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Nanotechnology 

Nanotechnology is a novel technology, which is said to herald a new era or even the next 

industrial revolution (Hansen et al. 2008). This technology involves research and 

technological development at the atomic, molecular and macromolecular levels, creating 

and using structures, devices and systems at the scale of nanometers (Mason 2009; 

Miyazaki and Islam 2007; the Woodrow Wilson institute; Wijnhoven et al. 2010). 

Properties of the engineered nanoscale materials may be modified towards defined 

technological requirements. Nanomaterials tend to be more chemically reactive, have 

different strengths or electrical properties and are generally more mobile than similar 

materials at larger scales. In some cases, simply making things smaller changes the 

properties of materials, such as for example, exhibiting a different colour or starting to 

conduct electricity at the nanoscale (Mason 2009; the Woodrow Wilson institute). The 

definition of nanomaterials has been under debate, due to the criteria for defining a 

substance as a nanomaterial (Maynard 2011). On 18 October 2011, the European 

Commission recommended the following definition for a nanomaterial: “a natural, 

incidental or manufactured material containing particles, in an unbound state or as an 

aggregate or as an agglomerate and where, for 50% or more of the particles in the number 

size distribution, one or more external dimensions is in the size range 1 nm – 100 nm” 

(European Union 2011). The term nanomaterials includes nano-objects (two dimensions 

less than 100 nanometer) and nanoparticles (three dimensions of 100 nanometer or smaller), 

but also fullerenes, graphene flakes and single wall carbon nanotubes with one or more 

dimensions below 1 nm (the Woodrow Wilson institute; Wijnhoven et al. 2010). 

Although nanotechnology is said to have enormous potential to change society and daily 

life as we know it, it is just beginning to deliver on its promises. The number of products 

containing engineered nanomaterials is steadily growing and for the near future a further 

increase is expected (Gottschalk and Nowack 2011). From 2006 to 2011, the number of 

listed consumer products containing engineered nanomaterials increased worldwide from 

212 to 1317 (the Woodrow Wilson institute). For the European market, the number of 

consumer products with a ‘nanoclaim’ (the claim that the product contains engineered 

nanomaterials), increased from 143 in 2007 to 858 in 2010 (Wijnhoven et al. 2010). The 
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type of products listed are diverse and include sunscreens, shampoos, toothpastes, vitamin 

sprays, sport-rackets, golf bats, clothes, food packaging and even food products, such as 

coffee creamer and instant noodles (Dekkers et al. 2011; the Woodrow Wilson institute; 

Wijnhoven et al. 2010). Apart from consumer products, engineered nanomaterials are also 

being used and studied for medical applications, such as drug delivery, bioseparation, 

wound dressing, contraceptive devices, coating of surgical instruments and orthopedic 

prostheses, nanorobots for surgery, imaging with nanoparticle contrast materials and 

nanobiosensors (Chen and Schluesener 2008; Ito et al. 2005; Jain 2008). Other fields where 

nanotechnology is used and tested are soil remediation (Andreescu et al. 2009; Tratnyek 

and Johnson 2006), environmental monitoring (Rogers 2006; Andreescu et al. 2009), 

energy generation and storage (Khodadadi and Hosseinizadeh 2007; Arico et al. 2005; 

Vaseashta and Mihailescu 2008) and drinking- and waste water-treatment (Savage and 

Diallo 2005; Vaseashta and Mihailescu 2008). By 2014, it is expected that 15% of the total 

global output of manufactured goods will have incorporated nanotechnology (Pilkington et 

al. 2009). 

 

Hazard considerations 

However, the same characteristics which make engineered nanomaterials useful in many 

products, such as chemical reactivity and persistence, cause concern about their potential 

adverse effects on humans (Rushton et al. 2010; Warheit et al. 2008). To examine the 

probability that engineered nanomaterials cause adverse effects to human health, proper 

risk assessments are essential (Hagens et al. 2007; Klaine et al. 2008; Navarro et al. 2008a; 

Tiede et al. 2009). The risk of a compound depends on the exposure and the potential to 

cause harm (the hazard) to an organism (Klaassen and Watkins 2003). The expected 

exposure routes associated with engineered nanomaterial production and use, which arise as 

a consequence of their diverse applications, include inhalation, ingestion injection and 

dermal routes (Casals et al. 2008; Oberdörster et al. 2005; Stone et al. 2007; Stebounova et 

al. 2011). Environmental exposure of humans through inhalation of nanoparticles 

(previously called ultrafine particles) associated with health effects has been studied most 

and started already more than twenty years ago (Oberdörster et al. 2007). Higher levels of 
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ultrafine particles (10 to 100 nm) were noted in urban areas compared with rural areas and 

exposure to these ultrafine particles was positively associated with symptoms of respiratory 

and cardiovascular diseases and even increased mortality (Brand et al. 1991; Clancy et al. 

2002; Dockery et al. 1993; Donaldson and Stone 2003; Peters et al. 1997; Pope et al. 1991; 

Renwick et al. 2004; Stone et al. 2007). 

These air pollution studies have contributed to the understanding of nanoparticle exposure 

and hazards (Oberdörster et al. 2005). In the last few years, research has resulted in a 

considerable amount of information on the hazards of nanoparticles to mammals (including 

humans), proceeding from toxicity studies using mammalian cells in vitro and as well as in 

vivo studies with different mammals (Ariano et al. 2011; Bhattacharjee et al. 2010; Fujita et 

al. 2009; Hansen et al. 2008; Hussain et al. 2005; Shvedova et al. 2005). Overall, the 

studies demonstrated that nanoparticles can enter cells by diffusing through cell 

membranes, but also by active uptake, such as endocytosis (Barillet et al. 2010; 

Bhattacharjee et al. 2011; Johnston et al. 2010). Within cells, nanoparticles may accumulate 

and cause toxicity (Bullard-Dillard et al. 1996). Many studies have demonstrated the 

formation of reactive oxygen species (ROS) (Barillet et al. 2010; Bhattacharjee et al. 2010; 

Foldbjerg et al. 2009; Hsin et al. 2008; Li et al. 2008; Park et al. 2011). Intracellular 

accumulation of ROS may either come from direct ROS production on the surface of 

nanoparticles, from indirect generation of ROS in cells due to interruption of the 

mitochondrial electron transport chain, or from destabilization of cellular ROS elimination 

pathways (AshaRani et al. 2008; Bhattacharjee et al. 2011; Hsin et al. 2008; Li et al. 2008; 

Ma et al. 2011; Pan et al. 2009). Other toxic effects associated with nanoparticle exposure 

and often associated with the ROS formation, are damage to membrane integrity, 

inflammation, DNA damage, perturbation of cellular calcium homeostasis and apoptosis 

(Ariano et al. 2011; Arora et al. 2008; Green and Howman 2005; Park et al. 2011; Xia et al. 

2008; Zhao et al. 2011). 

 

Nanoparticles in the environment 

As the toxicity data obtained in mammalian test systems suggest that nanoparticles may 

affect human health, the question also arises if engineered nanoparticles have the potential 

http://www.sciencedirect.com/science/article/pii/S0378427410016012#bib0110
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to become hazardous pollutants affecting the environment (Farré et al. 2011; Klaine et al. 

2008). Due to the steady increase of production and use of engineered nanoparticles, 

discharge into the environment (intentionally or unintentionally) during production, 

transport, use and disposal is inevitable (Gottschalk and Nowack 2011; Lin et al. 2010; 

Oberdörster et al. 2005), Therefore the environmental discharge, exposure and effects are 

becoming an increasing concern and need to be addressed (Klaine et al. 2008). 

Ecotoxicology of engineered nanoparticles (nanoecotoxicology) is not in its infancy 

anymore, but still has an explorative character (Nowack 2009; Kahru and Dubourguier 

2010). The risk of a substance depends both on exposure and hazards. For engineered 

nanoparticles there is little knowledge about exposure, as the real concentrations of these 

particles present in the environment are hardly characterized (Gottschalk and Nowack 

2011; Handy et al. 2008a; Paterson et al. 2011; Vonk et al. 2009). It is not yet possible to 

monitor engineered nanoparticle concentrations in the environment, due to the lack of 

standard analytical methods for the analysis of environmentally relevant concentrations 

(Handy et al. 2008a; Nowack 2009; Paterson et al. 2011; Tiede et al. 2008). At the moment 

only few studies report on detecting engineered nanoparticle discharge into the environment 

(Farré et al. 2010; Hsu and Chein 2007; Kaegi et al. 2008; Kiser et al. 2009), investigating 

engineered nanoparticle release from paints used on exterior surfaces into waste waters 

(Kaegi et al. 2008) or engineered nanoparticle concentrations and fate in waste water 

treatment plants (Farré et al. 2010; Hsu and Chein 2007; Kiser et al. 2009;). The 

environmental samples in these studies were analysed using electron microscopy 

(transmission electron microscopy (TEM) and scanning electron microscopy (SEM)) 

mostly in combination with electron dispersive X-ray microanalysis (EDX), inductively 

coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-

MS), and liquid chromatography–quadrupole linear ion trap–mass spectrometry (LC–

QqLIT–MS). Limitations of these studies are that they only represent a small part of the 

potential environmental release situations and products, and are often not repeated enough 

to get a good statistical evaluation. Furthermore, a combination of methods is needed, 

which makes analysis expensive and the interpretation difficult. Therefore, these 

experimental methods used are often not suitable for large scale measurements of 
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environmental concentrations of engineered nanoparticles (Gottschalk and Nowack 2011). 

Even though interpretation of these studies on engineered nanoparticles discharge and other 

studies on exposure modelling should be treated cautiously, these studies indicate that 

increasing concentrations of engineered nanoparticles are present in the environment 

(Gottschalk and Nowack 2011; Mueller and Nowack 2008). Predicted environmental 

concentrations of engineered nanoparticles approach the milligram per kilogram level (0.5 

mg/kg soil for TiO2 nanoparticles in soil treated with sludge from wastewater treatment 

plants; Gottschalk et al. 2009). 

 

Once in the environment, engineered nanoparticles can go through different behavioural 

changes, including aggregation, adsorption and dissolution (Farré et al. 2011; Klaine et al. 

2008; Lin et al. 2010; Paterson et al. 2011). Behaviour of engineered nanoparticles in the 

environment depends on their characteristics, among which are size (distribution), 

composition, possible contaminants, shape, zeta potential and photoactivation (Paterson et 

al. 2011; Vonk et al. 2009). Once released into the environment, the characteristics and thus 

the behaviour of engineered nanoparticles will be modified by parameters such as pH, ionic 

strength and natural organic matter (Handy et al. 2008b; Lin et al. 2010). Depending on 

their behaviour, engineered nanoparticles may interact with chemicals, macromolecules, 

other nanoparticles and organisms in the environment in different ways. Animals may be 

exposed to engineered nanoparticles via skin contact, oral uptake through the 

gastrointestinal tract or through inhalation (Fujita et al. 2009; Handy et al. 2008b; Klaassen 

and Watkins 2003; Klaine et al. 2008; Scott-Fordsmand et al. 2008a; Shvedova et al. 2008; 

Smith et al. 2007; van Ravenzwaay et al. 2009). 

 

So far, nanoecotoxicological research has focussed mostly on aquatic test organisms, 

including water fleas (Daphnia magna) and various species of algae and fish (Fabrega et al. 

2011; Kahru and Dubourguier 2010; Navarro et al. 2008b). Compared with studies on the 

possible adverse effects of engineered nanoparticles in aquatic test organisms, effects on 

soil organisms were less frequently included in environmental hazard identification studies 

(Crane et al. 2008; Handy et al. 2008c; Shoults-Wilson et al. 2011a). However, engineered 
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nanoparticles may accumulate in soils through the application of sewage sludge, accidental 

spills, deposition from the air, agrochemicals or soil remediation (Cornelis et al. 2010). 

Furthermore, soil has been indicated as a sink for many (conventional) pollutants and 

therefore, long-term exposure of soil organisms is plausible (Rodriguez-Castellanos and 

Sanchez-Hernandez 2007). These perceptions make soil organisms a target to be taken into 

account. And more recently, attention for the possible adverse effects of engineered 

nanoparticles on soil organisms is increasing. 

 

Aim of the thesis study 

Given the need for better characterization of hazards of engineered nanoparticles to the 

environment and soil organisms in particular, the aim of the present thesis was to 

investigate effects of nanoparticle exposure on the earthworm Lumbricus rubellus, as a 

model organism for soil ecotoxicology, and to contribute to the development of effect 

markers for engineered nanoparticle exposure in this model. 

The following sections present in some more detail the model system selected, endpoints of 

interest and the nanoparticles chosen for the studies described in the subsequent chapters of 

the present thesis. 

 

Model organism: the earthworm 

Earthworms (from the Lumbricidae family) were selected as one of the key indicator 

organisms for ecotoxicological testing of industrial chemicals by organisations dealing with 

environmental pollution and pesticides, including the European Community, the global 

Organization for Economic Co-operation and Development (OECD) and the Food and 

Agriculture Organization of the United Nations (FAO) (Edwards and Bater 1992). At 

present, earthworms are one of the most common organisms used in soil toxicity testing 

(Spurgeon et al. 2003; Rodriguez-Castellanos and Sanchez-Hernandez 2007). Earthworms 

are excellent subjects for toxicological research, for several reasons. One reason is that 

working with these animals is relatively easy, because common expertise about how to 

handle them is increasing, standardized guidelines have been developed, identification keys 
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are available and there is a vast and growing body of knowledge on their biology and 

ecology (Spurgeon et al. 2003; Römbke et al. 2005). A second reason is that there are few 

ethical objections to the use of these non-controversial experimental organisms (Römbke et 

al. 2005; Stenersen et al. 1992). Earthworms are also excellent subjects for ecotoxicological 

research, because of their different ways of potential exposure. Earthworms are 

continuously exposed both via their exterior epidermis, but also via their intestinal tract, 

because they ingest soil (Sanchez-Hernandez et al. 2006; Vijver et al. 2003). In addition, in 

the soil, earthworms are in contact with both the aqueous and the solid phase of the 

substrate (Römbke et al. 2005). Their reactions to exposure are detectable at various levels 

of biological organisation varying from gene expression at the cellular level, to population 

dynamics (Spurgeon et al. 2004; Stenersen et al. 1992). Furthermore, although the 

complexity of earthworms is low compared with vertebrates, they have highly 

differentiated organs and tissues, and possess an immune system that is comparable to that 

of vertebrates (Chen et al. 1991; Stenersen et al. 1992). In addition, earthworms are the 

common prey of many vertebrates. Therefore, they play a key role in the biomagnification 

process of several soil pollutants and in the occurrence of indirect effects of soil pollution 

on terrestrial vertebrates (Rodriguez-Castellanos and Sanchez-Hernandez 2007; 

Roodbergen et al. 2008). 

The earthworm species Eisenia fetida and Eisenia andrei, from the family Lumbricidae, are 

the model species used in many studies and the species for which the OECD guidelines are 

designed (OECD 207:1984; OECD 222: 2004). These species are recommended because of 

their rapid life cycle and ease of culturing in laboratories (Edwards and Bohlen 1996). 

However, these are not the ideal species for extrapolation of laboratory data to field 

conditions, because these species are limited to sites rich in organic matter, such as compost 

and manure (Ma 1984; Tiunov et al. 2006; Lapied et al. 2010) and generally less sensitive 

to chemical exposure through the soil, compared with other Lumbricidae species (Dean-

Ross 1983; Frampton et al. 2006; Ma 1984; Ma and Bodt 1993). For the studies described 

in the present thesis, another earthworm species from the family Lumbricidae was selected, 

e.g. L. rubellus. This is an epi-endogeic and abundant earthworm species, found in 
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temperate regions all over the world (Frampton et al. 2006; Ma and Bodt 1993; Sims and 

Gerard 1985; Tiunov et al. 2006). 

 

The endpoints of interest 

In this thesis, endpoints at different levels of biological organization were studied. At the 

individual level, mortality, growth and reproduction were measured and these were used to 

model population growth rate and composition (Figure 1). This integration of individual 

effects to population level consequences makes it possible to predict population behaviour 

under field conditions, which is essential for environmental risk assessment (Klok and De 

Roos 1996; Klok et al. 2006). However, measuring stress responses at just one level of 

biological organization yields little insight into the mode of action of the effects (Bundy et 

al. 2008; Heckmann et al. 2008; Rodriguez-Castellanos and Sanchez-Hernandez 2007; 

Spurgeon et al. 2008). Therefore, effect markers at lower levels of biological organization, 

e.g. at tissue, cellular and molecular levels, were used to improve understanding of the 

hazards and risks of nanoparticle exposure (Figure 1). In the following sections, the 

endpoints studied at the different levels are discussed in more detail.  

 

Endpoints at gene expression level 

Profiles of proteins, metabolites and gene expression can demonstrate rapid and sensitive 

responses of an organism to contaminant exposure, which has been validated for 

earthworms (Bundy et al. 2008; Burgos et al. 2005; Kuperman et al. 2003; Spurgeon et al. 

2004; Wang et al. 2010). For the research discussed in the present thesis, effects on gene 

expression were assessed. Gene expression research in ecotoxicology compares mRNA 

levels for selected genes or complete gene sequences and can be used to assess effects of 

exposure to environmental pollutants, including nanoparticles. Altered mRNA levels for 

certain genes may indicate specific mechanistic pathways of toxicity and possibly 

adaptation, and often precedes effects found in functional parameters at the cellular level, in 

tissues and on whole organisms (Burgos et al. 2005; Owen et al. 2008; Snell et al. 2003; 

Stürzenbaum et al. 1998a). Earthworms of the Lumbricidae family have been used for gene 

expression alteration investigations after exposure to toxicants, mostly to heavy metals, in 
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several studies (Burgos et al. 2005; Homa et al. 2005; Owen et al. 2008; Ricketts et al. 

2004; Spurgeon et al. 2004; Stürzenbaum et al. 1998b). Within these studies, alterations 

were studied for effects on gene expression for the functioning of proteins for detoxification 

(such as metallothionein and lysosomal glycoprotein), general and oxidative stress 

(including heat shock protein 70 (HSP70) and glutathione S-transferase (GST)) and 

reproduction (annetocin). 

 

Figure 1. Schematic overview of the endpoints studied in the present thesis, at different levels of biological 

organization, which provides the possibility to study toxic mode of action at lower levels, as well as exemplify 

more about the ecological relevance of demonstrated effects, using the endpoints at higher levels. 

 

Endpoints at cellular level 

Using in vitro models, a wide variety of endpoints may be employed to study the cellular 

effects of nanoparticles. Endpoints studied and shown to be affected by nanoparticle 

exposure include intracellular production of ROS, disturbance of the mitochondrial 

membrane potential, reduction in cellular ATP levels, increased cytoplasmic calcium levels, 

induction of apoptosis, impairment of cell proliferation and reduced viability (Bhattacharjee 

et al. 2011; Pan et al. 2009; Park et al. 2011; Schaeublin et al 2011; Xia et al. 2008). 

Cellular models have also been used to study endpoints related to the immune system 

specifically, such as production of cytokines and changes in phagocytic activity 
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(Bhattacharjee et al. 2011; Nguyen et al. 2012). Since immune cells deal with invasive 

particles, including bacteria, viruses and nanoparticles, these cells may be a specific target 

for nanoparticle toxicity. For the immune system of earthworms, the free circulating 

immune cells present in the coelomic fluid, called coelomocytes, play an important role 

(Hayashi et al. 2012; Stein et al. 1977). The earthworm phagocytic assay, using such 

coelomocytes, may be considered equivalent to phagocytic assays using vertebrate cells, 

because phagocytosis is phylogenetically conserved within the animal kingdom as a first-

line non-specific immune defence against microbial invaders (Burch et al. 1999; Fournier et 

al. 2000). Coelomocytes have already been used in several ecotoxicology studies to 

demonstrate effects of conventional toxic compounds, and these studies demonstrated that 

the model provides a simple, rapid and sensitive tool to assess immunotoxicological 

hazards of environmental exposure at the cellular level (Adamowicz 2005; Bilej et al. 1990; 

Bilej et al. 1992; Brousseau et al. 1997; Burch et al. 1999; Engelmann et al. 2005; 

Massicotte et al. 2004; Ville et al. 1995). 

 

Endpoints at tissue level 

Histology is the study of cells, tissues, and organs as seen with a microscope (Sharma and 

Satyanarayan 2011). Histological changes in the tissues can be used to determine 

modifications and damaging effects on tissues and cells, caused by prior or on-going 

exposure to contaminants (Muthukaruppan et al. 2005; Sharma and Satyanarayan 2011). 

The changes observed depend on the exposure and on the ability of the organisms to repair 

the injury (Muthukaruppan et al. 2005). Histological observations of tissues and cells are 

valuable tools to evaluate toxic effects of contaminants, which have been illustrated in 

several ecotoxicological studies with different species of Lumbricidae earthworms (Amaral 

et al. 2006; Amaral and Rodrigues 2005; Fischer and Molnar 1992; Giovanetti et al. 2010; 

Kiliç 2011; Morgan and Turner 2005; Muthukaruppan and Paramasamy 2010). 

 

Endpoints at individual level 

The most generally used effect markers in ecotoxicological studies with earthworms are 

survival, growth and reproduction. These endpoints are broadly accepted as 
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ecotoxicological endpoints, because they have been demonstrated as reliable and sensitive 

indicators of toxicity (Roh et al. 2007). There are two OECD guidelines for 

ecotoxicological studies with earthworms. The first and oldest is the acute toxicity test, 

OECD207 (OECD 1984), assessing survival only. The second is the four week 

reproduction test, OECD222 (OECD 2004), which also includes observations on growth, 

cocoon production and hatchability. Survival is a less sensitive endpoint and from an 

ecological point of view less relevant, compared to growth and reproduction (van Gestel et 

al. 1992). Therefore the four week reproduction test was used in this study. The offspring of 

the earthworms were also exposed and observed until adulthood, considering the potential 

prolonged availability of nanoparticles and the potentially higher sensitivity of juveniles 

compared with adults for exposure (Booth and O’Halloran 2001; Nielsen et al. 2008; 

Widarto et al. 2004). 

 

Endpoints at population level  

To assess the ecological impact of nanoparticle exposure, consequences at the population 

level may be more relevant than effects observed at the individual level and may thus be 

better predictors of hazards that nanoparticle exposure may pose to earthworm populations 

under field conditions (Klok et al. 2006; Widarto et al. 2004). For L. rubellus earthworms, 

observations made at the organismal level (on survival, growth and cocoon production) 

have been used to demonstrate effects of heavy metal and pesticide exposure on growth and 

development of earthworm populations in the field, with various population models 

(Baveco and de Roos 1996; Klok et al. 2006; Spurgeon et al. 2003). In the present study, a 

continuous-time life-history model (Baveco and De Roos, 1996; De Roos, 2008) was used 

to integrate effects of nanoparticle exposure on organismal endpoints into effects on 

population growth rate and stage distribution, i.e. the composition of the population in the 

different life stages of cocoon, juvenile, subadult and adult. 

 

The nanoparticles tested 

The nanoparticles used in the in vivo and most in vitro experiments of the present thesis are 

from the category of the carbon and silver nanoparticles. These two categories of 
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nanoparticles were selected because they are much employed in consumer products and 

investigated for various applications (Gelderman et al. 2008; Klaine et al. 2008; Stone et al. 

2010; the Woodrow Wilson Institute). 

 

Carbon nanoparticles 

Carbon nanoparticles can originate from natural origin or (intentional and unintentional) 

anthropogenic sources. Exposure of organisms to carbon nanoparticles with a natural origin 

can occur due to volcano eruptions and forest fires, and it has taken place since organisms 

live on the earth (Bastús et al. 2008). Exposure to carbon nanoparticles has increased over 

the last century due to anthropogenic sources, including the large scale use of internal 

combustion engines and, later on, the intentional production of engineered carbon 

nanoparticles for consumer products and medical applications (Gelderman et al. 2008; the 

Woodrow Wilson institute). The carbon nanoparticle studied in the present thesis is the 

fullerene C60, which has a size of approximately 0.7 nm (Goel et al. 2004). As pristine C60 

is extremely insoluble in water and very stable, soils are likely to serve as a sink for C60 (Li 

and Alvarez 2011; Nielsen et al. 2008). In soil, these nanoparticles are expected to form 

clusters together (agglomerates and/or aggregates) and to bind to compounds present in the 

soil, including clay and organic matter, as shown in figure 2 (Ben-Moshe et al. 2010; Brant 

et al. 2005; Chen and Elimelech 2006). 

At the time the present thesis study started, one study on earthworms exposed to 

nanoparticles was published, by Scott-Fordsmand et al. (2008a). This study demonstrated 

effects of C60, applied through the food, on the reproduction of the earthworm E. veneta. 

During the last four years, only one other ecotoxicology study on effects of C60 exposure 

has been conducted with earthworms (see table 1). Apart from effect studies, a 

bioaccumulation study was performed by Li et al. (2010), which demonstrated the 

bioaccumulation of (radiolabelled) C60 added to the soil by E. fetida earthworms. 
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Figure 2. Schematic overview of the behaviour of C60 in the soil, with clustering of the single particles (nC60) and 

the binding of single particles (C60) and nC60 to compounds present in the soil. 

 

Table 1. Studies demonstrating toxic effects of C60 nanoparticle exposure on earthworms. The exposure is 

presented as nominal concentrations, added to food or soil. Reproduction was quantified as the cocoon production, 

and the effects are calculated as compared with control (100%). 

Species Exposure Effect Reference 

E. veneta 1 g/kg food   ↓   reproduction   (to 22%) 
Scott-Fordsmand et al. 2008a  

E. fetida 2 and 10 g/kg soil 
No avoidance of the C60 

amended soil 

Li and Alvarez 2011 

  5 to 50 g/kg soil 
↓   reproduction    (to 40%) 

at 50 g/kg soil 

  

 

Silver nanoparticles 

The second type of nanoparticles investigated in this study are silver nanoparticles (AgNP). 

The AgNP used in this thesis had an average size of 15 nm (as stated by the manufacturer) 

and have been chosen by the European Commission’s Joint Research Centre (JRC) as a 
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representative as-produced commercial nanomaterial. JRC is of the opinion that 

“representative nanomaterials are of utmost importance to be made available to the 

international scientific community to enable innovation and development of safe materials 

and products” (JRC 2011). 

Silver (Ag) is a rare but naturally occurring element. Exposure of Ag to humans and the 

environment has already taken place for many centuries, because Ag has been used in many 

applications, including photography, jewellery and as an antimicrobial (Atkins and Jones 

2000; Rai et al. 2009; Wijnhoven et al. 2009). These days Ag is applied to many products 

as AgNP, including personal care products and textiles. Several studies have investigated 

the release of AgNP from textiles during washing and demonstrated release of Ag (both 

ionic Ag and AgNP) up to 377 μg/g product per washing (Benn and Westerhoff 2008; Benn 

et al. 2010; Geranio et al. 2009). However, results depended on the type of AgNP, the 

product and the washing conditions (Gottschalk and Nowack 2011). Due to the use of 

AgNP in textiles and other consumer products, wastewater and eventually sewage sludge 

are likely places for AgNP to be found (Cornelis et al. 2010; Mitrano et al. 2012). Sewage 

sludge application may be one of the ways AgNP is discharged to the soil. AgNP may be 

present in the soil as single particles, dissolve to silver ions or cluster together, and all these 

forms may bind to compounds present in the soil (Figure 3; Stebounova et al. 2011; 

Tourinho et al. 2012). Conditions under which these nanoparticles dissolve or cluster and 

the extent to which these changes occur, depend on the characteristics of the nanoparticles, 

including size, coating, surface charge, possible contaminants and shape (Coutris et al. 

2012; Park et al. 2011; Vonk et al. 2009). In addition, the type of soil is an important factor 

influencing nanoparticle behaviour and therewith toxicity (Cornelis et al. 2010; Shoults-

Wilson et al. 2011a). 
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Figure 3. Schematic overview of the behaviour of silver nanoparticles (AgNP) in the soil, showing potential 

clustering and dissolution of AgNP, and the binding of these Ag forms to soil compounds (including organic 

matter, chloride and sulphide). 

 

The mechanisms underlying the toxicity of AgNP have not been fully elucidated, but there 

are indications that the toxicity not only depends on ionic Ag, but also on nanoparticle 

specific effects (Demir et al. 2011; Hayashi et al. 2012; Kawata et al. 2009; Park et al. 

2011). A few studies have indicated that bioaccumulation of AgNP is low in earthworms 

(Coutris et al. 2012; Shoults-Wilson et al. 2011a, 2011c). However, toxic effects have been 

observed in earthworms exposed to AgNP (Table 2). 
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Table 2. Toxic effects observed in earthworms (Lumbricus terrestris and E. fetida) after exposure to AgNP, which 

were uncoated, colloid or coated with polyvinyl pyrolidone (PVP) or oleic acid (OA). Reproduction was 

quantified as cocoon production of the earthworms. The exposure is given as nominal concentrations and the % 

effects are compared with the control (=100%). 

Species Exposure Effect Reference 

L. terrestris 8.8 nm; colloid 
↑ apoptotic activity (to 500%) from 4 
mg/kg Lapied et al. 2010  

 
0.4 to 8 mg/kg soil 

  

 
20 nm; uncoated 

↑ apoptotic activity (to 400%) at 100 

mg/kg  

 
1 to 100 mg/kg soil 

  

    

E. fetida 10 nm; PVP-coated 
↓ reproduction (to 55%) at 1000 
mg/kg  

Shoults-Wilson et al. 
2011a 

 
10 to 1000 mg/kg soil 

  

 
30-50 nm; PVP-coated 

↓ reproduction (to 40%) from 1000 

mg/kg   

 
10 to 1000 mg/kg soil 

  

    

E. fetida 10 and 30-50 nm; PVP-coated Avoidance from 7 mg/kg 
Shoults-Wilson et al. 
2011b 

 
0.3 to 54 mg/kg soil 

  

    

E. fetida 30-50 nm; PVP-coated 
↓ reproduction (to 40%) from 1000 

mg/kg  

Shoults-Wilson et al. 

