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“Unfortunately, all these really valuable treasures of a science remain 

inaccessible to the people and do not bring to him benefit, which can from 

them be expected… it is necessary to reduce all available scientific riches 

in one connected whole and to state the given results by popular 

language.” 

 

V.V. Dokuchaev, 1879 
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Chapter 1 

Introduction 

Researchers in the field of environmental sciences often face a lack of 

climatic data. This results in the usage of a number of easy, but very rough, 

solutions. Examples include the use of simple linear relationships with 

altitude to estimate temperature differences. Another approximation 

includes the use of Thiessen polygons to identify weather stations that are 

nearest to each location. Thiessen polygons ignore the spatial variation 

within the polygons and the weather stations are considered to be 

representative for them. Although the impact of these generalizations is not 

very well known, it is likely that they may result in large errors. This is 

especially true for complex mountainous areas where short distance 

variation in climate and weather conditions is likely to occur. Recent 

technological developments in e.g. geostatistics, modeling, remote sensing 

and GIS have made an enormous impact on the analytical capacity in 

environmental sciences. These developments allow for new, innovative 

approaches to tackle data scarcity through the use of secondary data. In 

addition, these new tools led to more efficient ways to structure the 

collection of additional data. For climatic data, this includes the use of 

geostatistics to interpolate weather data and the use of weather generators  

In the Peruvian and Ecuadorian Andes, land use and land resource 

studies find themselves in a data-scarce environment where only few 

weather stations are available. Although climate is a very important driving 

factor behind the processes in land resources and land use researchers 

have to rely on crude generalizations. In this thesis new interpolation 

methods are developed for weather data. These models have been 

developed for the complex mountainous terrain of the Andes. To check the 
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validity and use of these models they were tested in a number of land 

resource and land use studies dealing with climate forecasting for 

agricultural land use, digital soil mapping and regional land use analysis.  

 

1.1 Objectives 

The main objective of the present thesis is: 

• To resolve the data crisis in climate and weather data for land 

resource and land use studies.  

Specific objectives of the present thesis are: 

• To develop new efficient methods to interpolate weather and 

climate data using mechanistic and/or empirical techniques.  

• To analyze the use of global seasonal-climate forecast models 

at the local level in combination with crop growth simulation 

models and local predictors. 

• To evaluate the interpolated, high-resolution weather data for 

land resource and land use studies. 

 

1.2 Study area 

This study has been carried out in the Andean highlands of Peru and 

Ecuador (Figure 1.1). The study area in Peru is located near the town of 

Cajamarca and includes the La Encañada and Tambomayo watersheds. 

The two watersheds measure 165 km2 and range in altitudes from 2950 to 

4000 meters above sea level. Soils are classified as Entisols, Inceptisols 

and Mollisols following the Soil Taxonomy (USDA and NRCS, 1998). 

Production systems are mainly based on natural and improved pastures 

and crops, basically Andean roots and tubers (e.g. potato, oca and olluco), 

wheat and barley (Tapia, 1995). Agriculture in the area is marginal and it is 
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located on steep hillsides of up to 65% slope (Romero and Stroosnijder, 

2001). Per hectare annual income value ranges from US$ 400 to US$ 3200 

(Valdivia, 2002) and per capita income is usually less than US$ 1 per day 

(Baigorria et al., 2002). The department of Cajamarca where the 

watersheds are located is considered one of the most economically 

depressed areas in Peru.  

 

Fig. 1.1. Location of La Encañada and Tambomayo watersheds in Peru and Chitan and 
San Gabriel watersheds in Ecuador. 
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The second study area corresponds to the Chitan and San Gabriel 

watersheds in northern Ecuador. The two watersheds cover 95 km2 and 

range in altitude from 2700 to 3840 meters above sea level. Production 

systems are mainly based on a potato-pasture rotation where potato and 

milk are the two main commercial products. Crops like wheat, maize, peas, 

barley, beans, broad beans and some Andean roots and tubers are minor 

components of the cropping systems (Crissman et al., 1998). Agriculture in 

the area is developed on steep hillsides. The province of Carchi where the 

watersheds are located is considered the most important potato production 

area in Ecuador (Crissman et al., 1998). Soils are classified as Andisols 

following the Soil Taxonomy (USDA and NRCS, 1998). 

 

1.3 Outline of the study 

The different chapters in this thesis deal with the interpolation 

techniques (Chapter 2-4), the use of seasonal climate-forecasts for local 

agricultural decisions (Chapter 5) and the application of high-resolution 

climatic data for land resource (Chapter 6) and land use studies (Chapter 

7). 

Chapter 2 deals with the spatial and temporal distribution of the 

atmospheric transmissivity in complex terrain. The variation in the 

atmospheric transmissivity is an important starting point for further 

interpolation of weather data. The chapter shows that in complex terrains, it 

is not possible to generalize atmospheric transmissivity as often done in 

more homogeneous conditions. It is necessary to differentiate the factors 

that control climate, topography, and even sea currents affecting the 

incoming solar radiation in a specific area. In this chapter empirical models 

to estimate this variable as a function of sunshine hours as well as 

temperature swing are calibrated and validated for it use in futures chapters 

of this thesis. 
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In Chapter 3-4 interpolation techniques for weather data are developed 

for the la Encañada and Tambomayo watersheds in Peru. Chapter 3 deals 

with the development of a process-based interpolation model for maximum 

and minimum temperatures, based on the net radiation balance when 

these temperatures occur twice in a day. The output maps are used in 

combination with the empiric models for atmospheric transmissivity 

developed in Chapter 2 resulting in detailed resolution maps of incoming 

solar radiation. Chapter 4 deals with the development of a process-based 

interpolation model of rainfall based on the digital mountain wave model 

(DMWM). This DMWM is defined as a digital representation of the three-

dimensional cloud-route determined by the interaction between topography 

and wind direction. The DMWM establishes a displacement surface for 

movement of the bottom of an air mass following a predetermined wind 

direction. Chapter 3 and 4 face the lack of data as well as the 

representativeness of the weather stations data in complex terrains leading 

to inconveniences in applying conventional geostatistical methods.  

Chapter 5 analyzes the possibility to use seasonal-climate forecasts 

produced at global scales (pixel sizes of 220 x 220km) to decision makers 

at the farm level and watershed level (pixel sizes of 100 x 100 m). The 

chapter analyzes the different levels of information that farmers and 

agricultural related institutes currently use to make operational, tactical and 

strategic decisions (Bouma et al., 1999). Weather and seasonal-climate 

forecast, soils, and land use management are integrated and translated to 

the farmers as forecasted crop productions. 

In chapter 6, the interpolation models developed in the previous 

chapters are applied in the Ecuadorian Andes to produce high-resolution 

maps of the different meteorological variables. The high-resolution climatic 

data are subsequently used for a digital soil mapping exercise. In digital soil 

mapping we use auxiliary information to explain the variation in soils. 

Besides parent material, topography, vegetation and time, climate is one of 

the five main soil-forming factors. The high-resolution climatic data provide 
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an excellent entry point to obtain better insight in the spatial variability of 

key soil properties like soil organic matter. 

Chapter 7 illustrates the value of the newly generated high-resolution 

data in a regional land use analysis project. In the project, the tradeoff 

analysis model (Crissman et al., 1998, Stoorvogel et al., 2004a) is applied 

for the watersheds in the Ecuadorian Andes to estimate the tradeoffs 

between economic and environmental indicators. The land use analysis 

relies heavily on high resolution climatic and soil data to estimate expected 

crop productions with crop growth simulation models and pesticide leaching 

with the corresponding leaching models. Key question that is being 

answered in this chapter is how the use of the high-resolution data changes 

the outcomes of the model application.  

The individual chapters have been submitted as publications in a 

peer reviewed scientific journals; therefore some descriptive information 

about the watersheds is some times duplicated.  

 



Based on: Baigorria, G.A., E.B. Villegas, I. Trebejo, J.F. Carlos and R. Quiroz. 2004. Atmospheric 
transmissivity: distribution and empirical estimations around the central Andes. International 
Journal of Climatology, 24(9): 1121 – 1136. Copyright © 2004 the Royal Meteorological Society, 
first published by John Wiley & Sons Ltd. 

Chapter 2 

Atmospheric transmissivity: distribution and empirical 
estimation around the Central Andes 

This study of the distribution in space and time of atmospheric 

transmissivity τ takes into account the fact that, in complex terrain, many 

factors affect this variable; thus, it is not possible to use the generalizations 

that can be applied under more homogeneous conditions. Climatic controls, 

topography and even sea currents have important effects on clouds and 

aerosols affecting τ, simultaneously leading to differences in the distribution 

of incoming solar radiation. Different models exist to estimate incoming 

solar radiation as a function of relative sunshine hours (observed sunshine 

hours/theoretical sunshine hours, n/N) or differences between maximum 

and minimum temperatures ∆T. We calibrated, validated and evaluated four 

of these empirical relations based on data from 15 weather stations in 

Peru. Models were calibrated using 66% of the daily historical record 

available for each weather station; the rest of the information was used for 

validation and comparison. The Ångström-Prescott model was used to 

estimate incoming solar radiation based on n/N, and gave the best 

performance of all the models tested. The other models (Bristow-Campbell, 

Hargreaves, and Garcia) estimated incoming solar radiation based on ∆T. 

Of all the models in this group, the Bristow-Campbell model performed 

best; it is also valuable because of the physical explanation involved. The 

empirical coefficients of all the models evaluated are presented here. Two 

empirical equations are proposed with which to estimate values of the 

coefficients bB and cB in the Bristow-Campbell model, as a function of ∆T 

and latitude, allowing the model to be applied to other study areas. 
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2.1 Introduction 

Atmospheric transmissivity τ in Peru is mainly affected by climatic 

controls, such as the semi-permanent high-pressure cells over the Pacific 

and Atlantic Oceans, the Bolivian high (a high-pressure cell in the upper 

levels of the troposphere), the near-equatorial trough, the cool Humboldt or 

Peruvian Current, and the Andes mountain range. Over space and time, 

the interactions of all these climatic controls over complex terrains cause 

different moisture features in the atmosphere affecting τ. In conjunction 

with the apparent movement of the sun from one hemisphere to the other, 

a complex pattern of incoming solar radiation develops that does not just 

correspond to the effects of altitude and latitude. 

Incoming solar radiation H is one of the most important variables in 

meteorology, since it is the energy source underlying the majority of 

processes on our planet. Both the total amount of incoming solar radiation 

and the distribution of that radiation are becoming increasingly important 

variables in agricultural sciences, due to the introduction of process-based 

models used to simulate crop growth (Tsuji et al., 1998). The development 

of photovoltaic panels has provided another reason for understanding the 

variation that occurs in incoming solar radiation over space and time, since 

its availability and distribution determine the size of the photovoltaic panels 

needed for a given application or location. However, despite their 

importance, measurements of incoming solar radiation are infrequent, since 

the equipment is costly and highly specialized. In developing countries like 

Peru, stations where incoming solar radiation can be measured are few 

and far between. The high spatial variability that occurs both in topography 

and climate means that irradiation measurements are representative of 

only very small areas. 

Several methods to estimate incoming solar radiation using radiative 

transfer models and satellites have been developed around the world 

(Atwater and Ball, 1978; Weymouth and Le Marshall, 1994; Bastos et al., 
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1996; Ceballos and Moura, 1997; Dissing and Wendler, 1998; Garatuza-

Payan et al., 2001; Gultepe et al., 2001). However, they have all been 

developed away from mountainous areas because the lack of data for 

calibration and validation, and because of the complexities in topography, 

thus needing more complex algorithms to explain the radiative fluxes. 

Therefore, it is necessary to generate and calibrate empirical 

relationships that estimate incoming solar radiation as a function of other 

known meteorological variables, e.g. as performed by Ångström (1924), 

Prescott (1940), Frère et al. (1975), Cengiz et al. (1981), Hargreaves and 

Samani (1982), Bristow and Campbell (1984), García (1994), Goodin et al. 

(1999), Mahmood and Hubbard (2002). Relative sunshine hours, 

cloudiness and temperature are frequently measured by weather stations. 

The use of these variables to estimate incoming solar radiation can help in 

understanding its variation in time and space. 

 

2.2 Data 

Peru is located between latitudes 0°01‘48“S and 18°21‘03“S, and 

between longitudes 68°39‘27“W and 81°20‘11“W. Ranging in altitude from 

0 to 6768 meters above sea level, the country has a surface area of 1.29 

million km2. Fifteen weather stations from the Peruvian national 

meteorology and hydrology service (SENAMHI), all containing instruments 

for measuring incoming solar radiation, sunshine hours and maximum and 

minimum temperatures, were used in the present work. These weather 

stations (Table 2.1) are located throughout Peru and cover the variation 

that occurs between the coastal, highland and jungle areas going from west 

to east as well as the length of the country from north to south (Figure 2.1). 

The climatic variation in these locations is presented in Table 2.2. 
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Table 2.1. Geographical location, historical records and instruments used to measure 
incoming solar radiation in Peru. 

 
ID Location 

Latitude 
(°S) 

Longitude 
(°W) 

Altitude 
(m) 

Historical 
records 

 
Instrument 

  1 Miraflores 5°10’ 80°37’ 30 1979-1992 Pyranometer 
  2 San Ramon SM 5°56’ 76°05’ 184 1972-1982 Actinograph 
  3 El Porvenir 6°35’ 76°19’ 230 1964-1971 Actinograph 
  4 Bambamarca 6°40’ 78°31’ 2536 1967-1977 Actinograph 
  5 Bellavista 7°03’ 76°33’ 247 1971-1973 Actinograph 
  6 Weberbauer 7°10’ 78°30’ 2536 1980-1985 Pyranometer 
  7 Huayao 12°02’ 75°19’ 3308 1977-1996 Pyranometer 
  8 A. von Humboldt 12°05’ 76°56’ 238 1968-1999 Pyranometer 
  9 Cosmos 12°09’ 75°34’ 4575 1986-1988 Pyranometer 
10 Granja Kcayra 13°33’ 71°52’ 3219 1980-1988 Pyranometer 
11 San Camilo 14°04’ 75°43’ 398 1978-1988 Pyranometer 
12 Chuquibambilla 14°47’ 70°44’ 3971 1980-1984 Pyranometer 
13 Puno 15°49’ 70°00’ 3820 1977-1993 Pyranometer 
14 Characato 16°27’ 71°29’ 2451 1978-1987 Pyranometer 
15 La Joya 16°35’ 71°55’ 1295 1967-1993 Actinograph 

 

 

Table 2.2. Main climatic characteristics of the locations. 

 

Location 

 

Incoming 
solar 

radiation 
(MJ m-2 day-1) 

Relative 
sunshine 
duration 

(%) 

Maximum 
temperature

(°C) 

Minimum 
temperature 

(°C) 

Total 
annual 
rainfall 
(mm) 

Coast      

Miraflores 20.7 56 30.7 19.3 216 
A. von Humboldt 14.6 40 23.3 15.5 16 
San Camilo 21.3 61 28.7 13.4 11 
La Joya 25.3 75 27.0 10.1 77 

Highlands      

Bambamarca 16.4 44 19.4 9.5 737 
Weberbauer 17.7 49 21.3 7.6 644 
Cosmos 17.7 46 9.2 -0.7 1047 
Huayao 21.6 56 19.6 4.4 765 
Granja Kcayra 19.6 53 20.7 3.7 674 
Chuquibambilla 21.9 59 16.8 -2.4 715 
Puno 22.9 70 14.7 2.6 753 
Characato 23.4 73 22.8 6.8 78 

Jungle      

San Ramon SM 16.8 41 31.3 20.8 2158 
El Porvenir 14.0 41 32.5 20.4 1041 
Bellavista 17.2 40 32.2 20.9 928 
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Fig. 2.1. Digital elevation model (DEM) of Peru and location of the weather stations used. 
Identification numbers are related with table 2.1. 

Data on incoming solar radiation were obtained from pyranometers 

and actinographs; sunshine hours were read from Campbell-Stokes 

heliographs. All the information used was recorded at hourly intervals, and 

was taken from the complete historical record of each weather station. 
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After the aggregation of the hourly data from all the meteorological 

stations into daily intervals, consistency analyses were performed. These 

analyses included: the identification of transcription errors caused when 

transferring data from manual files; the detection of systematic errors 

caused by instruments and present in bands; the identification of errors 

related to the reading of bands; and the identification of errors associated 

with measurement units and the use of conversion factors. In addition, 

comparisons were made of extraterrestrial incoming solar radiation Ho 

(Peixoto and Oort, 1992) and potential or theoretical sunshine hours N 

according to latitude. The behavior of the parameters over time was also 

included, in order to identify jumps within the historical record. 

Questionable data were analyzed individually, including checks of the 

synoptic characteristics for a specific day. Outliers in the data for which 

there was not apparent explanation were disposed of in order to avoid 

errors in the analysis. 

 

2.3 Methods 

2.3.1 Spatial distribution of the atmospheric transmissivity coefficient τ 

The τ (%) was calculated for all the weather stations considered in 

this paper using 

 100x
H
H

o

=τ  (1) 

where H (MJ m-2 day-1) is the measured incoming solar radiation, Ho  

(MJ m-2 day-1) is the extraterrestrial incoming solar radiation (calculated as 

a function of the ratio between actual and mean sun–Earth distance, 

latitude, solar declination and solar angle at sunrise). These values were 

plotted onto a map of the topography of the area. To allow spatial analysis 

of this variable, lines joining points with equal values of τ were plotted. 
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2.3.2 Model based on sunshine hours: Ångström-Prescott model 

The Ångström-Prescott model is the most frequently used model to 

estimate the relative incoming solar radiation H/Ho equivalent to the 

atmospheric transmissivity coefficient τ. It is based on relative sunshine 

hours n/N. This equation suggested by Prescott (1940), is a modification of 

that proposed by Ångström (1924): 

 
N
nba

H
H

o

+=  (2) 

where n is the number of effective sunshine hours measured with a 

heliograph and N is the potential or theoretical number of sunshine hours. 

The coefficients a and b are empirical; however, they have some physical 

explanation. The a + b value represents the maximum atmospheric 

transmission coefficient τ, and a represents the minimum value of τ. 

Frère et al. (1975) proposed values of a = 0.29 and b = 0.42 as being 

applicable not only to Peru, but also to all the Andean highlands. These 

values were based on both the high rates of incoming solar radiation that 

occur as a result of the altitude of these zones and an annual mean of 

relative sunshine hours (taken to be around 50% as a general value). This 

idea was rejected for Peru by García (1994), who proposed the application 

of empirical coefficients at regional scales because of the different climatic 

conditions that prevail. 

 

2.3.3 Model based on temperatures 

According to Bristow and Campbell (1984), the size of the difference 

between daily maximum and minimum air temperatures depends on the 

Bowen ratio (i.e. the relationship between sensible heat and latent heat). 

Sensible heat depends on daily incoming solar radiation and is responsible 

for maximum air temperatures. At night, sensible heat is lost into space as 

long wave radiation; together with radiative fluxes, this results in a 
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decrease in air temperature until the daily minimum temperature is 

reached, usually just before sunrise. This physical explanation justifies the 

use of these kinds of models, with the advantage given by the use of a 

widespread network of weather stations that allow measurements to be 

made of daily extremes of temperature. 

 

2.3.3.1 Bristow-Campbell model 

Bristow and Campbell (1984) proposed a model with which to 

estimate relative incoming solar radiation as a function of the difference 

between maximum and minimum temperatures ∆T (°C): 

 ( )[ ]BC
BB

o

Tba
H
H

∆−−= exp1  (3) 

The empirical coefficients (aB, bB and cB) have some physical 

explanation. The coefficient aB represents the maximum value of τ, is 

characteristic of a study area, and depends on pollution and elevation. The 

coefficients bB (°C-1) and cB determine the effect of increments in ∆T on the 

maximum value of the τ  (Meza and Varas, 2000). 

 

2.3.3.2 Hargreaves model 

Hargreaves and Samani (1982) proposed an empirical equation that 

took the form of a linear regression between the relative incoming solar 

radiation and the square root of ∆T : 

 5.0Tba
H
H

HH
o

∆+=  (4) 
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2.3.3.3 Garcia model 

The model described by Garcia (1994) is the only attempt made to 

estimate incoming solar radiation in Peru. The model is an adaptation of 

the Ångström-Prescott model: 

 
N
Tba

H
H

GG
o

∆
+=  (5) 

Using monthly estimates, Garcia (1994) proposed the following 

values: 

� a = 0.060 and b = 0.640 for the central coast;  

� a = 0.360 and b = 0.211 for the northern coast;  

� a = 0.457 and b = 0.207 for the central highlands;  

� a = 0.230 and b = 0.380 for the southern highlands. 

 

2.3.4 Calibration and validation 

To calibrate and validate the Ångström-Prescott model, historical 

records from each weather station were used for those periods in which 

parallel information on incoming solar radiation and sunshine hours were 

available. The values of Ho and N were calculated according to the day of 

the year and the latitude of each locality (Peixoto and Oort, 1992). The 

database was split into two parts. The first subset, 66% of the total data, 

was used to calibrate the model, using a linear regression analysis to find 

the empirical coefficients (a and b) of the Ångström-Prescott model. The 

remaining data were used to validate the model. The adequacy of the 

model was assessed by calculating the Pearson product moment 

correlation coefficient r, relative error and mean-square error (MSE). 

Analyses of residuals, as well as normal plots, were used to identify 

possible inadequacies in the models or problems in the data. 
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To estimate incoming solar radiation using temperatures recorded 

on a daily basis, the models proposed by Garcia (1994), Hargreaves and 

Samani (1982), and Bristow-Campbell (1984) were tested in order to 

evaluate which was the best to apply to the study area. As in the previous 

case, all the available information for each location was split into two sets. 

It should be noted that the empirical coefficient aB used in the Bristow-

Campbell model was calculated as the sum of the empirical coefficients a 

and b found for the Ångström-Prescott model, since they share the same 

physical explanation. The statistical analyses performed to validate the 

model were similar to those described for the Ångström-Prescott model. 

 

2.4 Results and discussion 

2.4.1 Factors affecting the spatial distribution of τ 

Figure 2.2 shows an overview of climatic variability in Peru, using 

monthly values of maximum and minimum temperatures and precipitation, 

for the coast, the mountains and the jungle. However, within these zones, 

major variations occur that or caused by other climatic factors. 

 

Fig. 2.2. Climatic differences in maximum temperature (•), minimum temperature (▲) and 
rainfall (      ) for three weather stations representative of the coast, the highlands 
and the jungle of Peru. 
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Figure 2.3 shows lines connecting points with the same values of 

atmospheric transmissivity; these lines represent the variation in time and 

space of this variable. The lines corresponding to the minimum and 

maximum values of atmospheric transmissivity, i.e. 30% and 80%, occur on 

the central and southern arid coastal zones, respectively. However, 

monthly climate values, recorded at weather stations, reached 29% in 

August at Alexander von Humboldt and 85% in November at La Joya. The 

highest coefficient of variation was reached on the central arid coastal zone 

(17%), while the lowest value (4%) occurred on the northern arid coastal 

zone. 

The South Pacific high anticyclone, the Andes mountain range and 

the Humboldt Current (cool water) affect the arid coastal zone. The effect of 

the latter decreases to the north of latitude 10°S, where it interacts with the 

warm water current of El Niño. 

The subsidence layer caused by the South Pacific high results in the 

development of a strong temperature inversion over the coastal waters and 

the coastline. This layer may extend up to 110 km offshore (normally from 

10 to 30 km), reaching heights of 1800 m a.s.l. and trapping stratus cloud, 

fog, mist, and light drizzle beneath it (Gilford et al., 1992). In July, the South 

Pacific high reaches its northernmost position, and the lowest sea-surface 

temperature occurs along the Pacific arid coastal zone. The conjunction of 

these two phenomena forms the very strong inversion layer, reducing τ 

throughout the area due to the presence of clouds. However, the low-level 

jet stream named ‘Paracas’ (usually found below 600 m a.s.l., parallel to 

the coastline, between the latitudes of 13°S and 19°S), in combination with 

a sea breeze causes strong local winds that alter the moisture profile. This 

clears the atmosphere, thus increasing τ in the southern coastal arid zone 

despite its low altitude. 
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Fig. 2.3. Climate maps of atmospheric transmissivity (%) in different seasons in Peru: (a) 
March, (b) June, (c) September and (d) December. Latitude and longitude (o) are 
shown at the top or bottom and side respectively of each map. 



Atmospheric transmissivity around central Andes 

 19

In the northern arid coastal zone, the effect of the subsidence is lost 

as a result of the warm water current of El Niño and the large distance to 

the South Pacific high, which moves southwards from December to 

February. However, during these summer months, the southward 

movement of the near equatorial trough (NET) in the north of Peru does not 

lead to an increase in τ on the northern arid coastal zone despite the 

mountainous terrain in northern South America, which breaks up the NET 

(Gilford et al., 1992). 

Figure 2.3(a) to (d) are characterized by a gradient of τ parallel to 

the Andes, as a result of altitude and topographic barrier effects over 

clouds and aerosols in the atmosphere. At higher altitudes in the mountains 

the atmospheric thickness is decreased, in turn decreasing the filter effects 

that govern incoming solar radiation. The mountains are also the major 

topographic barriers to weather systems and airflow below 2500 m a.s.l., 

thus preventing the regular exchange of air between the Pacific and 

Atlantic air masses. This leads to a difference in the atmospheric moisture 

content on both sides of the Andes, which is eventually expressed in the 

values of τ. 

