

Decreasing CO₂ emission in agriculture by using rock flour

alternative for agricultural lime and potassium fertilisers

René Rietra, Alterra, Wageningen UR, in cooperation with Huig Bergsma, Arcadis bv July 2012, Eurosoil, Bari

rene.rietra@wur.nl

Outline

Introduction into subject

Experiments

- 1. Reactivity of Rock flours
- 2. Incubation tests with olivine
- 3. Field test with olivine

Conclusions

Introduction

the idea

use of silicates to increase or maintain soil pH

good for climate

good for farmer if there is a reward via Carbon-trade

Introduction rock flours to replace agricultural lime *

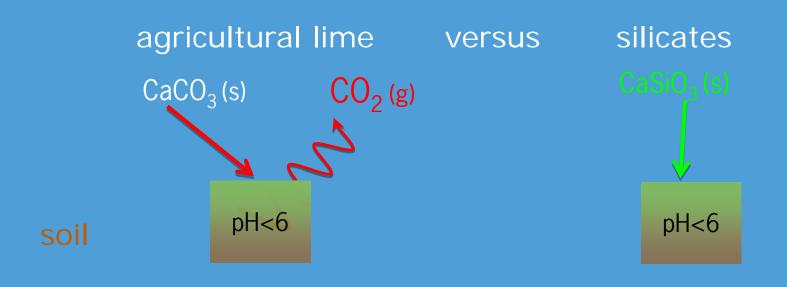
	% emission of aglime excl LULUCF
EU15	0.12%
US	0.17%
Brazil	2.0%

• growth 3% per year; 3x in 2050 (Tilman, 2001)

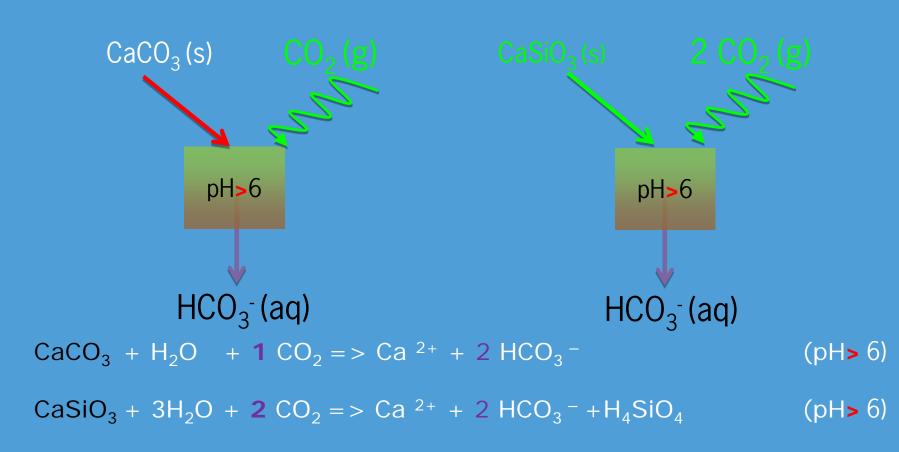
Potential for reducing CO₂ emission!

