IMPROVING PROCESS UNDERSTANDING

Multivariate data analysis (MVDA) as a PAT tool for early bioprocess development data

Sarah Mercier April 24th, 2012

AGROTECHNOLOGY & FOOD SCIENCES GROUP WAGENINGEN UR

- Project background
- Crucell upstream processes
- Implementation of PAT on Crucell's platform process
 - Strategy
 - Exploration of historical data
- Current work

FOOD SCIENCES

AGROTECHNOLOGY &

Project background

PhD project

• Conducted at Crucell (Johnson & Johnson)

Bas Diepenbroek, Dr. Ciska Dalm, Alfred Luitjens

• In collaboration with the **University of Wageningen** *Prof. Dr. ir. Rene Wijffels, Dr. Mathieu Streefland*

28-1-2013

- Project background
- Crucell upstream processes
- Implementation of PAT on Crucell's platform process
 - Strategy
 - Exploration of historical data
- Current work

Crucell's core technology: PER.C6®

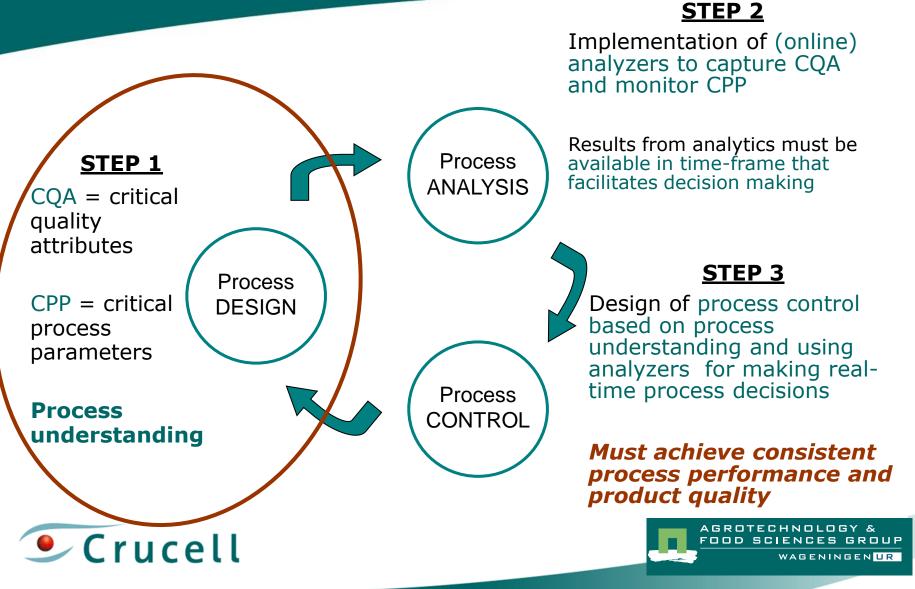
- Human cell line
- Showed scalability
- Able to grow to very high cell densities

AGROTECHNOLOGY & FOOD SCIENCES GROUP WAGENINGEN UR

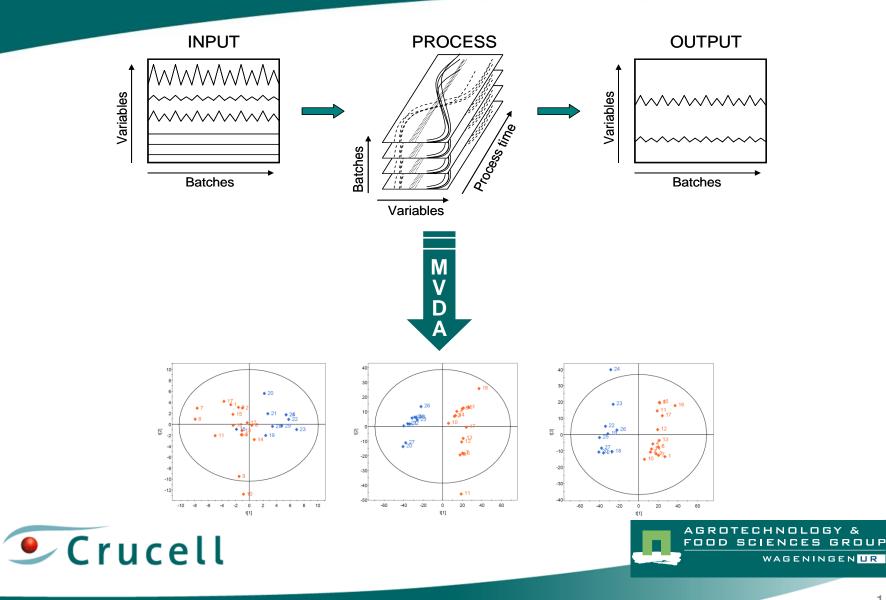
Upstream process: fully disposable

AGROTECHNOLOGY & FOOD SCIENCES GROUP WAGENINGEN UR

Bioreactor processes in the upstream platform


- Perfusion processes with retention of cells and viruses in the bioreactor
 - Exponential cell growth throughout run
 - High maximum viable cell density
 - High final virus concentration
- iCeP process is used as a basis for a pilot PAT implementation

