AlgaePARC

Towards optimal cultivation processes for sustainable microalgae production

Packo Lamers, Dorinde Kleinegris, Maria Barbosa, Rouke Bosma & René Wijffels

From a craft to a sustainable process...

- Current worldwide microalgal manufacturing infrastructure ~5000 tons of dry algal biomass
- High value products such as carotenoids and ω -3 fatty acids used for food and feed ingredients
- Total market volume is €1.25 billion (average market price of €250/kg dry biomass)
- Economically viable, but not sustainable
- Parallels with microalgal biofuels

Wijffels R.H., Barbosa M.J. (2010) An outlook on microalgal biofuels. *Science* 329: 796-799

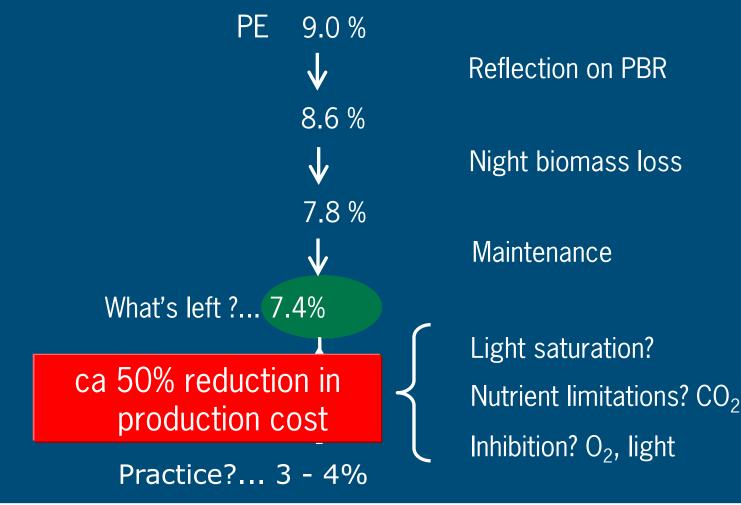
Efficiency in supply and use of nutrients and resources

Sunlight

Water

CO₂, Nitrogen and Phosphorus

Efficiency in supply and use of nutrients and resources


Water

CO₂, Nitrogen and Phosphorus

Production costs

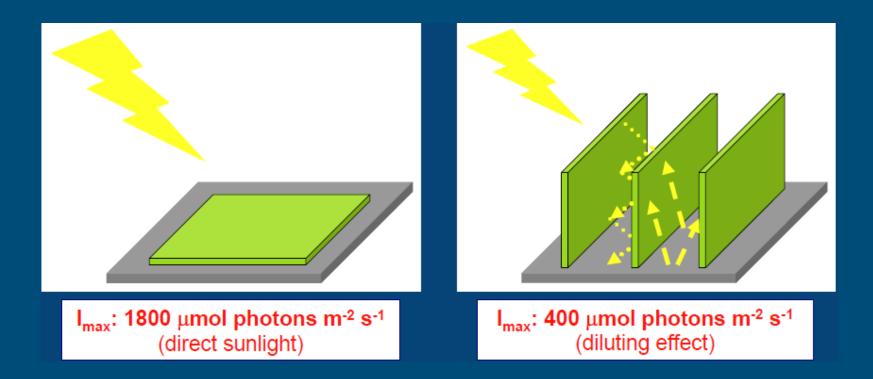
Increasing Photosynthetic Efficiency – what margin do we have?

<u>Measured / controlled parameters</u>

- Incident light intensity
- Temperature
- O₂ partial pressure
- CO₂ partial pressure
- Gas flow rate / Liquid velocity
- Dilution rate
- pH
- Nutrients

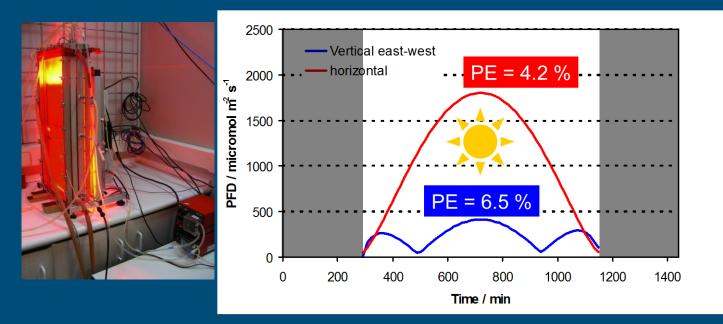
Photosaturation and photoinhibition Diluted cultures – no light gradient Light saturation Photosynthesis rate Photoinhibition Irradiance

Increasing PE under oversaturating light


- Decrease antenna size
- Reactor design:

Decrease light path of photobioreactors while increasing turbulence
High energy input?!

