Algen: werkpaarden van de biobased economy?

Packo Lamers

8 December 2011

Even voorstellen:

- Universitair Docent Biotechnologie
- Daarvoor:
 - Ir.: Bioprocestechnologie
 - Dr.: Pigmentproductie met algen
 - PostDoc: Metabole processen in algen

De toekomst...een 'biobased economy'?

• Wat is dat precies?

5%

- 80% positief over biobased economy
 - 40% overweegt carrière / opleiding

De wereld groeit...

Natuurlijke grondstoffen zullen opraken

Niet vandaag, of morgen......maar het gaat wel gebeuren

Oplossing?

- Gebruik maken van hernieuwbare bronnen:
 - Zon
 - Water
 - Wind

Elektriciteit alleen is niet genoeg

De biobased economy

- Productie van
 - brandstoffen
 - humane en dierlijke voeding
 - bulk- en fijnchemicaliën

- waarbij gebruikt wordt gemaakt van
 - hernieuwbare grondstoffen
 - afvalstromen
 - biologische productie processen

Essentieel proces: fotosynthese

Microalgen vs. planten

Drivers for aquatic Biomass

Biobased Economy

- World population growth and increase in prosperity -> higher energy demand
- High energy prices
- Security of energy supply
- Climate change due to greenhouse gasses
- Rural development

Earth land area 29%

Specific aquatic biomass

Earth water area 71%

- Increased competition for land for the production of food, chemicals and energy
- Limitations of land for agriculture
- Impacts of global climate change on agricultural productivity

Wat zijn microalgen?

- Primitief plantaardig organisme
- ~0.001 − 0.1 mm groot
- Zout en zoutwater
- Fotoautotroof
- \approx 80.000 soorten
 - Groene algen
 - Chromista
 - Diatomeeën
 - Bruine algen
 - Macro algen
 - Rode algen
 - Euglenophyta

Spirulina

Scenedesmus

Phaeodactylum

Microalgen en hun producten

Waarom microalgen?

Feedstock	Oil Productivities L/ha/year	
Corn	172	
Soybeans	446	
Sunflower	386	
Rapeseed	1 250	
Oil palm	5 950	
Jatropha	1 892	
Microalgae		
PE 3%; 30% lipids; NL	12 300	Hier zijn we
PE 3% ; 30% lipids; Bonaire	25 800	
PE 6% ; 30% lipids; Bonaire	52 000	Potentie

Nog meer redenen:

- Hoge productiviteit per oppervlakte
- Groeit op zeewater
- Geen landbouwgrond nodig
- Minder water nodig
- Grote variëteit in soorten → en dus producten
- Olie ophoping to zeer hoge concentratie
- Stofwisseling is stuurbaar richting gewenst product
- Recyclen van nutriënten (N & P)
- CO₂ mitigatie

Van vakmanschap naar een industrieel proces...

- Huidige globale microalgen productie: ~5000 ton droge biomassa
- Hoogwaardige producten: pigmenten en ω-3 vetzuren
- Markt volume €1.25 miljard (gem. marktprijs €250/kg droge biomassa)
- Globale productie van palmolie ~40 miljoen ton; marktprijs van ~0.50 €/kg

Studie economische haalbaarheid

AGROT

Delta feasibility study: production costs

- At 1 ha scale today: 10 €/kg
- At 100 ha scale today: 4 €/kg
- What will be possible: 0.70 €/kg
- Iron frame Centrifuge w estfalia separator AG Centrifuge Feed Pump ■ Medium Filter Unit Medium Feed pump Medium preparation tank Harvest broth storage tank Seaw ater pump station ■ Automatic Weighing Station with Silos ■ Air Blowers Installations costs Instrumentation and control Piping Buildings Polyethylene Culture medium Carbon dioxide ■ Media Filters Air filters Pow er I abor Payroll charges Maintenance General plant overheads

Why (not) microalgae? Present challenges!

The choice of algae

Lipid production

The alga: no optimization on a single parameter

- High biomass productivity
- High productivity in required molecules (proteins, saturated neutral, lipids, unsaturated fatty acids)
- Insensitive to high oxygen concentrations
- Possibility to grow under selective conditions
- Easy to harvest
- Mild extraction

Why (not) microalgae? Present challenges!

The process: efficiency in supply of nutrients and resources

Efficiency in supply and use of nutrients and resources

Sunlight

Water

CO₂, Nitrogen and Phosphorus

Efficiency in supply and use of nutrients and resources

Water

CO₂, Nitrogen and Phosphorus

Locatie en zonnestraling

Vertical tubular photobioreactor

Tubular fences

Plastic film photobioreactors

Open ponds

NBT Ltd., Israel

Comparison

	Raceway	Hor. tube	Vert. tube	Vert. panel	Vert. panel
Characteristics	Depth: 0.3 m	Diameter: 0.05 m Length: 50 – 100 m	Diameter: 0.05 m Length: 50 – 100 m	Depth: 0.1 m Height: 0.5 m Length: 10 m	Depth: 0.5 m Height: 1.0 m Length: 10 m
Ground coverage	Full ground coverage	Full ground coverage 20 tubes/m2	40 tubes/m2	5 panels/m2	2 panels/m2
Biomass concentration	0.1 – 0.5 g/L	1.0 – 5.0 g/L	0.5 – 2.5 g/L	1.5 – 7.5 g/L	0.5 – 2.5 g/L
PE	1.5%	3 – 4 %	4 – 6 %	4 – 6 %	4 – 6 %

Production costs:

Increasing Photosynthetic Efficiency – what margin do we have?

