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Abstract  

Question: Quantification of the effect of species traits on the assembly of 
communities is challenging from a statistical point of view. A key question is how 
species occurrence and abundance can be explained by the traits values of the species 
and the environmental values at the sites.  

Methods: Using a sites x species abundance table, a site x environment data table and 
a species x trait data table, we address this question by a novel Generalized linear 
mixed model (GLMM) approach. The GLMM overcomes the problem of pseudo-
replication and heteroscedastic variance by including sites and species as random 
factors. The method is equally well applicable to presence-absence data as to count 
and multinomial data. We present a tiered forward selection approach for obtaining a 
parsimonious model and compare the results with the fourth corner method and RLQ 
ordination. 

Results: We illustrate the approach on a presence-absence version on two well-known 
data sets. In the Dune Meadow data species presence is parsimoniously explained by 
moisture and manure of the meadows in combination with seed mass and specific leaf 
area, respectively. In the Grazed Grassland data species presence is parsimoniously 
explained by the grazing intensity and soil phosphorous in combination with the C:N 
ratio and flowering mode, respectively.  

Conclusions: Our GLMM approach can be used to identify which species traits and 
environmental variables best explain the species distribution, and which traits are 
significantly correlated with environmental variables. The method is better suited for 
providing an interpretable and predictive model than the fourth corner method and 
RLQ.  

 

  

Key-words: community assembly; environmental gradient; trait-environment 
relationship; fourth corner; functional ecology; generalized linear mixed model; RLQ; 
species traits 
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Introduction 

 
A central focus of community ecology is to understand and explain where and when 
particular species or groups of species occur and thrive, and where and when not. 
Species differ in what they require from the environment and environmental 
conditions vary in space and time. Differences in traits of species and differences in 
the environment must thus be part of the explanation. The role of species traits in 
community assembly has received much recent interest (Cornwell et al. 2009, He 
2010, Lavorel et al. 2002, Shipley et al. 2006, Statzner et al. 2004, Weiher et al. 
1998). Quantification of the effect of traits on the assembly of communities turns out 
to be challenging from a statistical point of view (Dray et al. 2008, Kleyer et al. ).  

Typical data in community ecology are arranged in two data tables: a table Y 
recording the occurrence and abundance of numerous species in sites and a table X 
recording habitat and other site characteristics, i.e. the values or states of numerous 
environmental variables at the sites (Fig.1). Such data are commonly used to study the 
relationships between species and environmental conditions, such as in species 
distribution models (Guisan et al. 2005, Guisan et al. 2000) and direct and indirect 
gradient analysis (ter Braak et al. 2004). Such models are powerful tools in 
investigating the possible consequences of changes in land-use and climate change on 
the distribution of species (Guisan et al. 2005, Raxworthy et al. 2003, Thuiller et al. 
2005). They are also an important ingredient of conservation planning and 
management (Carroll et al. 2001, Johnson et al. 2004, Raxworthy et al. 2003).  

Additional insight in why the species are distributed the way they are and why the 
species respond to changes in the way they do might be gained by adding information 
on traits of species, that is by adding a third table Z (Fig. 1), a matrix with values and 
states of numerous species traits (Dray et al. 2008, Legendre et al. 1997). A trait is a 
well-defined property of organisms that is usually measured at the organism level and 
used comparatively across species (McGill et al. 2006). On neglecting the intra-
species variability when it is small compared to the inter-species variable (Garnier et 
al. 2001), a trait is a species property (Kleyer et al. 2008). Intra-species variability can 
be considerable (e.g. Albert et al. 2011, de Bello et al 2011) but we do not consider it 
in this paper. If traits are important in structuring communities, then the composition 
of local communities should be a non-random sample from the regional species pool 
(Ozinga et al. 2005a, Shipley et al. 2006). Environmental conditions, such as nutrient 
availability and soil moisture for plants, can act as filters that alter the probabilities of 
species to enter a local community according to their trait states (Cornwell et al. 2009, 
Ozinga et al. 2004, Ozinga et al. 2005b, Weiher et al. 1998). Many empirical studies 
have shown that species traits are associated with habitat conditions (Pöyry et al. 
2008, Townsend et al. 1997, Townsend et al. 1994) in accordance with the theory that 
species in the evolutionary process adapt to the habitat and landscape characteristics 
in which the species occur (Ackerly 2003, Southwood 1977). Our interest is in 
efficient joint analysis of the three data tables (Fig. 1) using modern mainstream 
statistical methods. We will do so by adding species traits to models that relate species 
to the environment. 

The key questions when modeling species, traits and environments are: (a) how does 
the expected abundance of species depend on trait and environmental values and (b) 
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which traits and environmental variables best explain the distribution of abundance in 
space and time and (c) to what extent are traits associated / correlated with 
environmental variables (Legendre et al. 1997). For modeling different approaches are 
used. Key question (c) can be address at the community (site) level or the species 
level (Kleyer et al. 2012). At community level, the sites × species table Y and species 
× trait table Z can be combined in to a sites × trait table which is then related to the 
sites × environment table X by standard statistical methods (Díaz et al. 1992, Sonnier 
et al. 2010). At the species level, the sites × species table Y and sites × environment 
table X can be combined in to species × environment table which is then related to the 
species × trait table Z by standard statistical methods (Kleyer et al. 2012).  Legendre 
et al. (1997) and Dray & Legendre (2008) integrated these two steps in to one, the 
fourth-corner problem, in which they fill the trait × environment corner that is missing 
in Fig. 1. The entries of the missing corner table are Pearson correlations between 
traits and environmental variables, when quantitative, calculated from an inflated 
table. This approach naturally combines the community and species level approaches 
(Dray & Legendre 2008). Statistical testing is however a challenge. What is the unit 
of analysis, site or species or even, as the vectorized version of the fourth corner 
problem of Fig. 1 in Dray & Legendre (2008) suggests, each (non-zero) entry of table 
Y? So what to permute in permutation tests? Dray & Legendre (2008) examined six 
permutation-based methods to test the statistical significance of the trait-environment 
relationship, but none of them truly controlled the type I error. This defect was 
recently repaired (ter Braak et al. 2012). The multivariate version of the fourth-corner 
problem is the RLQ ordination (Dolédec et al. 1996, Choler 2005) which has been 
used for selecting the best traits in plant functional trait analyses (Bernhardt-
Romermann et al. 2008). These methods focus on key question (c); they demonstrate 
trait-environment relationships but can hardly be used for predicting community 
composition from specified traits and environmental values.  

A focus on key question (a) can be found in Shipley et al (2006) and Ozinga et al. 
(2005). Shipley et al. (2006) used the above mentioned sites × trait table in a novel 
way as a macroscopic feature of communities to predict species abundance in sites by 
the maximum entropy principle. The result is a logistic model relating abundances to 
traits, as used in logistic regression but fitted in a different way (He 2010) and without 
environmental variables. Shipley (2010) extended his model by adding environmental 
variables to deal with questions (b) and (c).  

Ozinga et al. (2005a) started from the multiple logistic regression method and used it 
to quantify the effect of functional traits in a way that accounts for spatial variation in 
the composition of the local species pool. In this approach, the matrix Y is vectorized, 
that is, each entry is taken as a separate unit of analysis. An early example of such an 
approach is given by Nygaard & Ejrnæs (2004) and recent one by Pollock et al. 
(2012). Their methods assume that species records within sites are independent 
(Hosmer et al. 2000), thus commits pseudo-replication (Crawley 2002, Hurlbert 
1984). In applying generalized linear models, such as logistic regression, researchers 
often ignore the hierarchical structure of the data thereby producing incorrect variance 
estimates and increasing the likelihood of committing type I error (Gillies et al. 2006, 
Wagner et al. 2005).  

To address all three key questions, we develop a dedicated Generalized Linear Mixed 
Model (GLMM), very much in line with the very nice recent paper of Pollock et al. 
(2012), of which we were unaware, but we take into account the pseudo-replication 
introduced by vectorizing Y. GLMMs are as very general powerful class of statistical 
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models in ecology and elsewhere (Bolker et al. 2009, Gelman et al. 2007, Zuur et al. 
2009). We introduce our GLMM as the result of integrating a two-step procedure into 
one, so obtaining a GLMM with main effects for traits and environmental variables as 
well as interaction effects between them. The GLMM utilizes species trait data 
efficiently and overcomes the problem of pseudo-replication (Paterson et al. 2003). 
The main advantage of using a GLMM approach is that standard software and 
methodology for model selection and model checking becomes available to address 
the key questions. We will illustrate the model and model selection in the main text 
using presence-absence versions of two data sets, one of which was analyzed by seven 
rival methods in Kleyer et al (2012). Count and multinomial data can be used as well, 
as we show in Appendix S1 in Supplementary Information, and provide more 
information on the relative fitness of the species (Shipley 2011). For fitting the model 
we use the library lme4 (Bates et al. 2011) in the free software package R (R 
Development Core Team 2010). Other statistical packages with good GLMM 
facilities include SAS proc glimmix (Stroup 2011) and Genstat 
(http://www.vsni.co.uk/software/genstat/).  

Methods 

The data sets 
The first data set is the Dune Meadow data (Jongman et al. 1995). This is a small data 
set of 28 higher plants in 20 sites with five environmental variables and five species 
traits (Appendix S2), originating from the Dutch island Terschelling. Four 
environmental variables are treated as quantitative (abbreviation between 
parentheses): thickness of the A1 horizon (A1), moisture content of the soil 
(Moisture), agriculture grassland use (Use) and quantity of manure applied (Manure). 
One environmental variable was categorical: grassland management type (Mag) with 
four classes (SF: standard farming, BF: biological farming, HF: hobby farming and 
NM: nature conservation management). Four traits are quantitative : Specific leaf area 
(SLA) canopy height of a shoot (Height), leaf dry matter content (LDMC), Seed mass. 
One trait is categorical: life span with categories annual and perennial. Traits were 
taken from the LEDA database (Kleyer et al. 2008) and Lienin & Kleyer (2011). 

The second dataset is the grazed semi-natural grassland data from NE Germany, taken 
from Kleyer et al (2012) and comprised 50 plant species in 43 sites, with 
environmental variables grazing intensity (Grazing), soil water holding capacity 
(Water), extractable phosphorous (Soil P) and the following species traits: canopy 
height, specific leaf area (SLA), seed mass (log-transformed) (Seed mass), leaf C : N 
ratio (C : N ratio), onset of flowering date (Onset), flowering mode 
(Polycarpic/Monocarpic). For detail see Kleyer et al (2012). 

