not to the dimension of the plot; 
for example, Figure 5.13c shows a one-dimensional biplot. 

The ranges of the scores for sites and for species (scores and loadings) in PCA 
are often of a different order of magnitude. For example in Table 5.3c, the range 
of the species scores is 17.9 whereas the range of the site scores is 0.8. A biplot 
is therefore constructed most easily by drawing separate plots of sites and of 
species on transparent paper, each one with its own scaling. In each of the plots, 
the scale unit along the vertical axis must have the same physical length as the 
scale unit along the horizontal axis, as in CA. A biplot is obtained by superimposing 
the plotS with the axes aligned. A biplot may therefore have different scale units 
for the sites (x scale) and species (b scale). Figures 5.12 and 5.15 provide examples 
for the Dune Meadow Data. 

In Subsection 5.3.1, we showed that for each species PCA fits a straight line 
in one dimension to the (centred) abundances of the species (Figure 5.11; Equation 
5.l0) and in two dimensions a plane with respect to the PCA axes (Figure 3.11; 
Equation 5.11). The abundance of a species as fitted by PCA thus changes linearly 
across the biplot. We represent the fitted planes in a biplot by arrows as shown 
in Figure 5.12. The direction of the arrow indicates the direction of steepest ascent 
of the plane, i.e. the direction in which the abundance of the corresponding species 
increases most, and the length of the arrow equals the rate of change in that 
direction. In the perpendicular direction, the fitted abundance is constant. The 
arrows are obtained by drawing lines that join the species points to the origin, 
the point with coordinates (0,0). 

The fitted abundances of a species can be read from the biplot in very much 
the same way as from a scatter diagram, i.e. by projecting each site onto the 
axis of the species. (This is clear from Figure 5.13a.) The axis of a species in 
a biplot is in general, however, not the horizontal axis or the vertical axis, as 
in Figure 5.13a, but an oblique axis, the direction of which is given by the arrow 
of the species. As an example of how to interpret Figure 5. I 2, some of the site 
points are projected onto the axis of Agrostis stolonifera in Figure 5.14. Without 
doing any calculations, we can see the ranking of the fitted abundances of A. 
stolonifera among the sites from the order of the projection points of the sites 
along the axis of that species. From Figure 5.14, we thus infer that the abundance 
of A. stolonifera is highest at Site 16, second highest at Site 13, and so on to 
Site 6, which has the lowest inferred abundance. The inferred ranking is not perfect 
when compared with the observed ranking. but not bad either. 

Another useful rule to interpret a biplot is that the fitted value is positive if 
the projection point of a site lies. along the species:' axis, on the same side of 
the origin as the species point does, and negative if the origin lies between the 
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Figure 5.14 Biplot interpretation of Figure 5.12 for Agrostis stolonifera. For explanation 
see text. ' 

projection point and the species point. As we have centred the abundance data 
the fitted abundance is higher than the species mean in the former case and lowe; 
than the species mean in the latter case. For example, Site 3 and Site 20 are 
inferred to have a higher than average abundance of A. sto/onifera, whereas Sites 
2 and .19 are inferred to have a lower than average abundance of this species. 
These mferences are correct, as can be seen from Table 5.5. One can also obtain 
quantit~tive v~ues for _the abundances as represented in the biplot, either 
algebr~cally w1th Equat.wn 5.11 or geometrically as follows (ter Braak 1983). 
For th1s, we need the d1stance of the species point from the origin. In Figure 
5.12, we see from the b scale that A. stolonifera lies at a distance of about IO 
fr~m t~e origin. We need further the projection points of sites onto the species' 
ax~s (Ftgu~e 5.14): From_ the x scale, we see that, for example, the projection 
pomt of S1te 20 hes a d!Stance of about 0.2 from the origin. The fitted value 
1s now about 10 X 0.2 = 2. Adding the mean of A. stolonifera (2.4). we obtain 
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4.4 as the fitted abundance for A. stolonifera at Site 20; the observed value is 
5. This biplot accounts in this way for 51% of the variance in abundance values 
of all species. This value was computed at the end of Subsection 5.3.2. Note, 
however, that the fraction of variance accounted for usually differs among species. 
In general, the abundances of species that are far from the origin are better 
represented in the biplot than the abundances of species near the origin. For 
example, the fractions accounted for are 80% for Agrostis stolonifera, 78% for 
Poa trivia/is, 25% for Bromus hordaceus, 4% for Brachythecium rutabulum and 
3% for Empetrum nigrum. 

The scaling of the species and site scores in the biplot requires attention. From 
Equation 5.11, we deduce that scaling is rather arbitrary; for example, the fitted 
values remain the same if we jointly plot the species points (3bk!! 5bki.J and the 
site points (xil/3, x12 j5). Yet, there are two types of scaling that have special 
appeal. 

In the first type of scaling, the site scores are standardized to unit sum of 
squares and the species scores are weighted sums of the site scores (Table 5.6). 
The sum of squared scores of species is then equal to the eigenvalue of the axis. 
In this scaling, the angle between arrows of each pair of species (Figure 5.12) 
provides an approximation of their pair-wise correlation, i.e. 

r=cose 

with r the correlation coefficient and e the angle. 

Consequently, arrows that point in the same direction indicate positively correlated 
species, perpendicular arrows indicate lack of correlation and arrows pointing 
in the opposite direction indicate negatively correlated species. This biplot is termed 
the covariance biplot and is considered in detail by Carsten & Gabriel (1976). 

In the second type of scaling, the species scores are standardized to unit sum 
of squares and the site scores are standardized, so that their sum of squares equals 
the eigenvalue of each axis. Then, the site scores are the weighted sum of the 
species scores. This scaling was used implicitly in Subsection 5.3.3 and is intended 
to preserve Euclidean Distances between sites (Equation 5.16), i.e. the length of 
the line segment joining two sites in the biplot then approximates the length of 
the line segment joining the sites in m:-dimensional space, the axes of which are 
formed by the species. When scaled in this way, the biplot is termed a Euclidean 
Distance biplot (ter Braak 1983). Figure 5.15 shows this biplot for the Dune 
Meadow Data. 

The Euclidean Distance biplot is obtained from the covariance biplot by simple 
rescaling of species and site scores. Species k with coordinates (bkl>bki.J in the 
covariance biplot gets the coordinates (bkd .Jt..1,bk2j Vt..2) in the Euclidean Distance 
biplot, and site i with coordinates (x0 ,xi2). gets coordinates (x11 .Jt..1,x;2.Jt..2J in 
the Euclidean Distance biplot. Figure 5.15 does not look very different from Figure 
5.12, because the ratio of -./"1.. 1 and -./A, is close to I. 
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Figure 5.15 Euclidean Distance biplot of Dune Meadow Data. 

5.3.5 Data transformation 

" X 15 
X x20 

We have so far described the standard form of PCA as treated in statistical 
textbooks (e.g. Morrison 1967). In ecology, this form is known as 'species-centred 
PCA'. In a variant of this, 'standardized PCA', abundances of each species are 
also divided by its standard deviation. In species-centred PCA, each species is 
implicitly weighted by the variance of its abundance values. Species with high 
variance, often the abundant ones, therefore dominate the PCA solution, whereas 
species with low variance, often the rare ones, have only minor influence on· the 
solution. This may be reason to apply standardized PCA, in which all species 
receive equal weight. However the rare species then unduly influence the analysis 
if there are a lot of them, and chance can dominate the results. We therefore 
recommend species-centred PCA, unless there is strong reason to use standardized 
PCA. Standardization is necessary if we are analysing variables that are measured 
in different units, for example quantitative environmental variables such as pH, 
mass fraction of organic matter or ion concentrations. Noy Meir et al. (1975) 
fully discuss the virtues and vices of various data transformations in PCA. 

The fraction of variance accounted for by the first few axes is not a measure 
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of the appropriateness of a particular data transformation. By multiplying the 
abundances of a single species by a million, the first axis of a species-centred 
PCA will in general account for nearly all the variance, just because nearly all 
the variance after this transformation is due to this species and the first axis 
almost perfectly represents its abundances. 

If some environmental variables are known to influence the species data strongly, 
the axes of a PCA will probably show what is already known. To detect unknown 
variation, one can for each species first apply a regression on the known 
environmental variables, collect the residuals from these regressions in a two­
way table and apply PCA to this table of residuals. This analysis is called partial 
PCA and is standardly available in the computer program CANOCO (ter Braak 
I987b). The analysis is particularly simple if, before sampling, groups of sites 
are recognized. Then, the deviations of the group means should be analysed instead 
of the deviations from the general mean. An example is the analysis of vegetation 
change in permanent plots by Swaine & Greig-Smith (1980). 

5.3.6 R-mode and Q-mode algorithms 

The iteration algorithm in Table 5.6 is a general-purpose algorithm to extract 
eigenvectors and eigenvalues from an m X n matrix Y with elements Yki· The 
algorithm is used in the computer program CANOCO (ter Braak 1987b) to obtain 
the solution to species-centred PCA if the rows are centred and to standardized 
PCA if the rows are standardized. but also to non-centred PCA (Noy Meir 1973) 
if the data are neither centred nor standardized. However many computer programs 
for PCA use other algorithms. most of which implicitly transform the data. Centring 
by variables is done implicitly when PCA is carried out on the matrix of covariances 
between the variables. Also. standardization by variables is implicit in an analysis 
of the correlation matrix. The role of species in our discussion therefore corresponds 
to the role of variables in a general-purpose computer program for PCA. The 
rest of Subsection 5.3.6 may be skipped at a first reading. 

Algorithms that are based on the covariance matrix or correlation matrix are 
termed R-mode algorithms. More generally, R-mode algorithms extract eigen­
vectors from the species-by-species cross-product matrix A with elements 

ak1=L;Yk;Yu (k,l= I , ... ,m) 

where, as before, Yki is the data after transformation. 

By contrast, Q-mode algorithms extract eigenvectors from the site-by-site cross­
product matrix C with elements 

ciJ = kk Ykt YkJ (i,j = 1, ... , n). 

A particular Q-mode algorithm is obtained from Table 5.6 by inserting Equation 
5.8 in Equation 5.9. In this way, Steps 2 and 3 are combined into a single step, 
in which · 
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It can be shown that the eigenvalues of the Matrix A equal those of the Matrix 
C, and further that the eigenvectors of C can be obtained from those of A by 
applying Equation 5.9 to each eigenvector and, conversely, that the eigenvectors 
of A can be obtained from those·of C by applying Equation 5.8 to each eigenvector 
of C. The terms R-mode and Q-mode therefore refer to different algorithms and 
not to different methods. If the number of species is smaller than the number 
of sites, R-mode algorithms are more efficient than Q-mode algorithms, and 
conversely. 

5.4 Interpretation of ordination with external data 

Once data on species composition have been summarized in an ordination 
diagram, the diagram is typically interpreted with help of external knowledge 
on sites and species. Hefe we discuss methods that facilitate interpretation when 
data on environmental variables are collected at different sites. Analogous methods 
exist when there is external data on the species. for example growth form of 
plant species or indicator values for environmental variables from previous studies 
or from the literature (Table 5. 7). 

Simple interpretative aids include: 
- writing the values of an environmental variable in the order of site scores 

of an ordination axis below the arranged species data table (Table 5. 7) 
- writing the values of an environmental variable near the site points in the 

ordination diagram (Figure 5.16) 
- plotting the site scores of an ordination axis against the values of an 

environmental variable (Figure 5.17) 
- calculating (rank) correlation coefficients between each of the quantitative 

environmental variables and each of the ordination axes (Table 5.8) 
- calculating mean values and standard deviations of ordination scores for each 

class of a nominal environmental variable (ANOVA, Subsection 3.2.1) and 
plotting these in the ordination diagram (Figure 5.16). 

An ordination technique that is suited for the species composition data extracts 
theoretical environmental gradients from these data. We therefore expect straight 
line (or at least monotonic) relations between ordination axes and quantitative 
environmental variables that influence species. Correlation coefficients are therefore 
often adequate summaries of scatter plots of environmental variables against 
ordination axes. 

Three of these simple interpretative aids are directed to the interpretation of 
axes instead of to the interpretation of the diagram as a whole. But the ordination 
axes do not have a special meaning. Interpretation of other directions in the 
diagram is equally valid. A useful idea is to determine the direction in the diagram 
that has maximum correlation with a particular environmental variable (Dargie 
1984). For thejth environmental variable, zj, that direction can be found by multiple 
(least-squares) regression of zj on the site scores of the first ordination axis (x1) 

and the second ordination axis (x0, i.e. by estimating the parameters b1 and 
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Table 5. 7 Values of environmental variables and Ellenberg's indicator values of species 
written alongside the ordered data table of the Dune Meadow Data. in which species and 
sites are arranged in order of their scores on the second DCA axis. AI: thickness of AI 
horizon (em), 9 meaning 9 em or more~ moisture: moistness in five classes from I :; dry 
to 5 :; wet; use: type of agricultural use, I :; hayfield, 2 :; a mixture of pasture and 
hayfield. 3 ;::;: pasture: manure: amount of manure applied in five classes from 0 :; no 
manure to 5 :; heavy use of manure. The meadows are classified by type of management: 
SF. standard farming; BF. biological farming: HF. hobby farming: NM. nature management; 
F, R, N refer to Ellenberg's indicator values for moisture. acidity and nutrients. respectively. 
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Figure 5.16 The amount of manure written on the DCA ordination of Figure 5.7. The 
trend in the amount across the diagram is shown by an arrow, obtained by a multiple 
regression of manure on the site scores of the DCA axes. Also shown are the mean scores 
for the four types of management, which indicate, for example, that the nature reserves 
(NM) tend to lie at the top of the diagram. 
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b2 of the regression equation (as in Subsection 3.5.2) 

Equation 5.12 

The direction of maximum correlation makes an angle of 8 with the first axis 
where e = arctan (b2/ b1) and the maximum correlation equals the multiple 
correlation coefficient (Subsection 3.2.1). This direction can be indicated in the 
ordination diagram by an arrow running from the centroid of the plot. for instance 
with coordinates (0,0), to the point with coordinates (b,,b~, as illustrated for 
manure in Figure 5.16. This is an application of the biplot idea; the environmental 
variable is represented in the diagram by an arrow that points in the direction 
of maximum change (Subsection 5.3.4). Several environmental variables can be 
accommodated in this way in a single ordination diagram. 

