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Abstract

One of the main obstacles in systems biology is complexity, a feature that is inherent to liv-

ing systems. This complexity stems both from the large number of components involved and

from the intricate interactions between these components. When the system is described by a

mathematical model, we frequently end up with a large nonlinear set of mathematical equa-

tion that contains many parameters. Such a large model usually has a number of undesirable

properties, e.g., its dynamical behavior is hard to understand, its parameters are difficult to

identify, and its simulation requires a very long computing time. In this thesis, we present

several strategies that may help to overcome these problems. On the level of method de-

velopment, we focus on two issues: a) method development to analyze robustness, and b)

method development to reduce model complexity. On the level of practical systems biology,

we develop and analyze a model for the cell cycle in tomato fruit pericarp.

Robustness, that is the ability of a system to preserve biological functionality in spite

of internal and external perturbations, is an essential feature of a biological system. Any

mathematical model that describes this system should reflect this property. This implies

the needs of a mathematical method to evaluate the robustness of mathematical models for

biological processes. However, assessing robustness of a complex non-linear model that

contains many parameters is not straightforward. In this thesis, we present a novel method

to evaluate the robustness of mathematical models efficiently. This method enables us to find

which parameter combinations in a model are responsible for its robustness. In this way, we

get more insight into the underlying mechanisms that govern the robustness of the biological

system. The advantage of our method is that the effort to apply the method scales linearly with

the number of parameters. It is therefore very efficient when it is applied on mathematical

models that contain a large number of parameters.

The complexity in a model can be brought down by simplifying the model. In this thesis,

we also present a novel reduction method to simplify mathematical representations of bio-

logical models. In this method, biological components and parameters that do not contribute

to the observed dynamics are considered redundant and hence are removed from the model.

This results in a simpler model with less components and parameters, without losing predic-

tive capabilities for any testable experimental condition. Since the reduced model contains

less parameters, parameter identification can be carried out more efficaciously.

In the last part of this thesis we show how modeling can help us in understanding the cell

cycle in tomato fruit pericarp. The cell cycle in this system is quite unique since the classical

cell cycle, in which the cell division takes place, after some periods turns into a partial cycle

where the cell keeps replicating its DNA but skips the division. Several mechanisms that are

putatively responsible for this transition have been proposed. With modeling, we show that

although each of these putative mechanisms could lead on its own the cell cycle to this transi-

tion, also their combination could lead to the same result. We also show that the mechanisms

that yield the transition are very robust.

i



ii



Contents

Abstract i

1 Introduction 1

1.1 Systems biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mathematical models in systems biology . . . . . . . . . . . . . . . . . . . . 2

1.3 Model complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Estimation of the robustness region of oscillating biological models 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Floquet Theory and Periodic Solutions . . . . . . . . . . . . . . . . 14

2.2.2 Calculation of Periodic Solutions . . . . . . . . . . . . . . . . . . . 15

2.2.3 Continuation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Application to the Rosenzweig-MacArthur Model . . . . . . . . . . . 18

2.3.2 Application to the Laub-Loomis Model . . . . . . . . . . . . . . . . 23

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Complexity reduction of biochemical networks 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 The concept of admissible region . . . . . . . . . . . . . . . . . . . 36

3.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Complexity reduction method . . . . . . . . . . . . . . . . . . . . . 39

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Node reduction for the EGFR network . . . . . . . . . . . . . . . . . 47

3.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



3.3.3 Parameter reduction for the EGFR network . . . . . . . . . . . . . . 48

3.3.4 Lumping of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.5 SOS complex protein as extra target species . . . . . . . . . . . . . . 52

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Identifying optimal models to represent biochemical systems 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Model discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Model reduction and model discrimination applied iteratively . . . . 65

4.2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Small network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 EGFR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Modeling cell division and endoreplication in tomato fruit pericarp 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Transition from mitotic cell cycles to endoreduplication . . . . . . . . . . . . 86

5.2.1 Proteolytic degradation of M-phase specific cyclins . . . . . . . . . 87

5.2.2 CDK inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Auxin involvement in endoreduplication onset . . . . . . . . . . . . . . . . . 89

5.3.1 Auxin interactions with E2F . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Transcriptional regulation of KRP by auxin . . . . . . . . . . . . . . 90

5.3.3 Auxin involvement in expression of cyclins or cyclin-dependent kinases 90

5.4 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Continuous dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.2 Discrete events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 High auxin levels and mitotic cell division . . . . . . . . . . . . . . . 94

5.5.2 Low auxin levels and possible routes to endoreduplication . . . . . . 94

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 General discussion 107

6.1 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Reflection on the thesis results . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.2 Complexity reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.3 Understanding of the cell cycle in tomato fruit pericarp . . . . . . . . 111

6.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

iv



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Summary 115

Samenvatting 119

Acknowledgments 123

About the author 125

List of publications 127

v



vi



Chapter 1

Introduction

1.1 Systems biology

Most biological processes are highly complex, involving many components with intricate in-

teractions. An example is the cell cycle. A considerable part of this thesis has been devoted to

this process in which the cell divides itself into two daughter cells. The cell cycle is governed

by many key regulators that interact with each other in a sophisticated way and which may

be strongly influenced by the environmental conditions of the cell [1]. The division process

consists of an orderly sequence of events, during which the cell duplicates all its content and

next divides into two parts. Before the decision to divide is taken, the cell checks whether

the internal and the external environments are really favorable for division. If this is not the

case, e.g., one of the key regulators does not work properly or the temperature is far from

being optimal, the cell cycle process is delayed and the cell division postponed. In the worst

scenario, e.g., in case of considerable DNA damage, the cell can even decide to commit sui-

cide, i.e., applying the so-called “apoptosis” or “cell death programme” [2]. In short, the cell

cycle, which is one of the most fundamental processes in life is the result of a highly complex

interplay between many cell components and the environmental conditions.

In the past, however, biological systems were mostly studied by examining their con-

stituent parts in an isolated way. As a consequence, one tended to apply a reductionist ap-

proach to unravel complex systems. The assumption underlying such an approach is that

one could gain full understanding of biological systems by first investigating the behavior of

the components and then combining these insights in a relatively simple way. In the course

of time one came to the conclusion that this strategy is most of the time not sufficient to

understand living systems, although it is not doubted that reduction may remain very useful

and often is the only way one can initially follow when starting with studying a system from

scratch [3]. Biological functions that appear to be fundamental in nature nearly always come

into existence as emergent properties: they are only present when the components are in full

interaction and disappear if one decouples the different modules. An impressive example of

this is given in [4]: the so-called p53 protein that functions as a repressor of cancer in cells

can only be effective if it is in interaction with several other cell components. This implies

1



2 Chapter 1. Introduction

that the study of biological systems will only be really successful if it is carried out at the

system level. This insight has induced the introduction of the term systems biology [5, 6].

There are more reasons why the systems biology approach got a boost in the last decades.

The advancement of experimental technology that allows for developments like genome se-

quencing and high-throughput measurements of proteins and metabolites has enabled us to

obtain huge amounts of data. The interactions between the components in time and space

turnout to be much too complex to be understood by intuition or common sense only. So,

to gain information on the underlying biological processes from the many data, one needs to

integrate them with a modeling approach.

Systems biology is an attitude rather than an independent discipline in the life sciences.

It is way of thinking that encompasses several aspects. The first one is the intention to under-

stand biological systems at the system level via a holistic approach, taking into account the

interactions among the components and environments. The second one is the conviction that

real progress can be made only by closely integrating experiments and modeling [7, 8]. This

last idea is not new for the physical sciences, but in biology there was a tendency to consider

the wet activities, related to lab work, and the dry activities, usually referred to as theoretical

biology, as diverging paths. Kitano first emphasized the need for convergence of these both

paths to unravel complex systems [8] and coined the ‘experiment-modeling cycle, depicted

in Figure 1.1. The idea of the cycle is as follows. One usually starts with observations. They

inspire a draft model based on some hypotheses. This initial model is used to make some

prediction, which is tested in the lab. The outcome of the experiment usually deviates from

the prediction. The new and old data are then combined to adjust and refine the model. This

extended model leads to new predictions, which are again tested in the lab. The cycle is

followed as long as the discrepancies between model outcomes and experimental data are

unacceptable. A third aspect of systems biology is the conviction that for break-throughs we

need multidisciplinary teams of researchers, in which biologists, mathematicians, chemists,

and bioinformaticians tightly cooperate. For the work described in this thesis this was the

case. For example, in developing the tomato cell cycle model in Chapter 5 we had many

fruitful discussions with biologists, who are experts in tomato research and could, when faced

with an enormous amount of literature on the phenomenon of endoreduplication, outline and

explain the aspects that really matter for this topic.

1.2 Mathematical models in systems biology

One of the core activities in the systems biology approach is the development of a mathe-

matical model to describe the dynamics of the system under consideration. In general two

common approaches to model a biological system can be discerned [6, 9, 10]. Which one is

preferred in practice heavily depends on the complexity of the system and the information

about the system interactions that is already available. The first approach follows a top-down

strategy that provides a broad overview of the system. In this type of modeling, one is usually

faced with a quite complex system for which the detailed mechanistic knowledge is mainly

lacking. Then, one starts from the experimental data and tries to deduce a model that de-

scribes the data, but this cannot be based on known physical or biological laws or principles



1.2. Mathematical models in systems biology 3

Figure 1.1: “The experiment modeling cycle in systems biology. A cycle of research begins

with the selection of some issues of biological significance and the creation of a model repre-

senting the phenomenon. Models can be created either automatically or manually. The model

represents a computable set of assumptions and hypotheses that need to be tested or supported

experimentally. Computational ‘dry’ experiments, such as simulation, on models reveal com-

putational adequacy of the assumptions and hypotheses embedded in each model. Inadequate

models would expose inconsistencies with established experimental facts, and thus need to be

rejected or modified. Models that pass this test become subjects of a thorough system anal-

ysis where a number of predictions may be made. A set of predictions that can distinguish a

correct model among competing models is selected for ‘wet’ experiments. Successful exper-

iments are those that eliminate inadequate models. Models that survive this cycle are deemed

to be consistent with existing experimental evidence. While this is an idealized process of

systems biology research, the hope is that advancement of research in computational science,

analytical methods, technologies for measurements, and genomics will gradually transform

biological research to fit this cycle for a more systematic and hypothesis-driven science” [8].

that are responsible for the interactions. One observes that there are correlations between

measured variables in the system and one builds a regression model that represents these cor-

relations. Such a more or less statistical model might allow to generate new hypotheses and

to discover underlying molecular mechanisms and patterns of functional behaviour. Such a

model is predictive and can be used in the experiment-modeling cycle, in which the model

is refined by gradually putting more detailed information in each iteration of the cycle. The

second approach is the bottom-up one. It utilizes pre-existing knowledge of the mechanisms
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governing the dynamics of the system. One usually starts with a small subsystem, writing

down rules or equations that describe the interactions between the components. The model

is then gradually extended by incorporating other subsystems that interact with the first one

and with each other, until all subcomponents are included and one eventually arrives at a full

model that represents all aspects of the system simultaneously.

In this thesis, we restrict ourselves to the bottom-up approach and we focus on modeling

in terms of ordinary differential equations (ODEs) framework. In these ODEs the interactions

are mostly represented by standard expressions, e.g., Michaelis-Menten terms for interactions

that saturate, linear terms for decay processes, and quadratic expressions for second order

chemical reactions. However, it should be realized that there are more possibilities to arrive

at predictive models. For example, if the nature of the biological systems changes at specific

events, one might use a discrete modeling type such as a boolean network description, in

which the dynamics is represented by decision rules. In most living systems the states change

continuously in time and then a description in terms of ordinary differential equations (ODEs)

might be more suitable. But, if spatial effects are important, since, e.g., diffusion processes

take place, one has to invoke partial differential equations (PDEs) and if randomness plays a

dominant role a stochastic approach is required [11, 12].

The bottom-up approach clearly has its limitations. This approach can hardly be applied

to very complicated systems, since then one would arrive at a huge system of equations

containing a lot of parameters. In practice the bottleneck does rather lie in the large number

of parameters than in the number of equations. Integrating huge sets of differential equations

is nowadays not a real problem, although it may lead to long computing times. The hard

part is to find realistic values for the parameters. Since most of them cannot be measured

directly, they have to be estimated from data. In most cases either the data do not contain

enough information for this purpose or the estimation problem is technically speaking too

hard. Whatever the obstruction may be, a model without reliable parameters values is often

useless for predictive purposes.

The bottom up procedure usually starts with network topology reconstruction. In this

stage one tries to develop a network that represents the system and can be used to calculate

its dynamical behavior. The nodes in the network may represent concentrations of gene ex-

pressions, metabolites, proteins, or other biological entities. On the ecological level the nodes

often stand for concentrations of predators and preys. The dynamics of the concentrations in

the nodes are regulated through interactions with other nodes. Hierarchically, there are three

levels of network reconstructions [13]. The first one is the strictly topological level. At this

level, one is only interested in which nodes have some interaction with each other without

bothering about the type of interaction. For example, the directionality of an interaction (who

is influencing who?) is not yet taken into account. The second level is finding the topology

including a description of the causality of the connections. The goal of this reconstruction is

to develop a directionality network to indicate the causal relationships. The third level con-

cerns specifying the interaction quantitatively via explicit expressions that can be included in

the equations that constitute the network model.

In this thesis we are concerned with the third level, i.e., we assume that we have at hand

or can develop a set equations to describe the dynamics of the node concentrations.
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Figure 1.2: Three levels of network reconstructions. (A) Topology. Here one only concerns

with the mapping interactions among the components in the system. No directionality is

involved here. (B) Qualitative network topology. Here directionality is involved to indicate

the causality, (C) Quantitative network topology. Here one tries to quantify, e.g., how the

concentration of X affects the dynamics of Y.

1.3 Model complexity

The ultimate goal of systems biology is to gain understanding of the behaviour of biological

systems at the system level and to develop models that have predictive power. Unfortunately,

complexity is inherent to living systems and that may hinder us in achieving this goal. The

cell cycle process that we will investigate in detail in Chapter 5, is a clear example how

complex the interactions among the cell components and the environment may be. In most

fleshly fruits like tomatoes, the cell cycle undergoes after some period a transition from the

classical cell cycle, in which the standard cell division takes place, to a partial cell cycle, in

which the cell keeps replicating its DNA but skips division [14]. Obviously, there are many

components and factors needed to cause such an intricate transition and we will show how

modeling can help us to elucidate this complex process.

One of the features of most biological systems that is very crucial for their functioning in a

non-constant environment is robustness [15]. Robustness is defined as the ability of a system

to preserve its functioning against internal and external perturbations. Phenomenologically,

three types of robustness are observed in robust systems: (a) adaptation, i.e., the capability

to survive under varying environmental conditions, (b) parameter insensitivity, i.e., the in-

sensitivity of the systems to (limited) variations in the kinetic parameters, and (c) graceful

degradation, which enables the systems to keep operating even if some of its components fail

[8]. Since robustness is an essential feature of any biological system, a mathematical model

describing a living system should also reflect this property. It is even proposed in [16] to use

robustness as a means to check the plausibility of mathematical models. It is by no means

simple to understand the robustness of complex models. For example, if there are many pa-

rameters in the model, it is very hard to find which parameter combinations are responsible

for the robustness of the system.

A complication that is always faced when handling complex models is parameter identifi-

cation. Parameters may either be estimated from observed data or derived from the literature.

In the latter case, it is very important to assess the reliability of the parameter values with
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respect to the system under consideration. If no parameter estimates are available in the liter-

ature one has to rely on fitting the model to the available data. In this procedure the aim is to

find the parameter set that minimizes an object function that measures in some way the size

of the residuals , i.e., the discrepancies between data and model output. This typically leads

to a nonlinear optimization problem. In general, optimization algorithms can be categorized

into local and global methods. Examples of local methods are Newton and steepest-descent

methods, and examples of global methods are genetic algorithms and simulated annealing

methods. Local optimization methods usually converge very fast, but using such a method

one runs the risk to converge to a local minimum. In practice, this nearly always happens,

since complex systems turn out to give rise to many local minima in the object function. On

the other hand, for global optimization methods it is guaranteed that they converge to the

global minimum, but computationally they are very expensive. The optimal strategy is using

a hybrid approach that combines local and global methods. Such an optimization procedure

starts with a global approach until some criteria are satisfied and then switches to a local

method. At the moment, parameter estimation is one of the active fields of research in sys-

tems biology, and thus a lot of hybrid strategies have been proposed in the literature. In the

present thesis we make use of procedures proposed in [17], implemented in MATLAB.

If one has solved the parameters estimation problem, the next step is to investigate the un-

certainty in the estimated parameters. This is very important because uncertainty in parameter

values usually propagates into uncertainty in model predictions. Thus, if the parameters of

a model are not well determined, the model predictions are also not reliable [18]. In a de-

terministic approach parameter uncertainty analysis yields a confidence interval around the

estimated parameter value. In a Bayesian analysis one even obtains probability distributions

for the parameters. To decrease parameter uncertainty, one could add a new dataset obtained

from different experiments to the parameter estimation procedure. To assure that the new

data really lead to an improvement, the new experiment should be carefully designed. In this

aspect, an optimal experimental design approach can help us to determine good experiments

to be carried out [19].

In the ideal situation, parameter estimation and new experiments, based on optimal ex-

perimental design, can be carried out iteratively until all parameters are identified with high

accuracy. However, in practice often only a limited number of experiments can be done and

only a restricted number of biological components can be observed in experiments. Further-

more, obtained data are always noisy. Thus, identifying all parameters is often very difficult.

This problem is especially urgent when the number of parameters is large. The reason is that,

in developing a complex model, one could easily introduce interactions, and thus parameters,

that in fact are redundant, since they are not necessary to secure the functioning of the sys-

tem. Parameters related to redundant interactions can never be estimated. Because of these

obstacles, parameter identification remains one of the big issues in systems biology. In this

thesis we investigate in Chapters 3 and 4 how redundancy can be recognized and remedied.

A last complication that may arise when dealing with complex models is the compu-

tational time issue. Biological systems are driven by many processes that occur at largely

different time scales. Gene expression, for example, occurs in the order of minutes to hours,

whereas signal transduction occurs in the order of seconds [20]. When multiple time scales

are present in a model, the computing time that is required to solve the differential equations
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may be unacceptably long. However, in the present thesis project we were not faced with this

problem.

1.4 Objective

As outlined above, the complexity of mathematical models for biological systems may give

rise to difficulties in understanding its dynamical behaviour, to difficulties in parameter identi-

fication, and to very long computing time when integrating the model numerically. This calls

for mathematical methods that may efficaciously handle these complexity issues. Therefore,

the objective of this thesis is to develop methodologies to tackle complexity problems. Since

this field is quite wide, we have to restrict ourselves and we therefore focus on three issues:

a) Robustness analysis. Here we aim at developing a method to estimate the robustness of

biological functions with respect to variations in the parameters. Since this problem is

relatively easy for small systems, we will develop a method that is especially suitable

to deal with models that have a large number of parameters.

b) Complexity reduction. One way to overcome problems that arise from the complexity

of a model is by simplifying it, also referred to as reduction. A suitable reduction

method may lead to a reduced model that is still reliable for a given purpose, but much

easier to manage.

c) Modeling of the cell cycle in tomato fruit pericarp. From such model, we want to gain

understanding of the mechanisms underlying the transition from the classical cell cycle

to endoreduplication, i.e., a partial cell cycle, and thus obtain better understanding of

tomato fruit formation in general.

1.5 Outline of this thesis

The remainder of this thesis is organized as follows.

In Chapter 2, a novel method to assess the robustness region of biological models is pre-

sented. We focus on models that show oscillatory behaviour. Oscillations are ubiquitous in

biological systems. It is found, for example, in the pulse of the heart, the circadian rhythm,

and in the cell cycle. The models that describe such oscillatory phenomena are usually gov-

erned by many parameters. The presented method is especially designed to be efficient to

handle such high dimensional situations.

In Chapter 3, a novel model reduction method is presented. The essence of this method

is that components and/or reactions that do not contribute to the dynamics of the system are

removed from the model. This yields a reduced model with less parameters that can still

represent observed data.

A reduced model obtained with the method described in Chapter 3 will be a satisfac-

tory representation of the system for the conditions under which the data used are obtained.

However, if one requires more and wants the reduced system to represent the original model

for any possible experimental condition, the reduction method in Chapter 3 is not suitable.
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Therefore, in Chapter 4 the method of Chapter 3 is extended by combining this reduction

method with a model discrimination method. The extended procedure leads to reduced mod-

els that can in the experimental practice not be discriminated from their original full models

and thus form real substitutes. When applied to a biochemical model, our extended reduction

procedure leads to the insight which parts of the original model are redundant and which parts

belong to the core of the model.

In Chapter 5 we present research that is of a slightly different character compared to

the methodological approaches in the preceding chapters. Here, we develop a mathematical

model to describe the cell cycle in tomato fruit pericarp. Special attention is paid to the

transition to a partial cycle. In the literature a number of putative mechanisms that might lead

to this transition have been proposed. We show how modeling can help us to unravel and

understand the complexity of this phenomenon. This is carried out by carefully including the

putative mechanisms that might lead to the transition into the model and checking whether

the resulting model can indeed describe the observed transition cell.

Eventually, in chapter 6, we reflect on how the methods that we developed can help us in

tackling the complexity and understanding of biological systems. The discussion is concluded

with some recommendations for future work.

Bibliography

[1] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, et al. (2008) Molecular Biology of

The Cell. Garland Science, 5th edition.

[2] Kerr J, Wyllie A, Currie A (1972) Apoptosis: a basic biological phenomenon with wide-

ranging implications in tissue kinetics. Br J Cancer 26: 239-257.

[3] Regenmortel MHVV (2004) Reductionism and complexity in molecular biology.

EMBO Rep 5: 1016–1020.

[4] Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and

death. Oncogene 18: 6145-6157.

[5] Kitano H (2002) Computational systems biology. Nature 420: 206–210.

[6] Keurentjes JJ, Angenent GC, Dicke M, Santos VAMD, Molenaar J, et al. (2011) Re-

defining plant systems biology: from cell to ecosystem. Trends Plant Sci 16: 183–190.

[7] Kitano H (2001) Foundations of Systems Biology. The MIT Press.

[8] Kitano H (2002) Systems biology: A brief overview. Science 295: 1662-1664.

[9] Bruggeman FJ, Hornberg JJ, Boogerd FC, Westerhoff HV (2007) Introduction to sys-

tems biology. In: Plant Systems Biology, Birkhäuser Verlag/Switzerland. pp. 1-19.
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Chapter 2

Estimation of the robustness region
of oscillating biological models 1

Abstract

Robustness is an essential feature of biological systems, and any mathematical model that

describes such a system should reflect this feature. Especially, persistence of oscillatory be-

havior is an important issue. A benchmark model for this phenomenon is the Laub-Loomis

model, a nonlinear model for cAMP oscillations in Dictyostelium discoideum. This model

captures the most important features of biomolecular networks oscillating at constant fre-

quencies. Nevertheless, the robustness of its oscillatory behavior is not yet fully understood.

Given a system that exhibits oscillating behavior for some set of parameters, the central ques-

tion of robustness is how far the parameters may be changed, such that the qualitative be-

havior does not change. The determination of such a “robustness region” in parameter space

is an intricate task. If the number of parameters is high, it may be also time consuming. In

the literature, several methods are proposed that partially tackle this problem. For example,

some methods only detect particular bifurcations, or only find a relatively small box-shaped

estimate for an irregularly shaped robustness region.

Here, we present an approach that is much more general, and is especially designed to

be efficient for systems with a large number of parameters. As an illustration, we apply

the method first to a well understood low-dimensional system, the Rosenzweig-MacArthur

model. This is a predator-prey model featuring satiation of the predator. It has only two

parameters and its bifurcation diagram is available in the literature. We find a good agreement

with the existing knowledge about this model. When we apply the new method to the high

dimensional Laub-Loomis model, we obtain a much larger robustness region than reported

earlier in the literature. This clearly demonstrates the power of our method. From this results,

we conclude that the biological system underlying is much more robust than was realized until

now.

1Based on: M. Apri, J. Molenaar, M. de Gee, and G. van Voorn – “Efficient Estimation of the Robustness Region

of Biological Models with Oscillatory Behavior,” PLoS ONE 5(4): e9865

11
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2.1 Introduction

It is remarkable but well-known that many biological systems are robust under vastly different

conditions [1, 2]. Although these systems might experience strong internal or external per-

turbations, e.g., through environmental changes or noise, they still operate reliably. This is,

for example, observed in chemotactic behavior and patterning development [2]. Robustness

is an essential feature of biological systems [3, 4], and any mathematical model describing

their behavior should also have this property [5]. This implies the need for an efficient tool

to analyze the robustness of these models.

Here we focus on the parametric robustness of biological models that show oscillatory

behavior. Oscillations are ubiquitous in biology. It is found, for example, in the pulse of the

heart, the circadian rythm, and the signal transduction that involves adenosine 3’,5’-cyclic

monophospate (cAMP) in the chemotactic of Dictyostelium discoideum [6]. The robustness

of a model is determined by answering the question how far the parameters of the model could

be perturbed so that the qualitative behavior of the system does not change. An example of

such a change is, e.g., the transition from oscillatory behavior to a steady state equilibrium.

Such a drastic transition is called a Hopf bifurcation. There are many types of bifurcations

possible in dynamical biological models.

Given a so-called nominal point in parameter space for which a system has a stable peri-

odic solution, in general a region around this point exists within which the system oscillates.

We call such a region a “robustness region” if no bifurcation of any kind occurs in its interior

and if in each point of its boundary the system undergoes some bifurcation. The type of the

latter bifurcations may be of any kind. An important consequence of this definition is that the

period of the oscillations varies smoothly over the robustness region. If somewhere a period

doubling bifurcation (also referred to as flip bifurcation) occurs, such a dramatic change in

qualitative behavior indicates that the system is no longer robust. According to our definition

we meet in such a point the boundary of the robustness region. (Note that in this paper, the

words flip bifurcation and period doubling bifurcation are used interchangeably.)

