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Abstract 
	

This	 thesis	 addresses	 the	 effects	 of	 climate	 change	 on	 global	 river	 temperatures	 and	 river	
flows,	 and	 the	 consequences	 for	 cooling	 water	 use	 in	 the	 energy	 sector	 and	 freshwater	
ecosystems.	 The	 sensitivity	 of	water	 temperatures	 to	 atmospheric	warming	 and	 changes	 in	
river	 flow	 is	 determined	 with	 both	 a	 statistical	 and	 physically‐based	 water	 temperature	
modelling	 approach.	 A	 physically‐based	 modelling	 framework,	 consisting	 of	 the	 stream	
temperature	 River	 Basin	 Model	 (RBM)	 and	 the	 Variable	 Infiltration	 Capacity	 (VIC)	 macro‐
scale	hydrological	model,	was	 further	developed	 for	applications	 to	 large	 rivers	worldwide.	
The	resulting	framework	simulated	observed	conditions	realistically.	It	was	then	forced	with	
an	ensemble	of	bias‐corrected	general	 circulation	model	output	 for	 the	21st	 century.	 Strong	
increases	in	water	temperature	and	declines	in	low	flows	are	projected	in	the	south‐eastern	
United	States,	southern	and	central	Europe,	eastern	China,	and	parts	of	southern	Africa	and	
southern	 Australia.	 These	 regions	 could	 therefore	 be	 potentially	 affected	 by	 increased	
deterioration	 of	 water	 quality	 and	 freshwater	 habitats,	 and	 reduced	 potentials	 for	 human	
water	uses	under	future	climate.		
	
Impacts	of	projected	changes	in	river	flow	and	water	temperature	on	cooling	water	use	in	the	
energy	sector	and	freshwater	ecosystems	(i.e.	fish	habitats)	were	assessed	in	more	detail.	The	
frequency	and	magnitude	of	exceeding	maximum	temperature	tolerance	values	of	several	fish	
species	significantly	increased.	This	could,	in	combination	with	changes	in	flow	regime,	affect	
the	 distributions	 of	 freshwater	 species.	 To	 maintain	 and	 protect	 current	 freshwater	
ecosystems,	environmental	standards	are	defined	with	regard	to	the	volume	and	temperature	
of	 water	 for	 cooling	 water	 use.	 In	 Europe	 and	 the	 U.S.,	 most	 electricity	 is	 produced	 by	
thermoelectric	 power	 plants	 depending	 on	 cooling	 water.	 Projected	 increases	 in	 river	
temperatures	 and	 declines	 in	 low	 summer	 flow	 for	 both	 regions	 are	 expected	 to	 increase	
environmental	restrictions	on	cooling	water	use,	with	substantial	reductions	 in	power	plant	
capacities	for	the	next	20‐50	years.	Conflicts	between	environmental	objectives	and	economic	
consequences	of	reduced	electricity	production	are	thus	expected	to	increase	due	to	climate	
change.	This	study	reinforces	the	need	for	improved	climate	adaptation	strategies	to	ensure	
future	water	and	energy	security	without	compromising	environmental	objectives.	
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Introduction 
	

1.1   Background and problem outline 

There	 is	 a	 growing	 concern	 that	 climate	 change	 in	 combination	 with	 other	 anthropogenic	
changes	will	negatively	affect	water	for	human	use	and	ecosystems.	Overall,	climate	change	is	
expected	to	contribute	to	an	increasing	pressure	on	water	use	between	different	sectors	(e.g.	
agriculture,	 energy,	 industry,	 domestic	 uses)	 and	 ecosystems	 (Alcamo	 et	 al.,	 2003b).		
Considering	 the	 increasing	 demand	 for	 water	with	 a	 growing	 and	more	 prosperous	 global	
population	(Vörösmarty	et	al.,	2000),	sufficient	water	resources	to	guarantee	human	uses	and	
ecosystem	health	 could	 become	 one	 of	 human’s	main	 challenges	 in	 the	 next	 decades.	 On	 a	
global	mean	 basis,	 more	 than	 73%	 of	 human	water	 uses	 is	 currently	 extracted	 from	 fresh	
surface	 waters	 (i.e.	 rivers	 and	 lakes)	 (WWAP,	 2009)	 (Figure	 1.1a).	 In	 Europe	 and	 North	
America,	 largest	 part	 of	 surface	water	withdrawn	 is	 used	 for	 the	 energy	 and	 the	 industrial	
sector,	 while	 in	 Africa,	 South	 America,	 Oceania	 and	 most	 Asian	 countries,	 agriculture	
(irrigation)	is	by	far	the	main	water	user	(Figure	1.1b).	

	

	

Figure 1.1: Global water withdrawals by  supply  sources  for all  sectors  (adapted  from WWAP  (2009))  (a) and mean 
annual water withdrawal per sector in *109 m

3yr‐1 (relative contribution to total water withdrawal) for regions globally 
(created based on data of FAO‐AQUASTAT 1998‐2002 for all supply sources).	
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Due	 to	 climate	 change,	 the	 global	 hydrological	 cycle	 intensifies	 with	 increasing	 rates	 of	
evapotranspiration	 and	 precipitation	 (Del	 Genio	 et	 al.,	 1991;	 Durack	 et	 al.,	 2012;	 Held	 and	
Soden,	 2006;	 Huntington,	 2006).	 This	 results	 in	 an	 overall	 increase	 in	 mean	 annual	 river	
runoff	(water	availability)	on	a	global	mean	basis	(Oki	and	Kanae,	2006).	However,	due	to	the	
uneven	 distribution	 of	 water	 resources	 over	 time	 and	 space,	 and	 projected	 increases	 in	
climate	and	hydrological	extremes,	 like	droughts	(e.g.	Easterling	et	al.,	2000;	Wetherald	and	
Manabe,	1999)	 risks	 for	water	 stress	 (with	water	demand	exceeding	water	availability)	are	
expected	to	increase	under	changing	climate	(e.g.	Arnell,	2004;	Palmer	et	al.,	2008).	

The	 increasing	 awareness	 that	 climate	 change	 may	 affect	 water	 resources	 has	 greatly	
stimulated	 the	 study	 of	 the	 hydrological	 impacts	 of	 a	 changing	 climate.	 While	 impacts	 on	
water	 quantity	 have	 been	 studied	 widely	 on	 different	 scales,	 varying	 from	 catchment	 (e.g.	
Hamlet	and	Lettenmaier,	1999;	Hurkmans	et	al.,	2010)	to	continents	(e.g.	Lehner	et	al.,	2006)	
and	 the	world	 (e.g.	 Arnell,	 2003a),	 considerably	 less	work	has	 been	done	 to	 assess	 climate	
change	 impacts	 on	 water	 quality.	 The	 need	 to	 expand	 hydrological	 impact	 assessments	 to	
incorporate	 water	 quality	 issues	 is,	 however,	 now	 strongly	 recognized	 (Kundzewicz	 and	
Krysanova,	2010;	Whitehead	et	al.,	2009).	This	will	result	in	more	realistic	estimates	of	future	
water	resources	and	water	stress	under	climate	change	and	other	anthropogenic	changes	(e.g.	
land	use	changes).	Water	 temperature	 is	directly	affected	by	climate	variability	and	change,	
and	influences	on	its	turn	other	water	quality	parameters.	Significant	rising	trends	in	surface	
water	temperature	were	observed	during	the	20th	century	and	were	related	to	increases	in	air	
temperature	(e.g.	Kaushal	et	al.,	2010;	Webb	and	Nobilis,	1994)	and	climate	change	induced	
decreases	in	summer	flow	(Pekarova	et	al.,	2008a).		

Potential	alterations	in	hydrologic	and	thermal	river	regimes	due	to	climate	change	may	affect	
water	quality	(Ducharne,	2008;	Murdoch	et	al.,	2000),	freshwater	ecosystems	and	biodiversity	
(Carpenter	et	al.,	1992;	Rahel	et	al.,	1996),	and	human	water	use	functions	like	thermoelectric	
power	 production	 (Manoha	 et	 al.,	 2008),	 drinking	water	 production	 (Ramaker	 et	 al.,	 2005;	
Senhorst	and	Zwolsman,	2005)	and	recreation	(e.g.	swimming	water,	fisheries	(EEA,	2008b)).	
For	 most	 of	 these	 water	 uses,	 specific	 threshold	 values	 that	 reflect	 a	 deterioration	 or	
reduction	 in	water	usage	potential	are	defined.	For	example,	 for	drinking	water	production,	
the	 25°C	water	 quality	 standard	defined	by	 the	World	Health	Organization	 (WHO,	 2011)	 is	
commonly	used	as	a	critical	water	temperature	 limit	 for	which	thermophilic	pathogens	(e.g.	
Legionella	 Campylobacter	 and	 Vibrio	 cholerae)	 in	 surface	 waters	 with	 low	 residual	
concentrations	 of	 chlorine	 proliferate.	 For	 cooling	 water	 use,	 environmental	 standards	 are	
defined	 based	 on	 regulations	 to	 protect	 the	 freshwater	 ecosystems	 from	 thermal	 pollution	
(European	Water	Framework	Directive	and	Fish	Directive,	and	U.S.	Clean	Water	Act).	

During	 periods	with	 (extreme)	 low	 river	 flows	 and	 high	water	 temperatures,	 conflicts	 can	
arise	 between	 enforcing	 environmental	 standards	 and	 economic	 damage	 due	 to	 reduced	
potentials	 for	human	water	use	(Rutten	et	al.,	2008).	For	example,	during	recent	warm,	dry	
summers	 in	 Europe	 (2003,	 2006	 and	 2009)	 and	 the	 U.S.	 (2007‐2008,	 2012),	 several		
thermoelectric	 power	 plants	 were	 forced	 to	 reduce	 production	 or	 shut	 down	 (Forster	 and	
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Lilliestam,	2011;	Macknick	et	al.,	2011). Thermoelectric	power	plants	convert	thermal	energy	
(heat)	 into	 electricity	 and	 directly	 depend	 on	 both	 availability	 and	 temperature	 of	 water	
resources	 to	 prevent	 overheating. Limited	 surface	 water	 for	 cooling	 and	 environment	
restrictions	on	thermal	discharges	during	periods	with	low	flow	and	high	water	temperatures	
can	considerably	reduce	production	capacities.	This	can	have	distinct	economic	impacts	with	
significant	 rises	 in	 electricity	 prices	 (Boogert	 and	 Dupont,	 2005;	 McDermott	 and	 Nilsen,	
2011).		

Due	to	climate	change,	extreme	warm	and	dry	periods	are	expected	to	occur	more	frequently	
and	become	more	 intense	(e.g.	Schar	et	al.,	2004;	Wetherald	and	Manabe,	1999).	This	could	
increase	 the	 occurrence	 and	 severity	 of	 large‐scale	 streamflow	 and	 soil	moisture	 droughts	
(e.g.	 Feyen	 and	 Dankers,	 2009;	 Sheffield	 and	 Wood,	 2008),	 and	 high	 water	 temperature	
events.	Although	climate	change	impacts	on	water	temperature	have	been	assessed	for	small	
catchments	 and	 river	 basins	 (Ferrari	 et	 al.,	 2007;	 Morrison	 et	 al.,	 2002),	 considerably	 less	
work	 has	 been	 done	 at	 larger	 regions	 (or	 coarser	 scales).	 Most	 previous	 macro‐scale	
hydrological	modelling	 studies	 that	 assessed	climate	 change	 impacts	on	 river	 flow	 focus	on	
monthly	 or	 annual	mean	 estimates	 (e.g.	 Alcamo	 et	 al.,	 2007;	Arnell,	 1999b;	Oki	 and	Kanae,	
2006),	while	higher	temporal	resolution	(e.g.	daily)	estimates	are	required	to	address	impacts	
on	freshwater	ecosystems	and	beneficial	uses.	Hence,	limited	knowledge	exists	regarding	the	
magnitude	of	 both	daily	water	 temperature	 and	 river	 flow	 changes	 for	 large	 regions	 under	
future	climate.	This	information	is	needed	to	address	water	management	issues	and	impacts	
for	water	users,	like	the	energy	sector.	Thermoelectric	power	plants	in	Europe	and	the	U.S.	are	
connected	 to	 continental‐scale	 grids.	 Large‐scale	 projections	 of	 streamflow	 and	 water	
temperature	under	future	climate	are	therefore	needed	to	anticipate	and	adapt	to	changes	in	
cooling	water	availability.	

This	thesis	focusses	on	the	impacts	of	climate	variability	and	change	on	daily	streamflow	and	
water	temperature	of	rivers	worldwide.	Although	lake	levels,	volumes	and	lake	temperatures	
will	 also	 be	 affected	 by	 climate	 change,	 the	 overall	 focus	 of	 this	 thesis	 is	 on	 river	 systems,	
which	 contribute	 to	 a	 large	 part	 of	 surface	 water	 supply	 for	 human	 use.	 In	 addition,	 we	
address	 the	potential	 consequences	of	 projected	 changes	 in	 river	 temperature	 and	 flow	 for	
freshwater	ecosystems	and	human	water	uses,	with	a	main	focus	on	thermoelectric	power.		

1.2   Trends in river flow and water temperature during the 20th century 

1.2.1   Trends in river flow 

Globally,	 broadly	 coherent	 trends	 in	 mean	 river	 flow	 and	 water	 availability	 have	 been	
observed	during	the	20th	century	(Bates	et	al.,	2008)	with	an	overall	increase	in	annual	runoff	
for	 high	 latitude	 regions	 and	 parts	 of	 the	 United	 States,	 and	 decreases	 for	 West	 Africa,	
southern	Europe,	southern	South	America	and	southern	Australia	(Dai	et	al.,	2009;	Milly	et	al.,	
2005).	Changes	in	the	amount	and	timing	of	precipitation,	and	whether	precipitation	falls	as	
snow	or	 rain,	mainly	 affect	 river	 runoff	 changes,	 along	with	 changes	 in	 evapotranspiration.	
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However,	observed	trends	in	river	flow	are	not	fully	consistent	with	changes	in	precipitation	
and	 evapotranspiration,	 because	 human	 interventions	 (e.g.	 construction	 of	 dams	 and	
reservoirs,	water	withdrawals)	have	also	affected	flow	regimes	in	many	rivers	during	the	20th	
century	(Bates	et	al.,	2008).	

Overall,	 limited	to	medium	evidence	has	been	found	for	climate‐related	large‐scale	trends	in	
floods	 and	 droughts	 during	 the	 20th	 century	 (Hisdal	 et	 al.,	 2001;	 Kundzewicz	 et	 al.,	 2005;	
Seneviratne,	2012;	Svensson	et	al.,	2005).	This	 is	mainly	because	streamflow	gauge	records	
are	limited	in	space	and	time,	and	because	of	confounding	effects	of	human	impacts	(land	use	
changes,	 flow	 regulation)	 (Seneviratne,	 2012).	 However,	 some	 regions,	 like	 southern	 and	
eastern	 Europe,	 have	 experienced	 increasing	 trends	 toward	 more	 intense	 and	 longer	
streamflow	droughts	 (Stahl	 et	 al.,	 2010).	 In	 addition,	 robust	 trends	 toward	 earlier	 shifts	 of	
spring	peak	flows	in	snowmelt‐	and	glacier‐fed	rivers	have	been	detected	(Barnett	et	al.,	2005;	
Hodgkins	et	al.,	2003;	Tan	et	al.,	2011).	

1.2.2  Trends in river temperature 

Studies	 analysing	 trends	 in	 river	 temperatures	 during	 the	 20th	 century	 mainly	 focused	 on	
rivers	 in	North	America	(Bartholow,	2005;	 Isaak	et	al.,	2012;	Morrison	et	al.,	2002),	Europe	
(Moatar	and	Gailhard,	2006;	Pekarova	et	al.,	2008a;	Pekarova	et	al.,	2011;	Webb	and	Nobilis,	
2007)	and	Eurasian	Arctic	rivers	(e.g.	Lammers	et	al.,	2007;	Liu	et	al.,	2005),	for	which	most	
long‐term	water	 temperature	 series	 are	 available.	 The	 general	 trend	 in	water	 temperature	
increases	in	European	freshwaters	was	0.05‐0.8°C	decade‐1	during	the	past	30‐50	years	(EEA,	
2008b).	For	rivers	and	streams	in	the	United	States,	an	increase	in	mean	water	temperature	of	
0.09‐0.77°C	decade‐1	was	observed	during	the	20th	century	(Kaushal	et	al.,	2010).	Trends	 in	
water	 temperature	derived	 from	 long‐term	monitoring	 records	 for	 river	 stations	 in	Europe	
and	the	U.S.	in	our	study	are	also	within	this	range	(see	Figure	1.2	for	some	examples).		

Overall,	observed	changes	in	water	temperature	strongly	relate	to	changes	in	air	temperature,	
which	largely	reflect	changes	in	the	energy	budget.	However,	the	fundamental	cause	of	water	
temperature	 changes	 are	 related	 to	 alterations	 in	 the	 individual	 components	 of	 the	 heat	
budget.	 For	 large	 rivers,	 these	 are	 mainly	 changes	 in	 radiative	 heat	 flux	 (net	 radiation	
reaching	the	water	body),	latent	heat	flux	(due	to	evaporation	and	condensation)	and	sensible	
heat	flux	(due	to	differences	in	water	temperature	and	temperature	of	the	air	in	contact	with	
river	water)	(Webb,	1996).	In	addition,	trends	in	river	water	temperature	are	also	explained	
by	changes	 in	 streamflow,	which	affect	 capacities	 for	heat	 storage	 (thermal	 capacity)	of	 the	
river	course	and,	therefore,	the	sensitivities	to	changes	in	the	energy	budget	(Webb,	1996).	

For	 example,	 a	 larger	 increase	 in	 mean	 annual	 water	 temperatures	 of	 the	 Danube	 was	
observed	 for	1975‐2005,	mainly	as	a	 consequence	of	 lower	 summer	 flow	resulting	 from	an	
earlier	snowmelt	(Pekarova	et	al.,	2008a)	(see	Figure	1.2).	Hence,	water	temperature	trends	
in	major	rivers	over	the	past	century	are	a	function	of	both	climate	and	hydrological	changes		
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Figure 1.2: Long‐term trends in mean annual water temperature for a station  in the Rhine, Meuse, Danube (Europe) 
and  Columbia  (United  States).  Solid  lines  present  5‐year moving  averages  and  dotted  lines  are  linear  trend  lines. 
Trends were constructed based on annual water temperature data of the Rhine and Meuse (provided by the Ministry 
of  Infrastructure  and  Environment  of  The  Netherlands),  and  daily  data  of  the  Columbia  (Streamnet; 
http://www.streamnet.org) and Danube (Pekarova et al., 2008a).  

(Moatar	 and	Gailhard,	 2006;	Webb	 and	Nobilis,	 2007).	 Limited	 knowledge,	 however,	 exists	
regarding	the	contribution	of	streamflow	changes	to	water	temperatures	on	a	large‐scale. 

Anthropogenic	 influences	 also	 contributed	 to	 the	observed	 trends	 in	 increasing	 river	water	
temperature,	 like	 thermal	 effluents	 of	 power	 stations	 (Edinger	 et	 al.,	 1968a;	 Webb	 and	
Nobilis,	 2007),	 flow	 regulation	 and	 construction	 of	 reservoirs	 (Lowney,	 2000;	 Webb	 and	
Walling,	1993),	and	land	use	changes,	e.g.	urbanization	(Nelson	and	Palmer,	2007).	Long‐term	
rising	trends	for	stations	in	the	Rhine,	Meuse	and	Danube	in	Western	Europe,	are	partly	due	
to	climate	change	and	due	 to	 increased	cooling	water	discharge	 from	thermoelectric	power	
plants	 (EEA,	 2008b).	 In	 the	 Columbia,	 water	 temperature	 trends	 are	 locally	 influenced	 by	
construction	 of	 dams	 and	 reservoirs	 (Isaak	 et	 al.,	 2012).	 Although	 it	 is	 recognized	 that	
anthropogenic	 influences	 (e.g.	 thermal	 effluents,	 regulation	 of	 river	 flow)	 will	 also	 affect	
future	water	temperatures,	climate	change	will	inevitably	affect	water	temperatures	globally,	
while	anthropogenic	influences	highly	vary	on	a	local	level,	and	can	be	controlled	in	response	
to	climate	change.	 

The	overall	focus	of	this	thesis	is	therefore	on	the	impacts	of	climate	variability	and	change	on	
global	river	 temperatures	and	river	 flows.	To	 improve	understanding	of	changes	 in	 thermal	
regime	 of	 rivers,	 the	 sensitivities	 of	 water	 temperature	 to	 both	 changes	 in	 atmospheric	
conditions	and	river	flow	were	studied.	In	addition,	both	the	impacts	of	atmospheric	warming	
and	 climate	 change	 induced	 river	 flow	 alterations	 were	 included	 in	 projections	 of	 water	
temperature	under	future	climate.	



Chapter 1     

6 

	

1.3   Hydrological and water temperature modelling  

Hydrological	 and	 water	 temperature	 models	 have	 been	 developed	 for	 different	 purposes.	
They	have	been	used	to	study	processes	affecting	streamflow	and	water	temperatures	or	to	
produce	 estimates	 for	 other	 time	 periods	 or	 spatial	 extents	 than	 in	 the	measured	 data.	 In	
addition,	 hydrological	 and	 water	 temperature	 models	 have	 been	 widely	 used	 for	 scenario	
analyses,	such	as	climate	change	impact	assessments.		

1.3.1   Macro‐scale hydrological models  

Several	macro‐scale	hydrological	models	have	been	developed	 to	 improve	understanding	of	
the	 global	 hydrological	 cycle	 and	 its	 interaction	 with	 land	 surface	 and	 substrate,	 and	 to	
simulate	potential	effects	of	climate	change	on	hydrological	fluxes	globally.	In	general,	macro‐
scale	 hydrological	 models	 can	 be	 classified	 into	 two	 groups.	 The	 first	 group	 are	 the	 land	
surface	models	(LSMs),	which	describe	the	vertical	water	and	energy	balances	and	which	can	
be	linked	to	atmospheric	or	climate	models.	Examples	of	LSMs,	which	were	part	of	the	global	
WATCH1	modelling	 framework	 are:	 H08	 (Hanasaki	 et	 al.,	 2008),	 HTESSEL	 (Balsamo	 et	 al.,	
2009),	 JULES	 (Cox	 et	 al.,	 1999),	 MATSIRO	 (Takata	 et	 al.,	 2003),	 Orchidee	 (de	 Rosnay	 and	
Polcher,	 1998)	 and	 VIC	 (Liang	 et	 al.,	 1994).	 The	 second	 group	 are	 the	 global	 hydrological	
models	 (GHMs),	 which	 commonly	 only	 solve	 the	 water	 balance	 and	 are	 more	 focused	 on	
lateral	water	 transport	 and	water	 resources.	 GHMs	 are,	 for	 example,	 GWAVA	 (Meigh	 et	 al.,	
1999),	LPJmL	(Rost	et	al.,	2008),	MacPDM	(Arnell,	1999c),	MPI‐HM	(Hagemann	and	Dumenil,	
1998),	 PCRGLOB‐WB	 (van	 Beek	 et	 al.,	 2011),	 WaterGAP	 (Alcamo	 et	 al.,	 2003a)	 and	 WBM	
(Vörösmarty	et	al.,	1998).	A	comparison	of	global	water	balance	estimates	for	these	LSMs	and	
most	of	these	GHMs	by	Haddeland	et	al.	(2011)	showed	substantial	differences	in	snow	water	
equivalent	 between	 both	 modelling	 groups	 caused	 by	 the	 snow	 scheme	 employed.	 For	
evapotranspiration	 and	 runoff,	 the	 processes	 included	 and	 parameterizations	 used	 are,	
however,	not	distinct	to	either	LSMs	or	GHMs.	

In	this	PhD	study,	the	Variable	Infiltration	Capacity	(VIC)	model	(Cherkauer	et	al.,	2003;	Liang	
et	al.,	1994)	(4.1.1	version)	was	used	in	the	global	hydrological	‐	water	temperature	modelling	
framework.	VIC	 is	a	grid‐based	macro‐scale	hydrological	model	 that	solves	both	 the	surface	
energy	and	water	balance	equations.	The	model	represents	sub‐grid	variability	in	vegetation,	
elevation,	 and	 soils	 by	 partitioning	 each	 grid	 cell	 into	multiple	 land	 cover	 (vegetation)	 and	
elevation	classes	and	the	soil	column	is	commonly	divided	into	three	soil	layers	(Figure	1.3).	
Evapotranspiration	 is	 calculated	 based	 on	 Penman‐Monteith	 equation	 (Monteith,	 1965;	
Penman,	1948).	Snow	accumulation	and	ablation	processes	are	solved	on	sub‐daily	time	step	
(regardless	if	the	running	time	step	is	daily)	via	an	energy	balance	approach	(Wigmosta	et	al.,	
1994).	 Surface	 runoff	 in	 the	upper	 soil	 layer	 is	 calculated	based	on	 the	 variable	 infiltration	

																																																													

1	The	 Water	 and	 Global	 Change	 (WATCH)	 project,	 which	 was	 funded	 by	 the	 European	 Union	 (EU)	 Sixth	
Framework	Programme	(FP6),	focussed	on	the	global	water	cycle	and	related	water	resources	under	current	and	
future	climate.	An	important	part	of	WATCH	was	a	model	intercomparison	project	in	which	both	LSMs	and	GHMs	
participated.	
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curve	 (Zhao	 et	 al.,	 1980),	 and	 release	 of	 baseflow	 from	 the	 lowest	 soil	 layer	 is	 simulated	
according	to	the	non‐linear	Arno	recession	curve	(Todini,	1996).	Surface	runoff	and	baseflow	
are	 routed	along	 the	 stream	network	 to	 the	basin	outlet	with	an	offline	 routing	model	 that	
uses	the	unit	hydrograph	principle	within	the	grid	cells	and	linearized	St.	Venant’s	equations	
to	simulate	river	flow	through	the	stream	channel	(Lohmann	et	al.,	1998).	A	reservoir	scheme	
for	VIC	has	been	developed	by	Haddeland	et	al.	 (2006),	which	 is	combined	with	the	routing	
scheme	of	Lohmann	et	al.	(1998).		

VIC	was	mainly	selected	because	of	 the	ability	 to	solve	both	the	surface	energy	balance	and	
water	balance	equations,	and	the	capability	to	simulate	streamflow	on	a	daily	time	step	(e.g.	
Hurkmans	et	al.,	2008;	Lobmeyr	et	al.,	1999).	Commonly,	high	temporal	resolution	(e.g.	daily)	
simulations	 are	 used	 for	 effective	 management	 of	 water	 and	 freshwater	 ecosystems.	
Furthermore,	 VIC	 has	 previously	 been	 successfully	 applied	 for	 global‐scale	 estimates	 of	
streamflow	(Nijssen	et	al.,	2001b;	Voisin	et	al.,	2008),	soil	moisture	(Sheffield	et	al.,	2009)	and	
water	budgets	(Pan	et	al.,	2012)	under	historic	conditions.	The	model	has	also	been	used	for	
climate	 change	 impact	 assessments	 and	 other	 scenario	 studies	 (Elsner	 et	 al.,	 2010;	Hamlet	
and	Lettenmaier,	1999;	Hurkmans	et	al.,	2009;	Nijssen	et	al.,	2001a).	Other	advantages	of	VIC	
are	the	 flexibility	 in	use	of	meteorological	 forcing	variables	and	different	spatial	 resolutions	
(from	0.0625°	to	1.0°)	and	temporal	time	steps	(from	hourly	to	daily	time	step)	at	which	this	
model	can	be	applied	(Liang	et	al.,	2004).	A	description	of	the	model	application	and	flowchart	
of	the	hydrological	‐	water	temperature	modelling	framework	is	given	in	Chapter	3.	

 

Figure 1.3: Concept of VIC macro‐scale hydrological model  (a) and  routing model  (b)  (source: website University of 
Washtington, http://www.hydro.washington.edu/Lettenmaier/Models/VIC/).	
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1.3.2   River temperature models 

Different	 modelling	 approaches,	 varying	 in	 complexity	 and	 data	 input	 requirements	 have	
been	 developed	 to	 predict	 river	 temperatures.	 A	 distinction	 can	 be	 made	 between	 data	
(statistical)	water	temperature	models,	relying	on	observation	records	of	water	temperature,	
and	 process	 (physically‐based)	 water	 temperature	 models,	 which	 include	 the	 physical	
description	of	main	processes	(energy	budget)	affecting	water	temperatures.		

Data	(statistical)	water	temperature	models	include	regression	models	(Mohseni	et	al.,	1998;	
Webb	et	al.,	2008),	stochastic	models	(Ahmadi‐Nedushan	et	al.,	2007;	Caissie	et	al.,	1998)	and	
artificial	neural	networks	(Chenard	and	Caissie,	2008;	Sahoo	et	al.,	2009)	(see	Figure	1.4	for	a	
brief	 explanation	and	visualisation	of	 the	model	 concepts).	These	approaches	 are	 attractive	
because	 of	 their	 simplicity	 and	 limited	 requirement	 for	 meteorological	 and	 hydrological	
forcing	 data,	 while	 being	 characterized	 by	 high	 levels	 of	 explained	 variance	 (Webb	 and	
Nobilis,	1997)	and	small	modelling	errors	(Caissie,	2006).	Commonly	air	temperature	is	used	
as	predictor	variable,	reflecting	changes	in	energy	budget	(Mohseni	et	al.,	1998;	Webb	et	al.,	
2008).	Only	 a	 few	 regression	model	 studies	 also	 included	 river	 discharge	 or	water	 level	 as	
additional	variable	to	reflect	thermal	capacity	of	rivers	(Rivers‐Moore	and	Jewitt,	2007;	Webb	
et	al.,	2003).	

Other	 studies	 describe	 the	 energy	 budget	 and	 include	 heat	 transport	 equations	 (Haag	 and	
Luce,	 2008;	 Sinokrot	 and	 Stefan,	 1993)	 or	 apply	 the	 equilibrium	 temperature	 concept,	 that	
incorporates	only	net	heat	transfer	processes	at	the	water	surface	(Bogan	et	al.,	2003;	Caissie	
et	al.,	2005;	Edinger	et	al.,	1968b).	Heat	 transport	models	 include	advection	and	dispersion	
(Caissie	et	al.,	2005;	Haag	and	Luce,	2008)	or	only	advection	terms	(Lowney,	2000;	Yearsley,	
2009).	Dispersion	dominates	only	for	streams	and	rivers	with	low	flow	velocities	and	on	short	
length	scales	(Sinokrot	and	Stefan,	1993;	Toprak	and	Savci,	2007).	Many	studies	 for	natural	
river	systems	therefore	neglect	 this	 term	and	use	1D‐heat	advection	equations	(Foreman	et	
al.,	2001).	Heat	exchange	between	streambed	and	water	interface	is	generally	small	on	daily	
basis	or	 longer	time	steps	(Sinokrot	and	Stefan,	1994)	and	is	therefore	often	assumed	to	be	
negligible	(Yearsley,	2012).		

Physically‐based	 water	 temperature	 models	 are	 more	 complex	 and	 require	 more	
meteorological	 and	 hydrological	 input	 data	 compared	 to	 statistical	 water	 temperature	
models.	However,	physically‐based	models	are	generally	more	useful	for	scenario	studies	like	
climate	 change	 impact	 assessment	 (e.g.	 Ferrari	 et	 al.,	 2007;	 Morrison	 et	 al.,	 2002)	 than	
statistical	models,	which	are	fitted	for	a	specific	historical	period	and	are,	therefore,	limited	in	
their	application	 to	 forecasting	and	scenario	 studies.	 In	addition,	heat	 transport	models	are	
suitable	to	produce	spatially	variable	estimates	of	water	temperature,	while	statistical	models	
are	commonly	fitted	for	specific	point	(station)	locations.		

