Microalgae in a biobased economy

Dr.ir. Packo P. Lamers Assistant Professor in Bioprocess Engineering Wageningen University, the Netherlands

PAN, Lublin, 4 Nov. 2011

Towards a biobased economy

"Production of fuels, food, feed, bulk and fine chemicals using waste streams, renewable resources and biological processes"

Drivers for aquatic Biomass

Biobased Economy

 World population growth and increase in prosperity -> higher energy demand

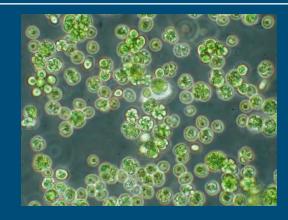
Earth land area 29%

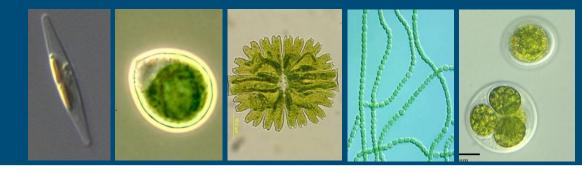
- High energy prices
- Security of energy supply
- Climate change due to greenhouse gasses
- Rural development

Specific aquatic biomass

- Increased competition for land for the production of food, chemicals and energy
- Limitations of land for agriculture
- Impacts of global climate change on agricultural productivity

Earth water area

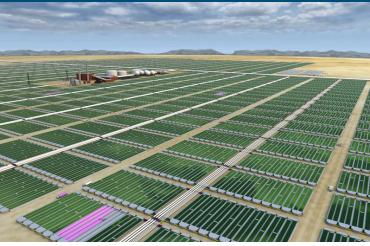

Why microalgae?


Feedstock	Oil P	roductivities L / ha /year	
Corn	•	172	
Soybeans		446	
Sunflower		386	
Rapeseed		1 250	
Oil palm		5 950	
Jatropha		1 892	
Microalgae			
PE 3%; 30% lipids; NL		12 300	Where we are
PE 3% : 30% libids: Bonaire		25 800	
PE 6% ; 30% lipids; Bonaire		52 000	Potential

Why microalgae?

- High areal productivities
- Can grow in seawater
- No competition for arable land
- Lower water footprint than agricultural crops
- Great variety in species -> variety in products!
- Ability to accumulate large amount of oils
- Offer possibility to steer metabolism to production of specific compound
- CO₂ mitigation
- Recycling nutrients (N & P)

What can be produced?


Biofuels

- Industrial biochemicals (biopolymers, lipids, ...)
- Pharmaceuticals
- Ingredients for food/feed
- 'Sink' for CO₂
- Integration with other processes
 - Biogas installation
 - Waste water treatment
 - Aquaculture systems (fish /shellfish, shrimps)

From a craft to an industrial process...

- Current worldwide microalgal manufacturing infrastructure ~5000 tons of dry algal biomass
- High value products such as carotenoids and ω -3 fatty acids used for food and feed ingredients.
- Total market volume is €1.25 billion (average market price of €250/kg dry biomass)
- World production of palm oil is nearly 40 million tons, with a market value of ~0.50 €/kg

2007: Delta Feasibility Study

Horizontal tubes

Raceway ponds

Delta feasibility study: production costs

100 ha

At 1 ha scale today: 10 €/kg At 100 ha scale today: 4 €/kg What will be possible: 0.70 €/kg

Labor 24% Power 18%

General plant overheads

1 ha

Norsker N-.H., et al (2010) Microalgal production – a close look at the economics. *Biotechnology Advances*

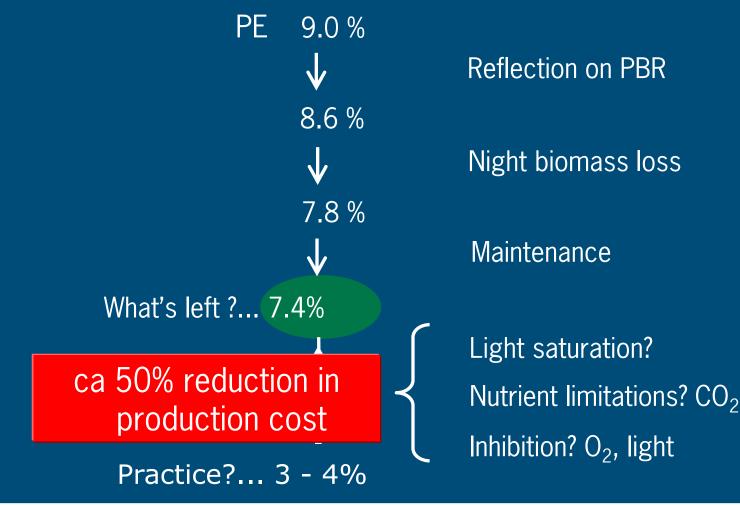
Efficiency in supply and use of nutrients and resources