What's determining photosynthetic efficiency outdoors?

Measured / controlled parameters

- Incident light intensity
- Temperature
- O₂ partial pressure
- CO₂ partial pressure
- Gas flow rate / Liquid velocity
- Dilution rate
- pH
- Nutrients

Photosaturation and photoinhibition

<u>The principle of light dilution – go vertical!</u>

I_{max}: 1800 μmol photons m⁻² s⁻¹ (direct sunlight)

I_{max}: 400 μmol photons m⁻² s⁻¹ (diluting effect)

Light dilution in the lab

At lab scale a photosynthetic efficiency of 6% seems to be within reach Cuaresma et al., 2010

What about:

- Pilot scale 10 100 m²
- Extended time > 1 yr

Light dilution in practice

Challenges

- Material lifetime
- Cleanability
- Reducet energy input (e.g reflect IR)

Efficiency in supply and use of nutrients and resources

Sunlight

Water

CO₂, Nitrogen and Phosphorus

Microalgen vs. planten

Main inputs in the process: Water

Photosynthesis: ~0.75 liter of water / kg of biomass 1.5 liters of water / liter of oil (50 % lipid content) $CO_2 + 0.93 H_2O + 0.15 NO_{3^-} \rightarrow CH_{1.72}O_{0.4}N_{0.15} + 1.42 O2 + 0.15 OH-$

In practice consumption is much larger:

- cooling closed systems
- fresh water needs to be added to open ponds to compensate for evaporation.
 - Cooling with large saltwater buffer
 - Seawater species
 - Growth on large water surfaces (lakes and seas)

NASA OMEGA Systems

Efficiency in supply and use of nutrients and resources

Sunlight

Water

CO₂, Nitrogen and Phosphorus

Main inputs in the process

To produce 1 ton of algal biomass:

- 1.8 tons of CO₂ is needed
- 0.07 ton N
- 0.01 ton P

Transport Fuels in Europe - 0.4 billion m3

Wijffels R.H., Barbosa M.J. (2010) An outlook on microalgal biofuels. *Science* 329: 796-799

Main inputs in the process CO₂

• 1.8 tons of CO2 is needed to produce 1 ton of algal biomass

- 1.3 billion tons of CO₂ for
 0.4 billion m3 of biodiesel
- EU CO₂ production 4 billion tons of CO2

Logistics?

Main inputs in the process N & P

Biomass: 7% N

1 % P

- ~25 million tons of nitrogen
- 4 million tons of phosphorus

Twice the amount that is presently produced as fertilizer in Europe

- Use residual nutrient sources (ca 8 million ton N in Europe)
- Recycle nutrients

How?

- Increasing photosynthetic efficiency
- Integrate processes (free nutrients)
- Decreasing mixing

Choosing locations with higher irradiations

Scale-up

Production costs

Energy requirement

AlgaePARC

Algae Production And Research Center

AlgaePARC

The main focus of AlgaePARC is to develop knowledge, technology and processes strategies to *scale up* microalgae facilities *under industrial settings* and to optimise product productivities under stress and controlled conditions outdoors.

Translate research towards applications

AlgaePARC objectives

- International center of applied research
- Intermediate between basic research and applications
- Development of competitive technology (economics, sustainability)
- Acquire information for full scale plants
- Algal biomass for food, feed, chemicals and fuels

24 m² systems

2.4 m² systems

- Long time performance (1 yr)
- High level of measurement and control
- Representative productivities for full scale
- Information for design of full scale plants

- Phase between lab and pilot
- Testing short term experiments
- Different strains
- Different feed stocks
- Adaptations in design and process
- If successful
 - To 25 m² scale
- If not successful
 - More experiments
 - Reject

Open pond

- Reference

Horizontal tubes

- high light intensity
- oxygen accumulation

Vertical stacked hor. tubes

- light dilution
- oxygen accumulation

- light dilution
- no oxygen accumulation

Open pond

- Reference

Horizontal tubes

- high light intensity
- oxygen accumulation

Vertical stacked hor. tubes

- light dilution
- oxygen accumulation

- light dilution
- no oxygen accumulation

Open pond

- Reference

Horizontal tubes

- high light intensity
- oxygen accumulation

Vertical stacked hor. tubes

- light dilution
- oxygen accumulation

- light dilution
- no oxygen accumulation

Open pond

- Reference

Horizontal tubes

- high light intensity
- oxygen accumulation

Vertical stacked hor. tubes

- light dilution
- oxygen accumulation

- light dilution
- no oxygen accumulation

R&D activities AlgaePARC

Funding AlgaePARC

- Facility financed by
 - Ministry EL&I
 - Province Gelderland
 - Wageningen UR
- Research program financed by

GEA Westfalia Separator Group

Next steps

- Development of demo projects
- Biorefinery
 - Mild cell disruption techniques
 - Fractionation biomass with maintainance of functionality of proteins
- From cell physiology to process strategies

Mircoalgae in a biobased economy?