In Chapter 3, presence and abundance of a single species represented the response 
variable to be explained by the environmental variables. By applying an ordination 
technique to the abundances of many species, we have reduced many response 
variables to a few ordination axes. It is therefore natural to consider the ordination 
axes as new derived response variables and to attempt to explain each of them 
by use of multiple regression analysis. For example, we can fit for the first axis 
(x1) the response model 

Equation 5.13 

where zj is the jth (out of q) environmental variables and cj is the corresponding 
regression coefficient. The multiple correlation coefficient and the fraction of 
variance accounted for by the regression (Subsection 3.2.1) indicate whether the 
environmental variables are sufficient to predict the variation in species composition 
that is represented by the first ordination axis. Tabfe 5.9 shows an example. 
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Table 5.9 Multiple regression of the first CA axis on four 
environmental variables of the dune meadow data, which shows 
that moisture contributes significantly to the explanation of the 
first axis, whereas the other variables do not. 

Term Parameter Estimate s.e. 

constant c, -2.32 0.50 -4.62 
AI c, 0.14 0.08 I. 71 
moisture c, 0.38 0.09 4.08 
use c, 0.31 0.22 1.37 
manure c, -0.00 0.12 -0.01 

ANOVA table 
d.f. s.s. m.s. F 

Regression 4 17.0 4.25 10.6 
Residual 15 6.2 0.41 
Total 19 23.2 1.22 

R2 = 0.75 
Ridj:::::: 0.66 

There are good reasons not to include the environmental variables in the 
ordination analysis itself. nor to reverse the procedure by applying ordination 
to the environmental data first and by adding the species data afterwards: the 
main variation in the environmental data is then sought, and this may well not 
be the major variation in species composition. For example, if a single envir~ 
onmental variable is important for the species and many more variables are included 
in the analysis, the first few axes of the environmental ordination mainly represent 
the relations among the unimportant variables and the relation of the important 
variable with the species' data would not be discovered. It is therefore better 
to search for the largest variation in the species' data first and to find out afterwards 
which of the environmental variables is influential. 

5.5 Canonical ordination 

5.5.1 Introduction 

Suppose we are interested in the effect on species composition of a particular 
set of environmental variables. What can then be inferred from an indirect gradient 
analysis (ordination followed by environmental gradient interpretation)? If the 
ordination of the species data can be readily interpreted with these variables, 
the environmental variables are apparently sufficient to explain the main variation 
in the species' composition. But, if the environmental variables cannot explain 
the main variation, they may still explain some of the remaining variation, which 
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can be substantial, especially in large data sets. For example, a strong relation 
of the environmental variables with the fifth ordination axis will go unnoticed, 
when only four ordination axes are extracted, as in some of the computer programs 
in common use. This limitation can only be overcome by canonical ordination. 

Canonical ordination techniques are designed to detect the patterns of variation 
in the species data that can be explained 'best' by the observed environmental 
variables. The resulting ordination diagram expresses not only a pattern of variation 
in species composition but also the main relations between the species and each 
of the environmental variables. Canonical ordination thus combines aspects of 
regular ordination with aspects of regression. 

We introduce, consecutively, the canonical form of CA, the canonical form 
of PCA (redundancy analysis) and two other linear canonical techniques. namely 
canonical correlation analysis and canonical variate analysis. After introducing 
these particular techniques. we discuss how to interpret canonical ordination axes 
and the possible effect of data transformations. 

5.5.2 Canonical correspondence analysis (CCA) 

To introduce canonical correspondence analysis (CCA), we consider again the 
artificial example by which we have introduced CA (Subsection 5.2.1). In this 
example (reproduced in Figure 5.18a), five species each preferred a slightly different 
moisture value. The species score was defined to be the value most preferred 
and was calculated by averaging the moisture values of the sites in which the 
species is present. Environmental variables were standardized to mean 0 and 
variance I (Table 5.2c) and the dispersion of the species scores after standardization 
was taken to express how well a variable explains the species data. 

Now suppose, as before, that moisture is the best single variable among the 
environmental variables measured. In Subsection 5.2.1, we proceeded by con­
structing the theoretical variable that best explains the species data and, in Section 
5.4, we attempted to explain the variable so obtained by a combination of measured 
environmental variables (Equation 5.13). But, as discussed in Subsection 5.5.1. 
such attempts may fail, even if we measure environmental variables influencing 
the species. So why not consider combinations of environmental variables from 
the beginning? In the example, someone might suggest considering a combination 
of moisture and phosphate, and Figure 5.1 8b actually shows that, after stan­
dardization, the combination (3 X moisture + 2 X phosphate) gives a larger 
dispersion than moisture alone. So it can be worthwhile to consider not only 
the environmental variables singly but also all possible linear combinations of 
them, i.e. all weighted sums of the form 

Equation 5.14 

where 
Z-· is the value of environmental variablej at site i 
/is the weight (not necessary positive) belonging to that variable 
},. is the value of the resulting compound environmental variable at site i. 
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Figure 5.18 Artificial example of unimodal response curves of five species (A-E) with respect 
to standardized environmental variables showing different degrees of separation of the species 
curves. a: Moisture. b: Linear combination of moisture and phosphate, chosen a priori. 
c: Best linear combination of environmental variables, chosen by CCA. Sites are shown 
as dots, at y = 1 if Species D is present and at y = 0 if Species D is absent. 

CCA is now the technique that selects the linear combination of environmental 
variables that maximizes the dispersion of the species scores (Figure 5.18c; ter 
Braak 1987a). 1n other words, CCA chooses the best weights (c) for the 
environmental variables. This gives the first CCA axis. 

The second and further CCA axes also select linear combinations of envir­
onmental variables that maximize the dispersion of the species scores, but subject 
to the constraint of being uncorrelated with previous CCA axes (Subsection 5.2.1). 
As many axes can be extracted as there are environmental variables. 

CA also maximizes the dispersion of the species scores, though irrespective 
of any environmental variable; that is, CA assigns scores (x1) to sites such that 
the dispersion is absolutely maximum (Subsection 5~2.1). CCA is therefore 
'restricted correspondence analysis' in the sense that the site scores are restricted 
to be a linear combination of measured environmental variables (Equation 5.14). 
By incorporating this restriction in the two-way weighted averaging algorithm 
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of CA (Table 5.2). we obtain an algorithm for CCA. More precisely, in each 
iteration cycle, a multiple regression must be carried out of the site scores obtained 
in Step 3 on the environmental variables (for technical reasons with Y+;/ Y++ as 
site weights). The fitted values of this regression are by definition a linear 
combination of the environmental variables (Equation 5.14) and are thus the new 
site scores to continue with in Step 4 of Table 5.2a. As inCA, the scores stabilize 
after several iterations and the resulting scores constitute an ordination axis of 
CCA. The corresponding eigenvalue actually equals the (maximized) dispersion 
of the species scores along the axis. The eigenvalues in CCA are usually smaller 
than those in CA because of the restrictions imposed on the site scores in CCA. 

The parameters of the final regression in the iteration process are the best weights, 
also called canonical coefficients, and the multiple correlation of this regression 
is called the· species-environment correlation. This is the correlation between the 
site scores that are weighted averages of the species scores and the site scores 
that are a linear combination of the environmental variables. The species-en­
vironment correlation is a measure of the association between species and 
environment, but not an ideal one; axes with small eigenvalues may have 
misleadingly high species-environment correlations. The importance of the as­
sociation is expressed better by the eigenvalue because the eigenvalue measures 
how much variation in the species data is explained by the axis and, hence, by 
the environmental variables. 

CCA is restricted correspondence analysis but the restrictions become less strict 
the more environmental variables are included in the analysis. If q ~ n - 1, then 
there are actually no restrictions any more; CCA is then simply CA. The arch 
effect may therefore crop up in CCA, as it does inCA (Gauch 1982). The method 
of detrending (Hill & Gauch 1980) can be used to remove the arch and is available 
in the computer program CANOCO (ter Braak 1987b). But in CCA, the arch 
can be removed more elegantly by dropping superfluous environmental variables. 
Variables that are highly correlated with the arched axis (often the second axis) 
are most likely to be superfluous. So a CCA with the superfluous variables excluded 
does not need detrending. 

In Subsection 5.2.7, we saw that CA approximated the maximum likelihood 
solution of Gaussian ordination when Conditions Al-A~ hold true. If we change 
the Gaussian ordination model by stating that the site scores must be a linear 
combination of the environmental variables. the maximum likelihood solution 
of the model so obtained is again approximated by CCA when these conditions 
hold true (ter Braak 1986a). Jhe data on species composition are thus explained 
by CCA through a Gaussian response model in which the explanatory variable 
is a linear combination of the environmental variables. Furthermore, tests of real 
data showed that CCA is extremely robust when these assumptions do not hold. 
The vital assumption is that the response model is unimodal. For a simpler model 
where relations are monotonic, the results can still be expected to be adequate 
in a qualitative sense, but for more complex models the method breaks down. 

As an example, we use the Dune Meadow Data, which concerns the impact 
of agricultural use on vegetation in dune meadows on the Island of Terschelling 
(the Netherlands). The data set consists of 20 releves, 30 plant species (Table 
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0.1) and 5 environmental variables (Table 0.2), one of which is the nominal variable 
'type of management' consisting of four classes. CCA can accommodate nominal 
explanat.ory variables ?Y defining dummy variables as in multiple regression 
(Su~sec.tiOn 3.5.5). For mstance, the dummy variable 'nature management' (Table 
5. 7) mdtc~tes that meadows received that type of management. The first eigenvalue 
of CCA IS somewhat lower than that of CA (0.46 compared to 0.54). Multiple 
regresswn of the srte scores of the first CA axis on the environmental variables 
as w~ proposed. in Section 5.4, resulted in a multiple correlation of 0.87. If th; 
mult~ple regresst?n ~s carried out within the iteration algorithm, as in CCA, the 
multiple correlation mcreases to 0.96, which is the species-environment correlation 
'J?e CCA scor~s for species.and sites. look s~milar to. those of CA: not surprisingly: 
smce .the ~ulttple correlatiOn obtamed wtth CA ts already high. We conclude 
tha!, 1.n th~s example, the measured environmental variables account for the main 
vanatlon. m the species composition. This is true for the second axis also. The 
second erge.nvalue of CCA is 0.29, compared to 0.40 for CA and the second 
spect~s-envuonment correlation is 0.89, compared to a multiple correlation of 
0.83 m CA. Table 5.10 shows the canonical coefficients that define the first two 
axes an? the correlations Of the environmental variables with these axes. These 
correlations are termed intra-set correlations to distinguish them from the inter­
set corre~ations, which are the correlations between the environmental variables 
~nd th.e stte scor.es that are derived from the species scores. (The inter-set correlation 
IS R ti~es the mtra-set correlation; R is the species-environment correlation of 
the. axis). Fro~ the correlations in Table 5.10, we infer that the first axis is a 
motsture gradxent and that the second axis is a manuring axis, separating the 
meadows managed as a nature reserve from the standardly farmed meadows. This 
can be seen also from the CCA ordination diagram (Figure 5.19a). 

Table 5.10 Canonical correspondence analysis: canonical coef­
ficients (100 X c) and intra-set correlations (100 X r) of 
environmental variables with the first two axes of CCA for 
the Dune Meadow Data. The environmental variables were 
standardized first to make the canonical coefficients of different 
environmental variables comparable. The class SF of the 
nominal variable 'type of management' was used as reference 
class in the analysis (Subsection 3.5.5). 

Variable Coefficients Correlations 

Axis I Axis2 Axis I Axis2 

AI 9 -37 57 -17 
moisture 71 -29 93 -14 
use 25 5 21 -41 
manure -7 -27 -30 -79 
SF 16 -70 
BF -9 16 -37 15 
HF 18 19 -36 -12 
NM 20 92 56 76 
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The species and sites are positioned as points in the CCA diagram as in CA 
and their joint interpretation is also as in CA~ sites with a high value of a species 
tend to be close to the point for that species (Subsection 5.2.5). The environmental 
variables are represented by arrows and can be interpreted in conjunction with 
the species points as follows. Each arrow determines an axis in the diagram and 
the species points must be projected onto this axis. As an example, the points 
of a few species are projected on to the axis for manuring in Figure 5.19b. The 
order of the projection points now corresponds approximately to the ranking 
of the weighted averages of the species with respect to amount of manure. The 
weighted average indicates the 'position' of a species curve along an environmental 
variable (Figure 5.18a) and thus the projection point of a species also indicates 
this position. though approximately. Thus Cirsiurn arvense. Alopecurus genicu­
latus, Elymus repens and Poa trivia/is mainly occur in these data in the highly 
manured meadows, Agrostis stolonifera and Trifolium repens in moderately 
manured meadows and Ranunculus flammula and Anthoxanthum odoratum in 
meadows with little manuring. One can interpret the other arrows in a similar 
way. From Figure 5.19a, one can see at a glance which species occur mainly 
in wetter conditions (those on the right of the diagram) and which prefer drier 
conditions (those on the left of the diagram). 

