IMPROVING PROCESS UNDERSTANDING

Multivariate data analysis (MVDA)
as a PAT tool for
early bioprocess development data
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Project background

PhD project
e Conducted at Crucell (Johnson & Johnson)

Bas Diepenbroek, Dr. Ciska Dalm, Alfred Luitjens

e In collaboration with the University of Wageningen

Prof. Dr. ir. Rene Wijffels, Dr. Mathieu Streefland
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Crucell’s core technology: PER.C6®

, Serum free
Sanofi and Lonza P s Suspension cultures
20,000L Stainless Cell growth to
Steel 150,000,000 cells/mL

e Human cell line
e Showed scalability

e Able to grow to very high cell densities
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Upstream process: fully disposable
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Bioreactor processes in the upstream p
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Virus based vaccines

LY iceP - iv
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e Perfusion processes with retention of cells and viruses in the
bioreactor

e Exponential cell growth throughout run

e High maximum viable cell density

e High final virus concentration

e iCeP process is used as a basis for a pilot PAT implementation
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Strategy for PAT implementation

Process

ANALYSIS

CQA = critical
quality

attributes

Process
CPP = critical DESIGN
process
parameters

Process

Process CONTROL
understanding
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STEP 2

Implementation of (online)
analyzers to capture CQA
and monitor CPP

Results from analytics must be
available in time-frame that
facilitates decision making

STEP 3

Design of process control
based on process
understanding and using
analyzers for making real-
time process decisions

Must achieve consistent
process performance and
product quality
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Why Multivariate data analysis?
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Multivariate techniques used

e Structure of dataset and underlying trends
e PCA: Principal Component Analysis

e Provides a summary or overview of a data set

e Relations among process variables
e PLS: Partial Least Square

e Explains relations between data set and process response
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Multivariate analysis of available iCeP «

Early proeess development data
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PCA score plots and batch diagnosis

Offline variables model Online variables model
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Batch diagnosis using PCA

Model Deviations in multivariate models Process deviations
Scores on PC1; contribution of cell diameter and Altered concentration of additives
Offline osmolality during second half of process in feed medium
variables
Scores on PC2; contribution of viable cell density Inoculation cell density twice the
throughout process target
Score on PC1; contribution of pH and CO, demand No deviation identified
throughout process
oni Score on PC2; contribution of pH throughout Powder medium hydrated in-house
niine process
variables

Score on PC3; contribution of dissolved oxygen
throughout process

Deviation in calibration of
dissolved oxygen probe

Outlier in residuals

No deviation identified
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PCA score plots and scale effect

Offline variables Online variables
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Sensitivity of iCeP to process scale

Offline variables model Online variables model
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PLS modeling

e What are the relations among process parameters?
e Overall NO or very weak models were obtained

= There is no or very limited relations between process
variables and process outcome as currently defined

e What can be concluded?

1. ' y robust and process ecte
by variatj ' es

2. The chosen process responses (PDT and viability) do not reflect the
“real” CQAs of the process

3. Process variables were not varied in broad enough ranges
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Why can’t we identify relations among Vv

2. Nature of variables monitored

e Many variables currently monitored do not strongly correlate
with process outcome, therefore some relevant process
information is not monitored

3. Structure of experimental designs

e Early development dataset, based on trial-and-error
experiment sets

e MVDA is used ideally with DOE type of data, where variation is
introduced and structured
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* Are we measuring the right outcome of iCeP process?

e Historically: overall PDT and end of run viability

e iCeP cells are a seed for virus infection = biological and cellular features of
the culture can be CQAs, which would define the best physiological
conditions for the cells to be infected

e How to identify the CPPs?
e Need to measure appropriate process response and to vary process variables

QbD / PAT implementation
1. Identify “real” CQAs
2. Identify CPPs and their relation to CQAs
3. Define design space in which CPPs are operated to ensure proper CQAs
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Take home message

e MVDA on early process development o
data yielded process understanding i

o |Leads for further development and investigation of innovative
process responses were identified

Application of MVDA on early
development data is a first step in QbD
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Combating infectious diseases

by bringing innovation to global health
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