 

The generalized linear mixed model 
 
In this section, we derive our generalized linear mixed model (GLMM) from a two-
step approach. The data we consider is a binary data table Y = [yij] recording the 
presence (1) -absence (0) of m species (columns) in n sites (row), an environmental 
variable x = [xi] with quantitative measurements in the n sites, and a quantitative trait 
z = [zj] with quantitative values for the m species. The subscripts i and j refer to site i 
and species j, respectively. 
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A natural way to study the relationship between a trait and an environmental variable 
on the basis of species presence-absence data is in two steps, consisting of  

1. fitting, for each species separately, a logistic regression of its presence-
absence against the environmental variable x and 

2. regressing parameters retrieved from the m logistic regressions on to the trait z.  

In its simplest form, the first step involves a linear-logistic regression and models the 
probability of occurrence as a function of the environmental variable. The first stage 
of two stage approach assumes that  

ijjij xp  )logit( , ni ,.......,2,1 , mj ,.......,2,1 , (1) 

with pij = Pr(yij=1) the probability of occurrence of species j in site i, j  and j  the 

intercept and slope for jth species with respect to environmental variable x and 
  ))1/(log(logit ijijij ppp  , the logistic function. Extensions of this simple model 

will be discussed later. This equation can be fitted to the presence-absence data of 
each species separately, resulting in m separate models for the probability of 
occurrence of the species as a function of the environmental variable x. In this model, 
the relationship of a species with the environment is summarized by the slope βj. Its 
sign indicates whether the probability of occurrence increases or decreases with 
increasing value of x and its size how strongly. In its simplest form, the second step 
involves a (possible weighted) linear regression of the estimated regression slope 
coefficients {βj} on to the trait with the model 

jjj zbb   10  , mj ,.......,2,1  , (2) 

with b0 and b1 intercept and slope respectively and error εβj, normally distributed with 
zero mean and variance 2

 , i.e.  2,0~   Nj . The subscript β is added to the error 

term to distinguish it from other error terms later on. (The weights are the inverse of 
the squared standard errors of estimate of {βj} in step 1). Another way of expressing 
equation (2) is that the slope coefficient of the species j with trait value zj is normally 

distributed with mean jzbb 10  and variance 2
 , i.e. 

),(~ 2
10  jj zbbN  . (3) 

But, equations (1) and (3) together form an example of a generalized linear mixed 
model (GLMM) and can thus be integrated and estimated simultaneously. 

So far the second step only modeled the slopes, because of the particular interest in 
the trait-environment relationship, but we may also be interested in the influence of 
the trait on the overall probability of occurrence of a species. The intercept αj  in 
equation (1) plays such a role, in particular when the environmental variable x is 
centered prior to the analysis, as       jjj  exp1/explogit 1   is the probability 

of occurrence at mean x. Analogously to equation (2), we could linearly regress the 
estimated intercepts {αj} on to the trait with the model 

jjj zaa   10  , mj ,.......,2,1   (4) 
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with a0  and a1 intercept and slope, respectively and εαj normally distributed with zero 
mean and variance 2

 . As in equation (3) we rewrite this as  

),(~ 2
10  jj zaaN  . (5) 

Equations (1), (3) and (5) together form another example of a generalized linear 
mixed model (GLMM). As a GLMM this model still has two shortcomings. First, it 
assumes that the intercept αj and slope βj are independent. This makes the model 
dependent on the scale of the environmental variable (centered or non-centered ) 
which is undesirable, so we complete the model with a correlation ρ between them. 
Second, it assumes that the presence-absences of different species at the same site 
(given their trait values and xi ) are independent. The usual way to introduce 
correlation among them is with a common site-specific parameter γi that is assumed to 
be normally distributed with mean zero and  variance 2

 . With this parameter 

included, the GLMM equations become 

iijjij xp  )logit( , ni ,.......,2,1 , mj ,.......,2,1 ,  (6) 


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 2,0~  Ni  

This completes our derivation of the GLMM that models the species presence as a 
function of both the environmental variable x and trait variable z. In the GLMM 
literature the model is called a random intercept and random slope model. This 
GLMM combines both steps of the two-step approach into a single model and avoids 
pseudo-replication by including site as a random effect.  

Testing and interpreting the trait-environment relationship  
 
Here we show that the trait-environment relationship is an interaction term in the 
model that can be tested for statistical significance using standard software.  

By inserting equations (4) and (2) in equation (6) we obtain 

    iijjjjij xezbbezaap   1010)logit(  

                    iijjijij xeexzbxbzaa   1010  (7) 

with fixed coefficients in Roman and random coefficients in Greek. This model for 
the probability of occurrence contains main effects for the trait z and the 
environmental variable x and an interaction z.x between them. This interaction 
represents the trait-environment relationship. The model also contains random terms 
for species (εαj), sites (γi) and the environment-by-sites interaction (εβjxi ). We need to 
specify all effects and random terms to fit the model to data. With the lme4 library of 
the software package R the specification of equation (7) is  

M1 <- glmer(y ~ z + x + z:x +(1+x|species)+(1|sites), 
family=binomial(link="logit"), data) 
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with y, z and x vectors with nm elements and species and sites factors with m and n 
levels respectively. The terms within brackets are random, the others are fixed.  
Library lme4 uses vector notation, i.e. y is the matrix Y =[yij]  written as a vector; the 
species and site factors code to which species and site each element of y belongs; the 
value xi of the environmental variable repeated at all m elements that code for site i 
and the value zj of the trait repeated at all n elements that code for species j (Appendix 
S2). To test the trait-environment interaction (with null-hypothesis: b1 = 0), we also fit 
the model without this term  by  

M0 <- glmer(y ~ z + x +(1+x|species)+(1|sites), 
family=binomial(link="logit"), data) 

and then compare the two models by an analysis of variance statement 
anova(M0,M1), resulting in a P-value for the likelihood ratio (LR) test of model M1 
against M0. 

The estimates of the variance σβ
2  in model M0 and M1 can be usefully compared to 

express the contribution of the trait to the inter-species variance in the slope parameter 
by the coefficient (Grosbois et al. 2009, Lahoz-Monfort et al. 2011) 

)total(ˆ

)res(ˆ
1

2

2




 


C  (8) 

where 22 ˆ)res(ˆ    in model M1 and 22 ˆ)total(ˆ     in model M0. The rationale is 

that 2
 is the residual variance in equation (2), the inter-species variance of the slope 

parameter after taking account of the trait and therefore denoted as )res(2
 . In model 

M0, b1 = 0 in equation (2), so that 2
  represents the total variance denoted by 

)total(2
 .  

We investigated the type I error and power of the statistical tests on trait-environment 
interaction. We simulated 1000 new datasets of the same size and the same 
environment and trait values as the Dune Meadow data. The data {yij } were simulated 
using the GLMM model of equation (7) with parameters and variance components 
equal to the estimated ones, i.e. those of model M0 and M1 for the type I error and 
power calculations, respectively. We did not observe much difference between the test 
based on the z-statistic and the LR test and report the latter only. 

So far, the environmental variable and the species trait were both quantitative. GLMM 
can also be applied when both are qualitative or when one is quantitative and the other 
qualitative (Appendix S3).  A difference is that, for a qualitative environmental 
variable, each class beyond the first comes with its own variance component and the 
trait-environment interaction then consist of more than one regression parameter, but 
neither difference presents a problem to LR testing and further interpretation. Models 
with a single trait and a single environmental variable generate simple trait-
environment effects as opposite to the conditional trait-environment effects in multi-
trait multi-environment models of the next subsection.  



 10

 

Model selection with many environmental variables and traits 
 

The GLMM of equation (7) can readily be extended to more traits and environmental 
variables by including a) main effects for all traits and environmental variables,  b) 
interactions between each trait and each environmental variable, and c) species-
dependent random terms for each environmental variable. Conceptually such a model 
can still be viewed as one with slope coefficients with respect to each of the 
environmental variables, which are then each (separately) regressed on to the traits. 
GLMM does a joint fit of such a model. Such a GLMM has far less problems with 
sparsity of the data (few presences, many absences) as the usual GLM, because 
regression coefficients, when made random, are shrunken towards zero. With two 
environmental variables (x1 and x2) and three traits (z1, z2 and z3), this model that 
can be specified in lme4 by  

glmer(y ~ (z1+z2+z3)*(x1+x2)+(1+x1+x2|species)+(1|sites), 
family=binomial(link="logit"), data) 

 
This model contains trait and environmental variable main effects and their 
interactions, (correlated) species-dependent random effects for all environmental 
variables and independent random effects for species and sites. Traits and 
environmental variables can be a mix of being quantitative and/or qualitative (see 
Appendix S3 for an example). This approach works as long as the number of 
environmental variables is small (particularly when compared with the number of 
sites) and the number of traits is smaller than the number of species. The method will 
benefit from many species as it makes the estimation of variance components robust. 
Within these constraints, we experienced limited convergence problems. To 
circumvent these constraints we present a model selection procedure.  

With many traits and environmental variables, a natural question is to select a 
minimal model that describes the species occurrences data well and, related to this, to 
select the traits that explain the species response to relevant environmental variables. 
For an RLQ approach to the latter see Bernhardt–Römerman et al. (2008).   These 
questions can be solved by model selection (Diggle et al. 2002, West et al. 2006). The 
number of candidate models increases exponentially with the number of predictors  
(traits, environmental variables, interactions and variance components) so an 
exhaustive search is feasible only for low numbers of predictors. Alternatives are 
forward and backward selection. Backward selection would start with the model with 
all terms included. This ‘full’ model may be difficult to fit, due to convergence 
problems,  unless the number of environmental variables is small. For example we 
were unable to fit the full model to the Dune Meadow data using lme4. Therefore 
Jamil et al. (2012) proposed a tiered forward selection approach that we now describe. 
But first we must settle the criterion to rank models with different numbers of 
parameters. The most commonly used information criteria are the Akaike	
Information	Criterion	(AIC) and the Bayesian Information Criterion (Broman et al. 
2002)	 which is defined as minus two log-likelihood plus c times  the number of 
degrees of freedom (df) with c = 2 for AIC and c = log(N) for BIC. We must thus 
look for models with the lowest information.  The problem with BIC in GLMMs is 
what to choose for N, the number of observations as the observations are no longer 
assumed to be independent. Should it be the number of sites, the number of species or 
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their product? Jamil et al. (2012) used a variant, SigAIC, which multiplies df by c 
=   

2
05.01 3.84 (Broman et al. 2002). With SigAIC, the addition of a single parameter 

to a model will result in a lower SigAIC value if and only if that parameter is 
significant at the 5% level as judged by the LR test.  