The joint plot of species points and environmental arrows is actually a biplot 
that approximates the weighted averages of each of the species with respect to 
each of the environmental variables. The rules for quantitative interpretation of 
the CCA biplot are the same as for the PCA biplot described in Subsection 5.3.4. 
In the diagram, the weighted averages are approximated as deviations from the 
grand mean of each environmental variable; the grand mean is represented by 
the origin (centroid) of the plot. A second useful rule to interpret the diagram 
is therefore that the inferred weighted average is higher than average if the projection 
point lies on the same side of the origin as the head of an arrow and is lower 
than average if the origin lies between the projection point and the head of an 
arrow. As in Subsection 5.3.2, a measure of goodness of fit is (1 .. 1 + A.2)/(sum 
of all eigenvalues), which expresses the fraction of variance of the weighted averages 
accounted for by the diagram. In the example, Figure 5.19a accounts for 65% 
of the variance of the weighted averages. (The sum of all canonical eigenvalues 
is J.l77.) 

The positions of the heads of the arrows depend on the eigenvalues and on 
the intra-set correlations. In Hill's scaling (Subsection 5.2.2), the coordinate of 
the head of the arrow for an environmental variable on axis s is rj.• 
..)As (I - A.,,), with rj.• the intrawset correlation of environmental variable j with 
axis s and A.s is the eigenvalue of axis s. The construction of biplots for detrended 
canonical correspondence analysis is described by ter Braak ( 1986a). Environmental 
variables with long arrows are more strongly correlated with the ordination axes 
than those with short arrows, and therefore more closely related to the pattern 
of variation in species composition shown in the ordination diagram. 

Classes of nominal environmental variables can also be represented by arrows 
(ter Braak t986a). The projection of a species on such an arrow approximates 
the fraction of the total abundance of that species that is achieved at sites of 
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Figure 5.19 CCA of the Dune Meadow Data. a: Ordination diagram with environmental 
variables represented by arrows. The c scale applies to environmental variables. the u scale 
to species and sites. The types of management are also shown by closed squares at the 
centroids of the meadows of the corresponding types of management. b: Inferred ranking 
of the species along the variable amount of manure, based on the biplot interpretation 
of Part a of this figure. 

that class. However it is sometimes more natural to represent each class of a 
nominal variable by a point at the centroid (the weighted average) of the sites 
belonging to that class (Figure 5.I9a). Classes consisting of sites with high values 
for a species are then positioned close to the point of that species. In Figure 
5.19a, the meadows managed as a nature reserve are seen to lie at the top-right 
of the diagram; the meadows of standard farms lie at the bottom. 

A second example (from ter Braak 1986a) concerns the presence or absence 
of 133 macrophytic species in 125 freshwater ditches in the Netherlands. The 
first four axes of detrended correspondence analyses (DCA) were poorly related 
(multiple correlation R < 0.60) to the measured environmental variables, which 
were: electrical conductivity (K), orthophosphate concentration (PHOSPHATE), 
both transformed to logarithms, chloride ratio (CHLORIDE, the share of chloride 
ions in K) and soil type (clay. peaty soil, sand). By choosing the axes in the 
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light of these environmental variables by means of CCA, the multiple correlations 
increased considerably, R being 0.82 and 0.81 for the first two axes. The eigenvalues 
dropped somewhat - for the first two axes. from 0.34 and 0.25 in DCA to 0.20 
and 0.13 in CCA. Apparently, the environmental variables are not sufficient to 
predict the main variation in species composition extracted by DCA, but they 
do predict a substantial part of the remaining variation. From the CCA ordination 
diagram (Figure 5.20), it can be seen that K and PHOSPHATE are strongly 
correlated ( > 0.8) with the first CCA axis. Species with a high positive score 
on that axis are therefore almost restricted to ditches with high K and PHOS­
PHATE, and species with a large negative score to ditches with low x and 
PHOSPHATE. Species with intermediate scores are either unaffected by K and 
PHOSPHATE or restricted to intermediate values of K and PHOSPHATE. The 
second CCA axis is strongly correlated (r = 0.9) with CHLORIDE. The arrow 
for PEAT shows that species whose distribution is the most restricted to peaty 
soils lie in the top-left corner of the diagram. The arrows for SAND and CLAY 
are to be interpreted analogously. 

143 



• Meny trif 

Ranu f1 am 
Nymp alba. • Cole;sp 

Pote pa 1. 
Ranu ling• 

_PID 

Stra !1 ;s 

Lyco eur 
Acor 

cal a 

Schi gela 

herm 

•Alop geni 

• Cata aqua 

------~Po;,,;,-,~c;u~t . .-------~~~~~~~~~====~phosphate 
Cera • subm 

Ranu aqua • Vero cate 

Pota perf· • 

Call obtu• 
Pota cris • Trib bomb 

Vero anag• 
• Bide trip 

Ca 11 hamJ • 

Pota dec• 

Figure 5.20 CCA ordination diagram of the ditch vegetation data (sites are not shown). 

5.5.3 Redundancy analysis (RDA) 

Redundancy analysis (RDA) is the canonical form of PCA and was invented 
by Rao (1964). RDA has so far been neglected by ecologists, but appears attractive 
when used in combination with PCA. 

As in PCA (Subsection 5.3.1 ), we attempt to explain the data of all species 
by fitting a separate straight line to the data of each species. As a measure of 
how badly a particular environmental variable explains the species data, we take 
the total residual sum of squares, as in PCA (Figure 5.11). The best environmental 
variable is then the one that gives the smallest total residual sum of squares. 
From this, we can derive a canonical ordination technique, as in Subsection 5.5.2, 
by considering also linear combinations of environmental variables. RDA is the 
technique selecting the linear combination of environmental variables that gives 
the smallest total residual sum of squares. 

PCA also minimizes the total residual sum of squares, but it does so without 
looking at the environmental variables (Subsection 5.3.1). We can obtain the RDA 
axes by extending the algorithm of PCA (Table 5.6) in a similar fashion to how 
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we modified the CA algorithm in Subsection 5.5.2~ in each iteration cycle, the 
site scores calculated in Step 3 are regressed on the environmental variables with 
Equation 5.13 and the fitted values of the regression are taken as the new site 
scores to continue in Step 4 of the algorithm. (In contrast to CCA. we must 
now use equal site weights in the regression.) So the site scores are restricted 
to a linear combination of the environmental variables and RDA is simply PCA 
with a restriction on the site scores. The species-environment correlation is obtained 
in the same way as for CCA~ but, in RDA, this correlation equals the correlation 
between the site scores that are weighted sums of the species scores and the site 
scores that are a linear combination of the environmental variables. 

We illustrate RDA with the Dune Meadow Data, using the same environmental 
variables as in Subsection 5.5.2. The first two axes of PCA explained 29% and 
2l%.of the total variance in the species data, respectively. RDA restricts the axes 
to linear combinations of the environmental variables and the RDA axes explain 
therefore less, namely 26% and 17% of the total variance. The first two spe­
cies-environment correlations are 0.95 and 0.89, both a little higher than the 
multiple correlations resulting from regressing the first two PCA axes on the 
environmental variables. We conclude, as with CCA, that the environmental 
variables account for the main variation in the species composition. From the 
canonical coefficients and intra-set correlations (Table 5.11), we draw the same 
conclusions as with CCA, namely that the first axis is mainly a moisture gradient 
and the second axis a manuring gradient. 

The RDA ordination diagram (Figure 5.21) can be interpreted as a biplot 
(Subsection 5.3.4). The species points and site points jointly approximate the species 
abundance data as in PCA, and the species points and environmental arrows 

Table 5.1 I Redundancy analysis: canonical coefficients (100 
X c) and intra-set correlations (100 X r) of environmental 
variables with the first two axes of RDA for the Dune Meadow 
Data. The environmental variables were standardized first to 
make the canonical coefficients of different environmental 
variables comparable. The class· SF of the nominal variable 
'type of management' was used as reference class in the analysis 
(as in Table 5.!0). 

Variable Coefficients Correlations 

Axis l Axis2 Axis l Axis 2 

AI -! -5 54 -6 
moisture !5 9 92 !2 
use 5 -6 !5 29 
manure -8 !6 -26 86 
SF 25 76 
BF -!0 0 -48 -!! 
HF -!0 -2 -40 !3 
NM -4 -13 51 -79 
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Figure 5.21 RDA ordination diagram of the Dune Meadow Data with environmental 
variables represented by arrows. The scale of the diagram is: t unit in the plot corresponds 
to 1 unit for the sites, to 0.067 units for the species and to 0.4 units for the environmental 
variables. 

jointly approximate the covariances between species and environmental variables. 
If species are represented by arrows as well (a natural representation in a PCA 
biplot), the cosine oft he angle between the arrows of a species and an environmental 
variable is an approximation of the correlation coefficient between the species 
and the environmental variable. One gets a qualitative idea of such correlations 
from the plot by noting that arrows pointing in roughly the same direction indicate 
a high positive correlation, that arrows crossing at right angles indicate near~ 
zero correlation, and that arrows pointing in roughly opposite directions indicate 
a high negative correlation. If arrows are drawn for Poa trivialis, Elymus repens 
and Cirsium arvense in Figure 5.21, they make sharp angles with the arrow for 
manuring; hence, the abundances of these species are inferred to be positively 
correlated with the amount of manure. We can be more confident about this 
inference for Poa trivia/is than for Cirsium arvense because the former species 
lies much further from the centre of the diagram than the latter species. As in 
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PCA, species at the centre of the diagram are often not very well represented 
and inferences from the diagram about their abundances and correlations are 
imprecise. From Figure 5.21, we infer also that, for instance, Salix repens, 
Hypochaeris radicata and A ira praecox are negatively' correlated with the amount 
of manure. 

A measure of goodness of fit of the biplot of species and environmental variables 
is (A1 + A2)/(sum of all eigenvalues), which expresses the fraction of variance 
of all covariances between species and environment accounted for by the diagram. 
For the example, Figure 5.21 accounts for 71% of this variance. 

The scaling of Figure 5.21 conforms to that of the Euclidean distance biplot 
(Subsection 5.3.4): the sum of squares of the species scores is unity and site points 
are obtained by weighted summation of species scores. The positions of the heads 
of arrows of the environmental variables depend on the intra-set correlations (Table 
5.11) and the eigenvalues. With this scaling, the coordinate of the head of the 
arrow for an environmental variable on axis s must be rjs J(Asl n) where rjs is 
the intra-set correlation of environmental variable j with axis s, n is the number 
of sites, and "-s the eigenvalue of axis s. The diagram scaled in this way gives 
not only a least~squares approximation of the covariances between species and 
environment, but also approximations of the (centred) abundances values, of the 
Euclidean Distances among the sites as based on the species data (Equation 5.15). 
and of covariances among the environmental variables7 though the latter two 
approximations are not least~squares approximations. Other types of scaling are 
possible (ter Braak 1987b). 

5.5.4 Canonical correlation analysis (COR) 

The species-environment correlation was a by-product in CCA and RDA, but 
is central in canonical correlation analysis (COR). The idea of COR is to choose 
coefficients (scores) for species and coefficients for environmental variables so 
as to maximize the species-environment correlation. In COR, the species-envir­
onment correlation is defined as in RDA, as the correlation between site scores 
(x;*) that are weighted sums of species scores: (x;* = Lk bk Yki) and site scores 
(x) that are a linear combination of the environmental variables (x1 = c0 + 
L1 c1 zF). An algorithm to obtain the COR axes is given in Table 5.12. The resulting 
species-environment correlation is termed the canonical correlation, and is actually 
the squareroot of the first eigenvalue of COR. Step 2 of the algorithm makes 
the difference from RDA: in RDA, the species scores are simply a weighted sum 
of the site scores, whereas in COR the species scores are parameters estimated 
by a multiple regression of the site scores on the species variables. This regression 
has the practical consequence that, in COR, the number of species must be smaller 
than the number of sites. It can be shown that the restriction on the number 
of species is even stronger than that: the number of species plus the number 
of environmental variables must be smaller than the number of sites. This 
requirement is not met in our Dune Meadow Data and is generally a nuisance 
in ecological research. By contrast, RDA and CCA set no upper limit to the 
number of species that can be analysed. Examples of COR can be found in Gittins 
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Table 5.12 An iteration algorithm for canonical correlation analysis (COR). 

Step I. Start with arbitrary initial site scores (x,), not all equal to zero. 
Step 2. Calculate species scores by multiple regression of the site scores on the species variables. 

The species scores (hk) are the parameter estimates of this regression. 
Step 3. Calculate new site scores (x;") by weighted summation of the species scores(Equation 5.9). 

The site scores in fact equal the fitted values of the multiple regression of Step 2. 
Step 4. Calculate coefficients for the environmental variables by multiple regression of the site 

scores (xn on the environmental variables. The coefficients (c1) are the parameter estimates 
of this regression. 

Step 5. Calculate new site scores (x1) by weighted summation oft he coefficients of the environmental 
variables, i.e. by x, = :t,;1 c1 z11• The site scores in fact equal the fitted values of the multiple 
regression of Step 4. 

Step 6. For second and higher axes, orthogonalize the site scores (x;) as in Table 5.6. 
Step 7. Standardize the site scores (x,) as in Table 5.6. 
Step 8. Stop on convergence, i.e. when the new site scores are sufficiently close to the site scores 

of the previous cycle of the iteration process; ELSE go to Step 2. 