In	this	thesis,	both	a	statistical	and	physically‐based	water	temperature	modelling	approach	
were	 used	 to	 assess	 the	 sensitivity	 of	 river	 temperatures	 to	 atmospheric	 warming	 and		
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Figure 1.4: Overview of water temperature modelling concepts and required  input data. Abbreviations are used  for 
water temperature (Tw), air temperature (Tair), river discharge (Q), total heat fluxes at air ‐ water interface (Htot), net 
shortwave  solar  radiation  (HnS),  net  longwave  atmospheric  radiation  (HnL),  evaporative/latent  heat  flux  (Hevap), 
conductive/sensible heat flux (Hcond), equilibrium temperature (Te), thermal exchange coefficient (K) and subsurface 
heat flux (Hsubsurface).  

changes	 in	 river	 flow.	 Although	 stochastic	 models	 and	 artificial	 neural	 networks	 generally	
provide	 good	water	 temperature	 estimates	 at	 daily	 time	 steps	 (Caissie,	 2006;	 Sahoo	 et	 al.,	
2009),	a	regression	modelling	approach	was	used,	because	this	approach	is	more	suitable	to	
explore	 the	 sensitivity	 of	 water	 temperatures	 to	 changes	 in	 input	 variables	 (i.e.	 air	
temperature	and	streamflow).	A	nonlinear	water	temperature	regression	model	based	on	air	
temperature	 (Mohseni	et	al.,	1998)	was	modified	 to	 include	river	discharge	as	 independent	
variable,	in	addition	to	air	temperature.	A	nonlinear	rather	than	linear	regression	model	was	
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used,	 because	 it	 better	 reflects	 the	 physical	 representation	 of	 water	 temperature	 regime	
(Mohseni	 and	 Stefan,	 1999)	 (see	 Chapter	 2).	 In	 addition,	 a	 time	 lag	 was	 incorporated	 to	
estimate	water	temperature	on	daily	basis,	because	of	autocorrelation	of	water	temperature	
on	daily	time	steps.		

In	addition	to	this	statistical	approach,	a	heat	transport	model	was	coupled	to	the	macro‐scale	
VIC	hydrological	model.	This	physically‐based	modelling	approach	was	used	to	simulate	daily	
water	 temperature	 and	 river	 discharge	 for	 both	 the	 historic	 and	 future	 climate	 on	 a	 global	
scale.	 The	 particle	 tracking	 stream	 temperature	 River	 Basin	Model	 (RBM)	 (Yearsley,	 2009)	
was	selected,	which	solves	the	time‐dependent	one‐dimensional	heat	advection	equation	with	
a	 semi‐Lagrangian	 (mixed	 Eulerian‐Lagrangian)	 numerical	 scheme.	 Water	 temperature	 is	
calculated	for	a	specific	stream	segment	based	on	the	upstream	water	temperature	and	inflow	
into	the	stream	segment,	the	dominant	heat	exchange	at	the	air	‐	water	surface,	and	the	inflow	
and	temperature	of	water	advected	from	tributaries	and,	optionally,	from	subsurface	(Figure	
1.5).	 Solutions	 are	 obtained	 by	 tracking	 individual	 water	 parcels	 along	 their	 flow	
characteristics	and	storing	the	output	at	discrete	points	on	a	fixed	grid.	This	makes	the	water	
temperature	model	computationally	efficient	and	highly	scalable	in	both	time	and	space.	RBM	
was	 previously	 tested	 for	 subbasins	 of	 the	 Columbia	 on	 1/16°	 (Yearsley,	 2009;	 Yearsley,	
2012).	In	this	thesis,	modifications	were	made	to	RBM	for	application	on	global	scale	and	to	
obtain	more	realistic	water	temperature	estimates	in	river	basins	with	anthropogenic	impacts	
(reservoirs	 and	 thermal	 effluents	 from	 thermoelectric	 power	 plants).	 The	 global	modelling	
framework	 was	 applied	 on	 a	 1/2°	 x	 1/2°	 spatial	 resolution	 (which	 is	 55	 x	 55	 km	 at	 the	
equator).	 The	 concept	 of	 the	 RBM	water	 temperature	model	 and	 reverse	 particle	 tracking	
method	is	shown	in	Figure	1.5.	A	more	detailed	description	of	the	model	and	flowchart	of	the	
hydrological	‐	water	temperature	modelling	framework	is	given	in	Chapter	3.		
	

	
Figure  1.5:  Concept  of  RBM  stream  temperature  model  and  schematic  of  reverse  particle  tracking  method. 
Abbreviations are used  for water  temperature  (Tw) and  flow  (Q) of  tributaries  (trb),  subsurface  (sub) and  thermal 
effluents  (effl), net  shortwave  solar  radiation  (HnS), net  longwave  atmospheric  radiation  (HnL),  evaporative/latent 
heat flux (Hevap) and conductive/sensible heat flux (Hcond). 
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1.4   Modelling climate change impacts: emission scenarios, climate models and 

bias‐correction 

Climate	 change	 impacts	 are	 commonly	 quantified	 by	 using	 climate	 scenarios	 as	 input	 into	
impact	models	(e.g.	hydrological	models).	Climate	scenarios	are	plausible	representations	of	
future	climate	conditions	under	future	greenhouse	gas	emissions	(Moss	et	al.,	2010),	and	are	
commonly	produced	by	coupled	atmosphere‐ocean	general	circulation	models	(GCMs).	These	
climate	 models	 incorporate	 the	 basic	 physical	 laws	 and	 processes	 that	 govern	 the	 Earth’s	
atmosphere	 and	 oceans	 circulation,	 and	 the	 interactions	 with	 land,	 ocean	 and	 ice	 surfaces	
(Ruddiman,	 2001).	 These	 processes	 are	 described	 by	 three‐dimensional	 time‐dependent	
equations,	 which	 are	 solved	 numerically	 by	 coarsely	 discretizing	 space.	 Oceans	 and	
atmosphere	 are	 represented	 by	 multiple	 vertical	 layers	 and	 horizontal	 resolutions	 are	
commonly	larger	than	one	degree.	As	a	result,	GCMs	are	limited	in	the	representation	of	small‐
scale	 processes,	 especially	 rainfall	 (Beven,	 2011).	 In	 addition,	 uncertainties	 in	 climate	
projections	 from	 GCMs	 are	 related	 to	 feedback	mechanisms,	 for	 example,	 cloud	 feedbacks,	
snow	and	 ice	albedo,	and	development	of	ocean	circulation	(Andrews	et	al.,	2012;	Boer	and	
Yu,	2003;	Williams	et	al.,	2003).		

To	produce	projections	of	future	climate,	GCMs	are	forced	with	emission	scenarios,	describing	
future	emissions	of	greenhouse	gasses	and	(sulphate)	aerosols.	The	Intergovernmental	Panel	
on	Climate	Change	 (IPCC)	 SRES	 emissions	 scenarios	 (Nakicenovic,	 2000)	 are	based	on	 four	
different	 storylines.	 The	 two	 main	 criteria	 for	 these	 four	 storylines	 are	 globalisation	
(homogenous	 world)	 versus	 regionalisation	 (heterogeneous	 world),	 and	 economic	 focus	
versus	 environmental	 focus.	 The	 SRES	 scenarios	 represent	 different	 demographic,	 social,	
economic,	 technological	and	environmental	developments,	but	do	not	 take	 into	account	any	
current	or	future	measures	to	reduce	greenhouse	gas	emissions	(e.g.	the	Kyoto	protocol).		

In	 line	with	 the	growing	 interest	among	end	users	 (e.g.	policy	makers)	 in	 climate	scenarios	
that	 include	 different	 approaches	 to	 mitigation,	 a	 new	 generation	 of	 scenarios	 for	 climate	
research	have	recently	been	developed	as	part	of	the	IPCC’s	Fifth	Assessment	Report.	The	new	
scenarios	include	projections	of	emissions,	concentrations	and	land	cover	change	based	on	a	
set	of	 four	pathways,	 the	representative	concentration	pathways	(RCPs)	(Moss	et	al.,	2010).	
These	four	pathways	can	be	achieved	by	a	diverse	range	of	socio‐economic	and	technological	
development	scenarios,	and	span	a	range	of	radiative	forcing	values	for	2100	from	2.6	to	8.5	
W/m2	(van	Vuuren	et	al.,	2011).		

In	this	thesis,	GCM	experiments	based	on	the	SRES	emissions	scenarios	(Nakicenovic,	2000)	
were	used	for	climate	change	impact	assessment,	because	the	new	scenarios	based	on	RCPs	
(Moss	et	al.,	2010)	were	not	yet	available	during	the	start	of	this	study.	We	used	GCM	output	
for	 the	 SRES	A2	 and	B1	 emissions	 scenarios	 to	 capture	 a	 range	 of	 uncertainties	 associated	
with	driving	forces	and	emissions.	The	A2	scenario	considers	a	primarily	regionally	oriented	
world	 of	 fragmented	 and	 slow	 technological	 change,	 with	 a	 continuously	 increasing	 global	
population	and	economic	development.	The	B1	scenario	assumes	a	world	with	an	emphasis	
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on	global	 solutions	 to	economic,	 social,	and	environmental	 sustainability	with	a	much	more	
rapid	introduction	of	renewables		(Nakicenovic,	2000).	Both	SRES	scenarios	were	selected	in	
this	 study,	 because	 they	 represent	 contrasting	 storylines	 and	 emissions	 scenarios,	 which	
results	in	the	largest	range	from	the	IPCC	SRES	main	emissions	scenarios.	We	used	output	of	
the	three	GCMs	ECHAM5/MPIOM,	CNRM‐CM3	and	IPSL‐CM4	(denoted	as	ECHAM,	CNCM3	and	
IPSL	 henceforth)	 for	 both	 SRES	 scenarios	 (for	 details	 see	 Hagemann	 et	 al.	 (2011)).	 These	
GCMs	were	selected	because	of	 the	availability	of	daily	output	 for	both	 the	SRES	A2	and	B1	
scenario.	We	used	GCM	output	for	both	SRES	emissions	scenarios	for	the	21st	century	and	for	
a	control	simulation	period.	

Because	 of	 significant	 systematic	 biases	 in	 the	 ability	 of	 GCMs	 for	 simulations	 of	 observed	
climate	(Randall	et	al.,	2007),	a	bias	correction	was	performed	on	the	GCM	output	to	produce	
suitable	 forcings	 for	 use	 in	 (hydrological)	 impact	 models.	 Several	 previous	 studies	 that	
assessed	 the	 hydrological	 impacts	 of	 climate	 change	 used	 the	 ‘change	 factor’	 (‘delta’)	
approach	(Diaz‐Nieto	and	Wilby,	2005;	Hay	et	al.,	2000).	This	means	that	projected	changes	
between	control	and	future	climate	are	added	to	baseline	climate	observations	to	represent	
future	climate,	which	are	then	used	into	(hydrological)	impact	models	(Fowler	et	al.,	2007b).	
Within	this	approach,	the	representation	of	extremes	in	future	climate	projections	is	filtered	
out	 in	 the	 transfer	 process,	 which	 limits	 the	 use	 for	 studies	 of	 future	 changes	 in	 extreme	
events	 (Graham	 et	 al.,	 2007).	 To	 obtain	more	 reliable	 estimates	 of	 changes	 in	 hydrological	
variability	 and	 extremes,	 more	 sophisticated	 statistical	 bias	 correction	methods	 have	 been	
developed	(e.g.	Ines	and	Hansen,	2006;	Li	et	al.,	2010;	Piani	et	al.,	2010).	Within	the	WATCH	
project,	 a	 statistical	 bias	 correction	procedure	was	performed	on	daily	 precipitation,	mean,	
minimum	and	maximum	surface	air	temperature	based	on	transfer	functions	that	describe	the	
relationship	between	the	daily	modelled	(corrected)	and	daily	observed	time	series	for	each	
grid	cell	(Hagemann	et	al.,	2011).	These	transfer	functions	are	fitted	for	a	historic	period	and	
are	 used	 to	 adjust	 the	 probability	 distribution	 function	 of	 intensity	 for	 these	 simulated	
variables	for	both	historic	and	future	periods	(Piani	et	al.,	2010).	The	modelling	chain	of	the	
hydrological	and	water	temperature	impact	assessment	of	this	study	is	summarized	in	Figure	
1.6.	

1.5  Research objective and questions 

Climate	 change	 will	 affect	 thermal	 and	 flow	 regimes	 of	 rivers,	 having	 a	 direct	 impact	 on	
freshwater	ecosystems	and	human	water	uses.	Limited	knowledge,	however,	exists	regarding	
the	magnitude	 of	water	 temperature	 increases	 and	 impacts	 of	 river	 flow	 changes	 on	water	
temperature,	 in	particular	on	a	 large	scale.	 In	addition,	 it	 is	unclear	which	regions	and	river	
basins	worldwide	will	experience	the	largest	increases	in	water	temperature	combined	with	
changes	in	river	flow.	It	is	both	of	scientific	and	socio‐economic	importance	to	understand	to	
what	 extent	 river	 flows	 and	 temperatures	will	 change,	which	 regions	will	 be	most	 strongly	
affected,	 and	 whether	 river	 temperature	 rises	 will	 simply	 follow	 atmospheric	 warming	
(reflected	by	air	temperature	increase)	or	are	also	influenced	by	changes	in	flow	regime.	
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Figure  1.6: Modelling  chain  of  the  hydrological  ‐  water  temperature  impact  assessment  with  selected  emission 
scenarios and GCMs, and bias‐correction of GCM output with observed meteorological dataset (Obs). These data were 
used to force the physically‐based hydrological ‐ water temperature (VIC‐RBM) modelling framework, resulting in daily 
simulations of river flow (Q) and water temperature (Tw) under control (reference) and future climate. 

Recent	warm,	dry	summers	showed	adverse	impacts	of	high	river	temperatures	and	low	flows	
on	freshwater	ecosystems	(Parry	et	al.,	2010)	and	human	water	uses,	such	as	thermoelectric	
power	(Forster	and	Lilliestam,	2011;	NETL,	2009)	and	drinking	water	production	(Ramaker	
et	al.,	2005;	Senhorst	and	Zwolsman,	2005).	In	Europe	and	the	United	States,	conflicts	arose	
between	water	use	for	cooling	of	power	plants	and	environmental	objectives.	Due	to	climate	
change,	 situations	 with	 high	 water	 temperatures	 and	 low	 summer	 flow	might	 occur	 more	
often.	A	 few	 studies	 addressed	 the	 large‐scale	 impacts	 of	 climate	 change	 on	 thermoelectric	
water	use	(Flörke	et	al.,	2012;	Flörke	et	al.,	2011)	and	freshwater	ecosystems	(Döll	and	Zhang,	
2010),	 but	with	 a	 focus	 on	 hydrological	 (water	 quantity)	 effects.	 However,	 streamflow	 and	
water	 temperature	 both	 affect	 the	 cooling	 capacity	 of	 rivers	 and	 are	 major	 parameters	
characterizing	 the	 physical	 conditions	 of	 freshwater	 habitats.	 In	 addition,	 impacts	 on	 both	
cooling	 water	 use	 and	 electricity	 production	 potentials	 should	 be	 quantified	 to	 better	
understand	the	developments	of	links	between	water	security	and	energy	security,	commonly	
called	the	‘water‐energy	security	nexus’		(Stucki	and	Sojamo,	2012),	under	changing	climate.	
This	 information	 is	 also	 useful	 for	 defining	 river	 basin	 management	 and	 conservation	
strategies,	and	for	strategic	planning	of	the	electricity	sector	for	the	coming	decades.		

Based	on	this,	the	main	objective	of	this	thesis	is	two‐fold:	

 To	assess	climate	change	impacts	on	river	flows	and	water	temperatures	globally;	and	
 To	address	the	potential	consequences	of	changes	in	river	flows	and	water	temperatures	for	

cooling	water	use	in	the	energy	sector	and	freshwater	ecosystems	during	the	21st	century.	

This	objective	was	addressed	by	using	a	stepwise	methodology.	In	the	first	step,	hydrological	
and	water	 temperature	models	 were	 tested	 and	 their	 performances	were	 evaluated	 under	
current	 climate.	 Both	 a	 statistical	 and	 physically‐based	 modelling	 approach	 were	 used	 to	
assess	the	impacts	of	river	flow	changes	on	water	temperature.	In	a	second	step,	projections	
of	both	streamflow	and	water	temperature	under	future	climate	were	produced	and	analysed	
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on	a	global	scale.	 In	a	 third	step,	 the	water‐energy	dependencies	under	 future	climate	were	
quantified	 by	 using	 an	 integrated	 modelling	 approach	 of	 an	 electricity	 production	 model	
linked	 to	 the	 physically‐based	 hydrological	 and	water	 temperature	models.	 In	 a	 final	 step,	
global	projections	of	streamflow	and	water	temperature	under	future	climate	were	combined	
with	spatial	distributions	of	freshwater	fish	species	to	address	the	potential	consequences	for	
freshwater	 habitats.	 Each	 step	 in	 this	 approach	 is	 accompanied	 by	 a	 specific	 research	
question:		

Q1.	What	 is	the	performance	of	a	statistical	(regression)	and	physically‐based	(heat	transport)	
water	 temperature	 modelling	 approach	 for	 daily	 river	 temperature	 estimation	 on	 macro‐
hydrological	scale,	and	how	sensitive	are	river	temperatures	to	changes	in	river	flow?	(Chapter	2	
and	3)	

Q2.	What	 are	 the	 impacts	 of	 climate	 change	 on	 both	 river	 flows	 and	 water	 temperatures	
globally,	and	which	regions	show	the	largest	projected	changes?	(Chapter	4)	

Q3.	How	will	cooling	water	use	and	electricity	production	potentials	 in	Europe	and	 the	United	
States	 be	 affected	 by	 changes	 in	 river	 flow	 and	 water	 temperature	 under	 future	 climate?	
(Chapter	5)	

Q4.	What	are	the	potential	consequences	of	climate	change	induced	alterations	in	river	flow	and	
water	temperature	for	freshwater	(fish)	habitats	in	different	regions	worldwide?	(Chapter	6)	

1.6  Thesis outline and methodology 

The	 objective	 and	 research	 questions	 are	 addressed	 in	 five	 scientific	 papers,	 which	 are	
presented	 in	 the	 chapters	 two	 to	 six.	An	overview	of	 the	 research	 steps	and	 corresponding	
chapters	is	shown	in	Figure	1.7.		

To	answer	the	first	research	question,	a	nonlinear	regression	modelling	approach	was	used	to	
explore	the	sensitivity	of	daily	river	temperatures	to	both	atmospheric	warming	(reflected	by	
air	temperature	increases)	and	changes	in	river	flow	for	a	high	number	of	river	stations	on	a	
global	scale	(Chapter	2).	In	addition,	the	heat	transport	model	RBM,	coupled	to	the	VIC	macro‐
scale	 hydrological	model,	was	 further	 developed	 for	 application	 to	 river	 basins	 on	 a	 global	
scale,	including	impacts	of	reservoirs	and	thermal	effluents.	The	performance	of	the	coupled	
VIC‐RBM	 modelling	 framework	 was	 evaluated	 for	 river	 basins	 in	 different	 hydro‐climatic	
zones	 and	 with	 different	 anthropogenic	 impacts,	 along	 with	 the	 sensitivities	 of	 water	
temperatures	to	river	flow	changes	(Chapter	3).		

For	 the	 second	 research	 question,	 the	 global	 VIC‐RBM	 framework	 was	 forced	 with	 an	
ensemble	 of	 bias‐corrected	 GCM	 output	 for	 both	 the	 SRES	 A2	 and	 B1	 scenario	 to	 produce		
global‐scale	river	 flow	and	water	 temperature	series	 for	 the	21st	 century.	These	projections	
were	 combined	 to	 get	 a	 first	 impression	 of	 regions	 that	 could	 potentially	 experience	 an	
increased	 deterioration	 of	 water	 quality,	 freshwater	 habitats	 and	 reduced	 potentials	 for	
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human	water	uses	(e.g.	drinking	water,	thermoelectric	power)	under	future	climate	(Chapter	
4).		

For	 the	 third	 research	 question,	 the	VIC‐RBM	 framework	was	 combined	with	 an	 electricity	
production	model	and	forced	with	the	ensemble	of	bias‐corrected	GCM	output	 to	assess	the	
impacts	 on	 cooling	water	 use	 and	 thermoelectric	 power	 production	 in	 Europe	 and	 the	U.S.	
over	the	next	20‐50	years	(Chapter	5).		

For	the	final	research	question,	global	projections	of	streamflow	and	water	temperature	were	
combined	with	 spatial	 distributions	 of	 several	 fish	 species	 and	 their	 thermal	 tolerances	 to	
address	 the	 consequences	 for	 freshwater	 (fish)	 habitats	 in	 different	 regions	 worldwide	
(Chapter	6).	

Finally	 in	 Chapter	 7,	 the	 main	 results	 are	 discussed	 in	 a	 broader	 context,	 along	 with	 the	
contribution	 to	science	and	water	management,	and	an	outlook	 for	 further	research	on	 this	
topic.		

Figure  1.7:  Schematic  representation  of  methodological  framework  with  input  data,  models  and  output  data. 
Abbreviations are used  for water  temperature  (Tw) and  river  flow  (Q). A distinction  is made between output data 
based on model simulations with a historical meteorological dataset (light grey) and based on simulations with bias‐
corrected general circulation models (GCMs) output used as forcing (dark grey). 	
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Chapter 2 

	

	

Global River Temperatures and Sensitivity to Atmospheric 

Warming and Changes in River Flow 
	

Abstract 

This	 study	 investigates	 the	 impact	 of	 both	 air	 temperature	 and	 river	 discharge	 changes	 on	
daily	 water	 temperatures	 for	 river	 stations	 globally.	 A	 nonlinear	 water	 temperature	
regression	 model	 was	 adapted	 to	 include	 discharge	 as	 a	 variable	 in	 addition	 to	 air	
temperature,	 and	 a	 time	 lag	 was	 incorporated	 to	 apply	 the	 model	 on	 a	 daily	 basis.	 The	
performance	 of	 the	model	was	 tested	 for	 a	 selection	 of	 study	 basin	 stations	 and	 157	 river	
temperature	 stations	 globally	 using	 historical	 series	 of	 daily	 river	 temperature,	 air	
temperature,	and	river	discharge	for	the	1980–1999	period.	For	the	study	basin	stations	and	
for	 87%	 of	 the	 global	 river	 stations,	 the	 performance	 of	 the	model	 improved	 by	 including	
discharge	 as	 an	 input	 variable.	 Greatest	 improvements	 were	 found	 during	 heat	 wave	 and	
drought	(low	flow)	conditions,	when	water	 temperatures	are	most	sensitive	 to	atmospheric	
influences	 and	 can	 reach	 critically	 high	 values.	 A	 sensitivity	 analysis	 showed	 increases	 in	
annual	 mean	 river	 temperatures	 of	 +1.3°C,	 +2.6°C,	 and	 +3.8°C	 under	 air	 temperature	
increases	 of	 +2°C,	 +4°C,	 and	 +6°C,	 respectively.	 Discharge	 decreases	 of	 20%	 and	 40%	
exacerbated	 water	 temperature	 increases	 by	 +0.3°C	 and	 +0.8°C	 on	 average.	 For	 several	
stations,	maximum	water	temperatures	on	a	daily	basis	were	higher	under	an	air	temperature	
increase	of	+4°C	combined	with	a	40%	discharge	decrease	compared	 to	an	air	 temperature	
increase	 of	 +6°C	 (without	 discharge	 changes).	 Impacts	 of	 river	 discharge	 on	 water	
temperatures	should	therefore	be	incorporated	to	provide	more	accurate	estimations	of	river	
temperatures	during	historical	and	future	projected	dry	and	warm	periods.	
	
	
	

	

	

	

	

This	chapter	has	been	published	as:		

van	 Vliet,	M.T.H.,	 F.	 Ludwig,	 J.J.G.	 Zwolsman,	 G.P.	Weedon,	 and	 P.	 Kabat	 (2011),	 Global	 river	
temperatures	 and	 sensitivity	 to	 atmospheric	 warming	 and	 changes	 in	 river	 flow,	 Water	
Resources	Research,	47,	W02544,	doi:10.1029/2010WR009198.	



Chapter 2     

18 

	

2.1   Introduction 

Water	 temperature	 is	 an	 important	 physical	 property	 of	 rivers,	 having	 a	 direct	 impact	 on	
water	quality	(e.g.	concentrations	of		dissolved	oxygen)	(Ozaki	et	al.,	2003),	and	on	the	growth	
rate	 and	 distribution	 of	 freshwater	 organisms	 (Mohseni	 et	 al.,	 2003).	 Additionally,	 river	
temperature	 is	 of	 economic	 importance	 in	water	 requirements	 for	 industry,	 electricity	 and	
drinking	water	production,	and	recreation	(EEA,	2008b;	Webb	et	al.,	2008).	Several	 studies	
found	 a	 gradual	 increase	 in	 river	 temperatures	 during	 the	 last	 century	 in	 relation	 to	 an	
increase	in	air	temperatures	(e.g.	Kaushal	et	al.,	2010;	Lammers	et	al.,	2007;	Liu	et	al.,	2005;	
Webb,	 1996).	 In	 addition,	 rising	water	 temperatures	 have	 also	 been	 related	 to	 changes	 in	
river	flow.	For	example,	for	the	Danube	an	increase	in	water	temperature	was	observed	as	a	
consequence	of	lower	summer	flow,	resulting	from	earlier	onset	of	the	snowmelt	period	and	
decreased	summer	precipitation	(Pekarova	et	al.,	2008a).	Water	temperature	trends	in	major	
rivers	 over	 the	 past	 century	 are	 thus	 a	 complex	 function	 of	 both	 climate	 and	 hydrological	
changes	 (Moatar	 and	 Gailhard,	 2006;	Webb	 and	Nobilis,	 2007).	 In	 addition,	 anthropogenic	
influences,	 like	 thermal	 effluents	 from	 power	 stations	 (Edinger	 et	 al.,	 1968a;	 Webb	 and	
Nobilis,	 2007),	 flow	 regulation	 and	 construction	 of	 reservoirs	 (Lowney,	 2000;	 Webb	 and	
Walling,	 1993),	 and	 land	 use	 changes	 (e.g.	 urbanization	 (Nelson	 and	 Palmer,	 2007))	 also	
affect	 water	 temperature.	 These	 anthropogenic	 influences	 vary	 considerably	 between	
catchments	and	river	basins	(Caissie,	2006).		

To	estimate	river	temperature	as	a	function	of	climate	variables,	different	model	approaches	
varying	 in	 complexity	 and	 data	 input	 requirements	 have	 been	 developed	 (Mohseni	 et	 al.,	
1998).	 The	 most	 complex	 approach	 uses	 process	 (physically‐based)	 water	 temperature	
models,	 including	 heat	 advection(‐dispersion)	 transport	 equations	 (Haag	 and	 Luce,	 2008;	
Sinokrot	 and	 Stefan,	 1993;	 Yearsley,	 2009).	 Another	 group	 applies	 the	 equilibrium	
temperature	concept	that	incorporates	only	net	heat	transfer	processes	at	the	water	surface	
(Bogan	et	al.,	2003;	Caissie	et	al.,	2005;	Edinger	et	al.,	1968b;	Mohseni	and	Stefan,	1999).	A	
recent	 development	 is	 the	 application	 of	 artificial	 neural	 networks	 (ANNs)	 which	 use	
unknown	(nonlinear	algebraic)	functions	to	predict	water	temperatures	(Chenard	and	Caissie,	
2008;	Sahoo	et	al.,	2009).	In	addition,	statistical	approaches	have	been	applied,	like	stochastic	
models	which	separate	the	water	temperature	time	series	into	an	annual	component	which	is	
represented	by	a	Fourier	or	sinusoidal	function,	and	a	short‐term	component	using	Box	and	
Jenkins	 methods	 and/or	 a	 Markov	 process	 (Ahmadi‐Nedushan	 et	 al.,	 2007;	 Caissie,	 2006).	
Finally,	 water	 temperature	 regression	 models	 are	 widely	 used,	 calculating	 stream	 or	 river	
temperature	 from	air	 temperature,	either	based	on	 linear	or	nonlinear	regression	relations.	
These	 models	 are	 attractive	 because	 of	 their	 simplicity	 and	 limited	 requirement	 of	
meteorological	and	hydraulic	data,	while	still	being	frequently	characterized	by	high	levels	of	
explained	 variance	 in	 absence	 of	 detailed	 information	 on	 heat	 fluxes	 (Webb	 and	 Nobilis,	
1997).		

Air	 temperature	 is	 commonly	used	as	a	predictor	variable	 in	water	 temperature	 regression	
models,	because	it	 is	a	major	component	in	calculating	net	changes	of	heat	flux	at	the	water	
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surface	 (Webb	 et	 al.,	 2003;	 Webb	 et	 al.,	 2008).	 As	 a	 result,	 there	 is	 a	 strong	 correlation	
between	air	and	water	temperatures.	Linear	water	temperature	regression	models	have	been	
widely	applied	using	weekly	and	monthly	mean	values	of	water	temperature	(e.g.	Webb	and	
Nobilis,	1997;	Webb	and	Walling,	1993).	In	addition,	linear	regression	analysis	has	also	been	
successfully	applied	on	two‐hour	and	daily	time	step	by	including	a	time	lag	in	the	regression	
model	(Stefan	and	Preudhomme,	1993).		

Several	 studies	 have	 shown	 that	 the	 water	 ‐	 air	 temperature	 relationship	 deviates	 from	
linearity	when	air	temperature	is	below	0°C	and	above	~	20°C	(e.g.	Mohseni	and	Stefan,	1999;	
Mohseni	 et	 al.,	 1998).	 At	 low	 temperatures,	 this	 departure	 is	 due	 to	 both	 the	 dominant	
influence	 of	 groundwater	 and	 the	 existence	 of	 an	 ice	 cover	 that	 prevents	 surface	 heat	
exchange.	At	high	temperatures,	the	departure	results	from	extensive	evaporative	cooling	and	
enhanced	back	radiation.	As	a	result,	the	water	‐	air	temperature	relationship	resembles	an	S‐
shaped	function,	rather	than	a	linear	function	(Mohseni	and	Stefan,	1999).		

Although	 several	 studies	have	demonstrated	 that	water	 temperature	 is	 inversely	 related	 to	
river	 discharge,	 reflecting	 a	 reduced	 thermal	 capacity	 under	 decreasing	 flow	 volumes	 (e.g.	
Hockey	et	 al.,	 1982;	Webb,	1996;	Webb	et	 al.,	 2003),	 only	 a	 few	addressed	 the	 influence	of	
river	 flow	 on	 the	 water	 ‐	 air	 temperature	 relationship	 or	 included	 river	 discharge	 as	 an	
additional	 variable	 into	 water	 temperature	 regression	 models	 (Ozaki	 et	 al.,	 2003;	 Rivers‐
Moore	and	Jewitt,	2007;	Webb	et	al.,	2003).	A	multiple	linear	regression	analysis	of	Webb	et	
al.	 (2003)	showed	that	an	 inverse	relation	between	water	temperature	and	discharge	exists	
for	 all	 catchments	 and	 timescales,	 with	 greater	 impact	 at	 shorter	 timescales	 and	 in	 larger	
catchments	 of	 the	 Exe	 basin	 (UK).	 Limited	 knowledge	 exists,	 however,	 with	 regard	 to	 the	
influence	of	discharge	on	water	temperatures	for	large	river	basins.	In	addition,	relatively	few	
water	temperature	studies	focused	on	river	temperatures	outside	Europe	and	North	America,	
although	some	examples	exist:	e.g.	 for	South	African	rivers	(Dallas,	2008;	Rivers‐Moore	and	
Jewitt,	2007)	and	for	Russian	Pan‐Arctic	rivers	(Lammers	et	al.,	2007;	Liu	et	al.,	2005).	