Precipitation over the Andean High Plateau exhibits a pronounced 

annual cycle, with more than 70% of the rain being concentrated in the 2 to 

3 month wet season that occurs during the austral summer (Aceituno and 

Montecinos, 1993). This wet season precipitation is also associated with 

the development of convective clouds over the Central Andes and the 

southwestern part of the Amazon Basin (Horel et al., 1989). Within this 

rainy season, the Andean High Plateau experiences both rainy and dry 

periods, which range between 5 and 10 days in duration (Aceituno and 

Montecinos, 1993). About 50% of the area is covered by cold clouds during 

the afternoons during these rainy episodes, whereas convective clouds are 

almost non-existent during the dry episodes (Garreaud, 1999). These 

observations explain both the occurrence of τ values lower than 65% 

during the winter and the occurrence of rainfall during the summer, despite 
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the fact that in some areas the altitude is more than 4000 m a.s.l. However, 

τ values that are higher than 75% can be reached during spring, due to the 

sun being positioned over the Southern Hemisphere and the cloud systems 

not yet being formed. The intense heating of the Andean High Plateau that 

occurs in the summer, as a result of the incoming solar radiation, forms the 

warm-cored, thermal anticyclone known as the Bolivian high. This is 

responsible for lifting and spreading moist, unstable, low-level Amazonian 

air over the central Andes, so governing τ. 

The distribution of τ, over space and time, in the jungle zone 

corresponds to the cloud cover maps presented by Gilford et al. (1992). 

Characteristics of the dry season are a decrease in afternoon cloud cover 

and an increased number of clear days. This results in τ being higher 

during the dry season than it is during the wet season. 

Table 2.3. Values of the coefficients a, b and r for the Ångström-Prescott model, the total 
number of days of data n used in the estimation process, and the relative error and MSE 
found during the validation process. 

 
Location 

 
a 

 
b 

 
r 

 
n 

Error
(%) 

MSE 
x10-4 

Coast       

Miraflores 0.355 0.392 0.895 2454 -2.4 25 
A. von Humboldt 0.211 0.467 0.892 8124 12.9 47 
San Camilo 0.321 0.468 0.766 1494 -0.4 57 
La Joya 0.593 0.181 0.781 7534 2.8 127 

Highlands     

Bambamarca 0.322 0.336 0.803 1798 6.6 37 
Weberbauer 0.231 0.521 0.883 1239 -2.7 40 
Cosmos 0.320 0.384 0.826 619 7.4 39 
Huayao 0.397 0.379 0.810 4190 2.2 51 
Granja Kcayra 0.376 0.364 0.768 1466 3.4 65 
Chuquibambilla 0.395 0.384 0.750 1261 -2.1 102 
Puno 0.378 0.438 0.775 1870 9.2 72 
Characato 0.367 0.396 0.656 813 10.7 94 

Jungle     

San Ramon SM 0.301 0.377 0.803 1828 6.6 48 
El Porvenir 0.278 0.320 0.792 1075 7.0 36 
Bellavista 0.355 0.341 0.784 476 5.9 44 
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2.4.2 Model based on sunshine hours 

The results obtained from the process of validating the model based 

on sunshine hours, and the empirical coefficients for each weather station, 

are presented in Table 2.3. Figure 2.4 (a), (c), and (e) show observed 

versus estimated values from three representatives weather stations. The 

empirical coefficients show high variation in terms of spatial distribution; 

this was also true for the values that occurred in the regions corresponding 

to the regions defined in the Garcia (1994) study. The relationships that 

exist between the relative sunshine hours and the empirical coefficients are 

not straightforward; this agrees with the findings of Frère et al. (1975). 

Therefore, it is very difficult to justify the use of a single set of empirical 

coefficients with regard to a vast region (country). This is especially true 

where there is a high diversity of ecological environments, as there is in 

Peru. A literature review undertaken by Martínez-Lozano et al. (1984), 

addresses the use of relationships between the two empirical coefficients 

and a number of individual variables (latitude, altitude, albedo, mean solar 

altitude, natural or artificial pollution and water vapor concentration). Glover 

and McCulloch (1958) related the coefficient a to latitude (φ), proposing the 

expression a = 0.01 + 0.27cosφ. Neuwirth (1980) proposed an equation 

relating both empirical coefficients to altitude using 19 weather stations in 

Austria. However, after many analyses, we concluded that the empirical 

coefficients found in Peru are related to neither latitude nor altitude. 

Climatic factors, mountain chains and sea currents, are the factors that 

determine the spatial distribution of incoming solar radiation. 
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Fig. 2.4. Observed versus estimated data at the time of validation from three weather 
stations representative of the coast, the highlands, and the jungle of Peru. (a), 
(c), and (e) correspond to the validation of the Ångström-Prescott model, and (b), 
(d), and (f) correspond to the validation of the Bristow-Campbell model. 

2.4.3 Models based on temperatures 

Figure 2.5 shows an example of the relationship that exists between 

the daily relative incoming solar radiation and the difference between 

maximum and minimum temperatures for three weather stations: one on 

the coast, one in the highlands and one in the jungle of Peru. The trends 

shown in these graphs suggest that a meaningful relationship may exist 

between these two variables for different areas of the country. 
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Fig. 2.5. Relationship between daily relative solar radiation H/Ho and daily difference 
between maximum and minimum temperatures ∆T for three weather stations 
representative of the coast, the highlands and the jungle of Peru. 

The values of the empirical coefficients found when calibrating the 

three evaluated models are presented in Table 2.4. Table 2.5 shows the 

correlation coefficient r for the relationship between the observed and 

estimated incoming solar radiation values obtained in the validation, and 

Figure 2.4 (b), (d), and (e) show this relationship for three representatives 

weather stations. 

The Bristow-Campbell model showed the best fit for most of the 

localities in Peru (Table 2.5). The Hargreaves model gave similar 

correlation values. However, despite these high correlations, in areas 

where minimum temperatures are negative and values of ∆T are low, the 

results obtained by using this model are strongly biased. This can be seen 

in the relative error and MSE of the locality of Cosmos in Table 2.5. In 

addition, the parameters determined by the Bristow-Campbell model have 

a better physical explanation. 

With regard to data from weather stations in the highlands, coast 

and jungle, the worst cases found during the analysis of residuals are 

shown in Figure 2.6. In most of the cases, the residuals were randomly 

distributed around zero, with more than 95% of the data points falling within 
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the interval defined by se 2±= , thus indicating the acceptability of the 

model used. 

Table 2.4. Values of the empirical coefficients found in the calibration process and the 
total number of days of data used for each location. 

 Models 

  Garcia    Hargreaves   Bristow-Campbell  
 

Location 
 

aG 
bG 

(h °C-1) 
 

aH 
bH 

(°C-0.5) 
 

aB 
bB 

(°C-1) 
 

cB 

 
 

n 
(days) 

Coast         

Miraflores 0.200 0.395 -0.167 0.221 0.75 0.04 1.49 2398 
A von Humboldt 0.074 0.571 -0.235 0.246 0.68 0.06 1.42 9141 
San Camilo 0.463 0.120 0.075 0.138 0.79 0.09 1.05 1496 

Highlands         

Bambamarca 0.294 0.233 0.117 0.118 0.66 0.23 0.80 1355 
Weberbauer 0.187 0.259 -0.160 0.173 0.75 0.04 1.28 1071 
Cosmos 0.088 0.486 -0.299 0.250 0.70 0.03 1.62 515 
Huayao 0.390 0.170 0.121 0.123 0.78 0.11 0.97 3591 
Granja Kcayra 0.363 0.137 0.102 0.110 0.74 0.11 0.92 1307 
Chuquibambilla 0.471 0.106 0.239 0.089 0.78 0.19 0.76 984 
Puno 0.467 0.178 0.192 0.133 0.82 0.20 0.87 1437 
Characato 0.252 0.044 0.166 0.121 0.76 0.16 0.91 2089 

Jungle         

San Ramon SM 0.045 0.466 -0.364 0.253 0.68 0.02 1.86 1909 
El Porvenir 0.174 0.223 -0.110 0.148 0.60 0.06 1.21 1564 
Bellavista 0.195 0.302 -0.105 0.175 0.70 0.06 1.22 692 

 

 

Fig. 2.6. Residual plots from three weather stations representative of the coast, the 
highlands and the jungle of Peru, at the time of validation of the Bristow-
Campbell model. 
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Table 2.5. Comparison of three models, in terms of correlation coefficient, relative error 
and MSE, between observed and estimated incoming solar radiation at the time of 
validation; n is the number of days of data used. 

  Garcia  Hargreaves Bristow-Campbell   

 
Location 

 
r 

Error
(%) 

MSE
x10-4 

 
r 

Error
(%)

MSE
x10-4

 
r 

Error 
(%) 

MSE 
x10-4 

 
n 

Coast         

Miraflores 0.716 3 48 0.733 3 45 0.741 4 43 816
A von Humboldt 0.752 18 89 0.800 16 74 0.816 1

4 
70 3108

San Camilo 0.280 3 90 0.471 2 76 0.445 4 74 509

Highlands       

Bambamarca 0.629 11 70 0.646 11 69 0.647 1
3 

73 461

Weberbauer 0.621 5 84 0.676 2 81 0.666 3 82 365
Cosmos 0.716 10 81 0.732 452 40905 0.714 9 85 176
Huayao 0.592 5 76 0.664 3 65 0.649 5 64 1221
Granja Kcayra 0.525 12 98 0.585 10 83 0.587 1

2 
84 445

Chuquibambilla 0.480 7 100 0.567 3 86 0.606 4 81 339
Puno 0.441 8 104 0.516 6 90 0.500 7 92 795
Characato 0.062 -47 972 0.245 5 80 0.379 8 81 711

Jungle       

San Ramon SM 0.792 8 55 0.799 7 54 0.802 8 54 650
El Porvenir 0.685 5 43 0.695 5 42 0.709 4 41 532
Bellavista 0.772 2 47 0.794 2 41 0.789 2 41 461

The normal plot (Figure 2.7) shows an s-shaped curve indicating the 

possibility of skewness in the distribution. The data from the jungle seems 

to be the most affected by a possible departure from normality. 

 

Fig. 2.7. Normal probability plots from three weather stations representative of the coast, 
the highlands and the jungle of Peru, at the time of validation of the Bristow-
Campbell model. 
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Since the absolute values of the maximum and minimum 

temperatures, and the differences between them, are greatly influenced by 

topography, latitude and altitude, among other factors, the coefficients bB 

and cB proposed should be applied only in areas where similar thermal 

regimes prevail. Therefore, in order to increase the applicability of this 

work, empirical relationships were found which could be used to determine 

values of bB and cB as a function of T∆  and latitude. 

Figure 2.8 (a) shows the relationship between the coefficients bB and 

cB derived from the Bristow-Campbell model, while Figure 2.8 (b) and (c) 

show the relationship between the values presented in Table 2.4 and those 

estimated by Equations 6 and 7. 

 )exp(574.57072.0116.2 φ+∆−= TcB  (6) 

 6485.2107.0 −= BB cb  (7) 

The validation analyses showed high residual values at Puno. This 

weather station is on the boundaries of the Titicaca Lake, which covers an 

area of 8300 km2 and has a regulatory effect on the temperature of the 

surrounding area, preventing the occurrence of the extremely low minimum 

temperatures characteristic of high altitudes. This leads to a decrease in 

T∆ , giving non-representative values when used to produce a generic 

equation. Therefore, this set of coefficients was eliminated when 

determining the parameters for Equation 6. 

It should be noted that pyranometers are more accurate than 

actinographs when measuring incoming solar radiation. This could have 

affected the values of the empirical coefficients obtained for San Ramon 

SM, El Porvenir, Bambamarca, Bellavista and La Joya. However, there are 

no pyranometers at these places. Therefore, use of the information 

provided by actinographs constitutes the best approach available. 
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Fig. 2.8. Relationship between cB and bB, the empirical coefficients of the Bristow-
Campbell model (a), and plots of observed versus estimated values for each of 
the coefficients: cB (b) and bB (c). 

Applications of the present work are strongly related to areas around 

central Andes; however, because most of the new techniques based on 

radiative fluxes and/or satellite have still not been calibrated and validated 

for use in complex terrains like mountains, the empirical alternatives can be 

applied to other mountain chains around the world, using previously 

calibrated coefficients. 

 

 



Chapter 2 

 28

2.5 Conclusions 

Many factors other than altitude affect, directly and/or indirectly, 

atmospheric transmissivity in complex terrains. The South Pacific high, the 

NET, the Bolivian high, low-level Jets, the Andes mountain range and the 

Humboldt and El Niño currents, both separately and when interacting, can 

modify the distribution of the incoming solar radiation in space and time. 

The interactions of all the above produce the widely differing scenarios of 

incoming solar radiation observed. 

Using the Ångström-Prescott model, the spatial variation obtained 

for the values of empirical coefficients throughout the different regions of 

the country casts doubt upon the validity of applying only a single set. 

Owing to the higher correlation coefficients and the lower relative errors 

and MSEs obtained for the relationship between relative incoming solar 

radiation and relative sunshine hours, the empirical coefficients of the 

Ångström-Prescott model are recommended for use in the regions they 

represent. 

Among the tested models used to estimate incoming solar radiation 

as a function of temperature, the Bristow-Campbell model is recommended 

as that most applicable to Peru. 

The empirical relationships used to estimate incoming solar radiation 

based on relative sunshine hours demonstrated more accuracy than those 

based on temperature. Values of the empirical coefficients given here are 

on an annual basis. Their utilization for estimating incoming solar radiation 

must be done only on an annual basis. 
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Chapter 3 

Interpolating minimum and maximum temperatures and 
incoming solar radiation in mountain areas 

In mountain areas, topography and the low water vapour content of 
the atmosphere due to the high altitude result in a high variability of 
microclimates over relatively short distances. In addition, scarcity of 
weather stations often restricts the accurate depiction of spatial variation in 
the weather. Geostatistical interpolation techniques have been applied to 
estimate meteorological variables but are unsuitable in complex terrain with 
a low number of observations. Here, we describe a process-based model 
for interpolating minimum and maximum temperatures. These 
temperatures are determined by atmospheric conditions as well as by 
terrain characteristics. Twice a day, net radiation is zero when maximum 
and minimum temperatures occur. These temperatures are measured at 
weather stations. Therefore, the atmospheric conditions estimated at these 
moments are known. These in combination with topographic characteristics 
derived from a Digital Elevation Model (DEM) were fed into a model that 
simulates minimum and maximum temperatures. The resolution of the 
resulting maps is controlled by the resolution of the DEM. Outputs from the 
interpolation are used as inputs into an empirical relationship used to 
estimate the daily total incoming solar radiation, based on the Bristow-
Campbell model. A case study in La Encañada and Tambomayo 
watersheds (northern Andes, Peru) is presented. Validation entailed 
comparing the observed data from weather stations with the model-
estimated data for the available points. Despite slight overestimation of the 
daily minimum and maximum temperatures and incoming solar radiation, 
the model performed very well in describing the spatial variation in weather 
conditions. 
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3.1 Introduction 

Detailed meteorological data are becoming increasingly important as 

inputs for spatially explicit landscape in both regional and global models. 

Given the fact that weather stations are scarce in many areas, methods are 

required for the interpolation of weather data. The need for interpolation 

techniques is especially high in mountainous regions where weather 

stations are extremely sparse and weather conditions may vary greatly 

over short distances. 

Geostatistical interpolation techniques have been applied to 

estimate meteorological variables at unsampled locations (Collins and 

Bolstad, 1996; Hartkamp et. al., 1999). These include studies that compare 

the geostatistical techniques individually (Hartkamp et al., 1999; Wörlen et 

al., 1999; Collins and Bolstad, 1996; Bonan, 1989), thus giving 

recommendations regarding the most suitable geostatistical technique for 

each climatic variable. Sometimes, different techniques are recommended 

for the same variable at different locations and under different conditions 

(for example dry and wet seasons). Therefore, it is difficult to determine a 

priori which geostatistical technique is most suitable for use when 

considering specific local conditions and variables. In addition, 

geostatistical techniques typically require a large number of observation 

points, often unavailable for weather data. Therefore, there is an urgent 

need for more generally applicable interpolation models. 

In mountain areas, topography is a major factor determining the 

amount of solar energy incident at a location on the Earth’s surface. 

Variability in elevation, slope, aspect, and shade can create strong local 

gradients in the incoming solar radiation that directly and indirectly affect 

such biophysical processes such as air and soil heating, energy and water 

balances, and primary production (Dubayah and Rich, 1995). When the 

variation in topography is known from Digital Elevation Models (DEM), the 

information provides a solid basis for the description of variation in weather 

conditions. 
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This paper describes a process-based model to interpolate 

maximum and minimum temperatures and incoming solar radiation. The 

model is based on processes capable of describing variation due to 

topographic parameters such as altitude, aspect, and slope, which are 

provided by a DEM. 

 

3.2 Materials and methods 

3.2.1 Data 

The study was undertaken in the La Encañada and Tambomayo 

watersheds (160 km2) located at south latitude 7°4’, west longitude 78°16’. 

Altitude in the watersheds varies between 2950 meters and 4000 meters 

above sea level. The grid size of the DEM was 30 meters, in a grid of 628 

columns by 482 rows (De la Cruz et al., 1999). 

The area contained three weather stations. For the purpose of 

model validation, five additional (automatic) weather stations were installed 

in the study area in December 1999. Further information on location, and 

periods over which records were kept, is presented in Table 3.1. Basic 

statistics obtained from the three base weather stations and concerning 

climate characteristics are presented in Table 3.2. 

 

Table 3.1: Weather stations in the La Encañada watershed. 

 Location Latitude Longitude Elevation Historical 
  (°S) (°W) (m asl) record 

 Calvario 7°5.08’ 78°20.59’ 3250 1999-2001 

 Chacmapampa 7°5.38’ 78°19.37’ 3300 1999-2001 

 La Toma-Progreso 7°3.72’ 78°16.92’ 3590 1995-2001 

 Las Manzanas 7°7.08’ 78°18.60’ 3020 1995-2001 

 Paulino Rios 7°4.64’ 78°19.90’ 3250 1999-2001 

 Quinuamayo 7°3.31’ 78°18.40’ 3500 1999-2001 

 Sogoron Alto 7°4.21’ 78°20.97’ 3400 1999-2001 

 Usnio 7°5.34’ 78°18.96’ 3260 1983-2001 
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Table 3.2: Summary of climate data for the three weather stations used as reference. 

 Weather Incoming solar Maximum Minimum Total 
 station radiation temperature temperature rainfall 
  (MJ m-2d-1) (°C) (°C) (mm) 

 Las Manzanas 18.3 16.2 5.9 782.1 

 Usnio 19.2 14.2 6.1 717.3 

 La Toma 19.9 10.8 2.8 801.0 

 

3.2.2 Model rationale 

The interpolation procedure is based on the calculation of the 

atmospheric transmissivity coefficient (τ) and atmospheric irradiation ( ↓
LWF ) 

for those locations where actual weather conditions are measured. If the 

relationships between τ and topographic conditions and also between ↓
LWF  

and topographic conditions are known, we can calculate minimum and 

maximum temperatures as well as incoming solar radiation. Ideally, surface 

albedo is also known, though this was not the case for the study area. 

Many atmospheric processes depend on the net flux of radiation at 

the earth’s surface ( sfc
radF ) resulting from a balance between the solar (short 

wave) and terrestrial (long wave) fluxes (Peixoto and Oort, 1992). Daily 

processes of warming and cooling depend on this balance, which is 

negative at night and positive during the day. Therefore, sfc
radF  is at zero 

twice a day, when temperature extremes occur. 

Estimations of short and long wave radiation balances are possible 

at weather stations. Total incoming direct ( iH ) and diffuse ( ih ) solar 

radiation (both in short wave) are measured by pyranometers. Net short 

wave radiation ( swF ) can be estimated according to the surface albedo. The 

Stefan-Boltzmann Law is used to estimate long wave terrestrial radiation 

( ↑
LWF  ) using the surface temperature in the estimation. Given the fact that 
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sfc
radF  is zero twice a day, when minimum and maximum temperatures occur, 

↓
LWF  can be estimated precisely at these moments by a simple subtraction. 

Subsequently, the minimum and maximum temperatures can be 

calculated for locations between weather stations using τ and ↓
LWF  in 

combination with topography. The final outputs of minimum and maximum 

temperatures are used as inputs into the model to estimate incoming solar 

radiation. This is an empirical model proposed by Bristow and Campbell 

(1984). Previously, the model had been calibrated, validated, and 

evaluated in relation to Peruvian conditions (Chapter 2). 

 

3.2.3 Mathematical structure of the model 

3.2.3.1 Calibration of atmospheric conditions 

The Extraterrestrial Irradiation ( oH ) is the radiation intensity incident 

just outside the atmosphere and is calculated for each weather station 

using the following equation (Peixoto and Oort, 1992): 

 ( ) ( )ρρδφ
π

Tan   Sin / 24 2 −= SinddmSHo  (1) 

where S is the solar constant, (dm/d)2 is the square of the ratio between the 

medium (dm) and actual (d) earth-sun distance, φ  is the latitude, δ is the 

solar declination, and ρ the hour angle at sunset and sunrise. 

'
iH  is the incoming direct solar radiation incident on a sloping 

surface where 1=τ  and is estimated by Dubayah and Rich (1995) as: 

 ( )[ ]'2'    )/( aCosSinSinCosCosddmSH zzi −+= γβθβθ  (2) 

where zθ  is the zenith angle, β  is the slope angle, γ  is the azimuth angle, 

and 'a  the wall azimuth angle, which is merely the aspect of the slope from 

the south (Keith and Kreider, 1978). 
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It is important to consider that the effective horizon determines the 

amount of hours during which the sun can be seen from the slope. This 

means that the potential amount of direct irradiation received by the slope 

is determined not only by the slope, aspect, and angle of the receiving site 

but also by the landform opposing the slope. 

The effective horizon was taken into account by calculating an 

obstruction constant ( obstK ) which relates oH  and the irradiation measured 

by pyranometers: 

 ( )i

o
obst hH

HK
+

=
i

τ  (3) 

Finally, the effect of Kobst is included in equation (4) which calculates 

atmospheric transmissivity: 

 ( )1  
'
z Cos   

−= zSec

i

o

H
CosH

θ
βθτ  (4) 

The value of τ  depends on clouds (both the amount and type) and 

other scattering components (dust, CO2, etc.). According to Lee (1978), a 

transmissivity coefficient of 0.9 is common for clear skies in mountainous 

areas. Values of τ  were estimated for each weather station.  

The final objective was to apply the model for the purposes of 

interpolation. Because in mountain regions altitude differences are an 

important source of variation in transmissivity, a logarithmic function 

between altitude and τ was estimated. 

In order to fulfil the need for inputs to estimate the net radiation, the 

incoming direct ( iH ) and diffuse ( ih ) solar radiations at the surface level 

were calculated using equations (5) and (6). In this way, the effects of 

topographic parameters (such as slope and aspect) were included: 

 zSec
ii HH θτ '=  (5) 

Incoming diffuse solar radiation is given by (Hungerford et al., 1989): 
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2

'

2
 






=

βCoshh ii  (6) 

where '
ih  is the incoming diffuse solar radiation on a flat surface given 

using: 

 ( )[ ] [ ]    1    
0.50.52' zz Sec

z
Sec

zi CosSCosSh θθ τθτθ −=  (7) 

To find the value of ↓
LWF  it was necessary to consider those 

moments, which occur twice a day, when sfc
radF  is zero (when the extremes 

of temperatures occur). Minimum temperature occurs around an hour 

before sunrise; maximum temperature occurs two hours after noon 

(approximately). Having identified those moments, ↓
LWF  is estimated using 

the following equation: 

 ( )( ) 0 1 =+−−+= ↓↑
LWLWii

sfc
rad FFhHF α  (8) 

where α  is the surface albedo.  

Finally, values of ↓
LWF were obtained for each weather station at the 

time of maximum and minimum temperatures. These values were used 

separately, to construct linear functions with the values of altitude 

according to a daily or monthly time step. 

 

3.2.3.2 Model execution (interpolation) 

To produce the final extreme temperature maps, topographical 

information (φ , β , aspect, and elevation) was derived from the DEM for 

each individual cell of the raster. Using the elevation values, τ  and ↓
LWF  

were estimated cell by cell using the functions generated in the preceding 

step. Values of φ , β  and aspect along with τ , were used to estimate 

( )ii hH +  at each cell level. Data on surface albedo were unavailable; 

therefore, it was assumed constant and estimated to be 0.11 for the entire 
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grid (Lenters and Cook, 1997). Cell values of ↑
LWF  were obtained by 

applying equation (8). Finally, maximum and minimum temperatures were 

derived from the Stefan-Boltzmann equation for the whole study area. 

To estimate incoming solar radiation, the empirical relation proposed 

by Bristow and Campbell (1984) was applied. This model is expressed as: 

 ( ) ( )[ ]Bc
BBoii TbaHhH ∆−−=+  exp1   (9) 

where ∆T is the difference between daily maximum and minimum 

temperatures (°C). The constants previously calculated by Baigorria et al. 

(2004) and specific to the study area were aB = 0.75, bB = 0.04, (°C-1) and  

cB = 1. 

 

3.2.3.3 Validation 

a. Extreme temperatures 

Daily maps of the minimum and maximum temperatures were 

produced for the year 2000 using the model. The minimum and maximum 

temperatures for the five weather stations that were available for validation 

were derived from these maps. 