In the literature, some methods have been proposed to analyze robustness of models with

oscillatory behavior. Robustness with respect to perturbations of a single or at most two

parameters simultaneously can be investigated using a bifurcation analysis package such as

AUTO [7]. With this package, the boundary of the robustness region can be obtained. In

most cases, however, more parameters are involved and AUTO is no longer applicable. In

[8], the Structured Singular Value method (SSV) from control theory [9] was used to quantify

the robustness of the Laub-Loomis model [6]. This model has an oscillatory solution for

a specific set of parameter values, the so-called nominal values. It was investigated how

much the nominal values might be changed before a bifurcation would occur. The authors

initially claimed that the allowed maximum parameter variation is 8.3%. The work was then

improved by applying a hybrid optimization method which yielded a much smaller variation

of 0.6% [10]. Ghaemi et al. utilized a Routh-Hurwitz stability criterion that resulted in 0.51%
variation for the Laub-Loomis model [11]. The percentage values of parameter variations that

are presented in these papers suggest that all parameters have the same sensitivity. However,

the model might be more sensitive to some parameters than to others [12]. Furthermore, the

authors studied only the Hopf bifurcation that occurs when the stable periodic behavior turns
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into an equilibrium.

Here we present an alternative method to analyze the parametric robustness of biological

models with stable oscillatory behavior (also referred to as “periodic solution” or “limit cy-

cle”). The method aims at finding an approximation for the whole robustness region, taking

into account that the sensitivity of the system might be highly parameter dependent. The

consequence is that in our approach it is not useful to report the resulting estimate in terms of

a percentage of the nominal value. On the contrary, the robustness region often turns out to

be far from symmetric around the nominal point. Furthermore, the present approach allows

for the detection of any kind of bifurcations, and is not limited to Hopf bifurcations. Another

aspect refers to dimensionality. In high-dimensional systems, an important feature of any nu-

merical method is efficiency. Many methods suffer from the so-called “dimensional curse”,

i.e. the computing time scales exponentially with dimension. For example, if we would use a

Monte-Carlo approach for estimating the shape of robustness regions, we would certainly be

confronted with this limiting factor. However, the method presented here has the computa-

tional advantage that it scales linearly with the number of parameters. That is the reason that

it is highly efficient for systems with a high-dimensional parameter space.

The present method is based on Floquet theory and continuation of the periodic solution.

Starting from the nominal parameter set, we construct an estimate for the robustness region

by scanning the parameter space in orthogonal directions. If necessary, the obtained estimate

is refined by shifting the nominal point to a carefully chosen new position. We do not only

focus on Hopf bifurcations, but take into account all types of bifurcation that might occur

to periodic solutions, including period doubling and Neimark-Sacker bifurcations. So, also

bifurcations that lead to chaotic behavior may be detected. In addition, the presented method

yields extra information such as the period and the amplitude of the solution for free.

To demonstrate the ideas and power of the proposed method, we apply it to ecological and

biological network models that admit stable periodic solutions: the Rosenzweig-MacArthur

(RMA) model and the Laub-Loomis (LL) model. The RMA model is chosen for illustrational

purposes. It is well known for its rich bifurcation pattern and serves as a test case here. It is

a low dimensional system for which our method is not especially designed, but it serves as a

useful check of performance. It consists of three state variables with six parameters where two

of them are taken free. The LL model is a high dimensional system that consists of seven state

variables with fourteen parameters. Its robustness has been already investigated in [8, 10, 11].

As an extra check on low dimensional systems we analyze the LL model with twelve fixed

and only two parameters perturbed. Our results for two dimensional systems fully agree with

those obtained with existing approaches. The results for the high dimensional LL model

clearly demonstrate that the present method is a real extension of the existing approaches.

2.2 Methods

The stability of a periodic solution can be verified using Floquet theory (see [13] and [14]).

In this theory, the Floquet multipliers, which are the eigenvalues of the so-called monodromy-

matrix, are used to indicate stability. One of the Floquet multipliers is always real and equal

to 1. A necessary and sufficient condition for a periodic solution to be stable is that the
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modulus of the other Floquet multipliers is less than 1, i.e., they lie inside the unit circle in

the complex plane. If the parameters are perturbed and one of the multipliers crosses the unit

circle, the solution looses its stability and a bifurcation happens. This suggests that in order to

analyze the robustness of oscillatory behavior of a model, we only need to observe its Floquet

multipliers as functions of the parameters.

Here we describe the details to find in an efficient way an estimate for the robustness

region. In short, starting in a so-called nominal point in parameter space for which a stable

periodic solution exists, the parameter space is scanned along orthogonal directions to detect

where along these lines bifurcations occur. This yields an initial estimate of the robustness

region, that is gradually improved by shifting the nominal point and varying the directions.

2.2.1 Floquet Theory and Periodic Solutions

Consider an ordinary differential equation system

dx

dt
= F (x,k), x ∈ R

n,k ∈ R
m, (2.1)

where x denotes the vector of state variables and k the vector of parameters. Suppose that

this system has a stable periodic solution at k = k0 with periodic solution x = x∗ and period

T .

In order to investigate the stability of the solution, we linearize around the periodic orbit

x∗ and obtain
dδ

dt
= J(x∗,k)δ(t), (2.2)

where J is the Jacobian matrix of (2.1) with respect to its state variables x. Since x∗ is

T−periodic, the Jacobian matrix J is also T−periodic. According to Floquet theory (see

[13] and [14]), the fundamental solution of (2.2), which is a matrix that is composed of n

independent solutions of (2.2), can be written as

Φ(t) = P (t)eBt, (2.3)

with P (t) T−periodic and B a constant n× n matrix. Thus,

Φ(t+ T ) = Φ(t)eBT . (2.4)

Here, C = eBT is called the monodromy matrix of the system and the eigenvalues of

C are called the Floquet multipliers of the system. One of them is always real and equal to

1. A necessary and sufficient condition for the periodic solution of (2.2) to be stable is that

the other n − 1 multipliers have modulus less than 1, i.e. they lie inside the unit circle. The

calculation of Φ is explained underneath.

Three cases may be discerned [15, 16, 17], as illustrated in Figure 2.1:

1. A multiplier leaves the unit circle at (1, 0). In this case, the model experiences a fold

bifurcation.
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2. A multiplier leaves the unit circle at (−1, 0). In this case, a flip bifurcation takes place

and period doubling occurs.

3. Two conjugate multipliers cross the unit circle. In this case, a Neimark-Sacker bifur-

cation occurs.

Figure 2.1: Limit cycle bifurcations according to the position of Floquet multipliers in the

complex plane [15, 16, 17].

2.2.2 Calculation of Periodic Solutions

As has been indicated above, to calculate Floquet multipliers, first the periodic solution of

(2.1) should be obtained. There are many methods discussed in the literature to approximate

a periodic solution. To mention some of them: finite difference method, shooting method,

and Poincare map method [17]. In this paper, we use the finite difference method because of

its simplicity, and a short outline of the method is given below.

Consider again the ODE system (2.1). With the scaling

τ =
t

T
(2.5)

with T the period, the system reads as

dx

dτ
= TF (x,k), x ∈ R

n,k ∈ R
m. (2.6)

Now, (2.6) has to be solved in the time interval τ ∈ (0, 1). This time interval is discretized

into N + 1 points with a uniform time step h:

τ1 = 0, τ2 = h, . . . , τN+1 = Nh = 1.

The solution of (2.6) at time steps τ = τi and τ = τi+1 are related by

x(τi+1) = x(τi) + T

∫ τi+1

τi

F (x(τ̄),k) dτ̄ . (2.7)
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Using the trapezoidal rule to represent the integral, we obtain

xi+1 − xi =
1

2
hT
[

F(xi+1,k) + F(xi,k)
]

, (2.8)

where xi = x(τi). Since the system is periodic, x(τN+1) = x(τ1), or

xN+1 = x1. (2.9)

Therefore, we have nN algebraic equations from (2.8) with nN + 1 unknowns:

x1,x2, . . . ,xN , T.

Finally, since the system that we consider is autonomous, the system is invariant to a

linear shift in the time origin. To remove the arbitrariness of the phase, we specify the value

of one component at τ = 0, for example

x1
1(0) = η, (2.10)

where the value η should be within the periodic solution of x1(t). Thus, at time τ = τ1 we

have x1 = (η, x̃1) with x̃1 ∈ R
n−1. By imposing this condition, we have nN unknowns

x̃1,x2, . . . ,xN , T (2.11)

and nN algebraic equations. Its solution can be found using, e.g., Newton’s scheme, provided

(2.10) is in the orbit of x1(t). The details of this method can be found in [17].

So, we obtain the periodic solution in N discretized points and the value of the period T

becomes known. The full periodic solution x∗(t) can then be obtained by integrating

dx

dt
= F(x,k)

x(0) =

(

η

x̃1

) (2.12)

numerically from time t = 0 to t = T .

Computing Floquet Multipliers

Let us consider the principal fundamental problem, i.e. problem (2.2) with now δ(t) taken to

be a matrix

δ̇ = J(x∗,k)δ(t) (2.13)

with initial values

δ(0) = In (2.14)

where In is the n × n identity matrix. The Floquet multipliers of the system can then be

obtained by integrating the above equation for one period, that is from t = 0 to t = T . Then,

the Floquet multipliers, denoted by µi, i = 1, 2, . . . , n, are the eigenvalues of the matrix

δ(T ).
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Note that if we employ the same numerical technique to integrate (2.12) and (2.13), both

systems can be solved simultaneously. We denote the i−th column of the matrix δ by δi and

solve


















ẋ = F(x,k, T )

δ̇1 = J(x,k, T )δ1(t)
...

δ̇n = J(x,k, T )δn(t)

(2.15)

with initial conditions


















x(0) =
(

η, x̃1
)T

δ1(0) = (1, 0, . . . , 0)T

...

δn(0) = (0, 0, . . . , 1)T

(2.16)

Since one of the multipliers should be real and equal to 1, the approximation of the peri-

odic solution and the Floquet multipliers are carried out iteratively. If no multipliers are close

to 1, we increase the number N and solve again (2.8) and (2.15) until one of the multipliers

is close to 1 within a prespecified accuracy.

2.2.3 Continuation Method

In this section, we describe how a robustness region estimate can be constructed. The idea

is to scan the parameter space along orthogonal directions to detect where along these lines

bifurcations occur. We start at a nominal point k0 in parameter space, where the model has a

stable limit cycle, so that the Floquet multipliers lie within the unit circle (except for one). The

approach outlined here is also applicable if k0 lies on the boundary of the robustness region.

The first direction v1, the construction of which is described below, will then point into the

robustness region. It suffices to follow that direction until the boundary at the other side is

met in a point k1, say, and to choose as new nominal point the midpoint of k0 and k1. The

next step is to perturb the nominal point k0 along n orthogonal directions v1,v2, . . . ,vm.

To construct v1, we introduce the function

g(k) = g(k1, k2, . . . , km) = max
i=2,...,n

‖µi‖ < 1 (2.17)

which is nothing else but the largest modulus multiplier in k that is less than 1. The gradient

∇g =

(

∂g

∂k1
, . . . ,

∂g

∂km

)

(2.18)

is calculated numerically by

∂g

∂kj
≈

g(k1, . . . , kj + ε, . . . , km)− g(k1, . . . , km)

ε
, j = 1, . . . ,m, (2.19)

taking ε smaller and smaller until convergence is reached.
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For the first direction v1, we now take v1 = ∇g(k0). For the other perturbation directions

we choose vectors that are orthogonal to v1 and to each other. They are calculated by the

Gram-Schmidt method. The set of perturbation directions is thus

{v1 = ∇g(k0),v2, . . . ,vm} (2.20)

Note that the choice of v1 is unique, but the choice of v2, . . . ,vm is not. However, the

resulting approximate for the robustness region does not much depend on this choice, unless

this region is highly irregularly shaped. To check the outcome it is recommendable to apply

the method with a number of different nominal points and compare the outcomes. This will

give a very good impression of the situation in parameter space.

The idea is now to perturb the nominal parameters k0 along these directions, so for direc-

tion vi, we walk along the line

k0 + γvj , (2.21)

with γ both positive and negative and check for which γ we approach a bifurcation. This

yields the principal axes of the estimated robustness region. An improvement of this concept

is obtained by repeating this procedure but with k0 replaced by, e.g., the center of the longest

axis. This leads to a refined approximation of the full robustness region.

2.2.4 Algorithm

The algorithm to construct a robustness region is given in Figure 2.2. In this diagram we

point out in a concise way that the algorithm contains the following steps:

1) Calculate the perturbation directions vj at the nominal parameter k0. For v1, take

v1 = ∇g(k0) using (2.19) and construct the other perturbation directions using the

Gram-Schmidt method.

2) Calculate the periodic solution and its multipliers along the lines (2.21) starting from

k0. If one or more multipliers pass the unit circle, a bifurcation has been detected.

3) If refinement is required, move the nominal point to the center of the longest axis and

repeat the procedure. Also, extra directions could be chosen.

2.3 Results

In the next sections, we apply our method to two biological models: the low-dimensional

RMA model and the high-dimensional LL model.

2.3.1 Application to the Rosenzweig-MacArthur Model

The Rosenzweig-MacArthur (RMA) model is an ecological model that describes the time

evolution of a predator-prey system [18]. In dimensionless form, this 3-dimensional model
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Figure 2.2: Flow chart of the method to approximate the robustness region around a nom-

inal point k0. The approximated region is obtained by scanning the parameter space along

orthogonal directions starting at k0.

reads as

ẋ1 = x1(1− x1)− f1(x1)x2

ẋ2 = f1(x1)x2 − k1x2 − f2(x2)x3 (2.22)

ẋ3 = f2(x2)x3 − k2x3,
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where

f1(x1) =
a1x1

1 + b1x1

f2(x2) =
a2x2

1 + b2x2

.
(2.23)

Here, x1, x2, x3 denote the prey, predator, and top predator populations, respectively, a1, a2,

b1, b2 are the parameters in the Michaelis-Menten functions f1 and f2, and k1, k2 are death

rate parameters.

The dynamical behavior of this model for the fixed coefficient values

a1 = 5, a2 = 0.1, b1 = 3, b2 = 2, (2.24)

has been extensively investigated in [19, 20, 21] as a function of k1 and k2. The resulting

bifurcation diagram is depicted in Figure 2.3A. From this figure, we see that the limit cycle

behavior of the model may experience a Hopf bifurcation, a transcritical bifurcation, or may

transform into a flip bifurcation. Since there are infinitely many flip bifurcations in this

bifurcation diagram, it is not possible to indicate all their positions in Figure 2.3A. Therefore,

as a warning, we shade some areas in Figure 2.3C to indicate that flip bifurcations may occur

somewhere in these areas. Due to infinitely many flip bifurcations, we restrict ourselves to

the positions of the first period doubling bifurcations, which lie on the red curved line.

We apply our method to show how an estimate is obtained for the region in Figure 2.3A

where a stable limit cycle exists. As nominal starting point we take k0 = (k1 = 0.6, k2 =
0.008). In k0, the solution converges to a periodic solution with period T = 120.04 as shown

in Figure 2.4A. The corresponding Floquet multipliers are

µ = {µ1, µ2, µ3} = {0.9991,−4.5654e-016,−0.2319}.

We notice that the largest multiplier µ1 is indeed equal to 1 within the numerical accuracy.

µ2 and µ3 lie inside the unit circle, so the limit cycle in k0 is stable. Following the method

described above and summarized in equations (2.17) - (2.21), we construct two orthogonal

directions, v1 and v2, and perturb the nominal parameter set k0 in these directions. The

direction v1 is chosen such that the Floquet multipliers will change mostly when moving

along v1 in the (k1, k2) plane and v2 is orthogonal to v1.

Continuation is applied along perturbation direction v1 until points B, denoted by a green

star, and F, denoted by a red star, in Figure 2.3B are reached. Continuation is stopped at point

B because the multipliers at that point are

µ = {1.0000, 0.9991,−1.1102e-016}.

So, µ2 = 0.9991 ≈ 1 and this indicates that the method has successfully found a fold

bifurcation. Using only Floquet multipliers, one cannot discriminate between a tangent, for

which the cycle collides with a saddle limit cycle, and a Hopf bifurcation, for which the

limit cycle disappears into an equilibrium. However, since in both cases the boundary of the

robustness region is reached, this is not a problem at all. Just for curiosity we used AUTO
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Figure 2.3: Bifurcation diagram and successive approximations of the robustness region of

the RMA model. (A) Bifurcation diagram as a function of the death rate parameters k1 and

k2 [20]. (B) Initial approximation. (C) Second approximation. (D) Estimated level lines of

the period of the periodic solution. Note that the scale for k1 and k2 is not the same, which

is the reason the orthogonality of the lines AD and BF is not directly clear from the picture.

The shaded areas in C and D indicate regions where an infinitely number of period doubling

bifurcations are located.

to confirm that it is the latter option. Continuation is stopped at point F. It does not make

sense to continue beyond this point, since the value of parameter k2 is so small there, that it

is already hardly acceptable from a biological point of view. This also manifests itself in a

very long period and a highly irregular shape of the limit cycle, that gives rise to a very long

computational time. An example is given in Figure 2.4B, where we show the time behavior

of the components at point F.

When the continuation procedure is applied along direction v2, the method hits two bi-
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Figure 2.4: Behavior of the limit cycle solution of the RMA model. (A) In nominal point k0.

(B) in point F.

furcation points, A and D. At point A, the mutlipliers are

µ = {1.0006,−1.2583e-015,−1.0003}.

We notice that µ3 = −1.0003 ≈ −1, and we conclude that the method has successfully found

a flip bifurcation, which is denoted by a blue-star. Since a flip indicates a possible route to

chaos and it means the end of the limit cycle, as meant in the definition of robustness, this is

also a boundary of robustness. On the other hand, we detect point D as a Hopf bifurcation.

Thus, we obtain region ABDF as our first, crude approximation of the robustness region of

the model. Note that the orthogonality of v1 and v2 that leads to the axes AD and BF is not

directly clear from Figure 2.3B, because the axes have different scales.

Next, an improvement on this initial approximation is obtained by shifting the nominal

point k0 to the midpoint of the longest axis, in this case the midpoint of AD which is denoted

by k∗

0 in Figure 2.3C. Applying the continuation procedure to the shifted nominal point k∗

0

along the direction v1, we obtain a new axis CE. Here, point C is a Hopf bifurcation point.

Just as for point F, we stop continuation in E since the value of k2 becomes too small. To-

gether with the previous findings, we now obtain the bigger estimating region ABCDEF, as

shown in Figure 2.3C.

During the calculations, we simultaneously obtain a lot of information on the period and

the shape of the limit cycle. In fact, this information is available along all the lines through k0

and k∗

0. In Figure 2.3D, this info is used to draw level lines for the period. It provides a nice

indication how the period behaves as a function of the parameters. Since the RMA model

only serves as a low-dimensional illustration of the ideas behind the proposal estimation

algorithm, we will not refine the approximation further, but rather turn to a high-dimensional

example.
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2.3.2 Application to the Laub-Loomis Model

The Laub-Loomis (LL) model [6] describes the dynamical behavior of the molecular network

underlying cAMP (adenosine 3’,5’-cyclic monophospate) oscillation observed in population

of Dyctiostelium discoideum cells. The molecular network is depicted in Figure 2.5.

Figure 2.5: The network underlying the Laub-Loomis model

Here, after the binding of extracellular cAMP to the surface receptor CAR1, adenylate

cyclase (ACA) activates internal cAMP. When internal cAMP is accumulated, it activates

protein kinase PKA. In addition, ligand-bound CAR1 also activates the MAP kinase ERK2,

which is then inactivated by PKA. Therefore, ERK2 no longer inhibits the cAMP phospho-

diesterase REG A. A protein phosphatase activates REG A such that REG A can hydrolyze

internal cAMP, hence the concentration of internal cAMP is reduced. When the internal

cAMP is hydrolyzed by REG A, PKA activity is inhibited by its regulatory subunit, so that

both ACA and ERK2 activities go up.

Based on the network above, the spontaneous oscillation in cAMP is a solution of the

following model

ẋ =





















k1x7 − k2x1x2

k3x5 − k4x2

k5x7 − k6x2x3

k7 − k8x3x4

k9x1 − k10x4x5

k11x1 − k12x6

k13x6 − k14x7





















. (2.25)
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Here, the state variable x = (x1, x2, . . . , x7) represents the concentrations of seven proteins:

x1 = [ACA], x2 = [PKA], x3 = [ERK2] , x4 = [REG A], x5 = [Internal cAMP], x6 = [External

cAMP], and x7 = [CAR1]. The model has 14 parameters, incorporated in the parameter

vector k = (k1, k2, . . . , k14).
At the nominal parameter set in Table 2.1, which is denoted by k0, this system has a stable

periodic solution. Thus, if we choose the initial concentrations within the basin of attraction,

the solution will converge to this periodic solution, as shown in Figure 2.6.

Table 2.1: Parameter values for the Laub-Loomis model. The nominal values k0 are obtained

from [8, 10, 11]. The perturbed parameter values are obtained from kp = k0 + 12.6v12

Parameter Units
Nominal value Perturbed value

k0 k0 + γv12

k1 min−1 2.0 2.6982

k2 µM−1.min−1 0.9 0.9330

k3 min−1 2.5 2.4641

k4 min−1 1.5 1.3871

k5 min−1 0.6 0.7495

k6 µM−1.min−1 0.8 0.6507

k7 µM.min−1 1.0 0.9006

k8 µM−1.min−1 1.3 1.3690

k9 µM−1.min−1 0.3 0.0009

k10 µM−1.min−1 0.8 0.6758

k11 min−1 0.7 1.1100

k12 min−1 4.9 17.4668

k13 min−1 23 23.0125

k14 min−1 4.5 4.4666

We found that the periodic solution at the nominal parameters k0 has period T = 7.3782
and the multipliers are given by

µ ={1.0006, 0.9391, 6.6590e-006, 4.0012e-018 ± 9.9791e-018i,

− 1.5203e-005 ± 5.3021e-006i}.

We notice that the largest multiplier, µ1 = 1.0006, is equal to 1 within the numerical accuracy.

Since the second largest multiplier µ2 is also quite close to 1, we expect that the nominal point

k0 is close to a bifurcation point.

Restriction to a 2-dimensional cross-section of parameter space

For illustrational purposes, we first fix 12 parameters setting them at the values in Table 2.1

and only vary k2 and k14. In this way we deal with a two dimensional cross-section in the

high-dimensional parameter space. The advantage is that the results can be compared to
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Figure 2.6: Periodic solution of the Laub-Loomis model (2.25) at the nominal parameter

values in Table 2.1.

results obtained with AUTO and in [11]. AUTO yields the robustness region given in Figure

2.7A. This region perfectly agrees with the region reported in [11]. However, it should be

noted that the method in [11] yields a very good estimate only in the two-dimensional case.

For higher dimensions, their approach leads to a much more restricted estimated region. If we

would apply the more-than-two-dimensions approach in [11] or in [8, 10] to the present two-

dimensional case, we would only find the small square shaped estimate indicated in Figure

2.8.

Applying the algorithm in (2.17)-(2.21), we obtain two directions: v1, which is the most

sensitive direction; and v2, which is orthogonal to v1. Along these directions, we perform

the continuation procedure. This leads to our first approximation of the robustness region

ABDF as shown in Figure 2.7B.

As denoted in the figure, our method successfully detected the four fold bifurcation points,

A, B, D, and F which are indicated with black stars. According to the results obtained by

AUTO, these points are Hopf bifurcations points where the second largest modulus of multi-

pliers is very close to 1. For instance, at point A

µ ={0.9996, 0.9990, 4.1520e-005,−1.7673e-018,−1.6024e-016,

− 4.7223e-006 ± 1.9026e-006i}.

We notice that the initial approximation is much smaller than the real robustness region found

by AUTO. We improve our approximation by shifting the nominal parameter k0 to k∗

0, the

midpoint of AD. When the continuation procedure is applied to the new nominal parameter

k∗

0 along direction v2, we find the Hopf bifurcation points C and E. Together with the first

approximation, we now have obtained the larger approximation region ABCDEF, as shown

in Figure 2.7C. As extra information, we get for free the level lines for the period as indicated

in Figure 2.7D. The approximation could be further improved by taking more perturbation

directions, but this is hardly necessary to get a very good impression of the robustness region.
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Figure 2.7: Cross-section of the robustness region of the Laub-Loomis model in the (k2, k14)
plane. (A) Result by AUTO. (B) First approximation based on 4 boundary points. (C) Second

approximation based on 6 boundary points. (D) Level lines of the period of the periodic

solution.

Application in full-dimensional parameter space

Let us now investigate the robustness region of the Laub-Loomis model in the 14-dimensional

parameter space. It will be clear that in this high-dimensional case the results are hard to

present visually. According to algorithm (2.17)-(2.21), we find 14 orthogonal directions

{v1,v2, . . . ,v14} which, for convenience, are normalized to have unit length.

By applying continuation and observing the multipliers during the continuation, we easily

obtain an estimate of the 14-dimensional robustness region. This estimate is shown in Figure

2.9A in a dedicated form. In this figure, the range of perturbations that is allowed to maintain

the stability of the limit cycle is shown by horizontal lines for each perturbation direction.

There are three possibilities that we stop the continuation: one of the perturbed parameters

becomes close to 0 (in the LL model, all parameters should be positive), a bifurcation is

detected, or the limit cycle gets an extremely long period. In the latter case, we need too
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Figure 2.8: Robustness region of the Laub-Loomis model in parameter space. Black-line

from AUTO, the black box indicates the estimate that would be obtained if the methods

published earlier and developed for high-dimensional system [8, 10, 11] would be applied to

the two dimensional case, in which only k2 and k14 are varied.

much computational time to approximate the limit cycle. If one of the parameters becomes

close to 0, we denote in Figure 2.9 the point by (‘|′); if a bifurcation is detected, we do not

put any marker on the point; and if the continuation is stopped because of computing time,

we denote the point by (*). For example, in the v12 direction the nominal parameter k0 can

be perturbed in the range

k = k0 + γv12, γ ∈ [−1.332, 12.6]. (2.26)

The continuation is stopped at γ = −1.332 because then a fold bifurcation is detected, which

follows from the Floquet multipliers

µ ={1.0002, 0.9991,−1.3091e-005± 1.3186e-006i, 2.7715e-006,

2.2113e-016± 5.501e-016i}.

At γ = 12.6, the system still admits a stable limit cycle behavior as shown in Figure 2.10,

but we stop the continuation because one of the perturbed parameters becomes very close to

0, see Table 2.1.