2011c 

 
10 to 1000 mg/kg soil 

  

 
30-50 nm; OA-coated 

↓ reproduction (to 40%) from 1000 
mg/kg   

 
10 to 1000 mg/kg soil 

  

    

E. fetida 30-50 nm; PVP-coated ↓ growth (to 73%) Heckmann et al. 2011a 

 
1000 mg/kg soil Total reproductive failure 

 

    

E. fetida 10 and 80 nm; OA-coated 
↓  enzymatic  activities  from  100 

mg/kg Hu et al. 2012 

  20 to 500 mg/kg soil     
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Outline of the thesis 

Given the need for better characterization of hazards of engineered nanoparticles to soil 

organisms, the present thesis investigated effects of nanoparticle exposure on the 

earthworm L. rubellus and contributed to the development of effect markers for engineered 

nanoparticle exposure in this model soil organism for soil ecotoxicological studies. This 

work is presented in six chapters. The present chapter 1 provides an introduction and 

background information on the work discussed in this thesis. In order to investigate effects 

of C60 exposure at the population level, Chapter 2 presents results from in vivo 

experiments in which earthworms were exposed to C60, spiked to the soil in different 

concentrations. From these experiments, individual endpoints were deployed to model 

population level effects. Chapter 3 and chapter 4 complement the observations made in 

chapter 2, studying cellular and molecular responses of earthworms to exposure to C60. 

These responses may inform on the toxic mechanisms of C60 exposure and may also 

contribute to the development of additional effect markers for C60 exposure. In chapter 3, 

histopathology and gene expression analysis of earthworms exposed in vivo to C60 were 

investigated. Chapter 4 presents results of experiments using immune cells (coelomocytes) 

extracted from earthworms and exposed in vitro to nanoparticles. This test system was used 

to study possible effects of C60 exposure on important cells for the immune response in 

earthworms. Chapter 5 describes similar experiments as presented in Chapter 2-4, but 

performed for AgNP. In vivo and in vitro experiments are discussed, exposing earthworms 

and coelomocytes to AgNP. Finally, chapter 6 discusses the findings described in the 

thesis and presents suggestions for future research. 
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Chapter 2 

Effects of C60 nanoparticle exposure on 

earthworms (Lumbricus rubellus) and 

implications for population dynamics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: 

MJC van der Ploeg, JM Baveco, A van der Hout, R Bakker, IMCM Rietjens, NW van den 

Brink. 2011. Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and 

implications for population dynamics. Environmental Pollution 159: 198-203. 
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Abstract 

Effects of C60 nanoparticles (nominal concentrations 0, 15.4 and 154 mg/kg soil) on 

mortality, growth and reproduction of Lumbricus rubellus earthworms were assessed. C60 

exposure had a significant effect on cocoon production, juvenile growth rate and mortality. 

These endpoints were used to model effects on the population level. This demonstrated 

reduced population growth rate with increasing C60 concentrations. Furthermore, a shift in 

stage structure was shown for C60 exposed populations, i.e. a larger proportion of juveniles. 

This result implies that the lower juvenile growth rate due to exposure to C60 resulted in a 

larger proportion of juveniles, despite increased mortality among juveniles. Overall, this 

study indicates that C60 exposure may seriously affect earthworm populations. Furthermore, 

it was demonstrated that juveniles were more sensitive to C60 exposure than adults. 
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Introduction 

The production and use of nanoparticles, such as fullerenes and quantum dots, have 

increased for several decades and are expected to increase dramatically in the near future 

(Navarro et al. 2008a; Nowack and Bucheli 2007). Therefore, exposure of humans and the 

environment to these particles seems inevitable (Handy et al. 2008c) and evaluation of 

potential impact of engineered nanoparticles on human and environmental health requires 

attention (Baun et al. 2008; Nel et al. 2006; Nowack and Bucheli 2007; Scott-Fordsmand et 

al. 2008a; Usenko et al. 2008). 

In spite of their increased use and development for several decades (Navarro et al. 2008a), 

interest in the possible negative effects of nanoparticles was only instigated a decade ago 

(Kamat et al. 1998; Li et al. 1996; Sera et al. 1996; Stone et al. 1998). At present, possible 

hazards and risks are still mostly unknown (Baun et al. 2008; Handy et al. 2008b). So far, 

environmental hazards of nanoparticles have mainly been studied in aquatic organisms 

(Baun et al. 2008; Handy et al. 2008b; Isaacson et al. 2007; Moore 2006; Oberdörster 2004; 

Oberdörster et al. 2006; Smith et al. 2007; Usenko et al. 2008; Zhu et al. 2006) and 

relatively little is known about possible effects on soil organisms and ecosystems (Handy et 

al. 2008a; Navarro et al. 2008a;  Scott-Fordsmand et al. 2008a). However, well-functioning 

soils are the basis of terrestrial ecosystems and essential for the society. Since soil may 

serve as a sink for many pollutants (Rodriguez-Castellanos and Sanchez-Hernandez 2007), 

including nanoparticles, long-term exposure to nanoparticles is plausible. This demands 

detailed ecotoxicological studies on hazards and risks that nanoparticles may pose to soil 

organisms. Earthworms, abundant soil organisms, have been used in many conventional 

soil ecotoxicology studies, because they are in close contact with the soil and thus good 

indicators for risks of soil contaminants (Rodriguez-Castellanos and Sanchez-Hernandez 

2007; Spurgeon et al. 2003). 

The objective of the present study was to investigate the potential impacts of fullerene 

nanoparticles (C60) on earthworms. Effects of C60 exposure on growth, mortality and 

reproduction were studied during different life stages of Lumbricus rubellus (cocoon, 

juvenile, subadult and adult). These important individual endpoints for population 

dynamics (Baveco and De Roos 1996) were used in a continuous-time life-history model 

http://www.ncbi.nlm.nih.gov/pubmed/9839628
http://www.ncbi.nlm.nih.gov/pubmed/8895484
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(De Roos 2008). In this way, effects of C60 exposure on the individual endpoints could be 

integrated into effects on population growth rate and stage distribution, i.e. the development 

of the population in terms of composition and number of individuals. Consequences at the 

population level may be more relevant for ecological impact of C60 than endpoints at the 

individual level (Klok et al. 2006; Widarto et al. 2004) and may thus be better predictors of 

hazards that C60 exposure may pose to earthworm populations under field conditions. 

 

Materials and Methods  

Earthworms 

Adult (clitellated) individuals of L. rubellus were obtained from an uncontaminated 

location in the Netherlands (Nijkerkerveen). The earthworms ranged in weight from 1415 

to 1950 mg. Prior to the experiment, they were maintained for two weeks under constant 

conditions (24 hrs light, 15°C, 61% relative humidity) in uncontaminated soil, similar to the 

experimental soil. 

 

Soil preparation 

Experiments were performed using clean soil with 4.3% organic matter and soil pH was 5.0 

(Proefboerderij Kooijenburg, Marwijksoord, the Netherlands). A week before the start of 

the experiment, the soil was sifted through a 5 mm sieve and transferred to glass containers 

(650 gram per container). Containers were kept under the same conditions as during the 

acclimatisation period. 

C60 was obtained from SES Research (99.5+%, Houston USA). Metal impurities in the C60 

were measured by ICP-AES (Table 1), after destruction with aqua regia (NEN 6465, 1992). 

As the maximum additional concentrations of metals from C60 when added to the soil, were 

far below threshold levels (Abdul Rida 1996; Klok et al. 2006; Scott-Fordsmand et al. 

2008a), potential side effects of metals were not considered in further evaluation of the 

data. 
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Table 1. Measured concentrations of different metals detected in C60 powder, and concentrations added to the soil 

at an exposure level of 154 mg C60/kg soil. 

Compound Fe Ni Zn Cd Co Cu Pb 

mg/kg C60 14.3 0.02 1.5 0.0 0.0 1.2 0.05 

mg/kg soil 2.2 0.002 0.2 0.0 0.0 0.2 0.008 

 

To obtain a stable C60 stock solution, C60 was dissolved in an aqueous soil extract. This 

extract was obtained by stirring control soil in ultrapure water (0.4 g/mL) for one hour and 

then filtering it (Whatman filters type 597, Fisher Scientific). After filtering, C60 was added 

to a part of the extract, to a final nominal concentration of 2 g/L. The suspension thus 

obtained was stirred for three days, in order to acquire an even suspension. Nominal soil 

concentrations were set at 0, 15.4 and 154 mg C60/kg soil (dry weight) and a moisture 

content of 17.2% (dry weight). Concentrations were selected based on Scott-Fordsmand et 

al. (2008a). For the control (0 mg/kg) and the high exposure (154 mg/kg), 50 mL of soil 

suspension without and with C60, respectively, was added to every container with 650 g 

soil. For the 15.4 mg/kg soil exposure, 5 mL suspension with and 45 mL suspension 

without C60 was added to the soil. Subsequently, the soil was mixed thoroughly. Worms 

were added immediately after preparation of the soil. 

 

Characterisation of actual exposure is important in ecotoxicology (Spurgeon et al. 2003; 

Scott-Fordsmand et al. 2008b). Therefore, in the present study, appearance and aggregation 

of C60 particles in the soil extract were characterised using transmission electron 

microscopy (TEM), and concentrations of C60 in the soil were determined by 

spectrophotometry. C60 nanoparticles were visualized by a TEM (JEOL JEM 1011) as well 

as a high resolution TEM (HRTEM; JEOL JEM 2100), operated at 60 kV and 200 kV, 

respectively. Samples were taken from freshly made stocks of ultrapure water with C60 and 

soil extract with and without C60. These samples were dropped on a 400 mesh copper 

Formvar/carbon grid and left to dry, before examination with the TEM or HRTEM. 

Spectrophotometry (Aquamate from Thermo Electron Corporation) was used to determine 

actual concentrations of C60, for the control and 154 mg C60/kg exposure soil. Per treatment 

five soil samples were collected. C60 was extracted from the soil using toluene and 
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concentrations were quantified spectrophotometrically (wavelength: 335 nm and extinction 

coefficient: 0.072 L/cm/mg; Bensasson et al. 1994; Çiçek et al. 2001). In earthworms it was 

not possible to quantify C60 concentrations due to interference of the matrix with the 

measurements. 

 

Experimental design 

Experiments were conducted conform ISO guidelines 11268-2 :1998, with minor 

modifications in exposure scenarios (see above) and use of another species (L. rubellus). 

Two experiments were carried out. The first experiment was conducted with adult 

earthworms and the second experiment was performed with offspring from the first 

experiment. To assess effects on growth rate at different life stages, experimental data on 

adult and juvenile growth were analyzed separately. 

  

Adult growth, mortality and reproduction  

This experiment consisted of three exposure levels, with nominal concentrations of 0 mg/kg 

(n = 8), 15.4 mg/kg (n = 6) and 154 mg/kg (n = 6). Each container housed five earthworms 

and the containers were considered to be the experimental units. At the start of the 

experiment the worms were weighted and randomly assigned to a container and treatment 

(weights did not differ significantly between treatments, α = 0.05). Every week the worms 

were fed dried alder leaves (Alnus glutinosa), from an uncontaminated location 

(Vossemeerdijk, Dronten, the Netherlands), ad libitum. Before placing the leaves on top of 

the soil, they were moistened with demineralised water for at least an hour. After four 

weeks, the experiment was terminated and the worms were counted and weighted again. 

The number of produced cocoons was determined per container by wet-sieving and hand-

sorting. 

 

Offspring growth and mortality 

Ten cocoons (if possible) were taken from each container and were incubated in a large 

Petri dish with soil of the corresponding treatment of their parent earthworms. After 
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hatching, juveniles were weighted and kept in a glass container with soil under the same 

exposure as their parents. Earthworms were sorted monthly from the soil over a period of 

326 days, to determine weight and life stage. They were considered subadult when the 

tubercula pubertatis was present, but before the clitellum had reached its full development. 

Clitellated worms were indicated as adults (Sims and Gerard 1985). 

 

Population model 

The population model is based on a simple Dynamic Energy Budget (DEB) model 

(Kooijman and Metz 1984). This DEB model assumes that a fixed fraction of the incoming 

energy is spend on respiration, for maintenance and growth, and the remainder is invested 

in reproduction. Under constant environmental conditions the age-dependent individual 

growth with age is defined by the DEB model as 

 

a

a ellll  )( bmm)(
 equation 1 

 

where size l(a) equals the weight to the power of one-third (mg
1/3

) of an individual of age a 

(in days), lm the maximum attainable size (mg
1/3

), lb the size (mg
1/3

) at hatching and γ the 

individual growth rate constant (mg
1/3

/mg
1/3

/day) (Klok and Roos 1996). 

 

Following the DEB model, reproduction is proportional to surface area (mg
2/3

) 

 

 2bmmm)( )( a

a elllrm   for 
ad)( ll a   equation 2 

 

with m(a) as the reproduction rate of an individual of age a (cocoons/day), rm the maximum 

reproduction rate (calculated from the number of cocoons/worm/day divided by (l(a))
2
). 

Maturation and reaching the subadult stage are assumed to be determined by size. Thus, lad 

is the size (mg
1/3

) at which individuals become mature. 
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In contrast to the experimental data, in which growth rate was analyzed for the different 

stages separately, for modelling purposes growth rate γ was calculated for the entire life of 

the earthworms, integrating the growth rates of the different life stages. For each container, 

a growth curve was obtained (more details are discussed in the supplementary data) and all 

curves were highly significant (p < 0.05). Growth rate γ was adjusted for the number of 

earthworms per container, because Faber et al. (2004) demonstrated under similar 

experimental conditions, that growth rate of earthworms correlates negatively with worm 

density. The reduction in growth rate due to worm density as determined by Faber et al. 

(2004), was used to adjust γ, with a density of 5 worms per container set as the reference. 

 

For the population parameters, averages and standard deviations were calculated per 

treatment group. These parameters were used in a continuous-time life-history model (De 

Roos 2008). Population growth rate was determined by solving Lotka’s integral equation: 

 




mA

ra daaFame
0

)()(1  equation 3 

 

in which r represents population growth rate, m(a) is the individual fecundity at age a (see 

above) and F(a) the survival probability up to age a.  

Survival function F(a) under natural conditions was derived from field data for a related 

species, Lumbricus terrestris (Lakhani and Satchell 1970), and scaled to the shorter lifespan 

of L. rubellus. Following the same procedure as Klok and De Roos (1996), we estimated 

stage-specific constant mortality rates (c, j, s, a, for cocoons, juveniles, subadults and 

adults, respectively) separately from the continuous survival curve. This enabled us to 

include additional toxicant-induced stage-specific mortality into the model, as derived from 

the experiments. This additional mortality was only included for the juvenile stage, because 

this was the only stage in which we found a significantly increased mortality in the high 

exposure group. 
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Under constant conditions, the population will grow with fixed rate r . The associated 

stable stage distribution is given by: 

 

)()( aFeaS r  equation 4 

 

in which S(a) represents the density of individuals with age a in the exponentially growing 

population relative to the density of newborn individuals (De Roos 2008). 

For the stage distribution this implies that fractions of cocoons, juveniles, subadults and 

adults are given by: 

 

 equation 5 
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Here 0, As, Aad and Am represent the duration of the cocoon stage, the age at becoming 

subadult and adult, and the maximum age, respectively. Note that these thresholds, except 

for the cocoon stage duration, are defined by size and can be determined by solving 

equation 1 for age at a specified size. 

 

All the parameters used for the different treatments are given in table 2. 
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Table 2. Input parameters for the population model are presented as mean values, with the individual growth rate 

constant γ in mg1/3/mg1/3/day, the maximum reproduction rate (rm) in cocoons/mg1/3/day and the duration of the 

cocoon stage (τ0) in days. The mean length at birth (Lb), the mean lengths at reaching subadulthood (Ls) and 

adulthood (Lad), and the estimated maximum length (Lm) are presented in mg1/3. The mortality chance per life stage 

(μc, μj, μs, μa) is given per day. The standard deviation is shown when this was required for the model. 

Parameter  
[C60] (mg/kg soil) 

0 15.4 154 

γ  0.011 ± 0.002 0.008 ± 0.002 0.011 ± 0.003 

Lm  12.8 ± 0.9 15.0 ± 1.4 13.3 ± 1.2 

Lb 3.2 ± 0.26 3.1 ± 0.28 2.8 ± 0.27 

rm 0.0016 ± 0.0008 0.00097 ± 0.0001 0.0011 ± 0.0004 

τ0  42 42 42 

Ls 8.3 8.8 8.7 

La 9.9 10.2 9.9 

μc 0.001 0.001 0.001 

μj 0.005 0.005 0.0074 

μs 0.003 0.003 0.003 

μa 0.002 0.002 0.002 

 

To estimate variances for population growth rate and stage distribution, we applied a Monte 

Carlo approach. For four of the estimated coefficients (, rm, lm and lb) we used the mean 

and standard deviation observed in the experiments to define probability density functions, 

assuming for each a Gaussian distribution. Coefficients were assumed to vary 

independently. For 1000 random values drawn for each coefficient, population growth rate 

and stable stage distribution were calculated. All calculations were performed using 

MathCad 14 (Parametric Technology Corporation 2007). 

 

Statistical analysis 

Differences in growth rate and reproduction between the three treatments were tested using 

ANOVA (α = 0.05), with Least Significant Differences (LSD) as post-hoc test (Burgers and 

Oude Voshaar 2010). Binomial testing was used to analyze differences between treatments 
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for juvenile mortality and for population stable stage distribution (Burgers and Oude 

Voshaar 2010). Since juvenile earthworms are relatively fast growing, an exponential 

growth curve was assumed for this life stage, while for adult earthworms the growth rate 

was assumed to be linear (Burgers and Oude Voshaar 2010). All statistics were conducted 

using GENstat (12
th

 Edition, VSN International Ltd.). 

 

Results 

Characterisation of exposure media 

The TEM images shown in figure 1 demonstrate that soilextract only does not contain C60 

aggregates (Fig. 1A), but these aggregates are present in the soilextract with C60 (Fig. 1B). 

C60 appears to form aggregates of 10-15 nm in size, in soilextract (Fig. 1B) as well as in 

demineralised water (Fig. 1C), and these aggregates form loose clusters with each other. 

The HRTEM image of soilextract with C60 (Fig. 1D) shows the crystal structure of the 

aggregated C60 nanoparticles, demonstrated for these particles in other studies as well 

(Fujita et al. 2009; Goel et al. 2004). This indicates that the structures visualized in figure 

1B and 1C indeed consist of C60. 

 

 

Figure 1. TEM images of soilextract without C60 (A) and with C60 (2 mg/mL) (B), and demineralised water with 

C60 (1 mg/mL freshly made stocks) (C). HRTEM image of the soilextract with C60 (D), showing the crystal 

structure of the C60 nanoparticles in the aggregates. 

 

Spectrophotometry was used to estimate concentrations of C60 in the soil. In the control soil 

a concentration of 6.6 ± 0.9 mg/kg soil (mean ± S.E.) was measured and in the high 

exposure soil (with nominal concentration of 154 mg C60/kg soil) the measured C60 
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concentration was 125.2 ± 3.3 mg/kg soil. We assume that the 6.6 mg C60/kg soil in the 

control soil (nominal C60 concentration of 0 mg/kg) is a natural background of unknown 

carbon particles. This could consist of C60 particles, but also of other carbon particles, 

because the method is not size selective. The measured concentration at the high exposure 

could then be adjusted to (125.2–6.6=) 118.6 mg/kg soil. Measured concentrations are in 

the range of the expected/nominal levels (with ~75% of nominal concentration for the 

measured high concentration), so we assume that nominal levels approach actual levels of 

C60. Furthermore, the small standard errors indicate that the C60  is well mixed through the 

soil. 

 

Adult mortality, growth rate and cocoon production 

No significant differences were observed between treatments for survival and growth rate 

of adult earthworms (Table 3), but cocoon production was significantly affected by C60 

exposure (p=0.011). Earthworms exposed to nominal C60 concentrations of 154 mg/kg soil 

produced significantly fewer cocoons than the control (~60% of control). Cocoon 

production of the earthworms in the group exposed to nominal C60 concentrations of 15.4 

mg/kg soil did not differ significantly from either the control or the high exposure group. 

 

Table 3. Average mortality (%/day), growth rate (mg/worm/day) and cocoon production (number of 

cocoons/worm/day) for adult L. rubellus earthworms in the different treatment groups, exposed for four weeks. 

Capitals A and B indicate significant differences within a column (α = 0.05). Mean values ± S.E.  

[C60] mg/kg soil Mortality  Growth rate Cocoon production N 

0 0.1 ± 0.09 A 12.8 ± 1.9 A 0.25 ± 0.01 A 8 

15.4 0.2 ± 0.24 A 11.4 ± 2.7 A 0.21 ± 0.02 AB 6 

154 0.1 ± 0.12 A 8.5 ± 3.8 A 0.15 ± 0.03 B 6 

 

Juvenile growth rate and mortality 

Mortality among juveniles exposed to nominal C60 concentrations of 154 mg/kg soil was 

significantly higher than the control group (p=0.002), while exposure to nominal C60 
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concentrations of 15.4 mg/kg soil did not significantly affect juvenile mortality (figure 2; 

p=0.363). 

 

Figure 2. Juvenile mortality (percentage dead juveniles of the total number of hatched juveniles) for L. rubellus 

earthworms per treatment. Capital A and B indicate significant differences (α = 0.05). Mean values ± S.E. 

 

Table 4 shows that exposure to nominal C60 concentrations of 15.4 mg/kg soil resulted in a 

significantly reduced growth rate for juveniles, compared to the control group. No 

significant difference was demonstrated between the growth rates of the juveniles exposed 

to nominal C60 concentrations of 154 mg/kg soil and the control.  

The size at which individuals developed from juvenile to subadult tended to increase with 

higher exposure level, but this effect was not significant (0 mg/kg: 8.5 ± 0.46 cm; 15.4 

mg/kg: 8.9 ± 0.66 cm; 154mg/kg: 9.0 ± 0.46 cm; mean ± S.E.). 

 

Table 4. Growth rate (R; within regression used: A+B*(RX)) for juvenile L. rubellus earthworms per treatment. 

Capitals (A or B) describe significant differences (α = 0.05). Mean values ± S.E. 

[C60] mg/kg soil Growth rate N 

0 1.007 ± 0.002 C 8 

5.4 0.998 ± 0.003 D 6 

154 1.007 ± 0.004 C 5 
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Population model 

The estimated coefficients for individual growth and development (Table 2), were used in 

the population model to calculate population growth rate and stage distribution per 

treatment. The modelled growth rate decreased significantly with increasing C60 

concentration (Figure 3). 

 

Figure 3. Modelled population growth rate (number of individuals/individual/week) per treatment for L. rubellus 

earthworms. Significant differences are shown as capital A, B and C (α = 0.05). Mean values ± S.E. 

 

For stage distribution of C60 exposed populations, the modelling results showed 

significantly higher percentages of individuals in the juvenile stage and lower percentages 

of subadults, compared to the control group (Table 5). 

 

Table 5. Modelled population stage distribution: percentages of individual L. rubellus earthworms per treatment 

group and life stage (cocoon stage not included). Significant differences within a column are presented as capitals 

A, B and C (α = 0.05). Mean values ± S.E. 

[C60] mg/kg soil Juvenile % Subadult % Adult % 

0 66 ± 0.3A 15 ± 0.1C 19 ± 0.3A 

15.4 71 ± 0.1C 10 ± 0.0B 19 ± 0.1A 

154 69 ± 0.3B 9.7 ± 0.1A 22 ± 0.3B 
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Discussion  

Exposure scenario 

An important issue when performing ecotoxicity experiments is the exposure scenario 

(Scott-Fordsmand et al. 2008b). For this scenario, the addition of the potential toxic 

compound to the soil is a significant aspect. Nanoparticles are generally applied to the soil 

in a suspension. Such a suspension can be produced by prolonged stirring of the 

nanoparticles in water, sonication of the nanoparticle solution or dissolving the 

nanoparticles in a carrier solvent, such as THF (Oberdörster 2004; Scott-Fordsmand et al. 

2008a; Zhu et al. 2006). However, these dissolving methods can have an effect on the 

toxicity of nanoparticles (Henry et al. 2007; Oberdörster et al. 2006; Spohn et al. 2009; Zhu 

et al. 2006). Furthermore, such exposure may not mimic ecologically relevant exposure 

scenarios. To avoid this possible drawback, we dissolved C60 in an aqueous solution 

containing extracted organic material from the experimental soil, before adding it to the 

soil. In this way, no additional compounds or co-solvents were required. 

Another aspect of the exposure scenario is characterization of the potential toxic compound 

in the soil. We characterized aggregation status and estimated particle size distribution of 

C60 in the soil using (HR-)TEM. As demonstrated in figure 1, the crystal structure 

characteristic for nanoparticles was only visible in the soil extract with C60 and not in the 

soil extract only. Also, soilextract with C60 nanoparticles appeared to contain similar 

nanoparticle aggregates as the solution of C60 in demineralised water (which contains no 

other particles than the C60 nanoparticles). These samples demonstrated C60 particles in 

aggregates within the size range of 10-15 nm and these tight aggregates appeared to form 

loose clusters with other C60 aggregates. When total C60 concentrations were measured in 

the soil, using spectrophotometry, this demonstrated that measured C60 concentrations in 

the high treatment group were in the same range as the nominal concentrations (with an 

extraction efficiency of ~75%). This indicates that nominal concentrations of C60 appeared 

to be similar to actual concentrations. 
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Experimental endpoints 

Adult cocoon production 

Cocoon production of adult earthworms decreased with increasing C60 concentrations 

(Table 3), which is consistent with a study by Scott-Fordsmand et al. (2008a). Although 

there were differences between the experimental methods of Scott-Fordsmand et al. (2008a) 

and our study, for example the use of a different earthworm species (Eisenia veneta) and a 

different exposure route of C60 (through food), effects on cocoon production were similar 

between the studies.  

 

Juvenile growth rate and mortality 

The severity of the effects of C60 on the juvenile earthworms increased with the exposure 

level. At the low exposure level non-lethal effects were visible on growth rates (Table 4), 

but at the high exposure level lethality increased significantly (Figure 2). Lower juvenile 

growth rate combined with an increased size needed to develop to subadult (demonstrated 

as a trend in the current study), leads to a higher fraction of the population remaining in the 

juvenile stage. At a nominal C60 exposure level of 154 mg/kg soil, juveniles demonstrated a 

similar growth rate as the control group, which was unexpected. However, this treatment 

group showed a high mortality level (~40%). Two hypotheses can be postulated for the 

mechanism that could overshadow possible effects on growth rate in the 154 mg/kg 

exposure group. The first hypothesis is that C60 exposure caused slow-growing juveniles to 

die, resulting in a selection towards individuals with a normal growth rate. A second 

hypothesis may be related to a density-dependent growth rate under the experimental 

conditions, which was demonstrated by Faber et al. (2004). Due to the induced mortality, 

density decreased for the 154 mg/kg soil treatment. Hence, earthworms that survived C60 

exposure could have had a density advantage. This latter hypothesis was assumed to be the 

most important mechanism and therefore the growth rates used in the population modelling 

were adjusted for the earthworm densities (see supplementary data). 
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Population model 

When applying the experimental data in the population model (with correction for 

density), the population growth rate was found to be reduced significantly with 

increasing C60 concentrations (figure 3). The model also demonstrated effects of C60 

exposure on the stage distribution of the populations, with increased percentages of 

C60 exposed individuals in the juvenile stage (Table 5). Experimental data on 

reduced juvenile growth rate (Table 4), combined with a longer length needed to 

reach subadulthood, confirm that exposed earthworms may stay longer in the 

juvenile stage. However, this effect is not detectable at the adult stage, likely due to 

a faster development through the subadult stage, as demonstrated by the smaller 

fraction of earthworms in this stage (Table 5). 

 

Juvenile sensitivity 

Both the individual and the modelled data demonstrate effects of C60 on the juvenile stage. 

Similar to these results, other studies using annelids have also demonstrated the juvenile 

stage as most sensitive to toxic compounds (Booth and O’Halloran 2001; Levin et al. 1996; 

Widarto et al. 2004). The studies of Booth and O’Halloran (2001) and Widarto et al. (2004) 

found that juvenile growth rate was more reduced than adult growth rate, upon exposure to 

pesticides and nonylphenol, respectively. These two studies and the study by Levin et al. 

(1996) also showed that time to maturity was affected by exposure to the toxic compounds.  

Responses of juveniles may predict long-term impact of exposure to toxic compounds on 

populations better than responses in adults (Booth and O’Halloran 2001), especially when 

effects demonstrated under laboratory conditions are extrapolated to the field situation. In 

the field, the lifespan of earthworms is generally shorter than under laboratory conditions 

(Edwards and Bohlen 1996), because earthworms are not only exposed to the studied toxic 

compound but also to other stress factors, including seasonal variation, predation, 

competition, parasites, water motion and other pollutants (Klok et al. 2006; Levin et al. 

2006). When the juvenile growth rate is reduced, this results in a prolonged juvenile stage 

and thus in shorter subadult and adult stages under field conditions. Some juveniles might 

not even reach adulthood within their lifespan (Klok and De Roos 1996). Lower number of 
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earthworms growing to adulthood in combination with reduced fertility, would then 

aggravate the negative effects of C60 on cocoon production. 

 

Conclusions 

This study shows that C60 exposure affects L. rubellus in a dose-dependent way, both at 

individual and at population level. Data at the individual level demonstrated reduced 

cocoon production and juvenile growth rate, and a higher juvenile mortality for the exposed 

earthworms. When these observed effects were extrapolated to the population level, this 

resulted in a lower growth rate and a stage distribution shift towards a larger proportion of 

juveniles, for C60 exposed populations. Hence, we conclude that exposure to C60 may pose a 

hazard to earthworm populations. The present study also suggests that earthworms in the 

juvenile stage represent a more sensitive target for long-term effects on populations than 

adult earthworms. 
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Supplementary data 

To obtain averages of the parameters for the population model per treatment, we used a 

Gompertz curve to describe the growth of the earthworms. This curve provided us with 

information about the rate constant (γ), maximum length (Lm) and weight at hatching (Lb) 
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for every container (Table S1). All regressions were (highly) significant, as is demonstrated 

by the Fprob in table S1 and is illustrated for two examples in figures S1A and S1B. 