- Project background
- Crucell upstream processes
- Implementation of PAT on Crucell's platform process
 - Strategy
 - Exploration of historical data
- Current work

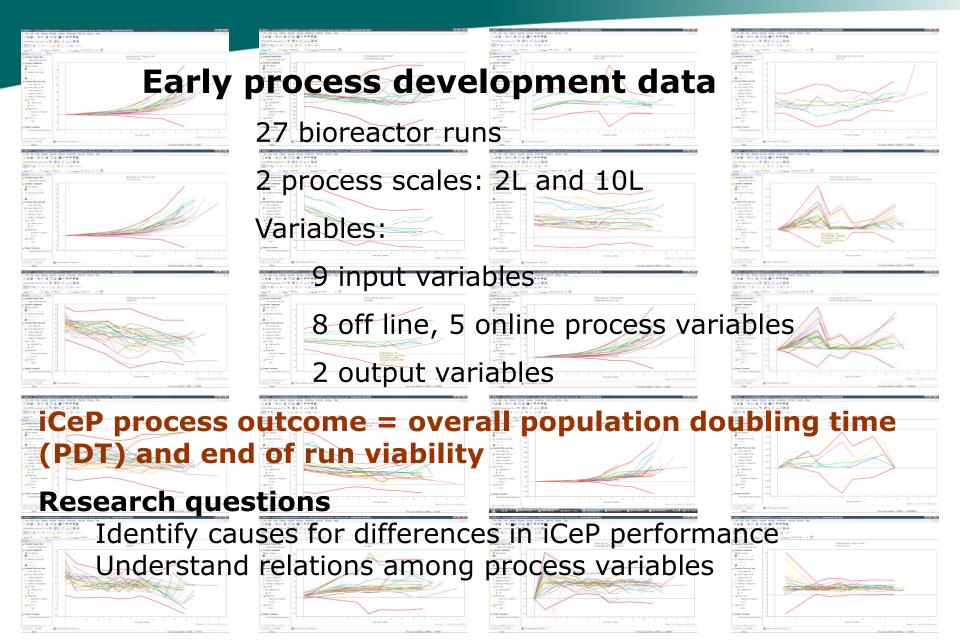

Strategy for PAT implementation

- Project background
- Crucell company profile
- Implementation of PAT on Crucell's platform process
 - Strategy
 - Exploration of historical data
- Current work

Why Multivariate data analysis?

28-1-2013

Multivariate techniques used

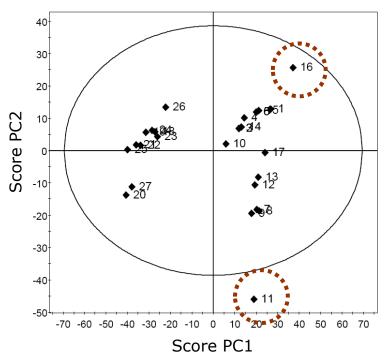

Structure of dataset and underlying trends

- **PCA**: Principal Component Analysis
- Provides a summary or overview of a data set

- Relations among process variables
 - **PLS**: Partial Least Square
 - Explains relations between data set and process response

Multivariate analysis of available iCeP data

PCA score plots and batch diagnosis


10 8 6 20 4 Score PC2 2 ♦ 23 -2 ♦ 11 -4 -6 -8 9 -10 -12 6 8 10 -10 -8 -6 -2 0 2 4 -4 Score PC1

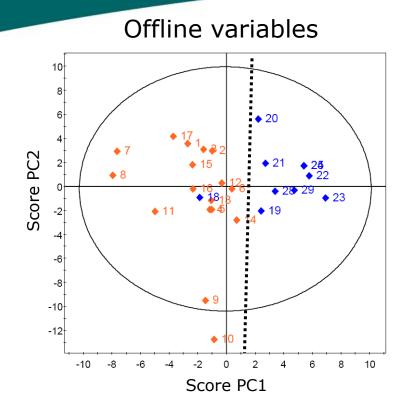
Offline variables model

Offline variables model: 4 PC, capturing 66% of the variation contained in the dataset

Online variables model

Online variables model: 5 PC, capturing 89% of the variation contained in the dataset