(1985). COR allows a bip1ot to be made, from which the approximate covariances 
between species and environmental variables can be derived in the same way as 
in RDA (Subsection 5.5.3). The construction of the COR biplot is given in 
Subsection 5.9.3. 

In our introduction to COR, species and environmental variables enter the analysis 
in a symmetric way (Table 5.12). Tso (1981) presented an asymmetric approach 
in which the environmental variables explain the species data. In this approach 
COR is very similar to RDA, but differs from it in the assumptions about the 
error part of the model (Equations 5.10 and 5.14): uncorrelated errors with equal 
variance in RDA and correlated normal errors in COR. The residual correlations 
between errors are therefore additional parameters in COR. When the number 
of species is large. there are so many of them that they cannot be estimated reliably 
from data from few sites. This causes practical problems with COR that are absent 
in RDA and CCA. 

5.5.5 Canonical variate analysis (CVA) 

Canonical variate analysis (CVA) belongs to the classical linear multivariate 
techniques along with PCA and COR. CVA is also termed linear discriminant 
analysis. 

If sites are classified into classes or clusters, we may wish to know how ·the 
species composition differs among sites of different classes. If we have recorded 
the abundance values of a single species only, this question reduces to how much 
the abundance of the species differs between classes, a question studied in Subsection 
3.2.1 by analysis of variance. If there are more species. we may wish to combine 
the abundance values of the species to make the differences between classes clearer 
than is possible on the basis of the abundance values of a single species. CVA 
does so by seeking a weighted sum of the species abundances; however not one 
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that maximizes the total variance along the first ordination axis, as PCA does, 
but one that maximizes the ratio of the between-class sum of squares and the 
within-class sum of squares of the site scores along the first ordination axis. (These 
sums of squares are the regression sum of squares and residual sum of squares. 
respectively, in an AN OVA of the site scores, cf. Subsection 3.2.1.). 

Formally, CVA is a special case of COR in which the set of environmental 
variables consists of a single nominal variable defining the classes. So from 
Subsection 3.5.5, the algorithm of Table 5.12 can be used to obtain the CVA 
axes. We deduce that use of CVA makes sense only if the number of sites is 
much greater than the number of species and the number of classes (Schaafsma 
& van Vark 1979; Varmuza 1980). Consequently, many ecological data sets cannot 
be analysed by CVA without dropping many species. Examples of CVA can be 
found in Green (1979), Pie1ou (1984) and Gittins (1985). 

In contrast to CVA, CCA and RDA can be used to display differences in species 
composition between classes without having to drop species from the analysis. 
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Figure 5.22 CCA ordination diagram of the Dune Meadow Data optimally displaying 
differences in species composition among different types of management. 
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For this, we must code classes as dummy environmental variables, as in Subsection 
3.5.5. Such an analysis by CCA is equivalent to the analysis of concentration 
proposed by Feoli & Orl6ci ( 1979). As an example. Figure 5.22 displays the 
differences in vegetation composition between the meadows receiving different 
types of management in our Dune Meadow Data. The first axis (1. .. 1 = 0.32) is 
seen to separate the meadows receiving nature management from the remaining 
meadows and second axis ().2 = 0.18) separates the meadows managed by standard 
farming from those managed by hobby farming and biological farming, although 
the separations are not perfect. The species displayed on the right side of the 
diagram occur mainly in the meadows receiving nature management and those 
on the upper left in the meadows managed by standard farming, and so on. Figure 
5.22 displays almost the same information as Figure 5.19a, as can be ~een by 
joining Site Points 16 and 18 in both diagrams. Moisture and manunng are 
presumably the major factors bringing about vegetation differences between types 
of management. 

5.5.6 Interpreting canonical axes 

To interpret the ordination axes, one can use the canonical coefficients and 
the intra~set correlations. The canonical coefficients define the ordination axes 
as linear combinations of the environmental variables by means of Equation 5.14 
and the intra-set correlations are the correlation coefficients between the envir­
onmental variables and these ordination axes. As before, we assume that the 
environmental variables have been standardized to a mean of 0 and a variance 
of 1 before the analysis. This standardization removes arbitrariness in the units 
of measurement of the environmental variables and makes the canonical coefficients 
comparable among each other, but does not influence other a~pects of the anal~sis. 

By looking at the signs and relative magnitudes of the mtra-set correlations 
and of the canonical coefficients standardized in this way, we may infer the relative 
importance of each environmental variable for pr~diction of. species composi~ion. 
The canonical coefficients give the same informatiOn as the mtra-set co~elattons, 
if the environmental variables are mutually uncorrelated, but may provtde rather 
different information if the environmental variables are correlated among one 
another, as they usually are in field data. Bo_th a c~nonical c~~fficient and .an 
intra-set correlation relate to the rate of change m spectes composttton by changmg 
the corresponding environmental variable. However it is assumed that other 
environmental variables are being held constant in the former case, whereas the 
other environmental variables are assumed to covary with that one environmental 
variable in the particular way they do in the data set in the latter case. If the 
environmental variables are strongly correlated with one another, for example 
simply because the number of environmental v~riables approac~es the nu~?er 
of sites the effects of different environmental vanables on the spectes composltlon 
cannot 'be singled out and, consequently, the canonical coefficients w~ll be unsta~le. 
This is the multicollinearity problem discussed in the context of multiple regress_wn 
in Subsection 3.5.3. The algorithms to obtain the canonical axes show tha~ canomcal 
coefficients are actually coefficients of a multiple regression (SubsectiOn 5.5.2), 
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so both suffer identical problems. If the multicollinearity problem arises (the 
program CANOCO (ter Braak 1987b) provides statistics to help detecting it). 
?ne should abst~m from attempts to interpret the canonical coefficients. But the 
mtra-se~ correlatw?s do not suffer from this problem. They are more like simple 
correlatiOn coefficients. They can still be interpreted. One can also remove 
environmental variables from the analysis. keeping at least one variable per set 
o_f stron?ly correlated environmental variables. Then, the eigenvalues and_ spe­
ctes-envt~onmen.t correlations will usually only decrease slightly. If the eigenvalues 
and spectes-envtronment correlations drop considerably, one has removed too 
many (or the wrong) variables. 

Their. algorithms indi~ate that COR and CVA are hampered also by strong 
correlations among species, whereas CCA and RDA are not. So in CCA and 
RDA, the number of species is allowed to exceed the number of sites. 

5.5.7 Data transformation 

As in CA and PCA, any kind of transformation of the species abundances 
may affect the results of CCA and RDA. We refer to Subsections 5.2.2 and 5.3.5 
for r~commendations ~bout this. The results Of COR and CVA are affected by 
non-linear transformations of the species data, but not by linear transformations. 
Canonical ordination techniques are not influenced by linear transformations of 
the environmental variables, but non-linear transformation of environmental 
variables can ~e c~nsidered if there. is some reason to do so. Prior knowledge 
about the posstble _1m pact of the environmental variables on species composition 
may suggest particular non~linear transformations and particular non-linear 
combinations, i.e. environmental scalars in the sense of Loucks (1962) and Austin 
et al. (1984). The use of environmental scalars can also circumvent the multi­
collinearity problem described in Subsection 5.5.6. 

5.6 Multidimensional scaling 

In Section 5.1. ordination was defined as a method that arranges site points 
in the best possible way in a continuum such that points that are close together 
correspond to sites that are similar in species composition, and points which are 
far apart correspond to sites that are dissimilar. A particular ordination technique 
is obtained by further specifying what •similar' means and what 'best' is. The 
definition suggests that we choose a measure of (dis)similarity between sites 
(Subsection 6.2.2). replace the original species composition data by a matrix of 
dissimilarity values between sites and work further from the dissimilarity matrix 
to obtain an ordination diagram. This final step is termed multidimensional scaling. 

In general, it is not possible to arrange sites such that the mutual distances 
between the sites in the. ordination diagram are equal to the calculated dissimilarity 
values. Therefore a measure is needed that expresses in a single number how 
well or how badly the distances in the ordination diagram correspond to the 
dissimilarity values. Such a measure is termed a loss function or a stress function. 
In metric ordination techniques such as CA and PCA, the loss function depends 
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on the actual numerical values of the dissimilarities, ,whereas, in non-metric 
techniques, the loss function depends only on the rank order of the dissimilarities. 

In CA and PCA, one need not calculate a matrix of dissimilarity values first. 
yet those techniques use particular measures of dissimilarity. In CA. the implied 
measure of dissimilarity is the chi-squared distance and. in PCA. the Euclidean 
Distance, as follows immediately from Subsection 5.3.3. The chi-square distance 
oij between site i and site j is defined as 

0/ = Y++ Lr=l (yk;/ Y+;- Ykjl Y+Y I Yk+ Equation 5.15 

and the Euclidean Distance 011 between these sites is 

~ 2-~m (y )2 
0 ij - J:..k=l ki- Ykj 

Equation 5.16 

The chi-squared distance involves proportional differences in abundances of species 
between sites, whereas the Euclidean Distance involves absolute differences. 
Differences in site and species. totals are therefore less influential in CA than 
in PCA, unless a data transformation is used in PCA to correct for this effect. 

A simple metric technique for multidimensional scaling is principal coordinate 
analysis (PCO), also called classical scaling (Gower 1966; Pielou 1977, p.290-
395). PCO is based on PCA, but is more general than PCA, in that other measures 
of dissimilarity may be used than Euclide.an Distance. In PCO, the dissimilarity 
values oij are transformed into similarity values by the equation 

Equation 5.17 

where the index + denotes a sum of squared dissimilarities. The matrix with 
elements cij is then subjected to the Q-mode algorithm of PCA (Subsection 5.3.6). 
If the original dissimilarities were computed as Euclidean Distances. PCO is 
identical to species-centred PCA calculated by the Q-mode algorithm. 

In most techniques for (non-metric) multidimensional scaling, we must specify 
a priori the number of ordination axes and supply an initial ordination of sites. 
The technique then attempts to modify the ordination iteratively to minimize 
the stress. In contrast to the iterative algorithms for CA, PCA and PCO, different 
initial ordinations may lead to different results. because of local minima in the 
stress function (Subsection 5.2.7)~ hence, we must supply a •good' initial ordination 
or try a series of initial ordinations. From such trials, we then select the ordination 
with minimum stress. 

The best known technique for non-metric multidimensional scaling is ascribed 
to Shepard (1962) and Kruskal (1964). The stress function, which is minimized 
in their technique, is based on the Shepard diagram. This is a scatter diagram 
of the dissimilarities (0;) calculated from the species data against the distances 
d,.j between the sites in the ordination diagram. 

The ordination fits perfectly (stress = 0), if the dissimilarities are monotonic 
with the distances, i.e. if the points in the Shepard plot lie on a monotonically 
increasing curve. If they do not, we can fit a monotonic curve through the points 
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by least-squares. This is called monotonic or isotonic regression (Barlow et al. 
1972). "W_e then use as stress, a f~ncti_on of the r~sidual sum of squares (for example, 
Kruskal s stress formula I, which IS the residual sum of squares divided by the 
total sum of squared distances). The algorithm to seek the ordination that minimizes 
the stress proceeds further as described above. Note that the method can work 
equally. well with. similari~ies, the only modifications being that a monotonically 
d~creasmg curve IS fitted m the Shepard diagram. There are two methods to deal 
with equal_ dissimilari~y values (ties). In the primary approach to ties. the 
~orrespondmg fitted dtstances ne~d not be equal, whereas they must be equal 
m the se.co.nd.ary.approach. The pnmary approach to ties is recommended, because 
equal dtssimllanty values do not necessarily imply equal habitat differences in 
part·cular if the equalities arise between pairs of sites that have no specie~ in 
common (Prentice 1977). 

The Shepard-Kruskal method is based on the rank order of all dissimilarities. 
But calculate~ dissimil~rities may not be comparable in different parts of a gradient. 
for example 1f there IS a trend in species richness. This potential problem can 
be overcome by making a separate Shepard diagram for each site in which we 
P.lot the dissimilarities and distances between the particular site and' all remaining 
s1tes. ~ach Shepard diagram the distances leads to a stress value and the total 
stress IS taken to be a combination of the separate stress values. This is the local 
non-metric tech?iq~e proposed by Sibson (1972). Prentice (1977; 1980) advocated 
a particular Simtlanty coefficient for use in Sibson 's technique. This coefficient is 

Equation 5.18 

Kendall ( 197 I) proved that th~s coefficient contains all the information required 
to . reconstruct the order of s1tes when abundances of species follow arbitrary 
ummodal response curves. 

5.7 Evaluation of direct gradient and indirect gradient analysis techniques 

Table 5.13 summarizes the techniques described in Chapters 3, 4 and 5 by type 
~f response mo~el and types. of variables. We can classify response models as 
hnear an~ non~lmear. Each hnear technique (from multiple regression to COR) 
has non~hnear counterparts. A non~linear model that has special relevance in 
community ecology is the unimodal model. In principle, unimodal models can 
be fitted to data by the general methods used for non-linear models (in particular 
by ~aximum likelihood methods). For regression analysis, these methods are 
avatlable (GLM, Chapter 3) but, in ordination, they are not so readily available 
and tend to require excessive computing. Therefore we have also introduced much 
simpler .methods for analysing data for which unimodal models are appropriate. 
These stmple methods start from the idea that the optima of species response 
curves can be estimated roughly by weighted averaging and we have shown (Section 
3.7) that under particular conditions the estimates are actually quite good. This 
idea resulted in CA, DCA and CCA. 