 

Table S1: Per container γ, Lm, Lb and Fprob were obtained by fitting the data on a growth curve. 

pot # 
[C60]  γ estimated  γ adjusted  Lm Lb  

Fprob 
(mg/kg soil) (mg1/3/mg1/3/day) (mg1/3/mg1/3/day) (mg1/3) (mg1/3) 

1 0 0.01 0.014 9.79 3.25 < 0.001 

2 0 0.01 0.012 13.48 3.57 < 0.001 

3 0 0.013 0.012 12.04 2.78 < 0.001 

4 0 0.011 0.011 13.85 3.22 < 0.001 

7 0 0.009 0.007 13.22 3.32 < 0.001 

8 0 0.013 0.012 14.5 3.2 0.031 

9 15 0.012 0.009 14.85 2.73 < 0.001 

11 15 0.007 0.006 16.86 3.4 < 0.001 

13 15 0.009 0.008 14.96 3.01 < 0.001 

14 15 0.009 0.01 13.48 3.14 < 0.001 

15 154 0.009 0.007 14.12 3.06 < 0.001 

16 154 0.017 0.015 11.77 2.8 < 0.001 

17 154 0.013 0.012 13 2.88 < 0.001 

19 154 0.015 0.011 14.33 2.41 0.008 

 

 

Figure S1. Individual L. rubellus earthworms with measured data (black line) and modelled data (dotted line) from 

container 8 (A) and 16 (B), with length in mg1/3 plotted against age (# days after hatching). 
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Chapter 3 

C60 exposure induced tissue damage and 

gene expression alterations in the 

earthworm Lumbricus rubellus 
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Abstract 

Effects of C60 exposure (0, 15.4 or 154 mg/kg soil) on the earthworm Lumbricus rubellus 

were assessed at the tissue and molecular level, in two experiments. In the first experiment 

earthworms were exposed for four weeks, and in the second lifelong. In both experiments 

gene expression of heat shock protein 70 (HSP70) decreased. For catalase and glutathione-

S-transferase (GST) no significant trends in gene expression or enzyme activity were 

observed. Gene expression of coelomic cytolytic factor-1 (CCF-1) did not alter in 

earthworms exposed for four weeks, but was significantly down-regulated in the lifelong 

exposure. Histology of earthworms exposed to C60 in both experiments showed a damaged 

cuticle, with underlying pathologies of epidermis and muscles, as well as effects on the gut 

barrier. However, tissue repair was also observed in these earthworms. Overall, these data 

show that sub-lethal C60 exposure to earthworms via the soil affects gene expression and 

causes tissue pathologies. 
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Introduction 

The field of nanotechnology is rapidly expanding and carbon-based nanomaterials represent 

the second largest category of nanomaterials (second only to silver; as discussed in the 

Nanotechnology Project of the Woodrow Wilson International Centre for Scholars). 

Carbon-based nanomaterials, which include fullerenes, are used in health and fitness 

products, electronic goods, medical technology, and to encapsulate active ingredients for 

bioremediation (Cheng et al. 2004; Aitken et al. 2006). It is therefore inevitable that 

fullerenes, such as C60, will be released into the environment (Gottschalk et al. 2009). C60 

exposure can be toxic to animals (Handy et al. 2008a; Klaine et al. 2008; Kahru and 

Dubourguier 2010), including earthworms (Scott-Fordsmand et al. 2008a; Chapter 2). 

Environmental risk assessments typically use survival, growth and reproductive success to 

predict population level responses to chemicals (Roh et al. 2007). For earthworms, reduced 

survival, growth and reproduction have been described for C60 exposure in the soil (Scott-

Fordsmand et al. 2008a; Chapter 2), including their consequences for the population 

growth rate. However, effects of C60 exposure on earthworms below the whole organism 

level are much less clear and studies on the possible target tissues, biological processes as 

well as modes of action underlying the toxicity of these nanoparticles are needed. 

Research on the sub-lethal effects of C60 has been driven partly by the chemistry of C60, 

with a focus on the ability of C60 to generate reactive oxygen species (ROS) (Taylor and 

Walton 1993; Kamat et al. 2000). Evidence for the oxidative stress hypothesis arises from 

studies on mammalian cells exposed to C60, where antioxidants (such as ascorbic acid and 

alpha-tocopherol) protected against membrane damage and the activity of antioxidant 

enzymes (e.g., catalase and superoxide dismutase) was altered (Kamat et al. 2000; Usenko 

et al. 2008). Moreover, other mammalian studies demonstrate evidence of inflammatory 

responses (Fujita et al. 2009; Mühlfeld et al. 2008) and alterations of macrophage immune 

function (Hamilton et al. 2007), due to C60 exposure. However, toxic mechanisms and 

stress responses of earthworms to C60 exposure remain to be investigated. 

The overall aim of the present study was to investigate cellular and molecular responses of 

earthworms to C60 exposure, to complement the observations already made on survival, 

growth and reproduction (Chapter 2). The secondary objective was to contribute to the 
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development of effect markers for C60 exposure, by using a set of established effect markers 

which reflect the different levels of biological organisation in the earthworm and may also 

inform on the toxic mechanism of C60 exposure (Handy et al. 2002a; Heckmann et al. 

2008). At the molecular level, four specific effect markers were selected; heat shock 

protein 70 (HSP70) as a well-known effect marker of generic stress (van Straalen and 

Roelofs 2006), catalase and glutathione-S-transferase (GST) as effect markers for oxidative 

stress (Kohen and Nyska 2002), and coelomic cytolytic factor-1 (CCF-1) as an immune 

response effect marker (Olivares Fontt et al. 2002). At the cellular and tissue level, 

histological analyses were used to identify pathology and evidence of inflammation in the 

tissue. Finally, the molecular and tissue level effects were interpreted in the context of 

effects on mortality, growth and reproduction observed in the same experiments, as 

reported in chapter 2. 

 

Materials and Methods 

Soil preparations and C60 characterisation 

The earthworms investigated in this study are from the same experiments as described in 

chapter 2, where details about soil preparations and C60 characterisation are described. In 

short, the experiments were carried out with clean soil, consisting of 4.3% organic matter 

and the pH was 5.0 (Proefboerderij Kooijenburg, Marwijksoord, the Netherlands). The 

containers, with soil and earthworms, were maintained under constant conditions (24 hours 

light, 15°C, 61% relative humidity) throughout the experiments. C60 was obtained as a dry 

powder from SES Research (99.5+%, Houston USA). To be able to get an indication of 

metal impurities in the C60, a chemical analysis on the C60 powder was performed, by 

inductively coupled plasma-atomic emission spectroscopy (ICP-AES). As shown in table 1, 

metal levels were well below threshold levels for toxic effects, even with maximum 

addition of C60 to the soil (Neuhauser et al. 1984; Abdul Rida 1996; Scott-Fordsmand et al. 

1998; Klok et al. 2006). 
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Table 1. Overview of measured concentrations of different metals detected in C60 (mg/kg C60) and nominal 

concentrations of the metals (mg/kg soil) for the highest exposure level of C60 (154 mg C60/kg soil). Threshold 

levels, or no effect levels, for earthworms (at mg/kg soil) from the literature are also given (Neuhauser et al. 1984; 

Abdul Rida, 1996; Scott-Fordsmand et al. 1998; Klok et al. 2006). 

Metal (mg/kg) Cd Co Cu Fe Ni Pb Zn 

In C60 >0.0001 >0.0001 1.2 14 0.016 0.05 1.48 

In soil with C60 >0.0001 >0.0001 0.18 2.2 0.002 0.008 0.23 

Threshold level 1.6 26 22 28495 80 52 85 

 

To obtain a stable C60 stock solution, C60 was dissolved in an aqueous soil extract (as also 

described in Chapter 2). This extract was obtained by stirring control soil in ultrapure 

water (0.4 g soil/mL) for one hour at 180 rpm, after which it was filtered (Whatman filters 

type 597, Fisher Scientific). After filtering, C60 was added to a part of the soil extract, to a 

final nominal concentration of 2 g/L. The C60 suspension thus obtained was stirred for three 

days. Nominal soil concentrations were set at 0 (control), 15.4 and 154 mg C60/kg soil (dry 

weight), with a moisture content of 17.2% (dry weight). To obtain these concentrations in 

the soil, 650 gram soil was mixed with soil extract for two minutes (Hobart mixer, speed 2), 

for every container separately. For the control and the 154 mg/kg exposure 50 mL of soil 

extract, without and with C60 respectively, was added to every container. For the 15.4 

mg/kg soil exposure, the soil extract added to each container consisted of 5 mL soil extract 

with C60 and 45 mL soil extract without C60. Earthworms were added to the containers 

immediately after preparation of the soil. 

Size and aggregation of C60 particles in the soil extract were characterised using both 

transmission electron microscopy (TEM) (JEOL JEM 1011) and high resolution TEM 

(HRTEM; JEOL JEM 2100), operated at 60 kV and 200 kV, respectively. Samples of C60 

in the soil extracts demonstrated that C60 appeared to form aggregates of 10-15 nm in size, 

which clustered together loosely (as also discussed in chapter 2). The HRTEM image of 

the soil extract with C60 showed the normal crystal structure of the aggregated C60, as 

observed in other studies also (Fujita et al. 2009; Goel et al. 2004). 

Concentrations of C60 in the soil were determined with a toluene extraction method and 

followed by spectrophotometry (Aquamate from Thermo Electron Corporation), for five 
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samples per treatment (as described in chapter 2). Measured concentrations of C60 were in 

the range of the nominal levels (125.2 ± 3.3 mg/kg soil (n=5) for the high nominal 

concentration of 154 mg/kg soil), suggesting that nominal levels approached actual levels 

of C60. Furthermore, the small standard errors between replicate soil samples indicated that 

the C60 was well mixed throughout the soil. For earthworms, it was not technically possible 

to quantify C60 concentrations in the tissues, due to interference from the organic matrix of 

the tissues. 

 

Experimental designs 

Two experiments were carried out. In the first experiment healthy adult earthworms 

(Lumbricus rubellus), ranging in weight from 1241 to 1663 mg, were exposed to soil with 

nominal concentrations of 0, 15.4 or 154 mg C60/kg soil for four weeks. Eight containers 

were used for each treatment and each container housed five earthworms. The containers 

were considered to be the experimental units for replicates, so there were eight replicates 

and 40 earthworms per treatment. Every week the earthworms were fed alder leaves (Alnus 

glutinosa), from an uncontaminated location (Vossemeerdijk, Dronten, the Netherlands), ad 

libitum. In the second experiment offspring, from parent earthworms exposed to the same 

C60 treatment as above, were exposed from hatching up to adulthood (approximately 350 

days; ‘lifelong’). The number of replicates was eight for the control treatment and six for 

both 15.4 and 154 mg C60/kg soil. Earthworms were fed alder leaves as discussed above 

and the containers were checked every four weeks, to monitor the survival and body weight 

of the earthworms. At the end of each of the experiments, earthworms were washed in cold 

demineralized water, weighed and then randomly allocated for histological examination 

(two earthworms per container) or for gene expression and enzyme activity analysis (one 

earthworm per container). 

 

Gene expression analysis 

Earthworms used for gene expression analysis were washed in cold demineralized water, 

weighed and then immediately snap frozen in liquid nitrogen and stored at -80°C. 

Earthworms were transported on dry ice to the National Environmental Research Institute 
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(NERI) in Silkeborg Denmark, where gene expression measurements were performed. For 

these measurements, earthworms from four replicates were used per exposure group (n = 4 

containers per treatment), but for the earthworms exposed lifelong to 154 mg C60/kg soil 

only earthworms from three containers were available due to high mortality at this 

treatment level (n = 3). Individual whole earthworms were taken from the -80°C freezer 

and immediately ground to a fine powder, under liquid nitrogen, using a pestal and mortar. 

The resulting powder was mixed thoroughly to ensure that a representative sub-sample 

(approximately 20 mg tissue) could be used for gene expression analysis. Total RNA was 

extracted using the NucleoSpin RNA II kit from Macherey-Nagel (Germany). RNA 

concentrations were determined by spectrophotometry using an Implen Nanophotometer 

(AH Diagnostics, Denmark) and the integrity of the RNA was verified by 1% agarose gel 

electrophoresis. For each sample 2 μg of DNAse-treated total RNA was reverse transcribed 

to cDNA using anchored oligo(dT)20 primers (Invitrogen, Denmark) and the Omniscript 

Reverse Transcription kit (Qiagen, Germany). cDNA samples were diluted in RNAse free 

water to a concentration of 4 ng/μL. Expressed Sequence Tags (ESTs) for the seven 

investigated genes were obtained from Lumbribase (Lumbribase homepage) and NCBI 

websites (NCBI homepage), and verified by BLASTX analysis (NCBI homepage). Forward 

and backward primers for these ESTs were designed using Primer3 (Rozen and Skaletsky 

1999) and synthesized by Eurofins (Ebersberg, Germany). EST number, gene ontology and 

primer sequences of the investigated genes are shown in table 2. 
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Table 2. EST number, gene ontology and primer sequences of the investigated genes. 

Gene name 
Lumbribase    

EST no. 
Gene ontology Forward primer (5'-3') Reverse primer (5'-3') 

Amplicon 

size (bp) 

HSP70 LRC01283 General stress protein TTGCATATGGAGCTGCTGTC GAGGAGTCACGTCGAGAAGC 106 

Catalase LRC01429 Anti-oxidant enzyme ACATGAACGGATACGGAAGC ATTCTTGATGCCTTGGTTCG 120 

GST-pi LRC06119 Anti-oxidant enzyme CACTTGGCAACACTGGAGAA CTGACCTTGTCACCAACGAA 93 

SOD LRC09106 Anti-oxidant enzyme CCACGTTCACACATCTGGAG GCGATTATGCGGATTGAAGT 92 

CCF-1 LRC00385 Cytokine GTACGTGACAGCCTTGCAGA GGCATTGTTGTCTCCCTCAT 101 

GAPDH 
LRC07381 Glycolytic enzyme TGTCTCGACCGACTTCAACA GTGATCATTGAGGGCGATTC 95 

PFK-1 LRC00993 Glycolytic enzyme TACGTCGCTGAATGAGATCG CTTGGGTCTCGATGACGAAT 111 
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Real-time quantitative polymerase chain reaction (qPCR) was conducted using Brilliant II 

SYBR Green qPCR Master. Each sample was run in duplicate and each well contained a 5 

μL sample (equivalent to 20 ng total RNA) along with 900 nM of each primer, in a total 

volume of 25 μL. The plate was shaken and centrifuged for one minute (at 4600 g), to 

ensure a homogenous mixture on the bottom of the plate without bubbles. The cycling 

program was started at 95°C for ten minutes to activate the DNA polymerase, then 40 

cycles of 95°C for ten seconds and 60°C for sixty seconds. Subsequently, melting curves 

were performed by Stratagene MxPro Software 4.1 (Agilent Technologies, Denmark), to 

validate that only one target had been amplified. Threshold cycles and amplification 

efficiencies were calculated for each sample using Data Analysis for Real-Time PCR 

(DART-PCR) version 1.0 (Peirson et al. 2003). Outliers identified by DART-PCR and 

samples diverging from the dissociation curve were omitted from further analysis. 

NORMA-Gene was used to normalize the relative expression of the samples calculated by 

DART-PCR (Heckmann et al. 2011b). 

 

Enzyme activity assays 

Total protein concentrations were estimated using the Pierce BCA protein assay kit 

(Thermo Scientific, Rockford, US). The activity of two antioxidant enzymes, catalase and 

GST, was determined using commercially available assay kits from Cayman Chemical 

(Ann Arbor, Michigan, US), with item numbers 707002 and 703302, respectively. Samples 

were taken from the same earthworms used for gene expression quantification. For the 

catalase assay, a 50 mg sample was homogenized in 40 mL of a catalase assay buffer (50 

mM potassium phosphate buffer, prepared with 0.07 g/mL KH2PO4 and 0.11 g/mL 

K2HPO4*3H2O; 0.3 mg/mL EDTA; pH 7.0; (Sambrook and Russell 2001)). The 

homogenate was centrifuged (10,000 g for 15 minutes) and the supernatant was used for 

further analysis. CAT activity was determined using H2O2 as the substrate and the 

formaldehyde produced was measured at 540 nm. For the GST, 50 mg sample was 

homogenized in 400 μL of GST assay buffer (100 mM potassium phosphate buffer, 

prepared with 0.14 g/mL KH2PO4 and 0.23 g/mL K2HPO4*3H2O; 0.6 mg/mL EDTA; pH 

7.0; (Sambrook and Russell 2001)) and centrifuged for 15 minutes at 10,000 g. The 
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supernatant was used for the GST activity determination. Activities of total GST were 

determined using 1-chloro-2,4-dinitrobenzene (CDNB) as substrate and absorbance was 

measured at 340 nm. Enzyme activities were related to the protein content (determined at 

562 nm) of the sample. All samples were analysed at least as duplicates and as described by 

the assay kit supplier. C60 interference with the kits for gene expression and biochemistry is 

not expected, because the high ionic strengths of the salines used to make the tissue 

homogenates would rapidly precipitate the C60, which is then lost in the pellet at the 

centrifugation steps, leaving a clean supernatant for biochemistry (Hou et al. 2009). 

 

Histological observations 

Earthworms were carefully collected, washed in cold demineralized water and weighed. 

Subsequently, segments were carefully cut from the clitellum (covering the region 

approximately one centimetre anterior and posterior to the clitellum), using a sharp scalpel 

blade, and were placed immediately into buffered 4 % formal saline to fix the specimens 

(Handy et al. 2002b). Fixed samples were sent to the University of Plymouth for processing 

of routine wax histology (Handy et al. 2002b). For the first experiment two earthworms 

from every replicate (sixteen earthworms per treatment) were processed. For the second 

lifelong experiment five adult earthworms per treatment, all from different containers, were 

processed for histology. Earthworms from both experiments were processed into wax 

blocks and 8 µm sections were cut from each earthworm. Sections were stained with 

haematoxylin and eosin for general structural observations or with Mallory’s trichrome to 

reveal additional details of connective tissues. All tissues were prepared simultaneously in 

batches containing tissues from control earthworms and the C60 treatments at the same time 

point, in order to eliminate differences in fixation or staining artefacts between treatments. 

Tissues were examined under an Olympus Vanox-T microscope and photographs were 

produced using an Olympus digital camera (C-2020 Z). The thickness of each layer of 

tissue from the ectoderm (cuticle, epidermis, circular muscle and longitudinal muscle when 

intact, and clitellum parenchyma when present) were measured manually for each slide to 

analyse morphometrics. 
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Statistics 

Differences in gene expression and enzyme activity between the three treatments were 

analyzed using analysis of variance (ANOVA, with α = 0.05), with Least Significant 

Differences (LSD) as the post-hoc test (Burgers and Oude Voshaar 2010). Histological 

observations on cuticle loss were statistically tested for differences between exposure levels 

and between exposure periods, using a binomial regression analysis. These statistical 

analysis were carried out with GENstat (13th Edition, VSN International Ltd.). For other 

histological observations, data were similarly analysed by StatGraphics Plus version 5.1. 

No container effects were observed, so data was pooled by treatment for ANOVA (after 

checking for kurtosis, skewedness, and unequal variance with Bartlett’s test). In cases 

where data transformation was not effective, the Kruskal–Wallis test was used and 

differences were located by notched box and whisker plots. Results are presented as mean ± 

standard error of the mean (SEM) unless otherwise specified. 

 

Results 

Gene expression analysis 

For the adult earthworms exposed to C60 for four weeks, only one of the genes examined 

(HSP70) showed a clear concentration-dependent change of expression in whole tissue 

homogenates (Figure 1). HSP70 gene expression in both the 15.4 and 154 mg C60/kg soil 

treatments decreased significantly (ANOVA; p=0.018) compared with the control (Figure 

1A). In the 154 mg C60/kg treatment group, the HSP70 expression had decreased down to 

34% of the control value. For catalase, GST and CCF-1 gene expressions (Figures 1B-1D) 

there were no statistical differences noted due to C60 exposure. The gene expression of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an enzyme involved in the citric 

acid cycle, did not differ between the three treatments as well (as shown in Supplementary 

Table S1). 

In the lifelong experiment the HSP70 gene expression was also down-regulated with 

increasing C60 concentration, to 60% of the control level (Figure 1A), but this trend was 

only statistically significant at the 10% rejection level (ANOVA; p = 0.1). The gene 
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expressions of the antioxidant enzymes catalase and GST did not change significantly due 

to C60 exposure (Figures 1B and 1C). However, unlike the four weeks experiment, the 

CCF-1 gene expression of earthworms exposed lifelong to both C60 concentrations showed 

a statistically significant decrease (ANOVA; p=0.04) compared to the control treatment 

(Figure 1D). In the 154 mg C60/kg soil treatment group the CCF-1 expression had decreased 

down to 12% of the control value. Gene expressions of superoxide dismutase (SOD), 

GAPDH and phosphofructokinase-1 (PFK-1) did not demonstrate differences between the 

treatments (see Supplementary Table S1). 

 

 

 

 

Figure 1. Relative gene expression levels (compared with average of the control) of (A) heat shock protein 70 

(HSP70), (B) catalase, (C) glutathione S-transferase (GST) and (D) coelomic cytolytic factor 1 (CCF-1), for the 

four weeks (light grey) and for the lifelong (dark grey) exposed L. rubellus earthworms. Data are shown per 

exposure group (0, 15.4 and 154 mg C60/kg soil), as mean values ± SEM. Significant differences demonstrated are 

compared to control, *p<0.05 and **p<0.01. 
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Enzyme activity assays 

Table 3 shows that the enzyme activity for catalase and GST did not differ significantly 

between treatments for the four weeks experiment. In the lifelong exposed earthworms also 

no treatment-dependent changes in catalase and GST activity were noted (Table 3). 

 

Table 3. Measured levels of catalase and glutathione-S-transferase for L rubellus earthworms in the different 

treatment groups, exposed to C60 for four weeks or lifelong. Mean values ± SEM. No significant differences were 

demonstrated between treatments, within the assays (α = 0.05). 

Exposure period 
[C60] Catalase GST  

(mg/kg soil) (nmol/min/mg protein) (nmol/min/mg protein) 

Four weeks 0 295 ± 32   184 ± 53  

 

15.4 318 ± 48   154 ± 62   

 

154 327 ± 67   158 ± 49   

Lifelong 0 394 ± 38   212 ± 89   

 

15.4 464 ± 51  133 ± 56   

  154 298 ± 48   148 ± 40  

 

Histological observations 

In the four week experiment quantitative histological analysis of the thickness of cuticle, 

epidermis and the circular muscles of the ectoderm showed no significant differences 

between treatments, for any of the segments (see Supplementary Table S2). Further 

histological examination demonstrated changes in the tissue of adult earthworms after four 

weeks of exposure to C60 (Figure 2). Control earthworms showed normal structure of the 

ectoderm, without epithelial lifting or necrosis (Figure 2A). The underlying circular and 

longitudinal muscles were normal for all control earthworms, and pathologies such as 

fibrosis, hydropic change or atrophy were absent. There was also no evidence of 

coelomocyte infiltration in any of the tissues, which renders the absence of an inflammatory 

response of the cells. 

In the tissues of earthworms exposed to 15.4 mg C60/kg soil for four weeks, some 

histological changes were observed. Eleven out of the sixteen earthworms showed an intact 
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cuticle, but the staining was more basophilic than for the controls. Three out of the five 

earthworms with damaged cuticle also showed enlarged mucocytes and a fine basophilic 

granular deposit in some epithelial cells. This indicates an increase in negatively charged 

material in the epidermis. Earthworms with a damaged cuticle also demonstrated some 

hyperplasia of the epidermal and basal cells, as well as granular lipofuscin-like deposits in 

the circular muscle layer (Figure 2B) in combination with mild fibrosis. Some loss of 

architecture and oedema in the longitudinal muscle was also observed (Figure 2B). The gut 

epithelium of all the earthworms in this group showed hyperplasia of the sub-mucosa and 

epithelium, accompanied by necrosis. In six out of the sixteen earthworms, the changes to 

the gut were so severe that the normal architecture was no longer evident. The clitellum 

segments of the earthworms exposed to 15.4 mg C60/kg soil were comparable to the 

controls, except for one earthworm with damaged cuticle and eosinophilic epidermal cells. 

This earthworm also had eosinophilic granular deposits in the damaged parenchyma of the 

clitellum. 

In earthworms exposed for four weeks to 154 mg C60/kg soil, cuticle damage was similar to 

that observed at the lower C60 concentration (observed in five of the sixteen earthworms), 

but three earthworms also showed areas of thickened and very basophilic cuticles. For all 

sixteen earthworms, mild hydropic changes in the epidermis were noted, which was not 

observed for the 0 and 15.4 mg C60/kg soil treatment groups. Three earthworms with a 

damaged cuticle also showed some erosion of the epidermal cells, lipofuscin-like deposits 

and fibrosis in the circular muscle (Figure 2C), as well as oedema in the longitudinal 

muscle. Two earthworms with a damaged cuticle, demonstrated severe erosion of the 

longitudinal muscle with loss of architecture (Figure 2C). In the gut sections of the 

earthworms in this exposure group, injuries to the intestinal cells were similar to those in 

the 15.4 mg C60/kg soil exposure group. All sixteen earthworms showed hyperplasia and 

necrosis and in nine earthworms this resulted in complete loss of the normal architecture of 

the gut epithelium. The clitellum segment from earthworms exposed to 154 mg C60/kg soil 

were normal, except for one earthworm with diffuse parenchyma. 
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Figure 2. Transverse sections of segments from the anterior region of earthworms exposed to (A) control, (B) 15.4 

and (C) 154 mg/kg of C60 nanoparticles. Controls show normal morphology of the epidermis with an intact cuticle 

on the surface and undischarged mucous cells. The circular (CM) and longitudinal muscle (LM) layers are normal. 

Panel B and C demonstrate the erosion of the epithelium, with loss of the cuticle and discharge of mucous cells for 

both C60 concentrations. For these earthworms granulation in the circular muscle was observed (panel B, white 

arrows), as well as fibrosis of the circular muscle and some loss of integrity of the longitudinal muscle (panel C). 

The magnification was X400. Sections were cut 8 µm thick and stained with Mallory’s trichrome. 
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Lifelong exposure also caused no notable changes in the thicknesses of the tissue layers in 

the ectoderm (see Supplementary Table S2). Further examination of the tissues of the 

control earthworms demonstrated normal histology, as also described above for the four 

weeks exposed control group.  

Tissues of earthworms exposed to 15.4 mg C60/kg soil showed some loss of the cuticle, 

which was accompanied by enlarged mucocytes and some hyperplasia of the epidermal 

cells. In four earthworms the circular muscle also demonstrated mild atrophy, and for two 

earthworms mild fibrosis and granular lipofuscin-like deposits was noted. The gut epithelial 

cells of these earthworms were thinner and showed more elongated nuclei than the cells of 

the control earthworms. This demonstrates that these cells have increased their metabolic 

activity. 

Segments from earthworms after lifelong exposure to 154 mg C60/kg soil showed loss of 

the cuticle in three out of the five earthworms examined. In the earthworms with damaged 

cuticles effects were similar to the four week experiment, except for one lifelong exposed 

earthworm which also showed atrophy of the longitudinal muscles. Changes in the gut 

epithelium were similar to the changes of the earthworms exposed lifelong to 15.4 mg 

C60/kg soil. However, the earthworms in the highest exposure group also showed areas of 

necrotic epithelium, where all cells showed extensive vacuoles. The clitellum of three out 

of the five earthworms exposed to 154 mg C60/kg soil was different from the controls. For 

one earthworm depletion of the parenchyma of the clitellum was observed and in two other 

earthworms severe erosion of the parenchyma had occurred. 

 

Statistical tests of the above described effects on the cuticle showed that exposed 

earthworms experienced significantly more cuticle loss (binomial regression analysis; p < 

0.001). Also, the cuticle damage was more severe in the earthworms exposed to C60 lifelong 

than in the adults exposed for four weeks (binomial regression analysis; p = 0.039). 
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Discussion 

This study shows that earthworms exposed to C60 in soil can suffer adverse sub-lethal 

effects, which include loss of integrity of the protective cuticle, pathology of the ectoderm, 

intestinal erosion and altered gene expression in the whole organism. These changes occur 

against a background of increased juvenile mortality and decreases in reproductive success 

and juvenile growth, reported in a previous ecotoxicological study on earthworms exposed 

to C60 under the same conditions (discussed in Chapter 2). In that study it was 

demonstrated that reproductive success decreased with increasing C60 concentration, down 

to 60% of the control level at the highest concentration of 154 mg C60/kg soil. Effects on 

juvenile earthworms also increased with the C60 exposure level. At the sub-lethal exposure 

level of 15.4 mg C60/kg soil, growth rate was significantly reduced. At the highest exposure 

level mortality was the dominant effect, with 40% of the juvenile earthworms passing away 

after hatching. 

 

Gene expression of HSP70 was down-regulated with increasing C60 concentration, for both 

exposure periods. Such down-regulation is not unique to C60 exposed earthworms and has 

been demonstrated for other compounds and organisms as well, such as for cadmium 

exposed mussels (Brown et al. 1995), for amphipods exposed to dieldrin and fluoranthene 

(Werner and Nagel 1997), and for isopoda species exposed to several toxic metals (Eckwert 

et al. 1997). The down-regulation of HSP70 expression could be explained by emerging 

tolerance for C60 exposure (Eckwert and Köhler 1997; Croute et al. 2000) and by the up-

regulation of another member of the HSP family. HSP70 is part of a family of heat shock 

proteins, which respond in a dynamic way to exposure, and therefore other members of the 

HSP family may have been up-regulated to protect the earthworms instead (Werner and 

Nagel 1997; Bierkens 2000). Lower HSP70 expression levels could also be explained by 

tissue repair, which is indicated by the histology, e.g. hyperplasia and the presence of 

thinner cells with elongated nuclei in the gut epithelium, and also observed in fish epithelia 

due to carbon nanotube exposure (Smith et al. 2007). HSP70 is known to inhibit global 

protein synthesis (van Straalen and Roelofs 2006). During tissue repair, protein synthesis 
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will be increased in the tissue and this is usually accompanied by low HSP70 expression 

(Feder 1999; Bierkens 2000). 

 

In the present study, no statistically significant effects of C60 exposure on antioxidant 

enzyme expression and activity were observed, in either the four week or the lifelong 

experiment. Numerous other nanotoxicology studies suggest oxidative stress as a likely 

mechanism of C60 toxicity (Kamat et al. 1998; Sayes et al. 2005; Usenko et al. 2008; Klaper 

et al. 2009; Barillet et al. 2010). However, these studies have used short, acute exposures 

and/or in vitro studies on cells. The lack of clear dose-response relationships between C60 

exposure and oxidative stress may be explained by different phenomena. Earthworms may 

adapt to oxidative stress associated with sub-lethal pollutant exposure quickly (Maity et al. 