Considering	future	perspectives,	river	temperatures	are	expected	to	be	affected	by	warming	
and	 modifications	 in	 river	 regime	 as	 a	 result	 of	 climate	 change	 and	 other	 anthropogenic	
influences	(e.g.		flow	regulation,	water	withdrawals)	(Caissie,	2006).	A	few	studies	addressed	
the	impact	of	climate	change	on	stream	temperatures	by	using	air	temperature	scenarios	as	
input	 into	 a	 water	 temperature	 regression	 model	 applied	 on	 a	 weekly	 or	 monthly	 basis	
(Mantua	 et	 al.,	 2010;	 Mohseni	 et	 al.,	 1999;	 Mohseni	 et	 al.,	 2003;	 Webb,	 1996).	 The	
performance	of	water	temperature	regression	models	and	sensitivity	of	water	temperatures	
have	not	yet	been	studied	on	a	daily	basis	and	 in	particular	not	on	a	global	scale.	However,	
atmospheric	 warming	 and	 changes	 in	 river	 flow	 are	 expected	 to	 affect	 river	 temperatures	
globally,	with	possibly	negative	 consequences	 for	 freshwater	 ecosystems	 and	 several	 usage	
functions	(e.g.	industry,	thermal	power,	drinking	water	and	recreation).		

Hence,	 the	 objectives	 of	 our	 study	 are	 as	 follows:	 1)	 to	 test	 the	 performance	 of	 a	 water	
temperature	 regression	 model	 that	 estimates	 daily	 river	 temperatures	 based	 on	 both	 air	
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temperature	and	river	discharge	data	for	river	temperature	stations	on	a	global	scale;	and	2)	
to	 quantify	 the	 sensitivity	 of	 river	 temperatures	 to	 both	 atmospheric	 warming	 (air	
temperature	 increases)	 and	 changes	 in	 river	 flow.	 To	 address	 these	 objectives,	 a	 nonlinear	
water	temperature	regression	model	based	on	air	temperature	was	modified	to	include	river	
discharge	 as	 an	 additional	 variable.	 In	 addition,	 a	 time	 lag	 was	 incorporated	 to	 apply	 the	
model	on	a	daily	basis.	This	resulted	in	a	daily	water	temperature	regression	model	with	air	
temperature	and	discharge	as	predictor	variables	without	requiring	detailed	meteorological	
and	hydraulic	input	data	which	are	scarce	for	large	parts	of	the	world.		

The	 performance	 of	 the	model	was	 tested	 for	 a	 selection	 of	 study	 basin	 stations	 for	 1980‐
1999,	 and	 in	 particular	 during	 a	 heat	 wave	 when	 river	 temperatures	 are	 highest.	
Subsequently,	 a	 global	 database	 with	 water	 temperature	 linked	 to	 discharge	 stations	 was	
created,	 and	 the	 regression	 model	 was	 applied	 to	 157	 river	 temperature	 and	 discharge	
stations	 globally.	 In	 addition,	 the	 sensitivity	 of	 river	 temperatures	 was	 assessed	 under	
different	 rates	 of	 air	 temperature	 increase	 and	 changes	 in	 river	 discharge	 realistic	 in	 the	
context	of	climate	change.	Hence,	this	study	is	a	global	assessment	of	river	temperatures	and	
the	sensitivity	to	both	atmospheric	warming	and	changes	in	river	flow.	

2.2  Data and methods 

2.2.1   River temperature and discharge data 

Worldwide	 data	 of	 river	 temperatures	 are	 available	 from	 the	 United	 Nations	 Environment	
Programme	 (UNEP)	 Global	 Environment	 Monitoring	 System	 (GEMS/Water;	
http://www.gemswater.org/).	 Although	 the	 availability	 of	 river	 temperature	 data	 in	 this	
database	is	very	limited	during	the	period	1979‐1987,	especially	for	the	Southern	Hemisphere	
(Webb,	1996),	marked	improvements	have	been	made	over	the	last	10	years	in	both	spatial	
coverage	and	the	amount	of	data	(Lammers	et	al.,	2007).	For	river	discharge,	daily	mean	and	
monthly	mean	series	for	stations	on	a	global	scale	are	available	from	the	Global	Runoff	Data	
Centre	(GRDC;	http://grdc.bafg.de/).	

In	our	study,	river	temperature	and	discharge	data	series	have	been	used	from	157	stations	
globally,	for	which	both	water	temperature	data	from	GEMS/Water	and	discharge	data	from	
GRDC	were	 available	 over	 the	 1980‐1999	 period.	 In	 addition	 to	 the	 GEMS/Water	 data,	we	
used	high‐temporal	resolution	water	temperature	series	for	14	stations	in	a	selection	of	study	
river	basins,	which	were	provided	by	different	data	sources	listed	in	Table	2.1.	The	number	of	
measurements	 during	 the	 1980‐1999	 period	 is	 highest	 for	 the	 Rhine	 (Lobith)	 with	 7283	
(99.7%	of	record)	and	lowest	 for	 the	Orange	(Oranjedraai)	with	246	measurements	(3.4%).	
For	 the	 Lena	 (Kusur),	 Ob	 (Salekhard)	 and	 Yenisey	 (Igarka),	 water	 temperature	 data	 could	
only	 be	 provided	 as	mean	 values	 for	 every	 10	 days.	 The	 coverage	 of	 the	 records	 by	water	
temperature	measurements	for	these	Arctic	rivers	is	less	than	50%,	as	the	rivers	are	covered	
with	 ice	 during	 a	 large	 part	 of	 the	 year.	 For	 all	 study	 basin	 stations,	 daily	 instantaneous	
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Table  2.1: Overview  of  data  sources  of water  temperature measurements  for  1980‐1999  period,  and  study  basin 
characteristics  (geographic  region, number of measurements,  time  resolution, mean  river discharge  (Q), upstream 
drainage area, and impacts of reservoirs, thermal effluents and melt water). Abbreviations are used for instantaneous 
measurements  (instant.)  Links  to  online  databases  are:  StreamNet  (http://www.streamnet.org),  USGS 
(http://waterdata.usgs.gov/),  Waterbase  (http://live.waterbase.nl/),  Murray‐Darling  Basin  Commission  (MDBC; 
http://www.mdbc.gov.au/).	

* For discharge, data of  station Nagymaros have been used as discharge data  (from GRDC) were not available  for 
station Budapest; ** For discharge, data of station Vioolsdreef have been used as discharge data (from GRDC) were 
not available for station Oranjedraai. 

	 	

river 
(station) 

region  data sources  n 
meas. 
(%) 

time
res. 

mean 
Q 
(m3/s) 

area 
(*103  
km2) 

reser‐
voirs 

thermal 
effl. 

melt‐
water 

Columbia 
(The Dalles) 

North‐ 
America 

StreamNet 
 

3584
(49.1) 

daily
instant. 

5250 614 ++  +‐  +

Mississippi 
(Clinton)  

North‐ 
America 

USGS 
 

3418
(46.8) 

daily
instant. 

1610 222 +  +  +

Missouri 
(Omaha) 

North‐ 
America 

USGS 
 

1190
(46.8) 

daily
instant. 

1074 846 +  +‐  +

Potomac 
(Washing‐ 
ton D.C.) 

North‐ 
America 

USGS 
 

3687
(50.5) 

daily
mean 

365 30 +‐  +  +

San Joaquin 
(Vernalis) 

North‐ 
America 

USGS 
 

6560
(89.8) 

daily
mean 

157 35 +‐  +  ‐+

Danube 
(Bratislava) 

Europe  Dataset 
(Pekarova et 
al., 2008a)  

7243
(99.2) 

daily
instant. 

2055 131 +  +  +

Danube 
(Budapest*) 

Europe  Dataset via 
Zsolt Kozma  
 

3287
(45.0) 

daily
mean 

2284 184 +‐  +  +

Meuse 
(Eijsden) 

Europe  Waterbase 
 

6560
(89.8) 

daily
instant. 

269 27 ‐+  ++  ‐+

Rhine 
(Lobith) 

Europe  Waterbase 
 

7283
(99.7) 

daily
instant. 

2361 161 ‐  ++  +‐

Orange 
(Oranje‐
draai**) 

Africa  Departm. of 
Water Affairs 
and Forestry 
(DWAF)  

246
(3.4) 

daily
instant. 

186 851 +‐  ‐  ‐

Darling 
(Burtundy) 

Australia  Murray‐Darling 
Basin 
Commission 
(MDBC)  

1998
(27.4) 

daily
instant. 

40 647 ‐+ 
 

‐+  ‐

Lena 
(Kusur) 

Asia  
(Arctic) 

ART‐Russia 
dataset  
(Lammers et al., 
2007) 

215
(29.9) 

10‐day
mean 

17140 2430 +‐  ‐  ++

Ob 
(Salekhard) 

Asia 
(Arctic) 

ART‐Russia 
dataset 
 

290
(40.3) 

10‐day
mean 

12774 2950 +‐  ‐+  ++

Yenisey 
(Igarka) 

Asia 
(Arctic) 

ART‐Russia 
dataset  
 

289
(40.1) 

10‐day
mean 

18949 2440 ++  ‐  ++
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measurements	with	 one	 observation	 per	 day	 at	 a	 fixed	 time	were	 available	 except	 for	 the	
rivers	Potomac	(Washington	D.C.),	San	 Joaquin	(Vernalis)	and	Danube	(Budapest)	 for	which	
daily	(24h)	mean	values	were	provided.			

Water	 temperatures	 of	 the	 selected	 stations	 in	 the	 Columbia,	 Mississippi,	 Missouri,	 and	
Yenisey	rivers	are	considerably	affected	by	reservoir	operations,	while	several	stations	in	the	
European	 rivers	 (Danube,	 Meuse	 and	 Rhine)	 are	 mainly	 impacted	 by	 thermal	 effluents	 of	
power	plants	and	 industries	(Table	2.1).	River	 temperatures	at	 the	stations	of	 the	Lena,	Ob,	
Yenisey	and	Columbia	are	highly	influenced	by	melt	water.	Water	temperatures	of	the	Orange	
and	Darling	are	not	affected	by	melt	water,	and	experience	only	minor	influences	of	upstream	
dams	or	weirs	and	thermal	effluents.		

Global	river	stations	involved	in	our	analysis	were	selected	based	on	different	criteria.	First,	
both	water	 temperature	 data	 of	 GEMS/Water	 and	 daily	 discharge	 data	 of	 GRDC	 during	 the	
period	 1980‐1999	 had	 to	 be	 available.	 In	 addition,	 we	 selected	 stations	 with	 river	
temperature	observations	at	a	depth	between	0	and	1	m	below	surface	level,	and	a	minimum	
amount	of	40	measurements.	Water	temperatures	of	the	selected	GEMS/Water	stations	were	
measured	 instantaneously	 (on	 average	 around	 11:30	 a.m.	 local	 time,	 with	 a	 standard	
deviation	 of	 two	 hours)	 using	 a	 mercury	 thermometer,	 battery	 thermometer	 or	 a	
conductivity‐temperature	 (battery)	 meter	 with	 a	 precision	 of	 0.1°C.	 The	 location	 of	 the	
selected	GEMS/Water	stations	and	number	of	water	temperature	measurements	is	shown	in	
Figure	2.1,	along	with	the	location	of	the	study	basin	stations.	About	37%	of	the	stations	have	
40‐100	 water	 temperature	 measurements,	 the	 largest	 group	 (45%)	 has	 100‐200	 water	
temperature	measurements,	 and	13%	and	5%	of	 the	 stations	have	200‐500	and	more	 than	
500	measurements,	 respectively,	during	 the	1980‐1999	period.	The	amount	of	 stations	and	
number	 of	measurements	 is	 highest	 in	 Europe,	while	 the	 availability	 of	water	 temperature	
stations	 for	 Africa	 and	 South	 America	 is	 limited	 (Table	 2.2).	 A	 high	 percentage	 of	 the	
GEMS/Water	 stations	 in	 Oceania	 (70%)	 have	 a	 small	 upstream	 basin	 area	 (<	 6,000	 km2),	
while	a	relatively	high	number	of	stations	 in	Africa,	North	America,	South	America	and	Asia	
are	characterized	by	large	upstream	basin	areas	(>	75,000	km2).	

Table 2.2: Availability of water temperature data of GEMS/Water stations per region. Overview of the total number of 
GEMS/Water stations, percentage of stations with a small (< 6,000 km2), moderate (6,000 – 75,000 km2) and large (> 
75,000  km2)  upstream  basin  area,  and  mean  number  of  water  temperature  measurements  (n)  of  the  selected 
GEMS/Water stations per region and globally. 

region  n GEMS/Water  percentage stations with upstream basin area  mean n per

  stations < 6,000 km2 6,000 – 75,000 km2 > 75,000 km2  station

North America   28  21% 36% 43%  135

South America  4  0% 50% 50%  111

Europe   74  27% 39% 34%  227

Africa   3  0% 33% 67%  66

Asia   25  24% 32% 44%  101

Oceania   23  70% 22% 9%  138

globally  157  31% 35% 34%  171
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Figure 2.1: Number of measurements  for  selected GEMS/Water  stations  for  the 1980‐1999 period, and  location of 
study basin stations. 

In	 general,	 daily	 mean	 discharge	 series	 for	 all	 study	 basin	 stations	 and	 selected	 global	
GEMS/Water	stations	were	used.	However,	for	31	out	of	157	GEMS/Water	stations,	discharge	
data	 of	 GRDC	was	 only	 available	 on	 a	monthly	 basis	 and	 therefore	monthly	 discharge	 data	
series	 were	 used	 for	 these	 stations.	 For	 the	 period	 2000‐2005	 (Section	 2.2.4),	 daily	 mean	
discharge	 series	 of	 the	 Rhine	 (Lobith)	 and	 Meuse	 (Eijsden)	 were	 provided	 by	 the	 water	
monitoring	 programme	 of	 the	 Netherlands	 (http://live.waterbase.nl/)	 and	 daily	 discharge	
series	of	the	Danube	(Bratislava)	were	supplied	by	the	Slovak	hydrometeorological	Institute	
(Pekarova	et	al.,	2008b),	as	discharge	data	were	not	available	at	GRDC	during	this	period.	

2.2.2   Air temperature data  

For	surface	air	temperature,	we	used	the	global	gridded	half‐degree	meteorological	data	set	
developed	 within	 the	 EU	 FP6	 Water	 and	 Global	 Change	 (WATCH)	 project	 (Weedon	 et	 al.,	
2010).	 This	 dataset	 for	 1958‐2001	 originates	 from	 ERA40	 analysis	
(http://www.ecmwf.int/research/era/do/get/era‐40).	 Air	 temperature	 (at	 2m	 above	
surface)	and	other	forcing	variables	were	corrected	for	elevation	differences	between	ERA40	
one‐degree	 elevations	 and	 CRU	 (http://www.cru.uea.ac.uk/~timm/grid/	 CRU_TS_2_1.html)	
half‐degree	elevations	and	have	been	monthly	bias‐corrected	using	CRU‐TS2.1	observations.	
Daily	(24	hour)	mean	air	temperature	for	the	1980‐1999	period	was	extracted	from	the	half‐
degree	 grid	 cells	 where	 the	 study	 basin	 and	 global	 GEMS/Water	 stations	 are	 located.	 In	
addition,	daily	mean	air	temperature	from	the	meteorological	stations	Twente	and	Maastricht	
provided	 by	 KNMI	 (http://www.knmi.nl/klimatologie/daggegevens/),	 and	 Vienna	
(http://eca.knmi.nl/)	(Klein	Tank	et	al.,	2002)	were	used	for	the	period	2000‐2005	(Section	
2.2.4).		
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2.2.3  The nonlinear water temperature regression model 

The	 regression	model	 in	 our	 study	 is	 based	on	 the	 approach	of	Mohseni	 et	 al.	 (1998),	who	
developed	 a	 nonlinear	 regression	 model	 representing	 the	 S‐shaped	 function	 between	 air	
temperature	 and	 water	 temperature	 to	 calculate	 mean	 weekly	 stream	 temperature	 for	
monitoring	 stations	 in	 the	 United	 States.	 Modifications	 to	 the	 regression	model	 have	 been	
made	to	include	discharge	as	a	variable	in	addition	to	air	temperature,	and	to	apply	the	model	
on	a	daily	time	step.	Although	it	is	recognized	that	water	temperatures	and	air	temperatures	
are	 better	 correlated	 at	 weekly	 and	 monthly	 timescales	 than	 at	 hourly	 or	 daily	 scales	
(Erickson	 et	 al.,	 2000;	Pilgrim	et	 al.,	 1998),	we	decided	 to	 apply	 the	 regression	model	 on	 a	
daily	 basis	 by	 introducing	 a	 time	 lag	 between	 water	 temperature	 and	 air	 temperature.	 A	
practical	reason	for	this	daily	time	step	is	the	need	for	high	temporal	resolution	estimates	of	
water	 temperature	by	river	basin	managers,	 in	particular	with	regard	 to	 freshwater	habitat	
conditions	and	usage	functions	such	as	cooling	(industry	and	thermal	power	plants),	drinking	
water	 production	 and	 recreation	 (Stefan	 and	 Preudhomme,	 1993).	 In	 addition,	 river	
temperature	 measurements	 of	 GEMS/Water	 stations	 were	 available	 at	 an	 irregular	 time	
interval,	and	calculation	of	weekly	(or	monthly)	mean	water	temperatures	based	on	a	highly	
variable	 number	 of	 measurements	 would	 thus	 result	 in	 less	 representative	 values	
(Preudhomme	 and	 Stefan,	 1992;	 Webb	 et	 al.,	 2008).	 We	 therefore	 decided	 to	 test	 the	
robustness	 of	 the	 regression	 model	 on	 a	 daily	 time	 step,	 and	 thus	 water	 temperature	
measurements	were	related	 to	daily	mean	air	 temperatures	and	discharges	 for	 that	specific	
date.	

River	 discharge	 was	 added	 as	 a	 variable	 to	 the	 nonlinear	 regression	model	 to	 include	 the	
effects	 of	 changes	 in	 river	 flow	 conditions	 on	 water	 temperature.	 Although	 water	
temperatures	depend	on	water	depth	and	 flow	velocity,	 river	discharge	was	selected	as	 the	
additional	predictor	variable	because	it	strongly	relates	to	both	river	depth	(thermal	capacity)	
and	 flow	velocity	(travel	 times),	and	 is	well‐measured	on	a	global	scale.	An	 inverse	relation	
between	 discharge	 and	 water	 temperature	 was	 added	 to	 the	 regression	 model,	 reflecting	
higher	 warming	 rates	 under	 lower	 discharges	 as	 demonstrated	 in	 previous	 studies	 (e.g.	
Rivers‐Moore	and	Jewitt,	2007;	van	Vliet	and	Zwolsman,	2008).	An	inverse	relation	instead	of	
a	negative	linear	relation	with	discharge	(e.g.	Ozaki	et	al.,	2003;	Webb	and	Nobilis,	1994)	was	
included,	 because	 it	 reflects	 both	 a	 reduction	 in	 the	 thermal	 capacity	 and	 reduced	 dilution	
capacity	for	anthropogenic	heat	sources	(e.g.	wastewater	or	cooling	water	discharges)	under	
low	river	flows.	Hence,	the	modified	nonlinear	regression	model	used	in	our	study	is:	

  



  Qe

Tw
Tair )1( )(

		 	
(2.1)	

with:	






tan4 	 	 	 	 	 	

Where:	μ	=	 lower	bound	of	water	 temperature	 [°C];	α	=	upper	bound	of	water	 temperature	
[°C];	 γ	 =	measure	 of	 the	 slope	 at	 inflection	 point	 (steepest	 slope)	 of	 the	 S‐shaped	 relation		
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[°C‐1];	β	=	air	temperature	at	inflection	point	[°C];	η	=	fitting	parameter	[°C	m3s‐1];	Tw	=		water	
temperature	[°C];	Tair	=		air	temperature	[°C];	Q	=		river	discharge	[m3s‐1];	ε	=	error	term	[°C];	
tan	θ	=	slope	at	inflection	point	[‐].	

In	addition,	a	function	was	included	to	relate	the	measure	of	slope	(γ)	at	the	inflection	point	to	
the	discharge	variability	compared	to	the	variability	in	water	temperature.		

)(
Tw

Q
Q 


  	 	 	 	 (2.2)	

Where:	γQ	=	measure	of	slope	for	discharge	term	[°C‐1];	σQ	=	standard	deviation	of	discharge	
[m3s‐1];	σTw	=	standard	deviation	of	water	temperature	[°C];	τ	=	fitting	parameter	[°C	m‐3s1].		

A	 comparable	 function	was	 previously	 applied	 by	Webb	 et	 al.	 (2003)	 to	 calculate	 the	 beta	
coefficient	of	 the	discharge	term.	 In	our	study,	 the	 improvement	 in	model	performance	was	
higher	when	this	function	was	applied	on	the	gamma	component,	resulting	in	an	increase	in	
the	 measure	 of	 slope	 for	 rivers	 with	 a	 high	 discharge	 variability	 compared	 to	 water	
temperature	 variability,	 and	 vice	 versa.	 The	 function	 generally	 increases	 the	 explained	
variance	and	sensitivity	to	air	temperature	and	discharge	changes,	especially	for	monitoring	
stations	with	a	relatively	high	discharge	variability.		

To	apply	the	model	on	a	daily	basis,	a	lag	effect	was	incorporated	into	the	regression	analyses,	
because	water	temperature	variations	tend	to	lag	behind	air	temperature	fluctuations	at	short	
timescales	 (on	an	hourly	or	daily	basis)	 (Erickson	et	 al.,	 2000;	 Jeppesen	and	 Iversen,	1987;	
Webb	 et	 al.,	 2003).	 In	 addition,	 water	 temperature	 has	 a	 lower	 variability	 than	 air	
temperature	 because	 of	 the	 high	 thermal	 inertia	 of	water.	 Stefan	 and	 Preudhomme	 (1993)	
concluded,	 for	 streams	 in	 the	 central	 USA,	 that	 measured	 water	 temperatures	 follow	 air	
temperature	closely	with	a	time	lag	ranging	from	hours	to	days,	which	increases	with	stream	
depth.	Because	water	depth	information	was	not	available	for	the	majority	of	river	stations,	
the	 optimal	 time	 lag	 was	 estimated	 by	 calculating	 correlation	 coefficients	 between	 water	
temperature,	 air	 temperature	 and	 discharge.	 The	 optimal	 time	 lag	 was	 calculated	 for	 each	
station	 individually	 using	 a	 time	 lag	 between	 0	 to	 20	 days.	 The	 time	 lag	 with	 the	 highest	
correlation	coefficient	was	assumed	to	be	the	optimal	time	lag	for	that	river	station	and	was	
thus	selected.		

2.2.4   Model application and validation 

For	the	study	basin	stations	and	GEMS/Water	stations,	we	generally	used	daily	instantaneous	
measurements	of	water	 temperature	and	daily	mean	measurements	of	air	 temperature	and	
discharge	during	 the	1980‐1999	period	 to	 fit	 the	 regression	 relations.	 For	 air	 temperature,	
daily	mean	rather	than	daily	maximum	values	were	used,	because	slightly	higher	correlations	
between	water	temperature	measurements	and	daily	mean	values	of	air	temperatures	were	
obtained.	 For	 discharge,	 daily	 mean	 values	 were	 provided	 and	 therefore	 used	 to	 fit	 the	
regression	model.	However,	for	the	31	GEMS/Water	stations	with	discharge	only	available	as	
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monthly	 averages,	 we	 calculated	 monthly	 mean	 water	 temperatures	 and	 related	 these	 to	
monthly	 mean	 air	 temperature	 and	 discharge	 (without	 a	 time	 lag).	 For	 the	 study	 basin	
stations	of	 the	Yenisey,	Ob	and	Lena,	mean	water	 temperatures	were	available	 for	every	10	
days	 (Section	 2.2.1).	 Therefore,	 10‐day	 averages	 of	 air	 temperature	 and	 discharge	 were	
calculated	to	fit	the	regression	model.	The	least	squares	method	was	used	to	estimate	the	five	
parameters	α,	β,	γ,	μ	and	η,	minimizing	the	sum	of	squared	errors	between	the	observed	and	
fitted	 values	 of	water	 temperatures.	 The	 parameters	were	 estimated	 numerically	 using	 the	
Gauss‐Newton	algorithm.	To	obtain	physically	reliable	estimates	of	the	lower	bound	of	water	
temperature	 for	 rivers	 with	 freezing	 periods,	 zero	 was	 assigned	 as	 the	 lower	 limit	 of	 μ	
(Mohseni	et	al.,	1998).		Although	some	studies	demonstrated	better	estimations	of	the	upper	
bound	of	water	 temperature	 (α)	by	using	 the	 standard	deviate	method	 (Bogan	et	 al.,	 2006;	
Mohseni	 et	 al.,	 2002),	 only	 moderate	 improvements	 were	 observed	 in	 our	 study,	 and	
therefore	α	was	estimated	according	to	the	least	squares	method.	

Hysteresis	occurs	for	river	sites	affected	by	seasonal	snow‐	and	ice‐melt	runoff	and	reservoir	
operations,	which	 involves	a	 lag	 in	 stream	temperature	 response	 to	air	 temperature	 (Webb	
and	Nobilis,	1994).	This	 is	mainly	because	of	 the	 inflow	of	cold	snowmelt	or	deep	reservoir	
water	during	spring	and	summer,	resulting	in	cooler	water	temperatures	despite	the	warming	
in	 air	 temperatures.	 In	 this	 case,	 two	 regression	 relations	 were	 applied	 to	 the	 water	
temperature	measurements	for	the	rising	and	falling	limb	separately,	by	splitting	the	dataset	
for	the	period	January	till	June	and	for	July	till	December.	As	only	one	α	and	μ	physically	exist	
at	each	monitoring	station,	we	used	the	lower	μ,	upper	α,	and	an	average	of	the	two	γ,	β	and	η	
values,	which	ultimately	resulted	in	one	fitted	model	for	each	monitoring	station	(Mantua	et	
al.,	2010;	Mohseni	et	al.,	1998).	

To	 test	 the	 improvement	 of	 the	 regression	 model	 by	 the	 introduction	 of	 discharge	 as	 an	
additional	 variable,	 both	 the	 original	 regression	model	 (Mohseni	 et	 al.,	 1998)	 applied	 on	 a	
daily	 basis	 with	 time	 lag	 included	 (NONLIN)	 and	 modified	 regression	 model	 including	
discharge	and	time	lag	(NONLIN_Q)	were	fitted.	The	model	performance	(goodness	of	fit)	was	
determined	 for	 both	 regression	 models	 by	 calculating	 the	 Nash‐Sutcliffe	 coefficient	 (NSC)	
(Nash	and	Sutcliffe,	1970)	 (equation	2.3),	which	 is	 the	coefficient	of	determination	showing	
the	efficiency	of	the	fit.	The	quality	of	the	fit	was	calculated	by	using	the	root	mean	squared	
error	(RMSE)	(Janssen	and	Heuberger,	1995)	(equation	2.4).	
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Where:	Twsim	i	=	predicted	daily	water	temperature	at	time	step	i	[°C];	Twobs	i	=	observed	daily	

water	 temperature	at	 time	step	 i	 [°C];	 obswT =	average	of	daily	observed	water	 temperature	

[°C];	n	=	number	of	data	pairs	to	be	compared.		

For	 each	 station	 the	 NSC	was	 calculated	 for	 the	 fitted	 regression	model	 for	 the	 rising	 and	
falling	 limb	 separately	 and	 for	 a	 single	 fitted	model.	When	 the	 average	NSC	 from	 the	 fitted	
regression	model	for	the	rising	and	falling	limb	was	higher	than	calculated	for	a	single	fitted	
model,	river	stations	were	assumed	to	exhibit	hysteresis	(Mantua	et	al.,	2010).	

In	 order	 to	 test	 the	 performance	 of	 the	 regression	model	 and	 the	 degree	 of	 validity	 of	 the	
parameter	 estimates	 for	 another	 time	 period	 and	 during	 a	 heat	 wave	 specifically,	 the	
regression	model	fitted	for	1980‐1999	for	the	European	study	basin	stations	Rhine	(Lobith),	
Danube	(Bratislava)	and	Meuse	(Eijsden)	was	applied	for	the	time	slice	2000‐2005	including	
the	heat	wave	and	drought	of	2003.	These	study	basin	stations	were	selected,	because	 they	
were	well	measured	during	the	period	of	2000‐2005	and	the	summer	of	2003	specifically,	and	
are	characterized	by	different	river	regime	characteristics	and	snowmelt	influences.	The	fitted	
regression	model	was	applied	by	using	daily	mean	discharge	series	from	the	same	monitoring	
station	 and	 daily	 mean	 air	 temperature	 data	 for	 2000‐2005	 of	 the	 nearest	 meteorological	
stations,	 as	 the	 global	 gridded	 air	 temperature	 dataset	 for	 the	 1958‐2001	 period	 does	 not	
include	 data	 for	 this	 validation	 period	 (Section	 2.2.2).	 The	 performance	 of	 the	 regression	
models	was	tested	by	comparing	the	calculated	water	temperatures	with	daily	instantaneous	
water	 temperature	 observations	 for	 the	 Rhine	 (Lobith),	 Danube	 (Bratislava)	 and	 Meuse	
(Eijsden)	for	2000‐2005.	These	water	temperature	series	came	from	the	same	data	sources	as	
for	the	fitting	period	(1980‐1999)	(see	Table	2.1).		

2.2.5   Sensitivity to increases in air temperature and changes in river discharge 

To	explore	the	sensitivity	of	river	temperatures	to	atmospheric	warming	and	changes	in	river	
flow	on	a	global	scale,	we	applied	the	adapted	nonlinear	regression	model	including	discharge	
(NONLIN_Q)	with	the	five	parameters	α,	μ,	γ,	β	and	η	fitted	for	the	period	of	1980‐1999	with	
perturbed	 air	 temperature	 and	 discharge	 series.	 The	 parameter	 values	 of	 the	 regression	
model	thus	were	kept	similar	for	this	sensitivity	analysis,	implying	that	the	physical	setting	of	
the	 river	 (groundwater	 input,	 river	geometry,	 influence	of	melt	water,	upstream	reservoirs,	
thermal	 effluents)	 remains	 the	 same	 (Mohseni	 et	 al.,	 1999).	The	original	historical	daily	 air	
temperature	 series	 for	 1980‐1999	 were	 augmented	 incrementally	 with	 air	 temperature	
increases	 of	 +2°C,	 +4°C	 and	 +6°C.	 Additionally,	 the	 sensitivity	 of	 water	 temperatures	 to	
changes	 in	 river	 flow	 was	 assessed	 by	 calculating	 river	 temperatures	 under	 an	 air	
temperature	increase	of	+4°C	in	combination	with	a	change	in	river	discharge	of	+20%,	‐20%	
and	 ‐40%.	 The	 selected	 increments	 in	 air	 temperature	 include	 the	 likely	 range	 of	 the	
projected	 global	 average	 surface	 air	 temperature	 increase	 of	 1.1	 ‐	 6.4°C	 for	 2090‐2099	
relative	 to	 1980‐1999	 (IPCC,	 2007).	 The	 changes	 in	 river	 discharge	 cover	 the	 range	 of	
projected	changes	in	global	runoff	of	‐40%	to	+40%	according	to	Milly	et	al.	(2005)	for	2041‐
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2060	compared	to	1900‐1970	under	the	SRES	A1B	emissions	scenario.	The	selected	rates	of	
warming	and	changes	in	river	discharge	are	thus	plausible	in	the	context	of	climate	change.	