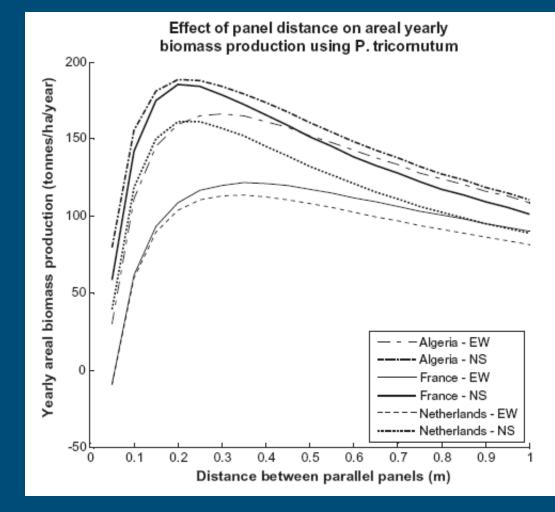
• Light dilution



<u>The principle of light dilution – go vertical!</u>

Production costs: Photosynthetic Efficiency

At lab scale a photosynthetic efficiency of 6% is within reach

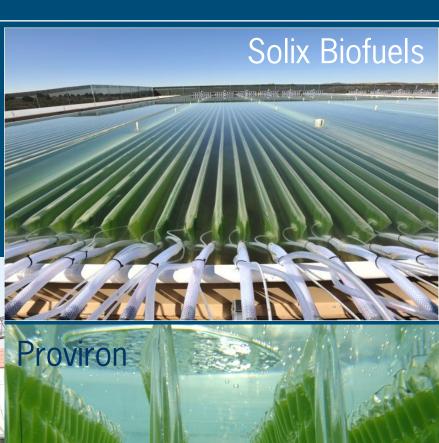

What about- Pilot scale 10 - 100 m²- Extended time > 1 yr

Cuaresma et al. (2011) Bioresource Technology

Scale-up: design studies

e.g Effect panel distance and orientation

Slegers et al. (2011) Applied Energy



Light dilution in practice

Challenges

- Material lifetime
- Cleanability
- Reduced energy input (e.g reflect IR)

Fotosintetica & Microbiologica

Efficiency in supply and use of nutrients and resources

Sunlight

Water

CO₂, Nitrogen and Phosphorus

Main inputs in the process: Water

Photosynthesis : ~0.75 liter of water / kg of biomass 1.5 liters of water / liter of oil (50 % lipid content)

 $\text{CO}_2 + 0.93 \text{ H}_2\text{O} + 0.15 \text{ NO}_3\text{-} \rightarrow \text{CH}_{1.72}\text{O}_{0.4}\text{N}_{0.15} + 1.42 \text{ O2} + 0.15 \text{ OH-}$

In practice consumption is much larger:

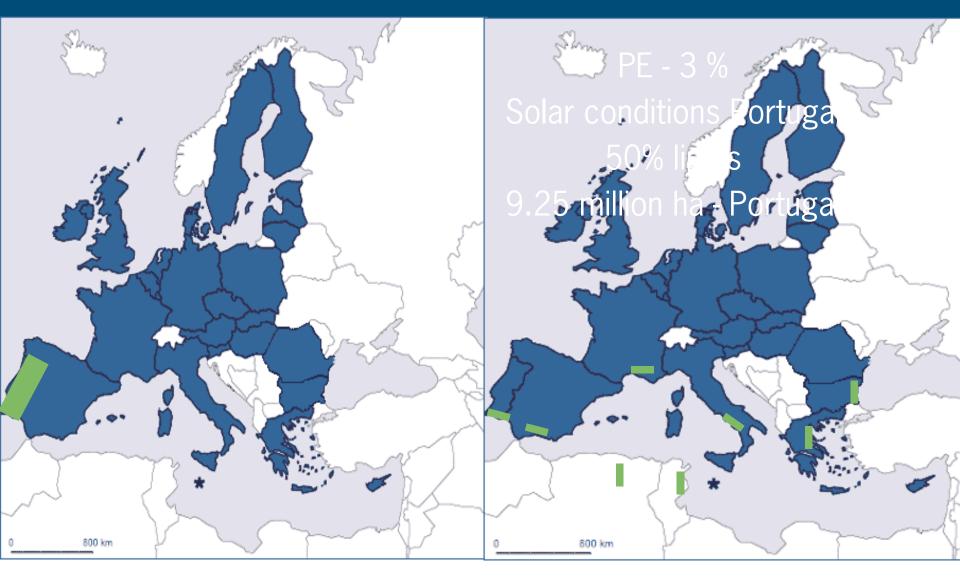
- cooling closed systems
- fresh water needs to be added to open ponds to compensate for evaporation.
 - Cooling with large saltwater buffer
 - Seawater species
 - Growth on large water surfaces (lakes and seas)

Efficiency in supply and use of nutrients and resources

Sunlight

Water

CO₂, Nitrogen and Phosphorus


Main inputs in the process

To produce 1 ton of algal biomass:

- 1.8 tons of CO₂ is needed
- 0.07 ton N
- 0.01 ton P

Transport Fuels in Europe - 0.4 billion m3

Wijffels R.H., Barbosa M.J. (2010) An outlook on microalgal biofuels. *Science* 329: 796-799

Main inputs in the process CO₂

• 1.8 tons of CO2 is needed to produce 1 ton of algal biomass

1.3 billion tons of CO₂ for
0.4 billion m3 of biodiesel

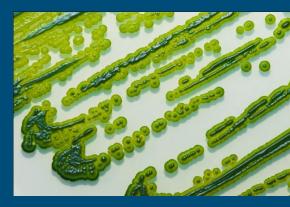
 EU CO₂ production 4 billion tons of CO2

Main inputs in the process N & P

Biomass: 7% N 1 % P

~25 million tons of nitrogen
4 million tons of phosphorus
Twice the amount that is presently produced as fertilizer in Europe

• Use residual nutrient sources (ca 8 million ton N in Europe)


Recycle nutrients

How ?

Increasing photosynthetic efficiency

- Integrate processes (free nutrients)
- Decreasing mixing

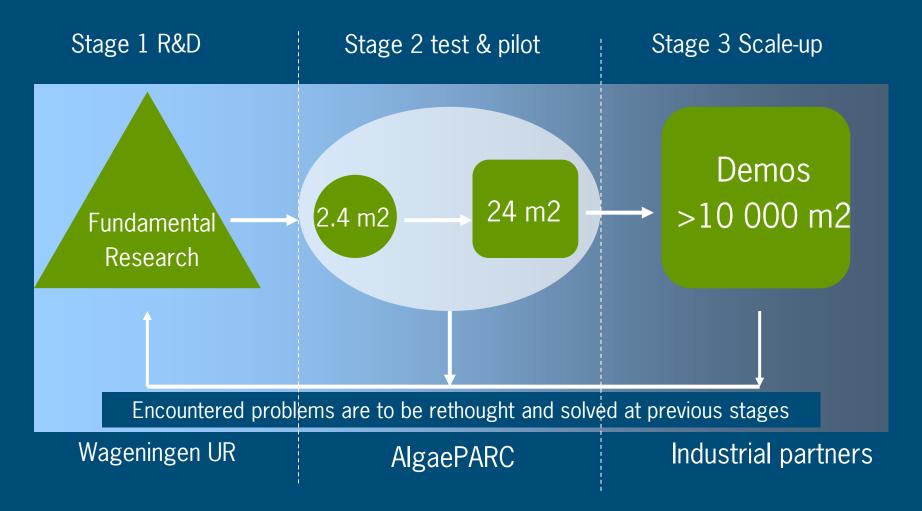
- Developing cheaper and less energy consuming harvesting technologies
- Choosing locations with higher irradiations

Scale-up

Production costs

Energy requirement

Algae Production And Research Center



AlgaePARC

The main focus of AlgaePARC is to develop knowledge, technology and processes strategies to *scale up* microalgae facilities *under industrial settings* and to optimise product productivities under stress and controlled conditions outdoors.