* UNFCCC, 2005 **emission factor C/CaCO₃=0.14 g/g

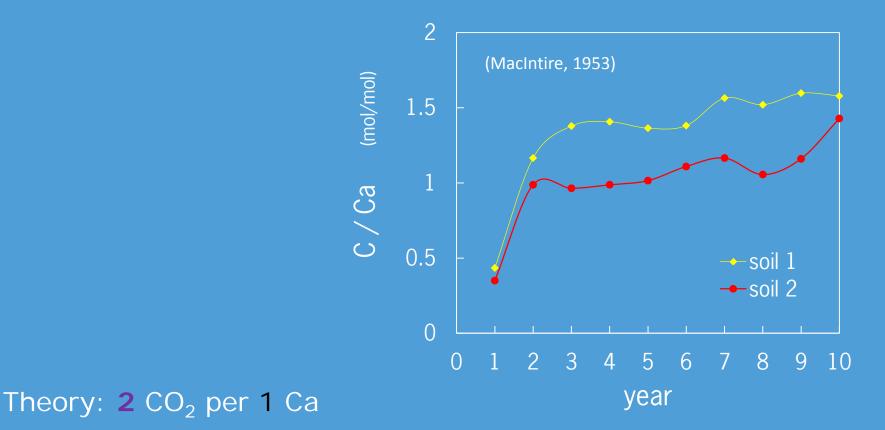
Introduction rock flours for climate


	Global effect
Replacement of current CaCO ₃	0.12%
Replacement of KCI	0.02%
Enhanced weathering	0-5%
Increasing SOM	?

Replacement attractive compared to additional measures. *carbon trade at \in 20 per ton CO₂


Introduction rock flours for climate

$$CaCO_{3} + 2 H^{+} => Ca^{2+} + H_{2}O + CO_{2}$$
(pH< 6)
$$CaSiO_{3} + H_{2}O + 2 H^{+} => Ca^{2+} + H_{4}SiO_{4}$$
(pH< 6)


Introduction rock flours for climate

Introduction rock flours for climate: enhanced weathering

Theory: $CaSiO_{3(s)} + 2CO_{2(g)} \xrightarrow{soil} 1Ca^{2+} + H_4SiO_{3(s)} + 2HCO_{3(aq)}$

Experiment at high pH: 1 to 1.5 CO₂ per 1 Ca

WAGENINGEN UR For quality of life

Introduction rock flours for agriculture

Neutralising value

K fertiliser

Mg fertiliser

Micronutrients

Bedding material for cows

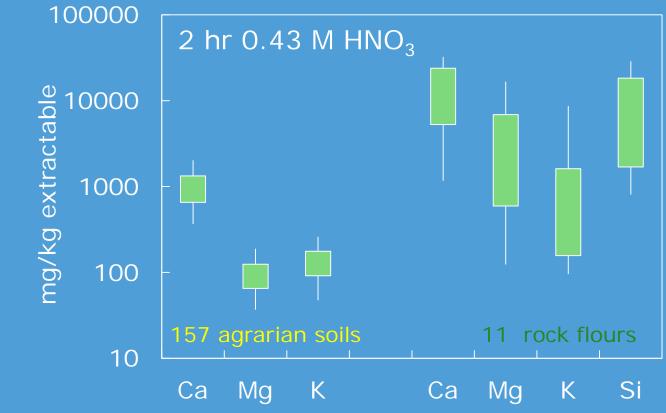
Si fertiliser/protection for plant diseases

Introduction

Relevance of CO₂ trade for rock flour? Rough estimates:

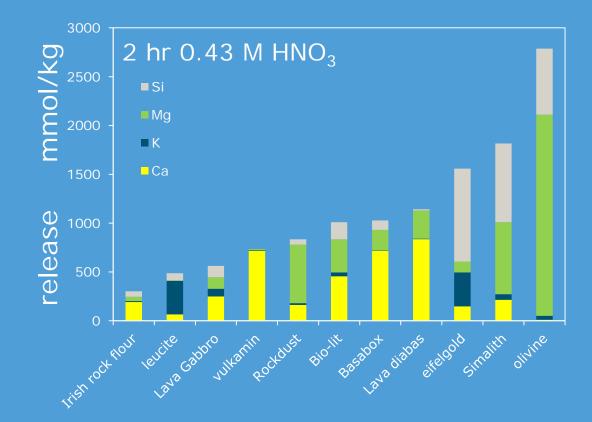
	Value per ton rock flour		
Neutralising Value	€ 66		
K fertiliser	€ 30		
CO ₂ trade	€ 3		
Other values			
	€ 100 t ⁻¹		

- Value to farmer determines if CO₂ reduction is cheap
- "liming" value is important for rock flour


For quality of life

- 1. Reactivity of rock flours
- 2. Incubation tests with olivine
- 3. Field test with olivine

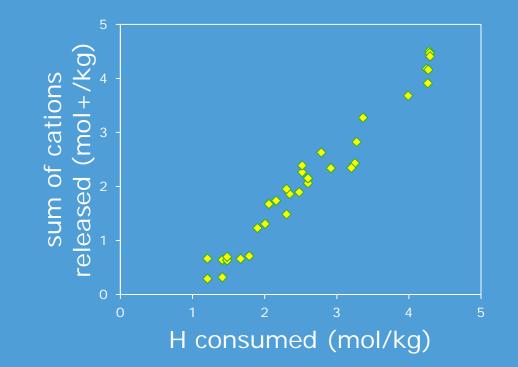
comparing rock flours with soils


Basis for fertility of soils!