The tiered forward selection of Jamil et al. (2012) starts with the null model with only 
random effects for species and sites and then adds in each step the environmental 
variable for which the species-dependent random terms most decreases the 
information.  So, in the first tier the model is that of equation (6) with random 
coefficients αj and βj. This process of adding random environmental terms is 
continued until information no longer decreases. At this first tier, the main effects of 
traits and environmental variables are not considered because the random species and 
site effects can already partly take account of them. After this first tier, the choice for 
the random part of the model is complete. In the second tier, we consider only the 
trait-environment interactions of environmental variables that were selected in the 
first stage. The reason is that the importance of the trait-environment coefficient (b1) 
can only be judged against the unexplained variation in the slope coefficients {βj}, as 
can best be seen from equation (2). At the start of the second tier, the main effects of 
all environment variables selected in the first tier are added. Thus the environmental 
variables are then component of both fixed effects and random effects.  In each 
subsequent step we then search for the trait-environment interaction that most 
decreases the information.  When the associated trait main effect is not yet in the 
model, it is added jointly with the interaction term and the resulting information is 
evaluated.  This process is continued until the information does no longer decrease. In 
a final third tier any non-significant interaction effects are sequentially removed. R 
code for this method of model selection is given in Appendix S5. 

Fourth corner and RLQ 
Dray & Legendre (2008) present four interpretations of the fourth corner statistics. 
The one that is closest to our context is that, for quantitative variables, 

it calculates a weighted Pearson correlation between the trait and the environmental 
variable in an inflated data table, that is, by using all species-site combinations as 
cases, weighted by abundance, and by assigning to each case the trait and the 
environmental value of the combination. This inflation is the same as used for fitting a 
GLMM with one difference. As absence implies zero abundance and zero weight, 
absences in table Y do not count and can be disregarded in fourth corner (and RLQ), 
whereas they cannot be disregarded in GLMM.  

RLQ is a general three-table ordination method based on a eigen space analysis 
(Dolédec et al. 1996).  In the usual notation the three tables are R, L and Q which 
correspond to X, Y and Z, respectively, in our notation.  We used the most commonly 
used version of RLQ, namely the one based on a correspondence analysis of the 
central table Y. It is this version that is closely related to the fourth corner statistics 
(Dray & Legendre 2008).  For quantitative  trait and environmental variables, the 
essential part of  RLQ reduces to a singular value decomposition of the table of fourth 
corner correlations.  An often neglected interpretation of the usual RLQ ordination 
diagram of traits and environmental variables (Kleyer et al. 2012) is that it is thus an 
(unweighed least-squares) biplot (Jongman et al. 1995) of the table of  fourth corner 
correlation.  RLQ and fourth corner were carried out with R-package ade4 (Dray & 
Dufour 2007) with permutation tests as described in ter Braak et al. (2012).  
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Results 

Models with one trait-environment term 
Table 1 illustrates the GLMM results for the Dune Meadow data (Jongman et al. 
1995) using Manure as environmental variable and SLA as trait value. The row of 
prime importance is that of the interaction  Manure:SLA. The estimate of b1 is 
positive (0.06) showing that species with high SLA have a higher slope coefficient 
with respect to Manure than species with low SLA. The occurrence probability of 
species with high SLA thus increases more with Manure than that of species with low 
SLA. The associated z-value (estimate/standard error= 3.28) indicates that the 
interaction is statistically significant (P<0.01, despite the small sample size), so that 
the true interaction is unlikely to be zero. The LR test (Table S1) confirms that the 
interaction is significant (P < 0.01). In a model with an interaction, the size and sign 
of main effects and their significance depend on the scales of the variables and we 
explain the interpretation in Appendix S1. It is thus of little importance that the 
coefficient for SLA in Table 1 is not significant.  

Fig. 2 displays how the fitted occurrence probability depends on Manure for some 
selected species with and without usage of the trait SLA in the model (without SLA, 
a1 = 0 and b1 = 0  in equation (7)).  In general the fitted curves of the two model differ 
little, because both include the species-dependent random slope (βj)  with respect to 
manure. The largest difference occurs for the species which have few presences and 
extreme SLA. For example, due to its low SLA value (10.3) the curve for Eleocharis 
palustris  with using SLA is stronger decreasing than without SLA. Fig. 3 plots the 
species-dependent random slopes (βj) against SLA and shows the scatter of the around 
the fitted line according to model M1 (equations (3) and (6)). The slopes fitted by 
GLM have a much wider scatter and the fitted line in this two-step approach is 
consequently less steep. The GLM-slopes are extremely large in absolute value (>3) 
for species with few occurrences. In the GLMM approach the slopes are shrunken 
towards the common regression line; the vertical deviations from the line are 
summarized by the parameter σβ = 0.36 in equation (6).  In model M0 (with the 
manure-SLA interaction) σβ is estimated as 0.49.  According to equation (8), SLA 
accounts for 46% of the inter-species variance in the species response to Manure.   

The simulated type I error was 3.5% and 1% for significance levels 5% and 1%, 
respectively. The power of the test was reasonably high (80% at a signifance level of 
5% and 59% at 1%). Appendix S4 describes a small simulation study comparing 
GLMM and the two step approach in more detail and shows that the standard error of 
the Manure:SLA interaction in the GLMM well represents the variability seen across 
parametric bootstrap samples. 
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Tables 3 list the sign and significance of single trait-environment terms as found by 
GLMM and fourth corner in the Dune Meadow.  In Table 3, GLMM and fourth corner 
agree on three relationships: SLA with Management type and with Manure, and Seed 
mass with Moisture). In addition, GLMM detects SLA-Moisture and fourth corner 
detects hLDMC-Use. In a similar table (Table 4) for the Grazed Grassland data, 
GLMM and fourth corner agree on six relationships. GLMM finds two others that are 
marginally non-significant in fourth corner (both P=0.07). Fourth corner finds one 
other term significant which is non-significant (P = 0.24) in GLMM.  

Models with multiple trait-environment terms 
We now build a parsimonious regression model from all available trait and  
environment variables using tiered forward selection of environmental variables and 
traits. Table 2 illustrates  the results for the Dune Meadow data. In the first tier 
Moisture and Manure are selected, where after no environmental variable decreases 
SigAIC. At the start of the second tier the main effects of Moisture and Manure are 
added. The best interaction to add was that between Manure and SLA (Manure:SLA). 
One more interaction (between Moisture and Seed mass) further decreased SigAIC. 
As all interaction terms were significant at the end of the second tier, nothing was 
deleted in the third tier.  The sign of the interaction terms in the final model (Table 
S2) show that SLA is positively related to Manure (P <0.001) and Seed mass 
negatively related to Moisture (P<0.02).  The variance estimates of the random slopes 
with respect to Moisture and Manure in models with and without trait-environment 
interactions shows that the traits account for 21% and 22% of the variance in species 
response to Moisture and Manure, respectively.  The value for Manure is surprisingly 
low as in the comparable model without Moisture and Seed mass, SLA accounted for 
45% of the variance. This presumably due to the correlation (0.55) between the 
random effects of Moisture and Manure in the final model. For diagnostic checks we 
made a Q-Q plot of the random effects (random slopes for species with respect to 
environmental variables as deviations from their common slope) to check normality. 
Some non-normality is visible but not seriously (Fig. S1).  

In the Grazed Grassland data, the first tier selected Soil P first and then Grazing, with 
drops in SigAIC of 117 and 102, respectively. The variable Water did not improve the 
model (it increased SigAIC by 1.9). The second tier selected the interaction between 
Soil P and Polycarpic and then that between Grazing and C : N ratio, with drops in 
SigAIC of 25 and 8, respectively. The next interaction to enter would have been 
Grazing with Polycarpic, but that addition increased SigAIC by 2. Both selected 
interactions had a negative sign and were very significant (P<0.0001; Table S3). The 
traits account for 60% of the variance in species response to Soil P and 25% of the 
variance in Grazing. The Q-Q plot of the random effects highlights some non-
normality for the random slope deviations with respect to Soil P.  

RLQ  
The two main axes of RLQ explain applied to the Dune Meadow data explains 63% 
and  27% of the co-inertia (together 90%). The RLQ ordination diagram of traits and 
environmental variables (Fig. 4) is a biplot of the trait × environment table of fourth 
corner statistics (missing corner in Fig. 1). By their long arrows the classes of 
management type are shown to have strong correlations with SLA, Seed mass and 
perhaps Height. Table 3 showed that on their correlations with SLA were statistically 
significant (P = 0.004) but the others were not (Seed mass: P= 0.11 and Height: 
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P=0.27). Moisture and Manure also have relatively long arrows and show the positive 
correlation between SLA with Manure and the negative correlation between  Moisture 
and Seed mass.  

The RLQ of the presence-absence version of the Grazed Grassland data (Fig. S3) 
looked similar to the one based on abundance, shown in Fig. 2 of Kleyer et al. (2012), 
although Onset stands out less. The arrows for Grazing and Soil P (or their distance 
from the origin) are twice or more the length of the arrow for Water, thus showing the 
traits are more related to grazing and phosphorus than to the water holding capacity.  
The biplot nicely shows the strong negative correlation between Soil P and Polycarpic 
and between Grazing and C : N ratio (Table 4). It also show that, of all traits, C : N 
ratio has correlation closest to zero with Soil P, but it is of course not clear that it is 
the only one that is non-significant (P = 0.17).  

Discussion 

In this paper, we showed how GLMM can be applied for modeling and explaining 
species response along environmental gradients by species traits. It is based on a 
sound statistical model that allows, as a standard by-product, questions to be answered 
about which traits and environmental variables are significantly related and which 
best explain the species response in a parsimonious model. 

GLMM accounts for pseudo-replication and heteroscedastic variance by including 
sites and species as random factors. Our GLMM approach can be understood as a 
two-step approach executed at once.  In the first step species response is related to the 
environment and in the second step the (multivariate) outcome of the first step is 
related to the trait data. The integration of these two steps into one has several 
advantages: GLMM models directly the variable of interest (occurrence probability, 
expected abundance), it automatically weighs the different kinds of information for an 
optimal model fit and standard statistical significance testing and it provides 
consistent estimates of the between-species variance of (slope) parameters, without 
introducing unnecessary random variation by replacing the (slope) parameters by their 
estimates as in the two step approach and it can be applied with small sample size. 

In comparison with separate regressions for each species (as in the first step of the 
two-step approach), the GLMM regression coefficients for each species tend to be 
pulled inward toward a common value; they are a compromise between the 
coefficients from a per-species fit and the population average. Such estimates are 
called shrinkage estimates (Pinheiro et al. 2000). The shrinkage is particularly evident 
for the species that have few presences. The estimates for these species lead to 
abnormally high estimates in the GLM fit (Fig. 3). The pooling of species in the 
GLMM estimation gives a certain amount of robustness to species with few 
occurrences in the data.  