Translate research towards applications

AlgaePARC objectives

- International center of applied research
- Intermediate between basic research and applications
- Development of competitive technology (economics, sustainability)
- Acquire information for full scale plants
- Algal biomass for food, feed, chemicals and fuels

24 m² systems

2.4 m² systems

- Long time performance (1 yr)
- High level of measurement and control
- Representative productivities for full scale
- Information for design of full scale plants

- Phase between lab and pilot
 - Testing short term experiments
- Different strains
- Different feed stocks
- Adaptations in design and process
- If successful
 - To 25 m² scale
- If not successful
 - More experiments
 - Reject

<u>Open pond</u> - Reference

<u>Horizontal tubes</u> - high light intensity - oxygen accumulation

Vertical stacked hor. tubes

- light dilution

- oxygen accumulation

Flat panels (Proviapt)

- light dilution

<u>Open pond</u> - Reference

<u>Horizontal tubes</u> - high light intensity - oxygen accumulation

Vertical stacked hor. tubes

- light dilution

- oxygen accumulation

Flat panels (Proviapt)

- light dilution

<u>Open pond</u> - Reference

<u>Horizontal tubes</u> - high light intensity - oxygen accumulation

Vertical stacked hor. tubes

- light dilution

- oxygen accumulation

Flat panels (Proviapt)

- light dilution

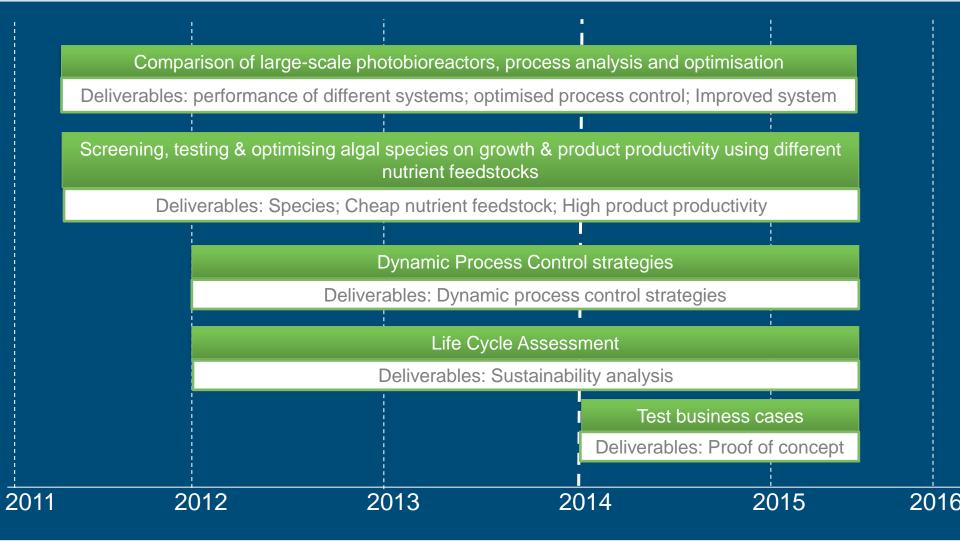
<u>Open pond</u> - Reference

<u>Horizontal tubes</u> - high light intensity - oxygen accumulation

Vertical stacked hor. tubes

- light dilution

- oxygen accumulation


Flat panels (Proviapt)

- light dilution

R&D activities AlgaePARC

Funding AlgaePARC

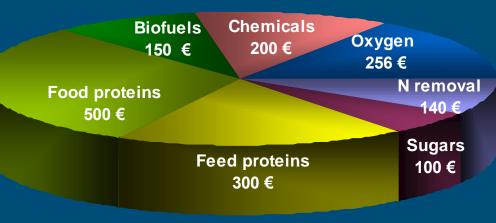
Facility financed by

- Ministry EL&I
- Province Gelderland
- Wageningen UR

Ministerie van Economische Zaken, Landbouw en Innovatie WAGENINGENUR For quality of life

Research program financed by

provincie



Next steps

- Development of demo projects
- Biorefinery
 - Mild cell disruption techniques
 - Fractionation biomass with maintainance of functionality of proteins

www.algae.wur.nl www.AlgaePARC.com