2.3  Performance of nonlinear water temperature regression model 

2.3.1   Model performance for study basins stations 

For	 all	 selected	 study	 basin	 stations,	 the	 mean	 annual	 cycle	 of	 calculated	 daily	 water	
temperatures	 with	 the	 modified	 regression	 model	 including	 discharge	 (NONLIN_Q)	
represents	 the	observed	water	 temperature	 regime	more	 realistically	 than	 those	 calculated	
without	 discharge	 (NONLIN)	 (Figure	 2.2).	 Furthermore,	 the	 underestimation	 of	 water	
temperatures	 during	 summer	 and	 overestimation	 during	 winter	 is	 generally	 less	 for	
NONLIN_Q	compared	to	NONLIN.	This	is	probably	because	of	higher	values	of	γ	(measure	of	
slope)	found	for	NONLIN_Q	as	compared	to	NONLIN	for	all	study	basin	stations	except	for	the	
Yenisey	 (Igarka)	 (Table	 2.3).	 These	 higher	 values	 are	 obtained	 by	 the	 incorporation	 of	 the	
function	 relating	 the	 measure	 of	 slope	 at	 the	 inflection	 point	 to	 the	 discharge	 variability	
compared	to	the	variability	in	water	temperature	(equation	2.2).	The	fitted	values	of	μ,	α	and	
β	for	NONLIN_Q	were	lower	for	the	majority	of	study	basin	stations,	except	for	the	stations	of	
the	Missouri,	Orange,	Darling,	Lena	and	Ob,	which	were	slightly	higher	or	remained	the	same	
value.	 This	 might	 be	 explained	 by	 differences	 in	 the	 flow	 regime	 when	 compared	 to	 the	
thermal	regime	for	these	rivers.	The	majority	of	river	stations	are	characterized	by	high	flow	
conditions	during	winter	when	 river	 temperatures	are	 low,	 and	 low	 flow	conditions	during	
summer	 when	 river	 temperatures	 are	 high,	 resulting	 in	 distinct	 inverse	 relations	 between	
water	temperature	and	discharge.	However,	for	the	selected	stations	of	the	Missouri,	Orange,		
 

Table 2.3: Fitted parameters of  the original  regression model with  time  lag  included  (NONLIN) and  for  the adapted 
regression model including time lag and discharge (NONLIN_Q) for study basin stations. 

river 

  

station 

 

μ 

(°C) 

μ _Q

(°C) 

α

(°C) 

α_Q

(°C) 

γ

(°C‐1) 

γ _Q

(°C‐1) 

β 

(°C) 

β_Q 

(°C) 

lag

(days) 

Columbia  The Dalles   4.6  0.5 20.3 15.2 0.26 0.33 9.2  9.0  10

Mississippi   Clinton  0.0  0.0 28.9 28.6 0.17 0.20 13.5  13.4 9

Missouri  Omaha  0.0  3.0 30.0 31.0 0.15 0.18 13.2  13.8 7

Potomac  Washington D.C.  0.0  0.0 35.3 33.3 0.12 0.15 17.1  16.9 6

San Joaquin  Vernalis  6.3  4.5 26.8 25.8 0.19 0.20 15.8  15.0 3

Danube  Bratislava  0.2  0.0 20.6 19.7 0.18 0.21 10.3  10.1 9

Danube  Budapest  0.0  0.0 24.0 22.8 0.16 0.19 11.2  10.9 9

Meuse  Eijsden  5.3  5.1 25.0 24.6 0.23 0.28 11.0  10.9 8

Rhine  Lobith   4.2  2.0 24.1 22.1 0.24 0.27 11.0  11.0 9

Orange  Oranjedraai  11.2  11.6 22.6 23.0 0.48 0.55 17.7  17.6 5

Darling  Burtundy   6.2  7.3 26.9 27.1 0.22 0.26 14.9  15.1 8

Lena  Kusur*  0.0  0.6 11.9 12.0 0.21 0.25 7.2  7.7  20

Ob  Salekhard *  0.0  0.1 16.4 16.4 0.29 0.35 7.4  7.4  10

Yenisey  Igarka *  0.0  0.0 17.6 16.5 0.29 0.28 7.1  6.0  10

* Stations fitted on 10‐day mean basis instead of daily basis. 
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Darling,	Lena	and	Ob,	the	peak	in	discharge	is	in	summer	and	coincidences	with	the	peak	in	
water	 temperature.	 Therefore,	 no	distinct	 inverse	 relation	between	water	 temperature	 and	
discharge	was	found	for	these	river	stations.	The	fitted	optimal	time	lag	ranges	from	3	to	10	
days.	 High	 time	 lags	 were	 obtained	 for	 stations	 characterized	 by	 high	
annual	discharges,	which	generally	correspond	with	higher	depths	and	thermal	inertia	(Stefan	
and	 Preudhomme,	 1993).	 In	 contrast,	 moderate	 or	 low	 values	 of	 time	 lag	 were	 generally	
calculated	 for	 stations	 with	 a	 lower	 annual	 discharge	 (except	 for	 the	 Darling	 and	 Meuse)	
(Table	2.3).		For	the	three	Arctic	river	stations	fitted	on	a	10	day	mean	basis	(Section	2.2.1)	a	
time	lag	of	10	days	was	found	for	the	Ob	and	Yenisey	and	a	time	lag	of	20	days	was	obtained	
for	the	Lena.	These	long	time	lags	correspond	with	the	relatively	high	values	of	annual	mean	
river	discharge	(Table	2.1)	and	related	water	depth,	resulting	in	high	thermal	inertia.	

Figure  2.2:  Mean  annual  cycles  of  observed  daily  water  temperatures  (Tw(Obs))  and  simulated  daily  water 
temperatures for the original regression model with time  lag  included (Tw(NONLIN)) and for the adapted regression 
model  including  time  lag  and discharge  (Tw(NONLIN_Q))  for a  selection of  study basin  stations  averaged over  the 
fitting period 1980‐1999. 
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Although	 hysteresis	 due	 to	 upstream	 reservoir	 operations	 and	 melt	 water	 was	 taken	 into	
account,	the	modelled	water	temperatures	for	the	stations	of	Columbia,	Lena,	Ob	and	Yenisey	
are	still	overestimated	during	spring	and	underestimated	during	summer	and	autumn	(Figure	
2.2).	 However,	 including	 discharge	 into	 the	 regression	 model	 improved	 the	 model	
performance,	 especially	 for	 the	 Columbia	 (The	 Dalles).	 This	was	 reflected	 by	 a	 higher	 NSC	
(0.83	versus	0.73)	and	lower	RMSE	(2.4°C	versus	3.1°C)	(Table	2.4).	For	the	majority	of	study	
basin	 stations,	 the	 NSC	 was	 slightly	 higher	 for	 NONLIN_Q	 compared	 to	 NONLIN.	 For	 the	
Danube	(Bratislava	and	Budapest),	Missouri	 (Omaha)	and	San	 Joaquin	(Vernalis)	 rivers,	 the	
values	remained	the	same	and	were	already	high	(NSC	≥	0.90)	without	 including	discharge.	
The	 RMSE	 values	 also	 reflected	 an	 improvement	 of	 the	 performance	 and	 decreased	 for	 all	
study	basins	stations	except	for	the	Lena	and	Ob,	for	which	values	remained	the	same.	Despite	
this	improvement	in	model	performance	for	the	majority	of	study	basin	stations,	the	RMSE	is	
still	quite	high	(>3.0°C)	and	NSC	relatively	low	(<0.75)	for	the	Orange,	Lena	and	Ob	stations.	
For	 the	 Orange,	 this	 can	 be	 explained	 by	 the	 limited	 data	 availability	 and	 by	 the	 use	 of	
discharge	 series	 of	 a	 different	 station	 (Table	 2.1).	 For	 the	 Lena	 and	 Ob,	 the	 limited	
performance	 of	 NONLIN	 and	 NONLIN_Q	 is	 mainly	 due	 to	 the	 dominant	 influence	 of	 the	
snowmelt	 peak	 during	 the	 period	with	 the	 highest	 water	 temperatures,	 resulting	 in	 a	 less	
strong	 relation	 between	 water	 temperature	 and	 air	 temperature	 and	 river	 discharge.	 The	
snowmelt	peak	for	the	Yenisey	(Igarka)	is	earlier	(and	shorter)	compared	to	the	Lena	and	Ob.	
As	a	result,	the	performance	for	this	study	basin	station	and	improvement	by	the	introduction	
of	discharge	is	much	better.	Despite	the	limited	performance	for	the	Orange,	Lena	and	Ob,	the	
overall	median	NSC	 and	 RMSE	 for	 stations	 of	 the	Mississippi,	 San	 Joaquin,	 Danube,	Meuse,	
Rhine	 and	 Darling	 are	 0.92	 and	 1.76°C,	 respectively.	 This	 indicates	 the	 usefulness	 of	 this	
regression	model	on	a	daily	basis.		

	
Table 2.4: Nash‐Sutcliffe coefficient (NSC) and root mean squared error (RMSE) for the original regression model with 
time  lag  included  (NONLIN) and  for the adapted regression model  including time  lag and discharge  (NONLIN_Q)  for 
study basin stations. Values in bold indicate a higher performance for NONLIN_Q compared to NONLIN. 

river 
  

station 
 

NSC
 

NSC_Q
 

RMSE 
(°C) 

RMSE_Q
(°C) 

Columbia  The Dalles   0.73  0.83  3.1  2.4 
Mississippi   Clinton  0.95  0.96  2.1  1.9 
Missouri  Omaha  0.94  0.94  2.2  2.1 
Potomac  Washington D.C.  0.87  0.88  3.4  3.3 
San Joaquin  Vernalis 0.90  0.90  1.7  1.6 
Danube  Bratislava 0.92  0.92  1.8  1.7 

Danube  Budapest  0.92  0.92  2.0  1.9 
Meuse  Eijsden  0.90  0.91  2.0  1.8 
Rhine  Lobith   0.89  0.92  2.0  1.7 
Orange  Oranjedraai  0.61  0.62  3.5  3.4 
Darling  Burtundy  0.91  0.93  1.7  1.5 
Lena  Kusur*  0.55  0.56  3.2  3.2 
Ob  Salekhard *  0.74  0.75  3.1  3.1 
Yenisey  Igarka *  0.86  0.89  2.3  2.1 

* Stations fitted on 10‐day mean basis instead of daily basis 
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2.3.2  Performance during the heat wave and summer drought of 2003 in Europe  

Time	series	of	observed	and	calculated	water	 temperatures	 for	 the	Rhine	 (Lobith),	Danube	
(Bratislava)	 and	 Meuse	 (Eijsden)	 for	 the	 period	 2000‐2005	 (Figure	 2.3)	 show	 that	 both	
regression	models	slightly	overestimate	low	and	underestimate	high	river	temperatures.	This	
is	the	result	of	the	fixed	values	of	upper	bound	(α)	and	lower	bound	(μ)	of	water	temperature	
calculated	from	the	data	series	of	1980‐1999,	which	tend	to	be	slightly	underestimated	and	
overestimated,	respectively.	However,	the	water	temperature	regression	model	including	the	
impact	of	river	 flow	(NONLIN_Q)	shows	better	results	during	 the	whole	period.	This	 is	also	
reflected	by	slightly	higher	values	of	NSC	and	lower	values	of	RMSE	for	NONLIN_Q	(mean	of	
0.90	and	1.9°C)	compared	to	NONLIN	(mean	of	0.87	and	2.1°C).	Comparing	the	performance	
	

	

Figure 2.3: Observed daily water  temperatures  (Tw(Obs))  and  simulated daily water  temperatures  for  the original 
regression model with time lag included (Tw(NONLIN)) and for the adapted regression model including time lag and 
discharge  (Tw(NONLIN_Q))  for  the  Rhine  (Lobith),  Danube  (Bratislava)  and Meuse  (Eijsden)  during  the  validation 
period 2000‐2005, and during the heat wave and summer drought of the 2003. The outlined boxes denote the heat 
wave and summer drought of 2003. The figures at the right side present the results  in more detail during this heat 
wave and drought. 
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coefficients	of	NONLIN_Q	during	2000‐2005	with	 the	values	during	 the	 fitting	period	1980‐
1999,	the	NSC	is	slightly	lower	(mean	of	0.90	versus	0.91)	and	RMSE	is	slightly	higher	(mean	
of	1.9°C	versus	1.8°C),	although	the	differences	are	small.	

The	validity	of	 the	regression	models	and	parameter	estimates	for	the	European	rivers	was	
also	tested	specifically	 for	 the	heat	wave	and	drought	of	 July	and	August	2003	(Figure	2.3).	
Both	regression	models	showed	an	underestimation	of	river	temperatures,	especially	during	
the	period	when	water	temperatures	are	highest	(end	of	July	and	first	two	weeks	of	August).	
This	is	because	of	an	underestimation	of	the	defined	upper	bound	of	water	temperature	(α)	of	
the	nonlinear	 regression	model	of	Mohseni	et	 al.	 (1998),	which	has	also	been	discussed	by	
Bogan	et	al.	 (2006)	and	Mohseni	et	al.	 	 (1999).	However,	 introduction	of	discharge	 into	the	
regression	model	resulted	in	a	strong	decrease	in	the	underestimation	of	the	modelled	water	
temperatures	 during	 this	 warm,	 dry	 period.	 The	 mean	 underestimation	 by	 NONLIN_Q	
compared	 to	 NONLIN	 during	 July‐August	 is	 0.9°C	 versus	 3.0°C	 for	 the	 Rhine,	 1.3°C	 versus	
3.4°C	 for	 the	 Danube	 and	 0.4°C	 versus	 1.4°C	 for	 the	 Meuse.	 In	 addition,	 a	 distinct	
improvement	in	model	performance	was	reflected	by	large	decreases	in	RMSE	of	1.9°C,	2.0°C	
and	0.7°C	for	the	Rhine,	Danube	and	Meuse,	respectively.	

2.3.3   Model performance for global GEMS/Water stations 

Although	the	number	of	measurements	for	the	selected	GEMS/Water	stations	was	generally	
less	 than	 for	 the	 study	 basin	 stations,	 the	 nonlinear	 regression	 models	 NONLIN	 and	
NONLIN_Q	were	successfully	applied	 to	 the	GEMS/Water	stations	globally.	For	126	stations	
with	daily	discharge	data,	the	regression	models	were	fitted	and	the	performance	was	tested	
on	 a	 daily	 basis,	 according	 to	 the	 same	 procedure	 as	 for	 the	 study	 basin	 stations.	 For	 31	
GEMS/Water	 stations	with	 only	monthly	mean	discharge	 series	 available,	 the	models	were	
fitted	and	the	performance	was	tested	on	a	monthly	basis	(see	Section	2.2.4).		

Non‐parametric	Wilcoxon	Rank	Sum	tests	were	performed	on	the	calculated	NSC	and	RMSE	
values	 to	 test	whether	 the	 difference	 between	 the	 performance	 of	NONLIN	 and	NONLIN_Q	
was	 significant.	 Results	 showed	 that	 incorporation	 of	 discharge	 led	 to	 a	 statistically	
significant	 (p<0.01)	 improvement	 of	 the	 performance	 of	 the	water	 temperature	 regression	
model.	The	increase	in	the	performance	of	the	regression	model,	reflected	by	higher	values	of	
NSC	and	lower	values	of	RMSE	for	NONLIN_Q	compared	to	NONLIN,	was	found	for	87%	of	the	
GEMS/Water	stations	(for	84%	of	the	stations	with	daily	fits	and	97%	with	monthly	fits).	To	
show	 differences	 in	 estimated	 water	 temperatures	 between	 both	 regression	 models,	 the	
mean	 annual	 cycle	 of	 observed	 and	 estimated	 water	 temperatures	 with	 NONLIN	 and	
NONLIN_Q	are	presented	for	a	selection	of	GEMS/Water	stations	(Figure	2.4).	The	regression	
model	was	 fitted	and	 the	performance	was	 tested	on	a	daily	basis	 for	 the	majority	of	 river	
stations	presented,	except	 for	 the	Murray,	Parana	and	Yangtze.	However,	monthly	averages	
are	shown	for	all	stations	because	of	the	limited	amount	of	observed	water	temperature	data	
to	calculate	 the	mean	 thermal	 regime	on	a	daily	 time	step.	Comparing	 the	calculated	water	
temperatures	 of	 NONLIN_Q	 and	 NONLIN,	 we	 find	 the	 strongest	 improvements	 for	 the	
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Figure  2.4:  Mean  annual  cycles  of  observed  daily  water  temperatures  (Tw(Obs))  and  simulated  daily  water 
temperatures for the original regression model with time lag included (Tw(NONLIN)) and for the adapted regression 
model  including  time  lag and discharge  (Tw(NONLIN_Q))  for a selection of GEMS/Water stations of  the Saint Croix 
(Canada),  Ohio  (USA),  Elbe  (Germany),  Yangtze  (China),  Amur  (Russia),  Kolyma  (Russia), Mekong  (Thailand),  Rio 
Usumacinta (Mexico), Pra (Ghana), Parana (Argentina), Waikato (New Zealand) and Murray (Australia) averaged per 
month over the 1980‐1999 period. 
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Ohio,	Elbe,	Rio	Usumacinta	and	Waikato,	which	are	rivers	characterized	by	 typical	 low	flow	
conditions	during	summer	and	high	flow	conditions	during	winter	or	early	spring.	For	rivers	
with	a	peak	 in	discharge	during	 the	period	with	high	water	 temperatures,	 like	 the	Yangtze,	
Amur,	 Kolyma	 and	 Mekong,	 less	 distinct	 or	 no	 improvements	 were	 found	 by	 introducing	
discharge	 as	 an	 additional	 variable	 in	 the	 regression	 model.	 No	 distinct	 inverse	 empirical	
relations	between	water	temperature	and	discharge	were	found	for	these	river	stations.					

The	boxplots	with	the	distribution	of	NSC	and	RMSE	values	for	GEMS/Water	stations	(Figure	
2.5)	generally	show	a	higher	performance	for	NONLIN_Q	compared	to	NONLIN	both	for	daily	
and	 monthly	 fitted	 stations.	 Results	 of	 Wilcoxon	 Rank	 Sum	 tests	 indicated	 that	 NSC	 for	
NONLIN_Q	 is	 significantly	 higher	 (p<0.01)	 than	 for	NONLIN	with	 an	 overall	median	NSC	 of	
0.86	versus	0.83	on	a	daily	basis,	and	0.93	versus	0.89	on	a	monthly	basis.	The	values	of	RMSE	
are	significantly	 lower	 (p<0.01)	 for	NONLIN_Q,	especially	 for	 the	stations	with	monthly	 fits.	
The	median	value	of	RMSE	for	NONLIN_Q	and	NONLIN	is	1.8°C	versus	2.0°C	on	a	daily	basis	
and	1.4°C	versus	2.1°C	on	a	monthly	basis.	The	higher	performance	of	the	regression	model	
for	monthly	data	compared	to	daily	data	is	expected	because	the	correlation	between	water	
temperature	and	air	temperature	increases	from	a	daily	to	a	monthly	time	step	(Erickson	et	
al.,	2000;	Pilgrim	et	al.,	1998).		

For	38%	of	the	stations,	NSC	was	higher	when	the	regression	model	was	plotted	for	the	rising	
and	 falling	 limb	 separately,	 implying	 that	 these	 stations	 exhibited	 seasonal	 hysteresis.	 For	
21%	of	the	stations,	the	amount	of	water	temperature	measurements	was,	however,	too	low	
	

 

Figure  2.5:  Boxplots  of  the  Nash‐Sutcliffe  coefficients  (NSC)  and  root mean  squared  errors  (RMSE)  based  on  all 
GEMS/Water  stations  for  the  original  regression  model  with  time  lag  included  (NONLIN)  and  for  the  adapted 
regression model  including  time  lag and discharge  (NONLIN_Q) presented  for  the daily and monthly  fitted  stations 
separately. The boxplots present the median, lower and upper quartile, minimum, maximum and outliers (specified as 
more than 1.5 * interquartile range).	
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to	 fit	 the	regression	model	 for	 the	rising	and	 falling	 limb	separately.	The	calculated	optimal	
time	lags	are	between	1	and	15	days,	and	the	overall	mean	of	all	stations	is	6	days.	A	positive	
relation	was	found	between	time	lag	and	mean	annual	discharge,	reflecting	a	higher	thermal	
inertia	under	higher	river	discharge,	although	the	explained	variance	was	low	(R2=0.10).	

Considering	 the	spatial	distribution	of	 the	 relative	 increase	 in	NSC	between	NONLIN_Q	and	
NONLIN	 (Figure	2.6),	 improvements	 in	model	performance	were	generally	 largest	 for	 river	
stations	at	middle	and	low	latitudes.		This	can	be	explained	by	the	flow	regime	of	these	river	
stations,	which	 is	 generally	 characterized	 by	 low	 flow	 conditions	 during	 summer	 and	 high	
flow	 conditions	 during	 winter	 and	 spring,	 or	 by	 moderate	 river	 discharge	 variability	
throughout	the	year.	For	river	stations	at	high	northern	latitudes,	the	influence	of	discharge	
on	the	model	performance	 is	highly	variable.	This	 is	mainly	dependent	on	the	timing	of	 the	
snowmelt	 peak	 in	 relation	 to	 the	 peak	 in	water	 temperatures.	 For	 several	 stations	 at	 high	
latitude,	 the	 peaks	 in	 flow	 and	 thermal	 regimes	 coincide	 and	 inverse	 empirical	 relations	
between	 water	 temperature	 and	 discharge	 were	 therefore	 not	 found	 for	 these	 stations.	
Introduction	of	discharge	in	the	regression	model	did	not	improve	or	slightly	decreased	the	
performance	of	the	regression	model	for	these	river	stations.	However,	the	relative	decrease	
in	 NSC	 was	 smaller	 than	 2%.	 For	 several	 stations	 in	 North	 America,	 the	 introduction	 of	
discharge	in	the	regression	model	also	did	not	result	in	better	estimates	of	river	temperature.	
This	may	be	explained	by	the	presence	of	many	deep	reservoirs	that	affect	river	temperatures	
downstream.	 For	 these	 stations,	 river	 temperatures	 highly	 depend	 on	 reservoir	 thermal	
stratification	and	reservoir	operation	(Sinokrot	et	al.,	1995).		

Regarding	the	absolute	NSC	values	for	NONLIN_Q	for	the	selected	GEMS/Water	global	stations	
(Figure	 2.6),	 a	 high	model	 performance	with	 NSC>0.90	was	 found	 for	 41%	 of	 the	 stations	
(32%	 for	 stations	 fitted	 on	 a	 daily	 basis;	 74%	 on	 a	 monthly	 basis).	 In	 addition,	 NSC	 was	
between	0.80	and	0.90	for	35%	of	the	stations	(40%	for	daily	fitted	stations;	18%	for	monthly	
fits).	 For	 12%	 of	 the	 stations	 (16%	 on	 a	 daily	 basis,	 3%	 on	 a	 monthly	 basis),	 the	 model	
performance	 was	 poorer	 with	 NSC<0.6.	 These	 stations	 are	 situated	 in	 rivers	 in	 northern	
Canada	 (Mackenzie,	 Saskatchewan	 and	 Churchill),	 Southwest	 United	 States	 and	 Mexico	
(Colorado,	 Rio	 Panuca),	 Southeast	 Asia	 (Mekong)	 and	 West	 Africa	 (White	 Volta	 and	 Pra).	
Although	 river	 temperatures	 at	 many	 stations	 are	 influenced	 by	 other	 factors	 than	 air	
temperature	 and	 discharge	 (e.g.	 reservoirs,	 thermal	 pollution),	 only	 weak	 relations	 were	
found	 between	 the	 NSC	 and	 RMSE	 values	 and	 river	 basin	 characteristics	 like	 contributing	
basin	area	 (mean	R2	=0.02)	and	 latitude	 (mean	R2	=0.04).	 In	addition,	 the	 large‐scale	spatial	
patterns	in	NSC	and	RMSE	did	not	show	a	clear	correspondence	with	the	global	distribution	in	
climate	 zones,	melt	water	 fluxes,	 thermal	 effluents	 and	 location	of	dams	and	 reservoirs.	An	
explanation	 for	 the	 lower	model	 performance	 for	 these	 river	 stations	 could	 be	 the	 limited	
availability	 (and	 quality)	 of	 river	 temperature	 data,	 as	 a	 low	 number	 of	 measurements	
(n<200)	was	 available	 for	 all	 stations	with	 NSC<0.6	 (Figure	 2.1;	 Figure	 2.6).	 In	 addition,	 a	
positive	relation	between	NSC	and	data	availability	was	found,	and	RMSE	negatively	related	to	
the	number	of	measurements	(mean	R2	=0.12).	
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Figure 2.6: Global distribution of  relative  increase  in Nash‐Sutcliffe  coefficients  (NSC)  (%)  for  the  regression model 
including discharge (NONLIN_Q) compared to the  regression model without discharge (NONLIN), and absolute values 
of NSC  for NONLIN_Q  for all selected GEMS/Water stations. The circles with black dots  indicate river stations  fitted 
using monthly data. 

2.4   Sensitivity of river temperature to changes in air temperature and river 

discharge  

2.4.1  Sensitivity of river temperatures at study basin stations 

For	 all	 study	 basin	 stations,	 annual	 mean	 water	 temperature	 increases	 linearly	 under	 air	
temperature	 increases	of	+2°C,	+4°C	and	+6°C,	with	an	annual	mean	(range)	 increase	of	1.4	
(0.6	to	1.8)°C,	2.7	(1.2	to	3.6)°C,		and	4.0	(1.8	to	5.3)°C,	respectively	(Table	2.5).	Although	the	
slopes	at	the	inflection	point	(tan	θ)	are	on	average	larger	than	1	for	all	study	basin	stations	
(except	for	the	Lena	(Kusur)),	the	overall	average	slopes	are	smaller	and	decrease	in	the	high	
temperature	range	resulting	in	a	less	strong	increase	in	water	temperature	under	specific	air	
temperature	increases.	

Considering	 the	 sensitivity	 of	 water	 temperature	 to	 discharge	 changes,	 an	 increase	 in	
discharge	of	+20%	generally	reduced	water	temperature	 increases,	while	decreases	of	20%	
and	 40%	 in	 discharge	 intensified	 water	 temperature	 increases	 for	 the	 majority	 of	 river	
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stations.	This	partly	reflects	the	higher	thermal	capacity	of	a	river	under	increased	discharges	
(water	volumes)	and	lower	thermal	capacity	when	discharges	are	reduced.	In	addition,	water	
temperature	increases	in	thermally	polluted	rivers	are	also	influenced	by	river	flow	changes	
due	 to	 impacts	 on	 dilution	 capacity	 for	 thermal	 effluents.	 However,	 for	 stations	 of	 the	
Missouri,	Orange,	Darling,	Lena	and	Ob	rivers,	 slightly	higher	water	 temperatures	under	an	
increase	 in	 discharge	 and	 lower	 water	 temperatures	 under	 a	 discharge	 decrease	 were	
observed.	As	previously	mentioned	(Section	2.3.1),	the	flow	regime	at	these	river	stations	are	
characterized	 by	 generally	 high	 flow	 conditions	 during	 summer	 and	 low	 flow	 conditions	
during	 winter,	 implying	 that	 the	 peaks	 in	 flow	 regime	 and	 thermal	 regime	 coincide.	 The	
influence	of	changes	in	thermal	capacity	on	water	temperature	is	therefore	not	well	reflected	
by	 the	 empirical	 relation	 between	water	 temperature	 and	 discharge	 for	 these	 study	 basin	
stations.	This	regression	modelling	approach	is	therefore	less	suitable	to	study	the	impact	of	
discharge	changes	on	water	temperature	for	these	river	stations.		

For	 the	 majority	 of	 study	 basin	 stations,	 mean	 annual	 water	 temperatures	 were	 most	
sensitive	 to	 an	 air	 temperature	 increase	 of	 +6°C,	 with	 a	 greatest	 increase	 of	 5.3°C	 for	 the	
Potomac	(Washington	D.C.)	and	lowest	 increase	of	1.8°C	for	the	Lena	(Kusur).	For	the	river	
stations	in	the	Columbia	and	Yenisey,	however,	water	temperature	increases	were	highest	for	
a	+4°C	air	temperature	increase	in	combination	with	a	40%	decrease	in	discharge,	resulting	
in	 water	 temperature	 increases	 which	 are	 more	 than	 1.5°C	 higher	 than	 under	 a	 +4°C	 air	
temperature	increase	without	discharge	changes.	

	

Table 2.5: Mean annual river temperature increase (°C) under different air temperature increases and changes in river 
discharge for study basin stations. Values in bold indicate the highest mean annual water temperature increase.  

river  

 

station 

 

+2°C 

 

+4°C

 

+6°C

 

+4°C 

 +20% Q 

+4°C  

 ‐20%Q 

+4°C 

 ‐40% Q 

Columbia  The Dalles  1.2  2.3 3.4 1.6 3.4  5.2

Mississippi   Clinton  1.5  3.0 4.5 3.0 3.1  3.2

Missouri  Omaha  1.4  2.8 4.1 3.1 2.4  1.7

Potomac  Washington D.C.  1.8  3.6 5.3 3.3 3.9  4.5

San Joaquin  Vernalis  1.6  3.0 4.4 2.9 3.2  3.6

Danube  Bratislava 1.3  2.6 3.8 2.4 2.8  3.2

Danube  Budapest 1.5  2.9 4.4 2.7 3.3  3.8

Meuse  Eijsden  1.7  3.3 4.8 3.2 3.4  3.6

Rhine  Lobith   1.7  3.4 5.0 3.1 4.0  4.9

Orange  Oranjedraai  1.1  2.2 3.1 2.3 2.1  1.9

Darling  Burtundy  1.7  3.2 4.6 3.3 3.1  2.9

Lena  Kusur*  0.6  1.2 1.8 1.3 1.2  1.1

Ob  Salekhard * 1.2  2.3 3.4 2.3 2.3  2.3

Yenisey  Igarka *  1.3  2.5 3.6 2.2 3.0  4.0

* Stations fitted on 10‐day mean basis instead of daily basis 
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In	order	to	get	more	detailed	insight	into	the	sensitivity	of	river	temperature	on	a	daily	basis,	
density	plots	are	presented	for	the	San	Joaquin	(Vernalis),	Potomac	(Washington	D.C.),	Rhine	
(Lobith)	 and	 Danube	 (Bratislava),	 showing	 the	 distribution	 of	 daily	 water	 temperatures	
under	air	temperature	increases	of	+4°C,	+6°C,	and	under	an	air	temperature	increase	of	+4°C	
combined	 with	 a	 40%	 decrease	 in	 discharge	 (Figure	 2.7).	 Although	 the	 increase	 in	 mean	
annual	water	temperature	is	highest	under	an	air	temperature	increase	of	+6°C,	the	density	
plots	 for	 these	 stations	 indicate	 that	 an	 air	 temperature	 increase	 of	 +4°C	 combined	with	 a	
40%	decrease	in	discharge	results	in	higher	maximum	water	temperatures	than	those	found	
for	 an	 air	 temperature	 increase	 of	 +6°C.	 The	 impact	 of	 a	 40%	 discharge	 decrease	 is	 most	
pronounced	 for	 the	Rhine	 (Lobith),	 resulting	 in	a	 considerably	higher	99th	percentile	water	
temperature	of	27.0°C,	 compared	 to	24.6°C	under	an	air	 temperature	 increase	of	+4°C,	and	
25.0°C	under	an	air	temperature	increase	of	+6°C	without	any	discharge	change.		