The average residual between the predicted and observed 

temperatures, standard deviation of the residual, relative error and 

correlation index (R) were analysed. 

 

b. Incoming solar radiation 

Because only the reference weather stations have pyranometer 

sensors in the study area, validation of the incoming solar radiation model 

was performed using only these points. Interpolated values of maximum 

and minimum temperatures were obtained from the output maps acquired 

in the previous step. These values were used to construct a daily database 
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that was then used to estimate the incoming solar radiation according to 

the Bristow-Campbell model, applying the coefficients proposed in Chapter 

2. The estimated values were compared with the observed values for the 

three weather stations. The correlation index, relative error, and Mean 

Absolute Error (MAE) were analysed. 

 

3.3 Results and discussion 

As an example of the results, daily maps of maximum and minimum 

temperatures, and incoming solar radiation, are presented for May 15th and 

November 15th in Figure 3.1. Statistical analyses are presented in Table 

3.3. Comparisons between the observed and estimated minimum and 

maximum temperatures, and incoming solar radiation for each weather 

station are shown as scatter plots in Figures 3.2 and 3.3. 

The model is a tool that can be used to interpolate maximum and 

minimum temperatures, as well as incoming solar radiation, integrating the 

capabilities of GIS. The model can also be applied to other places without 

prior calibration, due to self-calibration using the geographical information 

and databases provided by an existing DEM and weather station network. 

To properly apply the model under conditions with a limited number 

of weather stations, all of them must represent climatically the study area. 

Weather stations need to be exposed to the same synoptic weather 

conditions in order to achieve the highest levels of accuracy. Because 

models are process-based, phenomena such as temperature inversions or 

frost events can be captured, avoiding the “bird’s eye” effect around the 

weather stations (Collins and Bolstad, 1996). 

Visual analyses of the resulting maps allowed us to identify an error 

related to the DEM and the position of the weather stations. The pixel size 

used in the DEM of mountainous surfaces can cause homogenisation of 

areas by amalgamating different conditions (i.e. areas with steep slopes 

close to flat areas can be misrepresented by the use of an average slope  
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Fig. 3.1. Daily maps of the interpolated variables in La Encañada and Tambomayo water-
sheds. Maps (a), (c) and (e) correspond to maximum temperature, minimum 
temperature and incoming solar radiation on May 15th respectively. Maps (b), (d) 
and (f) correspond to the same variables on November 15th. 

 

value in one pixel). This assumption leads to incorrect topographic 

information inputs in locations where the model makes its auto-calibrations. 

This error explains the fact that the highest values of MAE and median 

error were obtained at the control weather station of Quinuamayo at the 

time of the interpolation of maximum temperatures (Table 3.3). This was 
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due to its location in a narrow gorge. Wind is one factor that can strongly 

influence temperature, especially at the time of maximum temperatures. 

This phemonenon is due to the convective movements of air which occur 

close to the surface of the ground as a result of its warming. Consequently, 

turbulence breaks the boundary layers, mixing the air and introducing other 

processes. Knowledge of these processes allows the accurate explanation 

of maximum temperature behaviour (Rosenberg, 1974). However, to more 

easily apply the model and to allow a relatively small data set to be used, 

the accuracy obtained by the model is considered to be satisfactory. 

The direct relationship extant between temperature and altitude is 

only shown when the vertical structure of the atmosphere is analysed but 

not when topography and land characteristics are taken into account. This 

is due to the effects that oceans and continents have on the atmosphere 

that diminishes with height (Peixoto and Oort, 1992). For this reason, 

 

Table 3.3: Statistical analyses of minimum and maximum temperatures and incoming 
solar radiation (number of observations = 258). 

 Weather Mean Mean Median Standard Correlation 
 station relative absolute error deviation index 
  error (%) error  of residuals 

Minimum temperature 
 Calvario -12.0 1.4 -0.6 1.6 0.74 
 Chacmapampa -12.9 0.9 -0.5 1.1 0.86 
 Paulino Rios -31.0 1.9 -1.9 0.8 0.89 
 Quinuamayo -4.2 0.9 0.7 0.9 0.95 
 Sogoron Alto -24.2 1.3 -1.2 0.8 0.86 
Maximum temperature 
 Calvario 12.2 1.7 1.7 0.9 0.91 
 Chacmapampa -0.6 1.1 -0.2 1.3 0.74 
 Paulino Rios 0.2 0.9 -0.1 1.1 0.85 
 Quinuamayo 22.8 3.0 2.8 1.1 0.76 
 Sogoron Alto 2.6 0.6 0.3 0.7 0.92 
Incoming solar radiation 
 La Toma -12.0 4.0 -3.2 3.8 0.82 
 Usnio 3.7 3.7 -0.1 4.4 0.72 
 Manzanas 10.4 4.1 1.1 4.7 0.63 
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Fig. 3.2. Scatter plots of observed versus estimated data of minimum (left-hand column) 
and maximum (right-hand column) temperatures (°C) on a daily timestep. (a) 
Calvario, (b) Paulino Rios, (c) Sogoron Alto, (d) Chacmapampa and (e) 
Quinuamayo. 

 

Avissar and Mahrer (1988) demonstrated that topography is not clearly 

correlated with minimum temperature (r2=0.13), thus questioning the 

reliability of the isothermal lines procedures in a topo-climatologic survey 

(e.g. Avissar, 1993). 
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Fig. 3.3. Scatter plots of observed versus estimated data of incoming solar radiation 
(MJ.m-2.d-1) on a daily timestep from the reference weather stations of La Toma, 
Usnio and Manzanas. 

In Table 3.3, MAE, median error, and standard deviation of the 

residuals are shown in order to analyse the residual values and also the 

residual distribution (Isaaks and Srivastava, 1989). The predicted and 

observed data were quite similar, as shown by the relationship between 

these datasets, which has a similar slope to the 1:1 line (Figure 3.2). The 
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offset of the predicted versus observed line was reflected in the values of 

the MAE and the median error. 

Errors associated with the model result from both a lack of spatial 

variation in the albedo values, which are considered a constant in this 

study, and the logarithmic definition of the relationship between the 

transmissivity coefficient and altitude. Alternative definitions of this function 

should be tried for each day or month, giving more flexibility to the 

relationship, strongly influenced by the type and quantity of clouds. 

However, accuracy in terms of the results obtained can be improved using 

albedo grids provided by remote sensing or field surveys, as well as by 

improving the resolution of the DEM. 

Another way of improving the model is through the addition of 

subroutines concerned with soil temperature estimations—in order to deal 

with the buffer effect that soil water content has on soil temperature. This 

means that it will be necessary to develop a rainfall model, in order to link 

both the rainfall and the water balance subroutines and generate a 

feedback process which produces data that have a distribution close to that 

of the real (observed) data. 

The spatial validation of the incoming solar radiation outputs was not 

completely comprehensive because of the lack of pyranometers in the 

control weather stations. However, validation was conducted using 

independent databases of daily observations made at the three weather 

stations used for the interpolation. The correlation indexes obtained were 

statistically acceptable (Table 3.3). The relationship between observed and 

estimated incoming solar radiation is shown in Figure 3.3. The predictions 

made using the Bristow-Campbell model closely approximated the 

observed data. Incoming solar radiation results depend upon the accuracy 

with which the spatial distribution of minimum and maximum temperatures 

were calculated in the previous steps, as well as upon the empirical model 

used. If data on incoming solar radiation and daily minimum and maximum 

temperatures is available, it is recommended that a new set of empirical 
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coefficients be found for the Bristow-Campbell Model. Figure 3.1 (e and f) 

shows the effect topography has on the distribution of incoming solar 

radiation in the area under evaluation. A site-independent model, as 

suggested here, could replace incoming solar radiation subroutines. 

However, the aspect and slope of the area, as well as sun obstruction (the 

effective horizon), should always be taken into account. 

 

3.4 Conclusions 

The model proposed here for the spatial interpolation of minimum 

and maximum temperatures performs very well describing spatial variation 

in complex terrain at daily and monthly intervals. Because it is based on a 

minimum data set and GIS, it can be applied to other places without a large 

number of weather stations or expertise in geostatistical techniques. The 

empirical incoming solar radiation model gives temporal accuracy when 

applied at spatial scales. However, is important that the model be 

calibrated in regards to the empirical parameters relevant to different 

locations. 
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Chapter 4 

Modeling the spatial distribution of rainfall in complex 
terrains based on the Digital Mountain Wave Model 

Rainfall has one of the highest spatio-temporal variabilities of all 
climatic variables. This is especially true in mountain areas, for which there 
is also a lack of data to cover large heterogeneous areas producing a large 
impact on the process of rainfall interpolation using geo-statistic. However, 
interpolation errors are not caused by the geo-statistical interpolation 
techniques themselves, but the inability of the point data to capture the high 
variability of this variable. Therefore, it is necessary to include additional 
information, such as topography, atmospheric circulation patterns and 
physical processes involved at the time of interpolation, since they directly 
affect the spatial distribution of rainfall. This paper describes the approach 
used to incorporate these variables into a rainfall interpolation model for 
complex terrain, in data-scarce environments requiring medium to high-
resolution rainfall maps. For each wind direction, a Digital Mountain Wave 
Model (DMWM) was generated using topographic data provided by a 
Digital Elevation Model and the wind direction at the cloud level (provided 
by sequences of Infrared images from the GOES-8 satellite). The 8 
DMWMs created (one for each of the eight main wind directions) describe 
the three-dimensional cloud-route over a mountainous area. These 
DMWMs, together with information from weather stations on daily rainfall 
and extreme temperatures, were used as inputs into the rainfall 
interpolation model. The model is based on the mountain waves and the 
atmospheric processes involved in the formation of rainfall. Results are 
presented as daily maps, in which resolution is controlled by the resolution 
of the DEM. The case study was done in La Encañada and Tambomayo 
watersheds in the Andean Highlands of Peru, using multi-year daily data 
provided by six automatic weather stations. Although simulations were 
performed at daily time steps; the cross-validation analysis to measure the 
accuracy of the model was performed at monthly steps. The model 
explained more than 85% of the variation observed in space and time. The 
whole model was implemented using user-friendly software. 
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4.1 Introduction 

Rain-fed agriculture constitutes around 85% of global agriculture 

(UNESCO, 2000). This percentage of agriculture dependent on rainfall 

rises to almost 100% when only those systems managed by resource-poor 

farmers are considered. Irrigated systems also depend on rainfall to 

replenish surface water resources or aquifers. Therefore, an understanding 

of the spatial distribution of rainfall is of paramount importance when 

judging the potential agricultural production of a region and—ultimately—

the sustainability of agricultural production systems in a given area (Göbel 

et al., 1996). 

In order to gather rainfall data across the area of interest, the ideal 

methodology entails on-site collection of near-surface meteorological data. 

However, as the size of the target area increases, this approach becomes 

prohibitively expensive (Thornton et al., 1997). There are two main 

alternatives usually used to estimate the spatial distribution of 

precipitation—geostatistical techniques and atmospheric modeling. 

During the past decades, geostatistics have developed different 

interpolation techniques based on the spatial correlations between 

observations and later using correlations with different terrain attributes 

(Hevesi, 1992; Kyriakidis et al., 2001; Marquínez et al., 2003). However, in 

mountainous areas with a lack of both: weather stations and spatial 

representativeness, errors in the application of these techniques are 

frequent due to the inability of the point data to capture the high variability 

of the rainfall. 

The use of atmospheric models based on physical and dynamic 

processes are an alternative. General circulation models (GCM) operating 

at large grids scales are limited to resolve small-scale distribution of 

orographic precipitation. Mesoscale models as well as models including 

orographically induced dynamics (Barros and Lettenmaier, 1993; Sinclair, 

1994; Smith, 2003) need to be initialized from a large-scale numerical 
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model, radiosonde data, radar data and/or surface observations. These 

models require substantial amounts of input data, and even in developed 

countries where meteorological networks exist, the applications are not 

detailed enough to support decision making from watershed to farming 

levels. 

Simulation of climatic variables across large areas demands an 

acceptable level of accuracy on one hand, and also the implementation of 

the minimum data set concept to assure cost effectiveness. The model 

described in this paper is intended to respond to both of these criteria. In 

addition to being designed to simulate rainfall and its spatial distribution, 

the model was also designed to generate data in the standard format used 

by crop growth models (IBSNAT, 1988 and Hunt et al., 2000) in order to 

simulate the spatial variability in crop production. 

 

4.2 Background 

4.2.1 Formation of precipitation 

When unsaturated air is lifted, it cools at the thermodynamically 

determined rate of 9.8°C km-1. This is known as the dry adiabatic lapse 

rate. Once the air becomes so cold that it can no longer maintain water as 

a vapor, the vapor condenses forming cloud droplets. The condensation 

process releases heat, which adds to the buoyancy of the air, causing it to 

rise more rapidly. However, because the air is now saturated, it cools at a 

slower rate, and this is referred to as the saturated adiabatic lapse rate (γs) 

(Whiteman, 2000). 

The mechanisms by which air is lifted, and which thus result in the 

condensation process are: (a) gradual air elevation over large areas 

associated with low pressure systems; (b) thermal convection (at the scale 

of local cumulus); (c) elevation by mechanical turbulence (‘forced 

convection’); and (d), orographic lifting (Barry and Chorley, 1980). 
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4.2.2 Spatial rainfall distribution 

Rainfall typically presents a high spatio-temporal variability. In the 

case of flat areas (if weather stations are uniformly distributed and if rainfall 

measurements do not vary considerably around the mean) use of an 

arithmetic average can be an acceptable method for estimating the 

average rainfall received by an area (Chow et al., 1988). However, in 

mountain areas, the spatial distribution of rainfall exhibits high levels of 

variation due to the influence topography has on terrain-forced and 

convective airlifting mechanisms. 

Rainfall distribution is affected not only by terrain height (Hevesi et 

al., 1992), but also by proximity to moisture sources, terrain relief, and 

aspect (i.e., the direction a slope is facing) relative to the direction of the 

approaching wind (Benichou and Le Breton, 1987a, 1987b; Daly et al., 

1994; Göbel et al., 1996; Mellor, 1996; Whiteman, 2000; Marquínez et al., 

2003). Kyriakidis et al. (2001) demonstrated that the empirical correlation of 

terrain characteristics and atmospheric variables as specific humidity 

integrated from 850 hPa to 1000 hPa levels and horizontal wind 

components at the 700 hPa levels, produces good descriptions of the 

spatial distribution of precipitation. However, extrapolation of this empiric 

model is restricted to data availability and previous calibration. 

Maps showing the distribution of precipitation in mountainous areas 

are of limited value when detailed information about a particular site is 

needed, such as in the example of modeling processes such as crop 

growth or soil erosion. Therefore, it is necessary to include additional 

information such as topography and atmospheric circulation patterns at the 

time of interpolation in a more physical and dynamic manner. 

 

4.2.3 Circulation patterns and topography 

It is obvious that there exists a close relationship between 

atmospheric circulation and climatic variables. Bürger (1958, cited by 
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Bardossy and Plate 1992) studied the relationships that exist between 

atmospheric circulation patterns and each of the three variables: 

temperature, rainfall, and cloudiness, using a time series from 1890 to 

1950. A good correspondence between them was reported. Lamb (1977, 

cited in Bardossy and Plate, 1992), stated that even highly variable rainfall 

is strongly linked to atmospheric circulation. Hay et al. (1991) developed a 

daily rainfall model based on atmospheric circulation recorded at stations, 

which were widely spaced. It was found that the only link connecting 

different stations was the circulation pattern. 

Topographic details are important because the steeper the 

underlying terrain, the higher the precipitation rate when air is forced 

directly up the slope (Whiteman, 2000). Surface roughness produces 

variation in the wind fluxes, and according to the amount of roughness, 

generates special air mass movements, such as mountain waves. These 

result in airlifting and condensation processes. Models based on the 

estimation of topographically forced vertical motions and advection to 

simulate orographic precipitation (Barros and Lettenmaier, 1993; Sinclair, 

1994; Smith, 2003) better describe this kind of processes on a small scale. 

Furthermore, airflow acceleration over the crest of barriers with 

steep and narrow upwind faces may displace the precipitation maximum to 

the lee side of the crest (Daly et al., 1994); this phenomenon may be 

related to the horizontal displacement of the mountain wave. 

 

4.2.4 Mountain waves 

Mountain chains have an important effect on the airflows crossing 

them. Air is forced to rise in order to pass such obstacles, becoming cooler 

and denser than the surrounding air, and under the influence of gravity, 

sink on the lee side of the barrier. The air then overshoots, and oscillates 

about its equilibrium level, forming mountain waves (Barry and Chorley, 

1980; Whiteman, 2000). During the lifting process, water vapor condenses 
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in the crests of the waves, so forming clouds across and downwind from 

the mountain barrier. 

The amplitude of the waves depends on the initial displacement of 

the flow above its equilibrium position on the windward side of the mountain 

and is directly proportional to the height of the barrier (Queney, 1948). 

Wavelength is proportional to wind velocity and increases in value when air 

stability decreases. 

 

4.3 Methodology 

4.3.1 Study area and data sources 

Analyses were based on data from the La Encañada and 

Tambomayo watersheds in Peru, corresponding to an area of 160 km2. 

These watersheds are located between 7°0’21”S and 7°8’2”S latitude, 

78°11’22”W and 78°21’31”W longitude and are at between 2950 and 4000 

m above sea level.  

Time-series data were used for rainfall and maximum and minimum 

temperatures (Table 4.1). Data were obtained from two automatic weather 

stations and four portable temperature and rainfall micro-loggers similar to 

the ones described by Lookingbill and Urban (2003). The climatic data 

were converted to the ‘*.wth’ format, the standardized format advocated by 

Hunt et al. (2000). The advantage of using this format is that it is widely 

used by crop modelers. 

Images from the geo-stationary GOES-8 satellite were downloaded 

from Internet. The movements of clouds, determined using images taken at 

three-hourly intervals, were used to estimate wind direction at the cloud 

level. This wind direction is different to the one measured at surface level in 

weather stations, which is usually modified by the roughness and 

complexity of the terrain. A vector containing the daily wind direction was 

 



Interpolating rainfall using the Digital Mountain Wave Model 

 53

Table 4.1. Location of weather stations and annual values of the main climatic variables 
during the evaluated period of time (1999-2000). 

 Weather Latitude Longitude Altitude  Temperature (°C)  Rainfall 

 station (°S) (°W) (m a.s.l.) Maximum Minimum (mm) 

 Asunción F. 7° 5.38’ 78° 19.37’ 3300 25.2 8.4 668 

 Calvario 7° 5.08’ 78° 20.59’ 3250 25.0 9.0 514 

 La Toma 7° 3.72’ 78° 16.92’ 3590 25.2 5.1 468 

 Paulino Rios 7° 4.64’ 78° 19.90’ 3250 24.9 7.9 974 

 Sogorón 7° 4.21’ 78° 20.97’ 3400 24.7 6.4 720 

 Usnio 7° 5.34’ 78° 18.96’ 3260 24.7 7.4 546 

 

archived in a file for further use. Topographic data was derived from a 

Digital Elevation Model (DEM) 1:50 000 with a pixel size of 90 m x 90 m 

(De la Cruz et al., 1999). 

 

4.3.2 Mountain Wave Model 

A digital mountain wave model is a digital representation of the 

three-dimensional cloud-route determined by the interaction between 

topography and wind direction. The DMWM establishes a displacement 

surface by where the bottom of an air mass displaces following a 

predetermined wind direction. The vertical movements caused by the 

topography thus modify the initial physical condition of the air mass leading 

in an interpolation model of rainfall. To produce the DMWMs, the DEM 

values were read, line-by-line (Figure 4.1a), in a direction determined by 

the eight main wind directions (every 45o). 

An individual mountain wave (Figure 4.1b) was described using the 

following sine function: 

 

 ( )jiikji DSinMW λα=,,      (m) (1) 
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Where kjiMW ,,  equals the altitude of an individual mountain wave over the 

pixel j if the referential pixel i is the only elevation in the sequence of the 

line k, D is the distance between the pixels i and j within the same line k, 

and αi and λi are the dimensionless amplitude and wavelength respectively 

of the wave for pixel i (both are functions of the altitude (H) of the pixel i). 

According to Equation 1, the mountain wave peak should be located 

right above pixel i. Thus, any shift in the peak is characterized by the angle 

(δ), formed by the projections of those lines connecting the ideal and the 

shifted peaks to a bisecting point in pixel i when the altitude is equal to zero 

(Figure 4.1c). This angle (δ) produces a horizontal displacement (∆) in each 

individual mountain wave in the direction of the wind, modifying kjiMW ,,  to 

kjiMW ),(, ∆+ . The δ angle can be positive or negative depending on the 

altitude and shape of the mountain (Queney, 1948; Carruthers and 

Choularton, 1982). According to Queney (1948), for more complex terrains 

the airflow can be computed by superimposing elementary solutions. Thus, 

the uppermost portions of all the sine functions for each line k are then 

calculated as the highest value for each pixel i, producing a composite 

wave for the line k (Figure 4.1d). 

 kjikiki MWMaxEMW ),(,,, ∆+=  (2) 

Finally, all the lines are aggregated spatially, producing the matrix 

called the Digital Mountain Wave Model: 

 

kik

i

EMWEMW

EMWEMW
DMWM

,,1

1,1,1

...
.........

...
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Fig. 4.1. Scheme representing generation of an individual mountain wave. (a) Pixel line 
isolation from the Digital Elevation Model (DEM), according to the wind direction. 
(b) Mountain wave generation, as a function of the altitude of only one pixel. (c) 
Horizontal displacement generated by angle δ. (d) Composite wave. 
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The initial parameters α, λ and δ were selected using an iterative 

procedure of different ranges of each parameter, assuring the smallest 

errors during the validation process. The values α = 0.5, λ = 1 and δ = 5° 

were identified for the study area. 

The analysis results in 8 DMWMs of which the rainfall model selects 

the most appropriate one according to the dominant wind direction on any 

specific simulation day. 

 

4.3.3 Rainfall interpolation model 

The model assumes that the condensed water in the cloud falls 

immediately to the ground. However, approaches as those presented by 

Sinclair (1994) using formation time parameters, or Smith (2003) using 

time-delay functions between conversion of cloud water and its 

gravitational fallout, will be tested in future work. 

The model was developed to function at daily basis, and the work 

comprised two consecutive steps: auto-calibration and the interpolation 

process per se. These steps are described below. 

 

4.3.3.1 Auto-calibration process 

This process generates the initial conditions in the borderline of the 

grid every day when at least one weather station registers precipitation. 

The process begins by finding the pixels containing measured data and 

then using the information to characterize the atmospheric conditions 

through a backward tracking process, as conceptually described by Barros 

and Lettenmaier (1993). Four daily variables were obtained from each 

weather station: daily maximum temperature (°C), daily minimum 

temperature (°C), dew point (Td,°C), and rainfall (mm). The air temperature 

at surface level (Tsrf) was estimated as being the average of maximum and 

minimum temperatures (°C), and was in turn used to calculate the 
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saturation vapor pressure (es, hPa) using the Clausius-Clapeyron equation 

(Whiteman, 2000): 
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Where, 

eo = the saturation vapor pressure at To = 273°K,  

L = the latent heat of condensation of the water vapor, 

Rv = the gas constant for water vapor. 

It is assumed that the air temperature at the bottom of the cloud 

equals the dew point at the surface level (Tcld = Td). Using these 

assumptions, the model estimates the actual vapor pressure (e, hPa) at the 

bottom of the cloud using the equation (5): 
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Temperature decline from the surface to the bottom of the cloud is 

thus estimated using: 

 cldsrf TTT −=∆      (°C) (6) 

Assuming a dry adiabatic lapse rate in the atmosphere under the 

cloud, and using the altitude of the weather stations (H, m) provided by the 

DEM, the altitude of the cloud (h, m) is estimated as (Peixoto and Oort, 

1992): 

 HTh +
∆

=
0065.0

 (7) 

Under the assumption of hydrostatic conditions, the atmospheric 

pressure (P, hPa) at this level is estimated using: 

 ( )hxP 41016852.1exp78.1014 −−=  (8) 
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The specific humidity (q, g g-1), the potential temperature (θ, °C), and 

the equivalent potential temperature (θe, °C) are calculated as (Peixoto and 

Oort, 1992): 
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Where, 

Rd = the gas constant for dry air,  

Cp = the atmospheric specific heat at constant pressure.  

θe = the potential temperature of an air parcel when all moisture is 

condensed, and the latent heat released is used to warm the parcel. 

Vertical variation in θe is known as the saturated adiabatic lapse rate 

(γs). 

If data from the weather station has a rainfall datum that is not zero, 

the wind direction file is checked in order to find the altitude value of the 

backward tracking pixel from the DMWM (hp). From this backward tracked 

pixel, the difference in altitude is calculated as 

 phhh −=∆      (m) (12) 

Using h∆  and γs, the temperature value for the backward tracked 

pixel (Tp) is calculated using 

 ( )hTT scldp ∆−= γ      (°C) (13) 

In addition, a new set of parameter values for this backward tracking 

pixel is calculated replacing h by hp in the equations (8) to (11). 
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This vertical movement is responsible for the rainfall amount (PP) 

over the pixels where the weather stations are located. This rainfall is an 

integration of the loss in specific humidity between these two points: 

 pqqq −=∆      (g g-1) (14) 

We assume wind velocity is uniform in space and in time, thus the 

model does not require an estimation of horizontal or vertical wind speed. 