In the v7 direction, the nominal parameter can be perturbed in the range

k = k0 + γv7, γ ∈ [−1.0228, 4.22]. (2.27)

Continuation is stopped at γ = −1.0228 because the period of the limit cycle becomes

extremely long and requires too much computational time. The behavior of the period along

this direction is shown in Figure 2.11. At γ = 4.22, the continuation is stopped because one

of the perturbed parameters becomes very close to 0.

To get still a better impression of the robustness region, we shift the nominal parameter.

From the result in Figure 2.9A, we find that the system can be mostly perturbed in the di-

rection of v12. Therefore, we shift the nominal point k0 to the midpoint of this axis, and we
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Figure 2.9: Representation of the “width” of the robustness region of the LL model. This

region is measured along the 14 orthogonal directions v1,v2, . . . ,v14 used to scan the pa-

rameter space. In A, these directions start in nominal point k0 (see Table 2.1). In B, the

directions start in k∗

0 = k0 +5.634v12. If an end point is marked with “|′′, one of the param-

eters has become close to zero. If an end point marked with “*”, the period of the limit cycle

becomes extremely long. If an end point does not have mark, a fold bifurcation is detected.

The lengths of the horizontal lines indicate how far this direction can be followed in negative

and positive directions so that a stable limit cycle is found. All directions are normalized to

have unit length. A step of, e.g., length 6 in v13 direction in A means that the unit vector in

this direction can be made 6 times longer before a bifurcation is detected.

Figure 2.10: Limit cycle behavior of the Laub-Loomis model for parameter vector k0 +
12.6v12. These parameter values are given in Table 2.1.

denote the new nominal point by k∗

0 = k0 + 5.634v12. When the method is applied to k∗

0,

we obtain the results shown in Figure 2.9B.

Combining the information in Figures 2.9A and 2.9B, we obtain a good impression of the
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Figure 2.11: Behavior of the limit cycle period in the LL model along the v7 direction. Note

that the period dramatically increases in the vicinity of γ = −1.

robustness region of the system. Contrary to the findings in [8, 10, 11], we conclude that the

LL model has a large robustness region with a quite irregular shape.

2.4 Discussion

An important question in the modeling of biological systems is for which parameter values

the model has a stable limit cycle, since this is often the parameter range in which the model

describes reality. In the literature [8, 10, 11], one mostly studies this topic by analyzing the

eigenvalues of the Jacobian matrix of the equilibrium points of the model. For example,

if some of these eigenvalues become purely imaginary, a so-called Hopf bifurcation takes

place and a limit cycle comes into existence. However, analysis of eigenvalues of a Jacobian

matrix is not the most appropriate way to study this problem, since these eigenvalues yield

only local information. In the present paper we have presented a method to construct an

estimate for the so-called robustness region in parameter space. The approach that we follow

has a global, rather than a local character. Within a robustness region the system possesses a

stable limit cycle and on its boundaries the system undergoes a bifurcation. A bifurcation is a

dramatic change in the system dynamics indicating that the system is no longer robust if the

parameters are perturbed further. For the present method, these bifurcations may be of any

type and different parts of the boundary may be connected to different bifurcations.

The present method has especially been designed to scan robustness regions of systems

with a high-dimensional parameter space. Its power stems from the fact that it scales linearly

with the number of parameters. This implies that it is highly efficient from a numerical point

of view. The present approach is based on observing the behavior of the Floquet multipliers

of the periodic solution if the systems parameters are changed. In this way, one easily detects

all bifurcations that may occur to the periodic solution, such as Hopf, fold, flip, and Neimark-

Sacker bifurcations, which lead to disappearance or period doubling of the periodic solution.
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The method has first been tested for low-dimensional systems. It is shown that for a

2-dimensional parameter space, the results are in full agreement with those obtained by the

package AUTO. Thereafter the method has been applied to a high-dimensional system, the

Laub-Loomis model which has 14 parameters. In this case, the method appears to be highly

efficient, indeed. Contrary to the results reported in the literature [8, 10, 11], the method

yields an estimate that is very big and irregularly shaped. The latter means that the Laub-

Loomis model is much more robust with respect to changes in one parameter than in another.

The present approach yields this information and is as such an extension of the methods

available in literature. In the present method, a first direction is chosen such that the Flo-

quet multipliers will change mostly if the continuation is applied along this direction. The

approach finds axes that together span the estimated region.

Since all information about the limit cycle along the used axes becomes available, it re-

quires no extra work to present, e.g., level line plots of the period of the limit cycle. Together

with the general types of bifurcation that are detected, this provides a reliable and insightful

impression of the dynamical behavior of a model in a wide range of values around a nominal

point.
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Chapter 3

Complexity reduction of

biochemical networks1

Abstract

The complexity of biochemical systems, stemming from both the large number of compo-

nents and the intricate interactions between these components, may hinder us in understand-

ing the behavior of these systems. Therefore, effective methods are required to capture their

key components and interactions. Here, we present a novel and efficient reduction method to

simplify mathematical models of biochemical systems. Our method is based on the explo-

ration of the so-called admissible region, that is the set of parameters for which the mathemat-

ical model yields some required output. From the shape of the admissible region, parameters

that are really required in generating the output of the system can be identified and hence

retained in the model, whereas the rest is removed.

To describe the idea, first the admissible region of a very small artificial network with

only three nodes and three parameters is determined. Despite its simplicity, this network

reveals all the basic ingredients of our reduction method. The method is then applied to an

epidermal growth factor receptor (EGFR) network model. It turns out that only about 34%

of the network components are required to yield the correct response to the epidermal growth

factor (EGF) that was measured in the experiments, whereas the rest could be considered as

redundant for this purpose. Furthermore, it is shown that parameter sensitivity on its own is

not a reliable tool for model reduction, because highly sensitive parameters are not always

retained, whereas slightly sensitive parameters are not always removable.

1Based on: M. Apri, M. de Gee, and J. Molenaar – “Complexity reduction preserving dynamical behavior of

biochemical networks,” Journal of Theoretical Biology, vol. 304, pp. 16–26, July 2012.
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3.1 Introduction

Biochemical systems are usually very complex [1], consisting of hundreds to thousands com-

ponents with intricate interactions. A quantitative description of the dynamics of such sys-

tems is canonically formulated in terms of ordinary differential equations (ODEs). However,

the usage of such large systems of ODEs is often problematic, since one is faced with the

challenge to numerically solve a very large nonlinear set of differential equations. The com-

plexity of this task is often a serious obstacle to get required information about the system.

For example, the possible presence of multiple time scales in huge systems may result in

unacceptably long computing times. Furthermore, often the question arises how to interpret

the behavior of huge networks biologically.

At the level of the modeler, the problems are even more serious, because a large number

of interactions gives rise to a large number of parameters. Of course, one may try to find

values for these parameters in the literature, but even if they can be found, their reliability

and applicability to the specific purpose is often unknown. Furthermore, after all available

information from the literature is used to the limit, still a number of parameters may remain

that have to be fitted to data. Fitting procedures require the system of ODEs to be solved

iteratively, so it has to be evaluated many times which is quite time consuming. Other prob-

lems may involve the questions of identifiability, sensitivity, and robustness. Therefore, there

is a need for reduction methods that deliver simplified models that still capture the essential

dynamical behavior of the original system [2, 3].

Complexity reduction can be carried out in several ways, and the choice for the most

appropriate approach depends on the purpose one has in mind. For example, one may try

to decompose a large biochemical network into smaller submodules that have relatively little

interaction with each other [4, 5, 6, 7, 8]. In this way, the network becomes more manageable,

easier to analyze, and it could make sense to study and interpret the modules separately. A

large network can also be replaced by a functional module that has lower dimension (less

ODEs) but still mimics the input-output behavior. This could be done, e.g., by replacing

the network by a black box model [9] or by lumping together components and/or reactions

based on their characteristics [6, 10, 11, 12, 13]. A disadvantage of both black box modeling

and lumping is that the new reduced model may be structurally different from the original

one, e.g., a component in the new reduced model may be a linear combination of several

components in the original model, or a component in the original model could be contained in

several new components in the reduced model. In practice, this may obstruct us in interpreting

the new reduced model.

Alternatively, complexity reduction can be carried out by selecting only those components

and/ or reactions of the network that determine the required dynamics of the system. This

could be done, e.g., by exploiting possible time-scale differences that are often present in

biological and chemical systems [14]. However, the classical time-scale separation such as

in [15, 16, 17] for example, raises the question how to obtain the prior knowledge that some

reactions are fast and others are slow. On the other hand, the automatic time-scale separation

in [18, 19, 20] requires that the original system of equations is mathematically transformed

into another system before it can be reduced. This transformation impedes the biological

interpretation of the reduced model.



3.1. Introduction 35

One could also omit components and/or reactions that seem to contribute little to the

behavior of the network. These components or reactions are usually selected via an optimiza-

tion approach [21, 22, 23] or a sensitivity analysis [24, 25, 26, 27, 28]. In the first approach,

given a nominal parameter values, it is investigated whether some parameters can be set to

zero without adjusting the other ones. In the example given in Section 3.2.2 below, we show

that this approach may not always be successful, even if the system is extremely simple. In

the latter approach, the importance of a particular parameter is measured by evaluating the

effect of variations in this parameter on the dynamics of all concentrations. If the effect is

large, the system is said to be highly sensitive to this parameter. If, on the other hand, the

sensitivity is low, this parameter is considered unimportant and removable. However, one

should be careful with this kind of conclusions, since, e.g., the omission of a low-sensitivity

parameter may lead to useless results. An example of this phenomenon is found in [29] from

a model of the central carbon metabolism of E. coli, for which the authors show that the

sensitivity of flux concentrations to some enzymes, e.g., aldolase, is nearly zero. However,

the removal of this reaction would result in the shut-down of the whole network, which is of

course undesirable. For completeness’ sake, we also mention the somewhat different way of

reduction in which complicated mathematical expressions in the ODE equations are replaced

with simplified ones [30, 31].

We present a novel reduction method that yields a biochemical model with less equations

and parameters and still generates some required output. In this context, this output is in-

terpreted as the dynamical behavior of the concentrations of a number of selected network

components that are considered important for biological questions at hand and are responsi-

ble for its functional behavior. So, as data we take measured time series of some constituents

and we look for a reduced model that generates these data. The reduction method proposed in

this paper is based on the exploration of the so-called “admissible region”, that is the region

in the parameter space where the model outcomes match the output data within some given

tolerance. From the shape of this admissible region important conclusions can be drawn. For

example, if this region includes a part of one of the parameter axes, this parameter can appar-

ently be set to zero. If, on the other hand, this region extends to infinity in some direction,

this indicates that lumping of nodes might be allowed. These insights form our starting point

to obtain reduced networks. The proposed method does not need to transform the original

equations. It can be applied to any system of equations, linear or nonlinear. Contrary to

the classical time-scale separation technique, this method does not rely on prior biological

knowledge; therefore, it can be automated appropriately. On the other hand, the method can

be tuned easily to incorporate any available prior knowledge. Our method also conserves the

network structure and maintains the dynamics of the system’s output and shows in this sense

similarities with the method from [17]. Once a reduced biologically plausible model has been

obtained, parameter identification can be carried out more efficaciously.

This paper is organized as follows. In section 3.2, we first introduce the concept of an

admissible region which forms the basic concept in our reduction method. For illustrational

purposes, we use a very simple artificial metabolic network with only three metabolites and

three parameters. In spite of its simplicity, this system appears to be rich enough to show all

the basic ingredients involved in the reduction process. Next we discuss how the reduction

can be carried out effectively, and we conclude this section by formulating our algorithm. In
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section 3.3, the reduction method is applied to a signaling network model taken from [32].

We show that this network can be considerably reduced with regard to reproducing the time-

series of the key proteins. Furthermore, we demonstrate the surprising fact that parameters

with high sensitivity are not always necessary and may be removed without any consequence

for the purposes we have in mind.

3.2 Methods

A mathematical model is considered good if it is able to describe and predict the phenomena

for which it has been designed. Here, we assume that the dynamical behavior of some com-

ponents are essential for the predictive power of a model and that their dynamics has been

measured. This dynamics should be preserved by any reduction method. In the following, we

refer to system components that are measured as “target species”. These target species play

a pivotal role in the concept of admissible region, which is the basis idea of our reduction

method.

3.2.1 The concept of admissible region

Consider a collection of n chemical species that form a biochemical network, the dynamics

of which is modeled by a system of ordinary differential equations (ODEs)

dx

dt
= f(x,k0),

y(t,k0) = Bx(t,k0)
(3.1)

with initial values

x(0) = x0. (3.2)

Here x(t) ∈ R
n denotes the vector of biochemical concentrations, f is the vector valued

function representing the interactions, and k0 ∈ R
m is the vector of kinetic parameters. The

output of the system is the vector y(t) ∈ R
q, 0 ≤ t < ∞, containing the dynamical behavior

of the target species. The vector y is obtained from the state space vector x by the matrix

multiplication Bx, with B a constant q × n matrix. So, a target species yi(t) can be a linear

combination of several biochemical concentrations. We call the specific parameter vector k0

in (3.1) - (3.2) the nominal parameter set and the corresponding system the nominal system.

Here, the nominal parameter set k0 can be obtained from a parameter fitting procedure and/or

derived from literature.

Suppose that M different data time-series of y(t) are available, denoted as ŷl(ti), l =
1, . . . ,M , i = 1, . . . , N . If we substitute in (3.1) a parameter vector kp, that is different

from k0, and integrate it, we obtain solution for all components of x, thus also for the target

species. We denote the latter by y(t,kp). The distance of the target species of the perturbed

system to the reference time-series ŷ is quantified by the following distance function

S(y(t,kp), ŷ(t)) =
1

M · q ·N

M
∑

l=1

q
∑

j=1

N
∑

i=1

(

ylj(ti,kp)− ŷlj(ti)

ŷlj(ti)

)2

(3.3)
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where N is the number of time discretization points. S can be interpreted as the average

squared deviation between the model prediction and the data. Around the nominal parameter

vector k0, there exists a region in the parameter space R
m such that any parameter vector kp

in this region gives model output that is close to the data.

To formalize this idea, we choose a small positive number ε2 and say that all kp for which

the condition

S(y(t,kp), ŷ(t)) < ε2 (3.4)

holds, belong to the so-called “admissible region”. The inaccuracy in the data could be used

as a guideline to choose a value for ε, but also other considerations, such as an expert guess

of the reliability of the model itself, could play that role. The shape of the admissible region

contains important information. For example, if it includes (a part of) a parameter axis, then

this parameter could be removed. Or, if the region extends to infinity in a certain parameter

direction, some state-variables in the ODE model might be lumped. In the following example

we make these ideas explicit.

3.2.2 Example

To illustrate the concepts above, we consider the extremely simple metabolic network sketched

in Figure 3.1A, which represents a system with three metabolites and five interactions. Its dy-

namics is described by the linear ODE model

dx1

dt
= v1 − (k1 + k3)x1(t)

dx2

dt
= k1x1(t)− k2x2(t) (3.5)

dx3

dt
= k2x2(t) + k3x1(t)− v2x3(t)

with initial conditions

x1(0) = x2(0) = x3(0) = 0. (3.6)

The parameter v1 denotes the input flux. It is fixed to v1 = 1. The parameter v2 that governs

the output flux of the network is also fixed to v2 = 1. In this example, we focus on the

network behavior as a function of the parameters k1, k2 and k3.

Let us suppose that metabolite x3 is the target species and the nominal parameter values

are k0 = (k1, k2, k3) = (1, 1, 0.2). As data we take ŷ = x3(ti), i = 1, 2, . . . , 10. For sim-

plicity, here the data ŷ is obtained by integrating the nominal model in (3.5) - (3.6). This is

plotted in Figure 3.2. If we choose ε = 0.05 as the tolerance and search for all parameter

vectors kp that satisfy condition (3.4), we obtain the ‘admissible region’ depicted in Figure

3.3. In this figure, the admissible region consists of all parameter vectors that lie between the

two depicted surfaces. These surfaces were obtained by sampling the k1-k2 plane and search-

ing in the k3 direction for admissible values. Obviously, the admissible region includes the

nominal parameter vector. The cross sections of the admissible region through the nominal

point and parallel to the axes are given in Figure 3.4.
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Figure 3.1: Example networks. (A) Full model. (B) Reduced model obtained by removing

k1, k2, and adjusting the k3 value. (C) Reduced model obtained by removing k3 and adjusting

k1 and k2.
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Figure 3.2: Comparison of x3-output of the full with x3-output of two reduced models. Pa-

rameters in the full model (solid line) are (k1, k2, k3) = (1, 1, 0.2). In the reduced models we

have (dotted line) (k1, k2, k3) = (0, 0, 0.59), and (dashed line) (k1, k2, k3) = (1.2, 1.2, 0).

We observe from Figure 3.3 that, although the chosen tolerance value ε = 0.05 is rather

small, the admissible region is quite large. Therefore, one would clearly run into identification

problems when trying to estimate the parameter values (k1, k2, k3) only from x3 data with 5%

inaccuracy. We notice that the admissible region in Figure 3.3 intersects the planes k1 = 0
and k2 = 0. This indicates that one might set either k1 or k2 at zero. Even more than

this, the admissible region contains a part of the k3-axis, where both k1 and k2 are zero;

for example, the parameter vector (k1, k2, k3) = (0, 0, 0.59) leads to x3-output that satisfies

(3.4). Furthermore, we see that the admissible region also intersects the plane k3 = 0; indeed,

also the parameter vector (k1, k2, k3) = (1.2, 1.2, 0) is consistent with (3.4), as is shown in

Figure 3.2. Therefore, we might remove either (k1, k2) or k3 from the network. Doing so,

we obtain the reduced models in Figures 3.1B and 3.1C.
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Figure 3.3: Admissible region of the network in Figure 3.1A. The layer between the two

surfaces consists of parameter vectors (k1, k2, k3) that satisfy (3.4) with ε = 0.05. The

region extends for k1 > 1.5 and k2 > 1.5, but this extension is not shown. At the front, the

region is closed but for clarity it has been sketched as open. The color bar represents the level

value of k3.

In Figure 3.3 only a part of the admissible region is shown, since k2 is limited to 0 < k2 <

1.5. In reality the admissible region extends to infinity and k2 may be increased unboundedly,

provided that the k1 and k3 values are adapted appropriately. This observation reveals an

intriguing aspect. If k2 may be given a very large value, this implies that the flux between

nodes x2 and x3 in the network of Figure 3.1A may be taken very large. Thus, as soon

as metabolite x1 is converted into x2, metabolite x2 will be converted immediately into x3.

This effectively implies that nodes x2 and x3 could be lumped without affecting the x3(t)
dynamics, which topologically leads to the reduced network in Figure 3.1B. This approach

thus also yields information on possible reduction via lumping of nodes.

Another important observation concerns the application of the so-called optimization ap-

proach proposed in [21]. In this approach, all parameters are initially set at nominal values.

Next, it is checked whether some parameters can be set equal to zero without adjusting the

other ones. From the cross-sections in Figure 3.4 we see that it is not possible to set some

parameters equal to zero without adjusting the other parameters. The present example thus

shows that this optimization approach may not always be successful, even if the system is

extremely simple.

3.2.3 Complexity reduction method

From the example above, we learn that any parameter set that lies in the admissible region

yields an acceptable dynamical behavior of the target species. This admissible region reflects

the concept of parameter sloppiness, i.e., the property that different parameter sets may yield

the same model prediction [33]. Furthermore, the broad admissible region also implies that
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Figure 3.4: Cross sections of the admissible region. The grey areas are the cross-sections of

the admissible region of (3.5)-(3.6) with ε = 0.05 in condition (3.4). All three cross sections

go through the nominal point, indicated with (*), and lie in the planes k3 = 0.2, k2 = 1, and

k1 = 1, respectively.

the model encounters a practical identifiability problem [34]. When non-identifiability and

sloppiness are explored thoroughly, the gained insight can be used to simplify the model

significantly. Here we found three possible ways to reduce the model: (a) by removing k1
and k2 which leads to the removal of metabolite x2, (b) by lumping node x2 with x3; both

(a) and (b) lead to the reduced network in Figure 3.1B, (c) by removing parameter k3 which

leads the reduced network in Figure 3.1C. On account of parsimony, we may prefer to have

the strongest reduction, such as in Figure 3.1B, although we must realize that all reduced

networks produce similar behavior.

However, the system in the example is an extremely simple model: only three nodes with

three parameters. Thus, it is easy to draw the admissible region and find possible reductions.

In real systems biology applications, the models frequently contain a high number of parame-

ters, and therefore, it might be very difficult to calculate their admissible regions. Fortunately,

in practice it is not necessary to determine the admissible region completely. We learn from

the example above that a reduced model can be obtained when parameters can either be set

at 0 or extended to infinity. The remaining parameters are then adjusted such that the be-

havior of the target species in the perturbed system still mimics the reference time-series. In
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what follows, we discuss several possibilities how complexity reduction can be carried out

efficaciously.

Parameter reduction

A simple heuristic strategy is to try to remove parameters, one at a time. So, we start with

setting k1 = 0, and check, by re-estimating the other parameters, whether (3.4) can still be

satisfied. If this is the case, k1 can indeed be removed, otherwise it stays in the network.

This procedure is repeated for k2, . . . , km. If in this way, one or more parameters have

been removed, we cycle through the remaining parameters again, until we find that no more

parameters can be removed.

From a theoretical point of view, removing one parameter at a time is not the optimal

strategy to reduce the network; setting sets of parameter equal to zero simultaneously would

be better. However, when the original system contains m parameters, finding the reduced

systems with l parameters (l < m) would call for

(

m

l

)

optimization problems, which

may be a huge number.

Since in our approach the parameters are removed successively, we have to face the ques-

tion whether the result depends on the ordering of the parameters. In general, this will indeed

be the case, so the reduction method does not lead to a unique outcome. This phenomenon

is very similar to what is found in the traveling salesman problem, in which given a list of

cities and their pairwise traveling cost, one should find the cheapest route to visit all the cities

(each city should only be visited once) and return to the starting point [35]. As all algorithms

for this problem are based on iterative, heuristic procedures, the resulting solutions are also

non-unique.

We recommend to utilize the concept of ‘sensitivity’ as a guideline for ordering the pa-

rameters. To that end, we measure the influence of relative variations in parameter kj on the

distance function S(y, ŷ) in (3.3) in the following way

Cj =
kj

S

∂S

∂kj
. (3.7)

and order the parameters from low to high sensitivity. In section 3.3 we come back to this

point, showing that this ordering indeed leads to very good reduction rates. The algorithm for

parameter reduction is described in the flowchart in Figure 3.5.

Node reduction

To investigate whether node x1 could be removed, one simply sets x1 = 0 in all equations

and omits the ODE for x1 from the system. The next step is to check, by re-estimating the

parameters in the reduced system, whether (3.4) can still be satisfied. If this is the case, node

x1 is removed, otherwise it stays in the network. This procedure is repeated for x2, . . . , xn.

If in this way one ore more nodes have been removed, the procedure is repeated and we cycle

through the remaining nodes again, until we find that no more nodes can be removed.
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Figure 3.5: Flow chart of algorithm for parameter reduction. At the start, the entries of param-

eter vector k are ordered according to their sensitivities yielding new parameter vector p, and

reduction is conducted successively to the entries of p. At the end, the entries of parameter

vector p are ordered back, now containing some zeros if the reduction was successful.
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Lumping of nodes

To investigate whether two nodes could be lumped, we set the parameter that measures their

interaction strength at a very large value and adjust the other parameter values to satisfy (3.4).

If this turns out to be possible, these nodes are lumped, i.e., replaced by one node.

Algorithm

In summary, we use the following reduction scheme:

1. Apply node reduction.

2. Calculate the sensitivity of the non-zero parameters and order the parameters accord-

ingly.

3. Apply parameter reduction.

4. Apply a lumping procedure.

3.3 Results

We apply our reduction algorithm to a signaling network for the epidermal growth factor re-

ceptor (EGFR), as developed by [32]. This network consists of 25 proteins with 22 reversible

mass action reactions and 3 Michaelis-Menten reactions. It is depicted in Figure 3.6A. The

dynamics of the network is described by an ODE system consisting of 23 state variables (the

concentrations of ATP and ADP are assumed to be constant) and 50 parameters. The kinetic

parameters are taken from the literature and presented in the first column of Table 3.1. Fur-

thermore, since the kinetic scheme contains several cycles, the kinetic parameters involved in

the cycles satisfy so-called “detailed balance” relationships given by

k9 · k10 · k11 · k12
k−9 · k−10 · k−11 · k−12

= 1 (3.8)

k15 · k21 · k−17 · k−18

k−15 · k−21 · k17 · k18
= 1 (3.9)

k18 · k22 · k−19 · k−20

k−18 · k−22 · k19 · k20
= 1 (3.10)

k12 · k22 · k21 · k23
k−12 · k−22 · k−21 · k−23

= 1 (3.11)

k15 · k−20 · k−23 · k−24

k−15 · k20 · k23 · k24
= 1. (3.12)

To validate the model, the authors measured the transient response of several proteins to EGF

stimulations. The measured data consist of concentration time-series of total phosphorylated
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EGFR, total phosphorylated PLCγ, total phosphorylated Shc, Grb2 bound to EGFR forms,

and Grb2 bound to Shc isoforms. They are composed of several species in the model:

Total phosphorylated EGFR = 2([RP] + [R-PL] + [R-PLP] + [R-G] + [R-G-S]+

[R-Sh] + [R-ShP] + [R-Sh-G] + [R-Sh-G-S]) (3.13)

Total phosphorylated PLCγ = [R-PLP] + [R-PLCγP] (3.14)

Total phosphorylated Shc = [R-ShP] + [R-Sh-G] + [R-Sh-G-S]+

[ShP] + [Sh-G] + [Sh-G-S] (3.15)

Total Grb2 bound to EGFR = [R-G] + [R-G-S] + [R-Sh-G] + [R-Sh-G-S] (3.16)

Total Grb2 bound to Shc = [R-Sh-G] + [Sh-G] + [R-Sh-G-S] + [Sh-G-S]. (3.17)

In this paper, we use this model to show how the reduction method that was outlined

above can be applied. Therefore, it is not our intention to judge at the end whether the

model as a whole is redundant. Thus, instead of using the above measured time-series for

validation, here we consider them as our target species of which the dynamics should be

preserved under model reduction. The parameters specified by the authors are considered

as nominal parameter set k0. We choose the time-series corresponding to EGF stimulation

levels of 20 nM and 2 nM as our reference data. The 5 nM data are used later to test the

predictive power of the reduced network. Thus, in total we have 10 reference time-series,

namely five target species time-series for two different conditions. Each time series contains

data at 10 time points.