Multidimensional scaling is left out of Table 5.13, because it is unclear what 

153 



Table 5.13 Summary of gradient analysis techniques classified by type of response model 
and types of variables involved. MR, normal multiple regression; IR, inverse regression: 
PCA. principal components analysis: RDA, redundancy analysis; COR, canonical correlation 
analysis; WAE. weighted averaging of environmental values: GLM, generalized linear 
modelling; ML, maximum likelihood: WAI, weighted averaging of indicator values: CA, 
correspondence analysis: DCA, detrended correspondence analysis: CCA, canonical cor­
respondence analysis: DCCA, detrended canonical correspondence analysis; env.vars, en­
vironmental variables; camp. gradients, composite gradients of environmental variables. either 
measured or theoretical. 

Response model Number of variables 

linear unimodal response explanatory composite 
(species) (env. vars) (comp.gradients) 

Regression MR WAE,GLM, ML one at a time ~I* one per species 
Calibration IR WAI, ML ;;;::.!* rarely >t none 
Ordination PCA CA,DCA, ML many none a few for all species 
Canonical RDA CCA, DCCA, many many* a few for all species 
ordination ML 

COR variants many* many* a few 
ofCCA,ML 

*less than number of sites, except for WAE. WAI and some applications of ML. 

response models multidimensional scaling can cope with. Whether (non-metric) 
multidimensional scaling may detect a particular underlying data structure depends 
in an unknown way on the chosen dissimilarity coefficient and on the initial 
ordinations supplied. Non-metri~ multidimensional scaling could sometimes give 
better ordinations than DCA does, but the question is whether the improvements 
are worth the extra effort in computing power and manpower (Clymo 1980; Gauch 
eta!. 1981). 

Unimodal models are more general than monotonic ones (Figure 3.3), so it 
makes sense to start by using unimodal models and to decide afterwards whether 
one could simplify the model to a monotonic one. Statistical tests can help in 
this decision (Subsection 3.2.3). In ordination, .we might therefore start by using 
CA, DCA or CCA. This initial analysis will provide a check on how unimodal 
the data are. If the lengths of the ordination axes are less than about 2 s.d., 
most of the response curves (or surfaces) will be monotonic, and we can consider 
using PCA or RDA. The advantage of using PCA and RDA is that in their 
biplot they provide more quantitative information than CA, DCA and {D)CCA 
in their joint plot, but this advantage would be outweighed by disadvantages 
when the data are strongly non-linear (ordination lengths greater than about 4 
s.d.). 

As illustrated by the Dune Meadow Data whose ordination lengths are about 
3 s.d., DCA and PCA may result in similar configurations of site points (Figures 
5. 7 and 5.15). That they result in dissimilar configurations of species points, even 
if the ordination lengths are small. is simply due to the difference in meaning 
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of the species scores in DCA and PCA (Subsections 5.2.5 and 5.3.5). 
Table 5. I 3 also shows the types of variables involved in regression, calibration, 

ordination and canonical ordination. We distinguish between response variables, 
explanatory variables and 'composite' variables, which in community ecology 
typically correspond to species presences or abundances, measured environmental 
variables and 'composite gradients', respectively. A composite gradient is either 
a linear combination of measured environmental variables or a theoretical variable. 
Which technique is the appropriate one to use largely depends on the research 
purpose and the type of data available. Ordination and cluster analysis (Chapter 
6) are the only available techniques when one has no measured environmental 
data. Calibration must be considered if one wants to make inferences about values 
of a particular environmental variable from species data and existing knowledge 
of species-environment relations. Regression and canonical ordination are called 
for if one wants to build up and extend the knowledge of species-environment 
relations (Subsections 3.1.1 and 5.1.1). 

Whether to use regression or to use canonical ordination depends on whether 
it is considered advantageous to analyse all species simultaneously or not. In 
a simultaneous analysis by canonical ordination, one implicitly assumes that all 
species are reacting to the same composite gradients of environmental variables 
according to a common response model. The assumption arises because canonical 
ordination constructs a few composite gradients for all species. By contrast in 
regression analysis, a separate composite gradient is constructed for each species. 
Regression may therefore result in more detailed descriptions and more accurate 
predictions of each particular species, at least if sufficient data are available. 
However ecological data that are collected over a large range of habitat variation 
require non-linear models; building good non-linear models by regression is not 
easy. because it requires construction of composite gradients that are non-linear 
combinations of environmental variables (Subsection 3.5.4). In CCA, the composite 
gradients are linear combinations of environmental variables, giving a much simpler 
analysis, and the non-linearity enters the model through a unimodal model for 
a few composite gradients, taken care of in CCA by weighted averaging. Canonical 
ordination is easier to apply and requires less data than regression. It provides 
a summary of the species--environment relations. The summary may lack the kind 
of detail that can in principle be provided by regression; on the other hand, the 
advantages of using regression, with its machinery of statistical tests, may be 
lost in practice, through the sheer complexity of non-linear model building and 
through lack of data. Because canonical ordination gives a more global picture 
than regression, it may be advantageous to apply canonical ordination in the 
early exploratory phase _of the analysis of a particular data set and to apply 
regression in subsequent phases to selected species and environmental variables. 

As already shown in the examples in Subsection 5.5.2, canonical ordination 
and ordination followed by environmental interpretation can be used fruitfully 
in combination. If the results do not differ much, then we know that no important 
environmental variables have been overlooked in the survey. But note that those 
included could merely be correlated with the functionally important ones. A further 
proviso is that the number of environmental variables (q) is small compared to 
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the number of sites (n). If this proviso is not met, the species-environment 
correlation may yield values close to I, even if none of the environmental variables 
affects the species. (Note the remarks about R2 in Subsection 3.2.1.) In particular, 
canonical ordination and ordination give identical ordination axes if q ~ n - I. 
If the results of ordination and canonical ordination do differ much, then we 
may have overlooked major environmental variables, or important non~linear 
combinations of environmental variables already included in the analysis. But 
note that the results will also differ if CA or DCA detect a few sites on their 
first axis that have an aberrant species composition and if these sites are not 
aberrant in the measured environmental variables. After deleting the aberrant 
sites, the ordinations .provided by (D)CA and CCA may be much more alike. 

The question whether we have overlooked major environmental variables can 
also be studied by combining ordination and canonical ordination in a single 
analysis. Suppose we believe that two environmental variables govern the species 
composition in a region. We may then choose two ordination axes as linear 
combinations of these variables by canonical ordination, and extract further 
(unrestricted) axes as in CA or PCA, i.e. by the usual iteration process, making 
the axes unrelated to the previous (canonical) axes in each cycle. The eigenvalues 
of the extra axes measure residual variation, i.e. variation that cannot be explained 
by linear combinations of the environmental variables already included in the 
analysis. Such combined analyses are called partial ordination. Partial PCA 
(Subsection 5.3.5) is a special case of this. 

A further extension of the analytical power of ordination is partial canonical 
ordination. Suppose the effects of particular environmental variables are to be 
singled out from 'background' variation imposed by other variables. In an 
environmental impact study, for example, the effects of impact variables are to 
be separated from those of other sources of variation, represented by 'covariables'. 
One may then want to eliminate ('partial out') the effects of the covariables and 
to relate the residual variation to the impact variables. This is achieved in partial 
canonical ordination. Technically, partial canonical ordination can be carried out 
by any computer program for canonical ordination. The usual environmental 
variables are simply replaced by the residuals obtained by regressing each of the 
impact variables on the covariables. The theory of partial RDA and partial CCA 
is described by Davies & Tso (1982) and ter Braak (1988). Partial ordination 
and partial canonical ordination are available in the computer program CANOCO 
(ter Braak 1987b). The program also includes a Monte Carlo permutation procedure 
to investigate the statistical significance of the effects of the impact variables. 

5.8 Bibliographic notes 
A simple ordination technique of the early days was polar ordination (Bray 

& Curtis 1957; Gauch 1982), which has been recently reappraised by Beals (1985). 
PCA was developed early this century by K. Pearson and H. Retelling (e.g. Mardia 
et al. 1979) and was introduced in ecology by Goodall (1954). PCA was popularized 
by Orl6ci (1966). CA has been invented independently since 1935 by several authors 
working with different types of data and with different rationales. Mathematically 
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CA is the same as reciprocal averaging. canonical analysis of contingency tables, 
and optimal or dual scaling of nominal variables (Gifi I 981; Gittins 1985; Greenacre 
1984; Nishisato 1980). Benz6cri et al. (1973) developed CAin a geometric context. 
Neither of these different approaches to CA is particularly attractive in ecology. 
Hill (1973) developed an ecological rationale (Subsection 5.2.2). The dispersion 
of the species scores by which we introduced CA in Subsection 5.2.1 is formally 
identical to the 'squared correlation ratio' (112) used by Torgerson (1958, Section 
12. 7) and Nishisato ( 1980, p.23) and also follows from the reciprocal gravity problem 
in Heiser (1986). RDA is also known under several names (lsraels 1984): PCA 
of instrumental variables (Rao 1964), PCA of y with respect to x, reduced rank 
regression (Davies & Tso \982). Ter Braak (1986a) proposed CCA. COR was 
derived by H. Hotelling in \935 (Gittins 1985). Campbell & Atchley (1981) provide 
a good geometric and algebraic introduction to CVA and Williams (1983) discusses 
its use in ecology. Methods to obtain the maximum likelihood solutions for 
Gaussian ordination have been investigated, under the assumption of a normal 
distribution, a Poisson distribution and a Bernoulli distribution for the species 
data, by Gauch et al. (1974), Kooijman (1977) and Goodall & Johnson (1982), 
respectively. However the computational burden of these methods and, hence. 
the lack of reliable computer programs have so far prevented their use on a routine 
basis. Ihm & van Groenewoud ( 1984) and ter Braak (1985) compared Gaussian 
ordination and CA. Non~metric multidimensional scaling started with the work 
by Shepard (1962) and Kruskal (1964). Schiffman et a!. (1981) provide a clear 
introduction. They refer to local non-metric scaling as (row) conditional scaling. 
Meulman & Heiser (1984) describe a canonical form of non-metric multidimen­
sional scaling. Early applications of non-metric multidimensional scaling in ecology 
were Anderson (1971), Noy-Meir (1974), Austin (1976), Fasham (1977), Clymo 
(1980) and Prentice (1977; 1980). The simple unfolding model (response models 
with circular contours) can in principle be fitted by methods of multidimensional 
scaling (Kruskal & Carroll 1969; Dale 1975; de Sarbo & Rao 1984; Heiser 1987), 
but Schiffman et al. (1981) warn of practical numerical problems that may reduce 
the usefulness of this approach. Most of the problems have, however, been 
circumvented by Heiser ( 1987). 

Many textbooks use matrix algebra to introduce multivariate analysis techniques, 
because it provides an elegant and concise notation (Gordon 1981; Mardia et 
al. 1979; Greenacre 1984~ Rao 1973~ Gittins 1985). For ecologists, the book of 
Pielou (1984) is particularly recommended. All techniques described in Chapter 
5 can be derived from the singular-value decomposition of a matrix, leading to 
singular vectors and singular values (Section 5.9). The decomposition can be 
achieved by many numerical methods (e.g. Gourlay & Watson 1973), one of which 
is the power algorithm (Table 5.6). The power algorithm is used in Chapter 5 
because it provides the insight that ordination is simultaneously regression and 
calibration, and because it does not require advanced mathematics. The power 
algorithm can easily be programmed on a computer, but is one of the slowest 
algorithms available to obtain a singular-value decomposition. Hill (1979a) and 
ter Braak (l987b) use the power algorithm with a device to accelerate the process. 
The iteration processes of Tables 5.2 and 5.6 are examples of alternating least-
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squares methods (Gifi 198!) and are related to the EM algorithm (Everitt 1984). 
The power algorithm is also a major ingredient of partial least squares (Wold 
1982). 

Computer programs for PCA, COR and CVA are available in most statistical 
computer packages. CA and DCA are available in DECORANA (Hill 1979). 
The program CANOCO (ter Braak 1987b) is an extension of DECO RAN A and 
it also includes PCA. PCO. RDA, CCA, CVA and partial variants of these 
techniques. All these techniques can be specified in terms of matrix algebra (Section 
5.9). With the facilities for matrix algebra operations in GENSTAT (Alvey et 
a!. 1977) or SAS (SAS Institute Inc. 1982), one can therefore write one's own 
programs to analyse small to medium~sized data sets. Schiffman et al. (1981) 
describe various programs for multidimensional scaling. 

Chapter 5 uses response models as a conceptual basis for ordination. Carroll 
(1972) defined a hierarchy of response models, from the linear model (Equation 
5.11), through the model with circular contour lines (Equation 5.5) to the full 
quadratic model (Equation 3.24) with ellipsoidal contours of varying orientation. 
He terms these models the vector model, the (simple) unfolding model and the 
general unfolding model, respectively (also Davison 1983). By taking even more 
flexible response models, we can define even more general ordination techniques. 
However the more flexible the model, the greater the computational problems 
(Prentice 1980). Future research must point out how flexible the model can be 
to obtain useful practical solutions. 

5.9 Ordination methods in terms of matrix algebra 

What follows in this section is a short introduction to ordination methods in 
terms of matrix algebra: 
- to facilitate communication between ecologists and the mathematicians they 

may happen to consult 
- to bridge the gap between the approach followed in Chapter 5 and the 

mainstream of statistical literature on multivariate methods 
- to suggest computational methods based on algorithms for singular-value 

decomposition of a matrix or to extract eigenvalues and eigenvectors from 
a symmetric matrix. 

To start, please read Section 5.8 first. 

