

#### Green microalgae for biofuel

- Microalgae can produce neutral lipids
  - Adverse growth conditions
  - Up to 60% w/w
  - Mainly Triacylglycerols (TAG)
  - Stored in 'lipid globules'



- TAG are ideal for production of transport fuels
  - Easily converted using existing technology
- TAG content is main target for process optimisation
  - DSP is easiest at highest TAG content
- What is often forgotten:

TAG Productivity is equally important!





## TAG production: the classic approach



Both TAG productivity and TAG content are important in realizing sustainable production of algal biofuel

# TAG accumulation What is (not) known...

- Exact mechanism unknown
- Literature
  - TAG fraction increases when nutrients become limiting
  - Accumulation is more severe at increased light intensities

Light and nutrients are very important players in TAG accumulation

- Current approach: nutrient depletion
  - Changing conditions: Light intensity and nutrient concentration
  - Difficult to study separate effect













- Nitrogen and light supply are two major players per with and lipid accumulation.

  They directly influence the expression is a second se 0,3 TOLCOMBINE 0,2GROWTH AND TAG ACCUMULATION?

50 100 200 250 150 300 Average light supply rate (µmol m<sup>-2</sup> s<sup>-1</sup>)

## Experimental setup

- Neochloris oleoabundans
- Light is kept constant by turbidostat control
  - Dilution with N free medium upon increased turbidity
  - $\bullet$   $\mu = D$
- Nitrogen is supplied separately from diluting medium at a constant rate
  - N stock with same composition as dilution medium
  - N supply is not influenced by small deviations in growth rate





#### Continuous nitrogen limitation

- A constant nitrogen and light supply ensure stable growth conditions
  - 9 Steady states at 2 light supply rates (HL and LL) and several N supply rates
  - 2 Light limited steady states
  - 7 Nitrogen limited steady states with [NO<sub>3</sub>-] = 0
  - Continuous experiments
    - supply rates: not concentrations!





## Continuous nitrogen limitation: GROWTH

Growth is determined by limiting substance





WAGENINGENUR For quality of life

## Continuous nitrogen limitation: TAG content





7.5%



#### Continuous nitrogen limitation: TAG productivity

TAG productivity increases with enhanced nutrient stress





#### Continuous nitrogen limitation: Yield





#### Light is used less efficient because:

- Biomass is more 'expensive'
- Maintenance increases
- Light dissipation increases



#### TAG accumulation comes at a price

- Other observations
  - Decrease in pigmentation
  - Decrease in N content (less protein): 7.3% → 3.0% w/w
  - Decrease in membrane lipids: 9.0% → 4.2% w/w
- Overall yield on light decreases because photosystems are less abundant and less efficient at increased stress levels
- Same observations as under classic nitrogen depletion experiments



ALGAE RESTRICT THEIR ENERGY INTAKE!



### **Implications**

High TAG fraction and high productivity is probably found in algae with most efficie photosystem under nutrient stress

energy can be directed towards TAG accumulation



Breuer et al. (2012) submitted













#### Summarizing

- TAG accumulation is a result of an energy imbalance
- It is possible to combine growth and TAG accumulation
  - by creating an imbalance in nutrient demand and supply
- Algae counteract the imbalance by energy dissipation
  - thus restricting their energy intake
  - Indications of decreasing size and efficiency photosystem
- Efficient light use crucial when aiming at high TAG productivities



- Supervisors at Wageningen University
  - Packo Lamers
  - Dirk Martens
  - René Wijffels



wetsus

Wetsus Leeuwarden

Centre of excellence for sustainable water technology

and thank YOU for your attention!

Algae/nee





#### Further research

- RNA sequencing
- Metabolic flux analysis
  - Convert existing model Chlamydomonas using DNA sequence
- What is happening on a cellular level
  - Gene regulation
  - Flux regulation

FINDING THE BIOLOGICAL MECHANISM OF LIPID ACCUMULATION