Sunlight

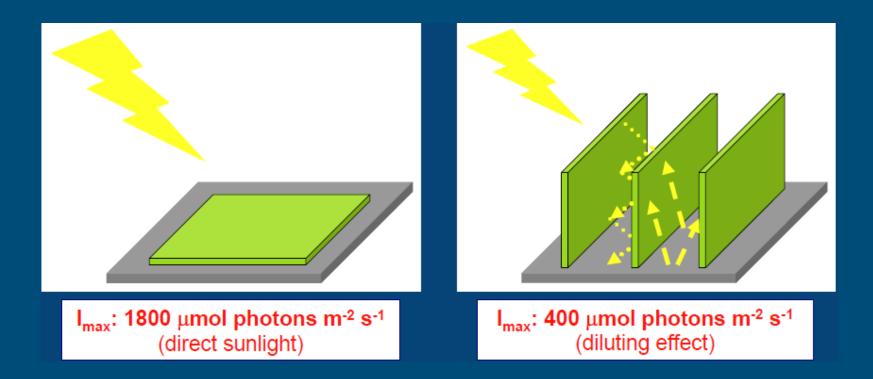
Water

CO₂, Nitrogen and Phosphorus

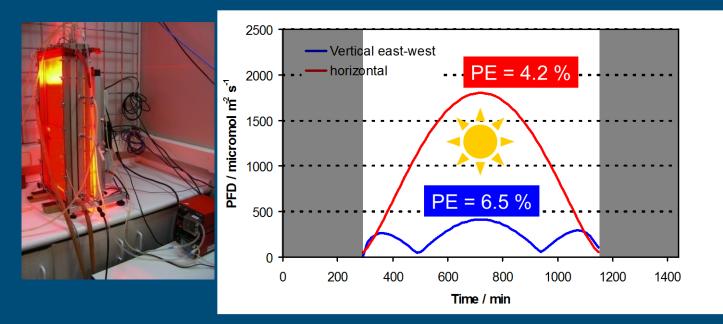
Efficiency in supply and use of nutrients and resources


Water

CO₂, Nitrogen and Phosphorus


Production costs

Increasing Photosynthetic Efficiency – what margin do we have?



<u>The principle of light dilution – go vertical!</u>

Production costs: Photosynthetic Efficiency

At lab scale a photosynthetic efficiency of 6% is within reach

What about- Pilot scale 10 - 100 m²- Extended time > 1 yr


Cuaresma et al. (2011) Bioresource Technology

Light dilution in practice

Challenges

- Material lifetime
- Cleanability
- Reduced energy input (e.g reflect IR)

Fotosintetica & Microbiologica

Efficiency in supply and use of nutrients and resources

Sunlight

Water

CO₂, Nitrogen and Phosphorus

Main inputs in the process: Water

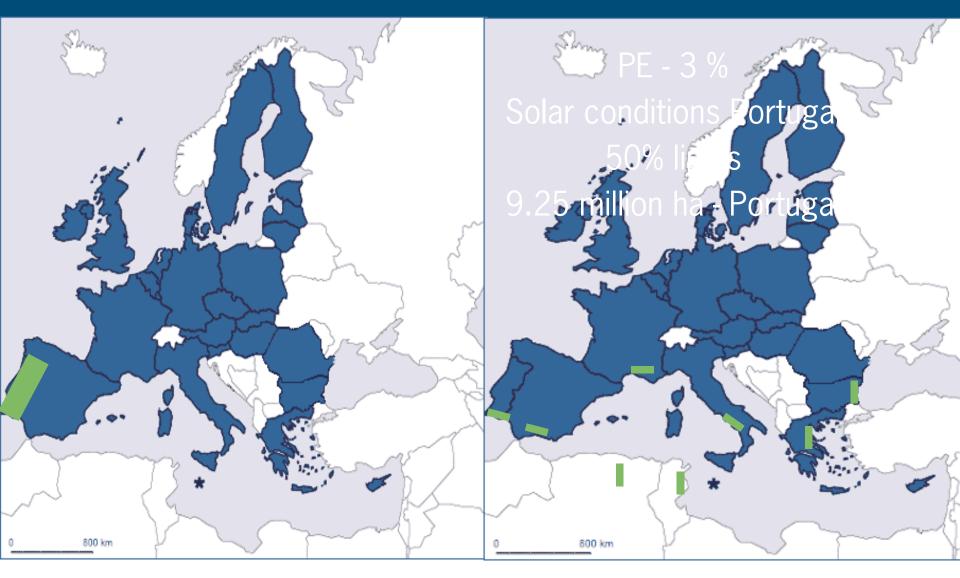
Photosynthesis : ~0.75 liter of water / kg of biomass 1.5 liters of water / liter of oil (50 % lipid content)

 $\text{CO}_2 + 0.93 \text{ H}_2\text{O} + 0.15 \text{ NO}_3\text{-} \rightarrow \text{CH}_{1.72}\text{O}_{0.4}\text{N}_{0.15} + 1.42 \text{ O2} + 0.15 \text{ OH-}$

In practice consumption is much larger:

