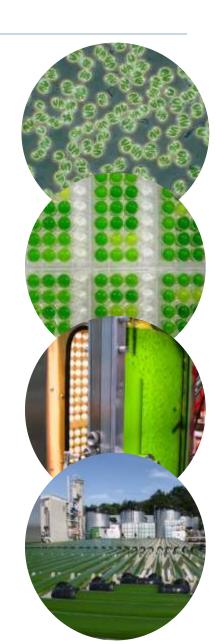

AlgaePARC

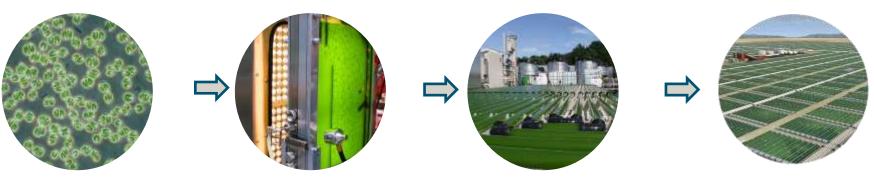
Algae Production And Research Center

Young Algaeneer symposium, 15 June 2012

Rouke Bosma Maria Barbosa Dorinde Kleinegris René Wijffels



Overview presentation


- From craft to industrial Process
- How to decrease production costs
- Why AlgaePARC ?
- AlgaePARC
 - Objectives
 - o Building
 - Cultivation systems
 - o Funding
 - o Research
 - o **Team**
- Tours

From a craft to an industrial process...

- Current worldwide microalgal manufacturing infrastructure ~5000 tons of dry algal biomass
- High value products such as carotenoids and $\omega\text{--}3$ fatty acids used for food and feed ingredients.
- Total market volume is €1.25 billion (average market price of €250/kg dry biomass)
- World production of palm oil is nearly 40 million tons, with a market value of ~0.50 €/kg

Wijffels R.H., Barbosa M.J. (2010) An outlook on microalgal biofuels. *Science* 329: 796-799

How to decrease production costs?

- At 1 ha scale today
- At 100 ha scale today
- What will be possible

- : 10 €/kg
- : 4 €/kg
- : 0.50 €/kg
- Increasing photosynthetic efficiency
- Integrating processes (free nutrients)
- Decreasing mixing
- Developing cheaper and less energy consuming harvesting technologies
- Choosing locations with higher irradiations

*Norsker et al. (2011) Microalgal production- a close look at economics, *Biotechnology Advances* **29**: 24-27

Why AlgaePARC ?

Example, photosynthetic efficiency

• At lab scale a photosynthetic efficiency of 6% seems to be within reach

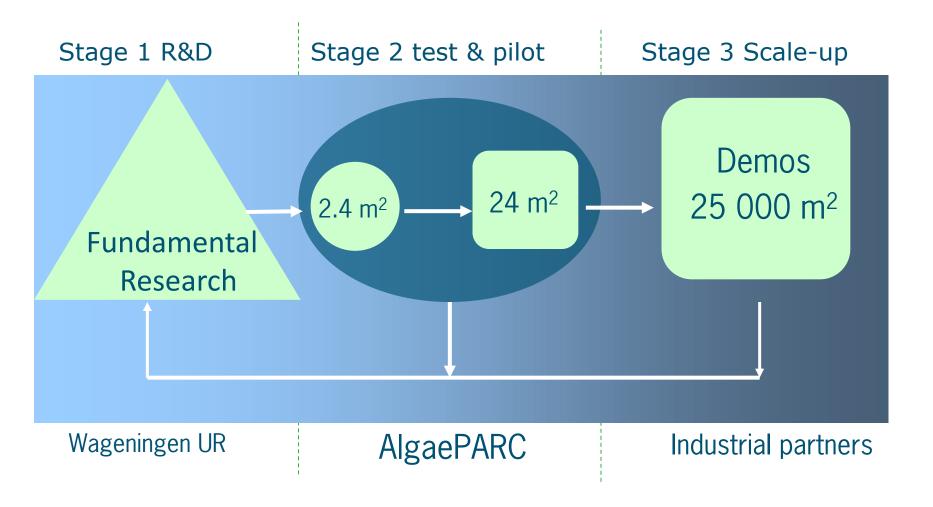
What about

- Pilot scale $10 100 \text{ m}^2$
- Extended time > 1 yr

And how to design/operate even larger (1-100 ha plants)?

MANY SCATTERED ACTIVITIES

- Different locations
- Different designs
- Different measurements
- How to compare systems?
- How to learn from this process?



Algae Production And Research Center

Translate research towards applications

AlgaePARC

The main focus of AlgaePARC is to develop knowledge, technology and processes strategies to <u>scale up</u> microalgae facilities <u>under industrial settings</u> and to optimize product productivities under stress and controlled conditions outdoors.

AlgaePARC objectives

- International center of applied research
- Intermediate between basic research and applications
- Development of competitive technology (economics, sustainability)
- Acquire information for full scale plants
- Algal biomass for food, feed, chemicals and fuels

Timeline and status building

Status 1 April 2010

Available: 3.3 M€

Wanted: Four demo photobioreactors Three pilot photobioreactors

Still needed

- Technical specifications
- Permits
- Facilities (electricity, water, air)

Official opening of AlgaePARC 17 June 2011

Production systems at AlgaePARC

Raceway pond

Flat panels

Horizontal tubular reactor

Vertical stacked tubular reactor

Systems at AlgaePARC

24 m² systems

Long time performance (1 year)

- High level of measurement and control
- Representative productivities for full scale
- Information for design of full scale plants