For the present analysis we took the EGFR model in SBML-format from the database

“JWS Online” [36] and translated it into Matlab-format using the SBML Toolbox for Matlab

[37]. As tolerance we take ε = 0.03, i.e., we allow an averaged relative distance between the

reduced system and the reference data of at most 3%. So, equations (3.3) and (3.4) read for

this specific case as

1

100

2
∑

l=1

5
∑

j=1

10
∑

i=1

(

ylj(ti,kp)− ŷlj(ti)

ŷlj(ti)

)2

< 0.032. (3.18)

In addition to the dynamics of the target species that have to be preserved, the detailed balance

relationships in (3.8)-(3.12) should also hold whenever the reduced model contains a cycle.
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Figure 3.6: The EGFR biochemical network. (A) The full network from [32]. Note that

all reactions in this network have two kinetic parameters. (B) Reduced network obtained by

considering total phosphorylated EGFR, phosphorylated PLCγ, phosphorylated Shc, Grb2

bound to EGFR forms, and Grb2 bound to Shc isoforms as target species. The reduction is

applied in two steps: node reduction followed by parameter reduction. (C) Reduced network

obtained by considering total SOS bound to EGFR as additional target species. In this reduced

network, R-Sh has been lumped with R-ShP. A solid arrow represents a reaction with two

kinetic parameters, and a dashed arrow represents a reaction with one kinetic parameter.
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Table 3.1: Parameter values of the original and the reduced models of the EGFR Network.

The parameters equal to zero are removed from the original model. In addition, parameters

K8 and K16 are automatically removed since they figure in the denominator of the Michaelis-

Menten reaction terms of which the enumerator becomes zero in the reduction. In reduced

model 1, the target species are the total of phosphorylated EGFR, phosphorylated PLCγ,

phosphorylated Shc, Grb2 bound to EGFR forms, and Grb2 bound to Shc isoforms. In re-

duced model 2, total SOS bound to EGFR is used as extra target species.

Parameter Original model Reduced model 1 Reduced model 2

k1 3 · 10−3 2 · 10−3 2.6 · 10−3

k−1 6 · 10−2 0 6.5 · 10−2

k2 1 · 10−2 2.68 · 10−2 3.1 · 10−2

k−2 0.1 0.6997 0.2
k3 1 2.2804 0.5359
k−3 1 · 10−2 0 0
V4 450 422.7363 481.8840
K4 50 36.6275 60.1878
k5 6 · 10−2 3.2 · 10−2 7.39 · 10−2

k−5 0.2 0 0
k6 1 0.5364 0.6107
k−6 5 · 10−2 0 0
k7 0.3 0.2887 0.2839
k−7 6 · 10−3 0 0
V8 1 0 0
K8 100 56.9514 63.5105
k9 3 · 10−3 0 0
k−9 5 · 10−2 0 0
k10 1 · 10−2 0 0
k−10 6 · 10−2 0 0
k11 3 · 10−2 0 0
k−11 4.5 · 10−3 0 0
k12 1.5 · 10−3 0 0
k−12 1 · 10−4 0 1.62 · 10−2

k13 9 · 10−2 5.01 · 10−2 0.114
k−13 0.6 0 0
k14 6 4.6139 1 · 104

k−14 6 · 10−2 0 0
k15 0.3 0.2965 0.4970
k−15 9 · 10−4 0 0
V16 1.7 0 0
K16 340 336.7173 368.5164
k17 3 · 10−3 5.6 · 10−3 0
k−17 0.1 0 0.9347

Continued on next page
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Table 3.1 – Continued from previous page

Parameter Original model Reduced model 1 Reduced model 2

k18 0.3 0.2953 0
k−18 9 · 10−4 3.4 · 10−3 1.49 · 10−2

k19 1 · 10−2 0 0
k−19 2.14 · 10−2 0 0.8527
k20 0.12 0 0
k−20 2.4 · 10−4 0 0
k21 3 · 10−3 0 5.7 · 10−3

k−21 0.1 0 0
k22 3 · 10−2 0 0
k−22 6.4 · 10−2 0 0
k23 0.1 0 0
k−23 2.1 · 10−2 0 0
k24 9 · 10−3 0 1.52 · 10−2

k−24 4.29 · 10−2 0 0
k25 1 1.2152 1.2897
k−25 3 · 10−2 4.02 · 10−2 4.22 · 10−2

3.3.1 Node reduction for the EGFR network

We order the nodes (proteins) in the network in a manner that is inspired by the internal

structure of the pathway. Applying our node reduction algorithm, we find that six nodes

out of 23 are redundant, namely [R-G], [R-G-S], [G-S], [SOS], [Sh-G-S], and [R-Sh-G-S].

The question could be raised whether this result depends on the specific ordering used. To

answer this question, we apply again the node reduction but now with 30 randomly chosen

node orderings. The result is shown in Figure 3.7. From Figure 3.7A, we observe that for all

these random orderings, at most only six nodes can be removed. Furthermore, we conclude

from Figure 3.7B that 16 nodes have 100% survival frequency throughout all 30 experiments.

This implies that these 16 nodes are at least necessary to govern the dynamics of the output,

whereas some of the other seven nodes can apparently be removed. Among these seven nodes

are the six nodes that were removed using our original ordering, as indicated in Figure 3.7B

by the grey bar.

As a last check, we order the nodes according to their survival frequency in Figure 3.7B

and once again apply node reduction. Then we again find that the six nodes that we arrived

at before are removable. These observations make us confident that this result is indeed the

optimal one. So, we conclude that about 26% reduction in network nodes is allowed. By

removing these 6 nodes, also their reactions disappear, so that we are now left with a system

that contains 17 nodes and 32 parameters.
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Figure 3.7: Node reduction with 30 different random orderings. (A) Number of nodes that

can be removed for 30 randomly chosen orderings of the network nodes. (B) Spread of the

nodes that survive across 30 randomly ordered node reductions. A node with 100% frequency

of survival survives in all cases, a node with 0% frequency is always removed. The nodes

that survive when we use sequential node ordering are indicated by the black bar and those

that are removed are indicated by the grey bar.

3.3.2 Sensitivity analysis

Next, we perform a sensitivity analysis to the reduced network by calculating the sensitivity

parameters

Cj =
kj

S

∂S

∂kj
. (3.19)

The result is shown in Figure 3.8. The parameters are then reordered based on their sensitiv-

ities from low to high. In this figure, the sensitivity of parameters that were already removed

due to node removal in the previous step is irrelevant and therefore, omitted.

From Figure 3.8, we observe that the system is very sensitive to, e.g., k−4, k4, k18 and

less sensitive to, e.g., k−8, k−14, k16. A natural strategy seems to first remove the parameters

that have the lowest sensitivities. However, we show below that sometimes a parameter with

low sensitivity cannot be removed, whereas parameter with a high sensitivity still drops out.

3.3.3 Parameter reduction for the EGFR network

After the parameters have been ordered based on their sensitivities, parameter reduction is

applied, as sketched in the flowchart in Figure 3.5. This leads to the removal of another 15

parameters. So, in combination with the result from node reduction, 33 out of 50 parameters

are redundant. This means, that about 66% of the parameters are not necessary to produce

the dynamics of the five target species. Eventually, we are now left with the biochemical
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Figure 3.8: Sensitivity of parameters k−25, k−24, . . . , k24, k25 of the EGFR network from

[32] with respect to the squared deviation function in (3.7). The sensitivity of parameters that

were already removed due to node removal is irrelevant and therefore not given.

network depicted in Figure 3.6B. The parameter values of the reduced system are presented

in the second column of Table 3.1. Note that in this column, only 31 parameters are zero.

However, two additional parameters, K8 and K16, are half-life parameters in a Michaelis-

Menten reaction, and they are, of course, redundant if this reaction itself is removed. For

example, the rate of the eighth reaction is

Reaction8 =
V8[PLCγP]

K8 + [PLCγP]
. (3.20)

Since in the parameter reduction V8 is set to zero, K8 becomes automatically redundant.

To check the effectiveness of the parameter ordering for the reduction, we run the param-

eter reduction again, but now with 30 different random parameter orderings. These parameter

reductions are always applied to the same reduced network, obtained via node reduction. The

result is shown in Figure 3.9. From Figure 3.9A we see that the number of parameters that

can be removed ranges from 31 to 34 parameters, including the 6 nodes that were removed

via node reduction. Here the number of reducible parameters are 31 in 10 runs, 32 in 15 runs,

33 in 4 runs, and 34 in only one run (note that the removed parameters are not always the

same). The maximum reduction is attained in the 25th simulation. Therefore, the ordering

according to sensitivity is not optimal, but it yields a reduction rate that is close to optimal.

In addition, the spread of the parameter survival across 30 random simulations is shown in

Figure 3.9B. Together with the result from node reduction, 12 parameters have 100% survival

frequency, 23 parameters have 0% survival frequency, and the rest are in between. This

means that 12 parameters are non-removable and 23 parameters are completely redundant.

Parameters that are removed via node reduction are indicated by grey text, whereas those that

are removed via parameter reduction are indicated by black text. Parameters that are present

in Figure 3.6B are indicated by the black text “s” in Figure 3.9B.

The dynamics produced by the full and the reduced systems are compared in Figure 3.10.
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Figure 3.9: Parameter reduction (applied after node reduction) with 30 different random pa-

rameter orderings. (A) Number of parameters that can be removed at each simulation, grey

bar from node reduction, white bar from parameter reduction. (B) Spread of the parameters

that survive across 30 randomly ordered parameter reductions. A parameter with 100% fre-

quency survival always survives in all random reductions, a parameters with 0% frequency is

always removed. The parameters that are removed via node reduction are indicated by grey

text, and those that are always removed via parameter reduction are indicated by black text.

The parameters that are still present in the reduced network in Figure 3.6B are indicated by

the black-text “s”.

From this figure, we see that both systems lead to very similar dynamics of the target species

from both 20 nM and 2 nM EGF stimulations. As an extra check, we also compare the

prediction of the reduced system when the EGF stimulation is 5 nM with the outcomes of the

full model in Figure 3.10. Note that these data were not used in the reduction procedure. The

results of the reduced system also show a good agreement with that of the nominal system.

We conclude that the reduced model reproduces the output of the full system fairly well. The

reduced network in Figure 3.6B clearly indicates which parts of the network are responsible

for the measured data.

An interesting observation is that some parameters that have low sensitivities, e.g., k7,

cannot be removed. On the other hand, some other parameters that have high sensitivities,

e.g., k−17 and k21, turn out to be removable. This implies that parameter sensitivity on its

own is not a reliable tool for model reduction. However, we found that parameter sensitivity

is still a useful tool to order the parameters before starting parameter reduction.
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Figure 3.10: The dynamics of EGFR biochemical network. The solid lines represent the ref-

erence data for the target components; the dashed lines represent the output of the reduced

system in Figure 3.6B. The blue line, green line, and red line are dynamics with EGF stim-

ulation of 20, 5, and 2 nM, respectively. Note that only the reference data for 20 nM and 2

nM EGF are used in the reduction. The 5 nM EGF curves are plotted to show the predictive

power of the reduced network.

3.3.4 Lumping of nodes

After applying parameter reduction, we try to lump nodes in the reduced network. This is

carried out by iteratively setting one parameter at a time to a very large value and re-estimate

the rest such that the dynamics of the target species fits the measured data. It appears that no

node in the reduced network in Figure 3.6 can be lumped, and we conclude that the reduced

model cannot be simplified further.
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3.3.5 SOS complex protein as extra target species

From the results above, we end up with a reduced network in which the SOS protein has

been removed. Yet, we know that in most cell types the activation of EGFR leads to the

activation of the Ras → Raf → Mek → ERK cascade [38]. This activation can only be

attained through SOS and hence, the reduced network that we obtained above is in some

sense biologically non-sensical. Still, our procedure allows for an important conclusion with

respect to experimental design. If one would like to address the question which data would

be needed to estimate the parameter that are SOS related, our results clearly indicate that the

measured data mentioned in [32] do not contain enough information for this purpose.

To assure that the nodes related to SOS remain in the network either we have to add extra

data to the set of target species or to flag the SOS and its upstream and downstream reactions

as non-removable components during the reduction. Here we suppose that the dynamics of

the total SOS protein bound to EGFR should also be preserved, thus extra data is added to the

set of target species. The total SOS protein bound to EGFR is then also considered as another

target species. It is given by

SOS bound to EGFR = [R-Sh-G-S] + [R-G-S]. (3.21)

Applying the algorithm outlined above, we then arrive at the reduced network shown in

Figure 3.6C with the new parameter values shown in Table 3.1 in the column of reduced

model 2. Now, 27 parameters can be set to zero and hence are removed from the model. In

addition, two additional parameters, K8 and K16 , are also removed because they are half-life

parameters in a Michaelis-Menten equation. Furthermore, one parameter, namely k14, can be

set to a very large value, which indicates that lumping is now possible. Therefore, we may

lump [R-Sh] with [R-ShP] and consequently, the equation of [R-Sh] may be removed from

the model. The new dynamics of [R-ShP] now reads as

d [R-ShP]

dt
= v13 + v17 − v15 − v24. (3.22)

This concludes that the reduction in its number of parameters is now about 60%. The dynam-

ics of the reduced model is shown in Figure 3.11.

The way we preserved (part of) the Ras cascade here is only one possibility. If we would

have added to the set of target species the R-Sh-G-S and R-G-S signals separately, we would

have ended up with a slightly different reduced model. This again shows that reduction is not

an algorithm that can be applied as a black box, but that expert knowledge and the specific

aim of the reduction should always be leading.

3.4 Discussion

Understanding the relation between the functional behavior of a network and its internal

’wiring’ is not only valuable for its own sake, but also indispensable to answer questions

like: Are all parts of the network required to perform specific tasks? If not, which part of the

network is really needed? Are all parameters in the network identifiable? Which data could
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Figure 3.11: The dynamics of EGFR biochemical network where SOS bound to EGFR is

now taken into account as target species. The solid lines represent the reference data for

the target components; the dashed lines represent the output of the reduced system in Figure

3.6C. The blue line, green line, and red line are dynamics with EGF stimulation of 20, 5, and

2 nM, respectively. Note that only the reference data for 20 nM and 2 nM EGF are used in

the reduction. The 5 nM EGF curves are plotted to show the predictive power of the reduced

network.

yield the optimal information to estimate parameters? The first two questions are important

to understand the principle design of biochemical systems, especially for applications in, e.g.,

medicine, pharmaceutical, and synthetic biology, whereas the latter questions stem from the

modeling process.

In the present paper we work out on an efficient and easy to implement method to simplify

a mathematical model from a given network. It leads to a reduced network with a number of

nodes and parameters left out, that still is able to generate a prescribed output. Our proposed

method is based on the insight that given the network and given some required behavior,
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there exists a so-called admissible region in parameter space: if the network equations are

evaluated with any parameter set in this region, the outcomes will fit the required network

signals within some specified tolerance. The shape of the admissible region reveals a lot of

information about the reducibility of the network. We explore these insights by proposing

a systematic way of network reduction, in which first removal of nodes, then removal of

parameters, and finally lumping of nodes, is investigated.

Since the proposed method is heuristic, sensitivity analysis around the nominal parameter

set is used to guide the reduction. If the full model has not been established, then a nominal

parameter vector can be obtained simply by fitting the parameters in the full model to the

available dataset. Once the nominal vector is obtained, the parameter sensitivities can be cal-

culated and the reduction procedure can be applied. Assuming that the model is sloppy, one

may end up with several candidates for the nominal vector which may give different sensi-

tivities and hence leads to different parameter ordering. Another option is to use a different

rule of ordering other than sensitivity analysis, e.g., parameter ordering based on biologi-

cal knowledge, and apply the reduction directly so that estimation to the full model can be

skipped. In both choices, one could have different schemes for parameter ordering that may

give different reduction result. This is the consequence of our heuristic approach. Neverthe-

less, they are mathematically equally acceptable since they lie in the admissible region.

Our findings also make clear that parameters with high sensitivity with respect to the

target components are not always needed for a specified functioning of the network, whereas

parameters with low sensitivity may be still important. This is typically a consequence of

the nonlinearity of the model. Sensitivity is a local property which is only valid in a small

neighborhood of some parameter vector, whereas setting one parameter to zero or to infinity

is quite a radical perturbation. Thus, parameter sensitivity in itself is clearly not a reliable tool

for reduction and should not be used to infer redundancy. Yet, in our technique it turns out

to be a good choice to use sensitivity for ordering the parameters in the reduction procedure.

In our method we use this information as a starting value and this heuristic strategy leads to

detection of near-optimal redundancy rates.

It is important to realize that reduction is only allowed when we accept the possibility that

some parts of the network do not play a role in the dynamics that we are interested in. We

also notice that all parameters that can be removed are those that are strongly not identifiable

based on the time-series that we want to reproduce. When some parameters in the full model

have been removed, one should always check whether the reduced model is biologically plau-

sible. Note that some details are always lost in a reduced model which eventually may affect

its predictive power, regardless of the method that is used. Thus, it is a general property

of any existing reduction method. In our method, however, expert knowledge can be easily

incorporated to prevent a nonsensical reduced model and a proper procedure can be taken

accordingly, as shown in the reduction of EGFR network above. In addition, to avoid unreal-

istic parameter values in the reduced model, variation of the parameters can always be limited

by imposing their upper and/ or lower bounds in the optimization procedure. At this point,

we argue that there is no guarantee that even the full model would yield a correct prediction

when the system experiences a new perturbation, of which the model was not designed to ac-

count for it. Thus, the prediction from both the full and the reduced models should be equally

appreciated. At the end, it is the biological knowledge and/ or a new experimental data that
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can evaluate whether the reduced model is acceptable.

In the first reduced model of the EGFR network, in addition to the removal of SOS, there

are other mechanisms that also fall out after the reduction. For example, [R-G], [R-G-S], [R-

Sh-G-S], and [Sh-G-S] are eliminated so that the total Grb2 that bound to EGFR is exactly

equal to the amount of [R-Sh-G]. There can be several hypotheses why these components can

be omitted. First, it might be that they do not play a role in governing the dynamics of the

target components which should be checked by experiment. Second, it might be that they are

actually important, but the dataset is not enough to constrain the corresponding parameters.

In both cases, our reduction method gives a clue to do a better experimental design. As we

add more data, the rate of reduction is smaller, as shown in the result of reduction of the

EGFR network. When we considered only the dynamics of five target species, we found that

about 66% of the parameters in the original model is redundant. But when SOS bound to

EGFR protein was included as additional target species, the redundancy of the parameters

decreased to 60%.

It is also interesting to realize that the result of a lumping procedure can be easily in-

terpreted from our method. When lumping of nodes is possible, it simply means that the

reactions that occur between those nodes may assumed to be very fast. Once a reduced

model is obtained, parameter estimation can be carried out more efficient and effectively as

the number of parameters becomes smaller.
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Chapter 4

Identifying optimal models to

represent biochemical systems1

Abstract

Biochemical systems involving a high number of components with intricate interactions often

lead to complex models that consist of many equations with a large number of parameters.

A large model could describe in detail the mechanisms that underlie the system, and hence

might produce reliable predictions. Yet it could hinder us in understanding the behavior of the

system. In terms of parameter identification, having a large model is also often problematic,

especially in the view of limited data availability. Therefore, a reduced model may be pre-

ferred to represent the system. In order to efficaciously replace the large model, the reduced

model should have the same ability as the large model to produce reliable predictions for any

testable experimental conditions.

We present a novel method to extract an optimal model from a large model candidate

to represent biochemical systems. The method combines a reduction method and a model

discrimination method which are applied iteratively. The former assures that the reduced

model contains only those components that are important to govern the dynamics obtained

from experiments, whereas the latter ensures that the reduced model gives a good prediction

for any experimental condition. Applying these two techniques iteratively, we end up with

a simpler model with powerful prediction, and with a behavior that cannot be distinguished

from that of the large model.

1Based on: M. Apri, M. de Gee, and J. Molenaar – “Extracting optimal models to represent biochemical systems,”

to be submitted
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4.1 Introduction

Biochemical networks are often very complex. The complexity may arise from the large

number of components involved in the network and/or from their intricate interactions. When

such systems are modeled by differential equations, we obtain a large non-linear differential

equation system with many parameters. There are some advantages for having a large model,

e.g., it may capture in detail the mechanisms of the system and, therefore, might give accu-

rate predictions. On the other hand, model complexity also gives rise to severe problems,

e.g., hard understanding of system behavior under varying conditions; long computing times,

especially in case of stiff model; and parameter identification problems, especially in the view

of limited data availability. To overcome these issues, reduced models that still capture the

essential features of the system are highly desirable.

Several powerful methods for model reduction are already available, e.g., time-scale sep-

aration [1, 2, 3, 4], sensitivity analysis [5, 6, 7], and lumping [8, 9]. Of these methods,

time-scale separation and sensitivity analysis typically require prior knowledge of the true

parameter values of the model before they can be applied. Therefore, only the first two

above-mentioned problems might be remedied in this way, whereas the problem of param-

eter identification, which is often the most problematic issue in systems biology, remains.

On the other hand, lumping methods usually give reduced models that may be structurally

different from the original one. This is because a component in the reduced model is a linear

combination of several components in the original model and vice versa. This hinders us in

the biological interpretation of the lumped model.

In previous work we successfully developed a reduction method to simplify biochemical

models in systems biology, see the previous chapter which is based on [10]. This method is

based on the so-called “admissible region” concept, that is the set of parameters for which

the mathematical model yields some required output. This concept reflects the parameter

sloppiness that commonly occurs in systems biology models [11]. In contrast to the methods

mentioned above, our method does not require prior knowledge of the true parameter values.

However, the procedure to yield a reliable reduced model was not yet complete. The method

only makes use of data which were obtained from experiments under specific conditions. The

behavior of the system under conditions that are different from these experiments, might not

be well predicted.

In this paper we repair this shortcoming by presenting a novel approach to extract a reli-

able reduced model from a full model under all possible conditions. The proposed approach

combines a reduction method and a model discrimination method. By combining these two

methods, we arrive at a simpler model that still has powerful prediction capabilities. This in

turn will help us in understanding the behavior of the complex system since such a reduced

model apparently contains the core of the mechanisms underlying the system dynamics.
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4.2 Method

Consider a biochemical network for which the dynamics of its n components is modeled by

a system of ordinary differential equations (ODEs)

dx

dt
= f(x,k, e)

y = g(x,k, e)
(4.1)

with initial values

x(t = 0) = x0. (4.2)

Here, x ∈ R
n represents the concentration of the species in the network, k ∈ R

m is the

parameter set in the model, y ∈ R
q stands for the model output with 1 ≤ q ≤ n, and

e ∈ R
p represents the experimental conditions under which the model output y is measured.

Throughout this paper, the components of y are referred to as “the target components” of the

system. The measured data for y are denoted by ŷ.

In practice, a common approach is to estimate the parameter set k = (k1, k2, . . . , km)
by fitting the model in (4.1)-(4.2) to an initial dataset ŷ. Next, a new experiment, based

on optimal experimental design, is carried out to obtain a new dataset and the parameter

estimation is repeated. These steps are applied iteratively until all parameters hopefully can

be identified, as depicted in Figure 4.1A. Unfortunately, in most cases, it is very difficult to

identify all of them. This especially happens if the number of parameter is large. The reason

is that, in developing a huge model, one easily introduces reactions, and thus parameters, that

in fact are redundant, since they are not necessary to secure the functioning of the system.

In those cases, it is convenient to work with a simpler model with less parameters so that

parameter identification can be carried out efficaciously.

Although any reduced model contains less components and/or parameters than the orig-

inal model, it is important that it should still be able to reliably predict the behavior of the

system for all possible experimental conditions. Only in this case, the reduced model can

replace the full model and fully represent the system. Note that the experimental conditions

can be varied in several ways. For example, if the initial condition of a particular biochemical

species xi in the experiment can be in the range of a ≤ xi(0) ≤ b, then the behavior of the

system should be well predicted by the reduced model for any initial condition xi(0) ∈ [a, b].
Also, if a particular perturbation can be applied in an experiment, e.g., deletion of some genes,

the behavior of the perturbed system should also be well predicted. The set of all possible

experimental conditions is denoted by E, and the reduced model that can reliably predict the

dynamics of the target components for any e ∈ E is referred to as “the optimal model”.

Suppose that a measured dataset is obtained from an experiment. Then, the parameters

k in the full model (4.1) can be estimated by fitting the model (4.1)-(4.2) to the data. Most

likely, this parameter set is poorly identified, and correspondingly, there are many parameter

sets that fit the data equally well. Alltogether, they establish the so-called “admissible region”

in parameter space.

To extract an optimal model, we combine our reduction method with a model discrimina-

tion method. The procedure has been sketched in Figure 4.1B. The essence of this scheme is
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Figure 4.1: (A) Common approach to estimate parameter in systems biology, (B) Proposed

approach to yield optimal model with fewer parameters.

that for the obtained reduced model, it is investigated whether an experimental condition can

be found for which the reduced model yields an outcome that is significantly different from

what the full model would predict. If this is the case, the reduced model is not accepted as

being “optimal”.

Notice that parameter estimation is frequently used in our procedure, for which a vast

body of separate liturature exists, e.g., [12, 13, 14, 15, 16, 17]. In our calculation, we made

use of the routine from MATLAB that are essentially based on [16].

4.2.1 Model reduction

After having obtained a parameter estimate k for the full model, the first step is to reduce the

model complexity by removing redundant components and/or parameters that do not con-

tribute to the dynamics of the target components. For this purpose, we have developed a

reduction method in [10] that utilizes the concept of admissible region. To reduce a full

model, the method does not necessarily require any prior biological knowledge. However,

the method can easily be tuned to incorporate prior knowledge, if this is available. The main
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features of our reduction method are summarized below.