Our GLMM starts with a logistic linear model (Fig. 2) and is therefore most suitable 
along short environmental gradients. Such data sets are common in our experience. 
Moreover, the random component for sites (γi) allows for any common non-linearity 
with as prime exaple the niche model with equal niche width (de Rooij 2007, Ihm et 
al. 1984, ter Braak 1988), as we show now. Consider the simplest unimodal curve, the 
Gaussian logistic curve (ter Braak and Looman 1986) 

22 /)(5.0)logit( jjijij tuxap   (9) 
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with aj  a coefficient related to maximum probability of occurrence,  uj  the species 
optimum and tj the tolerance of species j. On assuming that the species have equal 
tolerance (tj =t), expanding the square in equation (9) and setting 22 /5.0 jjjj tua   , 

2/ tu jj   and 22 /5.0 txii  , we obtain  

iijjij xp  )logit( , 

which is as equation (6) and can be viewed as GLMM.  GLMMs can thus model 
unimodal species composition data without the need of squared or other nonlinear 
terms.  By consequence, the trait model for the slope j  of equation (2) thus implies 

a model for the optimum uj  in case species have (near) equal tolerance. 

An alternative is to convert quantitative environmental variables to qualitative and 
model how the occurrence probabilities in the newly formed environmental categories 
depend on the traits, being either quantitative or qualitative. This approach fits in our 
proposed framework  as illustrated in Supplementary Material. Another alternative, 
adding polynomial terms as random component to the model, is less attractive as it 
leads to coefficients that lack a clear interpretation.  

We found a fair agreement between the simple trait-environment effects of GLMM 
and the one-by one relations found by fourth corner (Tables 3 and 4). Perhaps we 
were lucky. More disagreement can be expected when both the environmental 
gradients are longer and the species are more  variable in niche width. The RLQ 
ordination diagram illustrated that RLQ is simply an ordination of the fourth corner 
statistics and therefore does not build a truly multi-trait multi-environment model in 
the sense of regression analysis and GLMM. GLMM model selection resulted in 
parsimonious models. For example, when in the Grazed Grassland data the interaction 
between flowering mode (polycarpic/monocarpic) and phosphorous is taken into 
account, the remaining traits to do not contribute much to explain the species response 
to phosphorous. It is unclear to us how such simplification could be achieved with 
RLQ-based methods. Such simplification may help ecological interpretation. 

So far we did neither considered phylogeny, which puts constraints on the way traits 
may evolve in evolutionary time (Prinzing et al. 2008), nor the spatial configuration of 
the sites, which set constraints on dispersion (Dray et al. 2008, Ozinga et al. 2004). 
Both aspects can be modeled in a GLMM through random terms for species and sites 
whose correlation depends on either phylogenic association or spatial distance, 
respectively. In a recent paper, Ives & Helmus (2011) investigated the phylogenetic 
structure in community data in combination with either a single environmental 
variable or a single trait variable or no external data. Interestingly,  Ives & Helmus 
(2011) did not account for phylogeny while testing trait effects. The pseudo-
replication due to phylogenetic close species is thus not taken care of in their analyses 
(neither in ours). It would be of interest to extend their analysis to the case with both 
environmental and trait variables and to account for phylogeny in statistical tests of 
trait-environment interaction. These extensions merit further research, also in terms of 
practical software implementation.   

Species traits are likely to have much predictive value for where and when a particular 
species or group of species appear or disappear. Our model-based approach makes 
this predictive usage practical and allows the selection of the traits and environmental 
conditions that matter.  
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Figure S3. RLQ biplot of the Grazed Grassland data explaining 99% of the variance in the fourth 
corner statistics. 

Table S1. Comparison of models with (M1) and without (M0) SLA-Manure interaction by 
anova(M0,M1) in the Dune Meadow data. 

Table S2. The final GLMM model (after model selection) for the Dune Meadow data. 

Table S3. The final GLMM model (after model selection) for the Grazed Grassland data. 

 

Table 1.  
Effect of Manure and SLA on the presence-absence of Dune meadow species: parameter 
estimates  of fixed effects from GLMM model M1 (equation (7)); z-value: estimate/standard 
error;  *P<0.05, **P<0.01. The remaining estimates are  σα = 0.85, σβ = 0.36, ρ = -0.39 and σγ  
= 0.21. 

 

 
Name 

 
Symbol 

Parameter 
estimate 

Standard 
error 

 
z-value 

 
(Intercept) 

 
a0 

 
-1.75*      

 
0.81   

 
-2.17* 

Manure b0 -1.21**      0.40   -3.00**    
SLA a1  0.03      0.03    0.97   
Manure:SLA    b1  0.06**      0.02    3.28** 
z-value: estimate/standard error;  *P<0.05, **P<0.01. 
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Table 2. 
 Tiered forward selection of environmental and trait variables in models explaining 
species occurrence probability in the Dune Meadow data. The variable or interaction 
(indicated by :) giving the lowest SigAIC is added in each row (indicated by +). The 
best model in each tier is indicated in bold. 
 

Tier Effects SigAIC

 Random effects  
1 (1 | species)+(1 | site) 650.9 
1 (..+ Moisture | species) 590.4 
1 (.. + Manure | species) 571.1 
1 (..+ Use | species) 574.8 
 Fixed effects   
2 +Moist+Manure 578.8 
2 +Manure:SLA         567.5 
2 +Moisture:Seedmass      566.6 
2 +Moisture:SLA            567.9 
3 No interactions deleted 566.6 

   

Table 3. 
 Sign and significance of single trait-environment terms as found by GLMM and 
fourth corner in the Dune Meadow.  
GLMM/4th  A1 Moisture Mag Use Manure 

SLA NS/NS - /NS **/** NS/NS ++/++ 

Height NS/NS NS/NS NS/NS NS/NS NS/NS 

hLDMC NS/NS NS/NS NS/NS NS/-- NS/NS 

Seedmass NS/NS --/-- NS/NS NS/NS NS/NS 

Lifespan NS/NS NS/NS NS/NS NS/NS NS/NS 

./. = sign of GLMM/ sign of fourth corner (4th) with single sign: P< 0.05, double sign: P< 
0.01, NS: P > 0.05. For a categorical variable the sign is replace by *. 
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Table 4.  
Sign and significance of single trait-environment terms as found by GLMM and fourth corner 
in the Dune Meadow. 

GLMM/4th Grazing Soil P Water 

Polycarpic NS/NS ++/++ ++/NS 

C:N ratio --/-- NS/NS - /NS 

Seed mass NS/NS NS/-  ++/++ 

SLA NS/NS + /++ NS/NS 

Height NS/NS - /- NS/NS 

Onset.flower NS/NS --/-- NS/NS 

./. = sign of GLMM/ sign of fourth corner (4th) with single sign: P< 0.05, double sign: P< 
0.01, NS: P > 0.05.  
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Fig. 1. A table Y (n×m) containing the abundances of m species at n sites, a second 
table X (n×p) with measurements of p environmental variables for the n sites, and a 
third table Z  (m×s) describing s traits for the m species. In the fourth corner method 
the s×p missing corner is filled with traits × environment correlations. 
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Fig. 2. Occurrence probability against Manure as fitted by GLMM for nine selected 
species. Both intercept and slope vary among species and either do (red-solid line) or 
do not (blue-dashed line) depend on the trait SLA. ◦: jittered presence (1) and absence 
(0). 
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Fig. 3. Regression slopes (βj) of species with respect to Manure plotted against trait 
SLA with fitted regression line for GLMM  (circles with solid line) and the 2-step 
approach (triangles with dashed line). Slopes are truncated at 3 and -3 when estimated 
above 3 or below -3. 
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Fig. 4.  RLQ biplot of the Dune Meadow data explaining 90% of the variance in the 
fourth corner statistics. 
 
Supplementary figures and tables and Appendices 
Fig. S1. A Q-Q plot of the random effects in the final GLMM model of the Dune 
Meadow data . 
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Fig. S2. A Q-Q plot of the random effects in the final GLMM model of the Grazed 
Grassland data. 
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Fig. S3. RLQ biplot of the Grazed Grassland data explaining 99% of the variance in 
the fourth corner statistics.  
 

 
  
 
 
 
Table S1. Comparison of models with (M1) and without (M0) SLA-Manure 
interaction by anova(M0,M1) in the Dune Meadow data. df = degrees, logLik = 
loglikelihood, Chi-sq = 2*difference in logLik, Chi df = difference in df, Pr(>Chisq) = 
P-value. 
Model df           logLik Chi-sq Chi-df Pr(>Chisq) 
M0 7   -305.95            

M1 8 -301.12 9.67       1   0.0018** 
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Table S2. The final GLMM model (after model selection) for the Dune Meadow data. 
Generalized linear mixed model fit by the Laplace approximation  
Formula: y ~ (1 | site) + (1 + Moist + Manure | sp) + Moist + Manure 
+      SLA + Seedmass + Manure:SLA + Moist:Seedmass  
   Data: Data  
   AIC   BIC logLik deviance 
 540.9 601.4 -256.4    512.9 
Random effects: 
 Groups Name        Variance Std.Dev. Corr           
 sp     (Intercept) 1.43789  1.19912                 
        Moist       2.82409  1.68050  -0.231         
        Manure      1.33610  1.15590   0.299  0.511  
 site   (Intercept) 0.32543  0.57046                 
Number of obs: 560, groups: sp, 28; site, 20 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.618291   0.313967  -5.154 2.55e-07 *** 
Moist          -0.031705   0.380945  -0.083   0.9337     
Manure          0.009563   0.299437   0.032   0.9745     
SLA             1.276773   0.298861   4.272 1.94e-05 *** 
Seedmass       -0.274162   0.270879  -1.012   0.3115     
Manure:SLA      0.904098   0.259725   3.481   0.0005 *** 
Moist:Seedmass -0.824813   0.327925  -2.515   0.0119 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 
Table S3. The final GLMM model (after model selection) for the Grazed Grassland 
data. 
Generalized linear mixed model fit by the Laplace approximation  
Formula: y ~ (1 | site) + (1 + SOIL.P + Grazing | sp) + SOIL.P + 
Grazing +      Polycarpic + CNratio + SOIL.P:Polycarpic + 
Grazing:CNratio  
   Data: Data  
  AIC  BIC logLik deviance 
 1684 1763 -827.8     1656 
Random effects: 
 Groups Name        Variance Std.Dev. Corr           
 sp     (Intercept) 1.38065  1.17501                 
        SOIL.P      0.58959  0.76785   0.351         
        Grazing     0.91612  0.95714  -0.084 -0.162  
 site   (Intercept) 0.46159  0.67940                 
Number of obs: 2150, groups: sp, 50; site, 43 
 
Fixed effects: 
                  Estimate Std. Error z value Pr(>|z|)     
(Intercept)        -2.4289     0.2187 -11.107  < 2e-16 *** 
SOIL.P             -0.4298     0.1806  -2.380  0.01731 *   
Grazing             0.4148     0.1940   2.139  0.03244 *   
Polycarpic         -0.0267     0.1911  -0.140  0.88887     
CNratio            -0.3604     0.1847  -1.951  0.05105 .   
SOIL.P:Polycarpic  -0.8788     0.1376  -6.388 1.68e-10 *** 
Grazing:CNratio    -0.6213     0.1714  -3.624  0.00029 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Appendix S1. The GLMM trait model for count and multinomial data  
 
When abundance is a count, Poisson log-linear regression analysis is a commonly 
used starting point.  Poisson log-linear regression is part of the generalized linear 
model family. If the data yij are assumed to follow a Poisson distribution with mean μij  

 
 ijijy Poisson~

 
 
and the link function is logarithmic function, the analogue of  the first part of equation 
6 in the main text is  
 

)exp()( iijjijij xyE  
  

 
which is usually written as 
 

  iijjij x  log
 

 

The other aspects of the model specification remain the same. In lme4 the GLMM 
trait model for counts can be fitted by simply replacing “binomial” by “poisson” and 
“logit” by “log”: 
 
M1 <- glmer(y ~ z + x + z:x +(1+x|species)+(1|sites), 

family=poisson(link="log"), data) 
 
Nothing else changes.  
 