Possibly

• 10-15 years R&D

Need for trained personnel

De Algenieurs: een groene generatie met energie voor de toekomst

PhD students & young professionals

- Conference (June '12)
- Course (2012/2013)
 Photobioreactor design

Middelbare scholen

- Algen-practicum
- Design challenge
- Digitaal leermateriaal
- PWS platform

AlgaePARC excursies

www.algae.wur.nl www.AlgaePARC.com

Why (not) microalgae? Present challenges!

The process: harvesting

Harvesting techniques

- Centrifugation
 - Energy consumption is high
- Filtration
 - Only possible with large algae species (e.g. Spirulina)
- Flocculation
 - Good alternative for removal of water as first step

Flocculation

Chemical flocculation

- Multivalent metal salts
- Cationic polymers
- Chitosan

Autoflocculation

- Extreme pH
- Temperature
- Nutrient depletion

Bioflocculation

Exopolysaccharides produced by microorganism

Dissolved/dispersed air flotation

Chemical flocculation

- 1. Multivalent metal salts
- 2. Cationic polymers
- 3. Chitosan

- Case 1, 2 and 3: Negative effect for downstream processing for production of biodiesel
- Case 2: flocculation using cationic polymers is inhibited by high ionic strength of sea water
- Case 1, 2, and 3: cost price too expensive for biodiesel production

Autoflocculation

- 1. Extreme pH
- 2. Temperature
- 3. Nutrient depletion

- Case 1: supposedly works for all algae
 - Time needed ranges from hours to days
 - pH range where flocculation occurs depends on strain
 - Effectiveness depends partially on growth phase
- Case 1: Much used in waste water plants
- Case 1, 2, 3: may cause cell composition changes
- Case 2, 3: generally considered too unreliable to be economical on a commercial scale

Bioflocculation

1. Capability of production of exopolysaccharides

- Environmental conditions are of influence
- Production strain is flocculating strain
- Other microalgal strain can be added to reactor as flocculant
- Other microorganisms (bacteria etc.) can be added to reactor as flocculant

Dissolved/disperged air flotation

Electrostatic interaction between cell and gas bubble/'collector'

- Strain dependent
- Usually use of added chemicals (inorganic coagulants)
- Often used in waste water treatment plants

Why (not) microalgae? Present challenges!

The process: what to do with the biomass

Microalgae: Importance of a biorefinery approach

- Varied and high quality composition of biomass
- Economic need to optimise valorization of the biomass by extraction of multiple products in addition to e.g fuels

Bulk chemicals and biofuels in 1,000 kg microalgae

- 400 kg lipids
 - 100 kg as feedstock chemical industry (2 €/kg lipids)
 - 300 kg as transport fuel (0.50 €/kg lipids)
- 500 kg proteins
 - 100 kg for food (5 €/kg protein)
 - 400 kg for feed (0.75 €/kg protein)
- 100 kg polysaccharides
 - 1 €/kg polysaccharides
- 70 kg of N removed
 - 2 €/kg nitrogen
- 1,600 kg oxygen produced
 - 0.16 €/kg oxygen
- Production costs: 0.40 €/kg biomass
- Value: 1.65 €/kg biomass

Complexity of biorefinery

- Business model in which different end users need to collaborate
- Market volumes must fit
- Highest value is obtained if functionality of molecules is maintained
- Biomass production and biorefinery depend on each other

To replace all transport fuels in Europe

- 400 million m³ lipids needed
- 9.25 million ha surface area
- Equivalent to surface area of Portugal
- 400 million tons of proteins produced
- 20 times the amount of soy protein imported in Europe

How can we make a more structure based approach for biorefinery?

- To fractionate all components
- Maintain their functionality
- At low energy input

Localization of components in different

organelles in the cell

Molecular and Technological knowledge both needed

Specific developments required for a microalgae

biorefinery

- Development of mild and efficient cell disruption, extraction and fractionation technologies
- Effective technologies for separation of carbohydrates, proteins and lipids
- Lipid/oil refining technologies
- Improvement of environmental performance, decrease in energy consumption and decrease of capital costs
- Integrate knowledge & facilities for oil, food and fine chemical industry
- Biomass provision (quantity and quality)

Present

One process for one product

Chain Approach: from feedstock to end products

Chain Approach: from feedstock to end products

Why (not) microalgae? Present challenges!

Furthermore....

Challenges in the entire chain

- High CAPEX, high running costs and energy consumption for cultivation, harvesting and product separation
- Large-scale cultivation of microalgae
- Current process technology does not allow the production of multiple products
- Lack of trained personnel
- Product development to commercial applications
 - Regulatory approval for use of algae in feed/food is lacking
 - Broad consumer acceptance of algae and seaweeds in food
 - The full range of potential products, best combinations and their market values is unclear