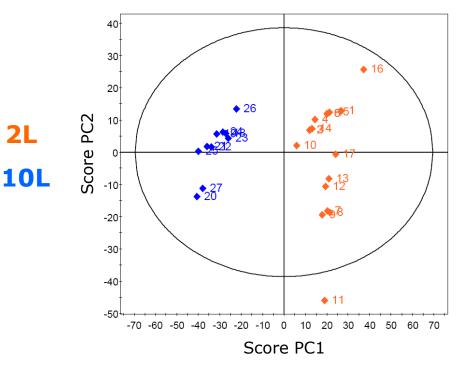
GROTECHNOLOGY &


ES GROUP

FOOD SCIENCES

Batch diagnosis using PCA

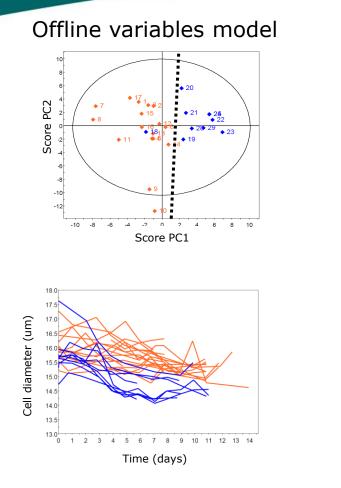
Model	Deviations in multivariate models	Process deviations
Offline variables	Scores on PC1; contribution of cell diameter and osmolality during second half of process	Altered concentration of additives in feed medium
	Scores on PC2; contribution of viable cell density throughout process	Inoculation cell density twice the target
Online variables	Score on PC1; contribution of pH and CO₂ demand throughout process	No deviation identified
	Score on PC2; contribution of pH throughout process	Powder medium hydrated in-house
	Score on PC3; contribution of dissolved oxygen throughout process	Deviation in calibration of dissolved oxygen probe
	Outlier in residuals	No deviation identified
Crucell		AGROTECHNOLOGY & FOOD SCIENCES GROUP WAGENINGEN UR


PCA score plots and scale effect

Offline variables model: 4 PC, capturing 66% of the variation contained in the dataset

Online variables

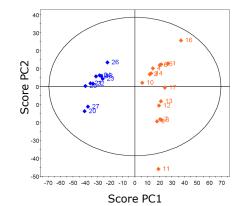
Online variables model: 5 PC, capturing 89% of the variation contained in the dataset

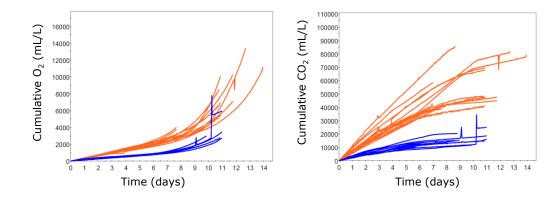

AGROTECHNOLOGY &

FOOD SCIENCES

GROUP

GENINGENUR


Sensitivity of iCeP to process scale



2L 10L

Online variables model

AGROTECHNOLOGY & Food sciences group Wageningen Ur

PLS modeling

- What are the relations among process parameters?
 - Overall NO or very weak models were obtained
 - There is no or very limited relations between process variables and process outcome as currently defined
- What can be concluded?
 - The iCeP process is very robust and process responses are not affected by variations in process variables
 - The chosen process responses (PDT and viability) do not reflect the "real" CQAs of the process
 - 3. Process variables were not varied in broad enough ranges

Why can't we identify relations among variables?

2. Nature of variables monitored

- Many variables currently monitored do not strongly correlate with process outcome, therefore some relevant process information is not monitored
- 3. Structure of experimental designs
 - Early development dataset, based on trial-and-error experiment sets
 - MVDA is used ideally with **DoE** type of data, where variation is introduced and structured

- Project background
- Crucell company profile
- Implementation of PAT on Crucell's platform process
 - Strategy
 - Exploration of historical data
- Current work

Current work

• Are we measuring the right outcome of iCeP process?

- Historically: overall PDT and end of run viability
- iCeP cells are a seed for virus infection ⇒ biological and cellular features of the culture can be CQAs, which would define the best physiological conditions for the cells to be infected

• How to identify the CPPs?

• Need to measure appropriate process response and to vary process variables

QbD / PAT implementation

- 1. Identify "real" CQAs
- 2. Identify CPPs and their relation to CQAs
- 3. Define design space in which CPPs are operated to ensure proper CQAs

- MVDA on early process development data yielded process understanding
- Leads for further development and investigation of innovative process responses were identified

Application of MVDA on early development data is a first step in QbD

. 27 10

Combating infectious diseases

by bringing innovation to global health

