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Abstract Interval Branch-and-Bound (B&B) algorithms are powerful methods which aim for guaranteed so-
lutions of Global Optimization problems. Lower bounds for a function in a given interval can be
obtained directly with Interval Arithmetic. The use of lower bounds based on Taylor forms show
a faster convergence to the minimum with decreasing size of the search interval. Our research fo-
cuses on one dimensional functions that can be decomposed into several terms (sub-functions). The
question is whether using this characteristic leads to sharper bounds when based on bounds of the
sub-functions. This paper deals with separable functions in two sub-functions.

The use of the separability is investigated for the so-called Baumann form and Lower Bound
Value Form (LBVF). It is proven that using the additively separability in the LBVF form may lead
to a combination of linear minorants that are sharper than the original one. Numerical experiments
confirm this improving behaviour and also show that not all separable methods do always provide
sharper additively lower bounds. Additional research is needed to obtain better lower bounds for
multiplicatively separable functions and to address higher dimensional problems.
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1. Introduction

Interval Branch-and-Bound methods aim for guaranteed solutions of Global Optimization
problems. Consider the one dimensional generic interval constrained global optimization
problem, which is to find

f∗ = min
x∈S

f(x) (1)

where S ∈ I is the search region and I stands for the set of all one-dimensional closed real
intervals.

Definition 1. Function f : S ⊂ R→ R is additively separable, if it can be written as

f(x) =

p∑
j=1

fj(x), x ∈ S. (2)
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We have

min
x∈S

f(x) ≥
p∑

j=1

min
S

fj(x). (3)

Let F j be a lower bound of fj over S. Then we have

min
x∈S

f(x) ≥
p∑

j=1

F j . (4)

To create a lower bound F of f over interval X in an interval B&B framework, can be done
in several ways. Sharper bounds are better, i.e. higher values of F lead to more efficient
performance of the B&B algorithm. Considering functions that have an additively separable
structure (2), our research question is: for which cases

F ≤
p∑

j=1

F j? (5)

Alternatively, the question is to find ways to combine minorants on the separable terms, such
that we get sharper bounds.

2. Taylor forms

Besides the standard IA bounding, called “natural interval extension” F = [F , F ] of f [4, 5],
one can obtain an inclusion function of f using the inclusion function F ′ of f ′. Consider the
first order Taylor expression

T (c,X) := f(c) + (X − c)F ′(X), (6)

where c ∈ X . Notice that this expression is mainly of interest if the function is not monotonous
on X , so at least 0 ∈ F ′(X). By taking for c the middle m = X+X

2 of the interval, we have
what is called a center form of the inclusion

In [1], Baumann proves that taking c = b− in the Taylor expression, leads to the best lower
bound, where:

b− =

⎧⎪⎪⎨
⎪⎪⎩

XiF
′(X)−XF ′(X)

F ′(X)− F ′(X)
, 0 ∈ F ′(X)

X ,F ′(X) ≤ 0
X ,F ′(X) ≥ 0

So,
f(X) ≥ T (b−, X). (7)

An additively separable Baumann form bound ASB(X) can be constructed in a straight-
forward way evaluating the Taylor expression (6) for the two sub-functions in their Baumann
point and adding the resulting lower bounds,

f(X) ≥ ASB(X) = T 1(b
−
1 , X) + T 2(b

−
2 , X). (8)

Example 2. Consider function f(x) = f1(x)+f2(x) = (x+1)2+(x−1)2 on the intervalX = [−2, 2].
The minima of the sub-functions is 0, whereas the minimum of f itself is f(0) = 2. Figure 1 illustrates
this idea and also draws lower bounds of all functions based on Baumann point. T (b−, X) = −14 and
T i(b

−
i , X) = −6 such that T 1(b

−
1 , X) + T 2(b

−
2 , X) = −12, illustrating question (5).

3. Lower Bound Value Form

Another way to compose derivative based linear minorants is the so-called Lower Boundary
Value Form (LBVF), ([6] p. 60 and [2, 3]) that uses the evaluation of the end-points of the
interval. Consider the most left point of X . Function

ϕl(x) = F (X) + F ′(X)(x−X), (9)
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Figure 1. Quadratic illustration of (3) and (5)

provides an affine minorant. Similarly, the right most point of X provides

ϕr(x) = F (X)− F ′(X)(X − x) = F (X) + F ′(X)(x−X). (10)

The values ϕl(X) and ϕr(X) are lower bounds of f(X) over X . A sharper lower bound can
be obtained when 0 ∈ F ′(X) by combining (9) and (10) in lower bounding function

ϕm(x) = max{ϕl(x), ϕr(x)}. (11)

The Lower Boundary Value Form ϕm(X) follows from finding y for which (9) and (10) are
equal

ϕm(X) = ϕm(y) =
F (X)F ′(X)− F (X)F ′(X)

w(F ′(X))
+

w(X)F ′(X)F ′(X)

w(F ′(X))
. (12)

So,
f(X) ≥ ϕm(X), 0 ∈ F ′(X). (13)

An Additively Separable Lower Bound Value form can be constructed in the following way:

f(X) ≥ ASLBV (X) = ϕm
1
(X) + ϕm

2
(X), 0 ∈ F ′1(X), 0 ∈ F ′2(X). (14)

We focus further on the LBVF minorants of both sub-functions in order to obtain a sharper
lower bound than ϕm(X) without worrying about the monotonicity of the sub-functions for
a given interval. Notice that only the case where the composite function f is not monotonous,
0 ∈ F ′(X) is interesting. Consider the addition of the separate minorant terms

ϕ(x) = ϕm1(x) + ϕm2(x),

where ϕmi is defined by (11). First of all, notice that ϕ is a piecewise linear minorant function
and the maximum of four different affine terms:

ϕ(x) = max

⎧⎪⎪⎨
⎪⎪⎩

ϕl(x) := ϕl1(x) + ϕl2(x)
ϕa(x) := ϕl1(x) + ϕr2(x)
ϕb(x) := ϕr1(x) + ϕl2(x)
ϕr(x) := ϕr1(x) + ϕr2(x)

⎫⎪⎪⎬
⎪⎪⎭

. (15)
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Then, one can see that ϕ(x) is a sharper minorant than ϕm(x).

Theorem 3. Let ∀x ∈ X, f(x) = f1(x) + f2(x) and ϕl, ϕr and ϕm be defined by (9), (10) and (11).
∀x ∈ X,ϕm1(x) + ϕm2(x) ≥ ϕm(x).

Proof. Given equivalence (15), we have that

ϕm(x) = max{ϕl(x), ϕr(x)} ≤ max{ϕl(x), ϕa(x), ϕb(x), ϕr(x)} = ϕ(x).

Theorem 3 provides us with a new Additively Separable Lower Bound ASLBϕ defined by

f(X) ≥ ASLBϕ(X) = ϕ(X) (16)

4. Summary

For ASLBV ϕ, it is proven that the corresponding minorant is sharper than the standard one
for LBVF. How to evaluate ASLBϕ(X) and numerical experiments will be shown in GOW
2012. Numerical results confirm this improving behaviour, although monotonicity of the sub-
function and the composite function over an interval reduces this effect. Numerical results
also show that separable variant for the Baumann lower bound is usually worse than the
original one.

Future investigation could focus on the question how to extend the ASLBV ϕ lower bound
for n-dimensional functions. Another question is the derivation of specific interval based
bounds for multiplicative terms.
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