 WAGENINGENUR

 For quality of life

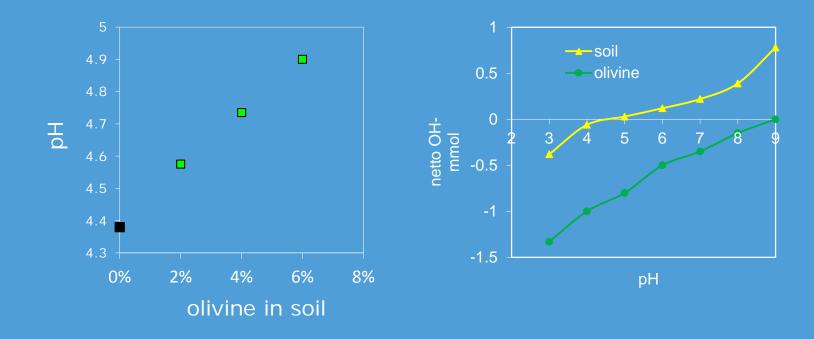
comparing rock flours



Large differences between rock flours

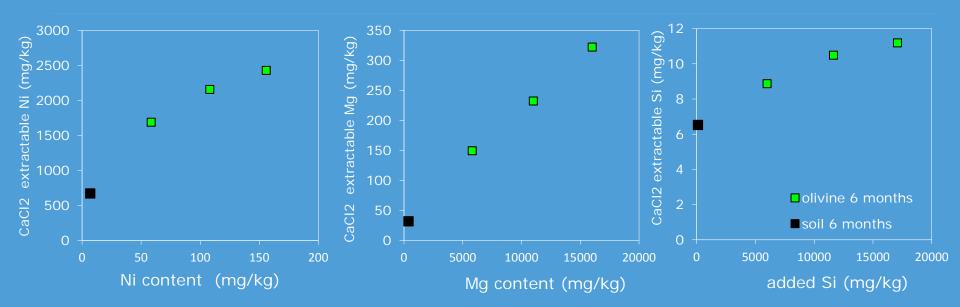
comparing rock flours

Release of cations = H consumption


comparing rock flours

	Lime=100% % "CaCO3"	
Gabbro	9	According to EN 12945
Irish rock flour	11	\mathbf{S}
nepheline	12	
eifelgold	16	
Rockdust	18	
Bio-lit	19	
Basabox	19	Neutralising value of rock flo
vulkamin	22	is relevant
Leucite	22	
Diabas	23	
Simalith	33	
olivine	64	

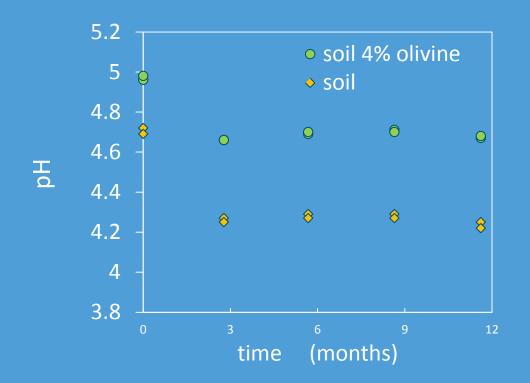
laboratory incubation tests


more olivine rock flour in soil -> higher pH
 explained by surface reaction ≠weathering