Count data may have a larger variance than assumed by the Poisson distribution. This 
is called overdispersion and can be detected in the data by introducing using a data-
level variance component in the GLMM (Gelman & Hill 2007). The GLMM for 
overdispersed count data is  

 

  ijiijjij x  log
      

 20,N~  ij  

The variance component 
2
 measures the amount of overdispersion and can be tested 

for significance by a LR test. In lme4 we specify 
 
data$rows = 1:nrow(data) 
M2 <- glmer(y ~ z + x + z:x +(1+x|species)+(1|sites) + 

(1|rows), family=binomial(link="poisson"), data) 
 
and can test the significance of the overdispersion by 
 
anova(M1,M2). 
 
Multinomial data is data that is count data with a constraint sum so that only the 
fraction is informative. Abundance data may be modeled as multinomial data as the 
interest is in the relative abundance only or if the data has been sampled as such, for 
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example, if at each site a pre-specified number of individuals is collected. 
Multinomial data can be modeled as count data by adding a fixed effect for the factor 
sites (McCullagh & Nelder 1989) 
 
M1 <- glmer(y ~ z + x + z:x + sites + (1+x|species), 

family=poisson(link="log"), data) 
 
Unfortunately this specification failed to run in lme4 at the time of writing.  
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Appendix	S2.	Dune	meadow	data	in	matrix	form	(Y,	X	and	Z)	and	in	vector	
notation	for	lme4.	
	
For	the	analysis	in	the	main	text	the	abundance	data	are	converted	to	presence‐
absence	data	(0/1).	For	full	names	see	Jongman	et	al.	(1995).	
Abundance	data	(matrix	YT):	
	

Species	 1	 2	 3	 4	 5	 6	 7	 8	 9	
1
0	

1
1	

1
2	

1
3	

1
4	

1
5	

1
6	

1
7	

1
8	

1
9	

2
0	

1	 Ach_mil	 1	 3	 0	 0	 2	 2	 2	 0	 0	 4	 0	 0	 0	 0	 0	 0	 2	 0	 0	 0	
2	 Agr_sto	 0	 0	 4	 8	 0	 0	 0	 4	 3	 0	 0	 4	 5	 4	 4	 7	 0	 0	 0	 5	
3	 Air_pra	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 2	 0	 3	 0	
4	 Alo_gen	 0	 2	 7	 2	 0	 0	 0	 5	 3	 0	 0	 8	 5	 0	 0	 4	 0	 0	 0	 0	
5	 Ant_odo	 0	 0	 0	 0	 4	 3	 2	 0	 0	 4	 0	 0	 0	 0	 0	 0	 4	 0	 4	 0	
6	 Bel_per	 0	 3	 2	 2	 2	 0	 0	 0	 0	 2	 0	 0	 0	 0	 0	 0	 0	 2	 0	 0	
7	 Bro_hor	 0	 4	 0	 3	 2	 0	 2	 0	 0	 4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 Che_alb	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	
9	 Cir_arv	 0	 0	 0	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
10	 Ele_pal	 0	 0	 0	 0	 0	 0	 0	 4	 0	 0	 0	 0	 0	 4	 5	 8	 0	 0	 0	 4	
11	 Ely_rep	 4	 4	 4	 4	 4	 0	 0	 0	 6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 Emp_nig	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 2	 0	
13	 Hyp_rad	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 2	 0	 0	 0	 0	 0	 2	 0	 5	 0	
14	 Jun_art	 0	 0	 0	 0	 0	 0	 0	 4	 4	 0	 0	 0	 0	 0	 3	 3	 0	 0	 0	 4	
15	 Jun_buf	 0	 0	 0	 0	 0	 0	 2	 0	 4	 0	 0	 4	 3	 0	 0	 0	 0	 0	 0	 0	
16	 Leo_aut	 0	 5	 2	 2	 3	 3	 3	 3	 2	 3	 5	 2	 2	 2	 2	 0	 2	 5	 6	 2	
17	 Lol_per	 7	 5	 6	 5	 2	 6	 6	 4	 2	 6	 7	 0	 0	 0	 0	 0	 0	 2	 0	 0	
18	 Pla_lan	 0	 0	 0	 0	 5	 5	 5	 0	 0	 3	 3	 0	 0	 0	 0	 0	 2	 3	 0	 0	
19	 Poa_pra	 4	 4	 5	 4	 2	 3	 4	 4	 4	 4	 4	 0	 2	 0	 0	 0	 1	 3	 0	 0	
20	 Poa_tri	 2	 7	 6	 5	 6	 4	 5	 4	 5	 4	 0	 4	 9	 0	 0	 2	 0	 0	 0	 0	
21	 Pot_pal	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 2	 2	 0	 0	 0	 0	 0	
22	 Ran_fla	 0	 0	 0	 0	 0	 0	 0	 2	 0	 0	 0	 0	 2	 2	 2	 2	 0	 0	 0	 4	
23	 Rum_ace	 0	 0	 0	 0	 5	 6	 3	 0	 2	 0	 0	 2	 0	 0	 0	 0	 0	 0	 0	 0	
24	 Sag_pro	 0	 0	 0	 5	 0	 0	 0	 2	 2	 0	 2	 4	 2	 0	 0	 0	 0	 0	 3	 0	
25	 Sal_rep	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 3	 3	 5	
26	 Tri_pra	 0	 0	 0	 0	 2	 5	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
27	 Tri_rep	 0	 5	 2	 1	 2	 5	 2	 2	 3	 6	 3	 3	 2	 6	 1	 0	 0	 2	 2	 0	
28	 Vic_lat	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 2	 0	 0	 0	 0	 0	 0	 1	 0	 0	
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Environment	data	(matrix	X):	
	
sites	 A1_hor	 Moisture	 Management Use	 Manure	

1	 2.8	 1	 SF	 2 4	
2	 3.5	 1	 BF	 2 2	
3	 4.3	 2	 SF	 2 4	
4	 4.2	 2	 SF	 2 4	
5	 6.3	 1	 HF	 1 2	
6	 4.3	 1	 HF	 2 2	
7	 2.8	 1	 HF	 3 3	
8	 4.2	 5	 HF	 3 3	
9	 3.7	 4	 HF	 1 1	
10	 3.3	 2	 BF	 1 1	
11	 3.5	 1	 BF	 3 1	
12	 5.8	 4	 SF	 2 2	
13	 6	 5	 SF	 2 3	
14	 9.3	 5	 NM	 3 0	
15	 11.5	 5	 NM	 2 0	
16	 5.7	 5	 SF	 3 3	
17	 4	 2	 NM	 1 0	
18	 4.6	 1	 NM	 1 0	
19	 3.7	 5	 NM	 1 0	
20	 3.5	 5	 NM	 1 0	

	
Trait	data	(matrix	Z):		
	
  Species          SLA     Height       LDMC      Seedmass  Lifespan 

1	 Ach_mil	 19.63  21.15  172.20  0.13  perennial 

2	 Agr_sto	 29.35  18.40 273.55  0.03  perennial 

3	 Air_pra	 15.66  7.00  270.29  0.16  annual 

4	 Alo_gen	 33.40 20.00  211.95  0.37 perennial 

5	 Ant_odo	 22.53  14.80  400.74  0.23  perennial 

6	 Bel_per	 31.62  2.40  177.10  0.10  perennial 

7	 Bro_hor	 27.90  38.40  260.68  1.72  perennial 

8	 Che_alb	 22.21  48.00  164.33  0.65  annual 

9	 Cir_arv	 15.40  87.50  141.66  1.25  perennial 

10	 Ele_pal	 10.31  52.50  217.76  1.01  perennial 

11	 Ely_rep	 20.12  53.80  446.49  1.88  perennial 

12	 Emp_nig	 5.80  16.20  443.00  0.88  perennial 

13	 Hyp_rad	 18.35  5.00  163.96  0.47  perennial 

14	 Jun_art	 19.38  32.50  202.95  0.02  perennial 

15	 Jun_buf	 17.87  18.00  136.50  0.03  annual 

16	 Leo_aut	 32.27  6.70  194.33  0.61  perennial 

17	 Lol_per	 25.31  28.80  263.78  2.01  perennial 

18	 Pla_lan	 19.84  7.10 199.88  1.51  perennial 

19	 Poa_pra	 27.52  32.40  281.68  0.24  perennial 

20	 Poa_tri	 30.98  38.33  252.36  0.16  perennial 

21	 Pot_pal	 19.02  35.00  264.86  0.84  perennial 

22	 Ran_fla	 16.99  21.50  173.91  0.45  perennial 

23	 Rum_ace	 29.34  47.50  102.11  0.93  perennial 

24	 Sag_pro	 19.25  6.00  217.00  0.07  perennial 
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25	 Sal_rep	 15.09  60.00  388.06  0.04  perennial 

26	 Tri_pra	 19.73  24.20  277.13  1.87  perennial 

27	 Tri_rep	 24.44  12.40  217.14  0.47  perennial 

28	 Vic_lat	 25.80  13.00  217.00  2.05  annual 
	
	
Dune	meadow	data	in	vector	notation	for	lme4	
	
Dune=read.table("Dune.txt", header=TRUE) 
head(Dune) 
				site			species	sp	abun		y			A1	Moist		Mag		Use		Manure			SLA			Height		LDMC		Seedmass		Lifespan	
1				1				Ach_mil		1				1							1		2.8					1							SF						2						4												19.63			21.15				172.2						0.13										perennial	
2				2				Ach_mil		1				3							1		3.5					1							BF						2						2												19.63			21.15				172.2					0.13										perennial	
3				3				Ach_mil		1				0							0		4.3					2							SF						2						4													19.63			21.15				172.2					0.13										perennial	
4				4				Ach_mil		1				0							0		4.2					2							SF						2						4													19.63			21.15				172.2					0.13										perennial	
5				5				Ach_mil		1				2							1		6.3					1							HF					1						2													19.63			21.15				172.2					0.13										perennial	
6				6				Ach_mil		1				2							1		4.3					1							HF					2						2													19.63			21.15				172.2					0.13										perennial	
7					.	……………	
	