5.9.1 Principal components analysis (PCA) 

Let Y = {Yk;} be an m X n matrix containing the data on m species (rows of 
the matrix) and n sites (columns of the matrix). In the most familiar form of 
PCA, species-centred PCA, the data are abundances with the species means already 
subtracted, so that Yk+ = 0 as in Subsection 5.3.1. PCA is equivalent to the 
singular-value decomposition (SVD) of Y (e.g. Rao 1973; Mardia et a!. 1979; 
Greenacre 1984) 

Y=PA'-'Q' Equation 5.19 
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where P and Q are orthonormal matrices of dimensionsm X rand n X r, respectively, 
with r = min (m,n). i.e. P'P = I and Q'Q = I. and I\ is a diagonal matrix 
with diagonal elements As (s = I ... r), which are arranged in order of decreasing 
magnitude A1 ~ A2 ;;;:;: A3 ;;;::: ••• ;;;:;: 0. 

The columns of P and Q contain the singular vectors of Y, and A2·s is the sth 
singular value of Y. If the sth column of P is denoted by P., .• an m vector, and 
the sth column of Q by q~, ann vector, Equation 5.19 can be written as 

Equation 5.20 

The least-squares approximation of Y in Equation 5.11 of Subsection 5.3.2 
is obtained from Equation 5.20 by retaining only the first two terms of this 
summation, and by setting b.~ = A2·5 Ps and X5 = q,. (s = I, 2). 
The kth element of b 1 then contains the species score bk~> and the ith element 
of x1 contains the site score xn on the first axis of PCA. Similarly, b2, and x2 
contain the species and sites scores on the second axis of PCA. The species and 
sites scores on both axes form the coordinates of the points for species and sites 
in the biplot (Subsection 5.3.4). The interpretation of the PCA biplot follows 
from Equation 5.11: inner products between species points and site points provide 
a least-squares approximation of the elements of the matrix Y (Gabriel 1971; 
1978). Equation 5.20 shows that the total sum of squares Lk1 yd equals 
A1+ ... + Ar. the sum of all eigenvalues, and that the total residual sum of squares 

An appropriate measure of goodness of fit is therefore (A1 + A.2)/(sum of all 
eigenvalues). From P'P =I, Q'Q =I and Equation 5.20. we obtain 

Equation 5.21 

and 

Equation 5.22 

Hence, the species scores are a weighted sum of the site scores and the site scores 
are proportional to a weighted sum of the species scores (Table 5.6 and Subsection 
5.3.2). Equation 5.21 and Equation 5.22 show that b., and xs are eigenvectors 
of YY' and Y'Y, respectively, and that As is their common eigenvalue; whence, 
the R-mode and Q~mode algorithms of Subsection 5.3.6. 

The SVD of the species-by-species cross-product matrix YY' is P I\ P'. as 
follows from Equation 5.19 by noting that Q 'Q =I. A least-squares approximation 
of the matrix YY' in two dimensions is therefore given by the matrix b 1b'1 + 
b2 b'2• Since YY'/(n - I) contains covariances between species, the biplot of xs 
and bs is termed the covariance biplot (Corsten & Gabriel 1976; ter Braak 1983). 
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The SVD of the site-by-site cross-product matrix Y'Y is Q /\ Q'. A biplot 
of Y and Y 'Y is therefore obtained by redefining b and x as b = p and 
Xs = As0·5q~. The inter-site distances in this biplot a;proxim~te th~ Euclidean 
Distances between sites as defined by Equation 5. I 6~ hence the name Euclidean 
Distan~e biplot. The approximation is, however, indirect namely through Equation 
5.17 With ciJ the (i, ;)th element of Y'Y. A consequence of this is that the inter­
site distances are always smaller than the Euclidean Distances. 

5.9.2 Correspondence analysis (CA) 

In CA, the species-by-sites matrix Y contains the abundance values Yki in which 
Yki ;;;:: 0. The data is not previously centred in CA. Let M = diag (yk+), an 
m X m diagonal matrix containing the row totals of Y, N = diag {y+i), an n 
X n diagonal matrix containing the column totals of Y. 

As stated in Subsection 5.2.1, CA chooses standardized site scores x that 
maximize the dispersion of species scores, which are themselves weighted averages 
of- the site scores (Equation 5.1). In matrix notation, the vector of species scores 
u = (u,)[k = I, ... , m] is 

Equation 5.23 

and the dispersion is 

o = u'Mufx'Nx = x'Y'M·1Yx fx'Nx Equation 5.24 

where the denominator takes account of the standardization of x (Table 5.2c), 
provided x is centred (1 'N x = 0). 

The problem of maximizing 0 with respect to x has as solution the second 
eigenvector of the eigenvalue equation 

Y'M·'Yx =AN x Equation 5.25 

with o =A (Rao 1973, Section lf.2 and p.74; Mardia et al. 1979, Theorem A9.2). 

This can be seen by noting that the first eigenvector is a trivial solution (x = 
1; A = I)~ because the second eigenvector is orthogonal to the first eigenvector 
in the N metric, the second eigenvector maximizes 0 subject to 1 'Nx = 0. What 
is called the first eigenvector of CA in Section 5.2 is thus the second eigenvector 
of Equation 5.25, i.e. its first nonMtrivial eigenvector. The second non-trivial 
eigenvector of Equation 5.25 is similarly seen to maximize 8, subject to being 
centred and to being orthogonal to the first non-trivial eigenvector, and so on 
for subsequent axes. Equation 5.25 can be rewritten as 

Ax= N·1Y'u Equation 5.26 

160 

Equations 5.23 and 5.26 form the 'transition equations' of CA. In words: the 
species scores are weighted averages of the site scores and the site scores are 
proportional to weighted averages of the species scores (Table 5.2 and Exercise 
5.1.3). 

The eigenvectors of CA can also be obtained from the SVD 

M"5 Y N"5 = P /\'·5Q' Equation 5.27 

by setting us = As0·5 M.{).S Ps and x., = N.{).5 CJs, where Ps and Cis are the sth columns 
of P and Q, respectively (s = I, .... r). 

This can be seen by inserting the equations for u.t and X5 in Equations 5.23 and 
5.26, and rearranging terms. It is argued in Subsection 5.2.7 that it is equally 
valid to distribute As in other ways among us and xs, as is done, for example, 
in Hill's scaling (Subsection 5.2.2). 

CA differs from PCA in the particular transformation of Y in Equation 5.27 
and in the particular transformation of the singular vectors described just below 
that equation. 

5.9.3 Canonical correlation analysis (COR) 

As in species-centred PCA, let Y be an m X n matrix in which the kth row 
contains the centred abundance values of the kth species (i.e. Yk+ = 0) and let 
Z be a q X n matrix in which the jth row contains the centred values of the 
jth environmental variable (i.e. z.i+ = 0). Define 

812 = YZ ', 8u = YY ', 822 = ZZ' and 821 = 8'12· Equation 5.28 

The problem of COR is to determine coefficients for the species b =(bk)[k = 
1, ... , m] and for the environmental variables c =(c)U = I, ... , q] that maximize 
the correlation between£= Y'b and x = Z'c. The solution forb and cis known 
to be the first eigenvector of the respective eigenvalue equations 

S12 S,i' S21 b =A S11 b Equation 5.29 

Equation 5.30 

The eigenvalue A. equals the squared canonical correlation (Rao 1973~ Mardia 
et al. 1979; Gittins 1985). 

Note that b can be derived from a multiple regression of x on the species, 
or from c, by 

b = (YY')'1 Yx = S,·' 812 c Equation 5.31 

and, similarly, c can be derived from a multiple regression of x" on the environmental 
variables, or from b, by 
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l.c = (ZZ') I zx· = s, Is, b Equation 5.32 

It can be verified that band c from Equations 5.31 and 5.32 satisfy Equations 
5.29 and 5.30, by inserting b from Equation 5.31 into Equation 5.32 and by inserting 
c from Equation 5.32 into Equation 5.31~ but note that we could have distributed 
A. in other ways among Equations 5.31 and 5.32. Equations 5.31 and 5.32 form 
the basis of the iteration algorithm of Table 5.12. Step 7 of Table 5.12 takes 
care of the eigenvalue: at convergence, x is divided by A (Table 5.6c). Once 
convergence is attained, c should be divided by A to ensure that the final site 
scores satisfy x = Z'c (Step 5);hence the l. in Equation 5.32. The second and 
further axes obtained by Table 5.12 also maximize the correlation between x 
and x·, but subject to being uncorrelated to the site scores of the axes already 
extracted. 

COR can also be derived from the SVD of 

Equation 5.33 

The equivalence of Equation 5.31 with Equation 5.33 can be verified by pre­
multiplying Equation 5.33 on both sides with 8 11 -0.5 and post-multiplying Equation 
5.33 on both sides with Q and by defining 

Equation 5.34 

The sth column of B and of C contain the canonical coefficients on the sth axis 
of the species and environmental variables, respectively. The equivalence of 
Equation 5.32 with Equation 5.33 can be shown similarly. 

COR allows a biplot to be made in which the correlations between species 
and environmental variables are approximated. The problem to which the canonical 
correlation biplot is the solution can be formulated as follows: determine points 
for species and environmental variables in t-dimensional space in such a way 
that their inner products give a weighted least-squares approximation to the 
elements of the covariance matrix 8 12• In the approximation, the species and 
the environmental variables are weighted inversely with their covariance matrices 
8 11 and 822, respectively. Let the coordinates of the points for the species be 
collected in the m X t matrix G and those for the environmental variables in 
the q X t matrix H. The problem is then to minimize 

IISJJ-0.5 (S,- GH') s,-0·511 2 = IISJJ-11.5 s, s,·05 - (SJJ 0.5 G)(S, o.s H)'ll 2 

Equation 5.35 

with respect to the matrices G and H, where ll•ll is the Euclidean matrix norm, 
e.g. II Yll 2 = L,,; r,;'. 

From the properties of an SVD (Subsection 5.9.1), it follows that the minimum 
is attained when S 11 °·5 G and S22 -

0·5 H correspond to the first t columns of the 
matrices PA05 and Q of Equation 5.33, respectively. The required least-squares 
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approximation is thus obtained by setting G and H equal to the first t columns 
of 5 11°.5 P/\0.5 and 522°·5 Q, respectively. Again, A can be distributed in other 
ways among P and Q. For computational purposes, note that 

Equation 5.36 

and 

s,o.5 Q = s, s22·05 Q = s22 c = zx Equation 5.37 

where X = Z 'C. Because X 'X = I, the biplot can thus be constructed from the 
inter-set correlations of the species and the intra-set correlations of the envir~ 
on mental variables (which are the correlations of the site scores x with the species 
variables and environmental variables, respectively). This construction rule requires 
the assumption that the species and environmental variables are standardized to 
unit variance, so that S12 is_ actually a correlation matrix. The angles between 
arrows in the biplot are, however. not affected by whether either covariances 
or correlations between species and environment are approximated in the canonical 
correlation biplot. 

5.9.4 Redundancy analysis (RDA) 

RDA is obtained by redefining 8 11 in subsection 5.9.3 to be the identity matrix 
(Rao 1973, p.594-595). In the RDA biplot, as described in Subsection 5.5.3, the 
coordinates of the point for the species and the variables are given in the matrices 
P and 822°5 Q A0·5, respectively. 

5.9.5 Canonical correspondence analysis (CCA) 

CCA maximizes Equation 5.24 subject to Equation 5.14, provided xis centred. 
If the matrix Z is extended with a row of ones, Equation 5.14 becomes x 
= Z'c. with c = (c)U = 0, I, .... q]. By inserting x = Z'c in Equation 5.24 
and (re)defining, withY non-centred, 

S12 = YZ', S11 = M = diag (yk+) and S22 = ZNZ' Equation 5.38 

we obtain 

Equation 5.39 

The solutions of CCA can therefore be derived from the eigenvalue Equation 
5.30 with S 12• 5 11 and ~2 defined as in Equation 5.38. If defined in this way. 
CCA has a trivial solution c' = (1, 0, 0, ... , 0), l. = I, x = I and the first non­
trivial eigenvector maximizes 0 subject to 1 'Nx = 1 'NZ'c = 0 and the maximum 
0 equals the eigenvalue. A convenient way to exclude the trivial solution is to 
subtract from each environmental variable its weighted mean Zi = Z1 Y+i zii/ Y++ 
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(and to remove the added row of ones in the matrix Z). Then, the matrix Z 
has weighted row means equal to 0: !:1 Y+i z11 = 0. The species scores and the 
canonical coefficients of the environmental variables can be obtained from Equation 
5.33 and Equation 5.34, by using the definitions of Equation 5.38. 

As described in Subsection 5.5.2, the solution of CCA can also be obtained 
by extending the iteration algorithm of Table 5.2. Steps I. 4, 5 and 6 remain 
the same as in Table 5.2. In matrix notation, the other steps are 

Step2 b =M- 1 Yx Equation 5.40 

Step 3a x* = N 1 Y 'b Equation 5.41 

Step 3b c = (ZNZ ') 1 ZN x* Equation 5.42 

Step 3c x = Z'c Equation 5.43 

with b = u, them vector containing the species scores uk (k = 1, ... , m). 

Once convergence has been attained, to ensure that the final site scores satisfy 
x = Z'c, c should be divided by A, as in COR (below Equation 5.32). This amounts 
to replacing c in Equation 5.42 by Ac (as in Equation 5.32). To show that the 
algorithm gives a solution of Equation 5.30, we start with Equation 5.42, modified 
in this way, insert x· of Equation 5.41 in Equation 5.42, next insert b by using 
Equation 5.40, next insert x by using Equation 5.43 and finally use the definitions 
of 5 11 , S12 and S,2 in CCA. 