 WAGENINGENUR

 For quality of life

laboratory incubation tests



more olivine rock flour in soil, more available Mg, Si, Ni

laboratory incubation tests

Initial pH effect = effect after 1 year

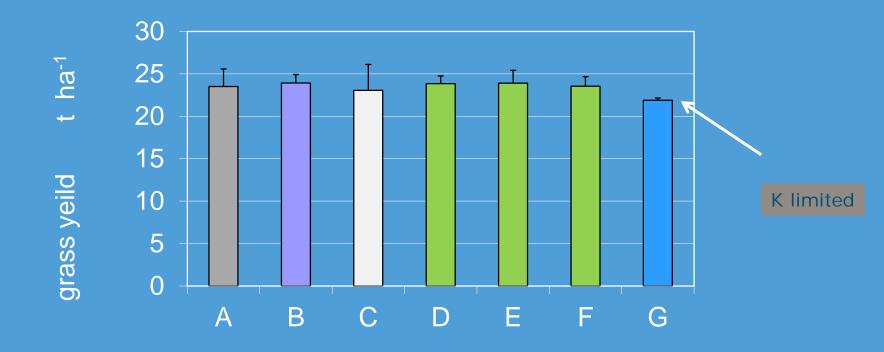
 WAGENINGEN
 UR

 For quality of life
 For quality of life

Field experiment: 3 years

trea	itment	Amounts kg ha ⁻¹
а.	blanc	0
b.	kieserite (MgSO ₄)	125
C.	lime(CaCO ₃ MgCO ₃)	2111
d.	olivine (MgSiO ₄)	215
e.	olivine (MgSiO ₄)	2111
f.	olivine (MgSiO ₄)	8333
g.	rock flours (eclogite+syenite)	8333

-Standard fertilisation with NK


-no K for the treatment with rock flour

Field experiment

Peat soil, triplicate, 5 cuts per year, plot size=18 m²

Field experiment 2010+2011

As expected no effect on yield of olivine

Field experiment

treatment	Mg (g kg ⁻¹) grass 2010	Mg (g kg⁻¹) grass 2011
Blanc treatment	2.0 (0.2)	1.8 (0.1)
Kieserite (MgSO ₄)	2.2 (0.1)	1.8 (0.1)
lime(CaCO ₃ MgCO ₃)	2.2 (0.1)	♥ 2.0 (0.2)*
Olivine 1 (MgSiO ₄)	2.2 (0.04)	1.8 (0.07)
Olivine 2	2.3 (0.1) *	1.7 (0.4)
Olivine 3	2.7 (0.2) **	✓ 2.2 (0.2)**
Rock flour	2.3 (0.01)*	2.1 (0.1)*

Target for Mg in grass is reached (2-3 g kg⁻¹ ds)

Field experiment

Ē

treatment	pH after 1 year	pH after 2 years
Blanc treatment	4.4	4.5
Kieserite (MgSO ₄)	4.3	4.5
lime(CaCO ₃ MgCO ₃)	4.8	5.0
Olivine 1 (MgSiO ₄)	4.4	4.5
Olivine 2	4.4	4.5
Olivine 3	4.7	♥ 4.8
Rock flour	4.7	4.7

Lime, olivine and rock flour increase soil pH in field

all together: lab tests and field experiment

Amounts necessary to get the same effect as lime

	olivine/lime (kg/kg)	Rock flour/lime (kg/kg)
test neutralising value EN 12945	1.5	11
Incubation test (sandy soil)	35	
Field (peat soil) in 2010	4	4
Field (peat soil) in 2011	7	12

Rock flour and olivine work very well in the field

Conclusion of experiments

- Rock flours can have the same function as lime
- Verification of the pH effect on the long term is necessary
- Rock flours can deliver nutrients to plants
- There is a large variation in rock flours

Conclusion

- Success or failure of using rock flours for CO2 trade depends on the agronomical value
- The agronomical value is based on the neutralisation + K and other factors.
- Bulk prices are unknown, it is still a niche market.

Thanks

and to be continued...

Province of Utrecht Experimental farm Zegveld Novasaxum bv Arcadis bv Ministery of Economic Affairs, Agriculture and Innovation