Notwithstanding these wind velocities are important in the drop forming 

process, they are more related to the rainfall intensity. By assuming a 

constant velocity only the total amount of rainfall is estimated, which is the 

objective of the model. 

Since water has a density equal to 1 g cm-3, it is possible to express 

the rainfall values in g (1 mm = 1000 g of water m-2). Because the specific 

humidity is directly related to the amount of rainfall, the weight of the parcel 

(PWm) that produces rainfall can be calculated as: 

 
q

PPPWm ∆
=      (kg of moist air m-2) (15) 

The value of PWm is maintained as constant, and a backward PP 

calculation process is initiated. The model calculates PP, starting from the 

pixel where the weather station is located to the first line of the DMWM 

raster matrix (borderline pixel) and moving in the opposite direction with 

respect to the wind (Figure 4.2a and 4.2b). 

 

4.3.3.2 Interpolation process 

Once the sets of values from all weather stations are projected onto 

the borderline pixels, the interpolation process is initiated. The values of the 

required parameters for all the pixels in the borderline are calculated first. 

The entire DMWM matrix, in the direction of the wind follows this process. 
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Fig. 4.2. Sequence of diagrams showing propagation of information from weather stations, 
represented in the grid as black pixels. (a) Directions of the backward tracking, 
according to the wind direction. (b) Direction of the auto-calibration process using 
winds from the north. (c) Interpolation within the borderline of the grid. (d) 
Interpolation within the entire grid of the study area. 
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a. Interpolation within the borderline of the grid 

In the borderline of the grid (Figure 4.2c), there are five variables 

that need to be interpolated: T, Td, h, γs, and PWm. The vertical gradient of 

temperature is calculated for each interval (i) of available data as: 

 
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In those pixels for which information is lacking, temperature is 

estimated using the following equation: 
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Where, 

T = the estimated temperature in the interpolated pixel,  

Ti = the temperature at the beginning of the interval i,  

Z and Zi = the altitudes corresponding to these pixels. 

In regards to the pixels for which there is no information, the altitude 

of the cloud (h) and the weight of the parcel that produces rainfall (PWm) are 

estimated as a linear function of the altitude. The coefficients a and b for 

both equations are estimated using the information available in the 

borderline of the grid from the weather stations. The saturated adiabatic 

lapse rate (γs) is also estimated as a linear function; however, in this case, 

the air pressure was estimated using equation (8). 

Important issues in the interpolation process include the following: 

estimated Td must be less than or equal to T; and γs must be less than or 

equal to 9.8 (°C km-1). 
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b. Interpolation within the entire grid of the study area 

Once the parameters for the borderline are generated, the program 

initiates a pixel-by-pixel interpolation for the entire DMWM matrix, following 

the direction of the winds (Figure 4.2d). The process is repeated daily 

during the pre-defined interpolation time. A 3 x 3 smoothing filter is applied 

to the discrete values to generate a continuous rainfall distribution. 

 

4.3.4 Validation 

A cross-validation analysis was performed to assess the accuracy of 

the rainfall interpolation across space and time. Daily maps of a complete 

year were generated six times. In each run, data from one weather station 

was withdrawn from the calculation of the initial parameters. The data from 

the removed weather station were used to cross-validate the interpolation 

results. In order to facilitate the presentation of results, the interpolated 

daily results were aggregated into monthly maps. Regression analysis and 

regression diagnostic techniques (Rawlings, 1988) were used to assess the 

accuracy of the interpolation at monthly level. 

 

4.4 Results and Discussion 

4.4.1 Software 

Version 2.1 of the Climate Interpolator software, programmed in 

Delphi, has been recently released. The software integrates all the 

components described in the methodology section, and also provides both 

numerical and map outputs. 
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4.4.2 The Digital Mountain Wave Model (DMWM) 

A visual representation of the DMWM is shown in Figure 4.3. The 

DEM and the wind direction are the main modifiers of the wave. The figure 

shows the shape of the DEM, the wind direction, and examples of how the 

interaction of these components might modify the appearance of the 

DMWM. 

 

Fig. 4.3. Digital Elevation Model (DEM) and four Digital Mountain Wave Models (DMWMs) 
corresponding to wind directions of 0°, 90°, 180° and 270°. 

Figure 4.4 shows the effect of the wave amplitude (α) on the 

DMWM. Two wind directions and three amplitudes are represented. The 

interactions between wind direction and amplitude are evident. The two 

other parameters – the wavelength (λ) and peak shift (δ) – modify the 

DMWM and help determine rainfall distribution, particularly when the 

topography is highly irregular. So, for instance, λ smoothes the zones with 
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large altitude gradients thus providing a more accurate rainfall distribution 

across space. On the other hand, δ allows the model to accurately simulate 

rainfall on the lee side of the crest.  

The DMWM can be conceptualized as a smoothed projection of the 

DEM, modified by altitude, terrain roughness, slope, aspect, and wind 

direction. In this manner, it appears to be a better predictor of rainfall 

distribution than altitude alone. This phenomenon is shown by Daly et al. 

(1994), who demonstrated that the DEM was a better predictor of year-

round rainfall than the altitude of the weather station. 

 

Fig. 4.4. Effect of changing the amplitude values in the DMWM: (a), (b) and (c) correspond 
to a DMWM of 0° with amplitudes of 0.25, 0.5 and 1.0 respectively; (d), (e) and (f) 
correspond to the same amplitude values for a DMWM of 270°. 
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4.4.3. Rainfall interpolation 

The variation in interpolated rainfall explained around 90% of the 

variation in measured rainfall in weather stations omitted in the validation 

exercise throughout a year (Figure 4.5). The deviations of the observations 

from the regression line were randomly distributed around zero, suggesting 

that there is no heterogeneity of variance. This finding is in agreement with 

the linear trend depicted in the half normal plot. As a result of the cross 

validation, Table 4.2 shows for each weather station the bias, median 

absolute error (MAE), and the coefficients of determination (R2) between 

observed and estimated rainfall aggregated monthly. The model 

underestimates the monthly aggregated rainfall with a maximum of 37 and 

36 mm, corresponding to the weather stations of ‘Paulino Rios’ and 

‘Sogorón’, respectively. Both weather stations have the highest annual 

rainfall among the stations used in the study (Table 4.1). Due to the scarce 

amount of weather stations in the study area, it was impossible to perform 

an autocorrelation analysis of the residuals to determine the spatial 

dependency of the model outcomes (Anselin and Griffith, 1988; Overmars 

et al., 2003). Potentially users could correct the model results for the total 

rainfall quantity. 

Table 4.2. Bias, MAE and coefficient of determination between observed and estimated 
monthly rainfall after the cross-validation to each weather station. 

 Weather station Bias MAE R2 

 Asuncion F. -15.3 16.0 0.936 

 Calvario -6.0 15.3 0.910 

 La Toma -11.3 14.6 0.861 

 Paulino Rios -36.7 36.7 0.947 

 Sogorón -35.6 36.9 0.713 

 Usnio -13.8 18.2 0.666 
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The results of daily interpolations across the study area were 

aggregated to obtain the annual rainfall map. This process was repeated 

for five years. The average of these five years is show in Figure 4.6. The 

first noteworthy aspect is the absence of a direct dependency between the 

DEM and the spatial distribution of rainfall: more rainfall at higher altitudes. 

Intermediate to large amounts of rainfall are ubiquitous distributed 

throughout the area, regardless of the altitude. The second noteworthy 

aspect is that no “bubble effect“ (Hartkamp et al., 1999) was observed 

around the weather stations that provided the initial parameters for the 

model. This finding has at least two implications: first, it shows that the 

model does not bias the interpolation to “privileged” areas around the 

weather stations; second, it shows that the model is robust enough to make 

interpolations with a small number of initial parameters. 

 

Fig. 4.5. Model validation through (a) observed versus estimated rainfall values, 
aggregated at monthly levels and (b) residuals analysis. 
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Despite the altitude decrease crossing the topographic division of 

one mountain in a mountain chain, the DMWM avoid the cloud decay or 

even increase in altitude because it can be influenced by the next individual 

mountain wave. As reported by Barros and Lettenmaier (1993), in 

moderately high and narrow mountains, this produces the intensification of 

preexisting precipitation. In contrast to other models, clouds do not follow 

the topography strictly, but they follow the different DMWM according to the 

wind direction. This phenomenon explains why rainfall does not decrease 

as soon as the topography division is reached. Therefore, the role of down 

slope regions in drying the air just crossing the crest (Barros and 

Lettenmaier, 1993) can be displaced or disappeared, according to the main 

wind direction (already included) and wind speed through the modification 

of α, λ and δ at daily steps. Implementing this feature in the model is a 

logical refinement to improve the accuracy of the interpolated data. 

Although this improvement will enhance the capability of testing the impact 

of the DEM’s resolution on the parameters α, λ and δ and thus on the size 

and shape of the topography barriers, the demand of data might limit its 

use in data-scarce environments. The tradeoff between accuracy and data 

demand is critical for the target population, mountain environments in 

developing countries. 

In terms of scale, we emphasis that in larger regions the wind fluxes 

are more complicated than in small ones where wind directions almost 

cross the area in only one direction. Therefore, a more complex approach 

of the DMWM must be applied to larger regions. 

Areas with the highest estimated annual rainfall are clustered around 

the areas of the highest reported annual rainfall in the study region. In 

addition, when the interpolated data was analyzed using a daily time step, 

areas of high concentrations of rainfall were found to be related to the 

higher elevation parts of the DMWM and to windward faces of the 

mountains. 
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It is important to emphasize that data quality and quantity from 

weather stations are essential in the application of the described model. As 

a feedback, the model can be used to optimize the location of the weather 

stations, producing a network that really represents a study area so 

improving the function and effectiveness of each weather station. 

 

Fig. 4.4. Interpolated Rainfall Map in La Encañada and Tambomayo Watersheds 
(aggregated at an annual level) and the Map of Elevation. 
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4.5 Conclusions 

The climate interpolation model described in this paper adequately 

simulated the spatial distribution of rainfall throughout a year. Up to 90% of 

the variation in the observed rainfall was explained by the interpolated data. 

Nonetheless, the model constantly underestimated the actual data by about 

6 mm per month. The model could be improved by taking into account the 

variation over time of the α, λ and δ parameters of the mountain waves. 

Each rainfall event should be considered as unique, and these parameters 

should be considered to be functions of wind speed. However, such 

improvement also increases the demand for input, thus requiring a re-

assessment of the cost effectiveness of the model. 
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Chapter 5 

Weather and seasonal-climate forecasts to support 
agricultural decision-making at different  

spatial and temporal scales 

Agricultural decisions deal with environmental impacts, investments, crop 
rotations, and day-to-day management decisions. These decisions are made 
within the context of available information in terms of e.g. natural resources, 
prices, and weather. In this paper, we discuss the need for weather and climatic 
data to support strategic, tactical, and operational decisions for a case study in the 
Peruvian Andes. Farmers base their decisions on risk experiences and their own 
weather and seasonal-climate forecast systems. Formal weather and seasonal-
climate forecasts are used in only a small number of cases due to inadequate 
spatial scales and the lack of training to interpret the formal forecasting. This 
chapter analyzes the importance of the different sources of weather and seasonal-
climate forecasts incurrent decision-making and the possibility of increasing its 
use following more quantitative and mechanistic approaches. Field workshops 
revealed information about (a) land allocation, planting dates, and fertilization 
rates; (b) local indicators for weather and seasonal-climate forecasts; (c) driving 
factors behind management decisions; and (d) current use of formal forecasts. In 
addition, climate forecasts produced by Global Circulation Models (GCM) were 
translated to the level of the weather stations in the watersheds using multiple 
regression models and weather generators. This weather data, together with soil 
maps, served as input in crop growth simulation models for potato (SUBSTOR) 
and cereals (CERES) to illustrate the use of the data in terms yield forecasting. 
Maps of potato, wheat, and barley growth using two levels of N-fertilizer under the 
optimal planting-dates were produced for the 2003-2004 cropping season. The 
use of different sources of yield forecast at adequate spatial and temporal scales 
along with appropriate training is discussed as a tool to support agricultural 
decision-making for different stakeholders in the study area located in the northern 
Andean Highlands of Peru. 
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5.1 Introduction 

Agricultural decisions deal with environmental impacts, investments, 

crop rotations, plant responses, and day-to-day management decisions. 

These decisions are made within the context of available information in 

terms of natural resources, prices, and weather. In this paper, the need for 

weather and climatic data to support agriculture at different levels (from 

farmer to policy maker) is investigated for a case study in the Peruvian 

Andes. Andean farmers plant their fields (usually under different agro-

ecological conditions) before and during the initial months of the rainy 

season, avoiding planting all their fields on a specific date or with the same 

crop. This traditional technique reduces climatic risks that occur as a result 

of the high inter-annual climate variability and also assures a minimum 

production for self-consumption during years of poor production. Farmers 

make decisions according to their expectation and based on previous 

experiences of risk and have developed their own systems for weather and 

seasonal-climate forecast, based on meteorological and astronomical 

phenomena as well as biological behavior of wild species. However, these 

indicators are more related to operational decisions which include when to 

apply agro-chemicals, rather than tactical and strategic decisions (Bouma 

et al., 1999) such as what, when, where, and how to plant and crop. 

Although formal weather and seasonal-climate forecasts are available from 

the Peruvian National Service of Meteorology and Hydrology, these are 

used only in a few cases, due to the inadequate spatial resolution and the 

lack of training to interpret them properly. Similarly, extension offices and 

erosion control institutes, such as the National Service for Soil 

Conservation (PRONAMACHCS), provide general-purpose 

recommendations without using weather forecasts.  

Historic weather data, as well as forecasts, can be used to evaluate 

different management options to support strategic and tactical decisions. 

For instance, a seasonal-climate forecast can support the application of 

tools such as crop and environmental simulation models by institutes to 
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provide refined recommendations for tactical decisions such as what, 

when, and how to crop. In addition, these forecasts enable institutes to 

evaluate dynamically the environmental impact of agricultural management 

and to take actions against environmental degradation. In this paper, we 

evaluate the use of weather and seasonal-climate forecasts for different 

decisions by farmers and institutions from three perspectives: 1) How are 

forecasts currently being used? 2) Can we downscale the forecasts to a 

scale appropriate for farmers and local institutions? and 3) What is the 

potential use of weather and climatic forecasts? An example of the latter 

may be the translation of a seasonal-climate forecast from Global 

Circulation Models (GCM) into a map with optimal planting dates for 

different crops. This requires downscaling the forecasts and applying crop 

growth simulation models to evaluate the impact of expected weather 

conditions and crop management on crop yields. These models give an 

extra value to the seasonal-climate forecast, making available this kind of 

information in appropriate agricultural terms to stakeholders not deeply 

involved in climatology. 

The study focuses on two watersheds in the Northern Andean 

Highlands of Peru located at 7°4’ Southern latitude and 78°16’ Western 

longitude, at an elevation between 2950 meters and 4000 meters above 

sea level. The year can be subdivided into two main climatic regimes 

representing the rainy and dry season. Annual rainfall distribution in the 

watersheds is related to the Inter-Tropical Convergence Zone (ITZ) and 

has an inter-annual rainfall deep and intensity distribution affected by El 

Niño and La Niña phenomena (Romero, 2005). 

Soils in the area are classified as Entisols, Inceptisols, and Mollisols 

following the Soil Taxonomy (USDA-NRCS, 1998). Romero and 

Stroosnijder (2001) determined that 35% of the area has a slope gradient 

steeper than 15% and slopes steeper than 65% can occur. Agriculture is 

dominated by pastures (31% of the area). Crop-land includes the cultivation 

of a number of Andean roots and tubers (e.g. potato, oca, and olluco), 
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wheat, barley, and natural and improved pastures (Tapia, 1995). Most 

commercial crops are planted under rain-fed conditions before the 

beginning of the rainy season (September), although it depends on the 

availability of water, seeds, crop varieties, the frost risk previously 

associated with some portions of land, and farmers’ attitudes. Agriculture in 

the area is marginal with an income value per hectare and per year ranging 

from US$ 400 to US$ 3200 (Valdivia, 2002) and the average income is 

usually less than US$ 1 per day (Baigorria et al., 2002). 

 

5.2. Data and methods 

The study included three general phases:  

1. Data collection and standardization: 

Data describing the natural resources in the watershed were 

collected, including soil data, a digital elevation model, and long-

term weather data. Surveys and workshops indicate current 

management practices and the use of weather data. Finally, the 

results of GCM’s were downloaded (including actual data and 

forecasts). 

2. Spatial and temporal downscaling of seasonal climate-forecasts: 

Global circulation forecasts operate at a scale that makes them 

unusable for studies at the farm level. Methodology was 

developed to interpret seasonal-climate forecasts at the level of a 

single weather station.  

3. Evaluation of land management: 

The relevance of detailed seasonal-climate forecasts was 

evaluated by a number of scenario studies in which crop 

performances were evaluated using mechanistic simulation 

models. 
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5.2.1 Data collection and standardization 

Tapia (1995) sub-divided the watersheds in three agro-climatic 

zones (ACZ) denominated as highlands, hillside, and valley. In each of 

these ACZs, a weather station is located: La Toma (3590 m.a.s.l.) in the 

highlands, Usnio (3260 m.a.s.l.) in the hillside, and Manzanas (3020 

m.a.s.l.) in the valley. The oldest one is Usnio, with an historical record of 

21 years, while the other two have nine years of recordings including daily 

time-series data of maximum and minimum temperatures, amount and 

intensity of rainfall, and incoming solar radiation. 

A digital elevation model was available from De la Cruz et al. (1999) 

with a pixel size of 100 m x 100 m. Overmars (1999) created a 1:25.000 

soil map providing quantitative high-resolution soil data suitable for 

modeling.  

A two-year dynamic survey of agricultural management in the area 

was carried out in 1999-2000 (Antle et al., 2001; Valdivia, 2002). This 

survey monitored in detail agricultural practices of 30 farmers in the study 

area. In the context of this study, eight participative stakeholder workshops 

involving 339 farmers were held to obtain detailed information for the 

cropping season September 2003 – May 2004 and information about the 

current use of formal weather and seasonal-climate forecasts and the 

possibility to increase its utilization. Main goals were to evaluate: (a) crops, 

N-fertilization ranges, and planting dates during wet season; (b) local 

weather and seasonal-climate forecast indicators currently in use by 

farmers; (c) factors influencing crop decisions; and (d) current use of formal 

forecast by decision-makers. Each workshop was assigned to a different 

area of the watershed taking into account the hamlet boundaries as well as 

the varied access to natural and infrastructure resources. 

Time-series data of observed Sea Surface Temperatures (SST) 

maps are available on the Internet1 in a monthly step time and with a pixel 

                                                 
1 ftp://ncardata.ucar.edu/datasets/ds277.0/oi/mnly/data 
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size of 2° latitude x 2° longitude. Monthly forecast maps of SST are also on 

the Internet2 for a three-month moving average with a pixel size of 2° 

latitude x 1.5° longitude. Both sources of information were temporally and 

spatially aggregated standardized before they could be used in model 

development and model application. Observed SST were temporally 

aggregated as three-month averages and forecast maps were re-sampled 

to a pixel size of 2° latitude x 2° longitude using a weighted distance 

interpolation method (Isaaks and Srivastava, 1989). 

 

5.2.2 Spatial and temporal downscaling of seasonal-climate forecast 

The GCM’s currently forecasts in terms of SST. However, 

agricultural decision making requires forecasts in terms of temperature, 

rainfall and incoming solar radiation at the level of the agro-ecological zone. 

In this chapter, each ACZ is represented by a weather station. Downscaling 

included three different steps: 

1. Estimation of a multiple regression model describing meteorological 

variables for each weather station as a function of SST (Berri, 1998).  

2. Application of the models to predict weather conditions in each ACZ on 

the basis of predicted SST. 

3. Downscaling the weather predictions using the WGEN weather 

generator (Richardson and Wright, 1984). 

Gilford et al. (1992) indicated that the SST of the Pacific Ocean 

between 20° N, 180° W to 26° S, 60° W strongly influences the climate of 

Northern Peru, including the study area. Using CLIMLAB2000 (Tourre, 

2000), each pixel from the observed three-month average SST maps was 

correlated to the monthly time-series of maximum and minimum 

temperature and rainfall from weather stations. This analysis yielded 

monthly maps of correlation indexes between SST and weather conditions 

                                                 
2 http://www.emc.ncep.noaa.gov/research/cmb/sst_analysis/ 
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with a three month lag (e.g. SST in June – August versus Rainfall in 

September). Areas with the best correlation were selected visually from 

each map of correlation indexes. Each of the cell values belonging to a 

specific selected area was averaged, producing one value representing the 

SST of the water mass. Subsequently, a stepwise multiple regression 

analysis with a significance level of 0.05 was performed between the 

meteorological variable and the average SST. To perform this process, the 

first two-thirds of the-year of the historical record data available from each 

weather station was used. The remaining one-third of the-year 

corresponding to the last period of the historical record data was used in a 

validation and residual analyses. 

The three multiple regression models (one for each ACZ) were used 

to generate a monthly seasonal-climate forecast for the cropping season 

September 2003 – May 2004.  

Finally, a weather generator WGEN (Richardson and Wright, 1984) 

was used to downscale the monthly forecasts to the daily level. Inputs into 

the weather generator are:  

• monthly forecasts, 

• monthly standard deviation for maximum temperature and incoming 

solar radiation in dry and wet days, minimum temperatures, and rainfall 

(calculated using the time-series of each weather station), 

• rainfall distribution scale parameter (α),  

• the probability of dry-wet sequence, and  

• the total number of rainy days.  

Incoming solar radiation was estimated by inputting the monthly 

maximum and minimum forecasted temperatures in the model by Bristow 

and Campbell (1984), previously calibrated and validated for the region 

(Chapter 2).  
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To evaluate alternative management strategies, 99 different daily 

weather forecasts were generated for each ACZ for the files of the 

September 2003 - May 2004 season. 

 

5.2.3 Evaluation of land management 

Crop management obtained from the field workshops and the two-

year dynamic survey (Antle et al., 2001; Valdivia, 2002) was characterized 

using three parameters: (a) main crops in the study area, (b) typical range 

of N-fertilization rates, and (c) planting-date ranges. 

The SUBSTOR-potato model (Ritchie et al., 1995) and CERES-

cereal model (Singh et al., 1991) are available within the Decision Support 

System for Agrotechnology Transfer (DSSAT) (Jones et al., 1998) and 

calibrated and tested under Andean conditions of DSSAT, described in 

Bowen et al. (1999) and Stoorvogel et al. (2004b). These models were 

used to simulate potato, wheat, and barley productivity under different 

management strategies. 

Crop management scenarios and the geo-referenced information 

about the seasonal-climate forecast and soil were used for running the crop 

model (DSSAT). Each combination of ACZ, soil, and crop management 

was evaluated with 99 alternative outcomes of the WGEN software. 

Afterwards, averages and standard deviations from the 99 simulations for 

each scenario were calculated. Maps were generated assigning the 

simulated values according to the spatial distribution of ACZ and soil types. 

The next step was to produce the maps of optimal planting-date for each 

combination of crop and N-fertilization. For each combination crop and N-

fertilization, an overlaying among the different planting-date maps was 

performed, selecting for each pixel across the maps the highest yield 

forecast. This ultimately led to a map with optimal planting-date for the 

different crops. Several sets of these maps were printed in size A0, and 

were used to train farmers from the different hamlets on methods of 
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interpreting the map. Maps were given to the respective authorities in order 

to make them available to people in the hamlets. 

 

5.3 Results 

5.3.1 Data collection and standardization 

Figure 5.1 shows the monthly planting-date distribution (%) of 

potato, wheat, and barley during the rainy season. Table 5.1 summarizes 

the majority and more important local forecast indicators within the study 

area. In addition, the table presents information about the specific 

characteristics or processes observed in the indicator along with the 

observation time. These indicators are classified as Meteorological, 

Astronomical, and Biological. Biological indicators are sub-divided in plants, 

birds, and insects. Within each class, indicators are ranked according to the 

percentage of farmers who make use of the indicator, as a relative degree 

of importance in the local forecast process. Field surveys showed that radio 

is the means of media used by 100% of the farmers and that radio serves 

for farmers as the means of access to different sources of formal weather 

and seasonal-climate forecast. However, only five percent of the farmers in 

the watersheds had used this information before and only eight percent of 

the farmers had confidence in it. 

Field surveys indicated that farmers already had established a year-

by-year planting strategy. Thirty-six percent of the farmers use the same 

crop rotation and cropping area despite forecast indicators, while the 

remaining 64% change only the cropping area, trying to obtain benefits in 

good years or avoid losses in bad years. However, rainfall forecast around 

the established planting dates supports both groups in making their 

operational planting decisions. Crop yields have three general final 

destinations in the study area: self-consumption, seed production, and the  
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Fig. 5.1. Planting schedule during the rainfall season of the three main crops according to 
hamlets:       October,       November,       December,       January. 
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Table 5.1 Traditional weather forecast indicators and percentage of farmers using these 
indicators. 