R‐code	
	
Code	from	dune_data_expand.r	
	
rm(list=ls(all=TRUE))	
#	Transform	three	data	tables	Y	(abundance),	X	(environment),	Z	(traits)	
#	to	vector	notation	for	GLMM	
#	version			May	2011	
#	Abundance	data	(20	sites	x	28	species)	
#	Important:	Look	at	package	multitable	for	this	
#	multitable	did	not	include	the	site	and	species/sp	columns	at	the	time	of	writing)	
#	but	likely	to	be	updated.	
file_Y	<‐	"data/dune_abundance_Y.txt"		#	sites	x	species	abundance	data	
file_X	<‐	"data/dune_environment_X.txt"#	sites	x	environment	data	
file_Z	<‐	"data/dune_traits_Z.txt"					#	species	x	traits	data	
Y<‐read.table(file_Y,	header	=	TRUE)	
sites	<‐	Y[,1];	Y	<‐Y[,‐1];	species	<‐names(Y);	rownames(Y)	=	sites;		
#dim(Y);head(Y);names(Y);rownames(Y)	
X<‐read.table(file_X,	header	=	TRUE)	
sitesX	<‐	X[,1];	rownames(X)	=	sitesX;	X	<‐X[,‐1]	
if	(!all.equal(sitesX,sites))	print("BEWARE:	site	names	unequal?")	
#dim(X);head(X);names(X);rownames(X)	
Z<‐read.table(file_Z,	header	=	TRUE)	
speciesZ	<‐	Z[,1];	traits	<‐names(Z);	rownames(Z)	=	speciesZ;	Z	<‐Z[,‐1]	
#dim(Z);head(Z);names(Z);rownames(Z)	
a	<‐as.character(speciesZ);	b	<‐as.character(species)	
if	(!all.equal(a,b))	print("BEWARE:	species	names	unequal?")	
	
sitespec	<‐	expand.grid(rownames(Y),colnames(Y))	
site	<‐sitespec[,1];	species<‐sitespec[,2];	sp	<‐as.numeric(species)	
abun	<‐	as.vector(as.matrix(Y))	
y	<‐	1*(abun>0)		#	transformation	to	presence	‐	absence	
Xvec	<‐		X[site,]	
Zvec	<‐		Z[species,]	
XYZ	<‐	cbind(data.frame(site,species,sp,abun,	y),Xvec,Zvec)	
Dune	<‐	XYZ	
write.table(Dune,file	=	"Dune.txt")	
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Appendix	S3.	The	GLMM	trait	model	with	qualitative	and/or	qualitative	trait	
and	environmental	variable	
	
In	 the	 main	 text,	 the	 species	 trait	 and	 the	 environmental	 variable	 were	 both	
quantitative.	 The	 GLMM	 can	 also	 be	 used	 to	 model	 when	 species	 trait	 and	
environmental	variable	are	both	qualitative	or	when	one	is	quantitative	and	the	
other	 qualitative.	 Here	we	 illustrate	 all	 the	 combinations	with	 key	 output	 and	
interpretation	 of	 the	 regression	 coefficients	 using	 the	 Dune	 Meadow	 data	 in	
vector	notation	in	Appendix	S2	(dataframe	Dune).	The	R	code	at	the	end	of	this	
appendix	 shows	 for	 all	 combinations	 how	 to	 compute	 the	 fitted	 occurrence	
probability	with	confidence	bands	from	the	estimated	regression	coefficients	and	
their	covariance	matrix.	
	
1‐Both	trait	and	environmental	variable	quantitative		
	
As	 in	the	main	text	we	consider	here	the	case	where	both	species	 trait	and	the	
environmental	variable	are	quantitative.	Now	we	fit	a	model,	using	glmer	in	the	
lme4	package,	where	sp	codes	for	species	and	site	for	sites,	
glmer(y~Manure+SLA+Manure:SLA+(1+Manure|sp)+(1|site), 
family=binomial, Dune) 
or	to	the	same	effect	
glmer(y~Manure*SLA+(1+Manure|sp)+(1|site), 
family=binomial, Dune) 
The	fixed	effects	estimates	are	in	Table	1.	
	
Table	1.	Fixed	effects	estimated	from	GLMM	for	quantitative	environmental	
variable	and	quantitative	species	trait.	
Fixed	effect	 Parameter	estimate	 Standard	error	 z	statistic	
(Intercept)	 ‐1.751	 0.806	 ‐2.172*	
Manure	 ‐1.210					 0.403			 ‐3.005**	
SLA	 0.033					 0.035			 0.967	
Manure:SLA	 	0.055					 0.017				 	3.275**	
	 	 	 	
The	regression	equation	is	
	
	ls	=	‐1.751	‐1.210Manure+0.033SLA	+0.055ManureSLA	.		
	
The	result	is	on	logit	scale	and	can	be	converted	to	occurrence	probability	(prob)	
by	
	
prob	=		invlogit(ls)	=	1/(1+exp(‐ls)).		
	
Fig.1	shows	the	occurrence	probability	against	Manure	for	species	with	different	
SLA	(SLA	=	5,	15	and	30)	along	with	95%	confidence	bands.		
	
We	now	return	 to	Table	1.	 In	a	model	with	an	 interaction,	 the	size	and	sign	of	
main	effects	depend	on	 the	 scales	of	 the	variables	 and	may	 thus	be	difficult	 to	
interpret.	Manure	runs	from	0	to	4	in	the	data	and	SLA	ranges	from	5.8	to	33.4	
(low	 to	 high).	 In	 Table	 1,	 the	 main	 effect	 for	 Manure	 (‐1.21)	 is	 negative	 and	
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significant	 showing	 that,	 if	 a	 species	would	have	 SLA	=	0,	 it	would	decrease	 in	
occurrence	 probability	 with	 higher	 Manure.	 Such	 species	 do	 not	 occur	 in	 the	
data;	the	lowest	SLA	is	5.8.		Species	with	SLA=5	still	decreases	(Fig	1);	their	slope	
with	respect	to	Manure	is	‐1.21+5*0.055=	‐0.935.	Species	with	a	high	SLA	value,	
for	example	SLA	=	30,	have	a	slope	of		‐1.21+30*0.055	=	0.44,	indicating	that	such	
species	are	increasing	in	occurrence	probability	with	higher	Manure	(Fig	1).	The	
mean	 SLA	 is	 ~22,	 giving	 close	 to	 0	 slope,	 indicating	 that	 the	 occurrence	
probability	does	not	depend	on	Manure	for	species	with	mean	SLA	value.		
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Fig.	 1.	 Occurrence	 probability	 of	 species	 having	 low	 (SLA=5),	 intermediate	
(SLA=15)	and	high	(SLA=30)	values	 in	relation	to	manure	 in	the	dune	meadow	
from	a	GLMM	model	along	with	95%	confidence	bands.			
	
We	 now	 turn	 to	 the	 effect	 of	 trait	 SLA.	 In	 model	 M1,	 the	 main	 effect	 for	 SLA	
(0.033)	is	positive	and	nonsignificant,	showing	that	the	occurrence	probability	of	
the	species	slightly	increases	with	increasing	SLA	in	sites	with	Manure	=	0.	As	the	
interaction	coefficient	 is	positive,	 the	strength	of	 the	positive	relation	 increases	
for	 higher	 values	 of	Manure.	 Therefore,	 for	 all	 values	 of	Manure,	 species	 with	
high	 SLA	 have	 higher	 occurrence	 probability	 than	 species	 with	 low	 SLA;	 this	
tendency	is	stronger	the	higher	the	value	of	Manure.		
	
	
	
	
2‐	Quantitative	trait	and	qualitative	environmental	variable		
	
We	consider	the	case	where	the	environmental	variable	is	qualitative	and	species	
trait	is	quantitative.	This	yields	separate	regression	lines	for	each	category	of	the	
environmental	 variable	 (Fig.	 1).	 In	 our	 example	 Manure	 is	 a	 qualitative	
explanatory	 variable	 (i.e.,	 a	 factor),	 we	 divide	 the	 range	 of	 manure	 into	 two	
intervals	 and	 convert	 them	 to	 a	 factor	 with	 two	 categories:	 Manure‐no	 and	
Manure‐yes	
ManureLab = c("no","yes") 
 
Dune$Manure=cut(Dune0$Manure,  
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breaks = c(-1,0.5,10),labels=ManureLab) 
Now	we	 fit	 a	 model,	 using	 glmer	 in	 the	 lme4	 package,	 with	 the	 same	 type	 of	
statement	as	before	
glmer(y~Manure*SLA+(1+Manure|sp)+(1|site), 
family=binomial,Dune) 
The	fixed	effects	estimates	are	in	Table	2.	
	
Table	2.	Fixed	effects	estimated	from	GLMM	for	qualitative	environmental	
variable	and	quantitative	species	trait	in	the	default	parameterization.	
Fixed	effect	 Parameter	estimate	 Standard	error	 z	statistic	
(Intercept)	 ‐1.083						 0.961				 ‐1.126		
Manure‐yes		 ‐3.884	 1.179		 ‐3.294***	
SLA	 ‐0.012				 0.042		 ‐0.286	
Manure‐yes:SLA	 	0.197						 0.051				 	3.870***			
	 	 	 	
	
The	regression	equation	for	manure‐no	(the	first	level	of	the	factor	manure)	is	on	
logit	scale	is	straightforward		
	
Manure‐no	 	‐1.083	–	0.012SLA	
	
The	 regression	 equation	 for	 Manure‐yes	 can	 be	 obtained	 as	 follows.	 The	
intercept	 for	Manure‐yes	 can	 be	 found	 by	 adding	 the	 coefficients	 for	 intercept	
and	Manure‐yes	and	the	slope	for	Manure‐yes	with	respect	to	SLA	by	adding	the	
coefficients	 for	SLA	and	Manure‐yes:SLA	 .	The	regression	equation	 for	Manure‐
yes	becomes	on	logit	scale	
	
Manure‐yes	 (‐1.083	‐3.844)	+	(‐0.012+0.197)SLA=	‐4.967	+	0.185SLA	
		
Both	 equations	 can	 be	 converted	 to	 occurrence	 probability	 curves	 with	
confidence	bands	(Fig.	2).		
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Fig.	 2.	 Occurrence	 probability	 of	 a	 species	 in	 manure‐no	 and	 manure‐yes	
meadows,	with	95%	confidence	band,	in	relation	to	the	species	trait	SLA	from	a	
GLMM	model	where	the	environmental	variable	is	a	factor	with	two	categories.	
	