Admissible region

Suppose that M time-series data of the target components ŷl(ti, e
l) are obtained from ex-

periments, which were conducted under M different experimental conditions el, with i =
1, . . . , N , and l = 1, . . . ,M . We measure the distance of the model output (target compo-

nents) to the time-series data in the usual way as the average of the squared relative residuals:

S(y(t,k, e), ŷ(t, e)) =
1

M · q ·N

M
∑

l=1

q
∑

j=1

N
∑

i=1

(

ylj(ti,k, e
l)− ŷlj(ti, e

l)

ŷlj(ti, e
l)

)2

. (4.3)

Let us introduce a tolerance ε2 which indicates how much difference we accept the dis-

crepancy between data and model prediction. Then, all parameter vectors k such that

S(y(t,k, e), ŷ(t, e)) < ε2 (4.4)

are acceptable to represent the parameters of the system, since they are capable of producing

the dynamics within the required accuracy. We say that all parameter vectors k that satisfy

(4.4) constitute the so-called “admissible region” (AR). Thus,

AR =
{

k ∈ R
m |S (y(t,k, e), ŷ(t, e)) < ε2

}

. (4.5)

In many cases, the measurement error in the experiments can be used as a guidance to choose

a suitable value for ε. Notice that the region AR reflects the parameter sloppiness in the

model. As long as AR consists of more than a single point, the parameters in the model are

not identified given the tolerance ε [18].

Reduction method

Since all the parameter vectors in the admissible region yield an acceptable dynamical be-

havior of the system, it is easy to deduce if a reduction is possible from the shape of AR.

For example, if the admissible region includes a part of a parameter axis, then this param-

eter can apparently be set equal to zero and could thus be excluded from the model. If the

region extends to infinity in a certain parameter direction, then some terms or state-variables

in the ODEs might be lumped. This analysis may thus lead to a simpler representation of the

biochemical system.

Describing the admissible region and deducing the possible reductions is relatively easy

for a small system. However, applying such analysis to a model with many parameters,

which is typically the case in systems biology, can be very complicated. Fortunately, we

notice that in practice it is not necessary to construct the admissible region completely. If one

(or several) parameter(s) can be set to zero (or infinity) and the others can be re-optimized

such that the resulting parameters kr ∈ R
m are still in the admissible region, then the model

can be simplified. Thus,

kr = (kr1, kr2, . . . , krm) ∈ AR, where krj = 0 or krj = ∞, for some j. (4.6)
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The reduction procedure can be carried out in a systematic way by applying first node

reduction, then parameter reduction, and finally node lumping.

Node reduction

First, we try to remove redundant nodes, one at a time. Here, e.g., node x1 can be removed

from the system if it can be eliminated in all equations and the parameters can be re-optimized

such that (4.4) is satisfied. This procedure is repeated for x2, . . . , xn. If one or more nodes

have been removed, we cycle again through the remaining nodes and repeat the procedure

until no further nodes can be removed.

Parameter reduction

To see whether parameter, say, k1 can be removed, we simply set k1 = 0 and re-estimate the

other parameters to obtain

kr = argmin
ki6=1

[S(y, ŷ)] , where k1 = 0. (4.7)

If (4.4) is satisfied, then indeed k1 can be removed from the model. Next, this procedure

is repeated for k2, . . . , km. If one or more parameters have been removed, we cycle again

through the remaining parameters and repeat the procedure until no further parameters can

be removed.

Since the approach is heuristic, the result of the reduction might depend on the parameter

ordering and might be not unique. In principle, all the the reduced models obtained this way

are acceptable. However, for reasons of parsimony, the strongest reduction is preferable. For

this purpose, we found in [10] that in general parameter ordering based on the sensitivities

Cj =
kj

S

∂S

∂kj
(4.8)

gives a very good reduction rate.

Lumping

If a parameter that represents the strength of a reaction can be set at a very large value and the

others can be adjusted to satisfy (4.4), it indicates that the corresponding reaction can be con-

sidered as instantaneous. This implies that the two corresponding nodes that are connected

by the reaction can be lumped, and hence may be replaced by one node. The procedure for

lumping essentially follows the same steps as mentioned under parameter reduction.

4.2.2 Model discrimination

Suppose that from the model reduction procedure above, we obtain a reduced model

dxr

dt
= fr(xr,kr, e)

yr = g(xr,kr, e)
(4.9)
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where xr, fr ∈ R
R with R < n, and yr ∈ R

q denotes the dynamics of the target components

of the reduced model. The next step is to investigate whether the reduced model will generate

the same prediction as that of the full model for any possible experimental condition. If their

predictions are indeed always the same, then we conclude that the full model can be replaced

by the reduced model.

For this purpose, a model discrimination method is utilized. Model discrimination is

commonly used to select the best suited model from different hypothetical models [19, 20,

21, 22]. In this work, we use it to search for an experimental condition e for which the

reduced model can be distinguished from the full model. So, we look for an experimental

condition e ∈ E that maximizes the distance between the full and reduced models in terms

of the distance function S in (4.3). Mathematically, this can be written as

argmax
e∈E

[S(y(t,k, e),yr(t,kr, e))]. (4.10)

We say that a reduced model cannot be distinguished from the full model if their distance

satisfies

S(y(t,k, e),yr(t,kr, e)) < σ2, ∀ e ∈ E. (4.11)

with σ a small number that denotes the tolerance criterion. Note that σ may have a different

value from ε. Usually, σ will be larger than ε, because otherwise we might end up with

modeling noise.

4.2.3 Model reduction and model discrimination applied iteratively

The hard task of model reduction is to find a simpler model that is still able to produce the

same prediction for all possible experimental conditions as the original model. Only then we

call such a reduced model “optimal”. The admissible region, shown in Figure 4.2, contains an

infinite number of parameter set candidates of the reduced model that, within measurement

accuracy, exactly produce similar behavior as the full model as far as the measured target

components are concerned. Note that the candidates for the parameter set of the reduced

model are those that lie in the parameter axes within the admissible region.

To find the optimal model, we could in principle compare each parameter set candidate

of the reduced model in AR to the full model under all possible conditions. In practice, this

is completely impossible. That is why we propose an iterative algorithm that leads to at least

one optimal model.

The idea is as follows. We first apply the reduction method in [10] and obtain a reduced

model that at least for the measured target components shows the same behavior as the full

model. Next, we compare this particular reduced model with the full model under all possible

conditions and select experiment for which the difference is biggest. This is called “discrim-

ination”. Normally, this difference is still huge in this first step. Then, we add the data from

this experiment to our dataset that consists of time-series for the target components. In the

second step this extended dataset is used as starting point.

This second step starts with calculation of an updated AR for the full model. Then, the

reduction method from [10] is applied leading to a new reduced model. If this second reduced
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Figure 4.2: Illustration of the admissible region with respect to the available dataset. Initially,

the admissible region of the system is AR1. In this situation, a reduced model can be ob-

tained either by setting k1 = 0 or k2 = 0. When a new dataset from a new experiment is

incorporated, the admissible region shrinks to AR2. Thus, AR2 ⊂ AR1. Now, a reduced

model can only be obtained when k2 = 0.

model is compared to the full model under all possible condition, one usually finds that the

difference becomes smaller than found in the first step of the algorithm.

One again selects the experiment for which the difference is biggest. Most of the time

this difference is bigger than a predefined threshold, so one has to start a third round, in

which the last experimental dataset is added to the dataset of the target components and the

experiment from the first round. The procedure is repeated until the difference for all possible

experimental conditions between reduced model and full model is smaller than the threshold.

The resulting model for which this holds is called “optimal”.

4.2.4 Algorithm

In a nutshell, the method that we propose consists of the following steps:

1) Obtain data from experiment.

2) Estimate the parameters in the full model.

3) Apply reduction to the full model.

4) Try to discriminate the reduced model from the full model.

5) If there indeed exists an experimental setting that can discriminate them, add the data

from this experiment to the dataset and repeat step 2) - 4). Otherwise, the optimal

model has been obtained.
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4.3 Results

In this section, we show how the proposed approach works out in practice. The method is

applied to two different examples. First we investigate a small artificial metabolic network,

for demonstration purposes only. Next, we consider a big EGFR network model as a more

realistic example.

4.3.1 Small network

Consider the metabolic system consisting of only three species as depicted in Figure 4.3A.

Figure 4.3: (A) Full model, (B) reduced model B with parameters k1 and k2 removed, (C)

reduced model C with parameter k3 removed.

The concentrations of x1(t), x2(t) and x3(t) are modeled with the system of ordinary

differential equations

dx1

dt
= v1 − (k1 + k3)x1

dx2

dt
= k1x1 − k2x2 (4.12)

dx3

dt
= k3x1 + k2x2 − v2x3.

The parameters v1 and v2 govern the input and output fluxes of the network, respectively. In

this network, the chemical species x1 can be converted to x3 directly, but also by a detour

through x2. Thus, the concentration of x1 is influenced by the input flux rate v1 and the

conversion reactions that contains parameters k1 and k3. Concentration x3, on the other

hand, is influenced by the conversion reactions which involve parameters k2 and k3 and the

output flux v2.

Suppose that we are interested in the dynamics of x3 as a function of the input flux v1
and the initial concentration x1(0). Thus, in the context of the framework above, feasible

experiments are varying v1 and x1(0), and we assume that in these experiments v1 and x1(0)
can only be varied in the ranges 0 ≤ v1 ≤ 10 and 0 ≤ x1(0) ≤ 10. Therefore,

E = {{v1, x1(0)} | 0 ≤ v1 ≤ 10, 0 ≤ x1(0) ≤ 10} . (4.13)
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In this system, x3 is the target component.

As seen from the network in Figure 4.3A, x1 can be converted to x3 through two separate

pathways, and we are not sure a priori whether both pathways are necessary to describe the

dynamics of x3. Therefore, we set out to describe the dynamics of x3(t) by an optimal model.

This optimal model should be able to correctly predict x3(t) for any plausible value of input

v1 and initial condition x1(0) and may not contain redundant reactions or parameters.

In our first experiment, we measure data for x3(t) with the input flux v1 = 1 and the

initial condition of the first component x1(0) = 0. Thus,

e1 = {v1 = 1, x1(0) = 0}. (4.14)

Instead of performing real experiments, we use the full model in (4.12) with k = (k1, k2, k3) =
(1, 1, 0.2), v2 = 1, x2(0) = x3(0) = 0 to obtain the data, with an added normally distributed

random noise of 5% relative deviation. The measurement is carried out at every 2 time units,

i.e., t = 2, 4, . . . , 14. After adding noise, we obtain the measurement points that are denoted

by ‘*’ in Figure 4.4A.

Parameter estimation applied to the full model with a threshold value of ε = 5%, yielded

a large set of parameter vectors that fitted the data quite well. One of them is k1
f = (0.8125,

0.8002, 0.3244), which was chosen as reference parameter vector (note that in real situation,

we would not know the true parameter values k). Applying our reduction method described

in Section 4.2.1, we found that the data can also be adequately represented by the reduced

model in Figure 4.3B with k1
rB = (0, 0, 0.5208) and also by the reduced model in Figure

4.3C with k1
rC = (1.2288, 1.2128, 0). The results are shown in Figure 4.4A. Since we prefer

a stronger reduction, the reduced model in Figure 4.3B with parameter set k1
rB was chosen

as our reduced model. Because in this case the number of parameters is small, it is easy to

find the strongest reduction. In general this is not that easy.

Next, model discrimination with a threshold value of σ = 10% was carried out to search

for an input flux rate v1 and an initial condition x1(0) that can differentiate the reduced model

from the full model. Mathematically speaking, we apply the following optimization:

argmax
e∈E

[S(y(t,k1
f , e),yr(t,k

1
rB , e))]. (4.15)

The resulting optimum is given by

e2 = {v1 = 0, x1(0) = 10} (4.16)

It corresponds to a distance S(y,yr) = 0.0614, which exceeds the threshold of σ = 10%
considerably. This implies that the reduced model could be discriminated from the full model.

The results of the full model (with the reference parameters) and the reduced model in Figure

4.3B for the values of v1 and x1(0) in (4.16) are shown in Figure 4.4B. Note that these time

series show a behavior that is distinctly different from the the original time series displayed

in Figure 4.4A.

The next step in the discrimination procedure is to add the new data obtained from ex-

periment with condition e2 to the old one and to proceed with the data from both condi-

tions e1 and e2. The corresponding x3(t) data are denoted with ’*’ and ’+’ in Figure 4.4C.
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Figure 4.4: Dynamics of the target component x3(t). (A) Parameter fitting of the full

model (solid line) and reduced models (dashed line and dotted line) to dataset 1, which

was obtained by setting e1 = {v1 = 1, x1(0) = 0}. The full model has parameters

k1
f = (0.8125, 0.8002, 0.3244), for the reduced model in Figure 4.3B we have k1

rB =

(0, 0, 0.5208) and for reduced model C in Figure 4.3C k1
rC = (1.2288, 1.2128, 0). (B) Model

discrimination with e2 = {v1 = 0, x1(0) = 10} distinguishes the reduced model in Figure

4.3B with k = k1
rB from the full model with k = k1

f . (C) Parameter fitting of the full model

(solid line) and of the reduced model (dashed line) to dataset 1 and dataset 2. Dataset 2 was

obtained by setting e = e2. Parameter of the full model k2
f = (1.4795, 0.9, 0.1186) while

that of the reduced model k2
rC = (2.1415, 0.8325, 0)

Re-estimating the parameter vector of the full model using this extended dataset, we ob-

tain the new parameter vector k = k2
f = (1.4795, 0.9, 0.1186). We next apply the reduc-

tion procedure again and find that the full model can only be reduced to the model C with

k2
rC = (2.1415, 0.8325, 0). In Figure 4.4C the dashed line stems from model C and it is clear

that this reduced model is able to fit the extended data perfectly.

The question still remains whether another experiment exists that could discriminate be-

tween the full model and reduced model C. When the model discrimination is re-performed
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similarly as we did for model B in (4.15), it turns out that there is no input flux v1 and initial

condition of x1(0) that can discriminate between the reduced model C with k = k2
rC and the

full model with k = k2
f .

Finally to validate our conclusion, we generated 12 datasets choosing random values of

{v1, x1(0)} and compared these to the prediction from the reduced model C. In Figure 4.5

both data points for x3(ti) and the predicted curves from model C are given. We see that

the predictions of the reduced model are in a very good agreement with all datasets. This

demonstrates that the behavior of the network for any experimental condition in (4.13) can

be very well described by the reduced model C with k = k2
rC = (2.1415, 0.8325, 0).
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Figure 4.5: Validation of the reduced model C. The data are generated by choosing random

values for v1 and x1(0) and indicated by “*”,“+”, and “x”. The dashed lines are the predic-

tions from reduced model C with k = k2
rC = (2.1415, 0.8325, 0).

.

4.3.2 EGFR Model

As a test, we apply our method also to the epidermal growth factor receptor (EGFR) model

from [23], of which the network is shown in Figure 4.6A. This model describes the cellular

response to an epidermal growth factor (EGF) stimulation. The model consists of 23 bio-
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chemical components with 25 chemical reactions, described by ordinary differential equa-

tions (ODEs). This results in an ODE system with 23 state variables and 50 parameters. The

parameter values of the full model are given in Table II in [23].

Since the kinetic scheme contains several cycles, the kinetic parameters involved in the

cycles satisfy the so-called “detailed balance” relationships given by

k9 · k10 · k11 · k12
k−9 · k−10 · k−11 · k−12

= 1 (4.17)

k15 · k21 · k−17 · k−18

k−15 · k−21 · k17 · k18
= 1 (4.18)

k18 · k22 · k−19 · k−20

k−18 · k−22 · k19 · k20
= 1 (4.19)

k12 · k22 · k21 · k23
k−12 · k−22 · k−21 · k−23

= 1 (4.20)

k15 · k−20 · k−23 · k−24

k−15 · k20 · k23 · k24
= 1. (4.21)

To validate their model, the system was stimulated with different EGF stimulations (20 nM, 2

nM, and 0.2 nM) and the resulted transient response of several proteins were measured. The

measured responses are the concentrations of phosphorylated EGFR, phosphorylated Shc,

phosphorylated PLCγ, Grb2 bound in Shc, and Grb2 bound in EGFR. These are composed

of several species in the model:

Total phosphorylated EGFR = 2([RP] + [R-PL] + [R-PLP] + [R-G] + [R-G-S] +

[R-Sh] + [R-ShP] + [R-Sh-G] + [R-Sh-G-S]) (4.22)

Total phosphorylated PLCγ = [R-PLP] + [R-PLCγP] (4.23)

Total phosphorylated Shc = [R-ShP] + [R-Sh-G] + [R-Sh-G-S] + [ShP] +

[Sh-G] + [Sh-G-S] (4.24)

Total Grb2 bound to EGFR = [R-G] + [R-G-S] + [R-Sh-G] + [R-Sh-G-S] (4.25)

Total Grb2 bound to Shc = [R-Sh-G] + [Sh-G] + [R-Sh-G-S] + [Sh-G-S]. (4.26)

The model was used to predict the dependency of the transient responses on the relative abun-

dance of some signaling proteins, that is when the initial concentration of Shc was decreased

by a factor of 4, the initial concentration of Grb2 was increased by a factor of 4, and when

the initial concentration of EGFR was increased by a factor of 4.

In this paper, we use this model to show how our proposed method can be applied to a real

biological system. For this purpose, we assume that the parameters in the model are unknown

and should be estimated from the experimental data. The measured responses are regarded

as our target components in this example. Then we investigate whether the cellular response

behavior can be described by a simpler model. Since the target components were measured

and predicted for different EGF stimulations and different initial conditions of EGFR, Shc,

and Grb2, we assume that the experimental setting can only account for variation of those
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Figure 4.6: The EGFR biochemical network. A solid arrow represents a reaction with two

kinetic parameters, and a dashed arrow represents a reaction with one kinetic parameter. (A)

The full network from [23], (B) The optimal network to produce the dynamics of the five

target components for any experimental condition e ∈ E in (4.27), (C) The optimal network

as in (B) but with an additional constraint to maintain the activation pathway to Ras protein.
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species. Thus,

E = {(EGFstimulation, EGFR0, Grb20, Shc0) | 0 ≤ EGFstimulation ≤ 20 nM,

0 ≤ EGFR0 ≤ 400 nM, 0 ≤ Grb20 ≤ 340 nM, 0 ≤ Shc0 ≤ 150 nM},
(4.27)

where EGFR0 = [EGFR](t = 0),Grb20 = [Grb2](t = 0),Shc0 = [Shc](t = 0). Notice that

the space of possible experimental conditions is very broad.

Due to non-availability of the real experiment, we generate the data of the target compo-

nents using the full model and the parameters in [23], adding a relative normal random noise

of 5% deviation. The measurements are assumed to be performed at t = 0, 15, 30, 45, 60, 120
seconds.

For the initial dataset, we assume that it is obtained from experiments which are carried

out at two different EGF stimulations, [EGF] = 20 nM and [EGF] = 2 nM. The other three

initial conditions are set to [EGFR]0 = 100 nM, [Grb2]0 = 85 nM, [Shc]0 = 150 nM. Thus,

the initial dataset is obtained from experiments with conditions

e1a = {EGFstimulation = 20 nM, EGFR0 = 100 nM, Shc0 = 150 nM, Grb20 = 85 nM},

e1b = {EGFstimulation = 2 nM, EGFR0 = 100 nM, Shc0 = 150 nM, Grb20 = 85 nM}.

(4.28)

The dynamics of the target components are shown in Figure 4.7, denoted by ‘+’ and ‘x’. If

ε in (4.4) is set to ε = 5% and parameter estimation is applied, we find that the dataset can

be well represented by the model with many possible parameter sets; one of them is k = k1
f .

When reduction is applied, it turns out that 33 out of 50 parameters can be removed from the

model. This parameter set is denoted by k = k1
r . The reduced model can fit the dataset quite

well, as shown in Figure 4.7.

Applying model discrimination, we find that by setting the experiment to

e2 = {EGFstimulation = 15.3824 nM, EGFR0 = 141 nM, Shc0 = 0 nM, Grb20 = 340 nM},
(4.29)

the reduced model can be clearly distinguished from the full model, as can be seen in Figure

4.8. Their distance in this case is S(y(t,k1
f , e

2),yr(t,k
1
r, e

2)) ≈ 3.1× 106.

To obtain an optimal model, we follow the procedure outlined in Section 4.2.4. First, a

new experiment is performed based on the experimental setting e2 to generate a new dataset.

Thus, the new dataset now consists of the combined dataset obtained from experiments with

conditions e1a, e1b and e2. Parameter estimation, model reduction, and model discrimination

are again carried out to the combined dataset. This procedure yields k = k2
f for the parameter

set of the full model and k = k2
r for the parameter set of the reduced model. The number

of parameters that can be reduced turns out to be 31. The experimental condition that can

maximize the distance between the full model and the reduced model is e = e3 with distance

S(y(t,k2
f , e

3),yr(t,k
2
r, e

3)) = 23.5362. Suppose that for the EGFR network, the threshold

value for model discrimination is set to σ = 25%. Then repeating the procedure iteratively

and performing the experiments accordingly we find that after performing four additional

experiments, the reduced model with k = k6
r cannot be distinguished from the full model
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Figure 4.7: Dynamics of the target components for the start up dataset. The solid and dashed

lines show that the dataset can be fitted by the full model with k = k1
f as well as by the

reduced model with k = k1
r .

with k = k6
f . The iterative process to obtain the optimal model is shown in Figure 4.9 and

the network of the optimal model is shown in Figure 4.6B.

In the optimal model in Figure 4.6B, 24 parameters can be set to zero while one parameter,

namely k−14, can be set to a very large value. The latter implies that the phosphorylation of

[R-Sh] occurs very fast, and therefore, the components R-Sh and R-ShP can be lumped into

one biochemical component in the optimal model. We now end up with a model that consists

of 17 biochemical components with 25 kinetic parameters. This result shows that we may

remove six redundant components and 25 redundant parameters from the original model. The

prediction for the five target components from the reduced model would then deviate at most

about 25% from that of the full model for any experimental condition in (4.27).

As a validation, a number of experiments are performed with different random experimen-

tal conditions and the dynamics of the target components are predicted by the reduced model,
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Figure 4.8: Model discrimination to distinguish the reduced model with k = k1
r from the

full model with k = k1
f . In this case, e2 = {EGFstimulation = 15.3824 nM, EGFR0 =

141 nM, Shc0 = 0 nM, Grb20 = 340 nM}. The new dataset obtained from an experiment

based on the setting e = e2 is indicated by ‘*’. The dashed curve in the upper left corner

shows that the reduced model cannot fit this dataset.

as shown in Figure 4.10. The result shows that the prediction of the reduced model are in a

good agreement with the dynamics obtained from experiment. Only in the first experiment,

the prediction for Grb2 bound to Shc slightly deviates from the measurement. However, the

deviation is still acceptable. We, therefore, conclude that the reduced model in Figure 4.6B

with parameter set k = k6
r is an optimal model to produce the dynamics of the five target

components, given the threshold value of σ = 25%.

The parameters of the full and optimal models and the list of experiments to obtain the

optimal model are shown in Appendix in Table 4.1 and Table 4.2.
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Figure 4.9: Result of iterative process to obtain the optimal model for EGFR model.

The threshold value of σ = 25% is indicated by the dashed line. For the first dataset,

the reduction procedure can remove 33 out of 50 parameters. However, the distance be-

tween the reduced and the full models in the first discrimination is still huge, namely

S(y(t,k1
f , e

2),yr(t,k
1
r, e

2)) ≈ 3.1 × 106. When a new experiment based on experimen-

tal condition e = e2 is carried out and the obtained dataset is combined with the first dataset,

the number of reduced parameter in the second reduction decreases to 31. Finally, after

performing five additional experiments, the distance S < σ2, which means that there is no

experimental condition that can distinguish the reduced model with k = k6
r from the full

model with k = k6
f . At this stage, the reduced model contains 25 parameters. Since the dis-

tance is already smaller than the tolerance, we conclude that the reduced model with k = k6
r

is an optimal model.

Ras pathway

It is remarkable to notice that in the previous result, a number of chemical reactions that lead

to the activation of Ras protein via SOS is no longer preserved in the optimal model. Mathe-

matically speaking, this implies that the parameters that are related to these reactions cannot

be identified only by measuring the five target components above. From a biological point of

view, this is of course nonsensical since the activation of EGFR should lead to the activation

of the Ras → Raf → Mek → ERK cascade [24]. Therefore, to preserve this chemical pathway
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Figure 4.10: Validation of the optimal model with k = k6
r . The data are obtained by setting

the experimental conditions randomly to er1 = {538.48, 204.59, 143.78, 137.12}, er2 =
{231.86, 55.45, 127.53, 74.43}, and er3 = {97.31, 8.1, 0.80, 13.28}. The dataset are indi-

cated by “*”, “+”, and “x”, respectively. Predictions from the optimal model are indicated by

the dashed lines.

in the optimal model, one should think carefully which complex protein(s) should be treated

as additional target component(s), or which constraint in the reduction should be taken into

account. In other words, prior knowledge might help us to prevent such an undesired result.

Fortunately, our method can easily be tuned to incorporate prior knowledge.

We observe from the network in Figure 4.6A that one possibility to maintain the pathway

to the Ras protein is by preventing one of the incoming reactions to R-Sh-G-S or R-G-S from

elimination. In practice, this can be done by preserving one of the following parameters from

being zero, namely k10, k−11, k19, k−20 and k24. If we use this condition as our constraint

in the reduction and apply the proposed method, we obtained the optimal model that is de-

picted in Figure 4.6C. Here, the activation of Ras protein can be achieved via R-Sh-G-S. The

iterative process to obtain this model is shown in Figure 4.11.

In this optimal model, again parameter k−14 can be set to a very large value and thus
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R-ShP and R-Sh can be lumped into one biochemical component. The model contains 28

kinetic parameters, so about 44% of the kinetic parameters in the original model are redun-

dant and not necessary to represent the dynamics of the five target components. As can be

seen in Figure 4.11, the optimal model is now obtained after six new experiments have been

performed.
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Figure 4.11: Result of iterative process to obtain the optimal model for EGFR model with a

constraint to maintain the Ras pathway activation.

The parameters of the full and optimal models and the list of experiments to obtain the

optimal model are shown in Appendix in Table 4.1 and Table 4.3.

4.4 Discussion

In systems biology, we often face the problem that several models can describe measured

data equally well. In such situation one may sometimes choose between a complex model

that includes a lot of the details of the underlying mechanisms but is complex, very time

consuming, and its parameters are hard to identify, or a reduced version that is much more

convenient to handle but might have less predictive power. For the sake of understanding

the system, speeding up the computation, and parameter identification, a simpler model is

usually more favorable. However, since a simpler model contain less detailed mechanisms,
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its predictions might be less reliable. Therefore, model reduction requires a carefull approach.