CCA allows a biplot to be made, in which the inner products between points 
for species and points for environmental variables give a weighted least-squares 
approximation of the elements of the m X q matrix 

W=M-'YZ', 

the (kJ)th element of which is the weighted average of species k with respect 
to the (centred) environmental variable j. In the approximation, the species are 
given weight proportional to their total abundance (yk+) and the environmental 
variables are weighted inversely with their covariance matrix S22. The possibility 
for such a biplot arises because 

Equation 5.44 

so that, from Equations 5.44 and 5.33, after rearranging terms. 

W = (S 11 -0·5 P) /1.0·5 (S22°·5 Q)' Equation 5.45 

Apart from particular considerations of scale (Subsection 5.2.2), the coordinates 
of the points for species and environmental variables in the CCA biplot are thus 
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given by the first t columns of S11 -0·5 P 1\0·5 and S22°·5 Q, respectively. The matrix 
S11 °5 P A 0·5 actually contains the species scores. as follows from Equation 5.34. 
The other matrix required for the biplot can be obtained by 

S22'-'Q = S22 S22 °5 Q = S22 C = ZNZ'C = ZNX Equation 5.46 

5.10 Exercises 

Exercise 5.1 Correspondence analysis: the algorithm 

This exercise illustrates the two-way weighted-averaging algorithm of CA (Table 
5.2) with the small table of artificial data given below. 

Species Sites 

2 3 4 5 

A I 0 0 I 0 
B 0 0 I 0 I 
c 0 2 0 I 0 
D 3 0 0 I 

The data appear rather chaotic now. but they will show a clear structure after 
having extracted the first CA ordination axis. The first axis is dealt with in Exercises 
5.1.1-3, and the second axis in Exercises 5.1.4-6. 

Exercise 5.1.1 Take as site scores the values 1, 2, ... , 5 as shown above the 
data table. Now, standardize the site scores by using the standardization procedure 
described in Table 5.2c. 

Exercise 5.1.2 Use the site scores so standardized as initial site scores in the 
iteration process (Table 5.2a). Carry out at least five iteration cycles and in each 
cycle calculate the dispersion of the species scores. (Use an accuracy of three 
decimal places in the calculations for the site and species scores and of four decimal 
places for s.) Note that the scores keep changing from iteration to iteration, but 
that the rank order of the site scores and of the species scores remains the same 
from Iteration 4 onwards. Rearrange the species and sites of the table according 
to their rank order. Note also that the dispersion increases during the iterations. 

Exercise 5.1.3 After 19 iterations, the site scores obtained are 0.101, -1.527, 
1.998, -0.524, 1.113. Verify these scores for the first CA axis (within an accuracy 
of two decimal places) by carrying out one extra iteration cycle. What is the 
eigenvalue of this axis? Verify that Equation 5. I holds true for the species scores 
and site scores finally obtained. but that Equation 5.2 does not hold true. Modify 
Equation 5.2 so that it does hold true. · 
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Exercise 5.1.4 We now derive the second CA axis by using the same initial site 
scores as in Exercise 5.1.2. Orthogonalize these scores first with respect to the 
first axis by using the orthogonalization procedure described in Table 5.2b, and 
next standardize them (round the site scores of the first axis to two decimals 
and use four decimals for v and s and three for the new scores). 

Exercise 5.1.5 Use the site scores so obtained as initial site scores to derive the 
second axis. The scores stabilize in four iterations (within an accuracy of two 
decimal places). 

Exercise 5.1.6 Construct an ordination diagram of the first two CA axes. The 
diagram shows one of the major 'faults' in CA. What is this fault? 

Exercise 5.2 Adding extra sites and species to a CA ordination 

Exercise 5.2.1 We may want to add extra species to an existing CA ordination. 
In the Dune Meadow Data, Hippophae rhamnoides is such a species, occurring 
at Sites 9, 18 and 19 with abundances 1, 2 and I, respectively. Calculate from 
the site scores in Table 5.lc the score for this species on the first CA axis in 
the way this is done with CA. Plot the abundance of the species against the 
site score. What does the species score mean in this plot? At which place does 
the species appear in Table 5.1c? Answer the same questions for Poa annua, which 
occurs at Sites 1, 2, 3, 4, 7, 9, 10, 11, 13 and 18 with abundances 3, 3, 6, 4, 
2, 2, 3, 2, 3 and 4, respectively, and for Ranunculus acris, which occurs at Sites 
S, 6, 7, 9, 14 and IS with abundances 2, 3, 2, 2, I and I, respectively. 

Exercise 5.2.2 Similarly, we may want to add an extra site to an existing CA 
ordination. Calculate the score of the site where the species Bellis perennis, Poa 
pratensis and Rumex acetosa are present with abundances 5,_ 4 and 3, respectiv:ly 
(imaginary data). (Hint: recall how the site scores were obtamed from the spectes 
scores in Exercise 5.1.3.) Species and sites so added to an ordination are called 
passive, to distinguish them from the active species and sites of Table 5.1. The 
scores on higher~order axes are obtained in the same way. 

Exercise 5.2.3 Rescale the scores of Table 5.1c to Hill's scaling and verify that 
the resulting scores were used in Figure 5.4. 

Exercise 5.3 Principal components analysis 

Add the extra species and the extra site of Exercise 5.2 to the PCA ordination 
of Table 5.5c. Plot the abundance of the extra species against the site scores. 
What does the species score mean in this plot? At which places do the species 
appear in Table S.Sc? 
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Exercise 5.4 Length of gradient in DCA 

Suppose DCA is applied to a table of abundances of species at sites and that 
the length of the first axis is 1.5 s.d. If, for each species, we made a plot of 
its abundance against the site scores of the first axis, would most plots suggest 
monotonic curves or unimodal curves? And what would the plots suggest if the 
length of the axis was 10 s.d.? 

Exercise 5.5 interpretation of joint plot and biplot 

Exercise 5.5.1 Rank the sites in order of abundance of Juncus bufonius as inferred 
from Figure 5.7, as inferred from Figure 5.15 and as observed in Table S.la. 
Do the same for Eleocharis palustris. 

Exercise 5.5.2 If Figure 5.15 is interpreted erroneously as a joint plot of DCA, 
one gets different inferred rank orders and, when Figure 5. 7 is interpreted 
erroneously as a biplot, one also gets different rank orders. Is the difference in 
interpretation greatest for species that lie near the centre of an ordination diagram 
or for species that lie on the edge of an ordination diagram? 

Exercise 5.6 De trended canonical correspondence analysis 

Cramer (1986) studied vegetational succession on the rising sea~shore of an 
island in the Stockholm Archipelago. In 1978 and 1984, the field layer was sampled 
on 135 plots of I m2 along 4 transects. The transects ran from water level into 
mature forest. One of the questions was whether the vegetational succession keeps 
track with the land uplift (about 0.5 em per year) or whether it lags behind. 
In both cases. the vegetation zones 'run down the shore'. but in the latter case 
too slowly. Because succession in the forest plots was not expected to be due 
to land uplift, only the 63 plots up to the forest edge were used. These plots 
contained 68 species with a total of about I 000 occurrences on the two sampling 
occasions. An attempt was made to answer the question by using detrended 
canonical correspondence analysis (DCCA) with two explanatory variables, namely 
altitude above water level in 1984 (not corrected for land uplift; so each plot 
received the same value in 1978 as in 1984) and time (0 for 1978, 6 for 1984). 
The altitude ranged from -14 to 56 em. The first two axes gave eigenvalues 0.56 
and 0.10, lengths 4.4 and 0.9 s.d. and species-environment correlations 0.95 and 
0.74, respectively. Table 5.14 shows that the first axis is strongly correlated with 
altitude and almost uncorrelated with time, whereas the second axis is strongly 
correlated with time and almost uncorrelated with altitude. However the canonical 
coefficients tell a more interesting story. 

Exercise 5.6.1 With Table 5.14, show that the linear combination of altitude 
and time best separating the species in the sense of Section 5.5.2 is 

X= 0.054 z1 + 0.041 Z2 Equation 5.47 

167 



Table 5.14 Detrended canonical correspondence analysis of rising shore 
vegetation data: canonical coefficients (100 X c) and intra~set correlations 
(100 X r) for standardized environmental variables. In brackets, the 
approximate standard errors of the canonical coefficients. Also given are 
the mean and standard deviation (s.d.) of the variables. 

Variable 

Altitude (em) 
Time (years) 

Coefficients Correlations 

Axis I Axis 2 Axis I Axis 2 

100 (3) 
12 (3) 

4 (4) 99 
-34 (3) 7 

19 
-99 

mean 

22 
3 

s.d. 

18.5 
2.9 

where z
1 

is the numeric value of altitude (em) and z2 is the numeric value of 
time (years) and where the intercept is, arbitrary, set to zero. 

Hint: note that Table 5.14 shows standardized canonical coefficients, i.e. canonical 
coefficients corresponding to the standardized variables z1• = (z1 - 22)(18.5 and 
z; = (z2 - 3)/2.9. . . 
Similarly, show that the standard errors of estimate of c1 = 0.054 IS 0.0016 and 
of c, = 0.041 is 0.010. 

Exercise 5.6.2 Each value of x in Equation 5.47 stands for a particular species 
composition (Figures 5.8 and 5.18) and changes in the value of x express species 
turnover along the altitude gradient in multiples of s.d. With Equation 5.47, 
calculate the species turnover between two plots that were 15 em and 25 em 
above water level in 1984, respectively. Does the answer depend on the particular 
altitudes of these plots or only on the difference in altitude? What is. according 
to Equation 5.47, the species turnover between these plots in 1978? 

Exercise 5.6.3 With Equation 5.47, calculate the species turnover between 1978 
and 1984 for a plot with an altitude of 15 em in 1984? Does the answer depend 
on altitude? 

Exercise 5.6.4 With Equation 5.47, calculate the altitude that gives the same 
species turnover as one year of succession. 

Exercise 5.6.5 Is there evidence that the vegetational succession lags behind uplift? 

Exercise 5.6.6 Roughly how long would it take to turn the species composition 
of the plot closest to the sea into that of the plot that is on the edge of t~e 
forest? Hint: use the length of the first axis. Is there evidence from the analys1s 
that there might also be changes in species composition that are unrelated to 
land uplift? Hint: consider the length of the second axis. 
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5.11 Solutions to exercises 

Exercise 5.1 Correspondence analysis: the algorithm 

Exercise 5.1.1 The centroid of the site scores is z = (4 X 1 + 2 X 2 + I 
X 3 + 3 X 4 + 2 X 5)/12 = 2.750 and their dispersion iss'= [4 X (I - 2.750)2 

+ ... + 2 X (5 - 2. 750)2]/12 = 2.353, thus s = 1.5343. The standardized initial 
score for the first site is thus x1 =(I - 2.750)/1.5343 = -1.141. The other scores 
are listed on the second line of Table 5.15. 

Exercise 5.1.2 In the first iteration cycle at Step 2, we obtain for Species C. 
for example, the score [2 X (-0.489) + I X 0.815)]/(2 + I) = -0.054, and for 
Site 5 at Step 3, the score (0.815 - 0.228)/(1 + I) = 0.294. The dispersion of 
the species scores in the first iteration cycle is 8 = (2 X 0.1632 + 2 X 0.8152 

+ 3 X 0.0542 + 5 X 0.2282)/12 = 0.138. See further Table 5.15. In the iterations 
shown z = 0.000, apart from Iteration 3, where z = -0.001 (Step 5). The rearranged 
data table shows a Petrie matrix (Subsection 5.2.3). 

Exercise 5.1.3 The standardized site scores obtained in the 19th and 20th iteration 
are equal within the accuracy of two decimal places~ so the iteration process has 
converged (Table 5.15). The eigenvalue of the first axis is A1 = 0.7799, the value 
of s calculated last. Equation 5.2 does not hold true for the final site and species 
scores. But the site scores calculated in Step 3 are weighted averages of the species 
scores and are divided in the 20th iteration by s = 0.7799 to obtain the final 
site scores. On convergence, s equals the eigenvalue A; thus the final site and 
species scores satisfy the relation A x1 = L;:'"" 1 Yk1 ukrL~tYk;· Applying Steps 3. 
(4) and 5 to the eigenvector (the scores X;) thus transforms the eigenvector into 
a multiple of itself. The multiple is the 'eigenvalue' of the eigenvector. Note that 
8 equals A within arithmetic accuracy. 

Exercise 5.1.4 In Step 4.2, we obtain v = [4 X (-1.141) X 0.10 + 2 X (-0.489) 
X (-0.53) + I X 0.163 X 2.00 + 3 X 0.815 X (-0.53) + 2 X 1.466 X 1.11]/ 
12 = 0.2771 and for Site I at Step 4.3, the score -1.141 -0.277 I X 0.10 = 
-1.169. See further the first four lines of Table 5.16. 

Exercise 5.1.5 See Table 5.16. 

Exercise 5.1.6 The configuration of the site points looks like the letter V, with 
Site I at the bottom and Sites 2 and 3 at the two extremities. This is the arch 
effect of CA (Section 5.2.3). 

Exercise 5.2 Adding extra sites and species to a CA ordination 

Exercise 5.2.1 In CA, Equation 5.1 is used to obtain species scores from site 
scores. Thus the score for Hippophae rhamnoides is [I X 0.09 + 2 X (-0.31) 
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Table 5.15 Two-way weighted averaging algorithm applied to the data of Exercise 5.1 to 
obtain the first ordination axis of CA. The initial site scores (Line I) are first standardized 
(Line 2). The values in brackets are rank numbers of the scores of the line above. Column 
I, iteration number; Column 2, step number in Table 5.2 ; Column 3, x is site score and 
u is species score; Column 4. dispersion of the species scores (S) when preceded by 11, 

or otherwise the square root of the dispersion of the site scores of the line above (s). 