	

	

Figure 2.7: Density functions of observed daily water temperature (Tw(obs)) and simulated daily water temperature 
for  the adapted  regression model  including  time  lag and discharge  (Tw(NONLIN_Q))  for  the  reference period 1980‐
1999 and under an air temperature increase of +4°C (Tw(Tair+4)) and +6°C (Tw(Tair+6)), and under an air temperature 
increase of +4°C in combination with a decrease in discharge of 40% (Tw(Tair+4 ‐40%Q)). 
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2.4.2  Sensitivity of river temperatures at global GEMS/Water stations  

Considering	the	mean	annual	water	temperature	increases	for	the	GEMS/Water	stations,	the	
overall	average	values	(1	to	99	percentile	range)	under	a	+2°C,	+4°C	and	+6°C	air	temperature	
increase	 are	 1.3	 (0.1	 to	 2.3)°C,	 2.6	 (0.1	 to	 4.7)°C	 and	 3.8	 (0.2	 to	 7.0)°C,	 respectively.	
Considering	the	calculated	water	temperature	increases	of	the	individual	stations	under	these	
warming	 rates	 (Figure	 2.8),	 river	 stations	 at	 high	 northern	 latitude	 (northern	 Canada	 and	
Siberia)	show	a	relatively	moderate	water	temperature	increase	compared	to	the	middle	and	
low	 latitude	 zones.	 This	 is	 mainly	 because	 water	 temperatures	 for	 these	 stations	 remain	
around	 freezing	 point	 for	 a	 large	 part	 of	 the	 year,	 resulting	 in	 smaller	mean	 annual	water	
temperature	increases.	Furthermore,	generally	 low	slopes	at	the	inflection	point	were	fitted	
for	these	high	northern	latitude	stations,	resulting	in	less	strong	water	temperature	increases.		

To	address	the	sensitivity	of	water	temperature	to	changes	in	discharge,	we	focused	on	102	
GEMS/Water	 stations	 showing	 distinct	 inverse	 relations	 between	 water	 temperature	 and	
discharge,	 and	 thus	 excluded	 stations	 for	 which	 our	 regression	 model	 is	 less	 suitable	 to	
address	 the	 sensitivity	 to	 river	 discharge	 changes	 (see	 previous	 section).	 Comparing	 the	
annual	mean	water	 temperature	 increases	under	 an	 air	 temperature	 increase	of	 +4°C	with	
the	results	under	this	air	temperature	increase	combined	with	discharge	changes,	we	found	
that	an	 increase	 in	discharge	of	20%	reduced	the	annual	water	temperature	 increase	by	an	
mean	(1	to	99	percentile	range)	of	0.2	(0.0	to	0.7)°C.	 In	contrast,	a	decrease	 in	discharge	of	
20%	and	40%	exacerbated	the	increase	in	water	temperatures	by	0.3	(0.0	to	1.0)°C	and	0.8	
(0.0	 to	 2.6)°C,	 respectively.	 In	 general,	 water	 temperatures	 showed	 higher	 sensitivity	 to	 a	
20%	 decrease	 in	 discharge	 than	 a	 20%	 increase	 in	 discharge.	 Considering	 the	 increase	 in	
mean	annual	 river	 temperatures	 for	 the	 selected	GEMS/Water	 stations	 individually	 (Figure	
2.9),	a	high	sensitivity	to	discharge	decreases	of	20%	and	40%	was	found	for	stations	in	the	
Ganges,	 Ob,	 Yenisey,	 Ohio/Mississippi,	 and	 in	 several	 rivers	 in	 Europe	 (e.g.	 Rhine,	 Danube,	
Elbe,	Rhone	and	Guadiana).	Estimated	river	temperature	increases	under	an	air	temperature	
increase	of	+4°C	 in	 combination	with	a	 change	 in	discharge	of	 ‐40%	(Figure	2.10),	 indicate	
highest	 mean	 annual	 water	 temperature	 increases	 (more	 than	 4°C)	 for	 river	 stations	 in	
western	Europe	and	the	eastern	part	of	the	United	States	(Figure	2.10).	The	overall	average	in	
maximum	 river	 temperature	 increase	 (on	 a	 daily	 basis)	 under	 this	 air	 temperature	 and	
discharge	change	is	4.4°C,	with	strongest	maximum	water	temperature	increases	for	rivers	in	
western	Europe,	the	eastern	part	of	the	United	States	and	Russia.	

2.5   Discussion and conclusions 

The	performance	of	the	nonlinear	regression	model	of	Mohseni	et	al.	(1998)	for	weekly	water	
temperatures	was	generally	improved	by	the	introduction	of	river	discharge	as	an	additional	
variable,	and	the	model	was	successfully	applied	on	a	daily	basis	by	incorporating	a	time	lag.	
For	76%	of	the	GEMS/Water	stations	NSC	values	were	higher	than	0.8	(Figure	2.6),	indicating	
the	 usefulness	 of	 the	 modified	 water	 temperature	 regression	 model	 to	 estimate	 water		
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Figure 2.8: Mean annual river temperature increase (°C) under air temperature  increases of +2°C, +4°C and +6°C for 
the selected GEMS/Water stations. The circles with black dots indicate river stations fitted using monthly data. 
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Figure 2.9: Difference  in mean annual river  temperature  increase  (°C) under an air  temperature  increase of +4°C  in 
combination with a change in discharge of +20, ‐20% and ‐40% relative to an air temperature increase of +4°C without 
discharge changes for the selected GEMS/Water stations. The circles with black dots indicate river stations fitted using 
monthly data. 



Chapter 2     

42 

	

Figure 2.10: Mean annual river temperature increase (°C) under an air temperature increase of +4°C combined with a 
change in discharge of ‐40% for the selected GEMS/Water stations. The circles with black dots indicate river stations 
fitted using monthly data. 

temperatures	 on	 a	 daily	 basis	 for	 river	 stations	 on	 a	 global	 scale.	 Positive	 relations	 were	
found	between	model	performance	and	the	availability	of	water	temperature	data	to	 fit	 the	
regression	 model,	 while	 only	 weak	 relations	 were	 observed	 between	 the	 NSC	 and	 RMSE	
values	and	river	basin	characteristics	(latitude	and	basin	area).	A	distinct	improvement	in	the	
model	 performance	 by	 the	 introduction	 of	 river	 discharge	 was	 found	 for	 87%	 of	 the	
GEMS/Water	 stations	 globally.	 This	 improvement	 was	 most	 pronounced	 for	 stations	 with	
typically	high	winter	discharges	and	low	summer	discharges.	Less	distinct	increases	in	model	
performance,	however,	were	obtained	 for	 river	 stations	affected	by	 reservoir	operations	or	
characterized	 by	 distinct	 snowmelt	 peaks	 during	 spring	 and	 summer.	 The	 improvement	 in	
model	 performance	 by	 the	 introduction	 of	 discharge	 was	 highest	 during	 extreme	 dry	 and	
warm	 spells	 (droughts	 and	 heat	 waves),	 when	 water	 temperatures	 are	 most	 sensitive	 to	
atmospheric	influences	and	can	reach	high	values.	

Comparing	our	results	with	previous	studies	addressing	 the	 influence	of	 river	discharge	on	
stream	 and	 river	 temperatures	 (e.g.	 Crisp	 and	 Howson,	 1982;	 Mohseni	 et	 al.,	 1999),	 a	
generally	higher	impact	of	river	discharge	on	water	temperatures	was	found	in	our	study.		A	
multiple	 regression	 analysis	 of	 Webb	 et	 al.	 (2003),	 however,	 also	 indicated	 that	 inverse	
relations	 between	 water	 temperature	 and	 discharge	 were	 found,	 with	 greater	 impact	 of	
discharge	on	water	temperatures	at	shorter	 time‐scales	and	 in	 larger	catchments.	This	may	
explain	that	results	of	our	study,	in	which	a	water	temperature	regression	model	applied	to	
stations	 of	 generally	 large	 river	 basins	 on	 a	 daily	 basis	 showed	 a	 greater	 improvement	 by	
introduction	of	discharge	than	was	found	in	previous	studies	that	focused	on	stream	stations	
in	catchments	or	small	river	basins	with	weekly	or	monthly	mean	water	temperatures.		
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Studies	 that	 previously	 applied	 the	 water	 temperature	 regression	 model	 of	 Mohseni	 et	 al.	
(1998)	 found	 an	 underestimation	 of	 the	 upper	 bound	 water	 temperature	 (α)	 with	 least	
squares	 regression,	 resulting	 in	 an	 underestimation	 of	 the	 calculated	 maximum	 water	
temperature	 (Bogan	 et	 al.,	 2006;	Mantua	 et	 al.,	 2010;	Mohseni	 et	 al.,	 1999;	Mohseni	 et	 al.,	
1998).	Although	we	generally	obtained	lower	values	of	α	for	our	modified	water	temperature	
regression	model	compared	to	the	original	model,	the	underestimation	in	river	temperatures	
during	summer	periods	was,	however,	less	for	the	modified	model	including	river	discharge.	
Furthermore,	results	of	calculated	water	temperatures	for	the	European	study	basin	stations	
during	the	heat	wave	and	drought	of	2003	(Figure	2.3)	showed	that	the	underestimation	was	
greatly	reduced	by	the	introduction	of	discharge.	This	indicates	that	the	regression	model	is	
less	biased	by	an	underestimation	of	the	upper	bound	water	temperature.			

Results	 of	 our	 sensitivity	 analyses	with	water	 temperature	 changes	 under	 air	 temperature	
increases	and	changes	in	river	discharge	indicated	that	the	impact	of	discharge	changes	were	
generally	 moderate	 compared	 to	 air	 temperature	 increases	 on	 a	 mean	 annual	 basis.	 The	
calculated	changes	in	mean	annual	water	temperature	averaged	for	all	selected	GEMS/Water	
stations	are	+1.3°C,	+2.6°C	and	+3.8°C	under	an	air	 temperature	 increase	of	+2°C,	+4°C	and	
+6°C	 respectively.	An	 increase	 in	discharge	with	20%	resulted	 in	a	 slight	decrease	 in	mean	
annual	water	temperature	 increase	of	 ‐0.2°C,	while	decreases	 in	discharge	of	20%	and	40%	
slightly	 exacerbated	 the	 water	 temperature	 increase	 by	 +0.3°C	 and	 +0.8°C	 on	 average.	
Although	the	contribution	of	discharge	is	moderate	on	an	annual	mean	basis,	relevant	impacts	
of	discharge	changes	were	found	especially	for	maximum	water	temperatures	on	a	daily	basis.	
For	the	study	basin	stations	of	San	Joaquin,	Potomac,	Rhine	and	Danube	(Figure	2.7),	higher	
maximum	 water	 temperatures	 were	 found	 under	 an	 air	 temperature	 increase	 of	 +4°C	 in	
combination	with	a	decrease	in	discharge	of	40%	than	under	an	air	temperature	increase	of	
+6°C	 (without	 discharge	 changes).	 This	 indicates	 that	 a	 strong	 decrease	 in	 river	 discharge	
under	warm	atmospheric	conditions	can	have	a	greater	impact	on	rising	water	temperatures	
than	 an	 extra	 air	 temperature	 increase	 of	 2°C	 under	 these	 conditions.	 The	 relatively	 high	
sensitivity	of	daily	water	 temperatures	 to	discharge	 changes	during	dry	and	warm	spells	 is	
relevant,	 as	water	 temperatures	 can	 reach	 critically	 high	 values	 during	 these	 periods,	with	
possibly	negative	environmental	effects	(e.g.	exceeded	water	temperature	tolerance	values	of	
freshwater	 species)	 and	 economic	 consequences	 (e.g.	 reduced	 cooling	 water	 potential	 for	
industries	 and	 thermal	 power	 plants).	 Considering	 the	 estimated	 water	 temperature	
increases	 of	 the	Rhine	 (Lobith)	 (Section	2.4.1),	 the	mean	number	 of	 days	 per	 year	 that	 the	
critical	limit	of	23°C	for	cooling	water	use	by	thermal	power	plants	(EEA,	2008a)	is	exceeded,	
is	16	days	for	the	reference	situation,	47	days	and	83	days	under	air	temperature	increases	of	
+	4°C	and	+	6°C,	respectively,	and	104	days	per	year	under	an	air	temperature	increase	of	+	
4°C	in	combination	with	a	decrease	in	discharge	of	40%.	Although	this	is	a	rough	estimation,	it	
emphasizes	 the	 relevant	 contribution	 of	 decreasing	 discharges	 (reduced	 thermal	 capacity,	
limited	dilution	capacity	for	thermal	effluents)	to	water	temperature	increases	on	a	daily	time	
step,	and	the	associated	impacts	for	cooling	water	purposes.		
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Results	of	our	study	are	preliminary	rough	estimates	of	the	sensitivity	of	river	temperatures	
to	air	temperature	increases	and	changes	in	river	flow	on	a	global	scale.	Although	the	selected	
air	 temperature	 increases	 and	 changes	 in	 river	 flow	 are	 realistic	 in	 the	 context	 of	 climate	
change,	 further	 research	 is	 needed	 to	 address	 the	 impact	 of	 climate	 change	 and	 changes	 in	
anthropogenic	influences	in	detail.	A	limitation	of	the	model	approach	for	future	projections	is	
the	fixed	value	of	parameter	estimates.	It	is	likely	that	the	upper	bound	in	water	temperature	
(α)	 and	 possibly	 also	 other	 parameters	 of	 the	 regression	model	may	 change	 as	 a	 result	 of	
climate	 change	 and	 anthropogenic	 changes	 (e.g.	 cooling	 water	 discharges,	 reservoir	
operations).	 The	 use	 of	 daily	 climate	 change	 and	 river	 discharge	 scenarios	 as	 input	 into	 a	
large‐scale	 deterministic	 water	 temperature	 model	 can	 be	 a	 next	 step	 to	 produce	 more	
detailed	 and	 realistic	 estimates	 of	 river	 temperature	 under	 climate	 change	 conditions	 for	 a	
specific	future	period.	

Despite	 these	 preliminary	 estimates,	 the	 outcomes	 of	 our	 study	 clearly	 demonstrate	 the	
relevant	contribution	of	low	river	discharge	in	accounting	for	high	water	temperatures	during	
dry,	 warm	 periods.	 As	 previous	 studies	 demonstrated	 an	 increase	 in	 flow	 seasonality	 as	 a	
result	of	climate	change,	with	lower	flows	during	the	low‐flow	season	in	many	rain‐dominated	
catchments	 (Arnell,	 2003a;	 Arnell,	 2003b;	 Burlando	 and	 Rosso,	 2002;	 Menzel	 and	 Burger,	
2002),	 we	 expect	 that	 the	 relative	 impact	 of	 river	 discharge	 on	 water	 temperatures	 will	
increase	 in	 the	 future.	 Moreover,	 climate	 variability	 is	 expected	 to	 increase,	 resulting	 in	
increased	risks	of	droughts	and	heat	waves	(Easterling	et	al.,	2000;	Schar	et	al.,	2004;	Stott	et	
al.,	2004;	Wetherald	and	Manabe,	1999).	The	combined	effects	of	both	atmospheric	warming	
and	changes	in	river	flow	should	therefore	be	considered	in	order	to	produce	more	realistic	
projections	of	future	changes	in	river	temperature	under	climate	change.		

To	conclude,	the	outcomes	of	our	study	demonstrated	that	a	nonlinear	regression	model	with	
air	 temperature,	 river	 discharge	 and	 time	 lag	 included,	 is	 a	 simple	 and	 robust	 method	 to	
estimate	river	temperatures	on	a	daily	basis	for	monitoring	stations	in	different	river	basins	
globally.	 The	 performance	 of	 the	 regression	 model	 improved	 for	 87%	 of	 the	 global	
GEMS/Water	river	stations	where	discharge	was	introduced	as	an	additional	variable.	Results	
showed	that	the	impact	of	discharge	changes	generally	 increases	during	dry,	warm	periods,	
when	rivers	have	a	lower	thermal	capacity	and	are	thus	more	sensitive	to	warm	atmospheric	
conditions.	This	high	sensitivity	of	daily	water	temperatures	to	discharge	changes	during	dry	
(low	 flow)	 and	 warm	 spells	 is	 important,	 as	 water	 temperatures	 can	 reach	 critically	 high	
values	for	freshwater	ecosystems	and	several	usage	functions	(e.g.	cooling	for	thermal	power	
plants	and	industries,	drinking	water	production,	recreation)	during	these	periods.	Impacts	of	
river	discharge	on	water	temperatures	should	thus	be	incorporated	to	provide	more	accurate	
estimates	of	high	river	temperatures	during	historical	and	future	projected	dry,	warm	spells.	
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Coupled Daily Streamflow and Water Temperature 

Modelling in Large River Basins 
	

Abstract 

Realistic	 estimates	 of	 daily	 streamflow	 and	 water	 temperature	 are	 required	 for	 effective	
management	 of	 water	 resources	 (e.g.	 for	 electricity	 and	 drinking	 water	 production)	 and	
freshwater	 ecosystems.	 Although	 hydrological	 and	 process‐based	 water	 temperature	
modelling	 approaches	 have	 been	 successfully	 applied	 to	 small	 catchments	 and	 short	 time	
periods,	much	 less	work	 has	 been	 done	 at	 large	 spatial	 and	 temporal	 scales.	We	 present	 a	
physically‐based	 modelling	 framework	 for	 daily	 river	 discharge	 and	 water	 temperature	
simulations	applicable	to	large	river	systems	on	a	global	scale.	Model	performance	was	tested	
globally	at	1/2°	x	1/2°	spatial	resolution	and	a	daily	time	step	for	the	period	1971‐2000.	We	
made	specific	evaluations	on	large	river	basins	situated	in	different	hydro‐climatic	zones	and	
characterized	by	different	anthropogenic	impacts.	Effects	of	anthropogenic	heat	discharges	on	
simulated	 water	 temperatures	 were	 incorporated	 by	 using	 global	 gridded	 thermoelectric	
water	 use	 data	 sets	 and	 representing	 thermal	 discharges	 as	 point	 sources	 into	 the	 heat‐
advection	 equation.	 This	 resulted	 in	 a	 significant	 increase	 in	 the	 quality	 of	 the	 water	
temperature	 simulations	 for	 thermally	 polluted	 basins	 (Rhine,	 Meuse,	 Danube	 and	
Mississippi).	 Due	 to	 large	 reservoirs	 in	 the	 Columbia	which	 affect	 streamflow	 and	 thermal	
regimes,	a	reservoir	routing	model	was	used.	This	resulted	in	a	significant	improvement	in	the	
performance	 of	 the	 river	 discharge	 and	 water	 temperature	 modelling.	 Overall,	 realistic	
estimates	 were	 obtained	 at	 daily	 time	 step	 for	 both	 river	 discharge	 (median	 normalized	
BIAS=0.3;	 normalized	 RMSE=1.2;	 r=0.76)	 and	 water	 temperature	 (median	 BIAS=‐0.3°C;	
RMSE=2.8°C;	r=0.91)	for	the	entire	validation	period,	with	similar	performance	during	warm,	
dry	 periods.	 Simulated	 water	 temperatures	 are	 sensitive	 to	 headwater	 temperature,	
depending	on	 resolution	and	 flow	velocity.	A	high	 sensitivity	of	water	 temperature	 to	 river	
discharge	(thermal	capacity)	was	found	during	warm,	dry	conditions.	The	modelling	approach	
has	potential	 to	be	used	for	risk	analyses	and	studying	 impacts	of	climate	change	and	other	
anthropogenic	effects	(e.g.	thermal	pollution,	dams	and	reservoir	regulation)	on	large	rivers.	
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3.1  Introduction 

Streamflow	 and	water	 temperature	 affect	many	 aspects	 of	 water	 quality	 (Ducharne,	 2008;	
Haag	and	Westrich,	2002;	Kaushal	et	al.,	2010;	van	Vliet	and	Zwolsman,	2008)	and	are	among	
the	 most	 important	 parameters	 characterizing	 the	 physical	 conditions	 of	 freshwater	
ecosystems	(e.g.	Bartholow,	1991;	Rundquist	and	Baldrige,	1990).	Hence,	 the	distribution	of	
fish	 and	 other	 aquatic	 organisms	 is	 directly	 influenced	 by	 the	 hydrological	 and	 thermal	
regime	 of	 rivers	 (e.g.	 Eaton	 and	 Scheller,	 1996;	 Ebersole	 et	 al.,	 2001).	 In	 addition,	 river	
discharge	and	water	temperature	influence	the	potential	for	cooling	water	use,	and	as	a	result	
are	key	factors	for	thermoelectric	power	production	(IPPC,	2001;	Segrave,	2009).	

Realistic	 estimates	 of	 river	 discharge	 and	 water	 temperature	 are	 needed	 for	 water	
management.	In	particular	during	periods	with	high	water	temperature	and	low	streamflow,	
conflicts	may	arise	between	protecting	freshwater	ecosystems	by	enforcing	ecological	water	
temperature	 standards	 and	 risks	 to	 thermoelectric	 power	 production	 due	 to	 cooling	water	
shortages.	This	has	been	reported	for	example	for	the	River	Rhine	(Rutten	et	al.,	2008),	and	
for	 the	 Loire	 and	 Rhone	 Rivers	 (Manoha	 et	 al.,	 2008)	 during	 the	 recent	warm	 summers	 of	
2003	and	2006	in	Europe.	In	addition,	significant	impacts	of	water	temperature	of	the	River	
Rhine	on	electricity	prices	were	found	when	water	temperatures	are	above	22‐23°C	(Boogert	
and	Dupont,	2005).	

For	effective	management	of	water	and	 freshwater	ecosystems,	estimates	of	river	discharge	
and	water	 temperature	at	high	 temporal	 resolution,	preferably	on	daily	basis,	 are	 required.	
Both	data	(statistical)	and	process	(physically‐based)	models	have	been	used	to	estimate	river	
discharge	and	water	 temperature	using	 climatic	 forcings.	 Statistical	models	 (e.g.	 regression,	
stochastic	models	and	neural	networks)	are	appealing	because	they	require	only	limited	input	
variables	(e.g.	Ahmadi‐Nedushan	et	al.,	2007;	Augustin	et	al.,	2008;	Chenard	and	Caissie,	2008;	
Mohseni	 et	 al.,	 1998;	Muttiah	 et	 al.,	 1997).	However,	 they	 are	 fitted	 for	 a	 specific	 historical	
period	 and,	 therefore,	 are	 limited	 in	 their	 application	 for	 forecasting	 and	 scenario	 studies,	
such	 as	 climate	 change	 impact	 assessments.	 In	 contrast,	 process	 models	 represent	 the	
physical	 processes	 that	 affect	 river	 discharge	 and	 water	 temperature	 and	 have	 been	
particularly	 useful	 for	 predictions	 of	 the	 effects	 of	 anthropogenic	 perturbations	 of	 model	
forcings	and	boundary	conditions	(land	use	change,	 thermal	pollution,	 flow	regulation)	(e.g.	
Haag	 and	 Luce,	 2008;	 Risley	 et	 al.,	 2010;	 St‐Hilaire	 et	 al.,	 2003)	 and	 climate	 change	 (e.g.	
Ferrari	et	al.,	2007;	Morrison	et	al.,	2002).	

Although	water	temperature	is	generally	most	sensitive	to	the	heat	exchange	processes	at	the	
air	 ‐	water	 surface	 interface,	 changes	 in	 streamflow	 significantly	 affect	water	 temperatures	
due	 to	 changes	 in	 thermal	 capacity	 (Edinger	 et	 al.,	 1968b)	 and	 travel	 time,	 and	 dilution	
capacity	 for	 thermal	effluents	 (Moatar	and	Gailhard,	2006;	Sinokrot	and	Gulliver,	2000;	van	
Vliet	 et	 al.,	 2011;	 Webb	 et	 al.,	 2003).	 Therefore,	 an	 integrated	 hydrological	 and	 river	
temperature	modelling	approach	is	preferred	which	includes	both	heat	exchange	processes	at	
the	 air	 ‐	 water	 surface	 interface	 and	 changes	 in	 thermal	 capacity	 and	 travel	 times	 due	 to	
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streamflow	changes.	Although	hydrological	and	process‐based	water	temperature	modelling	
approaches	 have	 been	 successfully	 applied	 for	 small‐scale	 catchments	 and	 subbasins	 (e.g.	
Caissie	et	al.,	2007;	Haag	and	Luce,	2008;	St‐Hilaire	et	al.,	2000),	considerably	less	work	has	
been	 done	 at	 large	 scales.	 To	 our	 knowledge,	 water	 temperature	 simulations	 on	 macro‐
hydrological	scale	have	only	been	performed	by	van	Beek	et	al.	(2012).	Limited	studies	have	
simulated	both	river	discharge	and	water	 temperature	 for	 long	(>20‐30	year)	 time	periods,	
which	is	required	for	scenario	analyses	and	climate	change	impact	assessments.	In	addition,	
realistic	 simulations	 of	 water	 temperature	 and	 discharge	 of	 rivers	 with	 different	 basin	
characteristics	 and	 anthropogenic	 impacts	 are	 needed	 to	 address	 large‐scale	 water	
management	issues.		

In	this	study,	we	test	the	performance	of	an	integrated	framework	with	a	physically	(process)	
based	hydrological	and	water	temperature	model	to	simulate	daily	river	discharge	and	water	
temperature	 of	 large	 river	 basins	 in	 different	 hydro‐climatic	 regions	 and	 with	 different	
anthropogenic	 impacts.	 A	 spatial	 resolution	of	 1/2°	 x	 1/2°	was	 used	 as	 in	Haddeland	 et	 al.	
(2011)	and	for	which	global	forcing	data	are	available	(Weedon	et	al.,	2011).	Several	macro‐
scale	 hydrological	 models	 have	 simulated	 river	 discharge	 at	 this	 spatial	 resolution	 (e.g.	
Alcamo	et	 al.,	 2003a;	Arnell,	 1999c;	Oki	 et	 al.,	 2001),	 but	most	 studies	 focus	on	monthly	or	
annual	mean	estimates	of	river	discharge.		

Our	 modelling	 framework	 is	 based	 on	 the	 Variable	 Infiltration	 Capacity	 (VIC)	 macro‐scale	
hydrological	model	(Liang	et	al.,	1994)	and	the	particle	tracking	River	Basin	Model	(RBM)	for	
water	 temperature	 (Yearsley,	 2009)	 (Section	 3.2.2).	 The	modelling	 framework	was	 applied	
globally,	 however	 we	 focus	 on	 rivers	 situated	 in	 different	 hydro‐climatic	 zones	 and	
characterized	by	different	anthropogenic	influences	(Section	3.2.1).	The	performance	of	VIC‐
RBM	was	 tested	 for	a	historical	period	1971‐2000	(Section	3.3.1	and	3.3.2).	 In	addition,	we	
tested	 the	 modelling	 framework	 for	 the	 Rhine	 and	 Columbia	 during	 warm,	 dry	 summer	
periods,	 and	 during	 the	 second	 half	 of	 the	 20th	 century	 (Section	 3.3.3).	 The	 sensitivity	 of	
simulated	 water	 temperatures	 to	 the	 boundary	 conditions	 (headwater	 temperature	
estimates)	was	studied	(Section	3.3.4),	as	well	as	the	sensitivity	to	streamflow	(Section	3.3.5).	
The	 overall	 performance	 and	 major	 uncertainties	 of	 the	 hydrological	 ‐	 water	 temperature	
modelling	approach	for	large‐scale	applications	are	discussed	in	Section	3.4.	

3.2  Methodology 

3.2.1  Study basins 

We	 focused	 on	 the	 Columbia,	Mississippi	 (North	 America),	 Parana	 (South	 America),	 Rhine,	
Meuse,	Danube	(Europe),	Orange	(Africa),	Ob,	Yenisey,	Lena	(Arctic	Asia),	Mekong,	Yangtze,	
Yellow	 (Southeast	 Asia)	 and	 Murray‐Darling	 (Australia)	 to	 test	 the	 performance	 of	 the	
hydrological	‐	water	temperature	modelling	approach.	These	basins	are	situated	in	different	
hydro‐climatic	 zones	 with	 different	 anthropogenic	 influences,	 and	 therefore	 represent	
different	 hydrological	 and	 thermal	 regimes	 (Table	 3.1).	 The	 Columbia,	 Mississippi,	 Rhine,	
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Meuse,	Danube,	Yangtze	and	Yellow	basin	are	situated	in	the	temperate	climate	zone	and	are	
influenced	by	transient	runoff	(mix	of	rainfall	and	springtime	snowmelt),	while	 the	Murray‐
Darling	and	Orange	are	mainly	fed	by	rainwater.	The	Parana	and	Mekong	are	rain	(monsoon)	
fed	rivers	located	in	the	tropical	climate	zone,	while	the	Ob,	Yenisey	and	Lena	are	Arctic	rivers	
that	are	strongly	affected	by	melt	water	during	spring	and	summer.	River	discharge	and	water	
temperatures	 of	 the	 Columbia	 are	 heavily	 influenced	by	 reservoirs,	 and	 parts	 of	 the	Rhine,	
Meuse,	Danube	 and	Mississippi	 have	 a	high	 level	 of	 thermal	pollution	due	 to	 cooling	water	
discharges	 from	thermoelectric	power	plants.	The	river	basins	vary	 in	size,	 from	almost	3.0	
million	 km2	 (Mississippi	 and	 Ob)	 to	 36,000	 km2	 (Meuse).	 Another	 important	 criterion	 for	
selecting	 these	 study	 basins	 was	 the	 availability	 of	 monitoring	 stations	 with	 daily	 river	
discharge	 and	 water	 temperature	 records	 suitable	 for	 evaluating	 the	 performance	 of	 the	
modelling	framework.		

3.2.2  Concept of hydrological and water temperature modelling approach 

Figure	 3.1	 shows	 linkages	 between	 the	 component	 models	 in	 the	 hydrological	 ‐	 water	
temperature	 modelling	 framework,	 along	 with	 required	 model	 input	 and	 model	 output.	
Conceptual	background	for	 the	VIC	hydrological	model,	RBM	water	temperature	model,	and	
the	regression	model	used	to	estimate	the	headwater	temperature	are	given	below.		

In	 brief,	 climate	 forcings	 and	 soil	 and	 vegetation	 parameters	 are	 used	 as	 input	 into	 VIC,	
resulting	in	simulated	surface	runoff	and	baseflow.	The	output	(surface	runoff	and	baseflow)	
is	then	provided	to	an	offline	routing	model	to	simulate	channel	flows,	depth,	width	and	flow	
velocity	 on	 a	 stream	 reach	 basis.	 A	 routing	model	with	 a	 reservoir	 scheme	 simulates	 river	
discharge	in	the	strongly	regulated	Columbia	River.	Climate	forcings	include	air	temperature,	
shortwave	 and	 long	 wave	 radiation,	 vapor	 pressure,	 density,	 pressure	 and	 wind	 speed	
disaggregated	 to	 the	VIC	grid	 cell	 and	RBM	reach	 level	 at	 a	3‐hourly	 time	 step.	 In	 addition,	
daily	 channel	 flows,	width,	 depth	 and	 flow	 velocity	 are	 used	 to	 force	 RBM.	 Other	 required	
inputs	are	an	ordered	stream	network	with	defined	river	reaches	(Yearsley,	2012),	estimates	
of	 anthropogenic	 point	 heat	 sources	 and	 daily	 headwater	 stream	 temperature	 estimates	
(boundary	 conditions).	 The	 integrated	 modelling	 system	 simulates	 streamflow	 and	 water	
temperature	in	each	of	the	grid	cells.		