  Characteristic Time  Percentage of 
  or of  farmers 
 Indicator process observation Forecasts use 
 
 Meteorological indicators 
 
 Wind direction Jul. – Dec. frosts, droughts 97 
 Whirlwind formation Jul. – Aug. droughts 64 
 Cloud form Nov. – Dec. frosts at night 31 
 3 clouds in clear sky formation no date good year 26 
 Thunders appearance since Sep. good year 24 
 Red clouds appearance Dec. – Jan. droughts 21 
 First rainfall with hail formation no date good year 9 
 
 Astronomical indicators 
 
 New moon green color planting date crop damage 98 
 New moon inclination phase of the moon rainfall 47 
 Moon halo appearance no date low yield 40 
 Sun halo appearance no date low yield 37 
 Mon eclipse appearance no date bad year 34 
 Sun eclipse appearance no date bad year 14 
 Full moon full view phase of the moon high yield 14 
 
 Biological indicators (wild plants) 
 
 Rubus sp. fruit production Oct. – May high/low yield 71 
 Sambucus peruviana HBK fruit production Oct. – May high/low yield 50 
 Agave americana L. fruit production Aug. – Feb. high/low yield 46 
 Prunus serotina Ehrb. fruit production Nov. – Mar. high/low yield 32 
 Passiflora mollissima fruit production no date high/low yield 29 
      (HBK.) Bailey 
 Opuntia ficus-indica L. fruit production Nov. – Mar. high/low yield 18 
      Müller 
 Agave americana L. inflorescence inclination no date high/low yield 12 
 ’Lanche’ fruit production no date high/low yield 9 
 Pernettya prostrata (Cav.) fruit production Oct. – May high/low yield 7 
      Sleumer 
 ’Perlas’ fruit production Oct. – May high/low yield 4 
 ’Gualpañau’ fruit production Oct. – May high/low yield 4 
 
 Biological indicators (wild birds and insects) 
 
 Larus serranus 1 migration previous planting rainfall season 71 
 ’Guayanas’ 1 migration previous planting rainfall season 51 
 Cladosdes sp. 2 appearance Oct. – Dec. rainfall season 14 
 Phalcobaenus albogularis 1 migration Jun. – Jul. low yield 14 
 Ardeidae sp. 1 migration previous planting rainfall season 9 
1 birds 
2 insects 
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Fig. 5.2. Ratio between the production for self-consumption and allocated to the market of 
the four main crops across hamlets. 

market. The percentage assigned to seeds is almost constant by year, 

except after extremely low-production years, when the seed is used for 

self-consumption. Considering the other two final destinations of the crop 

yields, a relationship is showed in Figure 5.2 as the rate between self- 

consumption and market use for the main crops. According to this 

relationship, the nine hamlets are ranked from highest market dependence 

(Chagmapampa) to lowest dependence (Quinuamayo Bajo). According to 

the results obtained from the workshops, the main factors influencing the 

decision of how much area to crop in the next cropping season are 

presented in Table 5.2, ranked by hamlet as in Figure 5.2. 

These results from the field workshops were used as the reference 

to build the crop management strategies for simulating the cropping season 

of September 2003 – May 2004. 

The identified crop management strategies were: 

• Potato planted in October, November, and December. Wheat and 

barley planted in November, December, and January. 
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• Nitrogen fertilization rates named as low and high, corresponding to 25 

and 100 kg ha-1 for potato and 20 and 80 kg ha-1 for wheat and barley. 

 

5.3.2 Spatial and temporal downscaling of seasonal-climate forecast 

Table 5.3 shows the correlation indexes for all the weather stations 

and for each meteorological variable at the time of calibration using the 

two-thirds of the year of the historical record. Figure 5.3 shows the tercile 

probabilities of the residuals during the validation process using the 

remainder one-third of the year of the historical record for maximum and 

minimum temperatures as well as rainfall during El Niño and La Niña years 

(IRI, 2003). 

 

Table 5.2 Factors influencing decision-makers in planting (%) by hamlet*. 

 Hamlet Market Plagues & Seed  Rainfall  After-planting 
  prices diseases availability delay after-planting frost 
 Chagmapampa 64 90 95 69 67 0 

 Lloctarapampa 0 44 44 44 0 0 

 Magmamayo 17 98 61 100 41 2 

 Quinuayoc 2 60 65 44 46 0 

 Quinuamayo Alto 36 100 100 100 100 0 

 Potrerillo 10 100 100 100 100 0 

 Palpata 3 100 100 67 50 0 

 Quinuamayo Bajo 36 100 100 100 100 0 

* Data from Michiquillay are not available 
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Table 5.3 Monthly coefficient of determination (R2) to the three meteorological variables of 
each weather station. In parenthesis initials of the months aggregated in the seasonal-
climate forecast of the sea surface temperature (SST). 

 Meteorological Sep. Oct. Nov. Dec. Jan. Feb. Mar. 
 variable (JJA) (JAS) (ASO) (SON) (OND) (NDJ) (DJF) 

La Toma 
 
 max. Temperature 0.57 0.85 0.96 0.86 0.77 0.78 0.96 
 min. Temperature 0.91 0.96 0.41 0.48 0.90 0.93 0.90 
 Rainfall 0.78 0.66 0.76 0.75 0.81 0.95 0.83 
 
Usnio 
 
 max. Temperature 0.35 0.45 0.65 0.48 0.68 0.42 0.56 
 min. Temperature 0.43 0.81 0.42 0.61 0.42 0.31 0.46 
 Rainfall 0.52 0.51 0.26 0.54 0.27 0.55 0.40 
 
Manzanas 
 
 max. Temperature 0.97 0.87 0.96 0.78 0.90 0.88 0.77 
 min. Temperature 0.79 0.84 0.68 0.78 0.94 0.86 0.84 
 Rainfall 0.75 0.52 0.45 0.82 0.95 0.42 0.45 

 

Table 5.4 shows a comparison between the monthly climatic values 

versus the monthly forecasted values (cropping season September 2003 – 

May 2004) of the three meteorological variables and for each weather 

station. The forecasted values are those used as inputs to the weather 

generators to produce the 99 files of daily-weather distribution, according to 

the specific forecast. 

 

5.3.3 Yield forecast and risk evaluation 

Figure 5.4 shows the optimal planting-date maps and the forecasted 

yield ranges of potato (a, b), wheat (c, d), and barley (e, f). High N-

fertilization scenarios across the crops are shown in (a, c, and e) 

respectively, while the low N-fertilization scenarios are shown in (b, d, and 

f) respectively. These maps optimize the planting-date of each crop and N-

fertilization combination according to the downscaled forecast to the 
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cropping season of September 2003 – May 2004 in La Encañada and 

Tambomayo watersheds. Maps indicate the highest yield of each pixel 

among the simulated months. Figure 5.5 shows the risk of potato 

production as a coefficient of variation due to both the errors in 

downscaling process of seasonal-climate forecast and uncertainties of the 

crop simulation process because of the use of different daily-weather 

distributions. Scenarios of low and high N-fertilization are presented as 

Figure 5.5a and 5.5b respectively. 

 

Fig 5.3. Tercile probabilities of the residuals at the time of validation during the events of El 
Niño (a, c, and e) and La Niña (b, d, and f). Variables correspond to (a) and (b) 
Maximum temperature, (c) and (d) Minimum temperature, and (e) and (f) Rainfall.  
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Table 5.4 Monthly climate and forecast values of maximum and minimum temperature and 
rainfall for each weather station in the period of work. 

  Temperature (°C)  Rainfall 
  maximum   minimum   (mm)  
 Month climate forecast climate forecast climate forecast 
 
La Toma 
 
 September 12.0 12.0 3.1 3.0 68.6 88.8 
 October 12.3 11.8 3.6 3.2 45.7 45.2 
 November 11.9 11.3 3.1 3.0 69.4 68.6 
 December 10.8 10.8 3.1 2.7 128.7 132.3 
 January 10.7 10.6 2.7 2.4 92.7 88.2 
 February 10.4 11.3 3.9 2.0 143.1 103.2 
 March 9.8 12.0 2.5 1.6 102.5 199.1 
 
Usnio 
 
 September 14.7 15.0 6.3 6.4 40.0 39.3 
 October 14.9 14.5 6.7 6.4 62.6 65.3 
 November 14.7 14.7 6.1 6.1 67.4 65.4 
 December 14.2 14.5 6.4 6.6 75.0 68.6 
 January 14.5 14.7 5.9 5.7 92.8 94.9 
 February 14.2 14.5 6.9 5.7 108.0 110.3 
 March 14.0 13.4 6.5 5.8 105.3 86.9 
 
Manzanas 
 
 September 16.7 15.6 5.8 3.7 53.9 65.4 
 October 17.5 16.0 6.4 4.8 45.1 51.0 
 November 17.9 16.7 5.6 5.8 63.2 62.7 
 December 17.0 16.6 7.3 6.5 52.9 64.3 
 January 16.2 17.5 6.5 6.3 63.4 85.2 
 February 15.9 17.1 6.9 7.6 147.7 147.4 
 March 16.1 16.1 6.6 6.5 105.5 106.7 

 

5.4. Discussion and conclusions 

5.4.1 Current decision-making processes 

Observations of many local forecast indicators in the study area are 

done by farmers who translate them into weather forecasts rather than 

seasonal-climate forecasts. As a result, farmers use the indicators for 

operational decisions rather than tactical decisions. As a result, farmers 

incorporate their local forecast to assist in operational decisions on water, 

nutrient, and crop protection management according to their conceptual 

models. According to Table 5.1, seasonal-climate forecast indicators are 
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evaluated right before, during, or following the planting dates, making it 

difficult to use them to assist in tactical decisions such as planning in 

advance which crop will be planted or planting dates. However, from a 

tactical point of view, indicators are useful for farmers in order to have an 

idea about the crop yield at the end of this season; thus, they can take 

actions at an earlier time such as emigrating for temporal work. 

Farmers from La Encañada produce under different agro-ecological 

conditions and with large differences in market accessibility. The order 

imposed to the hamlets in Figure 5.2 shows high correspondence between 

the accessibility to resources and markets. There is also a variation across 

the crops due to the accessibility to better lands for valuable crops. 

Farmers who have the highest number of factors affecting their planting 

decision (Table 5.2) are the ones directly related with the highest values of 

the self-consume/market ratio in Figure 5.2. After-planting frost does not 

influence the decision to plant because farmers have the possibility to 

replant. Market prices have a variable importance as a factor influencing 

the planting area, the more market dependable hamlet (Chagmapampa) 

presents the largest number of farmers influenced by market conditions. 

The importance of market prices as a factor influencing the planting area is 

explained because a high number of farmers belong to a subsistence 

economy (Baigorria et al., 2002), there is an imperfect market (Antle et al., 

2001), and the price expectation at the moment of harvesting is insecure. 

Plagues and diseases in the potato crop are highly related to seed 

availability and are both dependent on the weather and the management 

conditions of the previous cropping season. The first rainfall events during 

the wet season ultimately determine the planting date; however, farmers do 

not take into account the forecast of total rainfall and rainfall distribution 

during the beginning season. In this case, local forecast of weather is being 

used to assist tactical decisions that in fact require middle-term forecast. 

The seasonal-climate forecast is available from the National Service 

of Meteorology and Hydrology and most of the farmers have access to it 
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mainly by radio. However, the field survey shows that they can’t change 

their tactical decisions due to the impossibility to understand the forecast 

presented by the media, as well as its translation in terms of agricultural 

impact. Weather forecast, as well as seasonal-climate forecast, is useful 

mainly if it addresses a real necessity, and viable decision options can be 

taken by the decision makers (Hansen, 2002). In the study area, 

agricultural related institutes either support farmers by providing translated-

forecast information; yet, they lack the capabilities to do proper jobs on the 

strategic and tactical level. 

 

5.4.2 Downscaling the GCM’s forecast to the field level 

The international scientific community makes efforts to predict 

weather, seasonal-climate, and climate. However, because of complexity of 

the models, the number of atmospheric and oceanic variables involved, 

and the global scale, these predictions are often inappropriate for decision-

making at field level and even at the watershed level. Some efforts in the 

last years focus on how to downscale this information in space and time so 

that it is useful for stakeholders from regional to parcel scales. This paper 

made use of techniques to downscale the seasonal-climate forecast from 

September 2003 to March 2004 and to test the possibility of supporting 

farmers in the decision-making process. 
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Fig. 5.4. Optimal planting-date maps of potato, wheat, and barley under high and low N-
fertilization levels. (a) Potato – High N, (b) Potato – Low N, (c) Wheat – High N, 
(d) Wheat – Low N, (e) Barley – High N, and (f) Barley - Low N. 
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According to the multiple regression models, maximum and 

minimum temperatures, as well as rainfall, are expected to be close to 

normal conditions in the cropping season September 2003 – May 2004 

within the study area. This prediction is also confirmed by the seasonal-

climate forecast made in December 2003 (during the preparation of the 

present chapter) by the International Research Institute for Climate 

Prediction (IRI, 2003). Forecast from IRI is presented such as tercile-

probability to temperature and rainfall in general terms around the study 

area. 

Residual analysis suggested that the developed multiple regression 

models are quite appropriate for normal years. However, for maximum 

temperature (Figures 5.3a and 5.3b), the largest positive residuals belong 

to El Niño years while the largest negative residuals belong to La Niña 

years. These results are interpreted as the multiple regression model, 

under-estimating the maximum temperature during El Niño and over-

estimating during La Niña. In the case of minimum temperature (Figures 

5.3c and 5.3d), the tercile probabilities show that residuals are well 

distributed during El Niño; however, during La Niña years the tercile 

probabilities of the residuals demonstrate a large noise in the predicted 

values. In the case of rainfall (Figures 5.3e and 5.3f), results show that 

during El Niño years the multiple regression models produce the largest 

noise. 

The downscaling process presented here is based on the forecast of 

monthly averages of maximum and minimum temperatures and rainfall. 

However, when the daily weather conditions are produced, the monthly 

climatic variability of these variables is applied, which cannot be 

generalized for all kinds of seasonal-climate conditions (i.e. Normal, El 

Niño, and La Niña years). Romero (2005) demonstrates that variability of 

rainfall is affected seriously during El Niño and La Niña events in La 

Encañada and Tambomayo watersheds. Thus, in areas affected by some 

extreme meteorological events, it is recommended to make a previous 
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characterization analysis about the variability of the meteorological 

variables. Different values of standard deviation, rainfall distribution scale 

parameter, and probability of dry-wet sequence can be used as input in 

weather generators according to the general forecast of the extreme event. 

Generation of several daily weather files, as presented in this paper, also 

support the variability analysis of each kind of event, with the advantage 

that it captures the probabilistic normal distribution of the meteorological 

variables and not only absolute values. 

It is necessary to explore multiple regression models in a more 

dynamic way and based on a physic explanation of the involved process. 

Results obtained in the present research using a more empiric approach of 

those multiple regression models indicate the necessity of in-depth 

analysis, whether to generate multiple regression models in general 

climatic terms as the presented here or multiple regression models to 

normal conditions and to each specific extreme meteorological event. 

Models involving physic explanation can better represent a total variety of 

meteorological behaviors of an entire area. 

 

5.4.3 Yield forecast, risk evaluation, and training 

Yield forecast maps under different scenarios of crop production 

(Figure 5.4) support farmers to interpret the effects of the formal seasonal-

climate forecast on their lands under the different crop management 

options. Risk maps (Figure 5.5) support farmers with quantitative 

information about the risk of each crop management scenario under the 

seasonal-climate forecasted conditions. Thus, both low-yield fields and 

high-yield fields can be related to a low or high percent of coefficient of 

variation. Farmers with the highest economic portfolios can rent lands with 

better response to N-fertilization (Figure 5.4a) and lower risk (Figure 5.5). 

High-yield fields with a high risk typically have investments of valuable 

crops and N-fertilization, according to the risk preference or risk aversion of 
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the owners. However, in low-yield fields, often related to marginal areas or 

natural pastures opened as new fields, yield forecasts support poorest 

farmers to make better investments of the low resources they have in an 

attempt to assure food security. 

After a training process, farmers understood how to use the maps 

(same as presented in Figures 5.4 and 5.5), and they began to interpret the 

yield forecast in the areas corresponding to their own fields to analyze the 

feasibility of the information and more rapidly incorporate the information 

into their own conceptual models. The first observed response from 

farmers at the time of information dissemination was a desire to increase 

the percentage of planting area within the optimal proposed planting-date, 

attempting to take advantage of the yield forecast. However, the farmers 

never wanted to risk the entire planting area, neither in a single planting 

date nor for one crop. Also notable is that only a small percentage of 

farmers considered changing the predetermined crop, despite the fact that 

the information was proportioned one month before the first evaluated 

planting-date. In this way, adoption of the findings by farmers would finally 

depend on the destination of their harvest products, which varies according 

to the hamlet and crop (Figure 5.2), and the economic portfolio, and also to 

farmers’ risk preferences (Materer, 2001). However, best crop yields are 

not necessary related with the highest net incomes, especially in the more 

market-dependable hamlets. Thus, the use of this information is to translate 

forecasts to support decision-making and not to make the actual decision. 
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Fig. 5.5. Maps of coefficient of variation (%) of potato yield under different levels of N-
fertilization. (a) High and (b) Low. 
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5.4.4 Improving decision-making at different levels 

During the decision-making process, farmers evaluate all available 

information to make the best decision according to their conceptual models, 

traditions, and capabilities. It is not easy to translate the formal forecasts 

regarding the total amount of rainfall during the cropping season or the 

monthly average temperatures, to how they will impact crop yields. Crop 

growth simulation models make it possible to dynamically assess the 

impact of forecasts in combination with other variables such as soil, 

cultivars, and crop management. 

Availability of more detailed spatial information of climate, soil, and 

topography, in combination with tools with a more quantitative and 

mechanistic approach, provides the possibility to make a deep and 

complex analysis similar to the real world situation, describing the 

maximum spatial and temporal variability in complex terrains such as the 

Andean Highlands. Higher levels of complexity can be reached in the 

analysis, including more variables within the distinct scenarios. These 

variables can include cultivars into each crop (i.e. native potatoes, winter 

wheat, short photoperiod cultivars, etc.), irrigation systems, and crop 

rotations, etc. However, this information must be used as a support system 

such as in the case of the farmers of La Encañada, and not as a final 

recommendation. 

Uncertainty analysis regarding soil loss, for example, allows the 

estimation of the potential impacts of different crop managements across 

an area. However, when this analysis is geo-referenced in a map, highly 

sensible areas can be identified, analyzed, and taken into account to make 

decisions to a proper scale (Romero, 2005). National Soil Conservation 

Programs can use the information to plan in a more quantitative and 

mechanistic approach, including where to install which soil conservation 

practice to optimize resources in order to obtain the best impacts. 

Sometimes, changes in crop managements can be enough to drastically 

reduce soil loss. Usually, farmers in the study area do not have access to 
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high levels fertilizers because of high costs and the aversion to the risk due 

to the high level of climate risk. However, it is necessary to know the 

potential risks originated by the use of these due to possible changes in 

agricultural policies. Similar to soil loss, pollution can be analyzed from 

point specific to regional levels, with the possibility to identify fields with a 

high risk of pollutant leaching and to analyze total amounts of these 

pollutants accumulated as the effect of a whole watershed (Stoorvogel et 

al., 2004a; Crissman et al., 1998). Spatial variation of combinations of 

ACZs, soils, and slopes can produce different rates of soil loss under the 

same crop yield. However, in this case, temporal effect will show 

decreasing rates of crop yields under high rates of soil loss. 

Seasonal-climate forecast can support not only tactical decisions 

exploring the different alternatives of farmers to decrease or take 

advantage of some extreme event (i.e. climatic, economic, or political), but 

also to estimate possible extreme impacts on the environment, such as soil 

loss or water pollution. 

Dissaggregation of some generalizations of information, such as the 

ACZ, in higher spatial resolutions and for each of the different 

meteorological variables, still can make more robust the spatial and 

temporal analysis. However, it is important to take into account the 

necessity of more intensive calculations to perform the process. 

The possibility to analyze high-resolution maps allows different 

stakeholders to better make decisions, from investing in N fertilization at 

farmer level to decreasing taxes in N fertilizers at political level (Crissman 

et al., 1998). The pixel – parcel analysis supports the strategic decision 

making of a farmer, drawing the actual versus potential harvest of different 

crops, effectively reducing the uncertainty of the next seasonal weather and 

its influence on the crops. This valuable information, together with market 

prices, seed availability, information of plagues and diseases, and 

economical portfolios as the principal factors, constitute the total framework 
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for the final decisions made by the stakeholders at different spatial and 

temporal levels. 
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Chapter 6 

Climate variability explaining soil variability in volcanic ash 
soils in the Ecuadorian Andes 

Young Andisols in the Carchi region in the Ecuadorian Andes present 
limited spatial variation in parent material and age. The high infiltration capacity of 
the volcanic ash soils prevents runoff and consequently limits topography (in 
terms of slope and curvature) as an important soil forming factor. Land use can be 
described by a rotation of potato and pasture and also presents limited variation in 
the study area. On the other hand, climatic differences are large in the steeply 
dissected mountainous region. Given the limited variation in the above soil 
forming factors one can expect that soil variation is strongly correlated to climatic 
differences. Typically, little is known about the spatial variability in climate (except 
through proxies like altitude and aspect). In regions like Carchi, the possibilities for 
digital soil mapping are, therefore, limited. In digital soil mapping, the spatial 
variation in soils is described as a function of auxiliary information providing 
insight on the soil forming factors. To apply this technique in the Carchi region 
requires insight in the spatial variation in climatic conditions. The lack of reliable 
climatic data at high-resolutions has stimulated the use of climatic indexes based 
on topography such as the wetness index and altitudinal relationships. Recently 
new process-based interpolations techniques of meteorological variables with 
emphasis in mountainous areas have developed. In this chapter we test their 
applicability to explain the distribution of soil properties in the Carchi region. Soil 
organic matter and other soil properties are mapped using stepwise multiple 
regression models (SMRM) using soil mapping units, topography, and climate 
parameters as independent predictors. Validation was performed using cross-
validation, residual analysis, and the median square error. The outcomes were 
compared with mapping units; stratified linear regression results using altitude as 
predictor, and SMRM results using DEM’s related parameters as predictors. 
Comparisons demonstrated a significant contribution of climate in predicting the 
spatial distributions of all soil characteristics. Different meteorological variables 
explain the variations within the soil units, demonstrating the potential to use 
interpolated climatic maps for digital soil mapping.  
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6.1 Introduction 

In 1898, Dokuchaev identified five main soil-forming factors: parent 

material, topography, climate, organisms, and time (Jenny, 1941). The 

combination of these factors determines the type of process (physical, 

chemical, and biological), the duration, and the rate of soil development at 

a given location (van Breemen and Buurman, 1998). Parent material and 

topography define the initial state where climate and organisms initiate the 

physical, chemical, and biological soil forming process resulting over time 

in the current pedon. In this conceptual model of soil formation, climate is 

an important driving factor as it influences weathering rates, but also, 

indirectly through the type and quantity of organisms affecting soil organic 

matter dynamics. The effect of climate has been studied for a long time but 

mostly at large scales to explain major differences between zonal soils 

(Baldwin et al., 1938). At more detailed scales, however, the lack of insight 

in climatic variability forced researchers to use proxies for climate like 

altitude (Zehetner et al., 2003; Lopez, 2000) and the wetness index 

(Jenson and Domingue, 1988; More et al., 1993) for which the spatial 

variability was known or could be assessed. The attention for climate 

variability as a driving factor behind soil variability was already apparent by 

the definition of soil moisture and soil temperature regimes for pedological 

research (FAO and UNESCO, 1998; USDA and NRCS, 1998). Recently it 

received renewed attention in the field of digital soil mapping using 

reproducible, quantitative methods that make extensive use of auxiliary 

information (Bogaert and D’Or, 2002; McKenzie and Ryan, 1999; Florinsky 

et al., 2002). If successful, digital soil mapping may be an interesting 

addition to the well accepted methods as described in the soil survey 

manual (Soil Survey Staff, 1993; Schoeneberger et al., 1998) and resolves 

some of the resource constraints of soil surveys (Bouma et al., 1999). New 

techniques are rapidly being developed ranging from geostatistical 

techniques, geographical information systems (GIS), topographic analysis 

and remote sensing (Mueller and Pierce, 2003; Bell et al., 2000). 
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Nevertheless, high resolution input data remain a serious constraint for 

many cases. Recently, process-based interpolations models estimating the 

spatial and temporal distribution of maximum and minimum temperatures, 

incoming solar radiation and rainfall have been developed for mountainous 

areas (Chapter 2,3 and 4). These methodologies produce high-resolution 

maps of the meteorological variables based on daily weather data from a 

few weather stations and digital elevation models (DEMs). The maps 

provide a new basis for digital soil mapping using climatic variability, a 

factor that has often been neglected due to limited data availability. Climate 

as a soil forming factor can now be studied at larger scales and may help 

us to predict exact values of soil properties at a particular site by 

disaggregating soil mapping units and incorporating secondary climate 

information. 

In this study we use the interpolation techniques for climate and 

analyze the relations between climate and soil properties. The 95 km2 

study area is located in Carchi province in the Ecuadorian Andes. The 

volcanic ash soils in the area have a high inherent soil fertility that makes 

them very suitable for the cultivation of potato and the production of milk. 