Column Sites 

2 3 4 

0 I X 1.000 
0 5 X 1.5343 -l.l41 

2 u 0.1375 
3 X -0.212 

I 5 X 0.3012 -0.704 
2 2 u 0.6885 
2 3 X -0.393 
2 5 X 0.6953 -0.567 
3 2 u 0.7171 
3 3 X -0.322 
3 5 X 0.7193 -0.448 
4 2 u 0.7342 
4 3 X -0.251 
4 5 X 0.7383 -0.340 
5 2 u 0.7498 
5 3 X -0.185 
5 5 X 0.7529 -0.246 

0.7606 (3) 

20 2 u 0.7800 
20 3 X 0.081 

0.104 
(3) 

20 5 X 0.7799 

2 

2.000 
-0.489 

-0.054 
-0.179 

-0.283 
-0.408 

-0.465 
-0.646 

-0.628 
-0.851 

-0.764 
-1.015 
(I) 

-1.193 
-1.530 
(I) 

3 

3.000 
0.163 

0.815 
2.706 

1.841 
2.646 

1.868 
2.597 

1.865 
2.526 

1.840 
2.444 
(5) 

1.556 
1.995 
(5) 

4 

4.000 
0.815 

-0.148 
-0.491 

-0.402 
-0.580 

-0.426 
-0.592 

-0.436 
-0.591 

-0.440 
-0.584 
(2) 

-0.409 
-0.524 

(2) 

5 

5.000 
1.466 

0.294 
0.976 

0.758 
1.089 

0.815 
1.133 

0.852 
1.154 

0.875 
1.162 
(4) 

0.867 
1.112 
(4) 

Species 

A B c D 

-0.163 0.815 -0.054 -0.228 
(2) (4) (3) (I) 

-0.598 1.841 -0.283-0.325 
(I) (4) (3) (2) 

-0.574 1.868 -0.465 -0.238 
(I) (4) (2) (3) 

-0.520 1.865-0.628-0.161 
(2) (4) (I) (3) 

-0.466 1.840-0.764 -0.091 
(2) (4) (I) (3) 

-0.211 1.556-1.193 0.178 
(2) (4) (I) (3) 

+ I X (-0.68)]/(1 + 2 + I)= -0.30, for Poa annua -0.33 and for Ranunculus 
acris -0.19. All three species come in Table 5.lc between Elymus repens and 
Leontodon autumnalis. The plots asked for suggest unimodal response curves 
for Hlppophae rhamnoides and Poa annua, but a bimodal curve for Ranunculus 
acris. The species score is the centroid (centre of gravity) of the site scores in 
which they occur. The score gives an indication of the optimum of the response 
curve for the former two species, but has no clear meaning for the latter species. 
In general, species with a score close to the centre of the ordination may either 
be unimodal, bimodal or unrelated to the axes (Subsection 5.2.5). 

Exercise 5.2.2 The weighted average for the site is [3 X (-0.65) + 5 X (-0.50) 
+ 4 X ( -0.39)]/ (3 + 5 + 4) = -0.50, which must be divided as in Exercise 5.1.3 
by '!.. (= 0.536) to obtain the site score -0.93. If we calculated the score for the 
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Table 5.16 Two-way weighted averaging algorithm applied to the data of Exercise 5.1 to 
obtain the second ordination axis of CA. The first line shows the site scores of the first 
ordination axis (f). The scores on the second line are used as the initial scores after 
orthogonalizing them with respect to the first axis (Line 3) and standardizing them (Line 
4). Column 5 is v. defined in Table 5.2: the other columns are defined in Table 5.15. 

Column Sites Species 

I 2 3 4 5 2 3 4 5 A B c D 

0 4.1 f 0.10 -1.53 2.00 -0.53 1.11 
0 4.1 X -1.141 -0.489 0.163 0.815 1.466 
.o 4.3 X 0.2771 -1.169 -0.065 -0.391 0.962 Ll58 
0 5.3 X 0.9612 -1.216 -0.068 -0.407 1.001 1.205 
I 2 u 0.0837 -0.107 .0.399 0.288 -0.288 

3 .< -0.243 0.288 0.399 -0.036 0.056 
I 4 X 0.0001 -0.243 0.288 0.399 -0.036 0.056 
I 5 X 0.2182 -1.114 1.320 1.829 -0.165 0.257 
2 2 u 0.5956 -0.639 1.043 0.825 -0.650 
2 3 X -0.647 0.825 1.043 -0.155 0.197 
2 4 X -0.0011 -0.647 0.823 1.045 -0.156 0.198 
2 5 X 0.5967 -1.084 1.379 1.751 -0.261 0.332 
3 2 u 0.5980 -0.673 1.042 0.832 -0.636 
3 3 X -0.645 0.832 1.042 -0.159 0.203 
3 4 X 0.0014 -0.645 0.830 1.045 ·-0.160 0.205 
3 5 X 0.5982 -1.078 1.387 1.747 -0.267 0.343 
4 2 u 0.5984 -0.672 !.045 0.836 -0.632 

4 3 X -0.642 0.836 1.045 -0.156 0.206 
4 4 X -().0016 -0.642 0.834 1.048 -0.157 0.208 
4 5 X 0.5985 -1.073 1.393 1.751 -0.262 0.348 

second axis by the same method, the extra site would come somewhat below 
Site 5 in the ordination diagram (Figure 5.4). 

Exercise 5.2.3 The site scores of Table 5.1c must be divided by v'O - '!..)/'!.. 
= 0.464 0.536) = 0.93 and the species scores by V'J..(I - '!..) = 

(0.536 X 0.464) = 0.50 (Subsection 5.2.2). For Site 20; for example, we obtain 
the score 1.95/0.93 = 2.10 and for !uncus articulatus 1.28/0.50 = 2.56. In Hill's 
scaling, the scores satisfy Equation 5.2 whereas Equation 5.1 must be modified 
analogously to the modification of Equation 5.2 in Exercise 5.1.3 

Exercise 5.3 Principal components analysis 

The mean abundance of Hippophae rhamnoides is 0.2. With Equation 5.8, 
we obtain the score (0-0.2) X (-0.31) + (0 -0.2) X (-0.30) + ... + (2-0.2) 
X (-0.04) + ( 1-0.2) X 0.00 + ... + (0-0.2) X 0.45 = ...Q.03. Similarly we obtain 
the scores -3.22 for Poa annua and -1.48 for Ranuncu/us acris. The plots suggest 
monotonic decreasing relations for the latter two s-pecies. and a unimodal relation 
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(if any) for the first species. If straight lines are fitted in these plots, the slope 
of regression turns out to equal the species score (Subsection 5.3.1 ). The species 
come at different places in Table 5.5c. For example, Poa annua comes just after 
Bromus hordaceus. The score for the extra site is calculated by dividing the weighted 
sum (Equation 5.9) by the eigenvalue: 3.90/471 = 0.008. 

Exercise 5.4 Length of gradient in DCA 

In DCA, axes are scaled such that the standard deviation (tolerance) of the 
response curve of each species is close to one and is on average equal to one. 
Each response curve will therefore rise and decline over an interval of about 
4 s.d. (Figure 3.6; Figure 5.3b). If the length of the first axis equals 1.5 s.d .. 
the length of the axis covers only a small part of the response curve of each 
::.pecies. Most plots will therefore suggest monotonic curves, although the true 
response curves may be unimodal (Figure 3.3). If the length of the first axis is 
10 s.d., the response curves of many species are·contained within the length of 
the axis, so that many of the plots will suggest unimodal response curves. 

5.5 Interpretation of joint plot and biplot 

Exercise 5.5.1 Inferred rank orders of abundance are for }uncus bufonius 

from Figure 5.7 (DCA) sites 12 > 8 > 13 > 9 > 4 = 18 
from Figure 5.15 (PCA) sites !3:d>4>9"' 12 
from Table 5.1a (data) sites 9 = 12 > 13 > 7--

and for Eleocharis palustris 

from Figure 5.7 (DCA) sites 16> 14"'15>20>8 
from Figure 5.15 (PCA) sites 16>20> 15> 14> 19 
from Table 5.1a (data) Sites 16 > 15 > 8 = 14 = 20. 

Exercise 5.5.2 The difft:rence in interpretation is greatest for species that lie at 
the centre of the ordination diagram. In a DCA diagram, the inferred abundance 
drops with distance from the species point in any direction, whereas in a PCA 
diagram the inferred abundance decreases or increases with distance from the 
species point, depending on th~ direction. This difference is rather unimportant 
for species that lie on the edge of the diagram, because the site points all lie 
on one side of the species point. One comes to the same conclusion by noting 
that a species point in a DCA diagram is its inferred optimum; if the optimum 
lies far outside the region of the sites the inferred abundance changes monotonically 
across the region of site points (Eleocharis palustris in Figure 5. 7). 

Exercise 5.6 Detrended canonical correspondence analysis 

Exercise 5.6.1 From Table 5.14, we see that the best linear combination is 
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x = 1.00 z1" + 0.12 z2". In terms of unstandardized variables, we obtain x = 
1.00 X (z1 - 22)/ 18.5 + 0.12 X (z2 - 3)/2.9 = (1.00/ !8.5)z1 + (0.12/2.9)z2 - 22/ 
18.5 - 0.12 X 3/2.9 = 0.054 z1 + 0.041 z2 - 1.31. The standard error of c1 is 
O.o3j 18.5 = 0.00162 and of c2 is 0.03/2.9 = 0.010. 

Exercise 5.6.2 The value of x for the plot that was 15 em above water level 
in 1984 is x = 0.054 X 15 + 0.041 X 6 = 1.056 s.d. For the plot 25 em above 
water level, we obtain x = 0.054 X 25 + 0.041 X 6 = 1.596 s.d. Hence. the 
species turnover is 1.596- 1.056 = 0.54 s.d. According to Equation 5.47, turnover 
depends only on the difference in altitude between the plots: 0.054 X (25 - I 5) 
= 0.54, and does not depend on the particular altitudes of the plots nor on the 
year of sampling. The species turnover between plots differing 10 em in altitude 
is therefore 0.54 s.d. on both occasions of sampling. 

Exercise 5.6.3 The value of x for a plot with an altitude of 15 em in 1984 was 
1.056 s.d. in 1984 (Exercise 5.6.2) and was 0.054 X 15 + 0.041 X 0 = 0.81 s.d. 
in 1978. (Note that in the model altitude was not corrected for uplift~ hence 
z1 = 15 in 1984 and in 1978.) The species turnover is 1.056- 0.81 = 0.246 s.d .. 
which equals 0.041 X 6 s.d. and which is independent of altitude. Hence, each 
plot changes about a quarter standard deviation in 6 years. 

Exercise 5.6.4 The species turnover rate is 0.041 s.d. per year. whereas the species 
turnover due to altitude is 0.054 s.d. per centimetre. The change in altitude that 
results in 0.041 s.d. species turnover is therefore 0.041/0.054 = 0.76 em. An 
approximate 95% confidence interval can be obtained for this ratio from the 
standard error of c1 and c2 and their covariance by using Fieller's theorem (Finney 
1964). Here the covariance is about zero. In this way, we so obtained the interval 
(0.4 em. 1.1 em). 

Exercise 5.6.5 From Exercise 5.6.4. we would expect each particular species 
composition to occur next year 0.76 em lower than its present position. Uplift 
(about 0.5 em per year) is less; hence, there is no evidence that the vegetational 
succession lags behind the land uplift. The known uplift falls within the confidence 
interval given above. Further. because the value 0 em lies outside the confidence 
interval, the effect of uplift on species composition is demonstrated. Uplift 
apparently drives the vegetational succession without lag. 

Exercise 5.6.6 The length of the first axis is 4.4 s.d. From Exercise 5.6.3, we 
know that each plot changes about 0.25 s.d. in 6 years. The change from vegetation 
near the sea to vegetation at the edge of the forest therefore takes roughly (4.4/ 
0.25) X 6 years= 100 years. The second axis is 0.9 s.d. and mainly represents 
the differences in species composition between the two sampling occasions that 
are unrelated to altitude and land uplift. More precisely. the canonical coefficient 
of time on the second axis is -0.34/2.9 = -0.117. It therefore accounts for 0.117 
X 6 s.d. = 0.70 s.d. of the length of the second axis, whereas time accounted 
for 0.25 s.d. of the length of the first axis. There are apparently more changes 
going on than can be accounted for by uplift. 
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compared in pairs for each criterion on a nine-point scale expressing relative 
priority. From each matrix of these paired comparisons, weights were extracted 
for the projects in very much the same way as scores are extracted in ordination. 
The sub-criteria were also compared in pairs to obtain their relative importance. 
By applying the same ordination method to the matrices of comparisons, we were 
also able to derive weights for the sub-critera. Subsequently, the weights of each 
sub-criterion for a project were combined with the weights of just the sub-criteria 
to give overall weights for the projects; the weights express the priority of the 
projects judged (Table 8.4). In this method, a concordance measure is also given 
(Ancot & van de Nes !981): a low concordance value indicates that the weight 
can change if priorities among criteria are changed. 

Based on this list of priorities, several brook systems were restored: three of 
the first group, three of the second group and one of the third group. This was 
implemented in part by the Polder Board and in part by private initiative. One 
brook system has been restored, although it was relegated to the third group, 
indicating that serious problems had to be solved before restoration could be 
completed. Because diminished extraction of ground water by a paper-mill caused 
the water-table in this area to rise, the water supply improved so much that it 
made restoration possible. 

The results of this research were also used to help in the decision-making for 
physical planning on a iocal scale and to issue permits for water extraction. It 
is also used as a point of reference to evaluate the management of the brooks. 
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