In this paper, we propose a novel method to develop an optimal model to represent a

biochemical system. The method combines a reduction method yielding the simplest model

that can describe the measured data and model discrimination assuring that the reduced model

has reliable prediction properties. The resulted model is a trade-off between reliability and

simplicity. It does not contain redundant components but has enough predictive power to

reliable predict the behavior of the system.

When we applied our method to the EGFR network in [23], we found that about 50%

of the parameters in the original model can be reduced if one only takes into account the

five concentrations that were measured in [23]. Apparently, the dynamical behavior of these

five components can be described by a much smaller network. However, the function of the

EGFR network is to trigger the activation of Ras protein rather than to maintain some specific

behavior of intermediate products. So, from a biological point of view, this is nonsensical.

However, from a mathematical point of view, the result indicates that the measured data of

intermediate products are not enough to infer the parameters that are related to the Ras path-

way. To preserve the Ras pathway in the optimal model, either another target component(s)

should be measured or some constraints on the reduction procedure should be incorporated.

In this example, we choose the latter one to show the flexibility of our method to incorporate

available prior knowledge.
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[21] Uciński D, Bogacka B (2005) T-optimum designs for discrimination between two mul-

tiresponse dynamic models. Journal of the Royal Statistical Society: Series B (Statisti-

cal Methodology) 67: 3–18.



Bibliography 81

[22] Skanda D, Lebiedz D (2010) An optimal experimental design approach to model dis-

crimination in dynamic biochemical systems. Bioinformatics 26: 939-945.

[23] Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of Short Term

Signaling by the Epidermal Growth Factor Receptor. Journal of Biological Chemistry

274: 30169-30181.

[24] Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, et al. (2005) Computa-

tional modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J

392: 249-261.



82 Chapter 4. Identifying optimal models

Appendix

Table 4.1: Parameter values of the full and optimal models in the last iteration. Here the

average deviation at each point between the optimal and the full model is less than 25%.

Model 1 refers to EGFR model without constraint to prevent the pathway to Ras protein

whereas Model 2 refers to EGFR model with the constraint.

Parameter
Model 1 Model 2

k6
f k6

r k7
f k7

r

k1 3.1× 10−3 2.8× 10−3 3× 10−3 2.7× 10−3

k−1 5.77× 10−2 5.31× 10−2 5.84× 10−2 5.09× 10−2

k2 9.5× 10−3 9.9× 10−3 9.6× 10−3 9.8× 10−3

k−2 0.1336 9.24× 10−2 8.22× 10−2 0.1087

k3 1.0679 0.79 0.9481 1.0264

k−3 0.0194 0 0.016 0

V4 450.0001 477.8907 440.9235 437.1619

K4 49.9990 48.2002 51.0252 46.1166

k5 6.57× 10−2 5.95× 10−2 6.4× 10−2 5.1× 10−2

k−5 0.1917 0 0.3116 0

k6 0.9992 1.0237 0.9264 0.8975

k−6 4.41× 10−2 0 4.04× 10−2 0

k7 0.3079 0.2803 0.3053 0.2852

k−7 4× 10−3 7.4× 10−3 5× 10−3 4.6× 10−3

V8 0.9894 0 0.7757 0

K8 100 112.7967 101.4729 97.2425

k9 4.2× 10−3 4.4× 10−3 2.8× 10−3 2.7× 10−3

k−9 7.95× 10−2 4.03× 10−2 4.45× 10−2 3.19× 10−2

k10 5.8× 10−3 0 4.9× 10−3 0

k−10 5.26× 10−2 0 4.05× 10−2 0

k11 7.68× 10−2 0 9.18× 10−2 0

k−11 1.66× 10−2 0 1.64× 10−2 0

k12 1.73× 10−2 0 7.5× 10−3 0

k−12 1.073× 10−4 0 5.07× 10−5 0

k13 9.48× 10−2 0.1036 8.49× 10−2 8.39× 10−2

k−13 0.6009 0 0.6059 0

k14 5.9984 1× 104 5.3676 1× 104

k−14 5.63× 10−2 0 9.71× 10−2 0

k15 0.3346 0.2904 0.3024 0.2903

k−15 1× 10−3 2.6× 10−3 1.6× 10−3 1.1× 10−3

K16 1.6962 1.9833 1.7624 1.6462

V16 340 330.3266 324.2768 327.9718

k17 2.9× 10−3 2.8× 10−3 3.4× 10−3 2.7× 10−3

k−17 0.1043 0 8.53× 10−2 0

Continued on next page
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Table 4.1 – Continued from previous page

Parameter
Model 1 Model 2

k6
f k6

r k7
f k7

r

k18 0.2973 0.2272 0.2962 0.2016

k−18 4× 10−4 1.6× 10−3 2.54× 10−5 0

k19 1.83× 10−2 0 1.65× 10−2 0

k−19 2.25× 10−2 0 0.1027 0

k20 0.1235 0 0.1159 0.1928

k−20 8.496× 10−4 0 2.596× 10−4 6.813× 10−4

k21 2.7× 10−3 3.1× 10−3 2.8× 10−3 2.4× 10−3

k−21 9.84× 10−2 3.54× 10−2 9.72× 10−2 7.51× 10−2

k22 2.95× 10−2 0 7.48× 10−2 9.6× 10−3

k−22 5.35× 10−2 0 1.38× 10−2 0.1298

k23 9.66× 10−2 0 0.1307 0

k−23 2.99× 10−2 0 4.13× 10−2 0

k24 1.24× 10−2 0 1.41× 10−2 0

k−24 4.86× 10−2 0 8.14× 10−2 0

k25 1.0068 1.1123 0.9916 1.0597

k−25 3.36× 10−2 3.41× 10−2 3.12× 10−2 3.43× 10−2

Table 4.2: List of experiments to obtain optimal model in Model 1.

Experiment Experimental condition (e)

index EGFstimulation (nM) EGFR0 (nM) Shc0 (nM) Grb20 (nM)

1a 20 100 150 85

1b 2 100 150 85

2 15.3824 141 340 0

3 0.0746 2.5771 156.2478 10.4315

4 6.5245 26.4265 0.7839 0.5163

5 0.0118 400 6.2924 150

6 19.9934 399.9985 0.0506 150
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Table 4.3: List of experiments to obtain optimal model in Model 2.

Experiment Experimental condition (e)

index EGFstimulation (nM) EGFR0 (nM) Shc0 (nM) Grb20 (nM)

1a 20 100 150 85

1b 2 100 150 85

2 20 400 340 0

3 0.0653 2.1885 0 11.3049

4 0.0936 3.1826 340 150

5 20 0.4287 107.2116 149.9955

6 20 400 0.7385 0.8746

7 20 239.0186 0.1460 149.9980



Chapter 5

Modeling cell division and

endoreplication in tomato fruit

pericarp1

Abstract

In developing plant tissues and organs, cell growth sometimes shows a switch from the clas-

sical cell cycle into an alternative partial cycle. This partial cycle bypasses mitosis and allows

for multiple rounds of genome duplication without cell division, giving rise to cells with high

ploidy numbers. Several functional roles have been (putatively) assigned to this process of

endoreduplication, as well as various mechanisms that could be responsible for the transition.

However, it remains unclear to what extent the proposed roles and mechanisms of endoredu-

plication are universally applicable to different plant organs. Many studies and modelling

efforts have focused on the development of polyploidy in trichomes or root meristems of

the model organism Arabidopsis thaliana. However, due to the tight connection between en-

doreduplication and cell expansion and the prevalence of polyploidy in storage tissues, e.g.,

endosperm, a functional correlation with crop yield has regularly been implicated. In this

paper, we assess the applicability of putative mechanisms for the onset of endoreduplication

in tomato pericarp cells via development of a mathematical model for the cell cycle gene reg-

ulatory network. We focus on targets for regulation of the transition to endoreduplication by

the phytohormone auxin, which is known to play a vital role in the onset of cell expansion in

developing tomato fruit. We show that several putative mechanisms are capable of inducing

the onset of endoreduplication. In nature, all these routes to endoreduplication are probably

used in a combined fashion, which contributes to robustness of the regulation of the transition

to endoreduplication.

1Based on: M. Apri, J. Kromdijk, P.H.B. de Visser, M. de Gee, J. Molenaar – “Modeling cell division and

endoreplication in tomato fruit pericarp,” to be submitted

85
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5.1 Introduction

Tomato (Solanum lycopersicum) is one of the most important vegetable crops worldwide

and the recent publication of the tomato genomic sequence has enormously increased our

knowledge at the genetic level [1]. To use this improved genetic understanding in explaining

phenotypic behaviour, functional links need to be established between different knowledge

fields. In this paper we provide a first step in order to better understand the processes and

interactions that underlie the formation of tomato fruits. To that end we combine the findings

of Arabidopsis and tomato research as for hormonal regulation of cell division and endoredu-

plication into a mechanistic model.

In most fleshly fruits, growth starts with intense cell division, which after the first weeks

gradually declines and is replaced by cell enlargement [2]. During this period individual

cells accumulate water and carbon resulting in spectacular increase in cell volume (more than

10,000-fold in tomato mesocarp cells) and fruit volume [3]. In many fleshly fruits, as in

maize endosperm and Arabidopsis trichomes, this huge cell expansion is accompanied by

an increase in ploidy through the process of endoreduplication, i.e., an incomplete cell cycle

where cells continue to replicate their DNA without mitosis [4]. The endoreduplication cycle

is a developmental, by default irreversible process, which in tomato pericarp tissue results in

differentiating parenchyma cells.

Mechanistic models describing cell division have been available for some time, providing

a relatively simple system of ordinary differential equations (ODEs) to describe the behaviour

and interactions of a number of prominent cell cycle regulators, among which the so-called

“Cyclin Dependent Kinase” (CDK) proteins play a leading part [5, 6]. Recently, these models

have been extended to account for endoreduplication following proliferation in Arabidopsis

trichomes [7]. This extended model adopts a valuable mechanism on SIM (a plant-specific

class of CDK inhibitor) accumulation, that inhibits CDK activity to explain the transition to

endoreduplication. However, recent findings on E2F transcription factors, the CDK inhibition

by KIP-related proteins (KRP), and the involvement of auxin regulation in the cell cycle,

should be evaluated to obtain a more universal model on division and endoreduplication.

In this work, we develop a mathematical model to describe the underlying mechanisms

that govern the tomato growth. The model takes into account the role of auxin as hormonal

regulation triggering endoreduplication. We show that, although several mechanisms can

successfully block the mitosis and initiate the endoreduplication independently via auxin, the

combined action of these mechanisms is necessary to induce the endoreduplication in a robust

and efficacious manner.

5.2 Transition from mitotic cell cycles to endoreduplication

The most important events in the cell cycle are the duplication of DNA and the cell divi-

sion. The duplication, which has to be done in a very precise way, occurs during the S-phase,

whereas the cell division, which consists of nuclear division and cytoplasmic division (cy-

tokinesis), occurs during the M-phase. In addition to these two events, two extra gap phases

usually exist; the G1 phase in between the M and S phases, and the G2 phase in between
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the S and M phases, as depicted in Figure 5.1A. In these gaps, the cell grows and carries

out its normal metabolism. Furthermore, they act as check points to monitor the internal and

external environments. If the conditions are favourable, the cell cycle progresses to the next

phase. Otherwise, the progress is delayed [8].

Figure 5.1: Cell cycle in plants. (A) Canonical cell division, consists of G1, S, G2, and M

phases. In the S phase, the DNA is replicated whereas in the M phase, the nucleus and the

cell divide. (B) Endoreduplication cycle. The phases are similar to that in the canonical cell

cycle, except that the M phase is bypassed. Thus, the cell replicates its DNA, but it does not

divide.

In some biochemical systems, such as in tomato pericarp and Arabidopsis trichome, the

cell cycle may turn into endoreduplication [9]. Then, the cells continue to replicate their

DNA, however, without entering mitosis, as depicted in Figure 5.1B. This leads to the in-

crease of ploidy in the cells.

The state of the art of molecular control and functioning of endoreduplication has re-

cently been reviewed in [10] and more specifically for tomato in [11]. In plants, normal

G2-M progression is supposed to require significant activity of the ‘mitosis promoting fac-

tor’ (MPF). In plants the MPF is composed of the plant M-phase specific cyclin-dependent

kinase CDKB1;1 which is activated by the A-type cyclin CYCA2;3. It controls whether

the cell divides mitotically or undergoes repeated rounds of reduplication its DNA without

mitosis [12]. Consequently, mechanisms that reduce the activity of the functional complex

CDKB1;1/CYCA2;3 should inhibit cytokinesis and promote endoreduplication. Contrary to

the M-phase specific CDKB1;1, A-type CDKs (referred to as CDKA) are needed both for

G1-S and G2-M transitions. As a consequence, the transition from mitotic to endoreduplicat-

ing cycles also depends on factors influencing CDKA activity. In the following paragraphs,

we summarise putative mechanisms involved in the onset of endoreduplication.

5.2.1 Proteolytic degradation of M-phase specific cyclins

Specific degradation of M-phase specific cyclins, such as the A-type cyclin CYCA2;3, may

occur via the ubiquitin-mediated proteolysis pathway. In this pathway, the E3 ubiquitin ligase

anaphase promoting complex / cyclosome (APC/C) selectively labels proteins for destruction

(for reviews see [13] or [14]), based on the binding of the APC to the activating proteins

CDH1 or CDC20 [15]. It is shown in [12] that CCS52A (the higher plant orthologue of



88 Chapter 5. Modeling the cell cycle in tomato fruit

CDH1) affects the stability of CYCA2;3 in Arabidopsis. A further analysis on the APC acti-

vating subunits in tomato in [16] shows that SlCCS52A overexpression in young developing

fruits led to significant alterations in cell division and DNA ploidy levels after eight days

post-anthesis (dpa). In fruits younger than eight dpa cyclin transcription rates were suggested

to be high enough to render the cell cycle progression insensitive to CCS52A expression [9].

It appears that the E2F transcription factor is the one that regulates the CCS52A [17, 18].

E2F is a group of genes that produce a family of transcription factors in higher plants.

In Arabidopsis thaliana, the E2F family of transcription factors is composed of six transcrip-

tion factors (E2F A-F) and two dimerization partners (DP-A and DP-B, [19]). The interplay

between E2F transcriptional factor with Retinoblastoma-related protein 1 (RBR1) forms an

important regulator of the expression of many prominent cell cycle control genes. Typical

E2F factors A, B, and C dimerize with a DP to gain high DNA-binding specificity and can

manipulate transcription via a transactivation domain. In contrast, atypical E2F factors D, E,

and F (also called [DP-E2F-LIKE] DEL1-3, see [20]) have two DNA-binding domains, and

as a result can bind DNA as monomers. Because E2FD-F/DEL1-3 lack the typical transacti-

vation domain, they can inhibit (but not cause) transactivation of E2F responsive elements, by

competing for DNA-binding with E2FA and E2FB [19]. In this case, E2FE/DEL1 regulates

the CCS52A by repressing its expression [17, 18].

It is shown in [21] that E2FB and E2FC have an opposite regulatory effect on E2FE/DEL1,

whereas E2FA (bound to RBR1) has multiple modes of action. The interplay of E2FA and

RBR1 directly represses CCS52A and also promotes E2FE/DEL1 expression indirectly, per-

haps via the balance of E2FB/E2FC [22].

5.2.2 CDK inhibition

Alternative to cyclin-specific degradation, CDKs can also be subject to inhibition. By block-

ing the activity of specific CDKs needed for G2-M transition, CDK inhibitors can promote

the transition from mitotic to endoreduplicating cycles.

KIP-related proteins (KRP)

The Kip-related proteins (KRP), also called Interactors of CDC2-kinases (ICK) [23], con-

sist of a family of highly redundant CDK-inhibitors [24, 20]. Whereas many studies showed

KRPs to generally inhibit CDKA;1 activity, e.g., [24, 25], some family members might also

target CDKB [26, 27]. An interesting feature of KRPs is the apparent dose-dependency of

their inhibitory action. At low concentrations KRPs inhibit G2-M transition, whereas high

concentrations also block G1-S [28, 29]. Consistent with these results, specific overexpres-

sion of SlKRP1 during the expansion phase in tomato pericarp (when mitotic activity has

already ceased) led to decreased polyploidy [30].

To explain the KRP dose-dependency, in [28] a mechanism is proposed, whereby the in-

hibitory target of KRP is CDKA;1. At low levels of inhibition, only mitotic CDKA;1 activity

would be blocked, whereas more complete inhibition would also prevent CDKA;1 activity

in endoreduplicating cycles. Rather than needing two forms of CDKA;1, it is explained in

[10] that CDKA;1 could simply be needed at lower concentration for endocycle progression,
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being enough for G1-S transition, but not for G2-M to occur. The link between the previously

mentioned MPF complex (CDKB1;1/CYCA2;3) and CDKA;1 remains unclear. The interde-

pendency between CDKA;1 and CDKB1;1 was proposed in [28] to occur via phosphorylation

of KRPs by CDKB1;1. However, the antagonistic regulation of expression between CDKB

(1 and 2) and CDKA1 in tomato pericarp was also shown in [31].

SIAMESE (SIM)/SMR

Another CDK-inhibitor in plants is the SIAMESE (SIM) gene, which was first identified

in [32] in Arabidopsis trichomes. SIM and other members of the SIAMESE-related (SMR)

family, were subsequently found to target CDKA;1 as well as D-type cyclins [33]. As a result,

increased expression of an SMR homolog was postulated to be a central factor controlling

endoreplication onset in trichomes, leaves and petals in Arabidopsis [34, 35, 7].

WEE1 kinase

The final CDK inhibitor that we mention in this paper is involved in the commitment to mi-

tosis during the G2 phase. The CDK inhibitor WEE1 kinase mediates the specific inhibition

of CDKA via reversible phosphorylation. This inhibition is proposed to govern CDK activity

during G2 to ensure that DNA replication and DNA repair have finished before mitosis is en-

tered. Subsequent de-phosphorylation occurs at G2/M progression to allow significant CDK

activity during M-phase progression (for a review see [36]). It is shown in [37] that WEE1

kinase activity was not required for normal growth and cell cycle progression in Arabidopsis,

but instead regulates cell cycle arrest in response to DNA integrity checkpoints signalling cas-

cades. This seemed to contradict the fact that WEE1 had been shown to be highly expressed

in tissues with very high nuclear DNA content like maize endosperm [38] and tomato peri-

carp [39]. Additionally, it is shown in [11] that downregulating WEE1 in tomato, resulted in

increased levels of CDKA and short-cell phenotypes in all examined tissues. It has therefore

been proposed that, contrary to the findings for Arabidopsis, in some plant species WEE1

may have a more important role in governing the length of the G2 phase [40, 11].

5.3 Auxin involvement in endoreduplication onset

The regulatory effects of auxin during development of tomato fruit have been known for a

long time [41, 42, 43]. In this section, we will briefly summarise involvement of auxin in the

control of cell cycle regulators (for reviews see [44, 45, 46]), which provides the rationale

behind the selection of candidate parameters in the model analysis of the progression from

mitotic to endoreduplication cycles in tomato pericarp cells. In this paper we are specifically

focusing on the onset of endo-reduplication. We therefore decided to neglect the role of

WEE1 kinase, which has a putative role in sustaining endocycles to obtain high ploidy levels

[40], found in tomato pericarp or maize endosperm.
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5.3.1 Auxin interactions with E2F

Auxin has many modes of interaction with the expression of E2F transcription factors. Be-

cause of the E2F network cross-talk, it is hard to discriminate between direct and indirect

influences of the auxin to the E2F transcription factor as the promoter sequences of all E2F

members, except E2FA, contain E2F-responsive elements. Here we summarise some of the

most prevalent interactions.

It was shown in [47] that the presence of auxin greatly enhances E2FB stability, which

promotes G1-S and G2-M transitions. E2FC bound to DP-B is involved in the transition from

mitotic cell cycles to endoreduplication cycles, by arresting G1-S transition [48]. E2FC/DP-

B appears to be regulated post-transcriptionally by ubiquitin-mediated degradation [49], in

which the stability of the targeting complex SCFSKP2A is negatively regulated by auxin

[50, 51]. The presence of atypical E2FD/DEL2 also enhances the expression of several genes

involved in cell proliferation. The promoter domain of E2FD/DEL2 in Arabidopsis thaliana

contains two putative auxin response factors and E2FD/DEL2 was shown to be subject to neg-

ative post-transcriptional modification by auxin [52]. These auxin effects on E2FD could also

influence expression of other E2F family members as E2FD overexpression lines appeared to

have higher expression of E2FA, E2FB, RBR1, and E2FE/DEL1, which was strongly upreg-

ulated [52]. However, compared to wild-type, E2FD mutants did not have altered levels of

E2FE/DEL1.

To summarise, auxin effects via the E2F family and interaction with RBR1 are integrated

in the expression of CCS52A. Interactive effects are difficult to generalize, but by influencing

the expression of CCS52A, auxin generally promotes cell proliferation and represses endo-

cycles.

5.3.2 Transcriptional regulation of KRP by auxin

The existence of PROPORZ1 (PRZ1) in Arabidopsis thaliana as a mediator of auxin and cy-

tokinin signals in the control of cell proliferation was reported in [53]. It was shown in [54]

that PRZ1 in Arabidopsis is needed to modulate histone acetylation in response to auxin by

exposing the effects of PRZ1 on transcription on the family of KIP Related Proteins (KRP),

thus providing a functional link between auxin and KRP expression. PRZ1 appeared to an-

tagonize the repressive auxin signals in the regulation of KRP expression. In the PRZ1-1

mutant, several KRP genes (as well as E2FC) are misexpressed [53, 54]. Overexpression of

KRP genes could in part rescue the PRZ1-1 phenotype and silencing of multiple KRP genes

led to hyperproliferation.

5.3.3 Auxin involvement in expression of cyclins or cyclin-dependent ki-

nases

Finally, there is plenty of circumstantial evidence implicating auxin involvement in the ex-

pression of cyclins or cyclin-dependent kinases. For example, in [55] a severely reduced ex-

pression of CYCA2;1, CYCA2;2, CYCB2;1 and CYCB2;2 was shown in suspensions of A.

thaliana cells grown in medium lacking the synthetic auxin α-naphtaleneacetic acid (NAA).
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CYCB1;1 expression was induced in Arabidopsis thaliana root cells incubated in indole-3-

acetic acid (IAA) [55] and incubation in either IAA or NAA also stimulated expression of

CDKA;1 [56]. Furthermore, in [57] reductions in SlCDKB2.1 and SlCyclinB1;1 in trans-

genic tomato lines with reduced SlARF7 (Auxin Response Factor 7) mRNA content were

reported. However, SlARF7 is also implicated in regulatory pathway of gibberellic acid,

which makes these results difficult to interpret. It also seems that transcription of several

SlCycA genes increases in leaves of tomato seedlings grown on 10 µM IAA [58].

It was also shown in [59] that depletion of auxin (via inhibition by an auxin antagonist)

does result in reduction of CYCB1;1 and CYCA2;3 expression as well as increased ploidy

levels in nuclei from Arabidopsis thaliana cotyledons and leaves. However, in the context

of the previously mentioned alternative influences of auxin on endoreduplication onset, the

mechanistic nature of this correlation remains undecided.

5.4 Mathematical Model

In this section, we present a mathematical model to describe the mechanisms underlying the

cell cycle in tomato fruit. The model is obtained by adjusting the cell cycle model for Ara-

bidopsis [7], taking into account the auxin hormonal regulation role. Since the link between

auxin and SIM in tomato is not yet unraveled, the role of SIM is taken over by KRP in our

model, in view of the fact that both SIM and KRP regulate the cell cycle in the same way by

inhibiting the CDKs. We assume that KRP inhibits both CDKA and CDKB. Furthermore,

we assume that the CDKs are abundantly available and immediately bind to available cyclins.

Therefore, auxin is considered to be involved in cyclin expression rather than in CDK expres-

sion. Consequently, the dynamics of complex CDK/Cyclin solely depends on the dynamics

of the cyclins.

Cyclins are produced by ribosomes in the cytoplasm. In line with the work from [5, 60],

we assume that their production rates increase as the cell grows. Once cyclins have been

produced, they move into the nucleus which is assumed to have a fix size. The effective ac-

tivity of cyclins, therefore, increases as the cell grows since their concentration in the nucleus

increases. We assume that the production rate of cyclins is proportional to the ratio of cell

mass/DNA, whereas the effective concentrations of the other proteins are not influenced by

the cell mass. Note that the influence of cell growth is not incorporated in the Arabidopsis

model in [7].

5.4.1 Continuous dynamics

As mentioned earlier, cell division in plants is triggered by the activity of MPF, i.e., the dimer

CDKB1;1/ CYCA2;3 [12]. In eukaryotic and arabidopsis cells, the transcription factor of

CYCA2;3 is activated through MPF [6, 7]. Inspired by the known mechanisms in Arabidop-

sis, we assume the dynamics of this transcription factor to be governed by the ODE

d TFA23

dt
= (k21p + k21 ·MPF ) ·

(1− TFA23)

(Jafb + 1− TFA23)
− k22 ·

TFA23

(Jifb + TFA23)
, (5.1)
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where TFA23 and (1− TFA23) are the active and inactive forms of the transcription factor

of CYCA2;3 respectively, of which the total amount is assumed to be constant.

The production of cyclins CYCA2;3 is influenced by the auxin level. Cyclin is then

degraded by APC/C, which is activated by CCS52A (the ortholog of CDH1) and CDC20.

Therefore,

dCY CA2; 3

dt
= (k1p + fcyca23(aux) · k1 ·TFA23) ·mass−V dcyca23 ·CY CA2; 3 (5.2)

where fcyca23(aux) is a function representing the interaction between auxin and CYCA2;3

production and V dcyca23 is given by

V dcyca23 = k2p + k2pp · CCS52A+ k2ppp · CDC20A. (5.3)

Here CDC20A denotes the active form of CDC20.