Variable Infiltration Capacity (VIC) model and routing model 

The	 Variable	 Infiltration	 Capacity	 (VIC)	 (Liang	 et	 al.,	 1994)	 is	 a	 grid‐based	 macro‐scale	
hydrological	 model	 that	 solves	 both	 the	 surface	 energy	 and	 water	 balance	 equations.	 The	
model	 represents	 subgrid	 variability	 in	 vegetation,	 elevation,	 and	 soils	 by	partitioning	each	
grid	 cell	 into	 multiple	 land	 cover	 (vegetation)	 and	 elevation	 classes.	 The	 soil	 column	 is	
commonly	 divided	 into	 three	 soil	 layers.	 Surface	 runoff	 and	 baseflow	 are	 routed	 along	 the	
stream	 network	 to	 the	 basin	 outlet	 with	 an	 offline	 routing	 model	 that	 uses	 the	 unit	
hydrograph	principle	within	 the	grid	 cells	 and	 linearized	St.	Venant’s	 equations	 to	 simulate		
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Table 3.1: Major characteristics of selected study basins, data sources and number of monitoring stations with river 
discharge (Q) and water temperature (Tw) data used for validation of modelling approach.  

study 
basin 

drain.  
area 
(*103  
km2) 

river  
length 
(km) 

climate 
(Köppen) 
zone  

dominant 
source  
water 

human 
impacts 

data  
source  
Q stations 

data source 
Tw 
stations 

North America       
Columbia  668  2,000  temperate 

(Ds, Cs) 
mix rain/
melt water  

many dams, 
reservoirs 

GRDC  
(n=47 ) 
 

Streamnet,  
GEMS/Water 
(n=18) 

Missis‐
sippi 

2,981   3,734  temperate 
(Df, Cf) 

mix rain/
melt water 

thermally polluted, 
dams 

GRDC  
(n= 104) 

USGS,GEMS/ 
Water (n=33) 

South America       

Parana  2,583  4,880  tropical 
(Aw, Cf) 

rain water several dams GRDC  
(n= 4) 

GEMS/Water 
(n=3) 

Europe         

Rhine  170  1,232  temperate 
(Cf) 

mix rain/
melt water 
 

thermally polluted, 
one reservoir  

GRDC  
(n=19) 
 

LU, BG,  
Waterbase,  
GEMS/Water 
(n=21) 

Meuse  36  935   temperate 
(Cf) 

rain (and 
melt)  
water  

thermally polluted  GRDC  
(n= 5) 
 

Waterbase,  
GEMS/Water 
(n=5) 

Danube  817  2,860  temperate 
(Df) 

mix rain/
melt water 

moderate  thermal 
pollution, dams 

GRDC  
(n=26) 

ICPD,GEMS/ 
Water (n=13) 

Africa       

Orange  973  2,200 
 

temperate 
(BW, BS, Cf) 

rain water several dams, water 
withdr. 

GRDC  
(n=3) 

DWAF  
(n=3) 

Northern Asia (Arctic)     

Ob  2,972  2,962  arctic 
(Df) 

melt water dams, moderate 
thermal pollution 

GRDC  
(n=5) 
 

GEMS/Water,  
Lammers et al.  
(2007)(n=3) 

Yenisey  2,580  5,539  arctic 
(Df, ET) 

melt water low number of 
reservoirs 

GRDC  
(n=5) 
daily 

GEMS/Water,  
Lammers et al.  
(2007) (n=1) 

Lena  2,490  4,472  arctic 
(Df, ET) 

melt water low number of 
reservoirs 

GRDC  
(n=6) 
 

GEMS/Water,  
Lammers et al.  
(2007)(n=1) 

Southeast Asia       

Mekong  795  4,909  tropical 
(Am, Aw, 
Cw) 

rain
(monsoon) 

low number of 
reservoirs 

GRDC  
(n=14) 

GEMS/Water 
(n=9) 

Yangtze  1,809  6,300  temperate 
(Cw) 

mix rain/
melt water 

several dams GRDC  
(n=4)  
monthly 

GEMS/Water 
(n=3) 

Yellow  752  5,464   temperate 
(Cw, Dw) 

mix rain/
melt water 

several dams GRDC  
(n=3) 

GEMS/Water 
(n=2) 

Australia       

Murray‐
Darling 

1,061  2,589 
3,375 

temperate 
(BS, BW, Cs) 

rain water much water 
withdrawal 

GRDC  
(n=12) 

MDBC, 
GEMS/Water 
(n=6) 

(LU  =  Landesanstalt  für Umwelt Germany,  BG  =  Bundesanstalt  für Gewässerkunde Germany,  ICDR  =  International 
Commission  for  the  Protection  of  the  Danube,  DWAF  =  Department  of Water  Affairs  and  Forestry  South‐Africa; 
MDBC=Murray‐Darling Basin Commission) 
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Figure 3.1: Flowchart of the hydrological ‐ water temperature modelling framework, presenting the links between the 
hydrological  model  (VIC),  routing  model,  process‐based  water  temperature  model  (RBM),  water  temperature 
regression model used to assess headwater temperatures (boundary conditions), and model input and output. 

river	flow	through	the	stream	channel	(Lohmann	et	al.,	1998).	For	the	Columbia	River,	which	
is	highly	affected	by	dams	and	reservoirs,	we	used	the	reservoir	scheme	of	Haddeland	et	al.	
(2006),	which	is	combined	with	the	routing	scheme	of	Lohmann	et	al.	(1998)	to	obtain	a	more	
realistic	representation	of	streamflow	below	the	major	reservoirs.	The	reservoir	scheme	runs	
at	a	daily	time	step,	but	was	originally	developed	for	analyses	at	coarser	time	scales.	Hence,	
we	calculated	10‐day	moving	averages	of	daily	regulated	river	discharge.	

Information	about	daily	river	depth,	width	and	velocity	is	required	for	the	water	temperature	
simulations.	The	original	VIC	routing	model	(Lohmann	et	al.,	1998)	was	therefore	modified	to	
calculate	 hydraulic	 characteristics	 based	 on	 power	 equations	 relating	mean	 velocity,	 cross‐
sectional	area	and	width	to	river	discharge	(Leopold	and	Maddock.,	1953).	Allen	et	al.	(1994)	
obtained	 coefficients	 for	 these	 equations	 by	 fitting	 empirical	 relationships	 with	 river	
discharge	using	data	 from	674	stream	discharge	stations	across	the	United	States	(equation	
3.1a	 and	 3.1b).	 As	 these	 stations	 are	 situated	 in	 a	wide	 range	 of	 hydro‐climatic	 zones,	 the	
assumption	 was	 made	 that	 these	 fitted	 relations	 can	 be	 applied	 to	 estimate	 the	 hydraulic	
characteristic	 of	 rivers	 in	 other	 regions	 as	 well	 and	 under	 different	 flow	 conditions.	 Flow	
velocity	was	estimated	based	on	river	discharge	and	cross‐sectional	area	(equation	3.1c).		

341.034.0 QD  		 	 	 (3.1a)	
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557.022.1 QW  	 	 	 (3.1b)	

WD

Q
U  	 	 	 	 (3.1c)	

Where:	D	=	river	depth	[m];	Q	=	river	discharge	[m3s‐1];	W	=	river	width	[m];	U=	river	 flow	
velocity	[m	s‐1].		

For	the	river	reaches	controlled	by	reservoirs,	we	assumed	water	surface	elevation,	and	as	a	
result	 the	 depth	 (Dres)	 and	width	 (Wres)	 to	 remain	 constant	 in	 time.	 In	 these	 river	 reaches	
equation	3.1c	becomes:	

resvresv DW

Q
U  	 	 	 (3.2)	

VIC	and	its	routing	model	have	been	applied	in	the	recent	past	at	spatial	scales	ranging	from	
1/16°	 (Elsner	 et	 al.,	 2010)	 to	 1°	 (Nijssen	 et	 al.,	 2001b).	 The	 temporal	 resolution	 is	 flexible	
between	hourly	to	daily	step.	The	1/2°	spatial	resolution	used	in	this	study	was	selected	as	a	
compromise	 between	 the	 ability	 to	 resolve	 variations	 in	 river	 basin	 contributing	 areas	 and	
channel	variations,	and	computational	efficiency.		

Stream temperature model RBM 

RBM	is	a	process‐based	one‐dimensional	stream	temperature	model	that	solves	the	1D‐heat	
advection	 equation	 using	 the	 semi‐Lagrangian	 (mixed	 Eulerian‐Langrangian)	 approach	
(Yearsley,	 2009).	Because	of	 the	 large‐scale	 application,	 the	 advection	 term	dominates,	 and	
dispersion	 was	 for	 that	 reason	 neglected.	 Water	 temperature	 is	 calculated	 for	 a	 specific	
stream	 segment	 based	 on	 the	 upstream	 water	 temperature	 and	 inflow	 into	 the	 stream	
segment,	 the	 dominant	 heat	 exchange	 at	 the	 air	 ‐	 water	 surface,	 and	 the	 inflow	 and	
temperature	 of	 water	 advected	 from	 tributaries.	 RBM	was	 developed	 for	 subbasins	 of	 the	
Columbia	 River	 and	 has	 been	 applied	 by	 Yearsley	 (2012)	 to	 the	 Salmon	 subbasin	 (36,325	
km2)	on	a	1/16°	spatial	 resolution.	 In	 this	study,	modifications	were	made	to	apply	RBM	to	
larger	 river	 basins	 characterized	 by	 different	 thermal	 and	 hydrological	 regimes	 and	
anthropogenic	 impacts.	To	use	RBM	 for	 thermally	polluted	river	basins,	modifications	were	
made	 to	 incorporate	 anthropogenic	 heat	 discharges	 of	 thermoelectric	 power	 plants	 as	
advected	heat	sources.	This	results	in	the	following	1D‐heat	advection	equation:		

( ) w p trb trb w p effl efflw x
w p air water x

C Q T C Q TT A
C H w

t x x

 
  

 
   		 (3.3)	

Where:	ρw	 =	density	of	water	 [kg	m‐3];	Cp	 =	 specific	heat	 capacity	of	water	 [J	 kg‐1	°C‐1];	Tw	=	
water	 temperature	 [°C];	Ax	=	 cross‐sectional	 area	of	 river	 at	distance	x	 [m2];	Hair‐water	 =	heat	
flux	at	air	‐	water	interface	[J	m‐2	s‐1];	wx	=	stream	width	at	distance	x	[m];	Qtrb	=	advected	flow	
from	tributaries	or	 subsurface	 [m3	s‐1];	∆Ttbr	=	 the	difference	between	advected	 temperature	
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from	 tributaries	 or	 subsurface,	 Ttbr,	 and	 Tw	[°C];	 Qeffl	 =	 advected	 flow	 from	 heat	 dumps	 of	
thermoelectric	power	plants	[m3	s‐1];	∆Teffl	=	the	difference	between	the	advected	temperature	
from	heat	dumps	of	 thermoelectric	 power	plants,	Teffl,	 and	Tw	[°C];	x	=	 longitudinal	 distance	
along	the	axis	of	the	river	[m];	t	=	time	[s].		

The	net	exchange	of	thermal	energy	across	the	air	‐	water	interface	(Hair‐water)	is	determined	
using	a	one	dimensional	 implementation	of	the	stream	energy	balance	equation	Wunderlich	
and	Gras	(1967):	

	 	 	     backcondevapararsswaterair HHHHHHHH  	 (3.4)	

Where:	Hair‐water	=		net	exchange	of	thermal	energy	across	the	air	‐	water	interface	[J	m‐2	s‐1];	Hs	
=	shortwave	solar	radiation	[J	m‐2	s‐1];	Hrs	=	reflected	shortwave	solar	radiation	[J	m‐2	s‐1];	Ha	=	
longwave	 atmospheric	 radiation	 [J	m‐2	s‐1];	Har	 =	 reflected	 atmospheric	 radiation	 [J	m‐2	s‐1];	
Hevap	=	evaporative	heat	flux	[J	m‐2	s‐1];	Hcond	=	conductive	or	convective	heat	flux	[J	m‐2	s‐1]	(the	
flux	 resulting	 from	 temperature	 differences	 between	 the	 atmosphere	 and	 river);	 Hback	 =	
blackbody	radiation	from	the	water	surface	[J	m‐2	s‐1].	

Estimation of the boundary conditions (headwater temperatures) 

As	part	of	 the	study	described	 in	Yearsley	(2012),	 two	methods	 for	headwater	 temperature	
estimation	were	compared	for	the	Salmon	River	(subbasin	of	the	Columbia).	One	method	uses	
daily	 soil	 temperature	 from	 VIC	 and	 another	 method	 uses	 a	 nonlinear	 water	 temperature	
regression	model	(Mohseni	et	al.,	1998)	based	on	air	temperature.	Overall,	the	performance	of	
the	 RBM	 model	 did	 not	 improve	 by	 using	 soil	 temperature	 to	 estimate	 headwater	
temperature.	Given	the	widespread	use	of	the	regression	model	of	Mohseni	et	al.	(1998),	we	
decided	 to	 use	 the	 latter	 approach	 for	 this	 study	 to	 estimate	 headwater	 temperature.	 The	
water	 temperature	 regression	 model	 of	 Mohseni	 et	 al.	 (1998)	 describes	 the	 S‐curve	
relationship	between	weekly	water	temperature	and	weekly	air	temperature	according	to:	

)1( )( Tairhead e
Tw 


 

 	 	 	 (3.5)	
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




tan4 	 	 	 	 	 	

Where:	μ	=	 lower	bound	of	water	 temperature	 [°C];	α	=	upper	bound	of	water	 temperature	
[°C];	γ	=	measure	of	the	slope	at	inflection	point	(steepest	slope)	of	the	S‐shaped	relation	[°C‐
1];	β	=	air	temperature	at	inflection	point	[°C];	Twhead	=	headwater	temperature	[°C];	Tair	=	air	
temperature	[°C];	tan	θ	=	slope	at	inflection	point	[‐].			

The	 four	 parameters	 of	 the	 regression	 model	 and	 time	 lag	 were	 fitted	 for	 333	 Global	
Environment	Monitoring	 System	 (GEMS)/Water	 stations	 globally	 for	 the	 period	 1980‐2000	
using	least	squares	regression.	We	applied	the	nonlinear	water	temperature	regression	model	
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on	a	daily	time	step	by	including	a	lag	effect,	as	water	temperature	variations	lag	behind	air	
temperature	 fluctuations	 at	 short	 time	 scale	 (hourly,	 daily	 basis)	 (Erickson	 et	 al.,	 2000;	
Jeppesen	and	 Iversen,	1987).	For	each	 station,	 the	optimal	 lag	parameter	was	estimated	by	
calculating	 correlation	 coefficients	 between	 water	 temperature	 and	 smoothed	 air	
temperature	(Tairsmooth)	for	various	lag	parameter	values	(λ)	using	equation	3.6,	and	selecting	
the	λ	for	which	the	correlation	coefficient	was	highest.		

)()1()1( tTairtTairTairsmooth   	 	 (3.6)	

In	 a	 next	 step,	 the	 fitted	 parameter	 values	 μ,	α,	 γ	 and	 β	were	 interpolated	 using	 ordinary	
kriging,	resulting	in	1/2°	x	1/2°	interpolated	grids.	The	time	lag	at	which	water	temperature	
variations	 follow	 air	 temperature	 variations	 increases	 with	 stream	 depth	 (Stefan	 and	
Preudhomme,	 1993)	 and	 thus	 with	 river	 discharge.	 The	 lag	 parameter	 was,	 therefore,	
spatially	 interpolated	 using	 gridded	 river	 discharge	 simulations	 produced	 by	 VIC	 in	
combination	with	an	empirical	relationship	between	lag	parameter	and	river	discharge	(fitted	
for	 all	 stations).	 An	 overview	 of	 the	 mean	 and	 range	 (minimum‐maximum)	 in	 fitted	
parameters	 for	 all	 study	 basins	 (Table	 3.2)	 shows	 that	 the	 fitted	 values	 of	 the	 Mohseni	
parameters	vary	between	the	different	study	basins	(in	particular	μ).	The	lag	parameter	(λ)	is	
generally	 constant	 within	 and	 between	 the	 different	 basins	 (between	 0.09	 ‐	 0.12	 for	 all	
basins).		

3.2.3  Application of hydrological ‐ water temperature modelling framework 

To	 test	 the	performance	of	 the	modelling	 framework,	 the	VIC‐RBM	 framework	was	 applied	
globally	for	the	period	1970‐2001	(including	a	spin‐up	period	of	one	year).	The	models	were	
forced	 with	 daily	 (24h	 mean)	 values	 of	 precipitation,	 minimum	 and	 maximum	 surface	 air	
	

Table 3.2: Mean values and range (minimum‐maximum) of  interpolated parameters of nonlinear water temperature 
regression model and time lag used for estimating daily headwater temperature in the study basins. 

  μ (°C)  α (°C)  β (°C) γ (°C‐1) λ (day‐1)
study basin  mean [range] mean [range] mean [range] mean [range]  mean [range]

Columbia  3.0    [0.5 ‐ 5.3]  16.4  [13.9 ‐ 18.8] 5.6    [2.3 ‐8.3] 0.27  [0.24 ‐ 0.31]  0.10  [0.09 ‐ 0.11]
Mississippi  4.0    [0.8 ‐ 10.4]  22.7  [16.0 ‐ 26.2] 10.3  [4.2 ‐ 18.6] 0.27  [0.18 ‐ 0.55]  0.10  [0.09 ‐ 0.11]
Parana  19.2  [16.4 ‐ 20.2]  25.2  [24.8 ‐ 25.6] 18.1 [17.2 ‐ 18.7] 0.44 [0.40 ‐ 0.50]  0.10  [0.09 ‐ 0.12]
Rhine  4.5    [2.6 ‐ 5.6]  19.8  [19.3 ‐ 20.4] 8.8    [7.9 ‐ 9.8] 0.30  [0.28 ‐ 0.39]  0.10  [0.09 ‐ 0.11]
Meuse  4.7    [3.7 ‐ 6.7]  19.8  [19.4 ‐ 20.0] 8.9    [8.5 ‐ 9.4] 0.34  [0.29 ‐ 0.44]  0.10  [0.10 ‐ 0.11]
Danube  2.6    [0.6 ‐ 5.3]  20.9  [19.5 ‐ 22.2] 9.1    [7.5 ‐ 11.5] 0.25 [0.07 ‐ 0.40]  0.10  [0.09 ‐ 0.11]
Orange  14.2  [9.4 ‐ 18.0]  25.4  [24.2 ‐26.4] 18.8  [17.2 ‐ 20.1] 0.60  [0.49 ‐ 0.77]  0.11  [0.09 ‐ 0.12]
Ob  0.0    [0.0 ‐ 0.0]  19.0  [15.4 ‐ 22.3] 6.5    [0.0 ‐ 12.9] 0.18  [0.09‐ 0.41]  0.11  [0.09 ‐ 0.12]
Yenisey  0.0    [0.0 ‐ 0.0]  17.7  [13.8 ‐ 21.3] 4.8    [0.1 ‐ 9.3] 0.22  [0.05 ‐ 0.51]  0.11  [0.09 ‐ 0.12]
Lena  0.0    [0.0 ‐ 0.0]  17.6  [14.4 ‐ 20.7] 5.3    [2.3 ‐ 6.9] 0.19 [0.11 ‐ 0.35]  0.11  [0.09 ‐ 0.11]
Mekong  21.0  [3.9 ‐ 28.6]  28.5  [25.5 ‐ 30.0] 23.0  [16.2 ‐ 28.2] 1.02 [0.48 ‐ 1.31]  0.10  [0.09 ‐ 0.11]
Yangtze  7.3    [0.6 ‐ 15.1]  27.4  [24.9 ‐ 29.0] 16.8  [14.2 ‐ 19.7] 0.27 [0.24 ‐ 0.31]  0.10  [0.09 ‐ 0.11]
Yellow  0.6    [0.0 ‐ 5.8]  16.4  [13.9 ‐ 18.8] 5.6    [2.3 ‐ 8.3] 0.27 [0.18 ‐ 0.55]  0.10  [0.09 ‐ 0.12]
Murray‐
Darling 

3.0    [0.5 ‐ 5.3]  22.7  [16.0 ‐ 26.2] 10.3 [4.2 ‐ 18.6] 0.44 [0.40 ‐ 0.50]  0.10  [0.09 ‐ 0.11]
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temperature	 and	 wind	 speed	 from	 the	 global	 gridded	 1/2°	 x	 1/2°	 meteorological	 dataset	
developed	within	 the	 EU	 FP6	Water	 and	 Global	 Change	 (WATCH)	 project	 	 (Weedon	 et	 al.,	
2010;	Weedon	et	al.,	2011).	VIC	was	applied	using	the	elevation	and	land	cover	classifications	
(elevation,	 vegetation,	 and	 soil	 characteristics)	 described	 in	 Nijssen	 et	 al.	 (2001b),	
disaggregated	 to	 1/2°	 x	 1/2°	 spatial	 resolution.	 In	 their	 study,	 calibration	 on	 soil	
characteristics	 was	 performed	 for	 selected	 large	 river	 basins	 globally	 (including	 the	
Mississippi,	 Columbia,	 Danube,	 Parana,	 Yellow,	 Yangtze,	 Mekong,	 Yenisey,	 Lena	 and	 Ob). 
Calibrated	parameters	values	were	subsequently	transferred	to	other	basins	based	on	climate	
characteristics.	The	global	DDM30	routing	network	(Döll	and	Lehner,	2002)	was	used	for	the	
lateral	 routing	 of	 streamflow	 and	 to	 create	 an	 ordered	 river	 network	 for	 the	 RBM	 water	
temperature	 simulations.	 For	 the	 Columbia	 basin	 where	 river	 discharge	 and	 water	
temperature	 is	 highly	 impacted	 by	 reservoirs,	 we	 used	 information	 about	 dams	 from	 the	
University	 of	 New	 Hampshire	 updated	 according	 to	 the	 World	 Register	 of	 Dams	 (ICOLD,	
2003),	as	described	by	Haddeland	et	al.	(2006).	

To	get	realistic	water	temperature	simulations	in	thermally	polluted	river	basins	(Mississippi,	
Rhine,	Meuse,	Danube),	 estimates	of	 thermal	discharges	of	 thermoelectric	power	plants	are	
required	as	input	into	RBM.	We	used	gridded	(1/2°	x	1/2°)	estimates	of	global	thermoelectric	
water	consumption	and	water	withdrawal	 for	the	20th	century	(Flörke	et	al.,	2011;	Voß	and	
Flörke,	2010)	to	estimate	return	flows	from	thermoelectric	water	diversions	(Qeffl).	Because,	
gridded	data	 for	 the	difference	 in	temperature	between	return	water	 temperature	and	 inlet	
water	temperature	were	not	available,	we	assumed	that	the	temperature	of	return	flow	(Teffl)	
was	on	average	3°C	higher	 than	the	 inlet	river	water	 temperature	(Tw).	This	value	was	also	
selected	based	on	 an	average	estimate	 for	 the	Rhine	River	 (Icke	 et	 al.,	 2006)	 and	based	on	
standards	 for	 heat	 discharges	 in	 the	U.S.,	which	 are	written	 under	 the	 requirements	 of	 the	
Clean	Water	Act,	and	limit	the	∆Teffl	to	3°C	for	most	states.	In	addition,	overall	best	results	of	
daily	simulated	water	temperature	were	obtained	under	a	∆Teffl	of	3°C	when	we	tested	this	for	
the	thermally	polluted	basins	Mississippi,	Rhine,	Meuse	and	Danube	with	values	ranging	from	
2	to	10°C	(van	Vliet	et	al.,	2012).	Using	information	about	the	dominant	cooling	type	in	each	
grid	cell,	Qeffl	and	∆Teffl,	gridded	(1/2°	x	1/2°)	datasets	of	 thermal	discharge	were	calculated	
for	the	period	1971‐2000	and	these	were	used	as	input	into	RBM.		

3.2.4  Evaluation of hydrological ‐ water temperature modelling framework 

Observed	 daily	 river	 discharge	 and	 water	 temperature	 records	 for	 selected	 monitoring	
stations	in	the	study	basins	were	used	to	evaluate	the	VIC‐RBM	simulations.	Daily	mean	series	
of	 river	 discharge	 were	 provided	 by	 the	 Global	 Runoff	 Data	 Centre	 (GRDC;	
http://grdc.bafg.de/)	 for	 the	 period	 1971‐2000.	 For	 the	 Yangtze	 River,	 we	 tested	 the	
performance	of	VIC	on	a	monthly	time	step,	because	daily	discharge	series	were	not	available.	
For	water	temperature,	we	used	observed	records	for	the	period	1980‐2000	provided	by	the	
United	 Nations	 Environment	 Programme	 (UNEP)	 Global	 Environment	 Monitoring	 System	
(GEMS/Water;	 http://www.gemswater.org)	 in	 combination	 with	 daily	 water	 temperature	
series	 provided	 by	 different	 sources	 (Table	 3.1).	 In	 general,	 the	 water	 temperature	
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observations	represent	daily	instantaneous	(spot)	measurements,	taken	approximately	0‐1	m	
below	 the	 water	 surface	 around	 mid‐day.	 These	 instantaneous	 water	 temperature	
measurements	 that	 are	 taken	 at	 the	 water	 surface	 were	 related	 to	 simulated	 water	
temperature,	which	are	cross‐sectional	averages	of	mean	daily	water	temperature.	Although	
there	 are	 vertical	 variations	 in	 water	 temperature,	 previous	 studies	 have	 shown	 that	
instantaneous	 observations	 of	 water	 temperature	 taken	 near	 surface	 are	 generally	
representative	of	the	mean	water	temperature	as	vertical	and	lateral	mixing	of	water	is	often	
very	strong	in	large	rivers	(Liu	et	al.,	2005;	Mackay	and	Mackay,	1975).	

To	quantify	the	performance	of	VIC	and	RBM	for	daily	river	discharge	and	water	temperature	
simulations	we	used	the	root	mean	squared	error	(RMSE)	and	mean	bias	(BIAS).	In	addition,	
the	 Pearson	 correlation	 coefficient	 (r)	 was	 calculated	 to	 quantify	 the	 linear	 dependence	
between	simulations	and	observations	values.	For	river	discharge,	normalized	values	of	RMSE	
and	BIAS	were	calculated	(NRMSE	and	NBIAS	henceforth)	by	dividing	by	the	mean	observed	
river	discharge	values.	The	equations	for	the	selected	performance	coefficients	are:		
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Where:	Pi	 =	predicted	value	at	 time	 step	 I	[°C];	Oi	 =	observed	value	at	 time	 step	 I	 [°C];	O =	

average	of	daily	observed	value	[°C];	 P =	average	of	daily	predicted	value	[°C];	n	=	number	of	
data	pairs	to	be	compared.		

For	the	Columbia	and	Rhine	basins,	more	detailed	and	longer	term	daily	water	temperature	
datasets	were	available.	This	allows	a	validation	over	the	simulated	water	temperature	trends	
over	 the	 entire	 1971‐2000	 period	 and	 for	warm,	 dry	 summers,	 specifically,	when	 critically	
high	water	temperatures	and	low	water	availability	occur.	We	focused	on	the	warm	summers	
of	1992	and	1994	 in	 the	Rhine,	and	the	summers	of	1998	and	1999	 in	 the	Columbia.	These	
summers	were	selected,	as	highest	water	temperature	values	were	observed,	considering	the	
average	of	all	water	temperature	records	in	the	river	basin.		
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3.2.5  Sensitivity of simulated water temperature to headwater temperature  

For	 coarse	 spatial	 resolution,	 uncertainties	 in	 the	 estimates	 of	 the	boundary	 conditions	 are	
expected	to	propagate	over	large	distances.	A	sensitivity	analysis	was	therefore	performed	to	
assess	 the	 impact	 of	 uncertainties	 in	 headwater	 temperature	 estimates	 on	 simulated	water	
temperatures	at	different	spatial	resolutions;	1/2°,	1/4°	and	1/8°.	We	 focused	on	the	Rhine	
and	Meuse	basins	in	Western	Europe,	because	these	basins	are	the	smallest	study	basins	and	
have	 reasonable	 running	 times	 at	 1/8°	 resolution.	 The	 routing	 and	 water	 temperature	
simulations	 for	 the	Rhine	and	Meuse	on	 	1/4°	and	1/8°	were	performed	by	using	 the	 river	
routing	networks	derived	from	HYDRO1K	(Wu	et	al.,	2011).	We	compared	water	temperature	
simulations	 produced	 by	 using	 an	 overestimated	 headwater	 temperature	 of	 +2.0°C	 with	
simulations	based	on	the	original	gridded	headwater	temperature	estimates	(reference	case)	
at	1/2°,	1/4°	and	1/8°	resolutions	for	the	period	1971‐2000.		

3.2.6  Sensitivity of simulated water temperature to river discharge  

In	 addition	 to	 headwater	 temperature,	 we	 assessed	 the	 impact	 of	 uncertainties	 associated	
with	 the	 hydrological	 model	 output	 and	 changes	 in	 river	 discharge	 on	 the	 simulated	 daily	
water	 temperature.	We	compared	simulated	water	 temperature	 for	 the	 reference	 case	with	
simulated	water	temperature	under	a	change	in	streamflow	of	‐25%,	‐50%,	+25%	and	+50%.	
Simulations	with	RBM	were	performed	for	the	period	1970‐2000	(including	one	year	spin‐up)	
assuming	a	constant	decrease	and	increase	in	both	daily	simulated	runoff	and	baseflow	from	
VIC	of	‐25%,	‐50%,	+25%	and	+50%	compared	to	the	reference	conditions.		