Fig.	2	shows	that	in	manure‐no	meadows	the	probability	of	occurrence	of	species	
decreases	 very	 slightly	 with	 increasing	 SLA,	 whereas	 in	manure‐yes	meadows	
the	probability	of	occurrence	of	species	increases	with	increasing	SLA.	The	two	
regression	 lines	 show	the	 interaction	between	Manure	and	SLA.	 In	Table	2	 the	



 37

interaction	 is	represented	by	one	regression	coefficient	 (0.197)	which	 is	highly	
significant.	
	
A	trick	to	immediately	obtain	the	regression	model	for	each	meadow	category	is	
to	make	a	slight	modification	in	the	model	specification:	
glmer(y~0+Manure+Manure:SLA+(0+Manure|sp)+(1|site),family
=binomial, Dune) 
The	results	for	this	model	specification	are	displayed	in	Table	3.	
	
Table	 3.	 Fixed	 effects	 estimated	 from	 GLMM	 for	 qualitative	 environmental	
variable	and	quantitative	species	trait	in	natural	parameterization.	
Fixed	effect	 Parameter	estimate	 Standard	error	 z	statistic	
Manure‐no	 ‐1.083						 0.961				 1.126		
Manure‐yes	 ‐4.967			 0.896		 ‐5.546***	
Manure‐no:SLA	 ‐0.012				 0.042		 ‐0.286	
Manure‐yes:SLA	 0.185				 0.038			 4.900***			
	 	 	 	
		
Table	3	contains	directly	the	coefficients	of	the	regression	equations	for	Manure‐
no	and	Manure‐yes	equation	on	logit	scale:		
	
Manure‐no	 	‐1.083	–	0.012	SLA	
Manure‐yes	 	‐4.967	+	0.185	SLA	
	
In	Table	3	there	seem	to	be	two	interaction	terms,	but	the	real	interaction	is	the	
difference	between	the	two.	Table	2	and	Table	3	use	different	parameterizations	
of	the	same	model.	In	either	case,	a	likelihood	ratio	(LR)	test	of	the	interaction	is	
obtained	by	comparison	with	the	model		
glmer(y~Manure+SLA+(1+Manure|sp)+(1|site), 
family=binomial, Dune) 
using	the	anova()	statement.	
	
3‐	Qualitative	trait	and	quantitative	environmental	variable	
	
We	 consider	 the	 case	 where	 the	 trait	 is	 qualitative	 and	 the	 environmental	
variable	 is	 quantitative.	 This	 yields	 separate	 regression	 lines	 for	 each	 trait	
category	 (Fig.	 3).	 In	 our	 example	 SLA	 turned	 into	 a	 qualitative	 explanatory	
variable	(i.e.,	a	factor),	with	three	categories:	low,	middle	and	high.			
SLALab = c("low","middle","high") 
Dune$SLA=cut(Dune$SLA, breaks=c(0,13,25,40),labels= 
SLALab) #3levels  
Now	the	model	specification	using	glmer	in	the	lme4	package	is	
glmer(y~Manure*SLA+(1+Manure|sp)+(1|site), 
family=binomial, Dune) 
The	fixed	effects	for	the	above	model	are	given	in	Table	4.	
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Table	4.	Fixed	effects	estimated	from	GLMM	for	qualitative	trait	and	quantitative	
environmental	variable.	
Fixed	effect	 Parameter	estimate	 Standard	error	 z	statistic	
(Intercept)	 ‐1.164	 0.877			 ‐1.326		
Manure	 ‐0.635				 0.489		 ‐1.297	
SLA‐middle	 ‐0.054	 0.925		 0.058	
SLA‐high	 0.324				 0.950			 	0.341			

Manure:SLA‐middle	
Manure:SLA‐high	

0.482	
1.055			

0.508		
0.517			

0.948	
	2.042*			

	
The	regression	equation	for	SLA‐low	(the	first	level	of	the	factor	SLA)	is	on	logit	
scale	is	straightforward		
	
SLA‐low	 	‐1.164–	0.635			Manure	
	
The	 regression	 equation	 for	 SLA‐middle	 can	 be	 obtained	 as	 follows.	 The	
intercept	 for	 SLA‐middle	 can	 be	 found	 by	 adding	 the	 coefficients	 for	 intercept	
and	SLA‐middle	and	the	slope	for	SLA‐middle	with	respect	to	manure	by	adding	
the	coefficients	for	Manure	and	Manure:SLA‐middle	.	The	regression	equation	for	
SLA‐middle	becomes	on	logit	scale	
	
SLA‐middle	 (‐1.164	–0.054)	+	(‐0.635	+0.482)Manure=	‐1.218	‐
0.153Manure	
	
Similarly	for	SAL‐high	is	
	
	SLA‐high	 (‐1.164	–0.324)+	(‐0.635	+1.055)Manure=‐1.488	+	0.42	Manure	
	
All	 the	 three	equations	can	be	converted	 to	occurrence	probability	curves	 (Fig.	
3).		
	

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1.
0

Manure

P
r(

sp
 p

re
se

n
ce

)

SLA- low

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1.
0

Manure

P
r(

sp
 p

re
se

n
ce

)

SLA- middle

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1.
0

Manure

P
r(

sp
 p

re
se

n
ce

)

SLA- high

	
Fig.	3.	Occurrence	probability	of	species	for	SLA‐low,	SLA‐middle	and	SLA‐high,	
with	 95%	 confidence	 band,	 in	 relation	 to	manure	 in	 the	 dune	meadow	 from	 a	
GLMM	model	where	the	trait	is	a	factor	with	three	categories.	
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The	probability	of	occurrence	of	species	with	SLA‐low	and	SLA‐middle	decreases	
with	 increasing	 manure,	 whereas	 the	 probability	 of	 occurrence	 of	 species	 for	
SLA‐high	increases	with	increasing	manure	(Fig.	3).	
	
4‐	Both	trait	and	environmental	variable	qualitative	
	
We	consider	the	case	when	both	trait	and	environmental	variable	are	qualitative.	
This	 yields	 occurrence	 probabilities	 in	 each	 class	 of	 the	 cross‐classification	 of	
trait	 and	 environment.	 In	 our	 example,	 the	 species	 trait	 SLA	 is	 classified	 into	
three	and	environmental	variable	manure	classified	into	two	categories	as	above.	
The	model	specification	in	R	is:		
glmer(y ~Manure*SLA +(1+Manure|sp)+(1|site), 
family=binomial, Dune) 
	
Table	5.	Fixed	effects	estimated	from	GLMM	for	qualitative	environmental	
variable	and	qualitative	species	trait.	
Fixed	effect	 Parameter	

estimate	
Standard	
error	

z	statistic	

(Intercept)	 ‐0.820	 0.975				 ‐0.841		
Manure‐yes	 ‐2.206	 1.371			 ‐1.609		
SLA‐middle	 ‐0.492	 1.040			 ‐0.473	
SLA‐high	 ‐0.674					 1.087				 	‐0.620	

Manure‐yes:SLA‐middle	
Manure‐yes:SLA‐high	

	2.115	
	4.082					

1.439			
1.480				

	1.470	
	2.758**	

	
From	 the	 coefficients	 in	 Table	 5	 we	 need	 to	 construct	 the	 occurrence	
probabilities	 in	 each	 class.	The	 reference	 class	 is	 the	 first	 level	 of	manure	 (no)	
and	the	first	level	of	SLA	(low),		Manure‐no−SLA‐low;	we	have	on	the	logit‐scale	
	
for	class	Manure‐no−	SLA‐low												 ‐0.820	
for	class	Manure‐yes−SLA‐low										 ‐0.820‐2.206	=	‐3.026	
for	class	Manure‐no	–SLA‐middle				 ‐0.820‐0.492=‐1.312	
for	class	Manure‐yes−SLA‐middle			 ‐0.820‐2.206‐0.492+2.115=‐1.403	
for	class	Manure‐no	–SLA‐high								 ‐0.820‐0.674=‐1.494	
for	class	Manure‐yes−SLA‐high							 ‐0.820‐2.206‐0.674+4.082=0.383	
	
The	occurrence	probabilities	are	the	inverse	logit	of	these	values,	for	example	
	
invlogit(0.383)	=	1/(1+exp(‐0.383))=	0.595.		
	
Table	6	shows	all	probabilities	and	95%	confidence	limits.		
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Table	6.	Probability	of	occurrence	and	in	parentheses	are	the	corresponding	
confidence	limits	of	species	for	two	levels	of	manure	and	three	levels	of	SLA	in	
meadows.		
	 	 SLA	
	 	 low	 middle	 high	
Manure	 no	 0.306		(0.061,	0.748) 0.212 (0.117,	0.354) 0.183 (0.080,	0.366)	
	 yes	 0.046		(0.005,	0.329) 0.197 (0.112,	0.324) 0.595 (0.395,	0.767)	
	
	
	
5‐	Mix	of	quantitative	and	qualitative	traits	and	environmental	variables		
	
Finally	we	consider	 the	case	with	 two	environmental	variables	of	which	one	 is	
quantitative	and	the	other	is	qualitative	and	also	two	traits,	one	quantitative	and	
the	 other	 qualitative.	 We	 use	 Moisture	 and	 Seedmass	 as	 the	 quantitative	
variables	and	the	Manure	and	SLA	 in	 their	 	qualitative	versions,	as	above,	with	
two	and	three	categories,	respectively.	The	model	specification	in	R	is:		
fm5<-glmer(y~Moist*Seedmass+Manure*SLA + 
(1+Moist+Manure|sp)+(1|site), family=binomial, Dune) 
Table	 7.	 Fixed	 effects	 estimated	 by	 GLMM	 for	 a	 mix	 of	 quantitative	 and	
qualitative	trait	and	environmental	variables.	
Fixed	effect	 Parameter	

estimate	
Standard	error z	statistic	

(Intercept)	 ‐1.8099	 1.6331	 ‐1.108	
Moist	 0.5113	 0.2665	 1.918	
Seedmass	 1.3970	 0.9233	 1.513	
Manure‐yes	 ‐3.1052	 1.9218	 ‐1.616	
SLA‐middle	 ‐1.3161	 1.3542	 ‐0.972	
SLA‐high	 ‐1.4464	 1.4121	 ‐1.024	
Moist:Seedmass	 ‐0.7154	 0.2710	 ‐2.639**	
Manure‐yes:SLA‐middle	 3.1477	 2.0030	 1.571	
Manure‐yes:SLA‐high	 5.9773	 2.0739	 2.882**	