The molecular mechanisms of Ste9 and Slp1, the orthologs of CDH1 and CDC20 in

fission yeast [61], are used to describe the dynamics of CCS52A and CDC20. In this work,

the dynamics of Ste9 is slightly modified to account the influence of auxin on the CCS52A

via E2F. Thus,

d IE

dt
= k9 ·MPF ·

(1− IE)

(J9 + 1− IE)
− k10 ·

IE

(J10 + IE)
(5.4)

dCDC20A
dt

= k7 · IE ·
(1− CDC20A)

(J7 + 1− CDC20A)
− k8 ·

CDC20A
(J8 + CDC20A)

(5.5)

dCCS52A

dt
= (fE2F (aux) · k3p + k3pp · CDC20A) ·

(1− CCS52A)

(J3 + 1− CCS52A)
(5.6)

−(k4p · SPF + k4 ·MPF ) ·
CCS52A

(J4 + CCS52A)
. (5.7)

where IE and (1 − IE) are the active and inactive forms of a hypothetical intermediary

enzyme that is included in the model to create a delay between the rise of MPF and CDC20,

and fE2F (aux) is a function that models the interaction between auxin and CCS52A via E2F

activity.

Once CYCA2;3 is produced, it immediately binds to CDKB1;1 to form MPF. Since CDKs

(and hence also CDKB1;1) are assumed to be abundantly available, the dynamics of MPF

depends on the dynamics of CYCA2;3 and the inhibition activity due to KRP. The latter

leads to the formation of trimer TrimMPF which is the inactive form of the MPF. Thus,

dMPF

dt
= (k1p + fcyca23(aux) · k1 · TFA23) ·mass+ (lm+ V dkrp) · TrimMPF

−(lp · freeKRP + V dcyca23) ·MPF (5.8)

d TrimMPF

dt
= lp · freeKRP ·MPF − (lm+ V dcyca23 + V dkrp) · TrimMPF (5.9)

where

freeKRP = KRP − TrimMPF − TrimSPF (5.10)
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denotes the KRPs that neither inhibit MPF nor SPF (the complex protein that governs G1/S

phases).

The dynamics of KRP is described by

dKRP

dt
= fPRZ1(aux) · k11 − V dkrp ·KRP, (5.11)

V dkrp = k12 + k12p · SPF + k12pp ·MPF, (5.12)

where fPRZ1(aux) denotes a function representing the interaction between auxin and KRP

mediated by PRZ1.

In addition to MPF, there is also another complex that plays an important role for the

progression through the S-phase, which is governed by the A-type CDKs. We refer to such a

complex as the “S-phase Promoting Factor” (SPF).

d TF

dt
= k15p ·

(1− TF )

(J15 + 1− TF )
− (k16p + k16pp ·MPF ) ·

TF

(J16 + TF )
(5.13)

dSPF

dt
= (k13p + k13pp · TF ) ·mass+ (lcm+ V dkrp) · TrimSPF −

(lcp · freeKRP + k14p + k14 · CDC20A) · SPF (5.14)

d TrimSPF

dt
= lcp · freeKRP · SPF − (lcm+ V dkrp+ k14p + k14 · CDC20A) ·

TrimSPF (5.15)

where TF and (1− TF ) are the active and inactive forms of the transcription factor of SPF,

respectively, of which the total amount is assumed to be constant. TrimSPF denotes the

concentration of SPF that is inhibited by KRP. To complete the model, the mass/DNA is

modeled by the linear ODE
dmass

dt
= µ ·mass (5.16)

with mass(t = 0) = mass0.

To incorporate the relative effect of the auxin decrease, the functions fcyca23(aux),
fE2F (aux) and fPRZ1(aux) representing the interactions between auxin and the cell cycle

regulators are described as step functions, with value 1 at the normal (high) auxin level. Thus

fcyca23(aux) =

{

1 if auxin is high,

a if auxin is low,
(5.17)

and similarly for fE2F and fPRZ1.

5.4.2 Discrete events

DNA is duplicated when the cell has completed the S-phase. In our model we set this occur-

rence when the SPF passes a threshold value of 0.25 from above. At that moment the DNA

is duplicated, and consequently, the cell mass/DNA is halved. Subsequently, the mass/DNA

starts building up again according to (5.16).
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A second event is the cell division (cytokinesis) at the end of the M phase. In our model,

this event is triggered when MPF passes the threshold value 0.25 from above. At this moment

the cell mass itself is halved, but the mass/DNA is continuous, and it keeps growing according

to (5.16). Thus, we have two discrete events with two corresponding threshold values; the

first is to indicate the DNA duplication which leads to halving of the cell mass/DNA, and the

second is to indicate the cytokinesis event.

5.5 Results

The mathematical model described above is simulated for two different conditions: 1) the

normal condition where the cell division takes place, and 2) the onset of endoreduplication

where the cell skips the mitosis and undergoes polyploidization. For both conditions, all

parameter values are the same and given by:

k1 = 0.01, k1p = 0.1, k2p = 0.05, k2pp = 11, k2ppp = 1, k3p = 1, k3pp = 10,

k4p = 5, k4 = 1, J3 = 0.01, J4 = 0.01, k7 = 5, k8 = 0.32, J7 = 0.01, J8 = 0.01,

k9 = 0.24, k10 = 0.046, J9 = 0.01, J10 = 0.01, k11 = 0.1, k12 = 0.12, k12p = 1,

k12pp = 1, lp = 1000, lm = 1, k13p = 0, k13pp = 0.01, k14p = 0.02, k14 = 50,

k15p = 0.25, k15pp = 0, k16p = 0.01, k16pp = 2, J15 = 0.1, J16 = 0.1, k21p = 0,

k21 = 10, k22 = 0.5, Jafb = Jifb = 1, lcp = 400, lcm = 1, µ = 0.01.

(5.18)

5.5.1 High auxin levels and mitotic cell division

When the auxin level is sufficiently high, the canonical cell cycle with cell division takes

place. In our model, this corresponds to

fcyca23 = fE2F = fPRZ1 = 1. (5.19)

If the model is simulated with these values, we obtain the dynamics of the components

shown in Figure 5.2. Here, the G1 phase is the interval in which CC52A and KRP are very

high whereas MPF and SPF are very low. The CCS52A and KRP are then switched off by

SPF and MPF so that SPF and MPF start to rise and the cell enters the S phase.

When the cell has completed the S phase, specified when the SPF passes 0.25 from above,

the DNA is duplicated. Thus, the mass/DNA which initially increases exponentially becomes

halved when the DNA is duplicated, as shown in Figure 5.2C. The cell then enters the G2

phase and not long after that the cytokinesis event takes place. This occurs during the M

phase which is indicated when the MPF passes 0.25 from above. At that moment, the cell

mass itself is halved. Thereafter, the cell restarts the cycle from G1 phase again.

5.5.2 Low auxin levels and possible routes to endoreduplication

As discussed in Section 5.3, auxin can trigger endoreduplication in the tomato pericarp by

influencing the production of CYCA2;3, the activity of CCS52A via E2F, and the dynamics
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Figure 5.2: The dynamics of the cell cycle. The DNA is duplicated when the SPF passes 0.25

from above, and hence, the cell mass/DNA is halved. The cell undergoes division when the

MPF passes 0.25 from above. (A) The overall dynamics, (B) Zoom-in of a part of one cycle

of the dynamics, (C) The cell mass/DNA behaviour. The cell mass and the concentration of

the components MPF, SPF and KRP are in arbitrary units (a.u.), CCS52A is expressed as an

activated fraction.

of KRP via PRZ1. In this work, we focus on the first two mechanisms. Therefore, we set

fPRZ1(aux) = 1 for any auxin level.

Interaction of Auxin with E2F

As previously discussed, E2FE/DEL1 regulates the cell cycle via CCS52A by repressing the

CCS52A expression. The concentration of E2FE/DEL1 is influenced by the auxin activity.

When the auxin concentration is low, the repression of CCS52A by E2FE/DEL1 also becomes

low. Consequently, the activity of CCS52A increases. Thus, the activity of CCS52A is

inhibited by auxin via E2FE/DEL1. This effect is incorporated in fE2F (aux) in our model,

for which we take

fE2F (aux) =

{

1 if auxin is high,

2.7 if auxin is low.
(5.20)
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If the cell cycle model is simulated with these values, we obtain the results shown in Figure

5.3.
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Figure 5.3: The dynamics of the cell cycle and the onset of endoreduplication triggered by

the interaction between auxin and the E2F transcription factor. In the tomato pericarp, the

endoreduplication occurs after 8 dpa (days post anthesis). In our simulations the decrease

of auxin occurs after the first G2/M phase is completed, indicated by the arrow in (A). The

effect of this decrease on CCS52A is modeled by increasing fE2F (aux) from 1 to 2.7. Note

that the DNA is duplicated when the S phase is completed, which is triggered when the SPF

(the green line) passes 0.25 from above. The cell divides when the MPF (the blue line) passes

0.25 from above. Notice in (A) that, when auxin decreases, the minimum level of CCS5A

(red line) is slightly higher than in the canonical cycle, indicating the increase of CCS52A

activity. This has the effect that in each cycle the concentration of MPF is decreased a bit so

that it eventually becomes lower than the threshold value and then the mitosis is skipped. Yet,

the cell keeps duplicating the DNA. Since it does not undergo mitosis, the cell mass grows,

as can be seen in (D).

In Figure 5.3, initially the auxin level is high. Therefore, the cell undergoes mitosis when-

ever MPF passes 0.25 from above. After several cell cycles, we let the auxin concentration

drop suddenly. This moment is indicated by the arrow in Figure 5.3A. Then the repression

of E2FE/DEL1 to CCS52A becomes low, so that more active CCS52A becomes available in

the cell. This condition is described in Figure 5.3A, where the minimum level of the active



5.5. Results 97

CCS52A (red line) is higher compared to the situation with a high auxin level. As a result,

the cyclin CYCA2;3 degradation by APC/C becomes more pronounced, even when active

CCS52A is at minimum. Hence, the concentration of MPF decreases, as shown in Figure

5.3B.

As can be seen in Figure 5.3B, MPF eventually becomes lower than the threshold value,

with as consequence the arrest of mitosis. However, the G/S cycle is preserved, which means

that the cell undergoes endoreduplication. In this process, the cell keeps duplicating its DNA

without cell division. Since the cell does not divide anymore, the cell mass increases as shown

in Figure 5.3D. However, the cell mass/DNA is still halving as shown in Figure 5.3C. The

time scale in these plots is in arbitrary unit (a.u.). In the tomato pericarp, endoreduplication

occurs after 8 dpa.

Influence of auxin on CYCA23

Cyclins are assumed to be positively regulated by auxin. Therefore, in our model the function

fcyca23(aux) becomes smaller when the auxin drops. We represent this via

fcyca23(aux) =

{

1 if auxin is high,

0.3 if auxin is low.
(5.21)

When these values are plugged into the model, we obtain the results shown in Figure 5.4.

We start at a high auxin level so that the cell undergoes mitosis. If at the moment indicated

by the black arrow in Figure 5.4A, the auxin level is lowered, the production of cyclins de-

creases. Consequently, there is less CYCA2;3 available in the nucleus to bind to CDKB1;1,

which causes a decreasing concentration of MPF. Its concentration eventually becomes lower

than the threshold value for the mitosis, as shown in Figure 5.4B. The dynamics of the com-

ponents then jumps from the canonical cell cycle to endoreduplication.

The combined effect of auxin on CCS52A and CYCA2;3

In the previous sections we have simulated the separate effects of auxin on the cell cycle via

its interactions with CCS52A and cyclin CYCA2;3 production. Each mechanism can lead to

a shift from mitotic cytokinesis to endoreduplication.

Here we investigate the combined effect of auxin decrease to CCS52A activity and CYCA2;3

expression on the cell cycle. This is carried out by searching function values for fE2F and

fcyca23 at low auxin levels that can trigger the shift to endoreduplication. The result is shown

in Figure 5.5. The region of function values that can trigger endoreduplication is indicated

in gray. This region is obtained by searching for fE2F and fcyca23 values for low auxin lev-

els that produce endoreduplication. Referring to the previous chapters, in this context this

region is called the “admissible region” or “robustness region”. Thus, any function value

combination that lies within this region can lead the system to endoreduplication.

As can be noticed from Figure 5.5, the admissible/robustness region is quite large. This

allows for more flexibility in the values of fE2F (aux) and fcyca23(aux) at low auxin level

that can trigger the system to endoreduplication. For example, we do not need to increase

fE2F (aux) exactly to fE2F (aux) = 2.7 or to decrease fcyca23(aux) strictly to fcyca23(aux) =
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Figure 5.4: The dynamics of the cell cycle and the onset of endoreduplication triggered by

the interaction between auxin and CYCA2;3 expression. The timing when auxin decreases

is indicated by black arrow. If the effect of the auxin decrease on CYC2;3 is modelled by

changing fcyca23(aux) from 1 to 0.3, the MPF becomes lower than the threshold value,

consequently the cell skips the mitosis. Thus, it never divides but keeps duplicating the

DNA. Since it does not undergo mitosis, the cell mass grows, as can be seen in (D).

0.3 to have endoreduplication. Instead, their values can be more relaxed, e.g., by choosing

fcyca23(aux) = 2.4 and fcyca23(aux) = 0.7. This implies that endoreduplication can occur

as a combined effect of a decreased auxin level on the cyclin CYCA2;3, by both decreasing

its production rate and by increasing its degradation rate via CCS52A. Indeed, for the values

above the MPF decreases after a few cycles below its threshold value, as shown in 5.6. From

that moment on, the cell then undergoes endoreduplication.

5.6 Discussion

We have developed a mathematical model to describe the mechanisms that underlie the cell

cycle and its transition to endoreduplication in tomato pericarp. The model is an extension

and adjustment of an existing model for Arabidopsis. In contrast to the model from [7], the

trigger that leads to endoreduplication in our model comes from auxin activity. The effect of

auxin is represented in terms of step functions that influence the production, the degradation,
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Figure 5.5: Region of the values of fE2F and fcyca23 at low auxin levels. These values

represent the auxin interaction with the cell cycle regulators. Any point in the gray region

leads to endoreduplication when the auxin level in the cell is lowered.

and the inhibition of the cell cycle regulators.

Auxin may trigger both the reduced production of CYCA2;3 and an increased activity

of CCS52A. Our results show that each of these mechanisms may cause endoreduplication

separately. Further analysis from the region in Figure 5.5 shows that combination of both

mechanisms could yield the same effect. This suggests that the mechanisms that may trigger

endoreduplication are not necessarily independent. The existence of different routes to en-

doreduplication assures that the transition is rather robust. If the auxin fails to activate one of

the mechanisms, the other mechanism can take over so that the cell cycle can still evolve to

endoreduplication.

As has been reported in [28, 29], KRP influences the cell cycle in a manner that is dose-

dependent. If it is weakly overexpressed, only the G2/M phases are blocked and hence the

cell undergoes endoreduplication. However, if it is strongly overexpressed, the G1/S phases

are also blocked. In our model, this dose-dependency is not incorporated. So, there is still

room for improvement in the future.

The model that we described above yields the expected dynamical behaviour. However,

it is still a qualitative model, in which the parameter values are adjusted from the theoretical

knowledge of the Arabidopsis cell cycle. It would, of course, gives us more insight into the

underlying mechanisms, when the modelling work would be combined with experimental

work so that the parameters could be estimated from tomato data.

It would also be interesting to describe the auxin interaction with the cell cycle regulators

dynamically rather than only by step functions. This would give us more insight on the role

of auxin in regulating the cell cycle.
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Figure 5.6: Dynamics of the cell cycle and the onset of endoreduplication triggered by

auxin interactions with CCS52A via E2F, and CYCA2;3 production. The sudden decrease of

auxin at the moment indicated by the black arrow in (A), is modeled by step changes from

fE2F (aux) = 1 and fcyca23(aux) = 0.1 to fE2F (aux) = 2.4 and fcyca23(aux) = 0.7.

Eventually, the MPF becomes lower than the threshold value. Consequently, the cell skips

the mitosis and hence no longer divides, but keeps duplicating the DNA. As seen in (C), the

halving of the cell mass/DNA continues to happen. Since the cell does not undergo mitosis,

the cell mass remains growing, as can be seen in (D).
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Glossary

General abbreviations

CDK Cyclin dependent kinase

CKI Cyclin dependent kinase inhibitor

APC/C Anaphase promoting complex

KRP/ICK Kip-related protein/Interactor of CDKs, family of CKIs

E2F Family of transcription factors

DP Dimerization partner

DEL Dimerization partner - E2F - like protein, alternative name for a-typical

E2F factors

CCS52A Cell cycle switch protein 52A

RBR1 Rhetinoblastoma-related protein

SIM/SMR SIAMESE/SIAMESE-related plant-specific family of CKIs

CYC cyclin, controls the cell cycle progression

SKP S-phase kinase-associated protein

SCFSKP2A SKP, Cullin, F-box, SKP2

PROPORZ1 Putative Arabidopsis Transcriptional Adaptor Protein,

an Arabidopsis gene, important for the switch from cell proliferation to

differentiation in response to the changes of phyto auxin and cytokinin

concentrations
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Activation of an alfalfa cyclin-dependent kinase inhibitor by calmodulin-like domain

protein kinase. The Plant Journal 46: 111–123.

[28] Verkest A, Manes CLdO, Vercruysse S, Maes S, Van Der Schueren E, et al. (2005)

The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication

cycle during arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase

complexes. The Plant Cell Online 17: 1723–1736.

[29] Weinl C, Marquardt S, Kuijt SJ, Nowack MK, Jakoby MJ, et al. (2005) Novel

functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-

autonomously and inhibit entry into mitosis. The Plant Cell Online 17: 1704-1722.

[30] Nafati M, Cheniclet C, Hernould M, Do PT, Fernie AR, et al. (2011) The specific over-

expression of a cyclin-dependent kinase inhibitor in tomato fruit mesocarp cells uncou-

ples endoreduplication and cell growth. The Plant Journal 65: 543–556.

[31] Czerednik A, Busscher M, Bielen BA, Wolters-Arts M, de Maagd RA, et al. (2012)

Regulation of tomato fruit pericarp development by an interplay between CDKB and

CDKA1 cell cycle genes. Journal of Experimental Botany 63: 2605–2617.

[32] Walker J, Oppenheimer D, Concienne J, Larkin J (2000) SIAMESE, a gene controlling

the endoreduplication cell cycle in Arabidopsis thaliana trichomes. Development 127:

3931–3940.



104 Chapter 5. Modeling the cell cycle in tomato fruit

[33] Churchman ML, Brown ML, Kato N, Kirik V, Hlskamp M, et al. (November 2006)

SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in ara-

bidopsis thaliana. The Plant Cell Online 18: 3145–3157.

[34] Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, et al. (2010) Vari-

ability in the control of cell division underlies sepal epidermal patterning in Arabidopsis

thaliana. PLoS Biol 8: e1000367–.

[35] Kasili R, Walker JD, Simmons LA, Zhou J, De Veylder L, et al. (May 2010) Siamese

cooperates with the CDH1-like protein CCS52A1 to establish endoreplication in Ara-

bidopsis thaliana trichomes. Genetics 185: 257–268.

[36] O’Farrell PH (2001) Triggering the all-or-nothing switch into mitosis. Trends in Cell

Biology 11: 512–519.

[37] De Schutter K, Joubés J, Cools T, Verkest A, Corellou F, et al. (January 2007) Arabidop-

sis wee1 kinase controls cell cycle arrest in response to activation of the dna integrity

checkpoint. The Plant Cell Online 19: 211–225.

[38] Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, et al. (1999) Characterization of

maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proceedings of

the National Academy of Sciences 96: 4180–4185.

[39] Gonzalez N, Hernould M, Delmas F, Gévaudant F, Duffe P, et al. (2004) Molecular

characterization of a WEE1 gene homologue in tomato (Lycopersicon esculentum mill.).

Plant Molecular Biology 56: 849–861.

[40] Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A (2007) The cell cycle-

associated protein kinase WEE1 regulates cell size in relation to endoreduplication in

developing tomato fruit. The Plant Journal 51: 642–655.

[41] Crane JC (1964) Growth substances in fruit setting and development. Annual Review

Of Plant Physiology 15: 303–&.

[42] Crane JC (1969) The role of hormones in fruit set and development. HortScience 4: 108

- 111.

[43] Nitsch JP (1970) Hormonal factors in growth and development. In: Hulme AC, editor,

The biochemistry of fruits and their products, London, UK: Academic Press. p. 427472.
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Chapter 6

General discussion

6.1 Scope of this thesis

Biological functions that appear to be fundamental in nature nearly always come into ex-

istence as emergent properties, i.e., they are only present when the components are in full

interaction and disappear if one decouples the different modules. The study of biological

systems, therefore, will only be really successful if it is carried out at the systems level.

This insight has led to the introduction of the term systems biology. Understanding biolog-

ical systems at the systems level, however, turn out to be very difficult due to the complex

interactions between the components in time and space. This complexity stems both from

the large number of components involved and from the intricate interactions between these

components. When the system is described by a mathematical model, we frequently end up

with a large nonlinear set of mathematical equations that contains many parameters. Such a

large model usually has a number of undesirable properties, e.g., its dynamical behavior is

hard to understand, its parameters are difficult to identify, and its simulation requires very

long computing times. In this thesis, we present several strategies that may help to overcome

these problems. On the level of method development, we focus on two issues: a) method

development to analyze robustness, b) method development to reduce model complexity. On

the level of practical systems biology, we develop and analyse a model for the cell cycle in

tomato fruit pericarp.

A fundamental issue in modeling biological processes is robustness. Robustness is the

ability of a system to preserve biological functionality in spite of internal and external per-

turbations. It is an essential feature of biological systems and any mathematical model that

describes such a system should reflect this property. This implies the needs of a mathematical

method to evaluate the robustness of mathematical models for biological processes. Unfor-

tunately, assessing robustness of a complex non-linear model that contains many parameters

is not straightforward. In this thesis, we have presented a method to evaluate the robustness

of mathematical models efficiently. It enables us to find which parameter combinations in

a model are responsible for its robustness. In this way, we get more insight into the under-

lying mechanisms that govern the dynamics of the biological system. The advantage of our
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method is that the effort to apply the method scales linearly with the number of parameters.

It is therefore very efficient when it is applied to mathematical models that contain a large

number of parameters.

The complexity of a model can be brought down by simplifying the model. In this thesis,

we have developed a novel reduction method to simplify mathematical representations of bi-

ological models. In this method, biological components and parameters that do not contribute

to the observed dynamics are considered redundant and hence are removed. This results in

a simpler model with less components and parameters, without losing predictive capabilities

for any testable experimental condition. Since the reduced model contains less parameters,

parameter identification can be carried out more efficaciously.

In the last part of this thesis we showed how modeling can help us in understanding

the cell cycle in tomato fruit pericarp. The cell cycle in this system is quite special since

it starts as a classical cell cycle, in which cell division takes place, but after some periods

it turns into a partial cycle where the cell keeps replicating its DNA but skips the division.

Several mechanisms that are putatively responsible for this transition have been proposed.

With modeling, we show that although each of these putative mechanisms on its own can

lead the cell cycle to this transition, also their combination could lead to the same result. We

also found that this transition occurs in a robust manner.

In the rest of this chapter, the results of the previous chapters are discussed and elaborated

further.

6.2 Reflection on the thesis results

6.2.1 Robustness analysis

As robustness is one of the essential features of biological systems, it has attracted much

attention in systems biology, see, e.g., [1, 2]. Robustness is defined as a property that allows

a system to preserve its functions against internal and external perturbations [3]. This defini-

tion implies that robustness concerns the conservation of system functionality rather than of

system states, and therefore it is different from stability. For example, if it is necessary that

the state of a system switches from a steady state into oscillating behavior in order to survive

a change in the external temperature, then the biological system is called robust to the change

of temperature. However, robustness and stability can be identical, namely when the function

of the system is to maintain the stability of system states.

In Chapter 2, we presented a method to estimate the robustness of biological systems.

Here, we focus on the capability of the system to produce stable oscillatory behavior under

parametric perturbations. The robustness of a model is then determined by answering the

question how far the parameters of the model could be perturbed so that the qualitative be-

havior of the system does not change. An example of such a change is, e.g., the transition

from oscillatory behavior to a steady state equilibrium. Therefore, robustness in this chap-

ter is highly connected to the concept of bifurcation in mathematics. Instead of using the

classical eigenvalue approach to determine the behavioral changes, in this method we utilize

Floquet theory to detect the bifurcations. One of the central issues here is handling the multi-
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parameters difficulty. In most of the work that is available in the literature, the robustness

of the model is quantified by perturbing all parameters with the same percentage, tacitly as-

suming that all parameters have the same robustness sensitivity. This leads to a symmetric

robustness region, which is not very useful when in reality the model is more sensitive to

some parameters than to the others. Instead of presenting the robustness of the model by

one value, here we aim at estimating the whole robustness region, taking into account the

parameter-dependent sensitivity. Starting from a nominal parameter set, we construct an es-

timate for the robustness region by scanning the parameter space in orthogonal directions. If

necessary, the obtained estimate is refined by shifting the nominal point to a carefully chosen

new position. This gives a robustness region that in general is far from symmetric. We note

that the computing time necessary to find this estimated robustness region scales linearly with

the number of parameters involved. In this respect our method compares favorably with, e.g.,

Monte-Carlo simulations, for which the computing time scales exponentially with the dimen-

sion, and hence faces the so-called “dimensional curse” problem. Therefore our method is

really efficient to investigate robustness of a model that has a high number of parameters.

Oscillation is a ubiquitous phenomenon in biological systems. For example, consider the

bovine estrous cycle that controls the cow’s fertility. This cycle was modeled in [4] with a

system of 15 differential equations containing 60 parameters. It simulates the follicle and

corpus luteum development and the periodic changes in hormone level. In this system, how-

ever, robustness is defined differently. The functioning of this system is not to maintain the

stability of periodic oscillations, but rather to preserve the characteristics of the oscillations

of some biological components. In this system, a cycle is considered normal when the luteal

phase length ranges from 9 to 19 days and the inter-luteal phase length is less than 12 days.

Luteal phase is a term that is used to describe the time period calculated from the day after

ovulation until the remainder of the cycle. If the luteal phase length is more than 19 days, the

cycle experiences the so-called ‘delayed luteolysis’, whereas if the inter-luteal phase lengthe

more than 12 days, the cycle experiences ‘delayed ovulation’. Both conditions may indicate

infertility. Robustness in the estrous cycle is thus violated whenever the cycle shows either

delayed luteolysis or delayed ovulation. Although the definition of robustness in this system

is different from the one that we discussed in Chapter 2, the general idea to investigate the

multi-parameter robustness region is the same. Therefore, the method that is presented in

Chapter 2 was adjusted to estimate the robustness region in this model. In this way we were

able to find parameter configurations that can lead to infertility in cows. This work is not

included in the thesis but published in [5].