2008) and effects may have only been detectable a couple of days after the start of the C60 

exposure, rather than 4 weeks later. Furthermore, the oxidative stress response usually 

involves a cascade, including various chemical antioxidants and antioxidant enzymes, and it 

may not be necessary to induce all of the antioxidant enzymes. In addition, the 

concentrations of antioxidant enzymes are known to vary across different tissues, and a 

whole body measurement may not detect fine changes in individual tissues (Korsloot et al. 

2004; Kohen and Nyska 2002; Smith et al. 2007; Barillet et al. 2010). The tissue repair 

demonstrated with the histological observations could also affect antioxidant enzyme 

activity. 

 

There are some concerns that C60 could produce inflammation and may be immunotoxic 

(Fujita et al. 2009; Hamilton et al. 2007). However, in the histological analysis of this study 

no inflammation response in the tissues was observed (no coelomocyte infiltration into the 

tissues) and also gene expression of the cytokine-like protein CCF-1 did not increase. 

Tissue injury in the absence of an immune response can be explained by (i) death of the 

coelomocytes or (ii) immunosuppression (Stebbing 1981; van Straalen and Roelofs 2006). 

The latter seems most likely, as the lifelong exposed earthworms demonstrated a 

statistically significant down-regulation of CCF-1 expression (to < 20% compared to the 

control). Immunosuppression due to chronic exposure has also been demonstrated for 
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Lumbricus terrestris earthworms exposed to the polychlorinated biphenyl (PCB) Aroclor 

1254 (Goven et al. 1993). 

 

Reliable measurements or visualization of C60 in the internal tissues of earthworms are not 

feasible without fluorescent or radio-active labelling of the nanoparticle. So, in the absence 

of routine analytical methods to measure C60 in the tissues of earthworms, target organs for 

C60 can only be inferred from biological effects and the integrity of the external barriers on 

the animal at the moment. In both the four weeks and lifelong C60 exposed earthworms 

damaged cuticles were observed, accompanied by underlying pathology in the rest of the 

ectoderm. This suggests that C60 would have direct access to the internal tissues of the 

earthworms. For the life time exposure study, the incidence of cuticle pathology was higher 

(> 60%) than for the four weeks exposure (around 30%), suggesting a cumulative effect 

over time. In both experiments the gut barrier was also compromised by C60 exposure, 

indicating that any C60 in ingested soil would also be able to access the body. Unlike the 

cuticle, the gut showed an adaptive response with evidence of tissue repair. The four week 

exposed earthworms demonstrated loss of gut epithelial architecture in both the 15.4 and 

154 mg C60/kg soil exposure groups. However, the situation was less severe for the lifelong 

exposed earthworms, which showed only patches of necrotic gut epithelial cells mainly in 

the 154 mg C60/kg soil exposure group. This indicates that the repair mechanisms of the 

lifelong exposed earthworms may have been active, but nonetheless the gut barrier was not 

fully intact. Overall, the incidence of tissue injuries was broadly the same at the two C60 

concentrations, suggesting that even the lowest C60 concentration tested was well above the 

exposure threshold. 

 

Tissue injury has consequences for the bioenergetics of earthworms. The tissue injury and 

repair observed in the present study would inevitably increase the body maintenance 

component of the overall energy budget, leaving less energy for other processes like growth 

and reproduction (Kooijman 2000). The earthworms examined in this study were from the 

same experiments as discussed in chapter 2, which demonstrated that C60 exposure can 

indeed reduce reproduction (in a concentration-dependent way) and juvenile growth (as a 
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sub-lethal effect, at the exposure level of 15.4 mg C60/kg soil). The decrease in reproductive 

success may also be explained by a direct effect of C60 exposure on the reproductive 

organs. Histological observations of the clitellum, an important part of the earthworm 

reproductive system, showed a damaged parenchyma of the clitellum in C60 exposed 

earthworms.  

 

The mg/kg concentrations used in the present study demonstrate toxic effects due to four 

weeks up to lifelong exposure. A no observable adverse effect level (NOAEL) could be 

established. Verified measurements of actual soil C60 concentrations present in the 

environment are lacking. However, modelled environmental concentrations of C60 predict 

an annual increase of C60 concentrations in the soil at the ng/kg level (Gottschalk et al. 

2009). C60 is very stable, so persistence of these nanoparticles can be expected (Nielsen et 

al. 2008). Furthermore, the predicted values for C60 in sewage sludge are approaching the 

mg/kg range (Gottschalk et al. 2009) and this waste is often applied to agricultural soils. 

The commercial production of C60 is also expected to increase in the coming decades 

(Nielsen et al. 2008). Taken together, these observations suggest that the exposures in the 

present study are 1000 fold higher than modelled environmental C60 concentrations in soils 

at the moment, but only a lowest observed adverse effect level (LOAEL) was established in 

the present study and environmental concentration are likely to increase with a growing 

production and the environmental persistence of C60. 

 

In conclusion, this study demonstrates sub-lethal effects of C60 exposure at the level of gene 

expression and tissue integrity on earthworms. The gene expression data demonstrated 

down-regulation of some stress and immune-related genes, but no response of antioxidant 

enzyme expression or activity was observed. Histological observations confirmed tissue 

injuries and showed that the external barriers (cuticle and gut epithelium) of the C60 

exposed earthworms were partly damaged. The surviving earthworms appeared to cope 

with the injuries during their life time and even showed evidence of tissue repair. However, 

these sub-lethal changes resulted in effects on growth and reproduction, as shown in an 

earlier study on the same experiments (Chapter 2). This indicates that repair of effects at a 
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lower level of biological integrity may result in effects at higher levels of biological 

organisation. Further research is needed to identify the precise mode of action of (chronic) 

C60 exposure to earthworms, with emphasis on the time-sequence of expression of genomic 

effect markers and the appearance of (tissue) pathology, reproductive failure, growth 

retardation and finally death of the earthworms. Also, a range of concentrations below 15.4 

mg C60/kg soil needs to be studied to assess the NOAEL for C60 exposure to earthworms. 
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Supplementary data 

 

Table S1. Relative gene expression levels (compared to the average of the control) of superoxide dismutase 

(SOD), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphofructokinase-1 (PFK-1) for the four 

weeks and for the lifelong treated L rubellus earthworms, exposed to different concentrations of C60 in the soil. No 

significant differences were demonstrated between treatments, within the assays (α = 0.05). Data are shown per 

exposure group (0, 15.4 and 154 mg C60/kg soil), as mean values ± S.E. 

Exposure period [C60] (mg/kg soil) SOD GAPDH PFK1 

Four weeks 0 - 1.0 ± 0.35 - 

Four weeks 15.4 - 0.8 ± 0.44 - 

Four weeks 154 - 0.8 ± 0.37 - 

Lifelong 0 1.0 ± 0.27 1.0 ± 0.26 1.0 ± 0.10 

Lifelong 15.4 1.1 ± 0.07 1.8 ± 0.39 0.8 ± 0.11 

Lifelong 154 0.54 ± 0.29 0.7 ± 0.05 0.8 ± 0.18 
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Table S2. Quantitative histology of the ectodermal layers (cuticle, epidermis and the circular and longitudinal 

muscles) of L. rubellus earthworms, showing either the thickness of each tissue layer in the ectoderm (μm, 

ectoderm thickness) for the four weeks exposure or the percentage thickness of each tissue layer (% of ectoderm 

thickness) for the lifelong exposed earthworms. Data are means ± S.E. and data are only given where tissue 

structure enabled accurate measurements to be made. *p<0.05 compared to the control. **Tissue injury prevented 

measurements on more than one earthworm. 

[C60]   
(mg/kg 

soil) 

Exposure 

period 
Cuticle Epidermis Parenchyma  

Circular 

muscle 

Longitudinal 

muscle 

  
Anterior segments 

    

0 4 weeks 0.32 ± 0.10 7.89 ± 2.43 - 5.53 ± 0.73 - 

15 4 weeks 0.77 ± 0.41 4.36 ± 1.51 - 6.04 ± 0.54 - 

154 4 weeks 0.28 ± 0.04 2.93 ± 0.38 - 5.42 ± 0.76 - 

  
Anterior segments 

    

0 Lifelong 0.7 ± 0.3 15.5 ± 3.2 - 13.3 ± 2.5 58.4 ± 18.6 

15 Lifelong 0.1 ± 0.1 17.9 ± 2.9 - 14.7 ± 2.8 64.2± 1.3 * 

154 Lifelong 0.4 ± 0.26 9.7 ± 3.0 - 11.4 ± 7.4 73.6 ± 1.5 

  
Clitellum segments 

    

0 Lifelong - 10.41** 43.1 ± 16.5 3.1 ± 1.0 37.5 ± 20.0 

15 Lifelong 0.1 ± 0.1 16.0 ± 1.0 39.5 ± 15.9 9.2 ± 2.8 45.0 ± 9.4 

154 Lifelong 0.5 ± 0.26 14.8 ± 7.8 18.0 ± 9.0 7.5 ± 1.5 43.2 ± 18.0 

  
Posterior segments 

    

0 Lifelong 0.4 ± 0.2 20.2 ± 6.7 - 14.3 ± 4.4 59.6 ± 9.1 

15 Lifelong 1.0 ± 0.2 11.0 ± 2.1 - 11.5 ± 1.7 74.9 ± 2.4 

154 Lifelong 0.5 ± 0.5 20.7 ± 6.7 - 7.69** 63.6 ± 5.9 
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Chapter 4 

In vitro nanoparticle toxicity to rat 

alveolar cells and coelomocytes from the 

earthworm Lumbricus rubellus 
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Fokkink, H Zuilhof, IMCM Rietjens, NW van den Brink. In vitro nanoparticle toxicity to 

rat alveolar cells and coelomocytes from the earthworm Lumbricus rubellus. 

Nanotoxicicology, in press, DOI: 10.3109/17435390.2012.744857. 
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Abstract 

Sensitivity of immune cells (coelomocytes) of Lumbricus rubellus earthworms was 

investigated for exposure to selected nanoparticles, in order to obtain further insight in 

mechanisms of effects observed after in vivo C60 exposure. In the in vivo study, tissue 

damage appeared to occur without accompanying increased immune responses. 

Coelomocytes exposed in vitro to C60 showed no decrease of their cellular viability, but 

demonstrated a decrease in gene expression of the cytokine-like protein CCF-1, indicating 

immunosuppression. Experiments with NR8383 rat macrophage cells and tri-block 

copolymer nanoparticles were used to compare sensitivity and to demonstrate the 

usefulness of coelomocytes as a test system for nano-immunotoxicity, respectively. Overall, 

the results imply that sensitivity towards nanoparticles differs between cell types and 

nanoparticles. Moreover, this study indicates that injuries in absence of an immune 

response, observed after in vivo C60 exposure in chapter 3, are caused by 

immunosuppression rather than coelomocyte mortality. 
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Introduction 

Due to the rapid increase of nanoparticle production, these particles are expected to end up 

in the environment (Kahru and Dubourguier 2010; Nowack 2009). The possible 

environmental hazards of nanoparticles are not well known and nanoecotoxicological data 

should be obtained with high priority (Handy et al. 2008a; Stone et al. 2010). In our 

previous work (Chapter 2 and 3) we have shown that fullerene (C60) exposure can affect 

the earthworm Lumbricus rubellus. In chapter 2 it was demonstrated that in vivo exposure 

of these earthworms to C60 in the soil caused a reduction of cocoon production and juvenile 

survival and growth. Investigation at the molecular level (Chapter 3) demonstrated a 

concentration-dependent down-regulation of the gene expression of heat shock protein 70 

(HSP70), a well-known effect marker for generic stress (van Straalen and Roelofs 2006), 

and of coelomic cytolytic factor-1 (CCF-1), a cytokine-like protein in earthworms with 

similar functions as the mammalian tumor necrosis factor-alpha (TNF-α) (Bilej et al. 1995; 

Olivares Fontt et al. 2002). This down-regulation instead of up-regulation of CCF-1 

indicated a reduced instead of an increased immune response in earthworms upon C60 

exposure. The exact mode of action underlying this effect, immunosuppression or mortality 

of immune cells, remained to be elucidated. Additionally, histological observations of the 

C60 exposed earthworms demonstrated damage to the external barriers (cuticle and gut 

epithelium), in combination with strong effects on the structure of muscle tissues (Chapter 

3). In general, tissue injury is associated with an inflammatory response of the 

coelomocytes, as part of tissue repair (Cikutovic et al. 1999; Goven et al. 1994). However, 

no inflammatory response was observed in our previous study described in Chapter 3. 

Perceiving such injuries in the absence of an expected immune response may be explained 

by either immunosuppression or mortality of the coelomocytes, important cells in the 

earthworm immune system (Stebbing 1981; van Straalen and Roelofs 2006). 

Coelomocytes are free flowing cells, present in the coelomic cavity of earthworms. These 

cells are responsible for cellular immune functions, including phagocytosis and release of 

cytokine-like proteins to stimulate immune responses (Adamowicz and Wojtaszek 2001; 

Adamowicz 2005; Bilej et al. 1990; Diogéne et al. 1997; Hrženjak et al. 1992; Engelmann 

et al. 2005; Kauschke et al. 2007; Ville et al., 1995; Weeks and Svendsen 1996). 
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Coelomocytes have already been used in several ecotoxicology studies to demonstrate 

effects of conventional toxic compounds, and these studies demonstrated that the model 

provides a simple, rapid and sensitive tool to assess immunotoxicological hazards (Burch et 

al. 1999; Calisi et al. 2009; Massicotte et al. 2004; Sauvé et al. 2002; Sauvé and Fournier 

2005; Scott-Fordsmand et al. 1998; Ville et al. 1995). 

In order to address the impact of nanoparticle exposure on the immune cells of earthworms 

in more detail, coelomocytes were isolated from the earthworm L. rubellus and exposed to 

C60 in vitro. These coelomocytes were analyzed for their viability, phagocytic activity and 

CCF-1 gene expression levels. Coelomocytes were also exposed to tri-block copolymer 

nanoparticles (Bhattacharjee et al. 2011), in order to validate the use of coelomocytes as a 

test system for immunotoxicity of nanoparticles. Finally, for comparison, mammalian rat 

lung macrophage NR8383 cells were also exposed to the same nanoparticles, characterizing 

their effects on cell viability, phagocytosis and production of TNF-α. 

 

Materials and methods 

Nanoparticles and characterization 

Positively (with an amine terminal group; PNP-NH2) and negatively (with a carboxylic acid 

terminal group; PNP-COOH) charged tri-block copolymer nanoparticles, with and without 

fluorescent probe, were prepared as described by Bhattacharjee et al. (2011). The stock 

consisted of polymer nanoparticles suspended in nanopure water. For the experiments, 

serial dilutions of exposure medium were made in ultrapure water, and for all 

concentrations the same amount (20%) of Ham’s F-12K (Kaighn’s) medium (culture 

medium; from Invitrogen/Life Technologies Ltd, UK) containing 10% heat-inactivated 

fetal calf serum (FCS; from PAA Laboratories GmbH, Germany) was added. C60 

nanoparticle powder was obtained from SES Research (99.5+%, Houston USA). As 

discussed in chapter 2, an analysis with inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES) on the C60 powder demonstrated that metal impurities in the C60 

did not pose any risk. For the experiments, a stock of 8 mg/ml C60 powder in culture 

medium supplemented with 10% FCS was made, which was stirred overnight to obtain an 
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even suspension. Serial dilutions of exposure medium were made with the culture medium 

containing 10% FCS. The size distribution of the nanoparticles was determined by dynamic 

light scattering (DLS), using a Cobolt Samba 300mW DPSS laser at a wavelength of 532 

nm. For each sample, the mean diameter of the peaks with the associated polydispersity 

index (PDI), an indication of the width of the diameter peak, was determined for twenty 

measurements. Due to the presence of more than one peak for the C60 samples, the PDI was 

established by determining the width of each peak at half-height and using that width in the 

equation PDI = [width/radius]
2
. The polymer nanoparticles were characterized in ultrapure 

water as well as in culture medium containing 10% FCS, at a concentration of 0.1 μg/ml. 

C60 characterization was only performed in culture medium supplemented with 10% FCS. 

Two C60 concentrations (10 and 100 μg/ml) were tested, to study possible changes in 

aggregation with an increase in C60 concentration. The zeta potential was analyzed using a 

Malvern ZetaSizer 2000. Suspensions were similar to the ones used for the DLS analysis. 

Data were processed with Zeta mode V1.51 software (Chen et al. 2004). Five 

measurements were used to establish average and SEM for each sample. Aqueous 

dispersions of the polymer nanoparticles were also examined using a field emission 

scanning electron microscope, as reported by Bhattacharjee et al. (2011). C60 was viewed 

by transmission electron microscopy (TEM), at a concentration of 10 μg C60/ml culture 

medium. A drop of sample was deposited on a copper grid coated with formvar and carbon. 

After an incubation of two minutes, excess suspension was carefully removed with a filter 

paper and the grid was allowed to dry at room temperature. The grids were observed in a 

JEOL 2100 TEM (Jeol, Japan), operating at 200 kV. Micrographs were taken with a 

GATAN US4000 4K digital camera. 

 

Cell types 

Coelomocytes 

Primary immune cells (coelomocytes) in the coelomic fluid were extruded from unexposed 

adult L. rubellus earthworms. Coelomocyte extrusion was performed using a modification 

of the extrusion method as described by Eyambe et al. (1991). 24 Hours before extrusion, 

earthworms were rinsed in demineralized water, placed in a petri dish on a moist filter 
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paper (Whatman filters type 597, Fisher Scientific) and incubated in a climate room at 

15°C. After 24 hours, the earthworms were rinsed again, placed on paper towel and 

massaged to expel the contents from the gut. 24 hour starvation and the massage were 

performed in order to prevent fecal contamination of the extrusion medium upon collection 

of the coelomocytes in a subsequent step. Subsequently, individual earthworms were placed 

in 10 ml tubes and 3 ml extrusion medium was added. The extrusion medium consisted of 

95% phosphate-buffered saline (PBS), supplemented with 2 mg/ml ethylene-

diaminetetraacetic acid (EDTA, 99% purified grade; from Sigma-Aldrich, St Louis, USA) 

and 4 mg/ml guaiacol glycerol ether (GGE, >98%; from Sigma-Aldrich, St Louis, USA), 

adjusted to pH 7.3 with sodium hydroxide. Just before extrusion, 5% (of final volume) of 

96%-ethanol was added to the medium. The earthworms were incubated in the extrusion 

medium for three minutes, during which they excreted coelomocytes into the medium. 

After three minutes the earthworms were removed from the medium, rinsed in 

demineralized water and released in soil. The tubes with the coelomocyte suspensions were 

put on ice and 5 ml of culture medium containing 10% FCS was added to each tube. The 

coelomocytes were centrifuged (at 200 g for 10 minutes) and washed with culture medium 

to remove the extrusion medium. Subsequently, the coelomocytes were resuspended in 200 

μl culture medium containing 10% FCS and the coelomocyte suspensions from the 

different earthworms were combined. Cells were counted using a Bϋrker bright line 

counting chamber and cell number was adjusted to approximately 4 x 10
6
 cells/ml. 

Thereafter, 50 μl or 150 μl of the adjusted cell suspension was added to each well of a 96-

well or a 48-well plate (with a flat-bottom; from Greiner Bio-One, Germany), respectively, 

and directly used in the experiments. 

 

NR8383 cells 

NR8383 rat macrophage cells (ATCC, Manassas, USA) were cultured and obtained 

according to the procedure described by Bhattacharjee et al. (2011). For exposure, 50 μl of 

a cell suspension (of approximately 4 x 10
6
 cells/ml) was added to each well of a 96-well 

plate and directly used in the experiments. 
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Cellular uptake of nanoparticles by coelomocytes  

For studying effects of inhibition of clathrin-mediated and caveolin-mediated endocytosis, 

sucrose and MβCD pre-incubations were carried out. The procedure has been described in 

detail by Bhattacharjee et al. (2011), who studied the same nanoparticles in NR8383 cells. 

After pre-incubation with the inhibitors, the cells were plated, exposed to the fluorescent 

polymer nanoparticles (at 1 μg/ml) and incubated at 15°C overnight. After the incubation, 

coelomocytes were studied with a confocal laser scanning microscope (CLSM; Zeiss 200M 

Axiovert). Details on the CLSM procedure can be found in Bhattacharjee et al. (2011). Z-

stack imaging of coelomocytes was performed, to ascertain that the particles were inside 

the coelomocytes and not on the surface (Cartiera et al. 2009). Samples with coelomocytes 

exposed to PNP-NH2 or PNP-COOH in the absence of inhibitors were also analyzed, for 

comparison. 

 

Cell survival and phagocytic activity 

To quantify cell survival and phagocytic activity, serial dilutions of exposure medium were 

made as discussed before. Subsequently, 50 μl of exposure medium was added to 50 μl of 

cell suspension, to obtain the acquired final concentrations and expose the cells. The 

polymer nanoparticles used in these experiments were non-fluorescent, to avoid 

interference with the fluorescent beads used in the phagocytosis assay. Culture medium 

supplemented with 10% FCS only and culture medium containing 10% FCS as well as 

CuSO4 (100 μM for the NR8383 cells and 300 μM for the coelomocytes) were used as 

negative and positive control, respectively. Fluorescent beads (size 1 um, L-1030 latex 

beads; from Sigma-Aldrich, St Louis, USA) were added to the wells at a cell to bead ratio 

of 1:50. For the coelomocytes, the beads were added before overnight incubation and for 

the NR8383 cells the beads were added only four hours before scoring the phagocytosis, 

because coelomocytes have a lower uptake rate than NR8383 cells (Brousseau et al. 1997). 

The cells were incubated overnight at 37°C (NR8383 cells) or 15°C (coelomocytes). To test 

for viability of the cells, a trypan blue solution (in PBS) was added to each well (final 

concentration 0.05%). From each well, a sample was taken for quantification of the cell 

viability and the phagocytic activity, using a light microscope (Olympus CK2) and a 
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fluorescent microscope (Olympus T2) with fluorescent light (Olympus BH2-RFL-T2), 

respectively. For each sample the number of blue cells per 100 cells was counted randomly 

to assess viability of the cells. Quantification of the phagocytic activity was achieved using 

the procedure discussed by Bhattacharjee et al. (2011). 

 

Cytokine (-like) assays 

Measurement of CCF-1 gene expression in coelomocytes  

Coelomocytes (150 μl/well) were seeded in a 48-well plate and 150 μl of serial dilutions of 

the C60 exposure medium were added to each well, to obtain the acquired final exposure 

concentrations. Exposing cells to culture medium containing 10% FCS only was tested as a 

negative control. The coelomocytes were exposed overnight and then RNA was extracted, 

using a Qiashreddar and a RNeasy kit (Qiagen GmbH, Germany). RNA concentrations 

were determined by a Nanodrop spectrophotometer (ND-1000 Spectrophotometer, from 

Thermo Scientific, USA). For each sample, 300 ng total RNA (15 ng/μl as final 

concentration) was reverse transcribed to cDNA using iScript Reverse Transcription 

Supermix (Bio-rad Laboratories, USA). Expressed Sequence Tags (ESTs), and forward and 

backward primers for the target gene CCF-1 and the reference gene (glyceraldehyde-3-

phosphate dehydrogenase (GAPDH)) were verified and designed as discussed in chapter 3. 

The primers were obtained from Biolegio (the Netherlands). Using these primers, real-time 

quantitative polymerase chain reaction (qPCR) was conducted with iQ Sybr Green 

Supermix (Bio-rad Laboratories, USA). All samples were diluted 40 times and a dilution 

series of a mix of all the samples was also tested. This dilution series was used to make a 

dissociation curve afterwards, to be able to eliminate outliers. Each well of a 96-well plate 

contained 5 μl of a sample (equivalent to 15 ng cDNA) along with 400 nM of each primer, 

in a total volume of 25 μl. The plate was centrifuged for one minute (at 120 g), to ensure a 

homogenous mixture on the bottom of the plate without bubbles. The cycling program was 

started at 95°C for fifteen minutes to activate the DNA polymerase, followed by 45 cycles 

of 95°C for 30 seconds, 55°C for 30 seconds and 72°C for 30 seconds. The program was 

completed with 72°C for five minutes and 95°C for one minute. Thereafter melting curves 

were performed by iCycle (Bio-rad Laboratories, USA) to validate that only one target had 
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been amplified. With this program, threshold cycles and amplification efficiencies were 

also calculated for each sample. Samples with distinct divergence from the dissociation 

curve were omitted from further analysis (Heckmann et al. 2006). The induction factor was 

calculated for each sample, using the reference gene to normalize for reverse transcription 

efficiency (Pfaffl 2001). 

 

Measurement of TNF-α produced by NR8383 cells. 

The NR8383 cells were seeded in a 96-well plate (final concentration of 2 x 10
5
 cells/well) 

and serial dilutions of the exposure medium were added to obtain the acquired final C60 

concentrations. Exposure of the cells to culture medium containing 10% FCS only was used 

as a negative control. After 24 hours, 50 μl was taken from each sample and added to the 

anti-rat TNF-α antibody pre-coated 96-well plate of a commercially available rat TNF-α 

ELISA kit (Thermo Fisher Scientific, Rockford, USA). TNF-α levels were analysed 

according to the protocol described by the ELISA kit manufacturer. 

 

Statistics 

All experiments were performed in triplicate. The results were calculated as % of the 

respective negative control and are presented as mean of the replicates ± standard error of 

the mean (SEM). Data were analyzed in GENstat (14
th

 Edition, VSN International Ltd.). 

Differences between treatments were analyzed using analysis of variance (ANOVA, with α 

= 0.05), with Least Significant Differences (LSD) as the post-hoc test (Burgers and Oude 

Voshaar 2010). α = 0.05 is considered to be the level of significance and marked with an 

asterisk sign (٭). In specific cases a trend at the level of α = 0.10 was determined and noted 

by a hashtag (#). When possible, concentration response curves were generated, by 

applying logistic nonlinear regression analysis. EC50 was defined as the concentration of the 

nanoparticle exposure that led to an effect of 50%, compared with the negative control, of 

the recorded response. 
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Results 

Characterization of the nanoparticles 

In the present study two types of nanoparticles were applied: C60 and tri-block copolymer 

nanoparticles. C60 was already studied previously in an in vivo toxicity study with L. 

rubellus earthworms (Chapter 2 and 3). The polymer nanoparticles were used because 

they enabled uptake studies in our in vitro cellular system, given the fact that they can be 

prepared containing a fluorescent label. 

The synthesis and characterization of the polymer nanoparticles was described in detail 

before by Bhattacharjee et al. (2011). In short, the size distribution of both PNP-NH2 and 

PNP-COOH as analyzed by DLS, was 45 ± 5 nm when dispersed in ultrapure water. 

Scanning electron microscope imaging confirmed the presence of particles of this size in 

the dispersions. In culture medium supplemented with 10% FCS, however, PNP-NH2 

showed a size distribution of 106 ± 5 nm and PNP-COOH of 67 ± 5 nm. The zeta potential 

in water was +20 mV for PNP-NH2 and -22 mV for PNP-COOH. In culture medium 

containing 10% FCS though, the zeta potential was -12 mV and -35 mV for PNP-NH2 and 

PNP-COOH, respectively. 

For C60 in culture medium supplemented with 10% FCS, analysis by DLS demonstrated 

that a prominent component was approximately 200 nm in size for both examined 

concentrations. Lower peaks were also observed, indicating the presence of much smaller 

(26 and 5 nm) and larger (~10 μm) particles, in addition to the prominent 200 nm particles. 

The zeta potential of C60 in culture medium supplemented with 10% FCS was -14 mV at 10 

μg/ml and -13 mV at 100 μg/ml. In the TEM images, C60 clusters (nC60) with a size 

between 100 and 200 nm were observed (Figure 1A), which contained the crystalline 

structure of C60 (Figure 1B). Furthermore, the electron diffraction demonstrated discrete 

spots (not shown), suggesting a crystalline structure pattern (Bokare and Patnaik 2005; 

Deguchi et al. 2001). 
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Figure 1. TEM images of (A) a C60 cluster (nC60) in culture medium and (B) a close up of the C60 cluster showing 

the crystalline structure known for C60 nanoparticles (Bokare and Patnaik 2005; Deguchi et al. 2001). 

 

Cellular uptake of nanoparticles 

Significant cellular uptake of the polymer nanoparticles by coelomocytes could be detected, 

after incubation with the fluorescent polymer nanoparticles, using Z-stack imaging of 

coelomocytes (Figure 2). These images indicated that PNP-COOH were more clustered and 

that the PNP-NH2 nanoparticles were spread more diffusely in the cytoplasm of the 

coelomocytes. The overall uptake did not differ significantly between PNP-NH2 and PNP-

COOH. 

After inhibition of the specific endocytosis pathways, cellular uptake of PNP-COOH was 

affected for both the caveolin- and clathrin-mediated pathways, to 56% and 65% compared 

to the control, respectively (Figure 3A). For PNP-NH2, cellular uptake was especially 

reduced after inhibition of the clathrin-mediated endocytosis pathway, to 59% of the control 

(Figure 3B). Together these data reveal that the coelomocytes, in analogy with rat 

macrophage NR8383 cells studied before, are able to internalize nanoparticles of different 

charges by several active uptake mechanisms. 
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Figure 2. CLSM images of cross sections of a coelomocyte after overnight exposure to PNP-NH2 (top) or PNP-

COOH (bottom). The results are shown as z-stack images, where slice 1 demonstrates the bottom and slice 6 the 

top part of the cell. 

 

 

Figure 3. Fluorescent intensity of (A) PNP-COOH and (B) PNP-NH2 internalized by coelomocytes, for control 

(black) and for specific inhibition of the clathrin- (white) or caveolin-mediated (grey) endocytosis pathways. 

Values are shown as mean % of the respective control ± SEM and statistical different values from the respective 

control are marked with an asterisk (*). 
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Cell survival and phagocytic activity 

For the coelomocytes exposed to PNP-COOH, no clear concentration-dependent decrease 

for viability as well as phagocytic activity was observed (Figure 4A and 4C). The results 

presented in figures 4B and 4D show that PNP-NH2 did induce a concentration-dependent 

reduction of the viability and phagocytic activity of the coelomocytes. EC50 values of 45 

μg/ml for the effects of PNP-NH2 exposure on cell viability (Figure 4B), and of 7.8 μg/ml 

for the effects on phagocytic activity (Figure 4D) were derived. For comparison, the effects 

of PNP-NH2 on viability and phagocytosis of NR8383 are also displayed (Figure 4) and 

these data reveal that these cells also only demonstrated adverse effects on cell viability and 

phagocytic activity after exposure to PNP-NH2, with EC50 values of 31 μg/ml and 64 μg/ml, 

respectively. 