Consequently, Carchi is one of the major potato growing areas of the 

country. The area is highly suitable for a first exploration of the relations 

between soil properties and short-distance variability since climatic 

variability is probably one of the main driving factors behind soil 

differences. In the study area, a blanket of highly porous volcanic ash has 

been deposited 1600 years before present. With the deposition of this ash 

sheet the time factor in soil formation became constant, all soils started to 

develop since the last ash falls. Secondly, the highly porous ash layers 

have high infiltration rates preventing significant runoff of rainwater and 

thus limiting topography related erosion processes. The current paper 

explores climate induced soil variability within the units of an existing 

1:100.000 soil survey (MAG and ORSTOM, 1980).  
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6.2. Data and methods 

6.2.1 Study area 

The study area is located in the Ecuadorian Andes (Figure 6.1) 

between 0°42’ N, 78°30’ W and 0°32’ N, 77°30’ W. The area includes the 

Chitan and San Gabriel watersheds range between 2700 and 3840 meters 

a.s.l. From an ecological point of view, Troll (1968) named the study area 

as ‘Páramo-Andes’ describing equatorial regions of the Northern Andes 

with possible rainfall throughout the year. The temperature regime typically 

corresponds to an equatorial climate with a small variation in average 

monthly temperature but with a daily temperature swing of over 10°C. This 

large swing is caused by the complex mountainous topography, even 

allowing for radiative frost events during clear skies at night. 

According to Zebrowski (1997), the observed soils in the study area 

are composed by two sources of volcanic ashes and pyroclastic products, 

the first from 50,000 to 11,000 before present and the second from 8,000 to 

1,600 before present. Soil surveys made by MAG and ORSTOM (1980) 

classified the young soils as Andepts (Anidisols in the recent, updated 

classification by USDA-NRCS, 1998). The main soil units in the study area 

are presented in Figure 6.1 and described as (MAG and ORSTROM, 

1980): 

(a) Cf-Hf: Duriudoll (silty ashy halloysitic montmorrillonitic isothermic) - 

Andic Argiudoll (silty ashy isothermic) 

(b) Hf: Andic Argiudoll (silty ashy isothermic) 

(c) Ck-Cf: Duriudoll (silty isothermic) - Duriudoll (silty ashy halloysitic 

montmorrillonitic isothermic) 
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Fig. 6.1. Map of the study area, including the digital elevation model (DEM) and soil units 

 

(d) Dp: Typic Dystrandept (pseudo-silty medial isothermic) 

(e) Dv-Dm: Typic Hydrandept (pseudo-silty thixotropic isomesic) - Typic 

Dystrandept (pseudo-silty medial isomesic) 

The Ck and Cf soils include the typical compound soils below the 

Páramo that exhibits the typical ‘Cangahua’ (Zebrowski, 1997). Quantin 

(1997) defines ‘Cangahua’ as volcanic soils hardened by atrophic erosion 

limiting seriously the agricultural production. In the study area the 

‘Cangahua’ is usually found at 70 cm in Cf soil unit and at 40 cm in Ck soil 

units. In general terms, the area has highly fertile soils resistant to soil 

erosion and is one of the major potato growing areas of the country. The Hf 

soil unit corresponds to buried soils deeply altered without significant 

restrictions for agricultural activities. Crissman et al. (1998) described in 
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detail the agricultural system dominated by the production of potatoes and 

milk, which are developed on steep hillsides. However, crops like wheat, 

maize, beans, faba beans, barley, peas and some Andean root crops are 

also components of the cropping systems. Part of the highest elevations 

constitute part of the El Angel Ecological Reserve since 1992 with no 

agricultural or livestock activities and mostly undisturbed soils. 

 

6.2.2 Data collection 

Four automatic weather stations registering maximum and minimum 

temperatures, rainfall, and incoming solar radiation were installed in the 

study area operating for 3 years. These weather stations were located at: 

Capuli bajo (0°35’07” N, 77°49’44” W, and 2831 meters a.s.l.), Cristobal 

Colon (0°36’59” N, 77°48’24” W, and 2821 meters a.s.l.), Chutan alto 

(0°37’59” N, 77°51’27” W, and 3181 meters a.s.l.), and Chicho (0°39’13” N, 

77°49’51” W, and 3261 meters a.s.l.). Monthly variation of minimum and 

maximum temperatures and rainfall for each weather station are shown in 

Figure 6.2. Sequences of infrared images from the GOES satellite were 

used to derive the main wind direction in the study area at daily time steps 

(based on cloud movement). 

Soil data from two previous soil studies in the study area (van Soest, 

1998 and Lopez, 2000) were used. During these studies, 190 geo-

referenced soil samples were collected and analyzed in 1997, 1999, and 

2000. Table 6.1 present summary statistics of these soil samples (MAG 

and ORSTOM, 1980).  

A digital elevation model (DEM) has been derived from the 1:50,000 

topographic maps with a cell size of 20 x 20 m. (Figure 6.1). From this 

DEM, maps with topographic indicators were generated for further analysis 

including slope, aspect, profile and plane curvature (Pellegrini, 1995) and 

the topographic wetness index (TWI) (Jenson and Domingue, 1988; More 

et al., 1993) to serve as input for further analysis. The aspect was 
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transformed into two indicators. The sinus of the aspect expresses the 

east-west (longitudinal) effect and the co-sinus expresses the north-south, 

latitudinal effect. A database was established that includes the soil 

observations and the topographic variables for the respective locations.  

Fig. 6.2. Variation in minimum and maximum temperatures and rainfall for the four weather 
stations. Solid and empty marks correspond to minimum and maximum 
temperatures respectively while bars correspond to monthly rainfall. 

Table 6.1: Summary statistics of soil properties across the 190-geo-referenced samples, 
stratified according to the soil units in the study area 

 Organic pH Al++++H+ P K Total N Sand Clay Silt 
 matter (%)   (ppm) (meq/ (%) (%) (%) (%) 
     100mg-1) 

Cf-Hf (n=45) 
 Avg. 6.3 5.5 1.1 65 0.86 0.37 44 28 28 
 Stdev. 3.0 0.4 0.7 50 0.60 0.15 7 9 8 

Ck-Cf (n=9) 
 Avg. 10.3 5.4 0.8 39 0.99 0.53 39 40 21 
 Stdev. 1.9 0.2 0.2 22 0.53 0.09 6 8 8 

Dp (n=57) 
 Avg. 10.7 5.2 1.3 56 0.65 0.59 41 34 25 
 Stdev. 3.7 0.4 0.6 50 0.36 0.20 8 14 11 

Dv-Dm (n=13) 
 Avg. 14.7 5.0 1.8 32 0.28 0.81 36 40 23 
 Stdev. 2.1 0.4 0.7 22 0.19 0.21 7 17 13 

Hf (n=65) 
 Avg. 9.2 5.5 1.1 63 0.81 0.54 44 35 21 
 Stdev. 3.8 0.6 0.7 51 0.40 0.23 9 11 9 
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6.2.3 Weather data interpolation and climate maps 

Incoming solar radiation and minimum and maximum temperatures 

were used to calculate the Bristow-Campbell coefficients to the study area. 

The Bristow-Campbell model (1984) estimates incoming solar radiation 

(Hi+hi in MJ m-2 day-1) on the basis of extraterrestrial incoming solar 

radiation (Ho in MJ m-2 day-1 calculated as a function of the ratio between 

actual and mean sun–Earth distance, latitude, solar declination and solar 

angle at sunrise) and the difference between maximum and minimum 

temperatures T (°C):  

( ) ( )[ ]BC
BBoii TbaHhH ∆−−=+ exp1  

In Chapter 2 this model was selected for an application in the central 

Andes with similar meteorological and topographic conditions. Calibration 

of this model allows us to interpolate incoming solar radiation on the basis 

of topographic differences. Because of the equatorial location of the study 

area, there is a low variation of the incoming solar radiation in the upper 

part of the atmosphere. As a result clouds in the atmosphere will cause the 

largest differences in the incoming solar radiation at the earth surface. 

Therefore, the Bristow-Campbell coefficients aB, bB and cB were estimated 

separately for dry and wet conditions.  

DEM, slope, and aspect maps were reduced in resolution to a pixel 

size of 100x100 m according to the previous experiences of the 

interpolation process performed in a similar area located in the northern 

Andes of Peru. Using the interpolation model developed in Chapter 3 to 

interpolate maximum and minimum temperatures and incoming solar 

radiation and Chapter 4 to interpolate rainfall in mountainous areas, daily 

maps of these four variables were generated at the same resolution of the 

aggregated DEM. 
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The interpolation of maximum and minimum temperatures is based 

on the fact that net radiation is zero twice a day (Peixoto and Oort, 1992). 

Taking into account the variation in topography across weather stations, 

functions of atmospheric transmissivity (τ) and atmospheric irradiation 

( ↓
LWF ) are determined (Chapter 2). These functions are applied spatially to 

estimate maximum and minimum temperatures according to the 

topography of each pixel after a new radiation balance on each. Rainfall 

interpolation is based on the Digital Mountain Wave Model (DMWM) 

describing the three-dimensional cloud-route, determined by the interaction 

between topography and the main wind direction, and the processes 

involved in the formation of rainfall. Parameters of the DMWM were setting 

as: wave amplitude (α = 0.5), wavelength (λ = 1) and shift peak angle  

(δ = 5°). 

On the basis of the daily interpolations of the four meteorological 

variables, average monthly and yearly maps were calculated. In addition 

maps with monthly temperature swing, variation in monthly variables, the 

square and square root of the variables (to deal with non-linearity) were 

calculated. 

 

6.2.4 Development and validation of stepwise multiple regression models 

An overlay of the soil sampling locations with the climate maps 

provide a new database containing soil, topographic, and climatic data. The 

database was stratified on the basis of the five main soil units. Correlation 

matrices for each soil unit were calculated as a first approach to establish 

relationships between the soil characteristics and potential predictors. Two 

sets of stepwise multiple regression models (SMRMs) between the soil 

characteristics and the topographic and climatic were generated using a 

stepwise analysis. The first one was developed using only DEM related 

parameters as predictors, while the second one was performed including 

the interpolated climate data. Given the goal of the study to explore the 
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effect of high-resolution climate data, interaction factors among the 

predicting variables were not included.  

The validation was done on the basis of a cross validation analysis 

comparing each individual value estimated by the SMRM after being 

extracted from the sample with the observed one. The coefficient of 

determination (R2), bias, and the median square error (MSE) were 

calculated and a residual analysis was performed. Comparisons among the 

performances of the stratified linear regression models using altitude as 

predictor and the two sets of SMRMs constitute the added value of 

including the new high resolution climate data instead of using the more 

traditional methods to estimate spatial distribution of soil properties. Effects 

of spatial autocorrelation were analysed to determine the spatial 

dependency of the SMRMs outcomes (Anselin and Griffith 1988; Overmars 

et al. 2003). 

 

6.3 Results and discussion 

6.3.1 Weather data interpolation and climate maps 

The validated values for the Bristow-Campbell are presented in 

Table 6.2. Figure 6.3 shows the four interpolated climate maps of average 

annual minimum and maximum temperatures, incoming solar radiation and 

rainfall. The relatively flat areas in the south-east (corresponding to the soil 

units Cf-Hf, Hf, Ck-Cf and the lower parts of Dp) exhibit little variation in 

temperatures and radiation. Most variation occurs in the steeply dissected 

areas (the soil units Dv, Dv-Dn , Dm and Dv-Dm). The highest parts of the  
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Table 6.2: Monthly coefficients of the Bristow-Campbell model (Bristow and Campbell, 
1984) for Carchi under dry and wet conditions. 
 
   Dry conditions   Wet conditions  
 Month αB bB cB αB bB cB 
 January 0.56 6.35 0.56 0.32 4.69 0.30 
 February 0.68 9.72 0.47 0.49 7.34 0.42 
 March 0.63 8.82 0.31 0.58 8.44 0.37 
 April 0.85 10.57 0.38 0.55 7.48 0.48 
 May 0.80 8.34 0.34 0.52 7.20 0.55 
 June 0.72 7.74 0.18 0.50 6.06 0.33 
 July 0.78 8.34 0.36 0.63 6.52 0.38 
 August 0.63 6.67 0.33 0.52 5.70 0.41 
 September 0.75 9.23 0.32 0.61 7.87 0.36 
 October 0.82 10.29 0.42 0.79 9.34 0.43 
 November 0.73 10.00 0.53 0.58 8.34 0.29 
 December 0.69 8.53 0.32 0.56 6.78 0.48 
 

 

Fig. 6.3. Interpolated maps of climate. (a) annual average of maximum temperature, (b) 
annual average of minimum temperature, (c) annual average of incoming solar 
radiation, and (d) total annual rainfall. 
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watershed show a large temperature swing that can probably explained by 

the lower water vapor contents. The spatial variability in weather 

conditionsincreases during the solstices in summer and winter (June and 

December respectively in the northern hemisphere) due to the farthest 

position of the sun from the equatorial line. The opposite effect is found 

during the equinoxes where the sunbeams are perpendicular to the 

equatorial line producing the lowest spatial variation of the maximum 

temperature. Average annual rainfall (Figure 6.3d) does not show a clear 

relationship with the digital elevation model. Despite some boundary effects 

outside the actual watershed, a general north-south trend seems to exist. 

During the year dominant wind directions changes between the north, 

north-east, east, south-east, and south. Although, with every wind direction 

a specific DMWM correlates strongly with the digital elevation model, the 

effect averages out in the mean annual rainfall.  

Table 6.3 shows the summary statistics for the different soil units. 

The table confirms the earlier observations with respect to the correlation 

between topographic variation, incoming solar radiation and temperature. 

They also indicate large differences in both topography and climatic 

conditions between the soil units. Given the importance of climate and 

topography as soil forming factors in combination with the relatively small 

differences in parent material and age this is not surprising. Key question 

that remains is whether the variation in climate and topography explains the 

soil differences within the different soil units. 
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Table 6.3: Summary statistics of topographic and climatic variables for the 190 geo-
referenced samples stratified according to the soil units in the study area 

  Soil unit  
 Cf-Hf Ck-Cf Dp Dv-Dm Hf 

Altitude (m.a.s.l.) 2897 (59) 3100  (47) 3126 (99) 3268 (97) 2878 (103) 

Slope (degree) 12 (7) 14 (10) 13 (6) 19 (9) 8 (7) 

Sine (Aspect) 0.1 (0.7) 0.2 (0.5) 0.2 (0.7) 0.3 (0.7) 0.4 (0.6) 

Cosine (Aspect) -0.1 (0.7) -0.3 (0.9) -0.3 (0.6) -0.5 (0.4) -0.3 (0.6) 

Profile curvature 0.02 (0.05) 0.03 (0.07) 0.01 (0.03) 0.02 (0.04) 0.02 (0.04) 

Plane curvature -0.02 (0.05) -0.03 (0.07) -0.01 (0.03) -0.02 (0.04) -0.01 (0.04) 

Wetness index 5.4 (4.1) 8.9 (12.8) 6.0 (5.5) 19.9 (31.7) 151.0 (965.3) 

 

Inc. solar radiation 19.2 (24.5) 19.2 (25.0) 19.0 (0.9) 18.0 (1.8) 19.1 (0.4) 

Max. temperature 24.5 (1.4) 25.0 (1.6) 23.5 (1.8) 21.5 (2.9) 24.5 (1.4) 

Min. temperature 6.7 (0.2) 6.1 (0.2) 6.0 (0.2) 5.8 (0.1) 6.8 (0.3) 

Annual rainfall 825 (54.8) 807 (55.2) 767 (72.9) 710 (88.1) 757 (76.6) 
* Altitude in meters above sea level, incoming solar radiation in MJ m-2 day-1, temperature 

in ºC and rainfall in mm yr-1. 

 

6.3.2 Soil organic matter 

Table 6.4 shows the correlation coefficients between soil organic matter 

and the topography and climate variables stratified by soil unit. For climate 

we analyzed average annual figures (both average, standard deviation, 

maximum and minimum) as well as the correlations with the individual 

months. In the table we only present the highest correlation coefficient that 

was obtained for these monthly figures. Although general relations between 

soil organic matter contents in relation to temperature, rainfall, aspect and 

altitude are known, the different soil units seem to react very differently. 

Altitude is found to be especially important in Dp whereas in the other units 

aspect and curvature are more important. In addition, monthly climatic 

variables generally give better results than the average annual values.  
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Table 6.4: Correlation coefficients of soil organic matter versus topographic and climatic 
variables. Highest correlations are emphasized in bold. 

  Soil unit  
  Cf-Hf Ck-Cf Dp Dv-Dm Hf 
Topographic varaiables 
Altitude 0.217 0.071 0.532 -0.061 0.215 
Slope -0.027 -0.228 -0.182 -0.043 -0.049 
Aspect 0.027 -0.729 -0.007 -0.180 0.214 
Profile curvature 0.235 -0.373 0.060 -0.106 0.036 
Plane curvature -0.176 0.373 -0.007 -0.413 0.092 
Topographic wetness index 0.032 0.556 0.145 -0.109 -0.022 
Easting 0.080 0.508 0.116 0.055 0.144 
Northing 0.510 0.016 0.364 -0.285 0.255 
Climatic variables 
Incoming solar radiation 
 Annual average 0.359 -0.351 -0.293 -0.031 0.101 
 Standard deviation -0.302 0.655 0.262 0.032 0.000 
 Maximum 0.000 0.000 0.073 -0.101 0.074 
 Minimum 0.237 0.000 -0.290 -0.036 0.083 
 Max correlation for month* 0.449 -0.610 -0.375 -0.101 0.218 
Maximum temperature 
 Average -0.125 -0.617 -0.129 0.263 -0.199 
 Standard deviation 0.125 -0.117 0.072 0.024 -0.189 
 Maximum -0.125 -0.637 -0.009 0.528 -0.198 
 Minimum -0.125 -0.594 -0.150 0.209 -0.196 
 Max correlation for month* -0.125 -0.647 -0.397 0.582 -0.236 
Minimum temperature 
 Average -0.325 0.300 -0.502 0.269 -0.229 
 Standard deviation -0.291 0.250 -0.505 0.327 -0.158 
 Maximum -0.305 0.271 -0.489 0.110 -0.244 
 Minimum -0.344 0.270 0.355 -0.243 -0.148 
 Max correlation for month* –0.445 0.417 -0.527 0.321 -0.261 
Rainfall 
 Total annual rainfall 0.136 0.046 -0.094 0.105 -0.256 
 Standard deviation  0.308 0.062 -0.020 0.039 -0.229 
 Maximum 0.229 0.090 -0.043 0.016 -0.204 
 Minimum 0.026 0.156 -0.120 0.127 -0.236 
 Max correlation for month* 0.229 0.175 -0.250 0.189 -0.347 
Temperature swing 
 Average 0.158 0.540 -0.501 0.166 0.150 
 Standard deviation -0.278 -0.048 -0.359 0.092 -0.205 
 Maximum -0.100 -0.599 -0.353 0.431 -0.203 
 Minimum -0.048 -0.660 -0.029 0.195 -0.093 
 Max correlation for month* -0.100 -0.702 -0.399 0.598 -0.208 
* The maximum correlation indicates the highest correlation coefficient that was found of all months 
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Table 6.5 shows the SMRMs resulting from the performed stepwise 

analysis to predict soil organic matter with a 5% and 10% as significance 

level. Despite the fact that the number of samples plays an important role in 

the significance estimation, the coefficients of determination levels (higher 

in the Ck-Cf and Dv-Dm unit soils with a lower number of soil samples), the 

R2 demonstrate that relations to predict soil organic matter have all 

increased when adding the climate predictors to the more traditional 

methods. Specifically in the unit Dp, altitude has the best correlation 

compared with other predictors, this relationship is improved with a 10% 

level of significance by a relationship using swing temperature as predictor. 

In all cases, the standard error of the estimate is lower to the standard 

deviation of the soil organic matter on each soil unit (Table 6.1). It is 

relevant to notice that for all relationships in Table 6.5, a climatic variable is 

used as an independent predictor. 

The coefficients of determination, bias, and MSE at different 

significance levels (α = 0.05 and 0.10) as a measurement of the validation 

and the cross-validation are presented in Table 6.6. The results show that 

the regression models perform well for most soil units.  

Table 6.7 shows the evolution of the coefficient of determination 

from the stratified linear regression model to the SMRMs including climate 

data. Changes in R2 can be interpreted as the gain in explanatory power 

due to the additional information involved as well as the importance of the 

predictors as soil forming factors. The residuals of the SMRMs including 

climate data were tested for spatial autocorrelation, obtaining a pure nugget 

model corresponding to a total lack of spatial dependency and spatial 

structure. This confirms the good performance of the SMRMs in explaining 

the spatial variation in SOM contents in the study area. 
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Table 6.5: Significance level, coefficient of determination, standard error of the estimation, 
standardized coefficients, and list of independent variables included in the SMRMs 
stratified according to the different soil units. 

 Significance Coefficient of Std. Error Standardized List of 
 Level determination of the coefficients topographic and climatic 
 (α) (R2) estimate (β) variables 
Cf-Hf 
 0.05/0.10 0.661 1.8782 0.279 Northing 
    0.804 Standard deviation of rainfall 
    -0.487 Rainfall – Nov. 
    0.582 Incoming solar radiation – Dec. 
    -0.333 Incoming solar radiation – Apr. 
    0.206 Profile curvature 
Ck-Cf 
 0.05 0.833 0.9009 -0.927 Aspect 
    0.583 Minimum temperature – Dec. 
 0.10 0.942 0.5959 -1.123 Aspect 
    0.549 Minimum temperature – Dec. 
    0.391 Incoming solar radiation – Sep. 
Dp 
 0.05 0.283 3.1460 0.532 Altitude 
 0.10 0.410 2.9071 0.673 Swing temperature – Aug. 
    -0.611 Ann. aver. swing temperature 
Dv-Dm 
 0.05/0.10 0.829 0.9850 -7.563 Swing temperature – Oct. 
    1.745 Altitude 
    9.413 Maximum temperature – Oct. 
Hf 
 0.05 0.306 3.2621 0.760 Incoming solar radiation – Aug. 
    -0.328 Slope 
    0.340 Easting 
 0.10 0.656 2.4177 0.854 Incoming solar radiation – Aug. 
    0.538 Easting 
    -3.800 Minimum temperature – Jun. 
    2.719 Minimum temperature – Jan. 
    0.520 Standard deviation of 
     swing temperature 
    1.548 Minimum temperature – Apr. 
    -1.190 Minimum temperature – Oct. 
    -0.462 Incoming solar radiation – Apr. 
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Table 6.6: Summary statistical parameters during the validation stratified according to the 
soil units 

 Significance Coefficient of Bias Median 
 level of the determination  square error 
 model (α) (R2)  (MSE) 
Cf-Hf 0.05/0.10 0.510 0.32 4.4 
Ck-Cf 0.05 0.565 -0.68 1.4 
 0.10 0.837 -0.10 0.5 
Dp 0.05 0.233 0.12 10.2 
 0.10 0.330 -0.11 9.0 
Dv-Dm 0.05/0.10 0.653 -0.77 1.4 
Hf 0.05 0.152 0.40 12.3 
 0.10 0.447 -4.30 8.4 

 

 

Table 6.7: Changes in the coefficient of determination according to the independent 
variables used to predict the spatial distribution of SOM 

 Soil Altitude Topographic Topographic 
 unit   and Climatic 
 Cf – Hf 0.047 0.321 0.661 
 Ck – Cf 0.005 0.532 0.942 
 Dp 0.283 0.283 0.959 
 Dv – Dm 0.004 0.004 0.829 
 Hf 0.046 0.108 0.961 

 

The models for the different soil units can now be applied to finalize 

our digital soil mapping exercise. The model application resulted in the map 

of SOM for the study area presented in Figure 6.4. Throughout the study 

area high soil organic matter contents are presented corresponding to the 

Andic character of the soils in the region. The few locations that showed 

relatively low SOM values (<2%) are found in the Dp soil unit close to the 

boundary with the Dv-Dm soil unit. In this area very steep slopes (>25º) are 

found on the sides of the rivers. This has resulted in land slides that 

removed all the topsoil exposing the sub-soil with lower SOM contents. As 

described in section 6.3.1, the steeply dissected character in the Dp and 

Dv-Dm soil units also played an important role in maximum temperatures 

caused by differences on incoming solar radiation. Table 6.5 shows that 

these soil units are the only ones using maximum temperature as predictor 
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variable to estimate SOM. The maximum levels of SOM are found in the 

highest area of the watershed where temperatures are relatively low and 

rainfall is high. The low temperature results in low mineralization rates of 

soil organic matter. In addition, there are no agricultural activities in this 

area. The lack of tillage conserves even more the SOM pool. The humid 

conditions throughout the year result in a constant vegetative production. In 

few locations even organic soils are found. 

Fig. 6.4. Map of soil organic matter obtained because of the application of the findings 
SMRM’s in the study area. 
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6.3.3 Other soil characteristics 

SOM is probably the textbook example to illustrate the role of 

climate as a soil forming factor.  Typically, the role of climate on other soil 

properties is less apparent. The results of the methodology to other soil 

characteristics (pH, P, K, Total N, soil texture) with the topographic and 

climatic predictors are presented in Table 6.8. The results are expressed in 

terms of significance levels of the developed SMRMs, the coefficient of 

determination and the standard error of the estimation.  

Different soil properties are explained by different topographic and 

climatic variables. Admittedly we have to realize that the different 

explanatory variables are not independent. Nevertheless, we see that 

several models explain very well the variation in the different mapping 

units. Different predictors have different relative levels of importance 

according to the soil unit, what might be explained by the different physical, 

chemical, and biological processes involved in the actual evolution of each 

soil unit. Weathering is likely to explain most of the relationships between 

climate and the pH, P, K, and texture (Jongmans et al., 1991). 

Ecopedological processes, on the other hand are likely to explain the 

relationships between climate and soil organic matter and total N.  

