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� Wide variety of sources for vegetable oils

� For instance:

� Land use issues; 

food vs. fuel

� Algae oil

� Possible solution to these problems in future 

� No direct competition with food production

� Rapid growth rates (10-200 times faster than terrestrial oil crops)1,2

Vegetable oils

Sunflower oil, Soybean oil, Palm oil and Rapeseed oil

1 Huber et. al., Chem. Rev. 2006, 106, 4044-4098
2 Christi, Biotechnol. Adv. 2007, 25, 294-306 
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� AlgaePARC Wageningen UR
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� 1st generation biodiesel: fatty acid methyl esters (FAME) 

� Derived from vegetable oils 

� Produced via transesterification of triglycerides with methanol 

1st generation biodiesel

3
State of the art

� Concerns

� High purity feedstocks are necessary

� Engine compatibility issues 

• Lower heat content

• Poor storage stability
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� 2nd generation biodiesel  

� Derived from vegetable oils or other fatty acid derivatives

� Via catalytic hydrodeoxygenation using hydrogen

2nd generation biodiesel

State of the art

� Concerns

� Process requires (non-renewable) H2
• Reduction of double bond functionalities

• Hydrodeoxygenation of glycerol to propane, 

� Process at elevated P and T (3-10 MPa, 553-618 K)

� Advantages 

� Low purity feedstocks possible  

� Higher fuel quality (heat content and storage stability)

� Fully compatible with existing vehicles and infrastructure

4

H2

Catalyst
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Introduction to the project

� A superior process would be the catalytic deoxygenation of fatty acids:

� At low temperature (< 523 K)

� With low/no hydrogen consumption

� Yielding unsaturated hydrocarbons

State of the art

� Advantages:

� Excellent low-temperature properties as a fuel

� Possible applications as chemical building blocks

� Potential for glycerol valorization

5

Catalyst
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Overview presentation

Reaction Pathways 
and Intermediates

● Activity & Selectivity

- Influence of feed conc. 

● Deoxygenation reactions

- Stearic anhydride intermediate

6

Catalyst:

4.5 wt% Pd/γ-Al2O3 (BASF)

Surface area: 111 m2/g
Av. Particle size: 6.7 nm
Dispersion: 17 %
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Deoxygenation reactions

+
CO2

Decarboxylation

n-C17

+ H2O + CO

Decarbonylation-dehydration

1-C17:1

Ketonization

+ + CO2 + H2O
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Reac on Temperature 

stearone 

  -C17 

n-C17 

� Lowest deoxygenation temperature at 523 K

� Heptadecane formed selectively

Influence of temperature

Results

Reaction conditions:

Catalyst: Pd/γ-Al2O3

Solvent: dodecane
Feed conc.: 0.14 mol L-1

Reaction time:    6 h 
Pressure:           7 bar N2

8

Σ
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Influence of stearic acid concentration at 523 K

9

� Selective decarboxylation at low (<0.25 mol/L) stearic acid conc. 

� >0.25 mol/L: Selectivity to n-C17 decreases

� Decarbonylation products are formed

Catalyst Activity & Selectivity

Reaction conditions:

Catalyst: Pd/γ-Al2O3

Solvent:                dodecane
Reaction temperature: 523 K
Reaction time:      24h 
Pressure:         7 bar N2

� Selective decarboxylation at low (<0.25 mol/L) stearic acid conc. 

� >0.25 mol/L: Selectivity to n-C17 decreases

� Decarbonylation products are formed

� Ketonization to stearone 

average
a
v
.
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Hypothesis

� Literature: Stearic anhydride suggested as intermediate product in 
homogeneous decarbonylation and ketonization reaction of stearic acid1,2

10
Anhydride intermediate

+
H2O

+

CO   ++

1-C17:1

+ CO2

� Possible explanation: Stearic anhydride as intermediate product  

1 Foglia et. al., J. Am. Oil Chem. Soc. 1976, 53, 737-741
2 Miller et. al., J. Org. Chem. 1993, 58, 18-20
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Model reaction

11

CO   ++

1-C17:1

+ CO2

� Reaction wth stearic acid anhydride gives 100% conversion to:

� Stearic acid

� Heptadecenes (Σ-C17)

� Heptadecane (n-C17)

� Stearone (C35)

Reaction conditions:
0.14 mol/L stearic anhydride 

523 K, 24h, 7 bar N2

Anhydride intermediate

n-C17

∑-C17

GC
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� Reaction wth stearic acid anhydride gives 100% conversion to:

� Stearic acid

� Heptadecenes (Σ-C17)

� Heptadecane (n-C17)

� Stearone (C35)

Model reaction

12

Transfer hydrogenation

∑-C17

n-C17

n-C17

Anhydride intermediate

Reaction conditions:
0.14 mol/L stearic anhydride 

523 K, 24h, 7 bar N2

CO   ++

1-C17:1

+ CO2
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Catalyst Stearic 
anhydride (g)

Reaction 
Temp (K)

Reaction 
time (h)

Conversion 
(%)

Selectivity (%)

n-C17 ΣΣΣΣ-C17 SA C35 heavies

Pd/γ-Al2O3

Pd/γ-Al2O3

γγγγ-Al2O3

none

Pd/γ-Al2O3

Pd/γ-Al2O3
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0
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Overview model reactions
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� Decarbonylation 10 times faster than when starting from stearic acid

� Anhydride formation from stearic acid rate limiting step

� Pd essential for decarbonylation to HC’s.

� Stearone and other heavies are formed in absence of Palladium

� High anhydride concentration: increase in side product formation

� Stearic anhydride is also converted at 473 K

� Potential for low temperature decarbonylation of stearic acid? 

Anhydride intermediate
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Based on butyric acid at 523 K*

Thermodynamics anhydride formation 
14

2 x

� Formation of butyric anhydride non-spontaneous at 523 K

+ H2O

∆
G
 (
k
J/
m
o
l)

Reaction Coordinate

*Calculated by HSC

∆G=33

∆H=121 kJ/mol
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Based on butyric acid at 523 K*

Thermodynamics anhydride conversion 

+ CO2

+ CO+

Ketonization of butyric anhydride

Decarbonylation of butyric anhydride

15

OH

O

∆G=33
∆G=-40

∆
G
 (
k
J/
m
o
l)

Reaction Coordinate

� Overall reaction pathway’s are thermodynamically feasible 

2 x

2 x

∆G=-84

+ H2O

+ H2O

*Calculated by HSC



/17

� There are strong indications for the existence of stearic anhydride as reactive 
intermediate in the decarbonylation reaction of stearic acid at low temperatures

� Suggested deoxygenation reactions of stearic acid over Pd/Al2O3 at 523 K:

16
Conclusions

� Stearic anhydride is selectively converted to 1-heptadecene at 473 K 

� Calculations on butyric anhydride show that pathway’s are thermodynamically 
feasible
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