As shown in figure 5A, C60 exposed coelomocytes demonstrated no decrease in cell 

viability. However, a concentration-dependent decrease of the phagocytic activity was 

observed for these cells, with an EC50 value of 2000 μg/ml (Figure 5B). For comparison, 

the effect of increasing C60 concentrations on viability and phagocytic activity of NR8383 

macrophage cells was also tested (Figure 5). For these cells, exposure to C60 resulted in a 

concentration-dependent decrease of cell viability as well as of the phagocytic activity. The 

EC50 values for these effects of C60 exposure were 1.04 μg/ml and 1.87 μg/ml, respectively. 

 

Cytokine (-like) assays 

CCF-1 gene expression in coelomocytes (Figure 6A) decreased at lower concentrations, but 

an increase was observed from 4000 μg C60/ml culture medium onwards, which is just 

above the EC50 of phagocytic activity. An EC50 for the effect of C60 on CCF-1 activity 

could not be derived, but the lowest observable effect concentration (LOEC) was 100 

μg/ml. 

In addition, a considerable increase of TNF-α levels produced by the NR8383 cells was 

observed with increasing C60 concentrations, starting from a concentration around the EC50 

for phagocytic activity (Figure 6B). At the highest C60 concentration of 400 μg/ml, the 

TNF-α level was seven times higher compared to the negative control. As the effect curve 
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was still in the exponential stage at the highest concentration tested, no EC50 could be 

established. The LOEC could be derived, which was 1 μg C60/ml culture medium. 

 

 

 

 

Figure 4. Viability (A and B) and phagocytic activity (C and D) of NR8383 cells (triangles) and coelomocytes 

(circles), compared to the respective unexposed control (= 100%), after exposure to increasing PNP-COOH (open, 

A and C) and PNP-NH2 (filled, B and D). Values are presented in mean ± SEM, with an asterisk (*) indicating 

statistical difference from the control. Only significant regression curves are displayed (coelomocytes normal line 

and NR8383 cells dashed line). 
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Figure 5. Viability (A) and phagocytic activity (B) of NR8383 cells (triangle) and coelomocytes (round) after 

exposure to increasing C60 concentrations. Values are expressed compared to the control (= 100%) and are shown 

in mean ± SEM. An asterisk (٭) indicates a statistically significant difference compared with the respective control 

at the level of α=0.05 and hashtag (#) indicates a significant difference with α=0.10. Only significant regression 

curves for the coelomocytes (normal line) and the NR8383 cells (dashed line) are displayed. 

 

 

Figure 6. CCF-1 gene expression levels of coelomocytes (A) and TNF-α levels in NR8383 cells (B) exposed to 

increasing C60 concentrations. Values are shown in mean ± SEM. Statistical differences compared to the respective 

control are marked with an asterisk (*) for α=0.05 and with a hashtag (#) at the level of α=0.10. The arrow 

indicates the EC50 value of the phagocytic activity. 
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Discussion and conclusions 

Our previous work (Chapter 2 and 3) has demonstrated toxic effects of in vivo C60 

exposure on L. rubellus earthworms, as reflected by adverse effects on reproduction, 

juvenile survival and growth, tissue integrity and by altered gene expression of HSP70 and 

CCF-1. In the present study we investigated the impact of nanoparticle exposure, including 

C60, towards isolated coelomocytes of the earthworm L. rubellus. These investigations were 

performed in order to obtain insight into the sensitivity of these important cells of the 

earthworm’s immune system to nanoparticle exposure. 

 

For the polymer nanoparticles, it is reported that they do not have a strong tendency to 

aggregate (Bhattacharjee et al. 2011). The hydrodynamic diameter of the polymer 

nanoparticles, analyzed by DLS, was larger in culture medium containing 10% FCS 

compared with water. This difference was especially observed for PNP-NH2 and may be 

due to negatively charged proteins present in the medium, which have a preference for 

adsorption on positive nanoparticles (Cherng et al. 1996; Montes-Burgos et al. 2010). 

Adsorption of (negatively charged) proteins on the polymer nanoparticles was illustrated by 

the zeta potential data of the polymer nanoparticles measured in culture medium containing 

10% FCS. These data demonstrate a weak negative charge for PNP-NH2 and a stronger 

negative charge for PNP-COOH, as compared with the zeta potential in water. Even though 

the PNP-NH2 were coated with a protein corona and their zeta potential had changed, they 

were readily taken up by the coelomocytes, which was also observed in other studies 

investigating the uptake of positively charged nanoparticles (Asati et al. 2010; 

Bhattacharjee et al. 2011; Chen et al. 2011). Studies by Lesniak et al. (2010) and Maiorano 

et al. (2010) have demonstrated that the stability of the protein corona may vary and does 

not always oppose the uptake of nanoparticles. Therefore, the protein corona of the PNP-

NH2 may have been quite unstable, not hindering cellular uptake and subsequent adverse 

effects on the cells. 

 

C60 size distribution and aggregation in culture medium supplemented with 10% FCS was 

assessed using DLS. The prominent size distribution was about 200 nm, for both 
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concentrations analyzed. TEM imaging also demonstrated clusters within this size range 

and moreover, the observed crystalline structure pattern indicates that they contained C60. 

The large clusters observed, may be due to aggregates of C60 (Gelderman et al. 2008). 

Measurements of C60 in culture medium containing 10% FCS showed low negative zeta 

potential values, which is in line with observations reported for C60 solutions in other 

studies (Chen and Elimelech 2006; Spohn et al. 2009; Han and Karim 2008). These slightly 

negative zeta potentials were not strong enough to cause electrostatic repulsion of the 

particles, suggesting that the system was not stable and agglomeration of particles was to be 

expected (Berg et al. 2009; Jiang et al. 2009; Xu et al. 2007). 

 

The CLSM observations for cellular uptake of the fluorescent polymer nanoparticles, 

demonstrated that both PNP-NH2 and PNP-COOH were internalized. However, these 

observations indicated that PNP-COOH were clustered, most likely in lysosomes, but PNP-

NH2 were distributed more diffusely throughout the coelomocytes. This difference was also 

noted for NR8383 cells, by Bhattacharjee et al. (2011). When observing the inhibition of 

the specific pathways, the CLSM data indicate that for the positively charged nanoparticles 

only inhibition of the clathrin-mediated endocytosis had a significant effect on the uptake. 

Bhattacharjee et al. (2011), using NR8383 cells, also observed the clathrin-dependent 

endocytosis to be of importance for the cellular uptake of especially PNP-NH2. This finding 

indicates that endocytosis through the clathrin-mediated pathway is a possible mechanism 

of internalization for PNP-NH2, for both NR8383 cells and coelomocytes. Other studies 

(Harush-Frenkel et al. 2007; Ma and Lim 2003), using various cultured cells, also 

demonstrated that clathrin-mediated endocytosis was mainly involved in the uptake of 

positively charged nanoparticles. Uptake of PNP-COOH was significantly reduced after 

inhibition of both the caveolin- and clathrin-mediated endocytosis pathways. This differs 

from the expectations, because Bhattacharjee et al. (2011) found that the caveolin-mediated 

endocytosis was a more important pathway for uptake of PNP-COOH by the NR8383 cells, 

than the clathrin-mediated pathway. Overall, the data on the cellular uptake of the polymer 

nanoparticles demonstrate that both nanoparticles were internalized by the coelomocytes, 

and that the caveolin- and clathrin-mediated pathways were involved. The CLSM data also 
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indicate that distribution within the coelomocytes differed between PNP-NH2 and PNP-

COOH, e.g. PNP-NH2 were more present in the cytosol of the cells. 

 

Even though no evident difference was noted between the total uptake levels of the 

differently charged polymer nanoparticles, they induced different toxicity to the 

coelomocytes. PNP-COOH induced no clear cytotoxicity, but exposure of the coelomocytes 

to PNP-NH2 caused significantly lower cell viability and phagocytic activity. Bhattacharjee 

et al. (2011) observed similar effects for NR8383 cells, showing cytotoxicity for PNP-NH2 

but not for PNP-COOH. PNP-NH2 may be more cytotoxic due to their more diffuse 

distribution. These nanoparticles may instigate production of reactive oxygen species 

(ROS) and interact with mitochondria, thereby hampering normal mitochondrial 

functioning and causing depletion of the high energy substrate adenosine-5'-triphosphate 

(ATP) (AshaRani et al. 2008; Bhattacharjee et al. 2011; Karatas et al. 2009; Pan et al. 2009; 

Xia et al. 2008). 

 

Several in vitro studies have demonstrated toxicity due to C60 exposure in mammalian cells 

(Gelderman et al. 2008; Jacobsen et al. 2008; Jia et al. 2005). In these studies, DNA 

damage, loss of phagocytic ability, cell cycle arrest and increased influx of calcium were 

detected. To the knowledge of the authors, this is the first study discussing in vitro C60 

exposure of earthworm coelomocytes. The results demonstrate hardly any effect of C60 

exposure on coelomocyte survival. The phagocytic activity was affected at high 

concentrations, with significantly decreased activity from 2000 μg C60/ml culture medium 

onwards, down to 13% phagocytic activity compared with the control at 8000 μg C60/ml 

culture medium. CCF-1 gene expression of coelomocytes appeared to be a more sensitive 

parameter, showing a statistically significant decrease already at the lowest tested C60 

concentration of 100 μg/ml. Decreased CCF-1 expression was also observed in the 

earthworms exposed in vivo in our previous study (Chapter 3). This demonstrates that, at 

relatively low concentrations, C60 exposure may suppress an inflammatory reaction of the 

coelomocytes. Other studies have also demonstrated decreases in phagocytic activity in 

combination with a reduction in cytokine release, after exposure to magnetic and cadmium 
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quantum dot (CdTe-QD) nanoparticles (Hsiao et al. 2009; Nguyen et al. 2012). Moreover, 

Nguyen et al. (2012) demonstrated that CdTe-QD nanoparticles, by lowering cytokine 

levels, could make the cells more sensitive to a bacterial infection. Such reduced resistance 

to opportunistic infections, in combination with the inability of the coelomocytes to induce 

adequate tissue repair (Goven et al. 1994; Napolitano et al. 1996), may explain the tissue 

injuries previously observed (Chapter 3). 

 

At very high C60 concentrations, above the EC50 for phagocytosis, the measured CCF-1 

expression increased again. For the NR8383 cells, the cytokine (TNF-α) level also showed 

an increase after phagocytic activity had decreased below 50%. However, NR8383 cells 

demonstrated a clear concentration-dependent cytotoxicity and inflammatory response 

(TNF-α increase), already at 1 μg/ml (close to the EC50 for phagocytosis which is 1.87 

μg/ml). These differences between the cell types demonstrate that for viability and 

phagocytic activity, the coelomocytes appear to be less sensitive to C60 exposure than the 

NR8383 cells. However, the CCF-1 gene expression data and the data on the polymer 

nanoparticle exposure demonstrate that coelomocytes are a sensitive test system for 

determining immunotoxicity of nanoparticles. 

 

Differences in sensitivity and intracellular processing between cell types after exposure to 

the same type of nanoparticle, has been demonstrated in other studies as well. Xia et al. 

(2008) observed that mouse macrophage (RAW 264.7) and human lung epithelial (BEAS-

2B) cultured cells were more sensitive to cationic polystyrene nanosphere exposure, than 

human microvascular endothelial (HMEC), mouse hepatoma (HEPA-1), rat 

pheochromocytoma (PC-12) cells. However, only the BEAS-2B cells were found to 

internalize more nanoparticles than the other cell types. Nguyen et al. (2012) found that 

mouse macrophage cells (J774A.1) were more sensitive to CdTe-QD exposure than human 

colonic epithelial cells (HT29), in terms of metabolism loss, changes in morphology and 

rate of QD internalization. Differences in sensitivity and uptake of nanoparticles were also 

found between coelomocytes and a cultured cell line, in a study by Hayashi et al. (2012). 

This study demonstrated that coelomocytes from the earthworm Eisenia fetida were more 
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sensitive to silver nanoparticle exposure than the cultured human leukemia (THP-1) cell 

line and also accumulated more silver nanoparticles. 

 

In conclusion, the results of this study demonstrate that earthworm immune cells can be a 

target for nanoparticles. The present study also shows the usefulness of primary immune 

cells, from L. rubellus earthworms, as a test system to determine immunotoxicity of 

nanoparticles on these earthworms. 

For C60 nanoparticles, tissue injuries were demonstrated in the absence of an immune 

response, and this was ascribed to immunosuppression or mortality of immune cells 

(Chapter 3). The present in vitro study indicates that C60 does not affect the viability of the 

coelomocytes. However, C60 exposure reduced CCF-1 gene expression levels in in vitro 

exposed coelomocytes, similar to the effect after exposure to earthworms in vivo. Although 

in vivo observations are difficult to compare with in vitro effects and a relationship between 

coelomic fluid concentrations and body burden of C60 could not be established, the results 

of the present study suggest that similar mechanisms of action may apply to in vitro 

exposed cells and in vivo exposed organisms. In both studies, levels of CCF-1 were reduced 

due to C60 exposure, indicating that the tissue injuries at the organismal level may be 

associated with immunosuppression rather than mortality of the coelomocytes. 
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Abstract 

The impact of silver nanoparticles (AgNP) and silver nitrate (AgNO3) on Lumbricus 

rubellus earthworms was assessed. Four week exposure to the highest AgNP treatment (154 

mg Ag/kg) reduced growth and reproduction, compared with the control. AgNO3 exposure 

also caused lowered reproduction, but not as much as the equivalent AgNP treatment. 

Lifelong exposure to the highest AgNP treatment caused complete juvenile mortality. All 

AgNP treatments induced tissue pathology. Population modelling demonstrated reduced 

population growth rates for the AgNP and AgNO3 treatments, and no growth at the highest 

AgNP treatment, due to juvenile mortality. Analysis of AgNP treated soil samples revealed 

that single AgNP and AgNP clusters were present in the soil, and that total Ag in soil pore 

water remained high throughout the lifelong experiment. Overall, this study indicates that 

AgNP exposure may affect earthworm populations and that the exposure may be prolonged, 

due to continuous release of Ag to the soil pore water. 
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Introduction 

Nanotechnology has an increasing societal impact, with great expectations for the use of 

nanoparticles in a wide range of applications including food additives, medical devices and 

soil remediation (Andreescu et al. 2009; Calzolai et al. 2012; Dekkers et al. 2011). Silver 

nanoparticles (AgNP) are among the most widely used nanoparticles in consumer products 

and inevitably, the unintended exposure of humans and the environment is of concern 

(Calzolai et al. 2012; Wijnhoven et al. 2010). Consequently, there have been efforts to 

collect data on the environmental hazards and behaviour of AgNP (Arnaout and Gunsch 

2012; Stone et al. 2010; Wijnhoven et al. 2010). Kahru and Dubourguier (2010) evaluated 

the toxicity of nanoparticles on species from different levels in the aquatic ecosystem 

(including bacteria, algae, yeast, ciliates, crustaceans, nematodes and fish) from 77 studies, 

and classified AgNP as “extremely toxic”. Several studies suggest that the toxicity of AgNP 

to the environment may be derived from the release of silver (Ag) ions, because ionic Ag is 

known as one of the most toxic heavy metal species, but the hazards of AgNP may not be 

completely explained by ionic Ag toxicity (Arnaout and Gunsch 2012; Colman et al. 2012; 

Griffitt et al. 2009; Mitrano et al. 2012; Ratte 1999). 

The risks of AgNP exposure to terrestrial ecosystems and especially soil organisms is still 

poorly understood (Shoults-Wilson et al. 2011c). However, the antimicrobial properties of 

AgNP have raised concerns that soil microbial communities may be disturbed, with 

deleterious consequences for important ecosystem functions, including decomposition and 

nutrient cycling (Colman et al. 2012; Rai et al. 2009). In addition, direct AgNP toxicity to 

other soil organisms is also of concern (Tourinho et al. 2012). 

A limited number of studies have investigated the impact of AgNP exposure to earthworms, 

quantifying effects on survival, growth, avoidance, inhibition of the Na+, K+ ATPase and 

apoptotic activity in tissues, for Eisenia fetida and Lumbricus terrestris earthworms 

(Heckmann et al. 2011a; Hu et al. 2012; Lapied et al. 2010; Shoults-Wilson et al. 2011a, 

2011b and 2011c). The toxicity of metal nanoparticles to soil organisms has been 

tentatively associated with ionic metal fractions appearing in the soil pore water (Kool et al. 

2011; Shoults-Wilson et al. 2011a). Furthermore, the behaviour of AgNP may be modified 

by interactions of these nanoparticles with soil components, such as organic matter and 
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clay, and by soil characteristics, including ionic strength and pH (Cornelis et al. 2010; 

Coutris et al. 2012; Lapied et al. 2010; Shoults-Wilson et al. 2011a; Stebounova et al. 2011; 

Tourinho et al. 2012). Therefore, for good interpretation of soil toxicity experiments, 

characterisation of the nanoparticles in different soil compartments (e.g. soil and soil pore 

water) is required (Cornelis et al. 2010; Jiang et al. 2009; Montes-Burgos et al. 2010; Stone 

et al. 2010). 

Our previous work on C60 exposure to earthworms highlighted some important timescale 

issues in nanoparticle toxicity. In vivo experiments demonstrated lower reproduction after 

four week C60 exposure, and reduced survival and growth after lifelong C60 exposure, 

which are all critical endpoints for population dynamics (Chapter 2). For these C60 

exposed earthworms, tissue pathology and genomic responses were observed as well, as 

discussed in Chapter 3. Additional in vitro experiments, using earthworm immune cells 

(coelomocytes), demonstrated effects of exposure to C60 and polymer nanoparticles, which 

implicated the immunotoxic potential of nanoparticles (Chapter 4). In the present study a 

similar approach was employed, using Lumbricus rubellus earthworms exposed to AgNP in 

vivo for four weeks with a subsequent lifelong exposure of the offspring and the assessment 

of a range of endpoints (survival, growth, reproduction and histopathology). A population 

model was used to quantify the potential impact of AgNP induced changes of these 

individual endpoints on L. rubellus populations. In an attempt to link exposure to effects, 

Ag concentrations were characterized in different test matrices, using several independent 

analytical techniques. In addition, given our previous observations of immunotoxicity of 

nanoparticles, an in vitro experiment with coelomocytes was performed to give insight in 

possible modes of action of AgNP toxicity. 

 

Materials and Methods 

Three experiments were conducted, two in vivo experiments and one in vitro experiment. 

The first in vivo experiment encompassed the four week exposure of adult earthworms, and 

the assessment of their survival, growth and reproduction. In the second in vivo experiment, 

offspring from the first experiment were monitored lifelong for survival and growth. In 

addition, an in vitro experiment was conducted, to assess the possible immunotoxic effects 
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of AgNP. In the latter experiment, earthworm coelomocytes were exposed overnight and 

cell survival was determined. 

 

Test compounds 

Commercially available NM-300K silver nanoparticles (AgNP) were obtained from 

Mercator GmbH (Germany), with a mean reported particle diameter of 15 nm (90%  < 20 

nm). These nanoparticles have been selected as a representative nanomaterial by the OECD 

Working Party on Manufactured Nanomaterials (WPMN) international testing program 

(OECD 2010). The stock suspension of AgNP contained 10.16% Ag (w/w) dispersed in a 

stabilizing vehicle material, consisting of polyoxyethylene glycerol trioleate (4%; w/w) and 

polyoxyethylene (20) sorbitan mono-laurat (Tween 20) (4%; w/w) (manufacturer’s 

information). The vehicle material without AgNP was also purchased from Mercator as 

NM-300K DIS Ag-dispersant, and used as a control. Silver nitrate (AgNO3) was obtained 

from Merck KGaA (Germany), as a powder with a purity of 99.8% (w/w), and used to 

benchmark the AgNP effects against Ag salt. 

Metal impurities in the AgNP stock suspension and the AgNO3 powder were measured by 

an Element 2 high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS; 

Element 2; Thermo Scientific, Germany), after dissolving in 0.14M HNO3 (1/1000). The 

levels of metal impurities were very low (as shown in Table S1 of the Supplementary Data) 

and therefore, no additional risks were expected from these impurities. 

 

In vivo experiments 

Experimental design 

The in vivo experiments were conducted following ISO guidelines 11268-2: 1998, with 

minor adjustments in exposure scenarios and using the earthworm species L. rubellus. For 

the four week exposure experiment, adult (clitellated) earthworms were acquired 

(Nijkerkerveen, the Netherlands). The average weight of the earthworms was 1373 ± 33 mg 

(mean ± SEM; n = 180) and the weights did not differ significantly between exposure 

groups (p > 0.05). Prior to the experiment, the earthworms were acclimatized for two weeks 
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under constant conditions (24 hours light, 15°C and 61% relative humidity) in 

uncontaminated sandy test soil, with 1.6% clay, 4.3% organic matter and a pH-H2O of 5.96. 

 

For the in vivo experiments, the soil was prepared as described in chapter 2, using a wet-

spiking procedure with a soil extract. For each treatment, six glass containers were used (n 

= 6), each housing five earthworms. Different soil exposure concentrations of Ag in the 

form of AgNP and AgNO3 were used. Three nominal exposure concentrations of AgNP 

were tested: 1.5 (low), 15.4 (medium) and 154 (high) mg Ag/kg soil. Due to limitations in 

the experimental logistics of the in vivo experiments, only one concentration of AgNO3 was 

tested, at 15.4 mg Ag/kg soil, to compare the Ag salt with the highest AgNP treatment. In 

addition, soil without Ag and soil with vehicle material were used as controls. The soil 

extract used to spike the soil, was obtained by addition of soil to ultrapure water, after 

which the suspension was shaken and filtrated. Subsequently, the soil extract was spiked 

with AgNP (2.0 Ag/l), AgNO3 (0.2 g Ag/l), vehicle material (20 g/l; as a control for AgNP) 

or without any addition (control for AgNO3) and added to the soil. The soil was mixed 

thoroughly and added to the container, after which the earthworms were placed in the 

container immediately. In the materials and methods section of the Supplementary Data, 

further details about the soil and the spiking procedure are provided. 

 

For the four week experiment the endpoints included survival, growth (weight gain 

compared between beginning and end of experiment) and reproduction (the cocoon 

production per container at the end of the experiment, converted to the average number of 

cocoons produced per earthworm per day). Furthermore, at the end of the experiment, 

histological observations of different tissues were made and total Ag concentrations were 

analysed in tissues. In addition, imaging of Ag particle uptake (only for the high AgNP 

treatment) was conducted at the end of the experiment, to underpin the analytical results. In 

the lifelong experiment earthworms were checked monthly, over a period of ten months, for 

survival and growth. Furthermore, histological examinations were made at the end of the 

lifelong experiment (after ten months). 
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Table 1. Overview of the different analytical techniques used to characterize in vivo exposure. The exposure was assessed in soil extract (SE) and 

ultrapure water (UPW) by asymmetric flow field flow fractionation system (AF4) to determine the size of AgNP, and in soil (S) and earthworms (E) 

to quantify total Ag and Ag particle diameter and concentrations using inductively coupled plasma mass spectrometry (ICP-MS) and single particle 

ICP-MS (SP-ICP-MS). Furthermore, soil pore water was analysed by flame atomic absorption spectrometry (F-AAS) to measure total Ag 

concentratis present in the soil pore water samples. Samples for the analyses were freshly made (t = 0) or taken at the end of the four week (t = 1 

month) or the lifelong experiment (t = 10 or 11 months). In addition, freshly made samples of soil extract (SE), as well as samples from soil (S) and 

earthworms (E) taken at the end of the four week experiment were analysed by field emission gun scanning electron microscopy in combination 

with energy dispersive analysis of X-rays (SEM/EDX). The abbreviation n.a. means not applicable. 

Matrix SE and UPW  Soil Soil pore water Earthworm SE, Soil, Earthworms 

Endpoint Size 
Total Ag and Ag 

particle (>30 nm) conc. 
Total Ag conc. 

Total Ag and Ag particle 

(>30 nm) conc. 
Imaging of Ag particles 

Method AF4 ICP-MS, SP-ICP-MS F-AAS ICP-MS, SP-ICP-MS SEM/EDX 

Time point t=0 t=1 and t=10  t=1 and t=11 t=1  t=0 (SE), t=1 (S, E) 

Treatment 

unit analysed 
n.a. 

All AgNP and AgNO3 

treatments 

All AgNP and 

AgNO3 

treatments 

All AgNP and AgNO3 

treatments 

High AgNP and AgNO3 

(S), high AgNP (E) 
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Exposure characterisation 

In this section, an overview of the methods used to characterise the in vivo exposure will be 

presented. Due to the extent of the methods, details are provided in the materials and 

methods section of the Supplementary Data. 

Characterisation of the AgNP and total Ag concentrations was performed in the soil extract 

(used for addition of AgNP, AgNO3 and vehicle material to the soil), the soil, the soil pore 

water and the earthworms, where technically possible. An overview of the in vivo exposure 

characterisation is presented in table 1 and the results are discussed in the results section. 

 

For analysis of the soil extract, which was used for spiking the soil, a freshly made stock of 

AgNP in the soil extract was diluted with clean soil extract before determination of the 

particle diameter of AgNP with asymmetric flow field flow fractionation (AF4). An 

accompanying experiment was performed with the soil extract, during which the ionic 

strength of the soil extract was increased. This experiment was performed because of the 

idea that the ionic strength of the soil pore water during the in vivo experiments was 

probably (much) higher than of the soil extract (Houba et al. 2000) and therefore AgNP 

aggregation is expected when adding the soil extract to the soil (Cornelis et al. 2010; 

Tourinho et al. 2012).  

For analysis of the soil, soil samples were taken at the end of the four week and lifelong 

experiments (after ten months). After acid digestion of the soil, inductively coupled plasma 

mass spectrometry (ICP-MS) was used to measure total Ag concentrations. In addition, a 

novel method for quantification of relative particle size distribution and particle number 

concentrations of Ag particles was applied, using single particle ICP-MS (SP-ICP-MS). 

Similar soil samples as used for the ICP-MS measurements were analysed after water 

extraction, in order to preserve the structural integrity of the Ag particles.  

For analysis of total Ag in the soil pore water, samples were obtained after saturation and 

centrifugation of soil samples taken at the end of the four week and lifelong experiments 

(after eleven months). Subsequently, total Ag concentrations in the soil pore water samples 

were directly measured with flame atomic absorption spectrometry (F-AAS).  
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For the earthworm analysis, whole earthworm samples were collected at the end of the four 

week experiment and analysed to assess the uptake of Ag. Measurements by ICP-MS were 

performed to determine total Ag concentrations in the earthworm samples, after acid 

digestion of whole earthworms. In addition, particle size distribution and particle number 

concentration of Ag particles were measured by SP-ICP-MS, in water extracts of the 

earthworms.  

Furthermore, in almost all matrices of the in vivo experiment (soil extract, soil and 

earthworm) the presence of Ag particles was qualitatively assessed by field emission gun 

scanning electron microscopy in combination with energy dispersive analysis of X-rays 

(SEM/EDX). SEM/EDX provides information about the Ag particle size and composition, 

and the elements associated with these particles. 

 

Effect assessment: Individual and population endpoints 

At the start of the four week experiment, the earthworms were weighted and added to the 

containers. Earthworms were fed alder leaves (Alnus glutinosa) from an uncontaminated 

location (Vossemeerdijk, Dronten, the Netherlands), ad libitum. After four weeks, the 

experiment was terminated and the earthworms were counted and weighted again. One 

earthworm per container was stored in 4% buffered formal saline for histological 

examination (Handy et al. 2002b), after segments were carefully cut with a sharp scalpel 

blade, covering the region approximately one centimetre anterior and posterior to the 

clitellum. The other earthworms were put in liquid nitrogen and stored at -80°C, until 

further analysis. Subsequently, the number of cocoons present per container was 

determined by wet-sieving and hand-sorting.  

For the consecutive lifelong experiment, the cocoons from the first experiment were 

incubated in petri dishes with soil of the corresponding treatment of their parent 

earthworms. After hatching, juveniles were transferred to containers with soil of the same 

exposure as their parents, again with six containers per treatment (n = 6) and five 

earthworms per container. Earthworms were checked monthly over a period of ten months, 

to determine weight and life stage: juvenile, subadult (showing a tubercula pubertatis, but 

before the clitellum has fully developed) or adult (with a fully developed clitellum) (Sims 
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and Gerard 1985). At the end of the experiment, earthworms were counted and weighted. 

For histological examination, one earthworm was randomly chosen from each container, 

carefully cut and then immediately fixed in 4% buffered formal saline. The other 

earthworms were put in liquid nitrogen and stored at -80°C, until further analysis. 

 

The individual effect markers on adult reproduction and offspring survival and growth, 

were integrated to assess consequences at the population level, using a continuous-time life-

history model as described in chapter 2. Within this model, several parameters were taken 

from the literature (Klok and De Roos 1996), including the duration of the cocoon stage (τ0; 

42 days), and the mortality chance per day (with 1 = 100% mortality at day 1) for the 

cocoon stage (μc; 0.001) and the adult life stage (μad; 0.0027). 

 

Effect assessment: Histological observations 

For the histological examinations, the fixed segments were processed into wax blocks and 

transverse sections of 7 µm were cut from each segment. The staining of these sections was 

performed using Mallory’s trichrome. All sections were prepared simultaneously, in 

batches containing both samples from earthworms of the control, AgNP and AgNO3 

treatments, in order to eliminate differences in fixation or staining artefacts between 

treatments. Sections were examined with an Olympus Vanox-T microscope and 

photographs were obtained using an Olympus digital camera (C-2020 Z). Eventually, not 

all earthworms were examined, due to some preservation artefacts, which made the 

histological observations semi-quantitative. 