6.2.2 Complexity reduction

One way out to overcome the complexity of a mathematical model for a large biological

system is by simplifying it through model reduction. Model reduction can be carried out

in several ways, and the choice for the most appropriate approach depends on the purpose

that one has in mind. For example, one could dissect a biological network into several sub-

networks or modules that are independent from each other. In this way, the biological network

is more manageable, easier to analyze, and the sub-networks can be studied independently.

Or, one could choose to restrict the system to components and reactions that are relevant
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for the functions of interest. This can be achieved through time-scale separation, sensitivity

analysis, or a lumping approach. Despite their power, these methods suffer from some weak-

nesses. Time-scale separation and lumping, for example, typically require transformation of

the original system of equations into another system before the reduction can take place. This

transformation hinders us in understanding the reduced model. Furthermore, these methods,

including sensitivity analysis, require prior knowledge on the true parameter values of the

model before they can be applied; otherwise, the reduction results are not reliable. There-

fore, parameter identification, which is often the most problematic issue in systems biology,

remains the bottle neck.

The reduction method that we presented in Chapter 3 utilizes the concept of the so-called

“admissible region”, that is a region in parameter space where the model outcomes match

the observed data within some given tolerance. Here, a parameter is considered redundant

when it can be set to zero or to infinity whereas the others can be re-optimized such that the

model outcomes are still in a good agreement with the dataset. In contrast to the methods

that we mentioned above, our method does not require a transformation, thus the biological

interpretation on the reduction result is straightforward. Furthermore, it does not need prior

knowledge on the true parameter values; yet, the model becomes smaller and has less pa-

rameters. From an identification point of view, the parameters that can be removed are those

that are badly identified, since the available data can still be fitted without their presence in

the model. Indeed, it is the power of our method that it can be applied to a model for which

its parameters have not yet been identified. In this way, our approach results in a model in

which the parameters are more identifiable. Conversely, our method is not applicable if all

the parameters in the model are well-identified.

When we have reduced a model, we could consider the question, whether the remaining

model can replace the full/complex model. To answer this question, we must first define what

requirements a reduced model has to fulfil in order to replace the full model. In my opinion,

there are at least two conditions that have to be satisfied. First, the reduced model should

be able to fit the observed data quite well; and second, the reduced model should have the

same ability as the full model to reliably predict the behavior of the system for any testable

experimental condition. The method that we presented in Chapter 3 only assures the first re-

quirement. To satisfy the last requirement, in Chapter 4 the reduction method is extended by

combining it with a model discrimination method. The discrimination method is commonly

used to choose the most appropriate model among many alternatives to represent biological

systems. Here it is used to find whether there exists an experimental condition that can dis-

tinguish the reduced model from the full model. The most significant experimental condition

is the one that maximizes the distance between the output of the reduced model and that of

the full model. If there is such kind of condition, a new experiment based on the setting that

is found by model discrimination is carried out, and the new observed data is combined with

the previous data and the reduction is re-performed. Otherwise, we may be confident that the

reduced model has powerful prediction capabilities. The model discrimination in our method

can also be viewed as a way to verify or falsify whether the omitted components, reactions,

and/or parameters in the reduced model give a meaningful contribution to the model predic-

tion. If they do, the dataset from the new experiment will confirm this so that in the next

reduction, the method cannot remove the corresponding components and/or parameters.
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As already mentioned above, identifying parameters in systems biology models with a

high accuracy is often very difficult. As a result, most parameters will have large uncertain-

ties, which is related to “ parameter sloppiness” [6]. In spite of this, surprisingly, Gutenkunst

et.al. find that the large uncertainty in the parameters does not always correlate to a large

discrepancy in the model prediction. In contrast, the uncertainty in model predictions could

be already tight and this occurs for all the models they examined. Therefore, to obtain a use-

ful model, they suggest to focus on model prediction rather than on parameter identification.

The method that we presented in Chapter 4 shares the same spirit. Our approach is based

on minimizing the discrepancy between the model prediction from the reduced model and

that of the full model. The remaining parameters in the reduced model might still have large

uncertainties, but the correspondence between the model prediction from the reduced model

and that of the full model is very good. If required, additional parameter identification could

be carried out on the remaining parameters in the reduced model. Since the reduced model

contains less parameters, parameter identification can be carried out more efficaciously.

The more informative the dataset incorporated in the reduction is, the more reliable the

prediction of the reduced model is. By applying reduction, we arrive at a simple but powerful

model. It is important to realize, however, that typically only a limited number of components

can be observed in experiments and only several factors in experiments can be changed. At

the end, it is always crucial to keep in mind which functionality we want to preserve in the

reduced model. Otherwise, we will arrive at a reduced model that does not serve our purposes.

6.2.3 Understanding of the cell cycle in tomato fruit pericarp

In the last part of this thesis, i.e., Chapter 5, we have developed a mathematical model to de-

scribe the cell cycle process in tomato fruit pericarp. In this system, the cell undergoes a com-

plete cell cycle for several rounds including cell division, and then it jumps to a partial cell

cycle where the division no longer occurs. This partial cycle is known as endoreduplication.

Several putative mechanisms that might trigger endoreduplication have been proposed. To

understand better the underlying mechanisms, we develop and analyze a mechanistic model

in which the interactions between the cell cycle regulators, such as ‘Cyclin Dependent Ki-

nase (CDK)’, SIM (a plant-specific class of CDK inhibitor), and the CDK inhibitor KRP, are

described using differential equations. The model is based on the cell cycle model of Ara-

bidopsis trichomes [7], however, it is adapted for tomato. For example, in the Arabidopsis

model, the cyclin production does not depend on cell mass whereas in our model it does. This

is necessary to ensure that the cyclin production increases as the cell grows. Furthermore, in

our model, the auxin hormonal regulation is taken into account acting as a trigger for en-

doreduplication. Since the connection between auxin and SIM in tomato is not yet unraveled,

the role of SIM in inhibiting the CDK is taken over by KRP in our model.

The involvement of cell mass in cyclin production makes our model similar to the mod-

els from Novak and Tyson, see e.g., [8, 9, 10]. However, they propose that the cell mass

influences the cyclin production rather than the ratio of cell mass and DNA denoted as cell

mass/DNA. As our model is designed to represent both the regular mitotic cycle and the

endoreduplication cycle, we make use of two discrete events; the first is halving of the cell

mass/DNA, which occurs when the cell has accomplished the S phase, and the second is halv-



112 Chapter 6. General discussion

ing of the cell mass, which corresponds to cell division. Therefore, we employ two threshold

values. The first is for SPF (S-phase Promoting Factor) to trigger the duplication of DNA and

the second one is for MPF (M-phase Promoting Factor) to trigger cell division. In contrast,

the models from Novak and Tyson have only one discrete event, namely halving of the cell

mass. Accordingly, they only have one threshold value, which is assigned to MPF to specify

cell division.

The role of putative mechanisms due to the interaction between auxin and cyclin produc-

tion, and auxin and CCS52A actvitivy were investigated. We found that each of them could

on its own lead to the transition from classical cell cycle to endoreduplication. However, their

combinations could also lead to the same result. When we investigated the function values

that represent the interaction between auxin and cyclin production, and auxin and CCS52A,

we found that in parameter space these values may vary over quite a large region. In terms of

robustness that we discussed above, this large region reflects the insensitivity of the transition

to endoreduplication with respect to the variation of auxin effects on cyclin production and

CCS52A activity. We conclude that cell cycle in tomato undergoes the transition to endoredu-

plication in a robust manner. This conclusion, however, need confirmation from experimental

work.

The model that we developed is a qualitative model. Our main concern was to build in

the transition from the classical cell cycle to endoreduplication. Therefore, the role of other

proteins that do not play a role in that transition, e.g., Wee1 that governs the length of the

G2 phase, is not incorporated. By not incorporating the non-essential components for the

functioning that we are interested in, we consciously applied model simplification.

6.3 Future research

In this thesis, we have developed methodologies that are expected to overcome some difficul-

ties arising from complexity in systems biology. We realize that there is still a huge number

of problems that have to be solved to obtain a better understanding of biological systems.

Here we discuss several possibilities how our work could be extended to solve some of these.

When we model biological processes, we might have incomplete information about the

system and this leads to an incomplete model [11]. The incompleteness of the model can

lie for example in still unknown reactions in a biochemical network. The method that we

presented in Chapter 4, might be extended to solve the problem of incompleteness. This

can be done, e.g., by re-describing the model so that each node in the network influences all

nodes. The new model obtained in this way is called the full model: it contains all possible

reactions between all the nodes. A model reduction and model discrimination are then carried

out to the full model to find out which reactions should be preserved to represent the dataset.

However, this technique is certainly not efficient since the number of reactions and parameters

in the full model will increase dramatically. Moreover, each reaction can regulate the node

in positive or negative ways. Finding an efficient extension to handle this problem, could

therefore, be a future research topic.

The multi-parameter method to estimate robustness regions in Chapter 2 could also be

extended to systems that have biological functions other than maintaining stable oscillation.
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In this case, it is important to realize that robustness is not always related to bifurcations in

the classical sense. Examples of this extension are found in the bovine estrous cycle and in

the endoreduplication transition in tomato fruit that we discussed above. In the near future,

the robustness of the endoreduplication transition will be investigated further by taking into

account other putative mechanisms.

For tomato cell cycle, the role of KRP in triggering endoreduplication still has to be

investigated. KRP is a protein that inhibits CDK and hence, MPF. KRP is negatively regulated

by auxin, so when the auxin level drops, more KRPs become available in the cell. The more

KRPs are available in the nucleus, the lower the MPF concentration will be. When the MPF

concentration is not high enough, the mitosis will be blocked and hence the cell will go into

endoreduplication. Most likely, this mechanism also contributes to the robustness transition

to endoreduplication. Interestingly, however, when there are too much KRPs in the cell, not

only the mitosis will be blocked, but also the DNA replication. This KRP dose-dependent

mechanisms should be incorporated to improve the current model in Chapter 5.

The current tomato cell cycle model in Chapter 5 is still a qualitative model. The parame-

ters are adjusted from the model in Arabidopsis. To really reflect the behavior of the system,

more quantitative data should be obtained from experimental work and parameter estimation

should be carried out accordingly. Furthermore, in this model the effects of a sudden drop

in auxin concentration are described as step functions in the various putative mechanisms.

It will be interesting, of course, to describe this effect dynamically. To make it even more

interesting, Wee1 can be incorporated in the future model so that the length of G2 phase will

be closer to reality. Finally, the current model contains not less than 42 parameters. It would

also be interesting to check whether some of the parameters are redundant in governing the

cell cycle so that we could arrive at a reduced cell cycle model for tomato.
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Summary

Most biological processes are very complex as they results from a highly intricate interplay

between many biological components and environmental conditions. This interplay is es-

sential as nearly all biological functions that appear to be fundamental in nature come into

existence as emergent properties, i.e., they are only present when the components are in full

interaction and disappear if one decouples the different modules. The study of biological

systems, therefore, will only be really successful if it is carried out at the systems level. This

insight has led to the introduction of the term systems biology. Understanding biological

systems at the systems level, however, turns out to be difficult due to the intricate interac-

tions between the components of the systems in time and space. So, to gain information on

the underlying biological processes from data, one needs to integrate them with a modeling

approach. Of course, the complexity in biological systems translates itself into the complex-

ity of biological models. This complexity, which is indicated by large number of involved

components and parameters in the model, together with the nonlinear interactions give rise

to several critical issues, e.g., hard understanding of the dynamical behavior, difficulty in

parameter identification, and very long computing times. Therefore, mathematical methods

that can efficaciously tackle the complexity are required. In this thesis, we develop methods

to handle complexity. We focus on three topics: a) method development to analyze robust-

ness of biological models, b) method development to reduce model complexity, and c) model

development to elucidate the cell cycle process in tomato fruit pericarp.

One of the crucial features of biological systems that need to be understood is robustness.

Robustness is the ability of a system to maintain its functioning although it undergoes strong

internal or external perturbations. Since robustness is an essential feature of any biological

system, any mathematical model describing a living system should reflect this property. Ro-

bustness of a model is determined by answering the question how strong the parameters of the

model could be perturbed so that the qualitative behavior of the system does not change. An

example of such a qualitative change is the transition from oscillatory behavior to a steady

state equilibrium. It is by no means simple to understand the robustness of complex mod-

els. For example, if there are many parameters in the model, it is very hard to find which

parameter combinations are responsible for the robustness of the system. Many methods to

evaluate robustness of biological models suffer from the so-called ”dimensional curse”, i.e.,

the computing time scales exponentially with dimension. For example, if we would use a

Monte-Carlo approach for estimating the shape of a robustness region in parameter space,
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we would certainly be confronted with this limiting factor. In Chapter 2, we developed an

efficient method to estimate the robustness region of biological models that contain large

numbers of parameters. We focus on parametric robustness of the models that show stable

oscillatory dynamical behavior. In this case, robustness is violated whenever the system fails

to preserve its stable oscillatory behavior. Therefore, robustness in this context is highly con-

nected to the bifurcation concept in mathematics. In our approach, the robustness region is

constructed by scanning the parameter space in orthogonal directions. Starting in a so-called

nominal point in parameter space for which a stable periodic behavior exists, the parameter

space is scanned along orthogonal directions to detect where along these lines bifurcations

occur. This yields an initial estimate of the robustness region that is gradually improved by

shifting the nominal point and varying the directions. Our method scales linearly with the

number of parameters and is therefore highly efficient for models that have large numbers of

parameters.

One way to overcome problems that arise from the complexity of a model is by simplify-

ing it, also referred to as reduction. A suitable reduction method may lead to a reduced model

that is still reliable for a given purpose, but much easier to manage. In Chapter 3, we devel-

oped a novel reduction method, in which components and/or reactions that do not contribute

to the dynamics of the system are removed from the model. This yields a reduced model with

fewer parameters that can still represent observed data. Our method is based on the so-called

‘admissible region’ concept, that is a region in parameter space where the model outcomes

match the observed data within some given tolerance. From the shape of this region, im-

portant conclusions can be drawn. For example, if this region includes a part of one of the

parameter axes, this parameter can apparently be set to zero. If, on the other hand, this region

extends to infinity in some direction, this indicates that lumping of nodes might be allowed.

Therefore, a parameter in the model can be removed whenever it can be set to zero or to a

large value while the others can be re-optimized such that the model outcomes still fit the

dataset. The reduction can be carried out systematically by first applying the node reduction,

then parameter reduction, and finally lumping some nodes. In contrast to available methods

in the literature, to apply our reduction, the original model does not need to be transformed.

This has the advantage that the results of the reduction can be easily biologically interpreted.

In addition, our method does not require prior knowledge on the true parameter values as is

the case in, e.g., time-scale separation or sensitivity analysis. Yet, the redundant components

and parameters are removed so that we end up with a smaller model with fewer parameters.

In this way, our method may help parameter identification more efficaciously.

A reduced model obtained with the method described in Chapter 3 will be a satisfac-

tory representation of the system for the conditions under which the data used are obtained.

However, if one requires more and wants the reduced system to represent the original model

for any possible experimental condition, the reduction method in Chapter 3 is not suitable.

Therefore, in Chapter 4, the method is extended by combining the reduction method in Chap-

ter 3 with a model discrimination method. Model discrimination method is commonly used to

select the most suitable model among available alternatives to represent a biological system.

Here we use it to find whether there exists an experimental condition that can discriminate

between the reduced model and the original full model. If yes, then a new experiment based
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on that condition is performed to obtain a new dataset. The dataset is combined with the

previous dataset and the reduction is repeated. This procedure leads to reduced models that

can in the experimental practice not be discriminated from their original full models and thus

form real substitutes. When applied to a particular model for a phenomenon, our extended

reduction procedure leads to the insight which parts of the original model are redundant and

which parts belong to the core of the model.

In Chapter 5 we presented research results that are of a slightly different character com-

pared to the methodological approaches in the preceding chapters. Here, we developed a

mathematical model to describe the cell cycle in tomato fruit pericarp. Special attention is

paid to the transition into a partial cycle, also referred to as ‘endoreduplication’. An ex-

haustive literature research on the putative mechanisms that may trigger this transition is

discussed. The knowledge is then put in the form of a mathematical model. We discovered

that although each putative mechanism can on its own lead to this transition, it is more likely

that nature combines them since this improves the robustness of the transition.

Finally, in Chapter 6, the results of our work are summarized and elaborated further. Also

some future work is suggested.
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Samenvatting

De meeste biologische processen zijn zeer complex, omdat zij voortkomen uit een uiterst

ingewikkeld samenspel van verschillende biologische componenten en omgevingscondities.

De interacties tussen de verschillende componenten zijn essentiee,l omdat die bepalen welke

biologische functies van een systeem tot uiting komen. Deze functies worden ’emergent’

genoemd omdat ze het resultaat vormen van het samenspel van de componenten. Ze kun-

nen verdwijnen als n van de componenten wordt verwijderd of als n van de interacties

wordt geblokkeerd. Het bestuderen van biologische systems zal alleen dan succesvol zijn

als daarbij holistische gedacht wordt: het systeem is intrinsiek een samenstelling van di-

verse componenten. Dit inzicht heeft geleid tot de introductie van de term ’systeembiologie’.

Het op deze manier bestuderen van een biologisch systeem blijkt moeilijk te zijn vanwege

de ingewikkelde interacties van de componenten die plaats vinden zowel in tijd en als in

plaats. Om uit data informatie te verkrijgen over de onderliggende biologische processen

is het daarom nodig dat de data gecombineerd worden met een modelmatige aanpak. De

complexiteit van biologische systemen vertaalt zich uiteraard naar de complexiteit van de bi-

jbehorende biologische modellen. Deze complexiteit komt vooral tot uiting in het feit dat de

modellen veel variabelen en veel parameters hebben. In combinatie met sterk niet-lineaire

interacties leidt dit tot moeizaam begrijpen van het dynamisch gedrag, problemen met pa-

rameter identificatie en zeer lange rekentijden. Daarom zijn er wiskundige methoden nodig

die op een effectieve manier de modelcomplexiteit kunnen reduceren. In dit proefschrift on-

twikkelen we dergelijke methoden om in de praktijk goed om te kunnen gaan met complexe

modellen, waarbij we ons richten op a) methoden voor het analyseren van de robuustheid van

biologische modellen, b) methoden om de modelcomplexiteit te reduceren, en c) het opstellen

van een model voor de celcyclus in tomaat.

En van de cruciale eigenschappen van biologische systemen is ’robuustheid’. Robuus-

theid is het vermogen van een systeem om te kunnen blijven functioneren ook als er sterke

interne of externe verstoringen optreden. Omdat robuustheid een essentile eigenschap is van

iedere biologisch systeem moeten ook biologische modellen deze eigenschap bezitten. De

mate van robuustheid van een model kan bepaald worden door de vraag te beantwoorden hoe

sterk de modelparameters verstoord kunnen worden zonder dat het kwalitatieve gedrag van

het model verandert. Een voorbeeld waarbij het gedrag wel kwalitatief verandert, is de over-

gang van oscillerend gedrag naar een toestand waarin het gedrag constant is. Het is zeker niet

eenvoudig om de robuustheid van complexe modellen te begrijpen. Zeker als er veel param-

eters zijn is het moeilijk na te gaan welke parameters verantwoordelijk zijn voor robuustheid
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en welke niet. Vele methoden om modelrobuustheid te bepalen lijden aan de zogeheten ’di-

mensievloek’, dat wil zeggen dat de rekentijd exponentieel schaalt met het aantal parameters,

oftewel met de dimensie van de parameterruimte. Bijvoorbeeld, als we een Mont-Carlo aan-

pak zouden volgen om de vorm van de robuustheidsregio in de parameterruimte te bepalen,

dan zouden we zeker met deze beperkende factor te maken krijgen. In Hoofdstuk 2 hebben

we een methode ontworpen om de robuustheidsregio te schatten, die ook efficint is indien

er heel veel parameters zijn. We richtten ons daarbij op modellen die stabiel oscillerend

gedrag vertonen. In dit geval is de robuustheid verbroken wanneer het systeem niet meer op

een stabiele manier oscilleert. In deze context is robuustheid dus nauw verbonden aan het

concept ’bifurcatie’ in de wiskunde. In onze aanpak wordt een schatting van de robuustheid-

sregio gevonden door de parameterruimte te scannen langs onderling orthogonale richtingen,

waarbij er gestart wordt in een ’nominaal’ punt waarvan het bekend is dat het in de robuus-

theidsregio ligt. De schatting van de vorm van de robuustheidsregio wordt verfijnd door het

nominale punt te verschuiven en de orthogonale richtingen opnieuw te kiezen. De methode

is bijzonder efficint omdat de rekentijd lineair schaalt met het aantal parameters, zodat ook

zeer grote aantallen parameters geen beletsel vormen.

Een manier om de problemen ten gevolge van de complexiteit van een model terug te

brengen is om de modelcomplexiteit te reduceren. Een geschikte reductiemethode leidt tot

een model dat nog steeds de gewenste eigenschappen heeft maar veel eenvoudiger is om te

hanteren, In Hoofdstuk 3 presenteren we een nieuwe methode, waarbij componenten en/of

interacties die niet wezenlijk bijdragen aan het functioneren van het model eenvoudig wor-

den verwijderd. Dit leidt dan tot een eenvoudiger model met minder parameters, dat toch

nog steeds de data kan beschrijven. De methode is gebaseerd op het concept van ’toegestane

regio’, dat is een gebied in de parameterruimte waarbinnen het model de data binnen zekere

nauwkeurigheid kan reproduceren. De vorm van deze regio geeft belangrijke informatie voor

mogelijke reductie. Bijvoorbeeld, als deze regio n van de parameterassen snijdt, dan kan deze

parameter kennelijk op nul gezet worden. Als aan de andere kant deze regio zich uitstrekt

tot oneindig, dan is dit een indicatie dat componenten van het model samengenomen kunnen

worden. Er zijn dus twee redenen waarom een parameter verwijderd kan worden. In het

eerste geval wordt de betreffende parameter op nul gezet en er wordt nagegaan of, door het

opnieuw fitten van de andere parameters, het model de data kan blijven genereren. Indien dit

het geval is kan de betreffende term in de vergelijkingen verwijderd worden uit het model. In

het tweede geval wordt de parameter een zeer grote waarde gegeven en wordt weer nagegaan

of, door het opnieuw fitten van de andere parameters, het model de data kan blijven gener-

eren. Indien dit het geval is geeft dit aan dat er twee variabelen in het model samengenomen

kunnen worden, wat in termen van modelvergelijkingen inhoudt dat het model toe kan met n

vergelijking minder. In tegenstelling tot bestaande reductiemethoden, behoeft in onze aanpak

het model niet te worden getransformeerd. Dit heeft het voordeel dat het gereduceerde model

eenvoudig te interpreteren blijft. Een bijkomend voordeel is dat onze methode niet vereist

dat er voorkennis beschikbaar is over de parameterwaarden, zoals het geval is bij methoden

zoals ’tijdschaalseparatie’ en ’gevoeligheidsanalyse’. Omdat onze aanpak leidt tot sterk gere-

duceerde modellen met een sterk gereduceerd aantal parameters, wordt het schatten van de

overblijvende parameters simpeler.

Een model dat is gereduceerd met behulp van de methode in Hoofdstuk 3 vormt een
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goede representatie van het oorspronkelijke model zolang men zich beperkt tot de data die

gebruikt werden in de reductie. Echter, indien men meer wil en ook eist dat het gereduceerde

model het oorspronkelijke model kan vervangen onder alle mogelijke condities, dan is de

methode in Hoofdstuk 3 niet geschikt. Daarom hebben we in Hoofdstuk 4 deze methode

uitgebreid met behulp van de techniek van ’modeldiscriminatie’. Bij modeldiscriminatie gaat

het erom het meest geschikte model te kiezen uit een groot aantal beschikbare modellen zo-

danig dat een gegeven biologisch systeem zo goed mogelijk wordt gerepresenteerd. Hier

gebruiken we deze methode om na te gaan of er een experimentele conditie bestaat waarin

het gereduceerde model en het oorspronkelijke model zich duidelijk verschillend (binnen de

aangenomen marges) gedragen. Als het laatste het geval is dan wordt de dataset behorend bij

deze conditie toegevoegd aan de oorspronkelijke data en de reductiemethode wordt toegepast

op beide datasets tegelijk. In het algemeen zal dit een minder gereduceerd model oplev-

eren. Ook van dit model wordt weer getest of er een experimentele conditie bestaat waarin

het gereduceerde model en het oorspronkelijke model zich duidelijk verschillend (binnen de

aangenomen marges) gedragen. Indien dit het geval is, dan wordt de betreffende dataset weer

toegevoegd aan de reeds gebruikte twee datasets. Enzovoorts. Het blijkt dat het veel mod-

ellen te reduceren zijn, ondanks dat deze methode zeer strenge eisen stelt. Het uiteindelijke

gereduceerde model is in geen enkel opzicht (binnen zekere toegestane onnauwkeurigheid)

te onderscheiden van het oorspronkelijke model en is toch (meestal) veel simpeler. Deze

aanpak leidt tot goed inzicht welke onderdelen van een model echt essentieel zijn en welke

redundant.

In Hoofdstuk 5 presenteren we onderzoeksresultaten die een enigszins ander karakter

hebben vergeleken met de voorgaande hoofdstukken. In dit hoofdstuk ontwikkelen we een

model voor de celcyclus van de tomaat. Speciale aandacht wordt besteed aan de overgang van

de gewone cyclus naar een partile cyclus, ook wel aangeduid als ’endoreduplication’. In dit

hoofdstuk hebben we een uitputtende literatuurstudie over dit onderwerp opgenomen, waarin

de mogelijke mechanismen die deze overgang kunnen veroorzaken worden samengevat. Deze

kennis is gebruikt om voor dit fenomeen een wiskundig model op te stellen. Wij ontdekten dat

elk van de verschillende mechanismen separaat de overgang kunnen bewerkstelligen, maar

dat in de natuur waarschijnlijk een combinatie wordt gebruikt omdat dat leidt tot een veel

robuuster systeem.

Tenslotte, in Hoofdstuk 6 worden de resultaten van dit werk samengevat en verder bedis-

cussieerd. Ook worden er suggesties gedaan hoe dit onderzoek voorgezet kan worden.
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