- cooling closed systems
- fresh water needs to be added to open ponds to compensate for evaporation.
 - Cooling with large saltwater buffer
 - Seawater species
 - Growth on large water surfaces (lakes and seas)

Efficiency in supply and use of nutrients and resources


Sunlight

Water

CO₂, Nitrogen and Phosphorus

Transport Fuels in Europe - 0.4 billion m3

Wijffels R.H., Barbosa M.J. (2010) An outlook on microalgal biofuels. *Science* 329: 796-799

Main inputs in the process CO₂

• 1.8 tons of CO2 is needed to produce 1 ton of algal biomass

1.3 billion tons of CO₂ for
 0.4 billion m3 of biodiesel

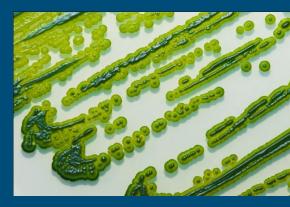
 EU CO₂ production 4 billion tons of CO2

Main inputs in the process N & P

Biomass: 7% N 1 % P

~25 million tons of nitrogen
4 million tons of phosphorus
Twice the amount that is presently

produced as fertilizer in Europe


- Use residual nutrient sources (ca 8 million ton N in Europe)
- Recycle nutrients

How ?

Increasing photosynthetic efficiency

- Integrate processes (free nutrients)
- Decreasing mixing

- Developing cheaper and less energy consuming harvesting technologies
- Choosing locations with higher irradiations

Scale-up

Production costs

Energy requirement

Algae Production And Research Center

AlgaePARC

The main focus of AlgaePARC is to develop knowledge, technology and processes strategies to <u>scale up</u> microalgae facilities <u>under industrial</u> <u>settings</u> and to optimise product productivities under stress and controlled conditions outdoors.

<u>Open pond</u> - Reference

<u>Horizontal tubes</u> - high light intensity - oxygen accumulation

Vertical stacked hor. tubes

- light dilution

- oxygen accumulation

Flat panels (Proviapt)

- light dilution

<u>Open pond</u> - Reference

<u>Horizontal tubes</u> - high light intensity - oxygen accumulation

Vertical stacked hor. tubes

- light dilution

- oxygen accumulation

Flat panels (Proviapt)

- light dilution

<u>Open pond</u> - Reference

<u>Horizontal tubes</u> - high light intensity - oxygen accumulation

Vertical stacked hor. tubes

- light dilution

- oxygen accumulation

Flat panels (Proviapt)

- light dilution

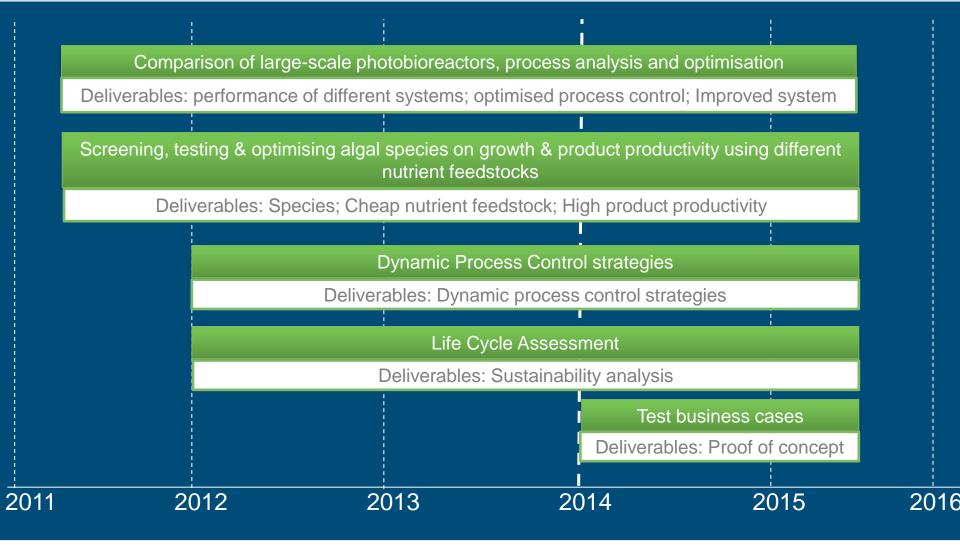
<u>Open pond</u> - Reference

<u>Horizontal tubes</u> - high light intensity - oxygen accumulation

Vertical stacked hor. tubes

- light dilution

- oxygen accumulation


Flat panels (Proviapt)

- light dilution

R&D activities AlgaePARC

Funding AlgaePARC

Facility financed by

- Ministry EL&I
- Province Gelderland
- Wageningen UR

Ministerie van Economische Zaken, Landbouw en Innovatie WAGENINGENUR For quality of life

Research program financed by

provincie

Next steps

- Development of demo projects
- Biorefinery

• Mild cell disruption techniques

 Fractionation biomass with maintainance of functionality of proteins
 From cell physiology to process strategies

The Algaeneers

June 2012 PhD student conference

 2012/2013
 PhD course on photobioreactor design

www.algae.wur.nl www.AlgaePARC.com