 

In vitro experiment 

Exposure characterization 

Dynamic light scattering (DLS) and Zetasizer analyses were applied on freshly made stocks 

of AgNP and AgNO3 (10 μg/ml) in ultrapure water and Ham’s F-12K (Kaighn’s) medium 

(cell culture medium; from Invitrogen/Life Technologies Ltd, UK) containing 10% fetal 

calf serum (FCS), to measure particle size distribution and zeta potential for AgNP and 
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AgNO3 (results are presented in the Results section). Furthermore, the presence of Ag 

particles was qualitatively established using SEM/EDX. 

 

Effect assessment: Coelomocyte viability 

Primary immune cells from the coelomic fluid (coelomocytes) were exposed to AgNP and 

AgNO3 in vitro. Coelomocytes were extruded from unexposed adult L. rubellus earthworms 

as described in chapter 4. Serial dilutions of AgNP and AgNO3 in cell culture medium 

containing 10% FCS were made, to obtain a concentration range of exposure medium from 

0 to 2000 μg Ag/ml cell culture medium, for AgNP as well as AgNO3. In addition, serial 

dilutions of vehicle material without AgNP were prepared and used as negative control for 

AgNP exposure. Subsequently, 50 μl of exposure medium was added to 50 μl of 

coelomocytes suspension (with approximately 5 x 10
6
 coelomocytes/ml) in a 96 well-plate, 

to obtain the acquired final concentrations of AgNP and AgNO3 from 0 to 1000 μg Ag/ml 

cell culture medium. The coelomocytes were incubated overnight, at 15°C. Hereafter, cell 

viability was assessed using 0.05% trypan blue (final concentration), as described in 

chapter 4. 

 

Statistical analyses 

Differences between treatments were analysed using analysis of variance (ANOVA, with α 

= 0.05), with least significant differences (LSD) as the post-hoc test (Burgers and Oude 

Voshaar 2010). The ANOVA tests were carried out using GENstat (14
th

 Edition, VSN 

International Ltd.). Results are presented relative to the corresponding control (= 100%), as 

mean ± standard error of the mean (SEM) per treatment, unless otherwise specified. 
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Results 

In vivo experiments 

Exposure characterisation 

The particle diameter of AgNP in the soil extract (used for spiking the soil) was determined 

by AF4, which demonstrated a clear peak with a maximum absorption at a particle diameter 

of 16 nm (Supplementary Data Figure S1). Integration of the fractograms with total Ag 

measurements in the eluent fractions demonstrated that more than 90% of the total Ag 

amount in the soil extract had a particle diameter < 32 nm (Figure S2). The addition of 

calcium to the soil extract with AgNP at a concentration of 5 mM and higher, caused 

complete destabilization of the colloidal AgNP suspension (Figure S3), suggesting 

clustering and settling of the AgNP.  

SEM/EDX analysis of the soil extract containing AgNP demonstrated the presence of 

single Ag particles, with a particle diameter of approximately 20 nm. Some larger structures 

(50 to 250 nm) of Ag were also present, consisting of Ag only or Ag in combination with 

carbon, chloride and sulfide. In the soil extract with AgNO3, large Ag flake-like structures 

(≥ 1 μm) were formed, which also contained chloride and carbon. 

 

Soil samples were taken at the end of the four week and the lifelong (ten months) in vivo 

experiments. For the four week experiment, the total Ag concentrations were 1.2 ± 0.03, 

10.5 ± 0.2 and 118 ± 4 mg Ag/kg for the low, medium and high AgNP treatments, 

respectively (Table 2). Hence, 68 to 80% of the nominal AgNP soil exposure concentration 

was extracted from the soil samples, with the acid digestion method. After ten months the 

low, medium and high AgNP treatments demonstrated total Ag concentrations of 1.3 ± 0.3, 

8.3 ± 0.3 and 104 ± 4 mg Ag/kg soil, respectively. The AgNO3 treatment showed a total Ag 

concentration of 11.5 ± 0.1 mg Ag/kg after four weeks (Table 2) and a concentration of 6.3 

± 0.01 mg Ag/kg soil after ten months. A novel method for SP-ICP-MS analysis of soil was 

applied, with which a water extractable fraction of 10 to 27% was detected. Furthermore, 

due to the instrumental parameters used for the SP-ICP-MS, it was only feasible to detect 

particles larger than 30-40 nm. Consequently, the present results are semi-quantitative and 
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provide insight into the occurrence of particles larger than 30 nm, excluding the single 

AgNP used in this study. Ag particle concentrations for the low AgNP and the AgNO3 

treatments were below the detection limit of the SP-ICP-MS (< 0.10 mg Ag/kg soil) for all 

samples. Soil samples taken after four weeks from the medium AgNP treatment showed an 

Ag particle concentration of 0.13 ± 0.02 mg Ag/kg and for the high AgNP exposure soil 

this concentration was 5.5 ± 0.9 mg Ag/kg soil (Figure S4), with average Ag particle sizes 

of 42 nm and 46 nm, respectively. After ten months, the Ag particle concentration for 

medium AgNP soil was below the detection limit. The high AgNP treatment showed a 

concentration of 1.9 ± 0.3 mg Ag/kg soil, with Ag particles of 48 nm, at this time point. 

SEM/EDX imaging of the soil samples taken at the end of the four week experiment 

indicated the presence of AgNP in the soil in three different forms: (1) single AgNP of 

approximately 20 nm in size, which were most abundant, (2) larger spherical structures 

with a size of 50 to 250 nm, containing only Ag (Figure S6A), and (3) structures of 

approximately 500 nm in the shape of a star (Figure S6B). These star shaped structures 

consisted of Ag particles of 50 to 100 nm, in combination with carbon and chloride. In the 

soil samples treated with AgNO3 no Ag structures were visible. 

 

Analyses of the soil pore water samples were carried out at the end of the four week and the 

lifelong in vivo experiments, in order to assess whether any changes of the total Ag levels in 

the soil pore water occurred over time. Total Ag concentrations in the soil pore water 

samples from the low and medium AgNP treatments were below the detection limit of the 

F-AAS (< 3 μg Ag/l). Soil pore water samples from the high AgNP treatment showed a 

total Ag concentration of 96 ± 6 μg Ag/l after four weeks (Table 2) and after eleven months 

the total Ag concentration had increased to 260 ± 21 μg Ag/l. For the AgNO3 treatment, 

total Ag could only be detected in soil pore water samples after four weeks, with an Ag 

concentration of 16 ± 7 μg Ag/l (Table 2). 

 

Using ICP-MS, total Ag concentrations were measured in earthworms exposed in vivo for 

four weeks and the uptake ratio of the total Ag concentration in the earthworm to the total 

Ag concentration in the soil could be established. Ag concentrations of the earthworms 
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sampled from the low AgNP treatment did not exceed the detection limit for the ICP-MS (< 

1 mg Ag/kg earthworm) and the SP-ICP-MS (< 0.2 μg Ag/g earthworm). Earthworms from 

the medium AgNP treatment group showed a total Ag concentration of 4.5 ± 0.5 μg Ag/g 

earthworm (Table 2), which indicates a corresponding uptake ratio of 0.43. In earthworms 

from the high AgNP treatment, the total Ag concentration was 2.7 ± 0.3 μg Ag/g earthworm 

(Table 2), suggesting an uptake ratio of 0.02. For AgNO3 exposed earthworms, total Ag 

concentration and the corresponding uptake ratio were 2.3 ± 0.7 μg Ag/g earthworm (Table 

2) and 0.2, respectively. The SP-ICP-MS analysis of earthworms from the medium AgNP, 

high AgNP and AgNO3 treatments showed Ag particle concentrations of 0.3 ± 0.16 μg 

Ag/g earthworm (average size 47 nm), 1.2 ± 0.97 μg Ag/g earthworms, with an average 

size of 51 nm (Figure S5), and particles of 49 nm at a concentration of 2.2 ± 0.8 μg Ag/g 

earthworm, respectively. 

 

Table 2. Exposure characterisation of the four week experiment presented with the nominal concentrations (mg 

Ag/kg soil) for the AgNP and AgNO3 treatments, as well as the total Ag concentrations measured in soil (mg 

Ag/kg soil). Furthermore, total Ag concentration in the soil pore water (μg Ag/l soil pore water) and the 

earthworms (μg Ag/g earthworm) are demonstrated. In addition, effects of four week exposure to AgNP and 

AgNO3 on relative weight gain and cocoon production of the L. rubellus earthworms (n = 6 containers) are shown. 

Values are presented as mean ± SEM. For the effects, values are compared with the corresponding control (= 

100%), between vehicle material control (V. control) and AgNP treatments or control and AgNO3 treatments, and 

for these data an asterisk sign (*) shows an assessed significant difference. 

Treatment 
Nominal 

[Ag] 
Total Ag in soil 

Total Ag in soil 

pore water 

Total Ag in 

earthworms 

Relative 

weight gain 

Relative # 

cocoons 

V. control 0 < 1 < 3 < 1 100 ± 12 100 ± 4 

AgNP 1.5 1.2 ± 0.03 < 3 < 1 121 ± 17 103 ± 5 

 
15.4 10.5 ± 0.2 < 3 4.5 ± 0.5 136 ± 4 91 ± 11 

 
154 118 ± 4 96 ± 6 2.7 ± 0.3 44 ± 12 * 18 ± 3 * 

Control 0 < 1 < 3 < 1 100 ± 17 100 ± 8 

AgNO3 15.4 11.5 ± 0.1 16 ± 7 2.3 ± 0.7 118 ± 14 60 ± 10 * 

 

SEM/EDX analysis of the earthworm slices from the high AgNP treatment of the four week 

experiment demonstrated the presence of Ag particles in the intestine, consisting of Ag only 



Effects and characterization of AgNP exposure 

109 

(Figure 1A) or along with sulfide and chloride. When focussing on the dermis of the 

earthworms, Ag particles were found within the layer of epithelial cells. These were single 

AgNP with a size of approximately 20 nm (Figure 1B), but also larger particles (≤ 100 nm) 

consisting mainly of Ag. 

 

 

 

Figure 1. SEM/EDX images and EDX spectrum analyses obtained from a L. rubellus earthworm exposed to the 

high AgNP treatment for four weeks, indicating the presence of an Ag only structure in the intestine (A) and a 

single AgNP in the dermis (B). The grey oval line in the EDX spectrum encircles the Ag element peak. 

 

Effect assessment: Individual and population endpoints 

All adult earthworms survived the four week exposure. Table 2 shows that the adult weight 

gain in the high AgNP treatment group was significantly reduced (down to 44%), compared 
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with the vehicle material control group, as was the reproduction (down to 18%). AgNO3 

exposure did not reduce weight gain, but a significant reduction in cocoon production down 

to 60% was observed, as compared with the unexposed control treatment (Table 2). 

 

In the lifelong experiment the hatchability of the offspring was only significantly affected 

in the high AgNP treatment (ANOVA, p=0.001), where only two cocoons hatched and the 

hatched juveniles died shortly afterwards. 

 

Table 3 shows the parameters used in the continuous-time life-history model for the 

different treatments, which were estimated from the individual endpoints, e.g. adult 

reproduction, and survival and growth of the offspring. The low and medium AgNP 

treatments caused significantly reduced population growth rates (ANOVA; p < 0.001), 

decreasing down to 95% and 89%, respectively, compared with the vehicle material 

control. For the high AgNP, no population growth calculation was possible, due to the 

100% mortality shortly after hatching. The population growth rate of the AgNO3 treatment 

was significantly reduced compared with the corresponding unexposed control (87%; 

ANOVA; p < 0.001) and slightly, but significantly, lower than the medium AgNP 

treatment. The life stage distribution of the populations did not show significant differences 

between treatments, aside from the high AgNP treatment with the 100% juvenile mortality. 
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Table 3. Input parameters for the population model, estimated from the four week and lifelong in vivo experiments, are presented per treatment group. The 

growth rate constant for the individual earthworms (γ) is given in mg1/3/mg1/3/day and the maximum reproduction rate (Rm) per treatment group is presented 

as cocoons/mg1/3/day. Earthworm length at birth (Lb), the lengths at reaching subadulthood (Ls) and adulthood (Lad), and the estimated maximum length of 

the earthworms (Lm) are displayed as mg1/3. In addition, the mortality chance for the juveniles (μj) and subadults (μs) are given per day (with 1 = 100% 

mortality at day 1). For all data, the mean values are presented and the standard deviation (SD) is displayed when this was required for the model. 

Significant differences between vehicle material control and AgNP treatments or control and AgNO3 treatments are displayed with an asterisk sign (*). 

Treatment 

Input parameters 

γ Rm Lb Ls Lad Lm μj  μs  

Vehicle control 0.022  ±  0.005 0.0033 ± 0.0005 2.49  ±  0.3 10.5 11.2 13.3  ±  0.8 0.005 0.0043 

Low AgNP 0.023  ±  0.005 0.0039 ± 0.0003 2.426  ±  0.1 9.93 11.2 12.5  ±  0.6 0.0051 0.0043 

Medium AgNP 0.021  ±  0.006 0.0027 ± 0.0004* 2.46  ±  0.2 10.4 11.8 14.0  ±  0.1 0.0061 0.0059 

Control 0.021  ±  0.004 0.0032 ± 0.0005 2.68  ±  0.1 9.9 11.4 13.4  ±  1.0 0.0047 0.0043 

AgNO3 0.021  ±  0.005 0.0018 ± 0.0002* 2.69  ±  0.2 10.2 11.5 13.9  ±  0.9 0.0053 0.0043 
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Effect assessment: Histological observations 

For the four week experiment, observations of the tissue segments anterior to the clitellum 

and of the clitellum region from the control and the vehicle material control earthworms 

showed a normal histology. The tissue segments anterior to the clitellum of these 

earthworms showed an epithelium consisting of columnar epithelial cells, some mucous 

and basal cells, and normal looking underlying circular and longitudinal muscles (Figure 

2A and 2B). One of the four vehicle material control earthworms, showed some slight 

eosinophilic granular material in the epithelium of these segments. The clitellum region of 

the control and vehicle control earthworms showed a pseudostratified epithelium with soft 

parenchyma underneath and normal circular and longitudinal muscle layers. 

The AgNP treatments caused mild or moderate erosion in parts of the epithelium of the 

tissue anterior to the clitellum (Figure 2C, 2D and 2E), for three of the four low AgNP 

treated earthworms and two of the four medium AgNP and high AgNP examined 

earthworms, respectively. Mild fibrosis was noted in the circular muscles of these 

earthworms as well. The tissues of the clitellum region were also affected by four week 

exposure to AgNP. Exposure to the low and medium AgNP treatment caused granular 

lipofuscin-like deposits in the clitellum tissue and epidermis, and mild fibrosis of the 

circular muscle, in two of six (low) and two of three (medium) examined earthworms. For 

the high AgNP treatment, only tissue from one earthworm, with normal histology, was 

examined. Earthworms from the AgNO3 treatment showed some hyperplasia in the 

epidermis and some granular lipofuscin-like deposits in the circular muscle (2 of 3 

earthworms), in the tissue anterior to the clitellum (Figure 2F). In addition, in the clitellum 

region of one of the three AgNO3 exposed earthworms some hyperplasia of the 

pseudostratisfied epithelium was noted. 

 

For the lifelong experiment, examination of the segments of the clitellum region and the 

tissue anterior to the clitellum of the control and the vehicle material control earthworms 

showed normal histology.  

The tissue anterior to the clitellum of earthworms from the low and medium AgNP 

treatments showed some erosion of the epithelium. In addition, one earthworm from the 
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medium AgNP treatment showed excessive hyperplasia of mucus cells in the epidermis, 

which suggests increased mucus production (a defence mechanism). When looking at the 

clitellum region, low AgNP treatment resulted in hyperplasia of mucus cells in the 

epidermis and some loss of the clitellum tissue thickness in one of the five earthworms. All 

four earthworms from the medium AgNP treatment demonstrated slight or moderate loss of 

architecture for the epithelial cells of the clitellum region, and one earthworm showed 

additional fibrosis and lipofuscin-like deposits in the circular muscle, as well as some 

damage to the longitudinal muscle. For the AgNO3 treatment, slight erosion of epithelial 

cells (with otherwise intact epithelium) and some thickening of the circular muscle were 

noted in tissue anterior to the clitellum of two of the three earthworms. In the clitellum 

region, AgNO3 treatment had less effect than the AgNP treatments, causing some erosion of 

the epithelium, and some thickening of the circular muscle in two of the three earthworms. 

 

The in vitro experiment 

Exposure characterisation 

For the in vitro experiment, Ag exposure was analysed using SEM/EDX, DLS and zeta 

potential. SEM/EDX analysis of cell culture medium with AgNP demonstrated single Ag 

particles of approximately 20 nm (most abundant) and some larger Ag structures (50-250 

nm), which appeared to include chloride and sometimes sulfide. DLS analysis of AgNP in 

the ultrapure water demonstrated particles with a hydrodynamic diameter of 50 nm (Figure 

3) and a zeta potential of -25 ± 1. When AgNP was analysed in the cell culture medium, the 

particle hydrodynamic diameter became slightly larger (58 nm; Figure 3) and the zeta 

potential became less negative (-11 ± 1 mV). SEM/EDX imaging of AgNO3 in the cell 

culture medium showed large structures of Ag (≥ 1 μm), which were associated with 

chloride. No consistent results were obtained for DLS measurements of AgNO3 in ultrapure 

water and the cell culture medium. Zeta potential measurements of AgNO3 showed a 

slightly positive zeta potential in ultrapure water (1.6 ± 0.4 mV) and a zeta potential of -12 

± 0.3 mV in the cell culture medium. 
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Figure 2. Transverse sections of segments from the anterior region of L.rubellus earthworms exposed for four 

weeks to control (A), vehicle material control (B), low (C), medium (D), high (E) Ag NP, or AgNO3 (F) soil. 

Controls and vehicle material controls showed normal morphology of the epidermis and underlying muscles. Note 

the erosion of the epithelium and fibrosis of the circular muscle in panel C, D and E due to Ag NP exposure, with 

the medium treatment usually worse than the others. AgNO3 treatment (F) had only minor impact with some 

granular lipofuscin-like deposits, mainly in the circular muscle. Magnification X400. Sections cut 7 µm stained 

with Mallorys trichrome. 
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Figure 3. Hydrodynamic diameters of AgNP in ultrapure water (black dotted line) and cell culture medium with 

10% FCS (grey line), measured with DLS at t = 0. 

 

Effect assessment: Coelomocyte viability 

Figure 4 shows that viability of the coelomocytes decreased with increasing AgNP 

concentrations, demonstrating an EC50 of 290 μg Ag/ml cell culture medium. Viability of 

the coelomocytes was affected more by AgNO3 exposure, with an EC50 of 21 μg Ag/ml cell 

culture medium (Figure 4). 

 

 

Figure 4. Viability of the coelomocytes exposed to increasing concentrations of AgNP (black open circle) or 

AgNO3 (grey cross). Values are compared with the control (=100%) and are shown as mean ± SEM (N=3). An 

asterisk sign (٭) indicates a statistically significant difference compared with the control. The regression curves for 

AgNP (continuous black line) and AgNO3 (dashed grey line) exposure are displayed. 
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Discussion 

The present study has investigated the effects of in vivo exposure of earthworms to AgNP 

through the soil. Effects of AgNP exposure were not only observed in a four week exposure 

experiment on growth, reproduction and histopathology, but also after lifelong exposure on 

survival, growth and histopathology. The modelling approach made it possible to observe 

effects of AgNP exposure on L. rubellus population growth rate, even at the lowest AgNP 

concentration (1.5 mg Ag/kg soil) tested. Furthermore, the in vitro assay showed the 

potential immunotoxicity of AgNP exposure to coelomocytes, which may have implications 

on whole body functioning. Exposure characterization indicated that the soil extract (used 

for spiking the soil) contained many single AgNP, but addition of the soil extract with 

AgNP to the soil led to formation of larger Ag structures, in addition to the single AgNP. 

Furthermore, total Ag levels in the soil pore water of the AgNP exposure soil remained 

high during the lifelong experiment, which was not observed for soil spiked with AgNO3. 

This suggests differences in the behaviour of the nano form compared with the metal salt in 

the soil. 

 

Exposure characterisation 

In this study, several analytical techniques were used to characterize the exposure of 

earthworms in vivo. With these different techniques a thorough characterization of AgNP 

was established, before addition of AgNP to the soils (using the soil extract), and during 

exposure of the earthworms in the soil and in the soil pore water. In addition, uptake of 

AgNP by the earthworms was analysed. 

Analysis of AgNP in the soil extract by AF4 showed a peak diameter at 16 nm, which is in 

good agreement with Klein et al. (2011) for the same NM-300K AgNP, who reported a 

particle diameter varying from 14 to 17 nm using transmission electron microscopy. The 

ionic strength of the soil extract was rather low (2.3 mM), while the ionic strength in the 

soil pore water during the in vivo experiment may have been much higher (Houba et al. 

2000). This higher ionic strength may have led to clustering of AgNP after the soil extract 

was added to the soil (Cumberland and Lead 2009; Delay et al. 2011; Stebounova et al. 

2011). This phenomenon may explain the presence of larger Ag structures within the solid 
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phase of the soil, as indicated by SEM/EDX and SP-ICP-MS analyses, in addition to the 

single AgNP also observed in the soil by SEM/EDX. These larger Ag structures consisted 

of AgNP clusters (Figure S6A) or of AgCl and Ag2S heteroaggregates (Figure S6B), 

possibly with ionic silver adsorbed to the AgNP surfaces and ‘nanobridges’ of AgCl or 

Ag2S heteroaggregates between the AgNP (Levard et al. 2011; Li et al. 2010; Liu and Hurt 

2010; Walczak et al. 2012). Furthermore, the results of the soil pore water from the high 

AgNP exposure soil suggest that Ag particles and structures provided continuous release of 

Ag to the soil pore water. This suggestion is in line with Coutris et al. (2012), who also 

observed a long-term release of (dissolved) Ag in their study using uncoated AgNP of 20 

nm. In the SEM/EDX imaging and SP-ICP-MS analysis of soil with AgNO3, no Ag 

particles and structures were detected. This indicates that AgNO3 remained dissolved in the 

soil, as is also known and demonstrated for this metal salt (Atkins and Jones 2000; Coutris 

et al. 2012; Ratte 1999). The Ag from AgNO3 may have undergone rapid fixation in the 

soil, binding to chloride, sulfide and soil organic matter, without forming large and 

detectable amounts of insoluble Ag heteroaggregates (Alberts and Filip 1998; Coutris et al. 

2012; Kerndorff and Schnitzer 1980; Murray and Linder 1984). Hence, these results 

suggest that exposure of organisms to AgNP in soils has a more dynamic character than 

exposure to AgNO3, because AgNP continuously release Ag to the soil pore water, unlike 

AgNO3. 

 

The uptake of Ag by four week exposed earthworms demonstrated that, even though the 

total Ag and nominal AgNP concentrations in the soil increased, the total Ag concentration 

in the earthworms was not affected. This was also observed by Shoults-Wilson et al. 

(2011c) for E. fetida earthworms exposed to polyvinylpyrrolidone (PVP)-coated or oleic 

acid (OA)-coated AgNP through the soil, and this indicates that accumulation of Ag by 

earthworms may not be directly related to the total Ag and nominal AgNP concentrations in 

the soil. In this study, only total Ag concentrations in the soil pore water were measured, 

but other studies on nanometals (Kool et al. 2011; Shoults-Wilson et al. 2011a) suggest that 

the bioavailability and uptake of Ag may be more directly linked to the ionic fraction 

present in the soil pore water. 
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The ICP-MS and SEM/EDX data of the earthworms exposed to AgNP and AgNO3 for four 

weeks provide evidence that Ag particles were taken up by the earthworms (Figure 1) and 

that these particles were in close contact with the earthworm tissues, especially the external 

barriers. As we were not able to distinguish between adsorption on the outside and true 

uptake (on the inside), it is not known to what extent the earthworms were accumulating 

Ag. For AgNP exposed earthworms, the Ag particles which were taken up were single 

AgNP or AgNP clusters, but also consisted of AgCl or Ag2S heteroaggregates. AgCl and 

Ag2S heteroaggregate formation has been observed and discussed in studies for in vivo oral 

exposure to AgNP and Ag ions, added as AgNO3 or Ag acetate, and may also explain the 

presence of Ag particles in earthworms exposed to AgNO3 (Danscher and Stoltenberg 

2006; Loeschner et al. 2011; Walczak et al. 2012). 

 

In vivo effect assessment 

The four week experiment demonstrated effects of exposure to the high AgNP (154 mg 

Ag/kg soil) and the AgNO3 (15 mg Ag/kg soil) treatments. Other four week reproduction 

studies exposing earthworms to AgNP also demonstrated effects of AgNO3 at lower Ag 

concentrations than AgNP (Heckmann et al. 2011a; Shoults-Wilson 2011c). This indicates 

that the effects of ionic Ag are important for the toxicity effects observed in four week 

exposure experiments. Within the lifelong experiment with the offspring, the effects for 

AgNP were more striking than for AgNO3, because medium AgNP caused a reduction in 

juvenile and subadult survival to a higher extent than the AgNO3 treatment, and high AgNP 

treatment resulted in complete mortality during the cocoon and juvenile stages. These 

results also indicate that juveniles may be more sensitive to (chronic) AgNP exposure than 

adults, as was also observed for C60 (chapter 2). 

The effects on growth and reproduction after four week exposure to AgNP in this study 

(Table 2), were observed at lower concentrations that in other studies. Shoults-Wilson et al. 

(2011c) noted a decrease in reproduction for E. fetida earthworms of 40% at 1000 mg 

Ag/kg soil after four week exposure to PVP-coated or OA-coated AgNP, with a size of 30 

to 50 nm. Heckmann et al. (2011) tested the effect of PVP-coated AgNP (30 - 50 nm) on E. 

fetida earthworms only at 1000 mg Ag/kg soil for four weeks, and the exposed earthworms 
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responded with a reduced growth (down to 73% compared with the control) and did not 

reproduce. The earthworms of the present study demonstrated a reduction in growth down 

to 44% and a very low reproduction (down to 18%) already after four week exposure to the 

‘high AgNP treatment’ of 154 mg Ag/kg (Table 2). These differences may be explained by 

the use of a different AgNP. For example, toxicity of citrate-coated AgNP of 10 nm and 

PVP-coated AgNP of 20 nm to the bacteria Nitrosomonas europaea depended on coating 

and/or size of the AgNP (Arnaout and Gunsch 2012). Other factors explaining differences 

between toxicity studies are the characteristics of the soil. This was demonstrated by 

Shoults-Wilson et al. (2011a), who observed more effects of AgNP exposure to E. fetida 

earthworms when using sandy loam soil compared with artificial soil, with the first type of 

soil comprising lower levels of clay and organic matter, and a lower pH. In addition, 

sensitivity to exposure may differ between earthworm species, as was discussed by 

Frampton et al (2006) for different pesticides. In that study, the sensitivity varied between 

earthworm species and types of pesticide. 

 

Adult reproduction and offspring survival and growth were integrated in the population 

model, to assess population level consequences. The resulting population growth rates were 

slightly higher than the data demonstrated in chapter 2 for C60 exposure, which indicates 

that differences may be apparent between experiments and that caution should be taken 

when comparing between different experiments. Furthermore, all AgNP and AgNO3 

treatments in the present study showed a reduction in population growth rate. This indicates 

that the lowest adverse effect level (LOAEL) for AgNP exposure is 1.5 mg/kg and that 

even without observing significant effects for the individual endpoints of survival, growth 

and reproduction, population growth rate may be affected. 

 

The histological examinations and SEM/EDX analysis of AgNP exposed earthworms 

indicate that AgNP may affect the external barriers, but are not expected to penetrate far 

into the earthworm body. Lapied et al. (2010) also demonstrated that the external barriers of 

the earthworm L. terrestris were affected most by AgNP exposure. Damage to the outer 

skin and the intestine may seriously affect the health of earthworms, because this damage 
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interferes with the correct functioning of these tissues and potentially the homeostasis of the 

earthworms (Lapied et al. 2010). In addition, when looking at the lifelong experiment, 

tissue injuries were more severe for the medium AgNP treatment, compared with the 

AgNO3 treatment. This complements the idea indicated by the juvenile mortality data, that 

chronic AgNP treatment was more harmful for the earthworms than chronic AgNO3 

treatment. This difference may be explained by the exposure characterisation data, which 

suggest that AgNP may prolong the presence of a bioavailable fraction of Ag. 

 

In vitro experiment 

Analysis of AgNP in the cell culture medium by DLS showed particles of 58 nm (Figure 3), 

which is in good agreement with DLS results presented by Klein et al. (2011) for the same 

NM-300K AgNP. Furthermore, characterisation of the in vitro exposure by SEM/EDX and 

DLS suggests that the coelomocytes were exposed in vitro mainly to single AgNP, or two 

clustered AgNP. The AgNP were presumably kept stable in this state due to a protein 

corona (Hayashi et al. 2012; Lundqvist et al. 2008; Murdock et al. 2008), which caused the 

zeta potential to become less negative in cell culture medium when compared with 

ultrapure water. 

When comparing the AgNP EC50 with the EC50 for AgNO3, within the in vitro experiment, 

a 14-fold difference is observed. The soluble Ag fraction was not measured in the present 

study, but Hayashi et al. (2012) demonstrated an ionic Ag fraction between 2 and 8% for 

the AgNP in cell culture medium after incubation for 24 hours. If this is similar for the 

AgNP used in the present study, the toxicity of ionic Ag may explain a large portion of the 

effects of AgNP exposure. Overall, this in vitro experiment indicates that AgNP exposure 

may impair functioning of the coelomocytes, including immune responses against 

pathogens and tissue repair (as also discussed for C60 in chapter 4), possibly mainly 

through the ionic Ag fraction. These effects on immune functioning and tissue repair may 

have had consequences for the bioenergetics of the exposed earthworms, increasing the 

body maintenance and leaving less energy for other processes (Kooijman 2000), as is 

demonstrated by the reduced growth and reproduction of the earthworms exposed to AgNP 

in vivo (Table 2). 
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In conclusion, AgNP exposure may impact earthworm populations, by affecting growth, 

reproduction, juvenile survival, tissue integrity and immune cell viability of the 

earthworms. Chronic effects of AgNP exposure are readily observed at 1.5 mg Ag/kg soil, 

hence the no observed adverse effect level (NOAEL) is below that concentration. The 

expected environmental concentrations of AgNP in soil are modelled at the ng Ag/kg level, 

although sewage sludge is expected to contain concentrations of milligrams Ag/kg 

(Gottschalk et al. 2009) and the deposited AgNP may accumulate in the top layer of the 

soil, as is also demonstrated for conventional pollutants (Hou et al. 2005; Mikkelsen et al. 