3.3  Results 

3.3.1  Performance of daily river discharge simulations 

The	spatial	patterns	of	simulated	mean	annual	river	discharge	of	the	study	basins	(Figure	3.2)	
generally	 show	 a	 close	 correspondence	 with	 the	 mean	 observed	 river	 discharge	 (small	
circles).	 For	 some	 downstream	 stations	 in	 the	 Orange	 and	 Murray‐Darling	 basins,	 VIC	
overestimated	river	discharge.	Part	of	this	overestimation	can	be	explained	by	anthropogenic	
water	withdrawals	(e.g.	for	agriculture,	energy,	manufacturing	and	domestic	water	use)	which	
are	 relatively	 high	 in	 these	 basins.	 This	 results	 in	 lower	 observed	 river	 discharge	 values	
compared	 to	 the	 simulated	 values	 (which	do	not	 include	 anthropogenic	water	 extractions).	
This	overestimation	is	also	reflected	by	relatively	high	values	in	NBIAS	(>2)	and	high	values	in	
the	NRMSE	(>3)	for	both	the	Murray‐Darling	and	the	Orange	river	basins	(Table	3.3).	For	the	
Ob,	Yenisey,	Lena,	Mekong	and	Yangtze,	a	slight	underestimation	was	found	resulting	in	small	
negative	values	of	NBIAS.	However,	values	of	NRMSE	were	generally	low	and	r	was	relatively	
high	(r>0.75	for	most	of	these	basins).	The	use	of	the	reservoir	scheme	resulted	in	a	distinct	
improvement	 (significantly	 smaller	 bias;	 p<0.05	 using	 paired	 t‐test)	 in	 the	 simulated	 river	
discharge	 of	 the	 highly	 regulated	 Columbia	 River	 (Figure	 3.3).	 This	 is	 reflected	 by	 a	 lower	
value	 of	 mean	 NBIAS	 and	 NRMSE	 (+0.3	 and	 1.4,	 respectively)	 compared	 to	 the	 simulation	
without	the	reservoir	scheme	(+0.5	and	2.0,	respectively).	Although	the	onset	of	the	discharge		
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Figure  3.2:  Spatial  patterns  of  simulated  (grid  cells)  and  observed  (circles) mean  annual  river  discharge  for  study 
basins. 

peak	in	spring	is	somewhat	too	early	e.g.	at	the	Dalles	(Figure	3.3),	the	hydrologic	regime	is	
represented	 more	 realistically	 when	 the	 reservoir	 scheme	 is	 included.	 Although	 the	
hydrologic	regimes	of	some	other	rivers,	like	the	Mekong	and	Ob,	are	also	slightly	impacted	by	
reservoirs,	 we	 obtained	 a	 quite	 realistic	 representation	 of	 daily	 river	 discharge	 with	 VIC	
without	the	use	of	a	reservoir	scheme	for	these	rivers	(mean	NBIAS=	‐0.1;	r=0.91	for	Mekong;	
NBIAS=	 ‐0.1;	 r=0.76	 for	 Ob;	 Figure	 3.3).	 Daily	 variability	 in	 river	 discharge	 was	 slightly	
underestimated	for	some	upstream	stations	in	the	River	Rhine	(Figure	3.3),	but	 in	general	a	
realistic	 representation	 was	 found	 (mean	 NBIAS=+0.1;	 r=0.76).	 This	 indicates	 that	 the	
hydrological	 model	 is	 suitable	 for	 simulating	 daily	 discharge	 in	 river	 basins	 situated	 in	
different	 climate	 zones	 (temperate,	 tropical	 and	 arctic)	 and	 with	 different	 anthropogenic	
impacts.	
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Table 3.3: Mean and range of bias (BIAS), root mean squared error (RMSE) and Pearson‐correlation coefficient (r) of 
daily river discharge (a) and water temperature simulations (b) for study basins. For river discharge, normalized values 
are presented for root mean squared error (NRMSE) and mean bias (NBIAS).  

a) Daily river discharge (Q) 

river basin  NBIAS    NRMSE r  
  mean  range  mean range mean  range

Columbia*  +0.3  [‐0.7, +4.6]  1.4 [0.3, 6.2] 0.65  [0.32, 0.89]
Mississippi  +1.2  [‐1.0, +3.5]  2.6 [0.5, 4.9] 0.60  [0.28, 0.89]
Parana  +1.2  [+0.8, +1.6]  1.9 [1.4, 2.4] 0.79  [0.39, 0.86]
Rhine  +0.1  [‐1.0, +1.7]  0.6 [0.3, 1.9] 0.76  [0.53, 0.86]
Meuse  +0.9  [‐0.3, +6.0]  1.6 [0.8, 3.5] 0.81  [0.71, 0.85]
Danube  +0.3  [‐1.0, +1.5]  0.6 [0.3, 1.7] 0.75  [0.47, 0.84]
Orange  +2.5  [+1.1, +9.2]  3.1 [1.5, 3.8] 0.52  [0.31, 0.73]
Ob  ‐0.1  [‐1.0, +0.3]  0.8 [0.5, 1.6] 0.76  [0.60, 0.87]
Yenisey  ‐0.5  [‐1.0, ‐0.2]  0.8 [0.4, 1.6] 0.68  [0.30, 0.90]
Lena  ‐0.5  [‐1.0, ‐0.2]  1.0 [0.8, 1.7] 0.76  [0.65, 0.83]
Mekong  ‐0.1  [‐0.9, +0.2]  0.5 [0.3, 1.3] 0.91  [0.80, 0.95]
Yangtze**  ‐0.1  [‐0.2, +0.0]  0.3 [0.2, 0.3] 0.95  [0.93, 0.97]
Yellow  +1.9  [+0.2, +2.9]  1.8 [1.3, 3.9] 0.57  [0.51, 0.66]
Murray‐Darling  +4.0  [‐1.0, +8.8]  3.5 [1.8, 8.3] 0.54  [0.20, 0.80]

b) Daily water temperature (Tw) 

river basin  BIAS (°C)    RMSE (°C) r  
  mean  range  mean range mean  range

Columbia*  ‐2.3  [‐3.1, +1.0]  2.8 [2.0, 4.0] 0.88  [0.80, 0.95]
Mississippi  ‐0.3  [‐4.7, +3.8]  3.2 [1.7, 6.7] 0.93  [0.48, 0.98]
Parana  ‐0.2  [‐2.3, +0.9]  2.8 [2.6, 3.0] 0.80  [0.65, 0.88]
Rhine  ‐0.6  [‐1.4, +0.3]  2.3 [1.6, 3.4] 0.94  [0.90, 0.97]
Meuse  +0.7  [+0.3, +1.2]  2.2 [1.6, 3.1] 0.95  [0.92, 0.97]
Danube  ‐0.3  [‐2.3, +1.0]  2.5 [1.7, 3.4] 0.95  [0.93, 0.97]
Orange  ‐1.5  [‐2.8, +0.1]  4.8 [3.6, 5.8] 0.56  [0.39, 0.78]
Ob  ‐2.4  [‐5.8, +0.3]  4.1 [3.6, 6.5] 0.76  [0.46, 0.93]
Yenisey  ‐0.2  [‐0.2, ‐0.2]  2.8 [2.8, 2.8] 0.95  [0.95, 0.95]
Lena  ‐1.2  [‐1.2, ‐1.2]  3.2 [3.2, 3.2] 0.87  [0.87, 0.87]
Mekong  +1.5  [+0.6, +2.8]  2.5 [1.9, 3.2] 0.77  [0.65, 0.87]
Yangtze  ‐0.2  [‐0.3, +0.1]  2.8 [2.1, 3.2] 0.94  [0.92, 0.97]
Yellow  +2.7  [+2.0, +3.5]  3.9 [2.6, 5.2] 0.94  [0.89, 0.98]
Murray‐Darling  ‐0.1  [‐1.1, +1.0]  3.5 [2.4, 6.4] 0.80  [0.50, 0.98]

* Reservoir scheme and modified geometry ‐ streamflow relations were used for these simulations; ** Monthly river 
discharge data used for validation of river flow modelling, because daily discharge observations were not available. 

3.3.2  Performance of daily water temperature simulations 

The	 spatial	patterns	of	 simulated	mean	annual	water	 temperatures	within	 the	 study	basins	
averaged	 over	 the	 period	 1980‐2000	 (Figure	 3.4)	 show	 pronounced	 increases	 in	 water	
temperature	from	the	upstream	to	the	downstream	parts	of	most	river	basins	(except	for	the	
Lena,	Ob	and	Yenisey	and	Parana	River	that	 flow	to	high	 latitude).	 In	general,	 the	simulated	
values	 of	 the	 grid	 cells	 correspond	 closely	 with	 the	 observed	 mean	 annual	 water	
temperatures	for	the	different	stations	(circles)	along	the	streams.	
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Figure 3.3: Daily time series for 1985‐1994 and mean annual cycles of observed and simulated daily river discharge for 
selected monitoring stations for the period 1971‐2000. The stations are situated in river basins with different hydro‐
climatic  zones  and  anthropogenic  impacts  and  are  characterized  by  an  overall  good  model  performance.  The 
normalized  root mean squared error  (NRMSE) and correlation coefficient  (r) are calculated  for daily  time series  for 
1971‐2000. For the Columbia (The Dalles), 10‐day moving average series are presented and used for calculation of the 
performance coefficients. 
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Figure 3.4: Spatial patterns of simulated (grid cells) and observed (circles) mean annual water temperatures for study 
basins. 

For	 the	 Columbia	 River	 a	 significant	 improvement	 (p=0.03)	 was	 found	 by	 using	 corrected	
geometry	 –	 streamflow	 relations	 (equation	 3.2;	 Section	 3.2.2)	 for	 the	 grid	 cells	 where	
reservoirs	 are	 located.	 Without	 these	 corrected	 relationships,	 the	 onset	 of	 the	 rising	 and	
falling	limb	in	the	simulated	thermal	regime	is	too	early	in	the	season	(see	Figure	3.5,	station	
Grand	Coulee),	 because	 the	 calculated	depth	and	width	are	underestimated,	 resulting	 in	 an	
underestimation	of	the	thermal	capacity	of	the	stream	segment.	Furthermore,	flow	velocity	is	
overestimated,	 which	 can	 result	 in	 greater	 influence	 of	 uncertainties	 in	 headwater	
temperature	 estimates	 on	 simulated	 water	 temperature.	 The	 improvement	 in	 model	
performance	was	also	reflected	by	lower	values	of	RMSE	(mean	value	of	2.8°C	versus	3.5°C)	
and	 higher	 values	 of	 r	 (0.88	 versus	 0.77)	 for	 a	 model	 run	 with	 corrected	 relations		
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Figure 3.5: Daily time series for 1985‐1994 and mean annual cycles of daily observed and simulated river temperature 
over the period 1980‐2000 for selected stations. The stations are situated in river basins with different hydro‐climatic 
zones  and  anthropogenic  impacts  and  are  characterized  by  an  overall  good model  performance.  The  root mean 
squared error (RMSE) and correlation coefficient (r) are calculated for daily time series for 1980‐2000. Grey circles in 
the  figures  at  the  right  indicate  individual measurements,  rather  than multi‐annual  averages  because  of  limited 
availability of observed water temperature data. 
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(equation	 3.2)	 compared	 to	 the	 run	 based	 on	 uniform	 geometry	 –	 streamflow	 relations	
(equation	 3.1).	 The	 implementation	 of	 point	 sources	 of	 heat	 effluents	 also	 resulted	 in	 a	
significant	(p<0.05)	improvement	in	model	performance	for	thermally	polluted	rivers	like	the	
Rhine,	 Meuse,	 Danube	 and	 Mississippi.	 Without	 implementation	 of	 heat	 effluents,	 the	
simulated	 water	 temperatures	 are	 underestimated	 (negative	 bias)	 compared	 to	 observed	
water	 temperature,	 as	 these	 reflect	 the	 “naturalized”	 water	 temperature	 (see	 Figure	 3.5,	
Rhine	(Koblenz)).	The	improvement	was	reflected	by	decreases	in	negative	BIAS,	lower	RMSE	
and	slightly	higher	values	of	r	for	these	river	basins.		

For	some	of	the	tropical	and	arctic	basins,	like	the	Mekong	and	Lena,	only	a	limited	number	of	
water	 temperature	measurements	was	available	 to	 test	 the	performance	of	RBM	on	a	daily	
time	 step.	 However,	 the	 simulated	 water	 temperature	 series	 generally	 fell	 between	 the	
observations	 and	 the	 variability	 in	 water	 temperature	 throughout	 the	 year	 was	 well	
simulated,	as	shown	for	 the	Mekong	(Pakse)	(Figure	3.5).	This	was	also	 found	 for	 the	other	
eight	 water	 temperature	 monitoring	 stations	 along	 the	 Mekong,	 although	 slightly	
overestimations	occurred	for	the	most	upstream	stations	(mean	BIAS=	+1.5°C).	For	the	Lena,	
which	 is	 strongly	 affected	 by	 melt	 water,	 the	 annual	 cycles	 in	 water	 temperature	 were	
simulated	realistically	during	the	snowmelt	period.	However,	the	steepness	of	the	falling	limb	
during	 August‐October	 was	 on	 average	 too	 high	 and	 the	 decrease	 started	 too	 early	 in	 the	
season.	 This	might	 be	 explained	 by	 an	 underestimation	 of	 the	 discharge	 peak	 for	 the	 Lena	
during	summer	(reflected	by	negative	NBIAS;	Table	3.3),	and	associated	underestimation	of	
the	 thermal	 capacity.	Due	 to	 ice	 and	melt	water	 inflow,	water	 temperatures	 in	 spring	were	
slightly	 overestimated	 for	 some	 years,	 but	 overall,	 the	 timing	 and	magnitude	 of	 the	 rise	 in	
water	 temperature	 of	 the	 Lena	during	 summer	were	 simulated	 realistically	 for	most	 of	 the	
years	during	the	evaluation	period.		

The	 scatterplots	 and	histograms	of	 the	 simulated	 versus	observed	daily	water	 temperature	
(Figure	 3.6)	 show	 that	 simulated	 water	 temperature	 values	 match	 the	 observed	 values	
reasonably	well	 for	most	 of	 the	 stations.	 For	 some	 stations	 the	 correlation	 coefficients	 are	
high	 (r>0.80;	 Yellow,	 Murray‐Darling)	 or	 very	 high	 (r>0.90;	 Snake	 (Columbia),	 Missouri,	
Arkansas	 (Mississippi),	 Rhine,	 Meuse).	 For	 the	 Mekong	 and	 Orange,	 the	 correlations	 were	
somewhat	 lower	 (r=0.72	 and	 r=0.78),	 although	 the	 distributions	 of	 daily	 simulated	 and	
observed	values	correspond	closely.	In	addition,	the	seasonal	signal	in	water	temperature	for	
both	rivers	is	weaker,	resulting	in	a	 lower	signal‐to‐noise	ratio	and	thus	a	 lower	correlation	
coefficient.	

3.3.3  Long‐term water temperature 1971‐2000 and performance for warm, dry summers 

For	 the	 evaluation	 of	 the	 simulated	water	 temperature	 for	 the	 Columbia	 and	 Rhine	 basins	
during	the	entire	1971‐2000	period,	we	focused	on	the	stations	Anatone	and	Lobith	for	which	
long‐term	 daily	 observed	 water	 temperature	 series	 were	 available.	 Annual	 mean	 (±	 one	
standard	 deviation),	 and	 annual	 maximum	 values	 in	 simulated	 and	 observed	 water		
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Figure 3.6: Scatter plots and histograms of daily simulated river temperature versus daily observed river temperature 
for selected stations in the study basins for 1980‐2000 period. Histograms on the vertical axis are for simulated values 
and histograms on horizontal axis for the observed water temperature. 

temperature	 are	 shown	 for	 both	 stations	 for	 the	 period	 1971‐2000	 (Figure	 3.7;	 left).	 The	
annual	 simulated	 water	 temperatures	 match	 closely	 with	 the	 observations	 for	 the	 entire	
period.		

The	 simulated	 daily	 water	 temperature	 and	 river	 discharge	 during	 the	 warm	 summers	 of	
1998	and	1999	in	the	Columbia	River	and	summers	of	1992	and	1994	in	the	Rhine	River	also	
showed	 an	 overall	 realistic	 performance	 of	 the	 modelling	 approach.	 For	 the	 Rhine,	 the		
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Figure 3.7: Long term mean, and max annual observed and simulated water temperature for 1971‐2000. The thin lines 
indicate the mean ± one standard deviation for observed and simulated water temperature. Figures at the right show 
the simulated and observed daily river temperature and discharge during a selected dry, warm summer in the Snake 
(near Anatone) and Rhine (Lobith). Scales on left and right figures are different.	

variability	 in	river	discharge	and	water	temperature	was	slightly	overestimated	(Figure	3.7;		
right).	In	addition,	the	simulated	water	temperature	values	were	slightly	underestimated	for	
some	 downstream	 stations	 in	 the	 Rhine	 during	 the	 period	 with	 the	 highest	 water	
temperatures	(mean	BIAS	of	 ‐1.2°C).	This	was	also	 found	 for	some	stations	 in	 the	Columbia	
and	 Snake	 Rivers	 (overall	 mean	 BIAS	 for	 all	 stations	 of	 –0.8°C).	 River	 discharge	 was	 also	
simulated	realistically	 (mean	NBIAS	 for	both	summers	of	+0.05	 for	 the	Columbia	and	+0.18	
for	 the	 Rhine),	 resulting	 in	 an	 overall	 a	 realistic	 performance	 of	 the	 hydrological	 ‐	 water	
temperature	modelling	framework	for	warm	summers.	

3.3.4  Sensitivity of water temperature to headwater temperature estimates 

The	impact	of	a	positive	bias	in	headwater	temperature	of	+2.0°C	generally	shows	the	largest	
impact	in	the	upstream	parts	of	the	Rhine	and	Meuse	Rivers	and	declines	in	the	downstream	
direction	 more	 rapidly	 for	 the	 finer	 resolution	 simulations	 (1/4°)	 compared	 to	 the	 coarse	
resolution	 simulations	 (1/2°)	 (Figure	 3.8a‐b).	 In	 particular	 for	 the	 Meuse,	 which	 is	 the	
smallest	basin,	the	impact	of	biases	in	headwater	temperature	estimates	differs	for	the	1/2°,		
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Figure  3.8:  Impacts  of  spatial  resolution  on  propagation  of  uncertainties  in  headwater  temperature  estimates  on 
simulated water temperature along the river course for the Rhine and Meuse, and correlation coefficients between 
daily simulated and observed water temperature for stations in the Rhine (from upstream station Diepoldsau to most 
downstream station Lobith) at 1/2°, 1/4° and 1/8° spatial resolution. 

1/4°	and	1/8°	simulations.	Assuming	a	positive	bias	in	headwater	temperature	of	+2.0°C,	the	
impact	 on	 simulated	 water	 temperature	 175	 km	 downstream	 in	 the	 Meuse	 is	 on	 average	
+1.0°C	 (51%)	 for	 the	1/2°	 simulations	 compared	 to	+0.4°C	 (20%)	 for	 the	1/8°	 simulations.	
For	the	Rhine,	the	impact	at	175	km	downstream	is	larger;	+1.4°C	(71%)		and	+1.2°C	(59%)	
for	 the	 1/2°	 and	 1/8°	 resolution	 simulations,	 respectively.	 This	 is	 due	 to	 the	 higher	 flow	
velocities	 of	 the	 Rhine	 compared	 to	 the	Meuse,	 which	 results	 in	 shorter	 travel	 times	 from	
headwaters	to	the	downstream	site.	In	addition,	higher	water	depths	for	the	Rhine	compared	
to	 the	Meuse	results	 in	slower	response	rates	 to	atmospheric	conditions,	and	consequently,	
larger	propagation	of	uncertainties	in	head	water	temperatures	along	a	longitudinal	section.		

Higher	 resolution	 simulations	 also	 resulted	 in	 an	 overall	 higher	 quality	 of	 the	 daily	 water	
temperature	simulations,	although	the	differences	are	small.	The	mean	RMSE	for	the	stations	
in	 the	 Rhine	 decreased	 from	 2.3°C	 (at	 1/2°	 spatial	 resolution),	 to	 2.1°C	 (1/4°)	 and	 2.0°C	
(1/8°).	 The	 correlation	 coefficients	 between	 the	 observed	 and	 simulated	 daily	 values	were	
also	 higher	 for	 most	 stations	 along	 the	 Rhine	 for	 the	 1/8°	 compared	 to	 1/2°	 resolution	
simulations,	 although	 the	 differences	 were	 very	 small	 (mean	 r	 of	 0.944	 (at	 1/2°	 spatial	
resolution),	0.952	(1/4°)	and	0.953	(1/8°);	Figure	3.8c).		

3.3.5  Sensitivity of water temperature to river discharge simulations 

Results	of	the	sensitivity	analyses	showed	moderate	impacts	of	changes	in	river	discharge	on	
mean	annual	water	 temperature	 (average	value	 for	 all	 basins	of	 +0.2°C	 for	 ‐50%	change	 in	
river	runoff	 	and	–0.1°C	 for	+50%	change;	Figure	3.9).	However,	pronounced	impacts	 in	the	
low	 and	 high	water	 temperature	 range	were	 found.	 A	 decrease	 in	 river	 runoff	 of	 25%	 and	
50%	 results	 in	 significantly	 (p<0.01;	 paired	 t‐test)	 lower	 minimum	 water	 temperatures	
during	winter	 (average	 impact	 of	 50%	 runoff	 decrease	 is	 ‐0.4°C)	 and	 significantly	 (p<0.01)	
higher	 maximum	 water	 temperature	 during	 summer	 (average	 impact	 of	 50%	 decrease	 is	
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+1.2°C).	This	 is	mainly	due	 to	a	 smaller	 thermal	 capacity,	which	 increases	 the	sensitivity	 to	
atmospheric	warming	and	cooling.	The	impacts	of	changes	in	river	runoff	on	minimum	water	
temperatures	are	very	 limited	 for	basins	at	high	northern	 latitude	because	minimum	water	
temperature	values	remain	around	freezing	point.	An	increase	in	streamflow	has	an	opposite	
impact	on	water	temperature.	An	+50%	increase		in	river	runoff	results	in	an	average	impact	
for	 all	 basins	 of	 +0.3°C	 in	 minimum	 water	 temperature	 and	 ‐0.6°C	 in	 maximum	 water	
temperature,	 which	 is	 also	 significant	 (p<0.01).	 Probability	 distributions	 of	 daily	 water	
temperature	for	the	reference	case	and	under	a	change	in	river	runoff	of	‐50%,	‐25%,	+25%	
and	 +50%	 also	 show	 highest	 impact	 of	 changes	 in	 streamflow	 in	 the	 low	 and	 high	 water	
temperature	range	(Figure	3.10).	 In	particular,	decreases	in	streamflow	result	 in	substantial	
increases	in	water	temperature	in	the	high	range.	For	the	Danube	station,	a	decrease	in	river	
runoff	 results	 in	 higher	 (rather	 than	 lower)	 minimum	 water	 temperatures,	 and	 strong	
increases	 in	 high	 water	 temperatures	 were	 found.	 This	 was	 also	 found	 for	 several	 other	
stations	 in	 thermally	 polluted	 basins,	 and	 this	 could	 be	 explained	 by	 a	 reduced	 dilution	
capacity	for	thermal	effluents	under	decreasing	runoff.	

3.4  Discussion and conclusions 

We	 used	 a	 physically‐based	 modelling	 framework	 with	 the	 VIC	 macro‐scale	 hydrological	
model	 and	 process‐based	 water	 temperature	 model	 RBM.	 The	 modelling	 framework	 was	
modified	 to	 include	 impacts	of	 reservoirs	and	heat	effluents	of	 thermoelectric	power	plants	
and	 was	 tested	 for	 large	 river	 basins	 in	 different	 hydro‐climatic	 zones	 and	 with	 different	
anthropogenic	impacts.		

Based	 on	 our	 analysis,	 we	 conclude	 that	 the	 coupled	 hydrological	 ‐	 water	 temperature	
modelling	 framework	 is	 suitable	 to	 simulate	 daily	 river	 discharge	 (median	 normalized	
BIAS=0.3;	 normalized	 RMSE=1.2;	 r=0.76)	 and	 water	 temperatures	 (median	 BIAS=‐0.3°C;	
RMSE=2.8°C;	r=0.91)	realistically	on	daily	time	step	over	long	(>20	year)	periods	and	on	large	
spatial	scales.	A	similar	performance	was	found	during	critical	periods	(warm,	dry	summers),	
which	indicates	that	the	modelling	approach	has	potential	for	risk	assessments	and	studying	
climate	 change	 and	 other	 anthropogenic	 impacts	 on	 daily	 river	 discharge	 and	 water	
temperature	 in	 large	 river	basins.	 In	 addition,	 the	modelling	 framework	 shows	possibilities	
for	incorporating	other	water	quality	parameters.	Yearsley	(2012)	compared	the	performance	
of	the	VIC‐RBM	modelling	framework	applied	to	the	Salmon	(subbasin	Columbia)	with	other	
previous	 catchment‐scale	 water	 temperature	 modelling	 studies,	 and	 concluded	 that	 the	
modelling	 framework	performs	as	well	 or	better	 than	 statistical	water	 temperature	models	
and	within	 the	 range	 of	 site‐specific	 applications	 of	 process‐based	models.	 Van	 Beek	 et	 al.	
(2012)	 simulated	 water	 temperature	 on	 a	 global	 scale	 (without	 calibration)	 with	 mean	
absolute	 errors	 in	 daily	 simulations	 ranging	 from	 1.6	 to	 7.6°C,	 which	 are	 comparable	 or	
slightly	higher	than	obtained	in	our	study.	
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Figure 3.9:  Impacts of  changes  in  river  runoff of  ‐50%  and  +50% on mean, minimum  and maximum  annual water 
temperature. 

 

Figure 3.10: Probability distribution functions of daily simulated water temperature for the reference situation 1971‐
2000 and under a change in river runoff of ‐50%, ‐25%, +25% and +50% for selected stations in the study basins.  
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As	 the	 focus	 of	 our	 study	 is	 on	 global	 river	 basins,	 local	 conditions	 such	 as	 effects	 of	
topography,	 vegetation	 and	 groundwater	 recharge,	 which	 can	 significantly	 influence	 river	
discharge	 and	 water	 temperature	 in	 small	 streams	 (e.g.	 Brown,	 1969;	 Cristea	 and	 Burges,	
2009;	 Sridhar	 et	 al.,	 2004),	were	 disregarded.	 Although	 this	 contributes	 to	 uncertainties	 in	
river	 discharge	 and	water	 temperature	 simulations,	 impacts	 of	 processes	 like	 groundwater	
advection,	 energy	 exchange	 between	 river	 bed	 and	water	 interface,	 dispersion	 of	 heat	 and	
local	 conditions	 (topography	 and	 vegetation)	 in	 the	 main	 river	 are	 relatively	 small	 at	 this	
large	scale	(Caissie,	2006;	Liu	et	al.,	2005).		

For	 river	 flow,	major	 sources	of	uncertainties	 are	 from	meteorological	 forcing	data	 and	 the	
parameterization	 of	 the	 soil	 and	 land	 cover	 (vegetation)	 characteristics.	 Uncertainties	 in	
simulated	river	 flow	then	affect	simulated	water	 temperatures,	especially	during	warm,	dry	
conditions.	Results	 of	 the	 sensitivity	 analyses	 showed	 significant	 impacts	 of	 river	discharge	
(thermal	capacity)	on	water	 temperature	 in	 the	 low	and,	especially	high	water	temperature	
range	(Section	3.3.5;	Figure	3.9	and	3.10).	These	results	correspond	with	previous	physically‐
based	 and	 statistical	 water	 temperature	 modelling	 studies	 that	 have	 found	 a	 pronounced	
impact	 of	 river	 discharge	 on	 especially	 high	 temperatures	 (Bartholow,	 1991;	 Sinokrot	 and	
Gulliver,	2000;	van	Vliet	et	al.,	2011).	

For	 water	 temperature,	 we	 also	 found	 a	 relatively	 high	 sensitivity	 of	 simulated	 water	
temperatures	 to	 the	 boundary	 conditions	 (headwater	 temperatures)	 on	 a	 1/2°	 spatial	
resolution	(Section	3.3.4).	This	highlights	the	importance	of	realistic	estimates	of	headwater	
temperature	 for	 large‐scale	 applications	 and	 coarse	 spatial	 resolutions.	 The	 effects	 of	
headwater	 temperature	 are	 larger	 in	 the	 upstream	 parts	 of	 the	 basins,	 although	 the	
magnitude	of	 impact	also	 increases	with	higher	 flow	velocity	due	 to	 the	shorter	 travel	 time	
from	headwater	 to	 the	downstream	site	 (Yearsley,	 2012).	Both	 the	 scale	 and	 time	of	 travel	
from	 the	 headwaters	 determine	 the	 propagation	 and	 impact	 of	 incorrect	 values	 of	 the	
boundary	 conditions	 on	 the	 simulated	 water	 temperatures	 downstream.	 Increasing	 the	
spatial	resolution	would	probably	improve	the	quality	of	the	water	temperature	simulations,	
by	decreasing	the	 impact	of	biases	 in	headwater	temperature	estimates	on	the	downstream	
reaches.	However,	only	relatively	small	improvements	in	model	performance	were	found	for	
the	Rhine	and	Meuse	on	1/4°	and	1/8°	compared	to	1/2°	while	storage	of	 input	and	output	
data	and	running	times	drastically	increased.		

We	conclude	that	 the	 integrated	physically‐based	VIC‐RBM	modelling	 framework	 is	suitable	
to	 simulate	 daily	 river	 discharge	 and	 water	 temperatures	 in	 large	 basins	 realistically.	 The	
modelling	 approach	 has	 potential	 for	 decision	 support	 (for	 example	 for	 water	 quality	
planning	on	a	large	scale)	and	to	perform	risk	analyses	and	studying	climate	change	impacts	
for	large	river	basins	and	on	a	continental	and	global	scale.	
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Chapter 4  

	

	

Global River Discharge and Water Temperature  

under Climate Change 
	

Abstract 

Climate	change	will	affect	hydrologic	and	thermal	regimes	of	rivers,	having	a	direct	impact	on	
freshwater	ecosystems	and	human	water	use.	Here	we	assess	the	impact	of	climate	change	on	
global	 river	 flows	 and	 water	 temperatures,	 and	 identify	 regions	 that	 might	 become	 more	
critical	 for	 freshwater	ecosystems	and	water	use	sectors.	We	used	a	global	physically‐based	
hydrological	and	water	 temperature	modelling	 framework	 forced	with	an	ensemble	of	bias‐
corrected	 general	 circulation	model	 (GCM)	 output	 for	 both	 the	 SRES	 A2	 and	 B1	 emissions	
scenario.	This	 resulted	 in	global	projections	of	daily	 river	discharge	and	water	 temperature	
under	future	climate.	Our	results	show	an	increase	in	the	seasonality	of	river	discharge	(both	
increase	in	high	flow	and	decrease	in	low	flow)	for	about	one‐third	of	the	global	land	surface	
area	 for	 2071‐2100	 relative	 to	 1971‐2000.	 Consistent	 increases	 in	 mean	 river	 flow	 are	
projected	 for	 the	 high	 northern	 latitudes	 and	 parts	 of	 the	 tropical	 region,	 and	 consistent	
decreases	for	the	United	States,	southern	and	central	Europe,	Southeast	Asia	and	the	southern	
parts	 of	 South	 America,	 Africa	 and	 Australia.	 Global	 mean	 and	 high	 (95th	 percentile)	 river	
water	temperatures	are	projected	to	increase	on	average	by	0.8–1.6	(1.0–2.2)°C	for	the	SRES	
B1‐A2	 scenario	 for	 2071‐2100	 relative	 to	 1971‐2000.	 The	 largest	 water	 temperature	
increases	 are	 projected	 for	 the	 United	 States,	 Europe,	 eastern	 China	 and	 parts	 of	 southern	
Africa	and	Australia.	In	these	regions,	the	sensitivities	are	exacerbated	by	projected	decreases	
in	 low	 flows	 (resulting	 in	 a	 reduced	 thermal	 capacity).	 A	 combination	 of	 large	 increases	 in	
river	 temperature	 and	 decreases	 in	 low	 flows	 are	 projected	 for	 the	 south‐eastern	 United	
States,	 Europe,	 eastern	 China,	 southern	 Africa	 and	 southern	 Australia.	 These	 regions	 could	
potentially	 be	 affected	 by	 increased	 deterioration	 of	water	 quality	 and	 freshwater	 habitats,	
and	reduced	water	available	for	human	uses	such	as	thermoelectric	power	and	drinking	water	
production.		
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4.1  Introduction 

Hydrologic	and	thermal	regimes	of	rivers	are	of	major	importance	for	freshwater	ecosystems	
and	 human	 water	 use.	 Both	 river	 discharge	 and	 water	 temperature	 directly	 affect	 water	
quality	 (Ducharne,	2008;	Haag	and	Westrich,	2002;	Ozaki	et	al.,	2003),	and	 the	growth	rate	
and	 distribution	 of	 freshwater	 organisms	 (Eaton	 and	 Scheller,	 1996;	 Ebersole	 et	 al.,	 2001;	
Mohseni	 et	 al.,	 2003).	 In	 addition,	 water	 temperature	 and	 availability	 are	 economically	
important,	 for	 example	 for	 thermoelectric	 power	 production	 (Forster	 and	 Lilliestam,	 2011;	
Koch	 and	 Vögele,	 2009;	 Manoha	 et	 al.,	 2008),	 drinking	 water	 production	 (Ramaker	 et	 al.,	
2005;	 Senhorst	 and	 Zwolsman,	 2005),	 fisheries	 (Bartholow,	 1991;	 FAO,	 2008;	 Ficke	 et	 al.,	
2007)	and	recreation	(EEA,	2008b;	Webb	et	al.,	2008).	