	 	 	 	
The	interpretation	of	the	coefficients	in	Table	7	goes	along	the	same	lines	as	that	
in	 the	 previous	 sections.	 The	 model	 allows	 predictions	 to	 be	 made	 for	 each	
combination	of	value	of	Moisture,	Manure,	SLA	and	Seedmass.	The	R‐code	used	
for	this	example	is	
newdat <- expand.grid(Moist = c(1,2,4), Seedmass 
=c(0.05,1,2), Manure=ManureLab, SLA = SLALab, y = 0) 
newdat <- glPredict(fm5, newdat) 
newdat[, -(5:7)] 
The	first	three	lines	of	the	output	are:		
   Moist Seedmass Manure    SLA           p         plow      phigh 
1      1     0.05     no    low 0.220188160 1.515774e-02 0.83819104 
2      2     0.05     no    low 0.312366963 2.901418e-02 0.87351195 
3      4     0.05     no    low 0.540389415 7.950060e-02 0.94119772 
 

And	the	last	three	lines	of	the	output	are:		
52     1     2.00    yes   high 0.816111789 3.488304e-01 0.97352264 
53     2     2.00    yes   high 0.638929369 2.549278e-01 0.90149447 
54     4     2.00    yes   high 0.219550859 4.701617e-02 0.61598359 
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6‐	R‐code	
The	R	code	used	in	this	Appendix	is	also	in	the	R‐file	glmm‐plot‐conf‐int.r.	The	
output	is	in	file	glmm‐plot‐conf‐int.txt.	
	
rm(list=ls(all=TRUE))	
library(lme4)	
invlogit	<‐	function(x){1/(1+exp(‐x))}	
Dune=read.table("data/Dune.txt",	header=TRUE,sep="	")	
Dune0=	Dune		#	we	will	modify	Dune	starting	from	the	original,	Dune0	
colnames(Dune)	
glPredict	<‐	function(fm1,	newdat,	conf	=	95)	{	
		#	Predicts	occurrence	probability	with	confidence	limits	from	an	glmer	object	at	
		#		the	points	provided	as	rows	of	newdat	
		#	fm1	=	glmer		object	
		#	newdat	=	data	frame	with	values	for	predictors	for	which	prediciton	must	be	made	
		#	confidence	value	(in	%)	
		#	for	related	code	see	package	ez	
		#	Value:	
		#		y,	lo,	hi	=	prediction	with	confidence	limits	on	link	scale	
		#		p,	plow,	phigh	=			occurrence	probability	with	confidence	limits	
		frac	=	1	‐	(100‐conf)/200	
		mm	=	model.matrix(terms(fm1),newdat)	
		y	=	mm	%*%	fixef(fm1)		#	prediction	on	link	scale	
		Var	<‐	Matrix::diag(mm	%*%	tcrossprod(vcov(fm1),mm))	#	variance	on	link	scale	
		lo	=	y‐qnorm(frac)*sqrt(Var)	
		hi	=	y+qnorm(frac)*sqrt(Var)	
		newdat$y	=	y	
		newdat	<‐	data.frame(newdat,	ylo	=	lo,	yhi	=	hi,	
				p	=	invlogit(y),	plow	=	invlogit(lo),	phigh	=	invlogit(hi))	
		newdat	
}	
		
#################################################################	
#	Table	1	Quantitative	environmental	variable;	Quantitative	trait		
################################################################	
		
fm1	=	glmer	(y	~	Manure	*SLA	+(1	+	Manure	|	sp)+(1|site),	
												family=binomial,data=Dune)	
	
#	for	prediction	with	confidence	limits	
SLAval	=	c(5,15,30	)	
newdat	<‐	expand.grid(	Manure=seq(0,4,length.out=100),	SLA	=	SLAval,	y	=0)	
newdat	<‐	glPredict(fm1,	newdat)		
names(newdat)		
#	for	plotting					
par(bty="n")	
par(mfrow=c(1,3))			
for	(	j	in	SLAval){	
			
		data.f<‐	subset(	newdat	,	SLA	%in%	j)						
		x<‐	data.f$Manure			
		plot(0,0,ylim=c(0,1),xlim=range(x),ylab="Pr(sp	presence)"	,xlab="Manure"	,	
						yaxs="i"	,	main="",type="n")	
		mtext(paste("SLA=",j	),			font=	2,	col=	"black"	)					
		polygon(c(x,	rev(x)),	c(data.f$phigh,	rev(data.f$plow)),col	=	'gray',	border	=	FALSE)	
		points(x,	data.f$p,	type='l',lwd=2.5)	
}	
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#################################################################	
#	Table	2	Factor	environmental	variable;	Quantitative	trait		
################################################################	
ManureLab	=	c("no","yes")	
Dune$Manure=	cut(Dune0$Manure,	breaks	=	c(‐1,0.5,10),	labels=ManureLab)	
print(fm2<‐glmer(y~	Manure*SLA+(1+Manure|sp)+(1|site)	
																	,	family=binomial,	Dune),corr=FALSE)																			
#	for	prediction	with	confidence	limits	
newdat	<‐	expand.grid(Manure	=	ManureLab,SLA=seq(6,30,length.out=1000),y	=	0)								
newdat	<‐	glPredict(fm2,	newdat)							
par(mfrow=c(1,2))					
for	(	j	in	ManureLab){							
				data.f<‐	subset(	newdat	,	Manure	%in%	j)	
				
				x<‐	data.f$SLA	
				plot(0,0,ylim=c(0,1),xlim=range(x),ylab="Pr(sp	presence)"	,xlab="SLA"	,	
										yaxs="i"	,	main="",type="n")	
			#	title(paste("SLA=",j	),	cex.main	=	1.2,			font.main=	2,	col.main=	"black")	
				mtext(paste("Manure‐",j	),			font=	2,	col=	"black"	)	
				polygon(c(x,	rev(x)),	c(data.f$phigh,	rev(data.f$plow)),col	=	'gray',	border	=	FALSE)	
				points(x,	data.f$p,	type='l',lwd=2.5)	
}	
#	the	alternative	parametrization	(Table	3)	
print(fm2.B<‐glmer(y~0+Manure+Manure:SLA+(0+Manure|sp)+(1|site)	
																	,	family=binomial,	Dune),corr=FALSE)				
newdat.B	<‐	glPredict(fm2.B,	newdat)		
all.equal(newdat.B,newdat)						
	
fm0<‐glmer(y~Manure+	SLA+(1+Manure|sp)+(1|site)	
																	,	family=binomial,	Dune)	
anova(fm0,fm2)	
anova(fm0,fm2.B)	
################################################################	
#	Table	4	Quantitative	environmental	variable;	Factor	trait		
################################################################	
Dune	=	Dune0	
SLALab	=	c("low","middle","high")	
Dune$SLA=	cut(Dune$SLA,	breaks	=	c(0,13,25,40),	labels=	SLALab)	
	
print(fm3<‐glmer(y~Manure*SLA+(1+Manure|sp)+(1|site)	
																	,	family=binomial,	Dune),corr=FALSE)	
	
newdat	<‐	expand.grid(	Manure=seq(0,4,length.out=100),SLA=SLALab,	y	=0)	
newdat	<‐	glPredict(fm3,	newdat)	
	
par(mfrow=c(1,3))									
for	(	j	in	SLALab){							
				data.f<‐	subset(	newdat	,	SLA	%in%	j)							
				x<‐	data.f$Manure	
				plot(0,0,ylim=c(0,1),xlim=range(x),ylab="Pr(sp	presence)"	,xlab="Manure"	,	
										yaxs="i"	,	main="",type="n")	
				mtext(paste("SLA‐",j	),			font=	2,	col=	"black"	)					
				polygon(c(x,	rev(x)),	c(data.f$phigh,	rev(data.f$plow)),col	=	'gray',	border	=	FALSE)	
				points(x,	data.f$p,	type='l',lwd=2.5)	
}	
			
	#################################################################	
	#	Table	5	Factor	environmental	variable;	Factor	trait		
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	################################################################							
ManureLab	=	c("no","yes")	
Dune$Manure=	cut(Dune$Manure,	breaks	=	c(‐1,0.5,10),	labels=ManureLab)	
#factor	environmental	variable;	Quantitative	trait	
print(fm4<‐glmer(y~Manure*SLA+(1+Manure|sp)+(1|site)	
																	,	family=binomial,	Dune),corr=FALSE)	
																		
newdat	<‐	expand.grid(	Manure=ManureLab,	SLA	=	SLALab,	y	=	0		)	
newdat	<‐	glPredict(fm4,	newdat)	
newdat	
newdat[,	‐(3:5)]	
	
#################################################################	
#	Table	6	mix	of	quantitative	and	qualitative	traits	and	environmental	variables		
#	Two	Environmental	variables:		quantitative	and	factor;		two	trait:	Quantitative	and	factor	
################################################################																	
		
Dune	=	Dune0	
ManureLab	=	c("no","yes")	
Dune$Manure=	cut(Dune$Manure,	breaks	=	c(‐1,0.5,10),	labels=ManureLab)	
SLALab	=	c("low","middle","high")	
Dune$SLA=	cut(Dune$SLA,	breaks	=	c(0,13,25,40),	labels=	SLALab)	
print(fm5<‐glmer(y~Moist*Seedmass+	Manure*SLA+(1+Moist+Manure|sp)+(1|site)	
																,	family=binomial,	Dune),corr=FALSE)	
#	for	prediction	with	confidence	limits	
newdat	<‐	expand.grid(Moist	=	c(1,2,4),	Seedmass	=c(0.05,	1,2),	Manure=ManureLab,	SLA	=	
SLALab,	y	=	0		)	
newdat	<‐	glPredict(fm5,	newdat)	
names(newdat)	
newdat[,	‐(5:7)]	
#end	
 
 
Appendix S4 Comparison of GLMM with the two-step approach  
 
The dashed regression line of the GLM two-step approach (Fig. 3 of the main text) is 
fitted by weighted least-squares (weight = inverse to variance estimate in step 1) and 
shows a weaker relationship than that of GLMM. A small simulation study was done 
to see whether that was incidental. In the 99% of the 1000 simulated data sets of the 
power study,  the coefficient b1 estimated by GLMM was greater than that in the two-
step approach.  It was also much closer to the true coefficient as judged from the root 
mean squared error  (0.031 compared to 0.393). In GLMM, the standard deviation 
across simulated data sets (0.023) was close to the standard error of estimate reported 
by GLMM (0.017, rounded to 0.02 in Table 1),  showing that this standard error of 
estimate is valid in this data.  
 
 