1996). In this way, organisms living in the upper soil layer, including L. rubellus 

earthworms, may be at risk of chronic exposure to Ag. 
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Supplementary data 

Details on materials and methods 

Soil preparation for the in vivo experiments 

Sandy, moderately humic, loamy soil (1.6% clay, 4.3% organic matter, pH-H2O 5.96) was 

collected from an experimental organic farm in the Netherlands (Kooijenburg, 

Marwijksoord, the Netherlands). This location has a long history of organic farming and the 

soil contains only background levels of heavy metals (Lahr et al. 2008). After sampling, the 

soil was air-dried at room temperature. A week before the start of the experiment, the soil 

was sifted through a 5 mm sieve and glass containers (with a lid) were filled with 650 gram 

of the sieved soil. Moisture content of the soil was determined by overnight drying at 

105°C and the soil in the containers was amended with the amount of water needed to 

obtain a final moisture content of 15% (based on dry weight) during the experiments. These 

containers were kept under the same constant conditions as during the acclimatisation 

period of the earthworms. 

The earthworms were exposed to three different AgNP treatments of 1.5 (low AgNP 

treatment), 15.4 (medium AgNP treatment) and 154 mg Ag/kg soil (high AgNP treatment) 

and compared with the vehicle material. As reference, Ag salt was added as AgNO3 at 15.4 

mg Ag/kg soil, with an appropriate control where no Ag salt was added. All these soil 

exposure concentrations are expressed as Ag content/kg dry weight of soil. The test 

substances and the vehicle material were added to the soil containers using an aqueous soil 

extract, to ensure uniform additions to the soil. This soil extract was prepared by gently 

shaking soil in ultrapure water (Millipore; resistivity = 18.2 mΩ cm
-1

), at a soil to water 

ratio of 1/2.5 (g/v) for one hour, followed by filtration over a 4-7 μm filter (Whatmann 

filters type 597, Fisher Scientific). The pH of the soil extract was 6.2 and the ionic strength 

was equivalent to 2.3 mM. After filtration of the soil extract, AgNP and AgNO3 were added 

at nominal concentrations of 2 g Ag/l and 0.2 g Ag/l, respectively. In addition, a soil extract 

was prepared with only the vehicle material, at a concentration of 20 g NM-300K DIS/l. 

After addition of the AgNP, AgNO3 or vehicle material, the soil extracts were gently 

shaken for one hour, immediately followed by addition of the soil extracts to the soil in the 
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containers. Soils were dosed carefully with 0.5, 5.0 and 50 ml of the soil extract spiked with 

AgNP (2.0 Ag/l), using glass pipettes, to realize nominal soil exposure concentrations of 

1.5, 15.4 and 154 mg Ag/kg soil, respectively. The 15.4 mg Ag/kg soil for the AgNO3 

treatment was prepared by spiking the soil with 50 ml of soil extract with AgNO3 (0.2 g 

Ag/l). For the controls, soil was amended with 50 ml soil extract without any addition as a 

control for AgNO3 or 50 ml soil extract with the vehicle material (20 g/l) as a control for 

AgNP, to obtain a vehicle concentration similar to the vehicle concentration in the high 

AgNP treatment. After application of the soil extracts, the soil was mixed thoroughly for 

two minutes (Hobart mixer; speed 2), followed by the immediate addition of the 

earthworms. 

 

Soil extract analysis with AF4 

The hydrodynamic diameter of the AgNP present in the soil extract was determined within 

48 hours after preparation, by an Asymmetric Flow Field Flow Fractionation system (AF4; 

Postnova Analytics, Munich Germany). For this purpose, the soil extract with AgNP, at a 

concentration of 2 g/l, was further diluted in clean soil extract to reach an actual Ag 

concentration of 7.8 ± 0.2 mg Ag/l. To verify if any changes in particle diameter had 

occurred after diluting the AgNP in the soil extract, an aliquot of the AgNP stock was 

diluted in ultrapure water (8.6 ± 0.3 mg Ag/l) to reach a similar Ag concentration as in the 

diluted soil extract with AgNP. The runs with the AF4 were performed in duplicate, with an 

injection volume of 100 µl. The accumulation wall of the AF4 consisted of a 1 kDa 

polyether sulfone membrane (Postnova Analytics, Munich, Germany) and the spacer 

thickness of the AF4 channel was 350 µm. The carrier consisted of a 0.01% (w/v) sodium 

dodecyl sulphate (SDS) solution at pH 8 in ultrapure water (Bolea et al. 2011). During the 

focusing step of twelve minutes, the channel flow was 0.02 ml/min, while the cross flow 

and detector flow were 0.4 and 1.0 ml/min, respectively. A transition time of one minute 

was used to separate the elution step from the focusing step. During the elution step, the 

channel flow was 1.4 ml/min, while the cross flow was 0.4 ml/min for 25 minutes. 

Afterwards, the cross flow was decreased in a linear fashion to 0 ml/min in one minute. 

Subsequently, the elution step was maintained for an additional ten minutes, with the cross 
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flow field turned off. The detector flow was interfaced online to an ultraviolet diode-array-

detection detector (Postnova Analytics, Germany), which measured the UV-VIS spectrum 

each 0.6 seconds during the elution step. Hereafter, AF4 theory was used to calculate the 

hydrodynamic diameter of the AgNP eluted during the first 25 minutes of the elution step 

(Litzén 1993). This theory is based on ideal behaviour of spherical particles, which is the 

case for the majority of the Ag present in the NM-300K AgNP (Klein et al. 2011). 

For the off-line collection of the AF4 eluate, the detector outflow of the AF4 system was 

connected to a fraction collector (Retriever IV, Teledyne Isco, USA) to take samples over 

an interval of two minutes (2 ml) during the elution step of the AF4 runs. These samples 

correspond to an interval in particle diameter size of about 7 nm. After sampling, 0.2 ml of 

65% (v/v) HNO3 was added to each sample for 24 hours, for digestion of AgNP, after 

which the Ag concentration was measured using a high resolution-inductively coupled 

plasma-mass spectrometer (Thermo Element 2, Thermo Scientific). The recovery of AgNP 

after AF4 separation was calculated by dividing the total amount of Ag measured in all 

fractions collected during the elution step of an AF4 run, by the amount of Ag injected with 

the sample into the AF4 system, multiplied by 100%. 

In addition, an accompanying experiment was performed, to investigate the stability and 

possible aggregation of AgNP in the soil, as compared with the soil extract. For this 

experiment, the soil extract containing AgNP was spiked with calcium nitrate (Ca(NO3)2), 

which was prepared in clean soil extract, to reach a final nominal Ca concentration of 5, 10, 

25, or 50 mM. Calcium was selected, because this is generally the most important cation in 

soil pore water (Koopmans et al. 2006). Also, treatments consisting of the soil extract with 

and without AgNP, to which no calcium was added, were included in the experiment. The 

suspensions were shaken for 24 hours. Subsequently, the UV-vis absorption spectra of the 

suspensions were measured, using a Genesys 10S UV-VIS spectrophotometer (Thermo 

Scientific). The instrument was referenced with ultrapure water. 

 

ICP-MS methods for soil and earthworm characterization 

Total Ag concentrations were determined for soil and earthworms, from the four week and 

the lifelong (ten months) in vivo experiments, using ICP-MS. For this purpose, 0.5 gram per 
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soil sample or whole earthworms were taken (triplicates per treatment) and put into a 

microwave digestion vessel. Samples were digested with 6 ml of 37% (v/v) HCl and 2 ml 

of 70% (v/v) HNO3. The vessels were microwaved at 1600 W, to 140°C with 20°/min and 

to 180°C with 15°/min, which was held for 60 minutes. Following digestion, the digests 

were transferred to 50 ml polypropylene tubes and 42 ml of ultrapure water was added to 

each tube. An aliquot of 1 ml was taken from each tube and diluted 6 times. Hereafter the 

samples were measured with an ICP-MS (Thermo Scientific X-series 2), equipped with a 

Burgener PEEK Mira Mist type nebulizer and a quartz impact bead spray chamber. The 

forward RF-power was 1400 W and the gas flows were 13 l/min for the plasma, 1.0 l/min 

for the nebulizer and 0.7 l/min for the auxiliary. The sample flow rate to the nebulizer was 

set at 0.5 ml/min, using an integrated peristaltic pump. The ICP-MS instrument was 

operated in the continuous analysis mode. 

For the characterisation of Ag particles in soil, 1 gram of soil (from the four week and the 

lifelong in vivo experiments) was extracted with ultrapure water, at a soil to solution ratio 

of 1/25 (w/v). The soil was not pre-treated prior to this soil extraction. The extracts were 

shaken in a head-over-head apparatus for 16 hours. After settling for 15 minutes, an aliquot 

of 2 ml was collected and filtered through a 5 µm filter. The filtrate was diluted with 

ultrapure water at a ratio of 1/1000 and analysed with single particle inductively coupled 

plasma mass spectrometry (SP-ICP-MS). Triplicates were measured for soil from each 

treatment. In case of the earthworms, 5 ml of ultrapure water was added to the whole 

earthworm (stored at -80°C beforehand) and the vial was placed in an ultrasonic bath for 30 

minutes. Hereafter, the entire sample was transferred into a 50 ml polypropylene tube. 

Subsequently, 10 ml ultrapure water was added to the tube and the sample was sonicated 

for 3 minutes. Following sonication, another 10 ml of ultrapure water was added and the 

sample was extracted in a head-over-head apparatus for 16 hours. An aliquot of 2 mL was 

collected from the tube and filtered through a 5 µm filter. The filtrate was diluted 1000 

times and analysed by SP-ICP-MS. Three earthworms per treatments were analysed. 

The SP-ICP-MS measurements were performed using the ICP-MS instrument and 

instrumental settings similar as for the ICP-MS, however, in this case the ICP-MS was 

operated in the time resolved mode (TRA) with a dwell time of 3 milliseconds and a typical 
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run time of 60 seconds per measurement. During SP-ICP-MS analysis, an Ag particle 

generates a pulse of ions, which results in a signal which is greater than the background. 

The intensity readings can be collected as a function of time, where pulses above the 

background represent the measurement of an individual nanoparticle (Mitrano et al. 2012). 

The Ag particle diameter size is determined from the intensity of the pulses, while the Ag 

particle size distribution is determined from the normalized frequency of all pulses. With 

the SP-ICP-MS analysis used, only particles > 30-40 nm could be detected. 

 

Soil pore water analysis using F-AAS 

Flame atomic absorption spectrometry (F-AAS) was used to determine the total Ag 

concentrations in the soil pore water samples. Soil samples (50 gram per sample; triplicates 

per treatment soil) were collected for the soil pore water measurements at two time points, 

e.g. at the end of the four week experiment and after the lifelong experiment (eleven 

months). Soil pore water samples were obtained after equilibration of the soil samples, 

which were saturated with ultrapure water (at a moisture content of 100% instead of 15%), 

for one week. Subsequently, the samples were centrifuged for 45 minutes (centrifuge 

Falcon 6/300 series, CFC Free) at 2000 g over two round filters with a pore size of 11 μm 

(Schleicher &Schuell) and a 0.45 μm membrane filter (Schleicher &Schuell), placed inside 

the centrifuge tubes (Hobbelen et al. 2004). All filters were pre-treated and saturated with a 

Cu(NO3)2 solution to prevent Ag loss, resulting from Ag binding to the filter material. 

Approximately 5 ml of soil pore water was collected for each soil, to perform analysis of 

the total Ag levels in the soil pore water by F-AAS (Perkin Elmer 1100B). 

 

In vitro characterization by DLS and ZetaSizer 

The particle size distribution of particles present in cell culture medium spiked with AgNP 

or AgNO3 was performed by dynamic light scattering (DLS), using a Cobolt Samba 

300mW DPSS laser at a wavelength of 532 nm as a light source. In addition, suspensions in 

ultrapure water were made, to verify if any changes in particle diameter had occurred after 

dilution in cell culture medium. The (nominal) concentration of AgNP stock and AgNO3 

powder in ultrapure water or cell culture medium containing 10% FCS was 10 μg Ag/ml. 
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For each sample, twenty measurements were made and the detector intensity data 

(measured with an ALV/SO SIPD Single Photon Detector with ALV Static and Dynamic 

Fiber optics) were processed with an ALV5000/60X0 external correlator and ALV-5000/E 

software (all from ALV-GmbH, Germany). The average autocorrelation data (g2) were 

analysed using AfterALV software (Dullware, the Netherlands), which uses the CONTIN 

algorithm as developed by Stephen Provencher (Provencher 1982). For each sample, the 

mean diameter of the peaks with the associated polydispersity index (PDI), an indication of 

the width of the diameter peak, was determined.  

In addition, the zeta potential for the same samples as used for DLS measurements was 

analysed, using a Malvern ZetaSizer 2000 (Malvern Instruments, UK). Data were processed 

with Zeta mode V1.51 software (Chen et al. 2004). Five measurements were used to 

establish average and SEM for each sample. 

 

SEM/EDX methods for Ag particle analysis 

The presence of Ag particles in different sample types was visualized and qualitatively 

determined, shortly after preparation of the media, by field emission gun scanning electron 

microscopy (SEM). This technique was applied in combination with energy dispersive 

analysis of X-rays (EDX), which provides information about the elements associated with 

the Ag particles present in the samples. In case of soil, samples were dried at 40°C, placed 

on aluminium specimen holders with double sided adhesive carbon tape, and coated with a 

5-10 nm layer of chromium, using an Emitech K575X turbo sputter coater. In case of the 

earthworms, earthworms (from -80°C) were fixated with glutardialdehyde in a solution of 

phosphate buffered saline (PBS). Subsequently, the earthworms were dehydrated with 

ethanol and xylene, using a vacuum infiltrating processor (VIP). These dehydrated samples 

were soaked in molten paraffin and then 4 micrometre-thick sections of the paraffin 

embedded material were produced, using a microtome. These sections were mounted on 

glass microscope slides and washed with xylene and ethanol for deparaffinization. 

Thereafter, the sections were dried at room temperature and coated with the chromium. In 

case of the soil extract and cell culture medium, samples (10 μg Ag/ml) of 1 to 2 ml were 

filtered over an Anopore aluminium oxide filter with a pore size of 20 nm (type Anodisc, 
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Whatman). The filters were rinsed with 5 ml of ultrapure water and mounted on the 

aluminium specimen holders. After drying at room temperature, the filters were coated with 

the chromium. All the prepared samples were analysed with a SEM/EDX (MIRA-LMH, 

from Tescan, Czech Republic). The microscope was operated at an accelerating voltage of 

15 kV, with a working distance of 10 mm and a spot size 5 nm. The EDX spectrometer 

(Bruker AXS) contained a Quantax 800 workstation, a XFlash 4010 detector with an active 

area of 10 mm
2
 and a super light element window (SLEW), which allows X-ray detection 

of elements higher than boron (Z > 5). The spectral resolution of the detector was 123 eV 

(Mn (10kcps) mean full width at half maximum (FWHM)). The samples were screened 

systematically at three different magnifications: 10.000x, 25.000x and 50.000x. These 

magnifications were chosen to be able to detect clustered particles as well as individual 

particles. After the identification of Ag particles, EDX was used to determine the chemical 

composition of the Ag particles. 

 

Supplementary results 

AF4 results for the soil extract 

 

 

Figure S1. Determination of AgNP diameter in ultrapure water and soil extract 

Fractograms of the AgNP diluted in ultrapure water (black straight and dotted lines) and in the soil extract (grey 

straight and dotted lines), with detection  of AgNP by UV-VIS absorbance measurements at 413 nm, showing 

clear and very good overlapping peaks, with a maximum absorption at a particle diameter of 16 nm. 
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Figure S2. Analysis of the fraction of Ag for each particle diameter interval 

The AF4 fractogram of one of the duplicate runs of soil extract with AgNP (straight line), with detection by UV-

vis absorbance measurements, in combination with the results of the Ag concentration measurements in the eluent 

fractions collected during the AF4 run (dotted line), presented as a percentage of the total amount of Ag injected 

with the sample into the AF4 system. 

 

 

Figure S3. The impact of ionic strength on AgNP clustering 

The UV-vis absorption spectra of the AgNP in the soil extract at different Ca concentrations. The particle diameter 

of AgNP was unaffected while diluted in the soil extract (black line). After addition of Ca (at 5mM Ca (black not-

extended line), 10 mM Ca (black dotted line), 25 mM Ca (grey line) and 50 mM Ca (grey dotted line)), the 

absorption peaks were lost from the UV-vis absorption spectra, shown by the lines near and on the X-axes. This 

indicates that the colloidal AgNP suspension was destabilized. 
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SP-ICP-MS data 

 

Figure S4. Ag particles in soil 

SP-ICP-MS analysis for soil from the four weeks high AgNP treatment, showing the pulses (or signals) generated 

in time (A) and the particle size (nm) distribution calculated from the SP-ICP-MS data (B). 

 

Figure S5. Ag particles in earthworm 

The pulses generated in time (in ms) during the SP-ICP-MS analysis (A) and the size (nm) distribution of the Ag 

particles as calculated from the SP-ICP-MS data (B), for an L. rubellus earthworm sample from the four weeks 

exposure to the high AgNP treatment. 
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SEM/EDX imaging of Ag in soil 

 

Figure S6. SEM images of Ag particles present in soil from the high AgNP treatment of the four week experiment, 

with an Ag only aggregate (A) and a star structure (B), which seemed to consist of Ag aggregates of 50 to 100 nm 

in combination with carbon and chloride. 

 

Metal impurities in stocks 

 

Table S1. Concentrations of different metals measured in the AgNP-stock suspension and for the AgNO3 powder, 

analysed by HR-ICP-MS and converted to mg Ag/kg soil, to present the data as possible metal impurity 

concentrations for the soil at the highest exposure treatments tested (154 mgAg/kg or 15.4 mg Ag/kg, 

respectively). 

Material Cd Cr Cu Ni Pb Zn 

AgNP 0.11 0.11 0.01 0.12 0.01 0.0 

AgNO3 0.03 0.004 0.0 0.07 0.04 0.0 
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General discussion 

The production and use of nanoparticles have increased for several decades and the number 

of products with engineered nanoparticles incorporated is steadily growing (Gottschalk and 

Nowack 2011; Wijnhoven et al. 2010; Woodrow Wilson institute). The fields of application 

of nanoparticles are diverse and wide, including food, personal care, sports gear, medical 

applications, as well as devices for environmental monitoring and waste water treatment 

(Andreescu et al. 2009; Dekkers et al. 2011; Jain 2008; Savage and Diallo 2005). Due to 

this dramatic increase in production and applications of engineered nanoparticles, exposure 

of humans and the environment to these materials seems inevitable (Handy et al. 2008a; 

Oberdörster et al. 2005). And unfortunately, the same characteristics which make 

nanoparticles useful in many products, such as chemical reactivity and persistence, cause 

concern about their potential adverse health effects (Warheit et al. 2008; Farré et al. 2011). 

A considerable number of studies has investigated the hazards of nanoparticles on 

mammals (including humans) and has demonstrated uptake, bioaccumulation and toxicity 

of different types of nanoparticles (Ariano et al. 2011; Bhattacharjee et al. 2010; Fujita et 

al. 2009; Hsin et al. 2008; Hussain et al. 2005; Park et al. 2011; Schaeublin et al. 2011; 

Shvedova et al. 2005; Xia et al. 2008). Discharge of nanoparticles into the environment, 

during production, transport, use and disposal, is expected (Gottschalk and Nowack 2011; 

Lin et al. 2010) and possible environmental exposure, hazards and risks need to be 

addressed (Baun et al. 2008a; Handy et al. 2008c; Nel et al. 2006; Nowack and Bucheli 

2007; Stone et al. 2010). Research on the impact of nanoparticles on the environment has 

mainly focussed on aquatic organisms (Handy et al. 2008c; Kahru and Dubourguier 2010; 

Navarro et al. 2008; Shoults-Wilson et al. 2011c) and information on effects of nanoparticle 

exposure on soil organisms and ecosystems is scarce. 

Given the need for better characterization of hazards of engineered nanoparticles to the 

environment and soil organisms in particular, the aim of the present thesis was to 

investigate effects of nanoparticle exposure on the earthworm Lumbricus rubellus, as a 

model organism for soil ecotoxicology, and to contribute to the development of effect 

markers for engineered nanoparticle exposure in this model. 
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The nanoparticles investigated in the studies described in the present thesis were fullerene 

(C60) and silver nanoparticles (AgNP). These nanoparticles were selected because they are 

among the most widely used types of nanoparticles in consumer products and are deemed 

suitable as reference material (Gelderman et al. 2008; Klaine et al. 2008; Stone et al. 2010; 

Woodrow Wilson Institute). C60 was also chosen because of its known stability and very 

low solubility, which indicate that soil may serve as a sink for these nanoparticles (Li and 

Alvarez 2011; Nielsen et al. 2008). The type of AgNP selected for the experiments 

discussed in the present thesis were designated as a representative nanomaterial by the 

European Commission’s Joint Research Centre (JRC), which means that this specific type 

of nanomaterial will be tested by different laboratories within Europe and the results can be 

compared more easily than for other types of AgNP. In the present thesis, effects of the 

selected nanoparticles on gene expression, tissue integrity, individual health and population 

growth were investigated after in vivo exposure. In addition, in vitro experiments were 

carried out using earthworm immune cells, to evaluate possible immunotoxic effects of the 

nanoparticles. By studying effects at different levels of biological integration further insight 

in the mode of action was obtained and a contribution to the development of effect markers 

for nanoparticle exposure was made. Furthermore, effects of nanoparticle exposure at the 

individual level were translated to the population level, in order to predict effects possibly 

occurring for earthworm populations in the field upon nanoparticle exposure. 

 

Taken together, the results of the present thesis reveal that C60 and AgNP exposure affect L. 

rubellus earthworms in a dose dependent way, at different levels of biological organization. 

The histopathological observations made in the studies discussed in the present thesis 

provided insight in possible causes of effects. The observations on tissues of exposed 

earthworms showed damage to the external barriers, e.g. cuticle and gut epithelium 

(chapter 3 and 5), an effect which may seriously affect the health of earthworms (Lapied 

et al. 2010). For C60 exposure, the effects on underlying tissues were more visible than for 

the AgNP exposure. This indicates that at the dose levels tested, C60 may have had more 

effect on the external barriers and/or that C60 infiltrated into the earthworms to a higher 

extent than AgNP. In this way, C60 interfered more with the functioning of the external 
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barriers and the homeostasis of the earthworms, and may have made the underlying tissues 

more vulnerable (Lapied et al. 2010). 

 

The decrease in growth and cocoon production observed upon C60 and AgNP exposure 

(chapter 2 and 5) may have occurred due to the effects of tissue injury and repair on the 

bioenergetics of the exposed earthworms, leaving less energy for growth and reproduction 

(Kooijman 2000). However, the decrease in reproductive success may also be explained by 

a direct effect of nanoparticle exposure on the reproductive organs. This applies at least for 

C60 exposure, because damage to the parenchyma of the clitellum (an important part of the 

earthworm reproductive system) was observed in C60 exposed earthworms. For the AgNP 

exposed earthworms no clear effects on the parenchyma were observed and the 

bioenergetics explanation seems most likely for reduced reproductive output in AgNP 

exposed earthworms, however, definite conclusions on the effects of AgNP on the 

reproductive system requires further future histopathological examinations. 

 

Oxidative stress is a mode of action which has been much discussed and demonstrated for 

nanoparticle toxicity (Barillet et al. 2010; Bhattacharjee et al. 2011; Johnston et al. 2010; 

Klaper et al. 2009; Li et al. 2008; Oberdörster et al. 2005). However, L. rubellus 

earthworms exposed to C60 in vivo did not demonstrate an increase in antioxidant enzyme 

expression and activity (Chapter 3). This lack of a significant effect on oxidative stress 

marker enzymes may be explained by the experimental set-up, which may have masked the 

occurrence of oxidative stress (Johnston et al. 2010). An important factor of the 

experimental set-up in this case is the in vivo and relatively long lasting exposure, which 

differs from most nanotoxicology studies reporting on nanoparticle induced oxidative stress 

that have used short, acute and/or in vitro exposures. As effects may only be noticeable 

shortly after the start of the C60 exposure rather than four weeks or even several months 

later, due to feedback processes (Maity et al. 2008; Oberdörster et al. 2004), they may not 

have been noticed in the experiments discussed in the present thesis. The use of only a 

small set of antioxidant enzymes may be an additional masking factor, because it may not 

be necessary for the earthworms to induce all of the antioxidant enzymes present in the 
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earthworm body (Kohen and Nyska 2002; Martindale and Holbrook 2002). Furthermore, 

the use of whole body measurements may have masked the occurrence of oxidative stress, 

because this may impede the detection of subtle changes in individual tissues as 

concentrations of antioxidant enzymes may vary between different tissues (Barillet et al. 

2010; Korsloot et al. 2004; Oberdörster et al. 2004; Smith et al. 2007). 

 

The results from the in vitro experiments on C60 toxicity were not unambiguous. In vitro 

exposure of rat macrophage NR8383 cells to C60 demonstrated a reduction in cell survival 

and phagocytic activity, already at low μg/ml concentrations with EC50 values of 1.04 and 

1.87 μg/ml, respectively (chapter 4). The coelomocytes, on the other hand, were much less 

sensitive and the survival and phagocytic activity of these cells seemed unaffected by C60 

exposure until the mg/ml level. In contrast to this, the coelomocytes and NR8383 cells 

demonstrated similar responses to tri-block polymer nanoparticle exposure, indicating the 

usefulness of the coelomocytes for nanotoxicity testing. The cell culture media used in the 

C60 experiments were the same for both cell types and could not explain the demonstrated 

difference in effects to C60 exposure between the cell types. The most plausible explanation 

is the difference in sensitivity between the cell types. This phenomenon has been 

demonstrated in other studies testing nanoparticle exposure in vitro as well (Hayashi et al. 

2012; Nguyen et al. 2012; Xia et al. 2008). For rat NR8383 cells C60 exposure may cause 

damage to cells, affecting cell viability and phagocytic activity, and C60 exposure to 

earthworm coelomocytes may merely cause suppression of the inflammatory response (as 

demonstrated by lowered CCF-1 levels). 

 

Reliable, extensive and repeated measurements of actual soil nanoparticle concentrations 

are lacking, but modelled environmental concentrations of nanoparticles in the soil are 

close to the μg/kg level (Gottschalk et al. 2009). The nanoparticle concentrations applied in 

the experiments discussed in the present thesis are more than three orders of magnitude 

above these currently expected environmental concentrations. However, nanoparticle 

exposure may pose a threat to soil ecosystems in the near future, due to the expected 

prolonged presence of some types of nanoparticles (Coutris et al. 2012; Li et al. 2010; 



Chapter 6 

138 

Nielsen et al. 2008). In addition, in the experiments discussed in the present thesis only 

lowest observed adverse effect levels (LOAELs) could be determined and the no observed 

adverse effect levels (NOAELs) may be at much lower concentrations. Furthermore, the 

earthworms are used as model organisms for soil ecotoxicology and the impact of 

nanoparticles on the earthworms need to be extrapolated to other soil organisms, which 

may be more sensitive to nanoparticle exposure. 

 

Future perspectives 

The introduction of nanotechnology offered tremendous opportunities for all sorts of nano-

applications in different fields, including medicines, foods, electronics, alternative energy 

and water remediation. During the production, use and disposal of a nanoproduct, it is 

likely that nanoparticles will eventually enter the soil environment. Currently, effects of 

exposure of nanoparticles on soil ecosystems are still largely unknown, but efforts are being 

made, including the present thesis. Even though the present thesis has shed some light on 

possible effects and modes of action of nanoparticle toxicity towards earthworms, ample 

questions remain for future research. The two main topics for environmental risk 

assessment of engineered nanoparticles in the soil are (1) the hazard assessment of 

nanoparticles to soil organisms, including characterisation of (1a) bioavailability and (1b) 

adverse effects and sensitive endpoints, and (2) the assessment of the actual exposure and 

behaviour of nanoparticles under field conditions. 

1a. Characterisation of bioavalibility 

If nanoparticles are discharged to the soil, soil organisms may be exposed and may 

accumulate the nanoparticles. Several studies have investigated the bioaccumulation 

of nanoparticles in soil organisms, but many questions remain (Hu et al. 2010; Kim 

et al. 2011; Lapied et al. 2011; Li et al. 2010; Shoults-Wilson et al. 2011c). 

Therefore, bioaccumulation should be considered for future research, especially in 

combination with the impact on the organisms, because studies on bioaccumulation 

and effects do not demonstrate a clear correlation. For example, the research by 

Shoults-Wilson et al. (2011c) on bioaccumulation of polyvinylpyrrolidon (PVP) 

and/or oleic acid (OA) coated AgNP by Eisenia fetida earthworms as well as the 
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AgNP bioaccumulation by L. rubellus earthworms discussed in chapter 5 of the 

present thesis do not indicate a clear dose-dependent bioaccumulation. However, 

both studies demonstrated (nominal) concentration dependent effects of AgNP. One 

explanation for this discrepancy of bioaccumulation and effects may be that AgNP 

affects earthworms also without being taken up. The histopathology data (chapter 

5) may suggest this, because the effects are mostly observed on the external barriers. 

Another explanation may be that earthworms accumulate Ag particles as well as Ag 

ions (Unrine et al. 2010). As it has been suggested that the particles may not 

contribute substantially to toxicity and merely increase the tissue Ag concentrations, 

the toxicity of AgNP may be primarily related to the fraction of Ag ions present in 

the earthworms (Kool et al. 2011; Shoults-Wilson et al. 2011c). Therefore, future 

research should account for the oxidation and dissolution of metal nanoparticles in 

order to explain potential accumulation and toxicity of metal nanoparticles and their 

ions for earthworms. 

Furthermore, if nanoparticles are accumulated by soil organisms, these materials 

may be transferred within food chains. Holbrook et al. (2008) demonstrated the 

transfer of quantum dots in a simplified aquatic food chain, from ciliated protozoans 

to rotifers. Nanoparticle transfer may also occur in terrestrial food chains. 