Especially the effects of rainfall, minimum temperature, and swing 

temperature are important for the latter (van Breemen and Buurman, 1998; 

Zehetner et al., 2003). In the past, the lack of detailed spatial and climatic 

information made it virtually impossible to demonstrate these relationships 

at detailed scale levels. The importance of the climatic variables in the 

different regression models demonstrates the relative importance of these 

variables to explain the soil forming processes in general terms. It is 

important to notice that incoming solar radiation is also included in this 

relation because of the high altitude of the study area (low optical 

thickness) and the low water vapor contents in the atmosphere, which 

mostly explains daily changes in temperature and soil moisture regimes at 

high altitudes. If we aggregate the results of the different regression models 
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for the study area we see that climatic factors explain 41% of the total 

variation in soil properties whereas 19% is accounted for by topographic 

factors. These relative percentages will change under different soil orders 

depending on the different sources of spatial and temporal variations taking 

into account during soil classification (USDA & NRCS, 1998). Nevertheless 

they underline the importance of the analysis.  

Time as a soil forming factor, can not be only understood as a 

cumulative factor, but also must be viewed in the context of the seasonal-

cycles within the same solar cycle. Soil moisture and temperature regimes 

described by USDA & NRCS (1998) can be disaggregated using more 

detailed information as presented in this chapter. As an example, total 

rainfall is not enough to describe the spatial variability of processes effects 

involving soil forming. Rainfall events due to different climate systems in 

different seasons are characterized by different amounts and intensities of 

available water. Several times, the directions from where the storm is 

coming are relevant as well. Especially in mountainous areas, the 

interaction between the exposition degree of determined slope and from 

where the rainfall event is coming on, it is an important issue. These 

interactions increase the predictability of topographic indexes like the 

topographic wetness index and profile and plane curvatures. 
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Table 6.8: Results for SMRMs explaining different soil properties on the basis of the 
topographic and climatic variables  

  α R2 MSE Explanatory variables 

Cf-Hf 
 pH 0.10 0.08 0.43 Slope 
 Total N 0.10 0.53 0.11 Profile curvature, radiation, rainfall 
 P 0.05 0.14 47.10 Minimum temperature 
 K 0.05 0.11 0.58 Radiation 
 Sand 0.10 0.53 5.28 Slope, Minimum temperature, rainfall 
 Clay 0.10 0.38 7.38 Wetness index, radiation, rainfall 
 Silt 0.05 0.34 6.52 Altitude, minimum temperature, temperature swing 

Ck-Cf 
 pH 0.05 0.82 0.11 Rainfall 
 Total N 0.10 0.32 0.08 Minimum temperature 
 P 0.05 0.58 15.39 Maximum temperature 
 K 0.10 0.90 0.20 Profile curvatura, rainfall 
 Sand 0.05 0.71 3.49 Maximum temperature 
 Clay 0.10 1.00 0.00 Slope, wetness index, minimum temperature, rainfall 
 Silt 0.05 0.99 0.63 Aspect, profile curvature, wetness index,  
     maximum termperature 
Dp 
 pH 0.05 0.15 0.36 Swing temperature 
 P 0.10 0.37 41.04 Altitude, plane curvature, rainfall 
 K 0.10 0.39 0.29 Plane curvature, temperature swing, rainfall 
 Total N 0.05 0.31 0.17 Swing temperature 
 Sand 0.10 0.54 6.09 Minimum temperature, rainfall 
 Clay 0.10 0.73 8.06 Curvature, minimum temperature, rainfall 

Dv-Dm 
 pH 0.05 0.90 0.15 Aspect, plane curvature, rainfall 
 P 0.10 0.93 7.58 Aspect, curvature, minimum temperature 
 K 0.05 0.48 0.14 Plane curvature 
 Total N 0.05 0.99 0.03 Plane curvature, minimum temperature rainfall 

Hf 
 pH 0.05 0.51 0.38 Profile curvature, rainfall 
 P 0.05 0.21 44.43 Aspect, temperature swing, rainfall 
 K 0.10 0.64 0.26 Aspect, wetness index, radiation, minimum temperature,  
     rainfall 
 Total N 0.10 0.18 0.21 Radiation 
 Sand 0.05 0.27 8.48 Profile curvature, radiation, maximum temperature 
 Clay 0.10 0.29 10.30 Profile curvature, maximum temperature, rainfall 
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6.4 Conclusions 

The use of spatial and seasonal disaggregated information of 

climate significantly improves the spatial predictability of soil organic matter 

and other soil characteristics in volcanic ash soils in the Andes 

demonstrating that soil variability within soil units can be explained by 

climatic differences. The use of these secondary data supports the 

refinement of the usually applied altitude-temperature or altitude-rainfall 

relationships. The combined use of different soil forming factors can easily 

explain most of the spatial variability in soil organic matter and related soil 

characteristics. This is supported by the rapid advances in the field of 

pedometrics and digital soil mapping. Increased predictability of climate 

variables as well as the related soil characteristics will give a new approach 

to environmental modelers often facing general data paucity. Finally, one 

should realize that the study area was an ideal case where climate is likely 

to govern soil variation. In other regions, one may have to include other soil 

forming factors as well.  
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Chapter 7 

The effect of the resolution of climate and soil data on a 
land use study in the Ecuadorian Andes 

Researchers in agricultural production systems often have to face a lack of 
climate and soil data, especially when in areas with high spatial variability. 
Traditional approaches like agro-climatic zones governed by e.g. relations with 
altitude, and soil maps with large delineated areas ignore a large part of the 
existing variability. The effect of generalizing weather station data as well the 
effect of using representative soil profiles for large mapping units in land use 
studies is not very well known. Advances in interpolation models of climate and 
soil offer new opportunities to the researchers using detailed information and 
derive more detailed results. However, the generation of more accurate inputs of 
climate and soil is time consuming and represents a big investment in resources if 
we rely on traditional inventorization techniques. Ideally, the relationship between 
the level of detail of the input data with the quality of output data is known and a 
threshold can be set by the researcher. The objective of this paper is to measure 
the effects of different spatial resolution of climate and soil on modeling 
agricultural production systems. We used the Tradeoff Analysis System to model 
agricultural systems in the Ecuadorian Andes. Climate and soil data are key inputs 
into the Tradeoff Analysis System to model the expected or, so-called, inherent 
productivity of potatoes and the effect of management on carbofuran leaching. 
Traditional agro-climatic zones and soil units were confronted with new methods 
of interpolation producing continuous surfaces of climate and soil characteristics. 
Histograms of inherent productivity, tradeoff curves between net returns and 
carbofuran leaching, cumulative probabilities of carbofuran leaching at different 
policy potato-price, and maps of carbofuran leaching using different levels of input 
data were performed. Climate and soil used as inputs to modeling agricultural 
production systems in the study area shows different effects on the different 
outputs. Aggregated tradeoff curves are not significantly affected by increasing the 
spatial input resolution, however when site-specific outputs are analyzed, quality 
in the outputs increased significantly.  
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7.1 Introduction 

In every decision and every choice, there is a tradeoff between 

benefits and cost. In the case of agriculture this could reflect the benefit of 

food production against the environmental impacts. The Tradeoff Analysis 

System (Stoorvogel et al., 2001, 2004a) is developed implementing the 

integrated analysis of tradeoffs between different sustainability indicators 

dealing with the e.g. economic, environmental and health effects of 

agricultural systems. A recent application of the Tradeoff model in the 

Ecuadorian Andes forms the basis of this study (Stoorvogel et al., 2004b).  

The application of regional land use models coincides with a 

tremendous demand for high quality data. Especially in mountain areas it is 

essential to get a description of the spatial variation in the growing 

conditions in terms of climate and soil data. Many efforts to capture the 

spatial variability of these inputs were performed (e.g. Van Soest, 1998; 

Lopez, 2000). However, these approaches were always based on 

traditional agro-climatic zones and soil units that are considered 

homogeneous and described by representative weather stations and 

representative soil profiles. New process-based interpolation models to 

estimate maximum and minimum temperatures, incoming solar radiation 

and rainfall distribution have been developed (Chapter 2,3, and 4). In 

addition, maps of soil organic matter (SOM), as well as other soil 

characteristics, have been developed to the study area using stratified 

stepwise multiple regression models using topography and climate as a 

predictors (Chapter 6). 

All this new available information opens the possibility to explore in 

depth the effect of including higher resolution data into the tradeoff analysis 

model. Ideally one would come up with thresholds for the resolution of input 

data for a specific application of the Tradeoff Analysis Model. The objective 

of this paper is to measure the effects of using high spatial resolution of 

climate and soil in comparison to the traditional use of agro-climatic zoning 
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and soil mapping units. The comparison analysis is performed using two 

biophysical models: the SUBSTOR-potato (Ritchie et al., 1995) to estimate 

potato production and the PEARL model (Tiktak et al., 2000) to estimate 

carbofuran leaching. These models are integrated with econometric-

process simulation model under the framework of the Tradeoff Analysis 

Model.  

 

7.2. Study area 

The study area is located in the Ecuadorian Andes between 0°42’ N, 78°30’ 

W and 0°32’ N, 77°30’ W (Figure 7.1). The area ranges between 2700 to 

3840 meters above sea level and covers a total area of 95 km2. From the 

ecological point of view, Troll (1968) classified the study area as ‘Paramo-

Andes’ describing the equatorial regions of the northern Andes with rainfall 

throughout the year. The temperature regime typically corresponds to an 

equatorial climate with a small range in average monthly temperature but a 

daily swing of over 10°C. This large swing is due to the high altitude as well 

as it complex mountainous topography, even allowing for radiative frost 

events during clear night skies. 

Zebroswki (1997) described the soils in this area as composed by two 

sources of volcanic ashes and pyroclastic products deposited until 1600 

years BP. According to MAG and ORSTOM (1980), these young soils are 

classified as Andepts, suborder of Inceptisols (USDA-NRCS, 1998). 

Crissman et al. (1998) provides a detailed descriptions of the agricultural 

system developed on the steep hillsides and dominated by a potato-

pasture rotation. Crops like wheat, maize, peas, barley, beans, broad 

beans, and some Andean root crops are components of the cropping 

systems. The highest parts in the watershed include the ‘Paramo’ area, 

constitutes part of the El Angel Ecological Reserve. 



Chapter 7 

 122

 

Fig. 7.1. Location map of the study area, including the digital elevation model (DEM). 
 

7.3 Data and methods 

7.3.1 The Tradeoff Analysis System 

The core of the tradeoff analysis is an economic simulation model 

based on supply and demand functions. Production economist typically 

specify these production functions in the general form q=f(x,z,e) where x is 

a vector of variable inputs, z is a vector of fixed inputs, and e is a vector of 

bio-physical factors. Vector e usually includes ad hoc indicators for climate 

and soil quality such as dummy variables for average rainfall during the 

growing season and soil types. The TOA system takes an alternative 

approach to econometric modeling that exploits the scientific knowledge 

embodied in biophysical process models. Climate and soils define the 

potential agricultural productivity of a specific location and crop 
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management (crops, cultivars, fertilization, irrigation, etc.) that determines 

the final output. Crop growth simulation models can be represented in 

stylized form as q=g(x,e) (Antle et al., 1998, Stoorvogel et al., 2004a). 

Defining an expected or average input use as x*, it is possible to use the 

crop growth simulation models to estimate an expected or inherent 

productivity q* for a specific location on the basis of weather and soil data 

as q*=g(x*,e). Replacing the vector e in the production function including 

the calculated inherent productivity: q=h(x,z,q*). Substituting q* we obtain 

q=h(x,z,g(x*,e)), showing that this procedure yields a special case of the 

production function q=f(x,z,e) in which the biophysical variables e are 

weakly separable from the variable and fixed inputs x and z. Details of the 

economic simulation model are described by Antle et al. (1998) and Antle 

and Capalbo (2001). In this way, crop growth models are used to 

systematically transform site-specific biophysical data into an estimate of 

the spatial and temporal variation in expected or inherent productivity. 

Because of this site-specific information, the production functions are 

capable to simulate the relationships between land quality and 

management decision by the farmer. 

The Tradeoff Analysis System goes one step further including also 

environmental impact models (Stoorvogel et al., 2004a). In previous studies 

the effect of the application of a commonly applied pesticide, carbofuran, 

on the environment and human health was studied (Antle et al., 1998, 

Crissman et al., 1998; Yangen et al., 2002, Stoorvogel et al., 2004b). Tax 

policies and different levels of integrated pest management (IPM) 

technologies were evaluated, analyzing the changes between potato and 

milk production, and its impacts on health because of agro-chemical 

leaching.  
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7.3.2 Farm survey data 

Farm survey data for the Tradeoff Analysis Model are collected to estimate 

the land use and management decisions of farmers in the study region. A 

two-year dynamic survey was conducted for a sample of 40 farmers with 

187 fields in the study area (Crissman et al., 1998). The survey includes 

site-specific production, planting, sprays, fertilization, and harvest dates, 

agro-chemical inputs (quantity and frequency), and price data. To ensure 

accuracy in measurement of farm management information, data need to 

be collected frequently enough to minimize farmer recall error to the degree 

possible. The survey for those fields was collected through a series of 

interviews not exceeding a month between visits during the production 

period being measured. Data registers for each field in cultivation were 

designed for the collection of labor, equipment and supplies data based on 

date-linked activities.  

 

7.3.3 Climate and soil data  

For both, climate and soil data, two spatial resolution levels were 

used. Combination of these levels generated the four input levels evaluated 

in the present paper: 

• Low-resolution maps of climate and soil; 

• High-resolution maps of climate and low resolution maps of soil; 

• Low-resolution maps of climate and high resolution maps of soil; and 

• High-resolution maps of climate and soil. 
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7.3.3.1 Low-resolution maps 

The first work performed in the study area by Crissman et al. (1998) 

divided the region in four agro-climatic zones based mainly in the altitude 

(Figure 7.2a). Three weather stations around the study area (Table 7.1) 

were assigned to the different agro-climatic zones, using its daily data as 

representatives to all the polygon area that constitutes each agro-climatic 

zone. The weather stations are located at: San Gabriel (0°36’11” N, 

77°49’11” W, and 2815 meters above sea level), El Angel (0°37’34” N, 

77°56’38” W, and 3000 meters above sea level), and Voladero (0°41’00” N, 

77°52’00” W, and 3620 meters above sea level). 

 

Table 7.1: Main parameters ranging the weather stations in the study area 

 Weather  Temperature (ºC)  Rainfall Incoming solar 

 station maximum minimum (mm) radiation (MJ m-2 d-1) 

 

 Capuli bajo 17.5c 7.8c no data 17.4c 

 Chicho 13.4c 5.7c 910c 14.6c 

 Chutan alto 12.9c 6.6c 831c 22.3b,c 

 Cristobal Colon 16.8c 6.1c 875c 22.4b,c 

 El Angela 16.3 7.0 976 23.3b 

 San Gabriela 17.2 7.0 944 22.8b 

 Voladeroa no data no data 1313 no data 
a Belonging to the main weather station network 
b Estimated by Bristow-Campbell model (1984) calibrated to the study area (Chapter 6) 
c From three-year average measurements 
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Fig. 7.2. Low resolution input maps for (a) climate and (b) soils. 

 

A soil map performed by MAG and ORSTROM (1980) describe the 

main soil units in the study area (Figure 7.2b). These soil units are 

described as: 

• Cf-Hf: Duriudoll (silty ashy halloysitic montmorrillonitic isothermic) - 

Andic Argiudoll (silty ashy isothermic) 

• Hf: Andic Argiudoll (silty ashy isothermic) 

• Ck-Cf: Duriudoll (silty isothermic) - Duriudoll (silty ashy halloysitic 

montmorrillonitic isothermic) 

• Dp: Typic Dystrandept (pseudo-silty medial isothermic) 
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• Dv-Dm: Typic Hydrandept (pseudo-silty thixotropic isomesic) - Typic 

Dystrandept (pseudo-silty medial isomesic) 

Physical and chemical descriptions of each soil unit (Table 7.2) were 

used as representative soil profiles to the area represented by the soil unit. 

 

Table 7.2: Main soil characteristics ranging the different soil units in the study area. 

 Soil Organic pH P K Total N Sand Clay 

 unit matter (%)  (ppm) (meq 100mg-1) (%) (%) (%) 

 Cf-Hf 6.3 5.5 65 0.86 0.37 44 28 

 Ck-Cf 10.3 5.4 39 0.99 0.53 39 40 

 Dp 10.7 5.2 56 0.65 0.59 41 34 

 Dv-Dm 14.7 5.0 32 0.28 0.81 36 40 

 Hf  9.2 5.5 63 0.81 0.54 44 35 

 

 

7.3.3.2 High resolution 

With the validated process-based interpolation models for maximum 

and minimum temperatures, incoming solar radiation, and rainfall (Chapter 

2-4), daily maps of these four meteorological variables were created 

(Figure 7.3a and b). The interpolation of maximum and minimum 

temperatures are based on the fact that net radiation is zero twice in a day 

during these temperatures occurs. Taking into account variation in altitude, 

slope, and aspect (azimuth) across weather stations, functions of 

atmospheric transmissivity (τ ) and atmospheric irradiation ( ↓
LWF ) are found. 

These functions are applied spatially to estimate maximum and minimum 

temperatures according to the topography of each pixel after a new 

radiation balance on each. Incoming solar radiation was estimated by the 

Bristow and Campbell model (1984) based on the incoming solar radiation 

in the top of the atmosphere, maximum atmospheric transmissivity for wet 

and dry conditions, and the difference between maximum and minimum 
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temperatures calculated on the step before. Rainfall interpolation is based 

on the Digital Mountain Wave Model (DMWM) describing the three-

dimensional cloud-route determined by the interaction between topography 

and wind direction (obtained from sequences of infrared images from the 

GOES satellite) and the processes involved in the formation of rainfall. 

Parameters of the DMWM were setting as: wave amplitude (α = 0.5), 

wavelength (λ = 1) and shift peak angle (δ = 5°). After performed the 

interpolation of the four meteorological variables at daily steps, the 

obtained maps were aggregated at monthly and yearly level. The pixel size 

of these meteorological variables was set in 100 m x 100 m. 

To produce these maps, four new automatic weather stations (Table 

7.1) registering maximum and minimum temperatures, rainfall, and 

incoming solar radiation were added to the previous network during 3 

years. These weather stations were located at: Capuli bajo (0°35’07” N, 

77°49’44” W, and 2831 meters above sea level), Cristobal Colon (0°36’59” 

N, 77°48’24” W, and 2821 meters above sea level), Chutan alto (0°37’59” 

N, 77°51’27” W, and 3181 meters above sea level), and Chicho (0°39’13” 

N, 77°49’51” W, and 3261 meters above sea level). 

The monthly aggregated maps of the four meteorological variables 

were joined to topographic variables as altitude, slope, aspect, profile and 

plane curvature and the topographic wetness index to predict the spatial 

variability of the soil characteristics (Chapter 6). Using stepwise multiple 

regression models stratified by the different soil units, new maps of soil 

characteristics were generated to the study area. The soil organic matter 

content map presented in Figure 7.3(c) was used as input in the present 

paper. Pixel size of the map was 100 m x 100 m. 
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7.3.4 Model simulations 

The inherent productivity of potatoes is simulated by the SUBSTOR 

model (Ritchie et al., 1995) previously calibrated to the Andes by Bowen et 

al. (1999). In this paper environmental impact is reflected by carbofuran 

leaching based on the LEACHP model (Wagenet and Hutson, 1989). In the 

study area, field experiments revealed site-specific data on pesticide 

degradation and sorption (Stoorvogel et al., 2004b). 

The tradeoff curves represent the join distribution of economic or 

environmental indicators and how they respond to changes in prices or 

other parameters (Stoorvogel et al. 2001). The tradeoff points were 

constructed by varying mean potato prices to change the incentives of 

farmers to produce potatoes or pasture for dairy cows. For comparing 

previous works of Crissman et al. (1998) and Stoorvogel et al. (2004a), with 

the present work, the same five tradeoff points were defined: reflecting 

changes in the mean potato prices: two with a 50% and 25% decrease, one 

with the observed potato prices, and two with a 25% and 50% increase. 

The scenarios are defined in a way that represents the effect of 

certain changes in the socio-economic environment (possibly initiated by 

policy interventions) and the introduction of an alternative technology. Two 

scenarios were used in the present paper corresponding to a base scenario 

and the integrated pest management (IPM) technology. The base scenario 

is the current land allocation, land use management and prices. The IPM 

scenario is implemented as a lower probability that Carbofuran will be 

applied at a certain crop development stage and the number of farmers 

adopting this alternative technology. To each scenario, the econometric-

process model was used to simulate land use management decisions and 

land allocation for five crop cycles. The simulations yielded data on inputs 

and outputs and the timing of pesticide application decision. 
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Fig. 7.3. High resolution input maps for (a) Average annual temperature, (b) Total annual 
rainfall, and (c) soil organic matter. 
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The analysis of the present paper is based on the comparison of 

different levels of spatial resolution of climate and soil, measuring the 

impacts on the estimation of the inherent productivity, but also on the 

tradeoff curves between leaching and net returns. Because the tradeoff 

curves represent certain levels of aggregation, also the raw data provided 

by the environmental models are analyzed in terms of cumulative 

probabilities and by mapping the results of decreasing carbofuran leaching 

due to change in scenarios at different input spatial resolutions. 

 

7.4 Results and discussion 

Figure 7.4 shows the most direct effect of the different spatial 

resolution of climate and soil on the expected or inherent productivity of 

potato production. Increasing the resolution of soil data (Figure 7.4c), 

produced a more homogeneous distribution of the dry matter than the base 

case, i.e. the case where we use low resolution soil and climate data 

(Figure 7.4a). Increasing the climate resolution (Figure 7.4b) generated an 

increased area with high potato dry matter; however, it also generated an 

increment in the areas with low inherent productivity. Figure 7.4(d) shows 

the intense effects in the increment of areas with low inherent productivity, 

as well as a better homogeneous distribution compared with Figure 7.4(b). 

Table 7.3 shows the main statistics of the inherent productivity, net returns 

and carbofuran leaching distributions around the survey fields. Table 7.3 is 

disaggregated by both scenarios and by the four-resolution level each. In 

all cases, the standard deviation of using high-resolution of climate and soil 

is larger than the standard deviations of using agro-climatic zones and soil 

units. However, using only climate interpolated or soil interpolated with soil 

units and agro-climatic zones respectively, does not show any general 

behavior. 
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Fig.7.4. Histograms of inherent productivity simulated under different inputs levels of 
climate and soil. (a) Low resolution of climate and soil, (b) High resolution of 
climate and Low resolution of soil, (c) Low resolution of climate and High 
resolution of soil, and (d) High resolution of climate and soil. 

 

Table 7.3: Summary of statistics of different evaluated parameters stratified by spatial 
resolution and scenarios. 

  Resolution  Inherent productivity  Net returns  Carbofuran leaching  

  level  (kg dry matter ha-1)  (Sucres ha-1)   (g ha-1)  

 climate soil avg. stdev avg. stdev avg. stdev 

Base scenario 

 Low Low 3071 4049 1632 2403 277 535 

 High Low 3866 5558 1575 2667 273 610 

 Low High 2886 2748 1752 2453 287 529 

 High High 4134 7232 1530 2524 254 527 

 

IPM scenario 
 Low Low 3071 4049 1383 1917 160 342 

 High Low 3866 5558 1443 2134 168 359 

 Low High 2886 2748 1411 1686 177 365 

 High High 4134 7232 1421 2120 161 352 
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The aggregated tradeoff curves between net returns and carbofuran 

leaching under the studied scenarios are shown in Figure 7.5. It is clear 

that there is not a major shift in the Tradeoff curves. As a result one could 

conclude that users of the Tradeoff Analysis System that are only 

interested in the aggregated tradeoff curves do not have to bother in this 

particular case with high resolution weather and/or soil data. However, it is 

necessary to realize that there is a large variability among the simulated 

outcomes across the fields. Variation in the simulated outcomes is induced 

by differences in the land use management and environmental 

characteristics of the sampled fields, especially related to climate and soil. 

The spatial variation is shown in Figure 7.6 representing the difference 

between the base and the IPM scenario under the observed potato price. 

The effect to disaggregate agro-climatic zones and soil units in the spatial 

variability of the outcomes can be observed among the different tested 

level resolution. From Figure 7.6(a) to Figure 7.6(d), different patterns of 

changes in carbofuran leaching can be appreciated. The difference 

between Figure 7.6(d) and the other figures can be considered as the error 

due to the aggregation of input information. 
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Fig. 7.5. The relation between net returns and carbofuran leaching. (a) Tradeoff curves 
under the base scenario comparing the different levels of inputs resolution. (b) 
Tradeoff curves under the integrated pest management (IPM) technology 
scenario. (c) Tradeoff curves comparing base and IPM scenarios using Low 
resolution of climate and soil and High resolution of climate and soil. 
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Fig. 7.6. Maps of decreasing carbofuran leaching between the base and the IPM scenarios 
using different spatial resolution of climate and soils used as inputs during the 
modeling process. (a) Low resolution of climate and soil, (b) High resolution of 
climate and Low resolution of soil, (c) Low resolution of climate and High 
resolution of soil, and (d) High resolution of climate and soil. 

 

As mentioned by Stoorvogel et al. (2004b), it is often useful to 

provide to different decision makers information in terms that express the 

risk of environmental contamination or human health risk. In the case of 

risk by using pesticides like carbofuran, thresholds for a significant risk 

need to be defined with comparison purposes. According to the United 

States Environmental Protection Agency (USEPA, 1988), the maximum 

contaminant level of carbofuran in drinking water is set at 40 ppb. Given an 
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average drainage in the study area, this concentration corresponds to 

approximately 160 g of carbofuran per hectare (Crissman et al., 1998). 