2.4 m² systems

- Phase between lab and pilot
- Short term experiments
- Different strains
- Different feed stocks
- Adaptations in design and process
- If successful →To 24 m² scale
- If not successful
 - \rightarrow More experiments
 - → Reject

AlgaePARC

Main Features

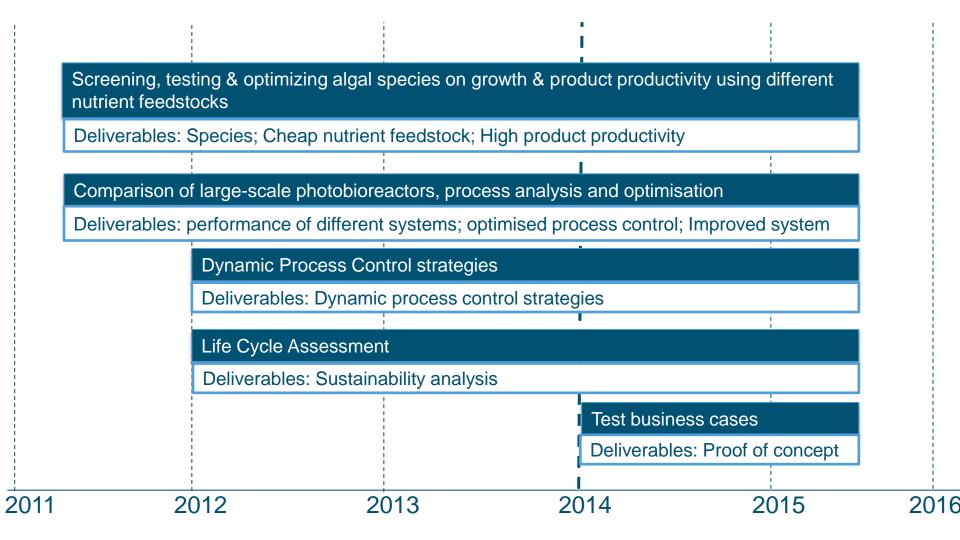
Uniqueness - 4 different systems that can run in parallel

Fundamental aspects for successful operation and scale up of photobioreactors to commercial plants

Control Units: accurate online measurements and control of a wide range of metabolic and environmental parameters

Funding AlgaePARC

Facility financed by


- Ministry EL&I
- Province Gelderland
- Wageningen UR

R&D activities AlgaePARC

Screening, testing & optimizing algal species on growth & lipid productivity under different feedstocks

Screening of species

- Literature research selection of 10 species (growth, nutrient requirements)
- Feedstocks literature research + partners --> availability
- Medium optimisation and feedstock testing
- Further selection of species on productivity

Optimisation in lab scale photobioreactors

- Optimisation of lipid productivity under nutrient limitation for 1 selected species

Cultivation outdoors

- testing in 2.4 m² systems
- proof of principle in 24 m² systems

PhD student Giulia Benvenuti

Comparison of large-scale photobioreactors, process analysis and optimisation

Create base case data

- Areal and volumetric biomass and lipid productivity
- Energy balance
- Nutrient requirements
- Carbon dioxide consumption and oxygen production
- Operational costs
- Cleanability
- Culture stability (assessment of infections and algae population)
- Robustness of the system

Information for improvement of operation

PhD student Jeroen de Vree

Dynamic Process Control strategies

Optimize productivity and decrease energy requirements by dynamic process control under changing light conditions

- Modelling and validation outdoors

Energy input

- Supply CO₂
- Remove O₂

<u>Mixing</u>

- Prevent sedimentation
- Distribute nutrients and light

Productivity Optimal biomass concentration

Challenge

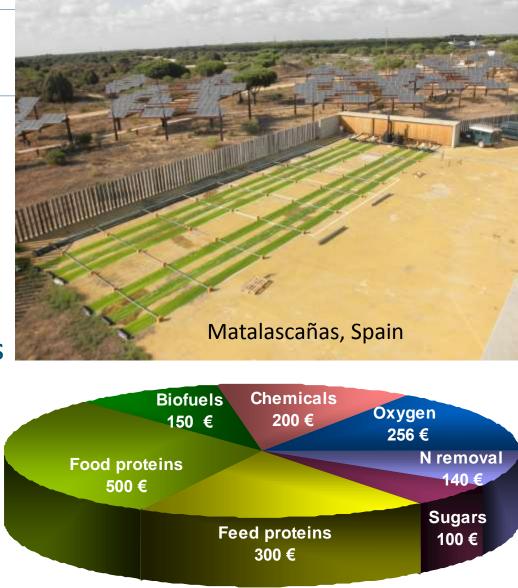
- Enhance transfer rates
- Process control to exploit external conditions

Project submitted

Life Cycle Assessment

- Use life cycle assessment as tool to set design standards for sustainable, large-scale microalgal production systems.
 - Cumulative energy demand
 - Global warming potential
 - Water consumption

Evaluate sustainable design parameters based on applicability to geographic location.



Postdoc Laura Brentner

Next steps

- Development of demo projects
- Biorefinery
 - Mild cell disruption techniques
 - Fractionation biomass with maintainance of functionality of proteins

- Norsker et al. (2011) *Biotechnology Advances* **29**: 24-27
- Wijffels et al. (2010). Biofuels, Bioproducts & Biorefining, 4: 287-295.

AlgaePARC

Algae Production And Research Center

You can also follow us at twitter: @AlgaePARC

AlgaePARC TOURS

- No access to AlgaePARC facility without guidance
- Tours are divided into 8 groups
- Pictures can be made
- Start at the gate of outdoor facility

Tour guides

Rouke Bosma

Jeroen de Vree

Maria Cuaresma Giulia Benvenuti

First tour starts at 18:00