Earthworms are considered to be very important for biomagnification of 

conventional pollutants in terrestrial ecosystems (Rogival et al. 2007; Roodbergen et 

al. 2008; Rozema et al. 2008; VandeCasteele et al. 2004) and may have the same 

role for nanoparticle biomagnification. Hence, possible biomagnification is an issue 

future research should deal with. 

In addition to bioaccumulation of nanoparticles themselves, the impact of 

nanoparticles on bioaccumulation and toxicity of other environmental pollutants 

requires future investigation. Nanoparticles may influence bioaccumulation and 

toxicity of other environmental pollutants when they affect the external barriers, as 

observed in chapter 3 and 5 for C60 and AgNP, enabling other compounds to enter 

the body more easily. In addition, nanoparticles may enhance the bioaccumulation of 

other compounds through adsorption, as was observed for C60 and TiO2 
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nanoparticles by Baun et al. (2008b) and Zhang et al. (2007), respectively. These 

nanoparticles demonstrated strong adsorption capacities for other toxic compounds, 

e.g. the polycyclic aromatic hydrocarbon phenanthrene and the heavy metal 

cadmium, respectively, which enhanced the availability and bioaccumulation of 

phenanthrene and cadmium in aquatic organisms (Baun et al. 2008b; Zhang et al. 

2007). The same phenomenon may occur in soil ecosystems, and for other 

nanoparticles and other environmental pollutants as well. 

 

1b. Characterisation of adverse effects and sensitive endpoints 

As soil organisms are and will be exposed to nanoparticles in the field, reliable and 

sensitive test systems are important to establish the relevant endpoints. The currently 

used toxicity tests may need modifications. The standard OECD toxicity test 

systems for exposure of earthworms encompass acute (48 hours) or four week 

exposure of adult earthworms (OECD 207:1984 and OECD 222: 2004). Both the C60 

and the AgNP experiments discussed in the present thesis indicate that juveniles are 

more sensitive to the nanoparticle exposure and this can have adverse effects on 

earthworm populations. Therefore, experiments with earthworms from different life 

stages or lifelong exposure experiments may be useful in future research to better 

predict the impact of nanoparticle exposure under field conditions. Furthermore, the 

standard OECD toxicity test systems investigate mortality, growth and reproduction, 

using adult earthworms. These individual endpoints are very relevant to assess 

possible effects at the population level. However, they are usually affected at 

relatively high concentrations and additional endpoints are useful to inform about 

the mode of action of the toxicity (Lapied et al. 2010). In the present thesis, gene 

expression analysis was employed (chapter 3), which proved its usefulness to 

demonstrate toxicity of the C60 already from the lowest concentration examined. 

Gene expression of a small set of genes was studied, but profiling based techniques 

(including genomics, proteomics and metabolomics) are advancing and have been 

proven of use for earthworm research as well (Bundy et al. 2008; Gong et al. 2007; 

Guo et al. 2009; Kuperman et al. 2003; Wang et al. 2010). Therefore, the use of 
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these techniques at larger scale in future research studies may be helpful in 

unravelling the mode of action of nanoparticle toxicity. 

Instead of in vivo experiments, the use of simple in vitro models using endpoints 

which may reveal general mechanisms of toxicity, may be a basis for further 

assessing the potential hazards of nanoparticle exposure and possibly in the future 

replace, reduce and refine in vivo experiments. For the most useful translation of the 

in vitro results to the in vivo situation, preferably a suitable and comparable in vitro 

system should be used. For example, as the results presented in chapter 3 and 5 

demonstrate the effects of C60 and AgNP on the external barriers, e.g. cuticle and gut 

epithelium, epithelial cells may be selected as an in vitro system for studying the 

mechanisms of this toxicity. Furthermore, in future research cultured cell types (such 

as NR8383 cells) may be used for large scale screening and the search for the 

mechanisms underlying the effects. In addition, primary cells (including earthworm 

coelomocytes), which are not easy to obtain and culture, may be used to ascertain 

the obtained results and to facilitate the translation of the in vitro to the in vivo 

situation. However, before (large scale) screening of in vitro nanotoxicity is 

possible, in vitro assays will need to be further developed, validated and 

standardized. One matter which needs further investigation is the best general theory 

behind cellular toxicity of nanoparticles. Oxidative stress, with the formation of 

reactive oxygen species (ROS), is considered as an important mode of action for 

nanoparticle induced cytotoxicity (Bhattacharjee et al. 2010; Li et al. 2008; 

Marambio-Jones and Hoek 2010; Stone and Donaldson 2006). However, findings 

differ between experimental set-ups and several studies indicate that the generation 

of ROS may be a secondary effect rather than causing the onset of toxicity 

(Bhattacharjee et al. 2011; Johnston et al. 2010; Park et al. 2011). Another important 

matter for in vitro assays is the selection of in vitro methods with endpoints that are 

not affected themselves by the nanoparticles. During our in vitro investigations 

interference of C60 and AgNP with the MTT and resazurin assays was observed 

(data not shown). This phenomenon has been demonstrated and discussed in other 

studies as well (Klaine et al. 2008; Kroll et al. 2009). 
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2. Exposure and behaviour of nanoparticles under field conditions 

Apart from information on hazards, actual exposure levels under field conditions are also 

required for risk assessment. At the moment, information on release of nanoparticles into 

the environment is largely unknown and only small scale studies have investigated actual 

nanoparticle release into the environment (Farré et al. 2010; Hsu and Chein 2007; Kaegi et 

al. 2008; Kiser et al. 2009). Furthermore, standard analytical methods for the analysis of 

environmental concentrations of nanoparticles are lacking and actual exposure levels are 

still very difficult to determine (Handy et al. 2008a; Nowack 2009; Paterson et al. 2011; 

Vonk et al. 2009). Measuring nanoparticles in the soil is especially complicated because of 

the complex matrix (Gimbert et al. 2007). The nanoparticles may be present in the soil as 

single nanoparticles or as aggregates, or they may be dissolved or bound to soil compounds 

(including organic matter). These aspects seem to depend on the properties of the 

nanoparticle itself, including size, shape, charge, concentration and surface and core 

chemistry, as well as on the composition of the soil, e.g. content of organic matter and clay 

(Ben-Moshe et al. 2010; Cornelis et al. 2010; Darlington et al. 2009; Lapied et al. 2011; 

Stone et al. 2010; Zook et al. 2011). One of the biggest challenges for detection and 

characterisation of nanoparticles in soil is their separation from solid compounds naturally 

present in the soil without modifying the nanoparticles (Klaine et al. 2008). Here, the 

distinction between bioavailable and inaccessible nanoparticles (and their derivatives) also 

provides an analytical challenge for future research. 

Furthermore, research on the perseverance and bioavailability of nanoparticles over time is 

needed, for a better understanding of exposure under field conditions. For example, the 

experiments discussed in chapter 5 demonstrated more striking deviation in effects 

between AgNP and AgNO3 for the long-term than for the four week experiment, because 

AgNP seemed able to provide prolonged exposure to dissolved Ag. In addition to the longer 

duration of the experiment, the use of ‘aged’ forms of nanoparticles may also be useful in 

future research to provide information on bioactivity, stability and prolonged presence or 

persistence of nanoparticles. ‘Aged’ and weathered nanoparticles may be the form in which 

nanoparticles are present in the environment rather than as the freshly suspended or 

synthesized nanoparticles generally used in experiments. ‘Aged’ nanoparticles may contain 
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modified or lost surface coatings, affecting nanoparticle properties (such as size, charge and 

surface chemistry) and behaviour (including clustering and dissolution) (Bastús et al. 2008; 

Zook et al. 2011). 

 

In conclusion, the present thesis demonstrated hazards of exposure of the earthworm L. 

rubellus to the nanoparticles C60 and AgNP at different levels of biological organisation, 

which provided insight into possible modes of action of the nanoparticle toxicity as well as 

implications for earthworm populations. A valid translation of these results to the situation 

of populations of earthworms and other soil organisms under field conditions is not yet 

possible, because methods for reliable determination of nanoparticle levels in soil are 

lacking. The expected concentrations in the field are more than three orders of magnitude 

below the concentrations used in the experiments discussed in this thesis. However, due to 

expected and observed prolonged bioavailability of some nanoparticle species and the high 

levels of nanoparticles in sewage sludge, concentrations in the field may develop towards 

the levels of the experiments discussed in the present thesis in the near future. Furthermore, 

when focusing on the risk assessment procedure, it should be pointed out that in the 

experiments discussed in the present thesis effects were already observed at the lowest 

concentration used, for both C60 and AgNP. This implies that the NOAELs are below those 

concentrations. In addition, the experiments were performed using a single soil (model) 

species and assessment factors are needed to extrapolate to other soil organisms with 

unknown sensitivity. When taking these matters in consideration, the assessed levels 

discussed in the present thesis may be relevant for nanoparticle exposure to soil organisms 

in the near future. Therefore this work has contributed to understanding the potential 

hazards of nanoparticle addition (accidental or intentional) to the soil environment. Even 

though, as the future perspectives demonstrate, a lot of questions and challenges remain for 

future research. 
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Summary 

Nanotechnology is an expeditiously growing field, where engineered nanoparticles are 

being incorporated in many different applications, from food to waste water treatment 

(Dekkers et al. 2011; Gottschalk and Nowack 2011; Savage and Diallo 2005). Due to this 

large scale production and use of nanoparticles, their release into the environment seems 

inevitable (Crane et al. 2008; Handy et al. 2008a; Oberdörster et al. 2005). Actual exposure 

levels of nanoparticles under field conditions and the hazards of nanoparticle exposure to 

the environment are poorly understood, especially for the soil environment (Kahru and 

Dubourguier 2010; Navarro et al. 2008; Shoults-Wilson et al. 2011a). 

 

Given the need for better characterization of hazards of engineered nanoparticles to the 

environment and soil organisms in particular, the aim of the present thesis was to 

investigate effects of nanoparticle exposure on the earthworm Lumbricus rubellus, as a 

model organism for soil ecotoxicology, and to contribute to the development of effect 

markers for engineered nanoparticle exposure in this model. 

 

The present thesis was divided in different chapters. Chapter 1 provides an introduction to 

the topic and discusses the importance of research on the hazards of exposure to engineered 

nanoparticles. Furthermore, the aim and outline of the thesis are presented, with 

background information on the model organism, effect markers and nanoparticles. 

 

In chapter 2 effects of exposure to the fullerene C60 (nominal concentrations 0, 15.4 and 

154 mg C60/kg soil) on survival and growth during the different life stages of L. rubellus 

(cocoon, juvenile, subadult and adult), as well as reproduction were quantified. These 

important individual endpoints for population dynamics were incorporated in a continuous-

time life-history model (Baveco and De Roos 1996; De Roos 2008). In this way, effects of 

C60 exposure on the individual endpoints could be extrapolated to implications for 

population growth rate and life stage distribution, i.e. the development of the population in 

terms of number of individuals in the different life stages. These implications at the 

population level may be more relevant for the ecological impact of C60 than effects on 
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endpoints at the individual level (Klok et al. 2006; Widarto et al. 2004). At the individual 

level C60 exposure caused significant adverse effects on cocoon production, juvenile growth 

rate and survival. When these endpoints were used to model effects on the population level, 

reduced population growth rates with increasing C60 concentrations were observed. 

Furthermore, a shift in life stage structure was shown for C60 exposed populations, towards 

a larger proportion of juveniles. This result implies that the lower juvenile growth rate 

induced by C60 exposure resulted in a larger proportion of juveniles, despite increased 

mortality among juveniles. Overall, this study implied serious consequences of C60 

exposure for L. rubellus earthworm populations, even at the lowest level of exposure tested. 

Furthermore, it showed that juveniles were more sensitive to C60 exposure than adults. 

 

To complement the observations made on survival, growth and reproduction described in 

chapter 2, subsequent investigations on cellular and molecular responses of the 

earthworms to C60 exposure were performed (chapter 3). A set of established effect 

markers was used, which reflect different levels of biological organisation in the earthworm 

and may inform on the toxic mechanisms of adverse effects induced by C60 exposure 

(Handy et al. 2002; Heckmann et al. 2008). At the molecular level, four specific effect 

markers were selected, including markers for generic stress (heat shock protein 70 (HSP70) 

(van Straalen and Roelofs 2006), for oxidative stress (catalase and glutathione-S-transferase 

(GST) (Kohen and Nyska 2002) and for an immune response (coelomic cytolytic factor-1 

(CCF-1) (Olivares Fontt et al. 2002). At the tissue level, histological analyses were used to 

identify damage to cells and tissues, and indications of inflammation in the tissues. In these 

investigations, exposure to C60 (0, 15 or 154 mg C60/kg soil) affected gene expression of 

HSP70 significantly. Gene expression of CCF-1 did not alter in adult earthworms exposed 

for four weeks, but was significantly down-regulated after lifelong exposure (from cocoon 

stage to adulthood) of earthworms, already to the lowest C60 exposure level. No significant 

trends were noted for catalase and glutathione-S-transferase (GST) gene expression or 

enzyme activity. Tissue samples of the C60 exposed earthworms from both experiments and 

exposure levels, showed a damaged cuticle with underlying pathologies of epidermis and 

muscles. Additionally, the gut barrier was not fully intact. However, tissue repair was also 
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observed in these earthworms. In conclusion, this study demonstrated effects of sub-lethal 

C60 exposure on L. rubellus earthworms, at the level of gene expression and tissue integrity. 

 

Although tissue injury is generally associated with an inflammatory response, as part of 

tissue repair (Cikutovic et al. 1999; Goven et al. 1994), the tissue damage observed for the 

in vivo C60 exposed earthworms in chapter 3 appeareded to occur without accompanying 

induced immune responses. The CCF-1 gene expression level was reduced in the C60 

exposed earthworms, and histological observations did not show infiltration of damaged 

tissues by immune cells. In order to obtain further insight in mechanisms of effects 

observed at the molecular and tissue level on immune related parameters, the sensitivity of 

immune cells (coelomocytes) of L. rubellus earthworms towards exposure to selected 

nanoparticles was investigated in vitro (chapter 4). To this end, coelomocytes were 

isolated from unexposed adult L. rubellus earthworms and exposed to C60 in vitro. After 

exposure, these coelomocytes were tested for cellular viability, phagocytic activity and 

CCF-1 gene expression levels. The gene expression of CCF-1 was most affected, 

demonstrating a strong reduction, which indicated immunosuppression. Experiments with 

NR8383 rat macrophage cells and tri-block copolymer nanoparticles were used to compare 

sensitivity of the cell types and showed the usefulness of coelomocytes as a test system for 

nano-immunotoxicity in general. Overall, this study indicated that the absence of an 

immune response, in case of tissue injuries observed after in vivo C60 exposure, is likely 

caused by immunosuppression rather than coelomocyte mortality. 

 

In subsequent investigations, the experiments performed for C60 were also carried out with 

silver nanoparticles (AgNP), both in vivo and in vitro (chapter 5). Effects of AgNP were 

assessed in vivo at nominal concentrations of 0, 1.5 (low), 15.4 (medium) and 154 (high) 

mg Ag/kg soil and compared to effects of silver ions, added as AgNO3 (nominal 

concentration 15.4 mg Ag/kg soil). In a four week reproduction assay, the high AgNP and 

AgNO3 treatments had a significant effect on cocoon production and high AgNP exposure 

also caused a reduction in weight gain of the adult earthworms. No juveniles survived the 

high AgNP treatment, therefore only F1 earthworms from the other exposure treatments 
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were monitored for survival and growth, until adulthood. These individual endpoints were 

used to model effects on the population level. The low and medium AgNP as well as the 

AgNO3 treatments significantly reduced the population growth rate. The high AgNP 

treatment caused complete failure of the population growth. Furthermore, histological 

examination of the earthworms from all AgNP exposure treatments demonstrated tissue 

damage, with injuries mainly at the external barriers, e.g. the cuticle and the gut epithelium. 

In addition, effects of AgNP exposure were assessed in vitro and a reduction of 

coelomocyte viability was observed in a concentration-dependent manner, although the 

EC50 was fourteen times higher compared with that for Ag ions, added as AgNO3. 

Furthermore, characterisation of the in vivo exposure media implied that AgNP remained 

present in the soil in single and aggregated state, releasing Ag to the soil pore water up to at 

least eleven months. The ionic fraction of Ag in soils has been suggested to be bioavailable 

to organisms and (largely) responsible for the observed AgNP toxicity (Coutris et al. 2012; 

Koo, et al. 2011; Shoults-Wilson et al. 2011b). In comparison, the AgNO3 seemed to 

dissolve rapidly, as is also known for this metal salt, and fixation of Ag ions by the soil 

presumably led to a quick reduction of Ag bioavailability (Atkins and Jones 2000; Coutris 

et al. 2012; Ratte 1999). This is in line with the observation that effects were more 

prolonged in the AgNP treatments in comparison with the AgNO3 exposed animals. In 

conclusion, this study indicated that AgNP exposure may seriously affect earthworm 

populations, with the ability to cause immunotoxicity, injury to the external barriers of the 

earthworm body and a reduction in growth, reproduction and juvenile survival. 

 

Finally, chapter 6 presents a discussion on the findings of the present thesis and provides 

suggestions for future research. 
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Samenvatting 

Nanotechnologie is een snel groeiende technologie waarbij kunstmatige, door de mens 

ontworpen deeltjes, zogeheten nanodeeltjes, worden gebruikt voor veel verschillende 

soorten toepassingen (Gottschalk and Nowack 2011; Wijnhoven et al. 2010; Woodrow 

Wilson institute). De manieren waarop nanodeeltjes worden toegepast zijn divers en breed; 

van voedsel, sportartikelen, verzorgingsproducten, medische applicaties, tot apparatuur 

voor rioolwaterzuivering en monitoring van het milieu (Andreescu et al. 2009; Dekkers et 

al. 2011; Gottschalk and Nowack 2011; Jain 2008; Savage and Diallo 2005). Gezien de 

grootschalige productie en toepassing van nanodeeltjes, lijkt het onvermijdelijk dat deze 

deeltjes vrijkomen in het milieu en dat mensen en andere organismen eraan worden 

blootgesteld (Crane et al. 2008; Handy et al. 2008a; Oberdörster et al. 2005). Helaas geven 

sommige eigenschappen die nanodeeltjes nuttig maken voor veel toepassingen, zoals 

chemische reactiviteit en persistentie, ook reden tot zorgen over de mogelijke negatieve 

effecten voor mens en milieu (Warheit et al. 2008; Farré et al. 2011). Over de concentraties 

van nanodeeltjes in het milieu en de gevaren voor het milieu van blootstelling aan 

nanodeeltjes, is nog onvoldoende bekend. Dit geldt vooral voor de bodem (Kahru and 

Dubourguier 2010; Navarro et al. 2008; Shoults-Wilson et al. 2011a). 

 

Inspelend op de behoefte om de gevaren van kunstmatige nanodeeltjes voor het milieu in 

het algemeen en voor bodemorganismen in het bijzonder beter in kaart te brengen, was het 

doel van de studies beschreven in dit proefschrift om de effecten van de blootstelling van 

nanodeeltjes op de regenworm Lumbricus rubellus te onderzoeken. Deze wormensoort 

diende als modelorganisme voor bodem ecotoxicologie. Daarnaast waren de studies ook 

opgezet om bij te dragen aan de ontwikkeling van effect-indicatoren voor de blootstelling 

aan kunstmatige nanodeeltjes in dit onderzoeksmodel. 

 

Het proefschrift is opgedeeld in zes hoofdstukken. Hoofdstuk 1 geeft een introductie in het 

onderwerp en beschrijft het nut van onderzoek naar de gevaren van blootstelling aan 

kunstmatige nanodeeltjes. Verder bespreekt het hoofdstuk het doel van de studies 
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beschreven in het proefschrift, met achtergrond-informatie over het modelorganisme L. 

rubellus, effect-indicatoren en nanodeeltjes. 

 

In hoofdstuk 2 werd onderzocht welke effecten de blootstelling aan het koolstofnanodeeltje 

C60 (met nominale concentraties van 0, 15.4, 154 mg C60/kg grond) heeft op de 

voortplanting van L. rubellus regenwormen en op de overleving en groei van de 

regenwormen tijdens verschillende levensfasen (cocon, juveniel, subadult en volwassen). 

Deze kenmerken of parameters van de individuele regenwormen zijn belangrijk in de 

populatie dynamica en werden opgenomen in een ‘continuous-time life-history’ model 

(Baveco and De Roos 1996; De Roos 2008). Dit model maakte het mogelijk om de effecten 

van blootstelling aan C60 op de individuele parameters te vertalen naar gevolgen voor 

populatie-groeisnelheid en levensfase-verdeling. De levensfase-verdeling laat de 

ontwikkeling van de populatie zien voor het aantal individuen per levensfase. Deze 

gevolgen op populatie niveau kunnen relevanter zijn voor het ecologische effect van C60 

dan effecten op de individuele parameters (Klok et al. 2006; Widarto et al. 2004). 

Op het individuele niveau werden bij de regenwormen significant nadelige effecten van 

blootstelling aan C60 vastgesteld voor de cocon-productie, en de juveniele groei en 

overleving. Vertaling van deze parameters naar het populatieniveau liet zien dat de 

populatie-groeisnelheid afnam naarmate de C60 testconcentraties werden verhoogd. 

Daarnaast was de levensfase-verdeling voor de populaties van de aan C60 blootgestelde 

regenwormen verschoven, want er was een relatief grotere groep van regenwormen in de 

juveniele fase. De lagere juveniele groeisnelheid, veroorzaakt door C60 blootstelling, zorgde 

voor een grotere groep regenwormen in de juveniele fase, ondanks de grotere sterfte onder 

juvenielen. Uit dit experiment werd geconcludeerd dat blootstelling aan C60, bij de 

concentraties die gebruikt zijn in dit experiment, ernstige gevolgen kan hebben voor 

populaties van regenwormen, en dat juveniele regenwormen gevoeliger zijn voor deze 

blootstelling dan volwassen regenwormen. 

 

In aanvulling op het experiment in hoofdstuk 2, zijn er in hoofdstuk 3 ook op cellulair en 

moleculair niveau testen uitgevoerd met de aan C60 blootgestelde regenwormen. Hiervoor is 
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een set van bestaande effect-indicatoren gebruikt. Deze indicatoren geven informatie over 

de effecten van blootstelling aan C60 op verschillende niveaus van de biologische 

organisatie van de regenworm en over de toxische mechanismen van deze effecten (Handy 

et al. 2002; Heckmann et al. 2008). Op moleculair niveau werden enkele effect indicatoren 

geselecteerd, waaronder indicatoren voor algemene stress (heat shock protein 70, HSP70) 

(van Straalen and Roelofs 2006), voor oxidatieve stress (catalase and glutathione-S-

transferase, GST) (Kohen and Nyska 2002) en een indicator voor een immuun-reactie 

(coelomic cytolytic factor-1, CCF-1) (Olivares Fontt et al. 2002). Op het cellulaire weefsel-

niveau zijn histologische analyses uitgevoerd, waarbij gekeken is naar beschadigingen aan 

cellen en weefsels, en naar ontstekingen in de weefsels. 

De testen op moleculair niveau lieten zien dat blootstelling aan C60 (0, 15 of 154 mg C60/kg 

grond) een significant effect had op de genexpressie van de algemene stress-indicator 

HSP70. Bij de genexpressie van CCF-1 was geen effect te zien voor de regenwormen die 

vier weken waren blootgesteld. De levenslang blootgestelde regenwormen hadden, bij 

beide C60 concentraties, echter een significant lagere genexpressie van deze immuun-reactie 

indicator ten opzichte van de controle-groep. Voor catalase en GST, indicatoren voor 

oxidatieve stress, werden geen significante effecten op de genexpressie vastgesteld. De 

histologische analyse van de weefselmonsters lieten een beschadigde cuticula (buitenste 

huidlaag) zien, met schade aan onderliggende epidermis en spieren, voor regenwormen van 

beide C60 concentraties en experimenten. Daarnaast was de darmwand van deze wormen 

beschadigd. Tegelijkertijd was er echter herstel van de darmwandweefsels te zien. Op basis 

van de resultaten uit dit hoofdstuk werd geconcludeerd dat effecten van niet-dodelijke 

blootstelling van regenwormen aan C60 ook op het niveau van genexpressie en 

weefselstructuur te bepalen is. 

 

Over het algemeen gaat weefselschade gepaard met ontsteking als onderdeel van 

weefselherstel (Cikutovic et al. 1999; Goven et al. 1994). Echter, in de beschadigde 

weefsels van de regenwormen die in vivo waren blootgesteld aan C60 , zoals beschreven in 

hoofdstuk 3, werden geen ontstekingen waargenomen. Deze regenwormen lieten namelijk 
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een verlaagde CCF-1 genexpressie zien en bovendien werd tijdens de histologische analyse 

van de weefsels geen infiltratie geobserveerd van beschadigde weefsels met immuuncellen. 

Om meer inzicht te krijgen in de mechanismen van de aan het immuunsysteem-gerelateerde 

effecten die zijn waargenomen op moleculair en weefsel-niveau, zijn in hoofdstuk 4 

immuuncellen (coelomocyten) van niet-blootgestelde L. rubellus regenwormen geïsoleerd 

en in vitro getest op gevoeligheid voor blootstelling aan C60. De coelomocyten werden 

getest op cellulaire overleving, fagocytische activiteit en CCF-1 genexpressie. Uit deze 

experimenten bleek dat CCF-1 genexpressie de meest gevoelige parameter was voor C60 

blootstelling, aangezien deze een sterke reductie liet zien bij toenemende C60 concentraties. 

Dit resultaat suggereert een onderdrukking van de immuunreactie. Verder werden ook in 

vitro experimenten uitgevoerd met NR8383 rat macrofaag cellen en tri-block copolymeer 

nanodeeltjes, om de gevoeligheid van verschillende celtypen te vergelijken en om de 

bruikbaarheid van coelomocyten als testsysteem voor nano-immunotoxiciteit aan te tonen. 

Uit de in vitro experimenten beschreven in dit hoofdstuk werd geconcludeerd dat de 

afwezigheid van een immuunreactie, zoals geobserveerd in hoofdstuk 3, eerder werd 

veroorzaakt door onderdrukking van het immuunsysteem dan door verhoogde mortaliteit 

van coelomocyten. 

 

De experimenten die werden uitgevoerd met C60, werden in hoofdstuk 5 herhaald met 

zilver nanodeeltjes (AgNP), zowel in vivo als in vitro. Effecten van in vivo blootstelling aan 

AgNP werden vastgesteld bij nominale concentraties van 0, 1.5 (laag), 15.4 (midden) en 

154 (hoog) mg Ag/kg grond, en vergeleken met effecten na blootstelling aan zilvernitraat 

(AgNO3), bij een nominale concentratie van 15.4 mg Ag/kg grond.  

In een vier weken durend reproductie-experiment met volwassen regenwormen 

produceerden de regenwormen die blootgesteld waren aan de AgNO3 en de hoge AgNP 

grond significant minder cocons. Daarnaast hadden de regenwormen van de hoge AgNP 

blootstellingsgroep een lagere gewichtstoename. Bij het monitoren van de nakomelingen 

van de blootgestelde regenwormen, blootgesteld aan dezelfde concentraties als hun ouders, 

kwamen bij de hoge AgNP blootstellingsgroep maar twee juvenielen uit hun cocon en die 

stierven snel. Om deze reden werden alleen de nakomelingen van de andere 
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blootstellingsgroepen gemonitord op overleving en groei, totdat ze volwassen waren. De 

individuele parameters van de reproductie- en de nakomelingenexperimenten werden 

gebruikt om effecten op populatie niveau vast te stellen. Deze analyse liet significant lagere 

populatie groeisnelheden zien voor de lage en midden AgNP blootstellingsgroepen en de 

AgNO3 blootstellingsgroep. De hoge AgNP blootstelling zorgde ervoor dat de populatie 

helemaal niet groeide. De blootgestelde regenwormen, van zowel het reproductie-

experiment als van het nakomelingenexperiment, werden ook gebruikt voor een 

histologische analyse van het weefsel. Uit deze analyse kwam naar voren dat alle AgNP 

blootstellingen (laag, middel en hoog) weefselschade veroorzaakten, waarbij de schade 

vooral geobserveerd werd aan de zogeheten ‘externe barrières’, de cuticula en de 

darmwand. 

Daarnaast werd er ook een in vitro experiment uitgevoerd, waarbij een verminderde 

overleving van de coelomocyten werd vastgesteld bij toenemende AgNP concentraties. 

Voor AgNP lag de EC50 (de concentratie waarbij de overleving van de coelomocyten 50% 

lager was dan de controle) wel veertien keer hoger dan de EC50 voor zilverionen, 

toegevoegd als AgNO3. 

Verder werd in hoofstuk 5 ook de aanwezigheid en mogelijke in vivo blootstelling aan 

AgNP en AgNO3 geanalyseerd. De resultaten van deze analyse gaven aan dat AgNP zowel 

afzonderlijk als geaggregeerd in de grond aanwezig waren, en ertoe in staat zijn om voor 

tenminste elf maanden Ag (ionen en wellicht kleine Ag aggregaten) vrij te laten in het 

poriewater van de grond. De ionenfractie van Ag in de grond wordt wel gezien als het deel 

dat (meest) beschikbaar is voor organismen en (grotendeels) verantwoordelijk is voor de 

geobserveerde toxiciteit van AgNP op bodemorganismen (Coutris et al. 2012; Kool et al. 

2011; Shoults-Wilson et al. 2011b). Ter vergelijking werd de aanwezigheid van AgNO3 in 

de grond ook geanalyseerd en dit metaalzout leek snel op te lossen, zoals wel bekend voor 

AgNO3 (Ratte 1999). Deze analyse van aanwezigheid en mogelijke blootstelling van AgNP 

en AgNO3 in de grond was in overeenstemming met de effecten van in vivo blootstelling op 

de regenwormen, waarbij de blootstelling aan AgNP een duidelijker effect van langdurige 

blootstelling liet zien dan AgNO3. Uit de resultaten van dit hoofdstuk werd geconcludeerd 

dat blootstelling aan AgNP ernstige gevolgen kan hebben voor populaties van 
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regenwormen, met de mogelijkheid op immunotoxiciteit, schade aan externe barrières van 

het lichaam van de regenwormen en een vermindering van groei, reproductie en overleving 

van juvenielen te veroorzaken. 

 

Tenslotte werden in hoofdstuk 6 de bevindingen van het huidige proefschrift 

bediscussieerd en werden suggesties voor toekomstig onderzoek besproken. 
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