Table 7.4 shows the cumulative probability that the EPA threshold for 

carbofuran leaching is not exceeded under the aggregated potato price 

regimes to the four input levels of climate and soil. In general, the values 

for each scenario tend to correspond to the same ranges without a 

significant variation among the four input levels. However, a significant 

difference between the base and the IPM scenarios is noticed for the four 

input levels. Comparison of the aggregated relative difference (%) of 

carbofuran leaching between scenarios among the four inputs levels does 

not have an important impact to decision makers. However, when the same 

differences are shown in absolute terms (i.e. hectares in the present case), 

big consequences in environmental damage can be appreciated. Using 

high-resolution data of climate and soil indicates an overestimation of 246 

ha crossing the EPA threshold for carbofuran leaching. Although the 

application of IPM scenarios is 246 has less than the ones previously 

estimated using aggregated climate and soil unit information, it is also easy 

to detect and to monitor these particular areas to implement specific land 

allocation and/or land use management to decrease potential health risks. 

Figure 7.7 shows the cumulative probability of areas crossing the EPA 

threshold this time disaggregated by tradeoff points previously established 

as potato price changes. As higher the tradeoff point of the potato price, 

higher the changes in the cumulative probability curves. This is due to an 

increment of the potato price in the market; make the farmers to increase 

the inputs in the crop to protect their investments and to increase the 

importance of potato in the crop rotation. Low potato prices decrease the 

amount of area cultivated with potato. 
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Table 7.4: Percentage of area under the EPA threshold for carbofuran due to changes in 
scenarios according to the different spatial resolution. 

  Resolution level   Area (%)  Difference between scenarios 

 Climate Soil Base IPM (%) (ha) 

 Low Low 60.19 72.02 11.83 1124 

 High Low 62.69 71.85 9.16 870 

 Low High 58.80 69.72 10.92 1037 

 High High 62.70 71.94 9.24 878 

 

 

Fig. 7.7. Cumulative probability that threshold values for carbofuran leaching are met. (a) 
Low resolution of climate and soil, (b) High resolution of climate and Low 
resolution of soil, (c) Low resolution of climate and High resolution of soil, and (d) 
High resolution of climate and soil. 
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7.5 Conclusions 

There is not a unique spatial resolution level of climate and soil 

when an agricultural production system is studied. Depending on the 

objective of the research, different levels of inputs data are necessary to 

get a good balance between the effort to produce quantity and quality of 

inputs and the desired outputs. In the present case study, the aggregated 

tradeoff curves do not show a significant change according to the 

increasing spatial resolution inputs of climate and soil. However, from the 

site-specific point of view, an increase in the spatial resolution of climate 

and soil data generates a more accurate approach to deal with spatial 

patterns and risks. 
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Chapter 8 

Synthesis 

This final chapter addresses the most important issues and 

conclusions of the previous chapters. It is important to notice that although 

the first three chapters have a strong disciplinary character dealing the 

development and calibration of climatic tools, the important added value of 

the research is their implications to other disciplines as illustrated in the 

other chapters. This is a matter of hierarchy with climate being an important 

soil forming factor and, subsequently, climate and soils being important 

driving factors of agricultural production systems. This is illustrated through 

the added value of seasonal-climate forecasts for agriculture. The temporal 

variation in potential crop production is the result of the dynamics in 

weather conditions (assuming similar management practices) and 

seasonal-climate forecasts give insight in this variation. However, one 

should realize that the maximization of agricultural production is not the 

main objective of farmers. Other objectives like income, food security and 

risk may be much more important. As a result it is necessary to have a 

more holistic approach towards the farming system through integrated 

multi-disciplinary research. An analysis of the sustainability of the 

production systems per se through, for example, the tradeoffs between 

agriculture and environment is one of the options. Although smallholder 

farmers are mainly dealing with the short term effects of their agricultural 

production, the long term effects should not be forgotten. This is an 

important role for the national agricultural research institutes.  
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8.1 Generalization: taking care 

Proxies are often used as an alternative to solve the lack of 

information. Generalization of values, indexes and/or coefficients to large 

areas without take into account climatic controls, topography as well as 

other factors, as demonstrated in the first chapter, could largely affect the 

expected results. The lack of insight in the use of these proxies does not 

mean that we can ignore it:  ‘The absence of evidence is not the evidence 

of absence’ (Sagan, 1997). Nevertheless, environmental sciences tend to 

use relationships observed at small scales at implement them at large 

scales at the watershed or even farm level. Especially in complex 

mountainous terrain this may result in major errors. 

All this does not mean that empiric approaches do not work or that 

process-based models perform better than the empiric ones. It rather 

means that before applying any methods, it is necessary to calibrate, 

validate and if possible to perform an uncertainty analysis of the models as 

well as the effect of the data resolution. From a scientific point of view, 

process-based models are more appreciated than the empiric ones. 

However, process-based models are complex to develop, usually require 

detailed inputs and have inherent problems in their operation related to 

their complexity. Although they contribute to the cumulative process of 

scientific understanding, they do not always perform better than simple 

empiric procedures. Perhaps the best approach is to disaggregate the 

empiric analysis in components with a biophysical significance.  

 

8.2 Modeling spatial and temporal distribution of meteorological 
variables 

Two process-based, spatial interpolation models have been developed 

to the present thesis. The first one is to interpolate maximum and minimum 

temperatures based on the radiation balance at specific hours when those 
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temperatures occur. The second one is to interpolate rainfall based on the 

cloud movements over complex terrains, incorporating the physical 

processes driving rainfall events. A Digital Mountain Wave Model (DMWM) 

is defined during chapter 4, making easy the comprehension of how a 

modified topography, just because of different wind directions, alters the 

rainfall patterns. The model not only introduces the effects of aspect and 

altitude, but also disaggregates its effects with wind directions. Figure I.1 

and I.2 of Annex I, shows these relationships. With dominant wind 

directions during storms from the northeast to north. NE and N, hillsides 

facing these directions receive more rainfall than hillsides facing other 

directions at the same altitude. Rainfalls coming in different seasons from 

other directions can be less erosive producing for instance less soil loss, so 

affecting the land degradation processes in different ways. 

The models have been proved work in the study areas. However, 

despite their mechanistic character, an application in other regions will 

require intensive testing. Much more research is needed to make these 

tools generic and applicable in other environments and scale levels. An 

example of their application under different climatic conditions, at country 

level (pixel size of 500x500 m) and used as a tool to decision makers to 

design photovoltaic panels can be found in the Peruvian Atlas of Solar 

Energy (SENAMHI-MEM, 2003). 

 

8.3 Supporting decision makers 

Decision support systems have to face scales, resolution, and 

especially important: language. A positive anomaly of three-Celsius 

degrees in the El Niño 3.4 zone has different meanings to different 

stakeholders in the same area. On one side, meteorological and 

hydrological national services, which usually work in that issue, can be in 

red-alert. On the other hand, farmers knowing something will happen 

(because everybody is running) have no idea about the impacts on their 
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own economies. Sometimes, their local indicators show a totally opposite 

behavior of the next season-climate. Two possible explanations, errors in 

the forecasting models or decreasing accuracy of the local indicators due to 

externalities as for instance climate change. Forecasting models are 

improved year-by-year and local indicators will adapt to the new conditions 

at a slower pace. It is therefore important that local forecasters will keep up 

and are learned to read the national forecasts instead of relying on the local 

indicators.  

In chapter 5 of this thesis it is demonstrated that seasonal-climate 

forecast at global scales can be downscaled to watershed levels using 

empiric relations. However, the key point in the study is the possibility to 

link time-dimension dominated by climate during a cropping season with 

the spatial-dimension dominated by soils and microclimates. Another key 

point is the possibility to translate seasonal climate forecast from Celsius 

degrees to production in tons per hectare; from science language to farm 

language. Interdisciplinary approaches in this chapter, give support to 

make better tactical decisions under different land use management 

performed by farmers. However, farmers need time to incorporate this new 

information in their decision frameworks. Translated seasonal yield forecast 

information must be taken as one of the many components of the systems 

and not as the unique. For instance, information of local indicators within a 

setting of national policies is needed to make operational and strategic 

decisions. The possibility to make risk maps available to farmers and 

institutes give pieces of advices to farmers and researchers of how to 

incorporate risk in the decision-making framework. On the other hand, 

feedbacks from stakeholders on the research and scales is similarly 

important. 
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8.4 Explaining spatial and temporal distribution of soil characteristics 

Soil forming factors are the components of a very simple algorithm 

developed by Jenny in 1941. When this simple algorithm is disaggregated 

in order to model the development of different soil profiles, very complex 

physical, chemical and biological processes appear. Despite the fact that 

the effect of climate in the equation was only demonstrated at large scale, 

lack of detailed climate data hampered its validity at small scales. Chapter 

6 demonstrates the availability to produce more detailed maps of soil 

characteristics in the volcanic ash soils of the study area. The availability of 

detailed climate information demonstrates that Jenny’s equation can be 

applied also at small scales. It is only a first approximation in an area where 

soil differences are likely to be dominated by climate, nevertheless it 

provides exiting results for future research in other areas. The approach 

can be very useful dealing with, for instance, carbon sequestration maps. In 

other applications, as illustrated in chapter 7, the increase of resolution in 

the information of climate and soil can affect seriously the spatial 

distribution of the crop production and the environmental impacts. Better 

resolution of the inputs result in an increased resolution of the outputs 

making it possible to identify particular hot spots. 

 

8.5 Measuring the effects of an interdisciplinary approach 

How much detail in input data is necessary to represent the real world 

as much as possible? How much input is possible to manage? How much 

output can we generate and how much is relevant? All these questions are 

related with the resources and efforts necessary to support in a better way 

the clients of scientific research. New, high-resolution databases require 

the development of new tools capable not only to integrate disciplines but 

also the capacity to manage it. New levels of data quantity and quality give 

a new spatial and temporal perspective. 
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Chapter 7 stresses the fact that different disciplines, applications and 

objectives require different levels of input information. In our study case, 

the aggregated TOA curves are just little affected by the resolution of the 

input information. However, the different levels of inputs largely affected the 

spatial variability of all the analyzed variables. The study faced the 

problems of different levels of aggregation of information by different 

disciplines, but the results are very specific and not possible to be 

extrapolated. It is important to develop methodologies in a forward-looking 

perspective. Serendipity may have given excellent results in the past, but in 

development oriented research we have to listen to our clients and the 

input that they require. 

 



  

Síntesis 

Este capítulo sintetiza los aspectos mas importantes de los capítulos 

previos. Es importante notar que a pesar de que los tres primeros capítulos 

enfatizan el desarrollo y calibración de herramientas meteorológicas, lo 

mas importante son las implicancias de estas herramientas sobre otras 

disciplinas, lo que es presentado en los capítulos siguientes. Es solo 

cuestión de jerarquía el tomar el clima como un importante factor de 

formación de suelos, y posteriormente, el uso de clima y suelos como 

factores importantes en el manejo de los sistemas de producción agrícola. 

Esto se demuestra a través del valor del pronóstico climático-estacional en 

la agricultura. La variación temporal en la producción potencial de un 

cultivo es el resultado de la dinámica de las condiciones meteorológicas 

(asumiendo prácticas de manejo similares); y un pronóstico climático-

estacional reduce la incertidumbre de esta variación. Sin embargo, uno 

debe darse cuenta que la maximización de la producción no es el objetivo 

de los agricultores. Otros objetivos como ingresos, seguridad alimentaria y 

riesgo pueden jugar un papel mas importante. Como resultado es 

necesario tener una aproximación mas holística dirigida hacia los sistemas 

agrícolas a través de investigaciones multidisciplinarias. Un análisis de 

sostenibilidad de los sistemas de producción per se a través, como por 

ejemplo las relaciones de intercambio entre agricultura y medio ambiente 

es una de estas opciones. Aunque pequeños agricultores principalmente 

se enfrentan con efectos a corto plazo en cuanto a la producción agrícola, 

efectos a largo plazo no deben ser olvidados, y este es un importante rol 

que deben cumplir los institutos de investigación agrícola. 

 

Teniendo cuidado con las generalizaciones 

Diferentes aproximaciones se utilizan como alternativas para 

solucionar el problema de la falta de información en las ciencias 

ambientales. La generalización de valores, índices y/o coeficientes en 
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grades áreas sin tener en cuenta los controladores climáticos, topografía 

entre otros factores, pueden afectar grandemente los resultados. El no 

conocer estas relaciones no significa que deban ser ignoradas: ‘La 

ausencia de evidencia no es evidencia de ausencia’ (Sagan, 1997). Sin 

embargo, las ciencias ambientales tienden a utilizar relaciones observadas 

en pequeñas escalas e implementarlas a mayores escalas, lo que causa 

grandes errores en los resultados, especialmente en terrenos complejos 

como las montañas. 

Todo esto no significa que los métodos empíricos no funcionan o que 

los modelos basados en procesos funcionan mejor que los empíricos. Esto 

significa que antes de aplicar cualquier método, es necesario calibrar, 

validar y si es posible hacer análisis de incertidumbre de los modelos y de 

sus efectos en la resolución de los datos. Desde el punto de vista 

científico, los modelos basados en procesos son mas complejos para 

desarrollar, usualmente requieren de información mas detallada y además 

tienen problemas inherentes en cuanto a su operatividad relacionada con 

su complejidad. Aunque ellos contribuyen al proceso acumulativo del 

conocimiento científico, no siempre funcionan mejor que simples 

procedimientos empíricos. Quizás la mejor aproximación es el desagregar 

los análisis empíricos en componentes con significancia biofísica. 

 

Modelando la distribución espacio-temporal de variables 
meteorológicas 

En la presente tesis se desarrollaron dos modelos de interpolación 

espacial basados en procesos. El primero interpola las temperaturas 

máximas y mínimas basado en el balance de radiación en horas 

específicas a las que estas temperaturas ocurren. El segundo, un modelo 

para interpolar precipitación y que esta basado en el movimiento de las 

nubes sobre terrenos complejos y en los procesos físicos que producen los 

eventos de lluvia. El Modelo Digital de Ondas de Montaña (MDOM) que se 
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define en el capítulo 4, hace más fácil la comprensión de cómo la 

topografía, modificada solo por la dirección del viento, altera los patrones 

de lluvia. El modelo no solo incorpora el efecto del aspecto y altitud, sino 

que también desagrega los efectos de estos con la dirección del viento. 

Las Figuras I.1 e I.2 del Anexo I muestran estas relaciones. Con vientos 

dominates del noreste a norte durante las tormentas, las laderas que 

encaran estas direcciones de viento, reciben más lluvia que aquellas 

laderas hacia otras direcciones pero que sin embargo se encuentran a la 

misma altitud. Por otro lado, lluvias en diferentes épocas del año pueden 

provenir de diferentes direcciones y a su vez pueden variar en su grado de 

erosividad. Esto provoca por ejemplo, una mayor o menor erosión de suelo 

afectando así directamente los procesos de degradación del paisaje en 

diferentes maneras en el tiempo y espacio. 

La funcionalidad de estos modelos han sido probadas en las áreas de 

estudio. Sin embargo, debido a su carácter mecanístico, su aplicación en 

otras regiones requiere una previa validación. Mucha mas investigación es 

necesaria antes de que estas herramientas puedan ser de aplicación 

general para otros ambientes y escalas. Un ejemplo de su aplicación bajo 

diferentes condiciones climáticas, a nivel país (tamaño de píxel 500x500 

m) y utilizadas como herramientas para tomadores de decisiones en la 

construcción de paneles fotovoltaicos puede ser encontrada en el Atlas de 

Energía Solar del Perú (SENAMHI-MEM, 2003). 

 

Ayudando a tomadores de decisiones 

Muchos de los sistemas de ayuda en la toma de decisiones encaran 

temas de escalas, resolución, y especialmente lenguaje. Una anomalía 

positiva de tres grados centígrados en la región El Niño 3.4 tiene diferentes 

significados para diferentes tomadores de decisiones en la misma área. 

Por un lado los meteorólogos e hidrólogos de los servicios nacionales, 

quienes monitorean este tema constantemente, pueden estar en alerta 
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nacional. Por otro lado, los agricultores saben que algo va a pasar (porque 

todo el mundo esta corriendo) pero no tienen la menor idea sobre los 

impactos de esto en sus formas de vida. Algunas veces, sus indicadores 

locales muestran comportamientos totalmente opuestos a los ‘oficiales’ 

correspondientes a la próxima estación climática. Dos posibles 

explicaciones, errores en los modelos numéricos y/o estadísticos de 

pronóstico o la disminución del grado de acierto de los indicadores locales 

debido a externalidades como por ejemplo cambio climático. Los modelos 

numéricos y/o estadísticos de pronóstico son mejorados año tras año, 

paralelamente los indicadores locales también se van adaptando a estos 

cambios, pero a un paso un poco mas lento, siendo mas difícil su 

interpretación por los pronosticadores locales. De esta manera es 

importante que los pronosticadores locales mantengan sus indicadores 

pero que a la vez incorporen los pronósticos ‘oficiales’ a sus indicadores. 

El capítulo 5 de esta tesis demuestra como el pronóstico climático-

estacional a escala global puede ser desagregado a nivel de cuenca 

utilizando relaciones empíricas. Sin embargo , el punto clave en el estudio 

es la posibilidad de ligar la dimensión temporal dominada por el clima 

durante la estación de siembra con la dimensión espacial dominada por la 

variación de suelos y microclimas. Otro punto importante es la posibilidad 

de traducir el pronóstico climático-estacional dado en grados centígrados a 

producción en toneladas por hectárea; de lenguaje científico a lenguaje de 

los agricultores. En este capítulo, el análisis interdisciplinario es el punto 

clave para ayudar a una mejor toma de decisiones tácticas bajo los 

diferentes manejos en el uso de la tierra típica de los agricultores. Sin 

embargo, la incorporación de esta nueva información en su modelo 

conceptual no es inmediata. La traducción del pronóstico climático-

estacional debe ser tomada como un componente más del sistema y no 

como única herramienta. Así, la información obtenida por los indicadores 

locales para la toma de decisiones operacionales y estratégicas, debe ser 

vista dentro de un conjunto de políticas nacionales. La posibilidad de tener 
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mapas de riesgo disponibles para los agricultores e instituciones, da 

consejos a agricultores e investigadores de cómo incorporar el factor 

riesgo en el marco conceptual de toma de decisiones. Asimismo, la 

retroalimentación por parte de tomadores de decisiones tiene que ser 

incorporada en los procesos de investigación. 

 

Explicando la distribución espacial y temporal de las características 
de los suelos 

Los factores de formación de suelo son los componentes de un 

algoritmo simple desarrollado por Jenny en 1941. Cuando este algoritmo 

se desagrega  para modelar el desarrollo de los diferentes perfiles de 

suelo, salen a la luz la interacción de muchos complejos procesos físicos, 

químicos y biológicos. A pesar de que el efecto del factor clima en la 

ecuación fue solamente demostrada a grandes escalas, la falta de 

información detallada de clima ha dificultado su validez a escalas menores. 

El capítulo 6 muestra que la posibilidad de producir mapas de información 

de características de suelo mas detallada para los suelos volcánicos 

correspondientes al área de estudio. La disponibilidad de información 

detallada de clima demuestra que la ecuación de Jenny puede ser aplicada 

también a escalas menores. Esta es por supuesto una primera 

aproximación en un área donde las diferencias en el suelo son 

probablemente dominadas por el clima, sin embargo esto genera 

expectativas para futuras investigaciones en otras áreas de estudio. Esta 

aproximación puede ser muy útil en por ejemplo, el mapeo de secuestro de 

carbono. En otras aplicaciones, tal como se muestra en el capítulo 7, el 

incremento de la resolución en la información de clima y suelo pueden 

afectar seriamente la distribución de la producción de cultivos y los 

impactos en el medio ambiente. Una mejor resolución en los datos, 

incrementará la resolución de los resultados haciendo posible la 

identificación de áreas especificas de gran interés. 
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Midiendo el efecto de un enfoque interdisciplinario 

¿Cuánto detalle en los datos es necesario para representar el mundo 

real lo mas preciso posible? ¿Cuántos datos son posibles de manejar? 

¿Cuántos resultados podemos generar y cuántos son realmente 

relevantes? Todas estas preguntas están relacionadas con los recursos y 

esfuerzo necesarios para ayudar de una mejor manera a los usuarios de 

una investigación científica. Nuevas bases de datos de alta resolución 

requieren también del desarrollo de nuevas herramientas capaces no solo 

de integrar disciplinas sino que también la capacidad de manejarlas. 

Nuevos niveles de cantidad y calidad de datos dan una nueva perspectiva 

espacial y temporal. 

El capítulo 7 hace énfasis en que las diferentes disciplinas, 

aplicaciones y objetivos requieren de diferentes niveles e intensidades de 

datos. En nuestro caso de estudio, la agregación de las curvas de 

relaciones de intercambio, son muy poco afectadas por la resolución de los 

datos, Sin embargo, los diferentes niveles e intensidades de datos afectan 

de sobremanera la variabilidad espacial de todas las variables analizadas. 

El estudio encara el tema de diferentes niveles de agregación de la 

información por diferentes disciplinas, pero los resultados son muy 

específicos y no es posible su extrapolación. Es importante desarrollar 

metodologías con una perspectiva futurista. Descubrimientos al azar 

pudieron haber dado excelentes resultados en el pasado, pero en una 

investigación orientada hacia el desarrollo, necesitamos escuchar a 

nuestros usuarios para saber cuales son sus requerimientos de 

información. 

 



  

Samenvatting 

Wetenschappers in het veld van landgebruik en natuurlijke 

hulpbronnen krijgen in toenemende mate te maken met beperking op het 

gebied van gegevensbeschikbaarheid. Nieuwe technieken zoals 

simulatiemodellen vragen om gedetailleerde en kwantitatieve bodem en 

klimaatgegevens. Grote kaarteenheden met representatieve weerstations 

of representatieve bodemprofielen negeren een belangrijk deel van de 

ruimtelijke variabiliteit in het landschap. Nieuwe technieken zoals 

geografische informatiesystemen (GIS), geostatistiek, en remote sensing 

openen nieuwe mogelijkheden. Een goed voorbeeld op het gebied van 

bodemkunde zijn de snelle ontwikkeling op het gebied van digitale 

bodemkartering. De belangrijkste doelstelling van dit onderzoek is een 

oplossing te vinden voor de databeperkingen van meteorologische 

gegevens van weerstations door het interpoleren van gegevens van 

weerstations en om de waarde van nieuwe gegevenssets te onderzoeken 

voor studies naar natuurlijke hulpbronnen en landgebruik. Het onderzoek 

heeft plaatsgevonden in twee gebieden in de hooglanden van de 

Peruaanse en Ecuadoriaanse Andes: (i) de vanggebieden van La 

Encañada en Tabomayo in Peru (op een hoogte van 2950 tot 4000 meter 

boven zeeniveau) met landbouw in marginale gebieden en (ii) de 

vanggebieden van Chitan en San Gabriel in Ecuador (op een hoogte van 

2700 tot 3840 meter boven zeeniveau) met commerciële landbouw gericht 

op de productie van aardappel en melk. Tijdens de eerste stap zijn 

empirische en mechanistische modellen voor de interpolatie van 

klimaatsgegevens ontwikkeld, gekalibreerd, geëvalueerd en gevalideerd 

om toegepast te worden in gebieden met een complexe topografie. 

Daarnaast is het gebruik van seizoensvoorspelling van klimaat met behulp 

van mondiale circulatie modellen om landbouwkundige beslissingen te 

ondersteunen bekeken. De effecten van gedetailleerde ruimtelijke 

klimaatsgegevens als bodemvormende factor zijn onderzocht als basis 

voor digitale bodemkartering om de desaggregatie van kaarteenheden en 
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de vraag hoeveel informatie we daadwerkelijk nodig hebben voor studies 

naar landgebruik en natuurlijke hulpbronnen. De resultaten van deze studie 

omvatten twee procesmatige modellen om maximum en minimum 

temperaturen, en regenval te interpoleren. Daarnaast zijn 4 empirische 

modellen om zonnestraling te schatten geëvalueerd en gekalibreerd. De 

mogelijkheid om gewasvoorspellingen uit te voeren voor het productie 

seizoen door middel van het gebruik van mondiale circulatie modellen is 

geanalyseerd door het koppelen van statistische en gewas modellen 

geaggregeerd op het niveau van een vanggebied. De theorie van klimaat 

als bodemvormende factor op het niveau van kleine schalen (de zonale 

bodems) is aangetoond ook bruikbaar te zijn op grote schalen door het 

gebruik van gedetailleerde, geïnterpoleerde klimaatsgegevens. Een studie 

met een systeem voor de analyse van landgebruik heeft aangegeven dat 

verschillende resoluties van invoergegevens niet eenduidige richtlijnen 

geven ten aanzien van de kwaliteit van beoogde eindresultaten. Voor 

iedere casus moet een gevoeligheidsanalyse aantonen welke specifieke 

resolutie noodzakelijk is in relatie tot bijvoorbeeld de doelstellingen van het 

project, de gebruikte modellen en de noodzaak van verschillende 

belanghebbenden. 
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Annex I 

 

Fig. I.1. Frequency analysis of rainfall according to the wind direction. Watersheds of 
Chitan and San Gabriel. 

 

Fig. I.2. Seasonal frequency analysis of wind direction. (a) summer, (b) autumn, (c) winter 
and (d) spring. 
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