Due	 to	 climate	 change,	 hydrological	 and	 thermal	 regimes	 of	 rivers	 are	 expected	 to	 change.	
This	 will	 have	 direct	 consequences	 for	 freshwater	 ecosystems,	 water	 quality	 and	 human	
water	use.	Many	previous	macro‐scale	hydrological	modelling	studies	have	been	carried	out	
to	 assess	 the	 impact	 of	 climate	 change	 on	water	 availability	 at	 continental	 (Arnell,	 1999b;	
Lehner	 et	 al.,	 2006)	 and	 global	 scales	 (e.g.	 Arnell,	 1999a;	 Döll	 and	 Zhang,	 2010;	 Sperna	
Weiland	et	al.,	2012;	Vörösmarty	et	al.,	2000).	However,	most	of	these	studies	ignore	changes	
in	 water	 temperature	 (or	 water	 quality	 in	 general)	 and	 focus	 on	monthly	 or	 annual	mean	
estimates	 of	 river	 discharge,	 while	 higher	 temporal	 resolution	 (e.g.	 daily)	 estimates	 are	
commonly	required	to	address	impacts	for	freshwater	ecosystems	and	water	use	sectors.		

For	 water	 temperature,	 both	 statistical	 (e.g.	 Mantua	 et	 al.,	 2010;	 Pilgrim	 et	 al.,	 1998)	 and	
process‐based	modelling	approaches	(e.g.	Gooseff	et	al.,	2005;	Sinokrot	et	al.,	1995;	Stefan	and	
Sinokrot,	1993)	have	been	applied	to	project	the	effects	of	future	climate	on	catchment	scale	
river	 temperatures.	 Less	work	has	been	done	on	modelling	 climate	 change	 impact	 on	 river	
temperatures	 at	 larger	 scales,	 although	 some	 regression	 studies	 have	 addressed	 the	
sensitivity	of	water	temperatures	to	air	temperature	increases	in	the	United	States	(Mohseni	
et	 al.,	 1999)	 and	 the	 combined	 impacts	 of	 river	 flow	 changes	 on	 river	 temperatures	 at	 the	
global	scale	(van	Vliet	et	al.,	2011).		

Although	river	temperatures	are	generally	most	sensitive	to	atmospheric	conditions,	changes	
in	 streamflow	 also	 significantly	 affect	 water	 temperatures,	 especially	 during	 warm,	 dry	
periods	with	 low	river	 flows	(Sinokrot	and	Gulliver,	2000;	van	Vliet	et	al.,	2011).	Combined	
effects	of	atmospheric	warming	and	changes	in	river	flow	should	therefore	be	considered	in	
modelling	future	climate	change	impacts	on	river	water	temperature.		

Here	we	assess	the	impact	of	climate	change	on	daily	river	discharge	and	water	temperature	
on	a	global	scale,	by	using	a	physically‐based	hydrological	and	water	temperature	modelling	
framework	forced	with	an	ensemble	of	daily	bias‐corrected	general	circulation	model	(GCM)	
output.	The	daily	projections	were	used	to	assess	the	magnitude	and	significance	of	changes	
in	mean	 and	 extremes	 in	 river	 flow	 and	water	 temperature	 on	 both	 global	 and	 river	 basin	
scales.	We	then	used	the	global	river	discharge	and	water	temperature	projections	to	identify	
regions	 characterized	 by	 substantial	 decreases	 in	 low	 flow	 in	 combination	 with	 large	
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increases	in	water	temperature,	because	these	regions	could	potentially	experience	increased	
deterioration	of	freshwater	habitats	and	reduced	potential	for	human	water	use.		

The	 global	 hydrological	 ‐	water	 temperature	modelling	 framework	 consists	 of	 the	 Variable	
Infiltration	 Capacity	 (VIC)	 macro‐scale	 hydrological	 model	 (Liang	 et	 al.,	 1994)	 and	 stream	
temperature	River	Basin	Model	 (RBM)	 (Yearsley,	2009).	The	modelling	 framework	 includes	
anthropogenic	 impacts	 of	 thermal	 discharges	 from	 thermoelectric	 power	 plants	 on	 water	
temperatures,	 and	 the	modelling	 performance	 has	 been	 evaluated	 for	 14	 large	 river	 basins	
globally,	situated	in	different	hydro‐climatic	zones	and	with	different	anthropogenic	impacts	
(van	Vliet	et	al.,	2012a).	Overall,	a	realistic	representation	of	daily	river	discharge	and	water	
temperature	 was	 found	 for	 the	 historical	 period	 1971‐2000,	 with	 a	 similar	 performance	
during	warm,	dry	summer	periods.	

In	this	study,	future	projections	of	daily	river	discharge	and	water	temperature	under	climate	
change	 were	 produced	 on	 a	 global	 scale	 by	 forcing	 the	 global	 hydrological	 ‐	 water	
temperature	 modelling	 framework	 (Section	 4.2.1)	 with	 statistically	 bias‐corrected	 GCM	
output	 for	 both	 the	 SRES	 A2	 and	 B1	 scenario	 for	 2071‐2100	 and	 for	 1971‐2000	 (Section	
4.2.2).	 These	 global	 projections	 were	 used	 to	 quantify	 changes	 in	 river	 discharge	 (Section	
4.3.2)	and	water	temperature	(Section	4.3.3)	and	to	identify	regions	characterized	by	a	strong	
increase	 in	 river	 water	 temperature	 and	 decreases	 in	 river	 discharge	 (water	 availability)	
(Section	4.3.4).		

4.2  Material and methods 

The	methodological	 framework	 for	 this	 study	 is	 shown	 in	Figure	4.1.	Bias‐corrected	output	
from	 three	 GCMs	 for	 both	 the	 SRES	 A2	 (red)	 and	 B1	 (orange)	 global	 emissions	 scenarios	
(Nakicenovic,	2000)	for	2071‐2100	and	for	1971‐2000	(control;	blue)	were	used	to	force	the	
global	 hydrological	 and	 water	 temperature	 modelling	 framework.	 The	 resulting	 daily	
simulations	 of	 global	 river	 flow	 and	 water	 temperature	 were	 used	 in	 three	 control	
experiments	 and	 six	 future	 GCM	 experiments.	 The	 background	 of	 the	 hydrological	 ‐	 water	
temperature	 modelling	 framework,	 climate	 scenarios	 and	 bias‐correction	 are	 described	 in	
Sections	4.2.1	and	4.2.2.		

4.2.1  Hydrological ‐ water temperature modelling framework 

The	hydrological	 ‐	water	temperature	modelling	framework	consists	of	 the	physically‐based	
Variable	Infiltration	Capacity	(VIC)	model	(Liang	et	al.,	1994)	and	the	one‐dimensional	stream	
temperature	model	RBM	(Yearsley,	2009;	Yearsley,	2012).	VIC	is	a	grid‐based	water	‐	energy	
balance	model	and	is	used	with	an	offline	routing	model	(Lohmann	et	al.,	1998)	to	simulate	
daily	streamflow.	The	VIC	hydrological	model	was	applied	using	the	elevation	and	land	cover	
classification	 as	 described	 in	 Nijssen	 et	 al.	 (2001b)	 and	 using	 the	 DDM30	 routing	 network	
(Döll	and	Lehner,	2002)	for	lateral	routing	of	streamflow.		



Chapter 4     

76 

	

 

Figure 4.1: Schematic  representation of  the modelling  framework with  selected emission  scenarios and GCMs, and 
bias‐correction  of  GCM  output  with  observed meteorological  dataset  (Obs).  These  data  were  used  to  force  the 
physically‐based hydrological  ‐ water  temperature  (VIC‐RBM) modelling  framework,  resulting  in daily simulations of 
river flow (Q) and water temperature (Tw) under control (reference) and future climate. 

RBM	 is	 a	 process‐based	 computationally‐efficient	water	 temperature	model	 that	 solves	 the	
1D‐heat	advection	equation	using	the	semi‐Lagrangian	approach	(Yearsley,	2009).	Daily	river	
water	temperature	is	simulated	using	climate	forcings	(air	temperature,	shortwave	and	long	
wave	 radiation,	 vapor	 pressure,	 density,	 pressure	 and	 wind	 speed)	 disaggregated	 to	 a	 3‐
hourly	 time	 step	 and	 daily	 channel	 flows,	width,	 depth	 and	 flow	 velocity	 from	VIC	 and	 the	
routing	 model	 (see	 Yearsley	 (2012)	 and	 van	 Vliet	 et	 al.	 (2012a)	 for	 a	 description	 of	 the	
linkages	between	the	components	in	the	modelling	framework).		

The	VIC‐RBM	modelling	framework	has	been	implemented	on	a	global	scale	on	a	0.5°	x	0.5°	
spatial	 resolution	 (van	 Vliet	 et	 al.,	 2012a).	 The	 model	 system	 runs	 on	 a	 daily	 time	 step.	
Impacts	 of	 anthropogenic	 heat	 effluents	 from	 thermoelectric	 power	 plants	 on	 water	
temperature	were	 incorporated	 by	 using	 global	 gridded	 thermoelectric	 water	 use	 datasets	
(Flörke	et	al.,	2011;	Vassolo	and	Döll,	2005;	Voß	and	Flörke,	2010)	and	representing	thermal	
discharges	 as	point	 sources	 in	 the	heat‐advection	equation	 (see	 van	Vliet	 et	 al.	 (2012b)	 for	
details).	The	headwater	temperatures	were	estimated	using	the	nonlinear	water	temperature	
regression	model	of	Mohseni	et	al.	(1998)	for	333	GEMS/Water	stations	for	1980‐2000.	The	
estimated	 parameters	 were	 then	 interpolated	 to	 0.5°	 x	 0.5°	 global	 grids	 using	 ordinary	
kriging.	For	 the	headwater	grid	 cells	 in	RBM,	water	 temperatures	were	estimated	based	on	
daily	air	temperature	and	the	parameter	values	for	these	headwater	grid	cells	(van	Vliet	et	al.,	
2012b).		

4.2.2  Climate change scenarios  

Daily	 output	 of	 the	 three	 coupled	 atmosphere/ocean	 general	 circulation	 models	 (GCMs)	
ECHAM5/MPIOM	(Jungclaus	et	al.,	2006;	Roeckner	and	Coauthors,	2003),	CNRM‐CM3	(Déqué	
et	 al.,	 1994;	 Madec	 et	 al.,	 1998;	 Salas‐Mélia,	 2002)	 and	 IPSL‐CM4	 (Fichefet	 and	 Morales	
Maqueda,	1997;	Goosse	and	Fichefet,	1999;	Hourdin	et	al.,	2006)	for	both	the	SRES	A2	and	B1	
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emissions	scenario	(Nakicenovic,	2000)	from	the	CMIP3	archive	were	used	to	force	the	global	
hydrological	 ‐	 water	 temperature	 modelling	 framework.	 These	 three	 GCMs,	 denoted	 as	
ECHAM,	 CNCM3	 and	 IPSL	 henceforth,	 were	 selected	 mainly	 because	 of	 the	 availability	 of	
archived	output	on	a	daily	time	step	(Hagemann	et	al.,	2011).	For	an	evaluation	of	these	GCMs	
and	projected	changes	 in	climate	 in	relation	to	the	other	GCMs	for	which	model	output	was	
archived	for	CMIP3	we	refer	to	Randall	et	al.	(2007)	and	Meehl	et	al.	(2007).	We	used	climate	
data	 for	 both	 the	 SRES	 A2	 and	 B1	 emissions	 scenario	 (Nakicenovic,	 2000).	 The	 two	 SRES	
scenarios	 represent	 contrasting	 storylines	 and	 emissions	 scenarios,	 which	 results	 in	 the	
largest	range	from	the	four	IPCC	SRES	main	emissions	scenarios.		

Because	 of	 significant	 systematic	 biases	 in	 the	 ability	 of	 GCMs	 for	 simulations	 of	 observed	
climate	(Randall	et	al.,	2007)	a	bias	correction	on	GCM	output	is	needed	to	produce	suitable	
forcings	for	use	in	hydrological	models.	Several	previous	studies	that	assessed	the	impact	of	
climate	 change	 on	 global	 hydrology	 (e.g.	 Alcamo	 et	 al.,	 2007;	 Arnell,	 2004;	 Nijssen	 et	 al.,	
2001a)	 used	 the	 ‘change	 factor’	 (‘delta‐change’)	 approach	 (Diaz‐Nieto	 and	Wilby,	 2005).	 In	
this	approach,	differences	between	control	and	future	climate	model	simulations	are	applied	
to	baseline	climate	observations	by	simply	adding	or	scaling	the	mean	change	factors	for	each	
day	to	produce	forcings	for	hydrology	models	(Fowler	et	al.,	2007b).	Among	the	limitations	of	
this	 approach	 are	 the	 assumption	 of	 a	 constant	 bias	 through	 time,	 which	 ignores	 possible	
changes	 in	 variability,	 and	 the	 assumption	 that	 spatial	 patterns	 of	 climate	 will	 remain	
constant	(Diaz‐Nieto	and	Wilby,	2005).	In	addition,	for	precipitation	the	temporal	sequence	of	
wet	days	remains	unchanged,	which	ignores	changes	in	dry	and	wet	periods	expected	under	
climate	 change	 (Fowler	 et	 al.,	 2007b).	 To	 obtain	 more	 reliable	 estimates	 of	 changes	 in	
hydrological	variability	and	extremes,	more	sophisticated	statistical	bias	correction	methods	
have	been	developed	(e.g.	Ines	and	Hansen,	2006;	Li	et	al.,	2010;	Piani	et	al.,	2010),	as	well	as	
dynamical	approaches	which	use	regional	climate	models	with	boundary	conditions	provided	
by	 a	 GCM	 (e.g.	 Jacob	 et	 al.,	 2007)	 and	 combination	 of	 dynamical	 and	 statistical	 approaches	
(e.g.	Wood	et	al.,	2004).	

Within	 the	 FP6	 Water	 and	 Global	 Change	 (WATCH)	 project,	 a	 statistical	 bias	 correction	
procedure	was	performed	on	daily	precipitation,	mean,	minimum	and	maximum	surface	air	
temperature	for	the	GCM	experiments	described	above	(Hagemann	et	al.,	2011).	The	method	
is	 based	 on	 transfer	 functions	 that	 describe	 the	 relationship	 between	 the	 daily	 modelled	
(corrected)	and	daily	observed	time	series.	These	transfer	functions	are	fitted	at	grid	cell	level	
and	are	used	 to	 adjust	 the	probability	distribution	 function	of	 intensity	 for	 these	 simulated	
variables	(Piani	et	al.,	2010).	Note	that	this	method	does	not	correct	directly	for	some	changes	
in	 timing	of	precipitation	 (e.g.	 in	 the	onset	of	 the	monsoon	 (Hagemann	et	al.,	2011)).	Other	
shortcomings	 are	 that	 the	 assumed	 bias	 for	 the	 future	 period	 is	 similar	 to	 the	 bias	 in	 the	
control	(historical)	period	to	which	the	transfer	functions	are	fitted,	and	the	quality	of	the	bias	
correction	highly	depends	on	the	quality	of	observations	used	as	the	reference.	Nonetheless,	
the	application	of	this	bias	correction	method	has	shown	that	it	effectively	improves	both	the	
mean	 and	 variance	 of	 the	daily	 precipitation	 and	 temperature	 fields	 for	 the	 control	 period,	
and	can	also	correct	higher	moments	of	the	precipitation	distribution	(Hagemann	et	al.,	2011;	
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Piani	et	al.,	2010).	The	global	gridded	0.5°	x	0.5°	WATCH	forcing	dataset	(WFD)	(Weedon	et	
al.,	 2011)	was	used	 as	 the	 reference	 (observed)	 data	 for	 the	 statistical	 bias	 correction.	The	
bias	correction	transfer	function	for	each	grid	cell	was	derived	for	the	1960‐1999	period	and	
was	subsequently	applied	to	1960‐2100	under	an	assumption	that	the	biases	in	GCM	output	
for	the	future	period	are	similar	as	for	the	control	period.	Before	the	actual	bias	correction	of	
precipitation	 and	 surface	 air	 temperature,	 a	 statistical	 downscaling	 was	 conducted	 on	 all	
forcing	variables	to	produce	fields	at	0.5°	x	0.5°	spatial	resolution	(for	details	see	Hagemann	
et	al.	(2011)).	

The	VIC‐RBM	hydrological	 ‐	water	 temperature	modelling	 framework	was	 forced	with	daily	
bias‐corrected	 precipitation,	 daily	 minimum	 and	 maximum	 temperature	 and	 with	
(uncorrected)	wind	speed	to	produce	projections	of	daily	river	flow	and	water	temperature	
for	the	21st	century.	As	vapor	pressure,	 incoming	shortwave	and	net	longwave	radiation	are	
not	 supplied	directly	 to	VIC,	 these	 forcing	variables	are	 calculated	 internally	based	on	bias‐
corrected	 daily	 minimum	 and	 maximum	 temperature	 and	 daily	 precipitation,	 using	 the	
algorithms	of	Kimball	et	al.	(1997)	and	Thornton	and	Running	(1999)	(for	details	see	Nijssen	
et	 al.	 (2001b)).	 For	 the	 analyses	we	 focussed	 on	 the	 control	 period	 1971‐2000	 and	 future	
period	2071‐2100. 	

4.3  Results 

4.3.1  Evaluation of control simulations of river discharge and water temperature 

To	address	impacts	of	uncertainties	from	the	(bias‐corrected)	GCM	output	on	daily	river	flow	
and	water	temperature,	we	compared	the	simulated	results	for	the	control	runs	of	the	three	
GCMs	with	 those	based	on	 the	historical	WATCH	 forcing	data	 for	 the	period	1971‐2000.	 In	
addition,	 the	 simulated	 river	 discharge	 and	 water	 temperature	 were	 also	 compared	 with	
observed	values	 to	 evaluate	 the	overall	 performance	of	 the	VIC‐RBM	modelling	 framework.	
For	 both	 river	 discharge	 and	 water	 temperature,	 boxplots	 are	 shown	 in	 Figure	 4.2	 which	
summarize	 the	distribution	 in	 the	observed	mean	values	 (OBS)	 and	 simulated	mean	values	
based	 on	 the	 WATCH	 forcing	 data	 (WFD)	 along	 with	 the	 control	 runs	 of	 the	 three	 GCMs	
(CNCM3,	ECHAM,		IPSL)	for	river	stations	grouped	per	Köppen	climate	zone	(tropical	(A),	dry	
(arid	and	semiarid;	B),	temperate	(C),	continental	(D)	and	polar	(E))	(Köppen,	1923).	For	river	
discharge,	we	used	daily	observed	series	of	1612	stations	(see	Figure	4.2a)	provided	by	the	
Global	Runoff	Data	Centre	(GRDC)	for	the	period	1971‐2000.	For	water	temperature,	we	used	
daily	 records	 of	 347	 river	 stations	 (see	 Figure	 4.2b)	 of	 the	 United	 Nations	 Environment	
Programme	 (GEMS/Water)	 for	 1980‐2000	 and	 compared	with	 simulated	 daily	mean	water	
temperatures	 for	 the	 same	period.	 The	 Supplementary	 Figures	A1‐A3	provide	more	 details	
about	 the	 performance	 of	 the	 VIC‐RBM	 hydrological	 and	 water	 temperature	 modelling	
framework	using	different	performance	coefficients.	
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Figure  4.2:  Location  of  selected GRDC  river  discharge  stations  (a)  and GEMS water  temperature  stations  (b)  and 
boxplots  of  mean  observed  (O)  and  mean  simulated  values  using  WATCH  forcing  data  (W)  and  three  control 
simulations  of  the  CNCM3  (C),  ECHAM  (E)  and  IPSL  (I)  GCMs  for  river  discharge  (1971‐2000)  (a)  and  for  water 
temperature (1980‐2000) (b) per main Köppen climate class.	 

Boxplots	for	simulated	mean	river	discharge	values	(Figure	4.2a)	based	on	WFD	correspond	
well	with	 the	 boxplots	 of	 the	 observed	mean	discharge	 values,	 although	 the	median,	 upper		
quartile	and	upper	 range	 (1.5*	 interquartile	 range)	of	 simulated	means	 for	river	 stations	 in	
the	 tropical,	 dry	 and	 temperate	 climate	 zone	 are	 slightly	 overestimated	 compared	 to	 the	
observations.	This	 corresponds	with	 the	overall	 positive	normalized	bias	 that	we	 found	 for	
the	 discharge	 stations	 in	 these	 three	 climate	 zones	 (see	 Supplementary	 Figure	 A3a).	 The	
overall	overestimation	in	river	discharge	in	dry	and	tropical	basins	was	also	found	for	several	
other	global	hydrological	models	and	 land	surface	schemes	which	were	 run	using	 the	same	
forcing	 data	 (WFD)	 as	 part	 of	 the	 EU	 FP6	 WATCH	 global	 modelling	 framework.	 This	
overestimation	 is	 partly	 due	 to	 the	 neglect	 of	 water	 extractions	 and	 complicated	 wetland	
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dynamics	(Haddeland,	2011).	The	boxplots	of	simulated	river	discharge	for	the	three	control	
simulations	 (CNCM3,	 ECHAM,	 IPSL)	 correspond	 closely	 with	 the	 boxplots	 for	WFD	 (Figure	
4.2a),	which	indicates	that	no	distinct	impacts	of	biases	(uncertainties)	in	GCM	output	on	the	
control	river	flow	simulations	were	found.		

An	 overall	 close	 correspondence	between	 boxplots	 of	 observed	 (OBS)	 and	 simulated	water	
temperature	(WFD)	was	found	(Figure	4.2b),	although	simulated	mean	water	temperatures	in	
the	tropical	region	were	slightly	overestimated	probably	due	to	neglect	of	vegetation	shading	
effects.	 Slightly	 lower	 model	 performance for	 stations	 in	 the	 high	 latitude	 region	
(Supplementary	Figure	A2‐A3)	is	probably	due	to	the	neglect	of	impacts	of	complex	snowmelt	
processes	on	the	water	temperature	simulations.	Boxplots	of	mean	water	temperature	for	the	
control	simulations	of	CNCM3,	ECHAM	and	IPSL	also	match	closely	with	those	for	WFD.	While	
discharge	 simulations	 are	 used	 as	 input	 into	 the	 water	 temperature	 model,	 we	 found	 an	
overall	 greater	 persistence	 of	 the	 system	 under	 uncertainties	 in	 input	 (robustness)	 for	 the	
water	temperature	predictions	compared	to	the	discharge	predictions.	This	is	mainly	because	
water	 temperature	 is	 more	 strongly	 impacted	 by	 radiation	 and	 air	 temperature	 than	 by	
precipitation.	Water	temperature	is	therefore	 less	sensitive	to	uncertainties	in	precipitation,	
while	 these	 uncertainties	 potentially	 have	 a	 large	 impact	 on	 simulated	 river	 discharge	
(Biemans	et	al.,	2009;	Fekete	et	al.,	2004;	Voisin	et	al.,	2008).		

4.3.2  Global changes in river discharge under future climate 

Based	on	the	daily	river	discharge	projections	for	all	GCM	experiments,	we	calculated	spatial	
patterns	of	ensemble	mean	changes	in	daily	river	discharge	for	the	period	2071‐2100	for	both	
the	SRES	A2	and	B1	emissions	scenarios	relative	 to	 the	ensemble	mean	control	 simulations	
for	 1971‐2000.	 Our	 results	 show	 an	 increase	 in	 mean	 annual	 river	 discharge	 in	 the	 high	
northern	 latitudes	 and	 large	 parts	 of	 the	 tropical	 (monsoon)	 region.	 A	 decrease	 in	 river	
discharge	 on	 a	mean	 annual	 basis	 is	 projected	 for	 the	mid‐northern	 latitudes	 (U.S.,	 Central	
America,	 southern	 and	 central	 Europe,	 and	 Southeast	 Asia)	 and	 the	 southern	 latitudes	
(southern	parts	 of	 South	America,	 Africa	 and	Australia)	 (Figure	 4.3a).	 Projected	 changes	 in	
river	 discharge	 are	 generally	 larger	 for	 GCM	 experiments	 based	 on	 the	 SRES	 A2	 (medium‐
high)	 compared	 to	 B1	 (low),	 because	 of	 the	 larger	 changes	 in	 projected	 precipitation	 and	
meteorological	forcing	variables	affecting	evaporation.	The	Supplementary	Figures	A4	and	A5	
present	 global	 patterns	 with	 mean	 annual	 changes	 of	 meteorological	 forcing	 and	 water	
balance	components	simulated	with	VIC	for	both	SRES	A2	and	B1	for	the	period	2071‐2100	
relative	 to	 1971‐2000.	 Overall,	 the	 spatial	 patterns	 of	 projected	 changes	 in	 mean	 river	
discharge	(Figure	4.3a)	and	total	runoff	(Supplementary	Figure	A5)	correspond	closely	with	
projected	changes	in	mean	precipitation	(Supplementary	Figure	A5).	

Although	 projected	 changes	 in	 river	 discharge	 are	 larger	 for	 the	 SRES	 A2	 than	 for	 B1	 and	
differences	 exists	 between	 the	 three	 GCM	 projections	 (see	 Supplementary	 Figure	 A6),	 the	
signal	of	 changes	 in	mean	 river	discharge	among	 the	 six	GCM	experiments	 is	 consistent	 for	
about	60%	of	the	grid	cells	globally	(see	regions	with	black	dots	in	Figure	4.3).	In	addition,	we	



Global river discharge and water temperature under climate change 

81 

	

found	 a	 high	 signal‐to‐noise	 ratio	 (SNR),	 defined	 as	 the	 ratio	 of	 mean	 change	 in	 river	
discharge	to	standard	deviation	of	change	in	river	discharge	for	the	three	GCMs.	On	a	global	
average	basis	the	SNR	is	10‐11	for	the	SRES	B1‐A2.		

In	addition	to	changes	in	mean	river	flow,	we	focussed	on	spatial	patterns	of	changes	in	high	
and	low	flows	(Figure	4.3b‐c).	For	high	flows,	we	calculated	changes	in	the	95th	percentile	of	
the	 daily	 distribution	 (Q95)	 rather	 than	 the	 maximum	 annual	 discharge,	 because	 the	 95th	
percentile	is	less	sensitive	to	outliers	in	the	simulated	daily	discharge	series.	For	low	flows,	we	
used	the	10th	percentile	of	the	daily	distribution	(Q10)	which	is	a	widely	used	low	flow	index	
(Pyrce,	 2004;	 Smakhtin,	 2001;	 Tharme,	 2003).	 Overall,	 high	 flows	 are	 also	 projected	 to	
increase	for	a	large	part	of	the	global	land	surface	area,	with	similar	patterns	as	for	changes	in	
mean	flow	(Figure	4.3a‐b).	In	contrast,	 low	flows	are	projected	to	decrease,	especially	in	the	
southern	U.S.,	Central	America,	Europe	(except	northern	part),	Southeast	Asia,	Australia	and	
southern	parts	of	South	America	and	Africa	(Figure	4.3c).	For	about	24%	of	 the	global	 land	
surface	area	there	were	consistent	decreases	in	low	flow	projected	for	all	GCM	experiments.	A	
distinctly	higher	signal‐to‐noise	ratio	(SNR)	 in	 low	flows	was	 found	 for	 the	A2	compared	to	
the	B1	scenario	(global	average	SNR	of	39	compared	to	10,	respectively).	

 

Figure 4.3: Global projected changes in mean flow (a), high flow (Q95) (b) and low flow (Q10) (c) for 2071‐2100 relative 
to  1971‐2000  averaged  for  the  three  selected GCMs  for both  the  SRES A2  and  B1  emissions  scenario.  Black  dots 
indicate regions with consistent signal of change between the three GCMs. Regions with mean flow less than 1 m3s‐1 
are masked. 	
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Considering	 the	 changes	 in	 daily	 river	 discharge,	 we	 found	 an	 increase	 in	 river	 discharge	
seasonality,	which	we	 defined	 as	 increasingly	 higher	 95th	percentile	 flows	 and	 decreasingly	
lower	 10th	 percentile	 flows,	with	 values	 ranging	 between	 58%	 and	 64%	 of	 the	 global	 land	
surface	area	for	the	different	GCM	experiments.	Using	the	ensemble	mean	discharge	changes,	
an	increase	in	discharge	seasonality	is	projected	for	27‐30%	of	the	global	land	surface	area	for	
SRES	 B1‐A2.	 Increases	 in	 discharge	 seasonality	 were	 found	 for	 different	 hydro‐climatic	
regions,	 but	 overall	 highest	 increases	 were	 found	 for	 the	 temperate	 zone	 and	 continental	
climate	zone	(Figure	4.4).	

Mean	annual	cycles	of	projected	changes	 in	river	 flow	(Figure	4.5)	also	show	an	 increase	 in	
discharge	 seasonality	 for	 2071‐2100	 relative	 to	 1971‐2000.	 Examples	 are	 shown	 for	 the	
Mekong,	 Rhone	 and	 Ob	 Rivers,	 which	 are	 situated	 in	 different	 hydro‐climatic	 zones.	 In	
addition,	the	mean	annual	cycles	show	an	earlier	start	of	the	snowmelt	peak	in	spring	for	the	
snowmelt	 dominated	 Ob	 River,	 and	 transient	 (mixture	 of	 snowmelt‐	 and	 rain‐fed)	 Rhone	
River.	A	decrease	 in	 snowmelt	peak	and	 transition	 to	 a	more	 rain‐fed	dominated	discharge	
regime	is	also	shown	for	the	Rhone.	Projected	changes	in	mean,	low	(Q10)	and	high	(Q95)	river	
flows	 for	 24	 large	 river	 basins	 (Table	 4.1)	 show	 the	 highest	 increase	 in	 river	 discharge	
seasonality	for	the	Mekong	(mean	change	in	Q10:	‐22%	vs.	Q95:	+7%),	Yangtze	(‐18%	vs.	+5%),	
Ganges‐Brahmaputra	(‐13%	vs.	+5%)	and	Columbia	(‐8%	vs.	+20%)	river	basins.	For	several	
basins	in	Europe,	we	found	strong	and	significant	(paired	t‐test;	p<0.01)	decreases	in	low	flow	
(Q10)	(e.g.	Loire	‐53%,	Rhone	‐46%,	Danube	‐43%,	Rhine	‐37%)	and	overall	decreases	in	mean	
annual	river	flow.	In	contrast,	significant	increases	in	mean	and	high	flow	(Q95)	were	found	for	
the	 Arctic	 basins	 due	 to	 large	 increases	 in	 precipitation	 and	 snowmelt	 at	 high	 northern	
latitude.	 Significant	 increases	 in	 Qmean	 and	 Q95	 were	 also	 found	 for	 several	 tropical	 basins	
(Amazon,	Congo,	Indus)	because	of	projected	strong	increases	in	monsoon	rainfall.		

	
Figure 4.4: Global projections of areas with  increase  in  river discharge  seasonality  (defined as both  increasing high 
flows  (95th  percentile,  Q95)  and  decreasing  low  flows  (10

th  percentile,  Q10)  for  2071‐2100  relative  to  1971‐2000 
(consistent  for  SRES  A2  and  B1)  plotted  on  the  Köppen main  climate  zones  (tropical  (A),  dry  (B),  temperate  (C), 
continental (D) and polar (E)). Regions with mean flow less than 1 m3s‐1 are masked. 
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Figure 4.5: Mean annual cycles of projected changes in 30‐day moving average of river discharge for GRDC stations in 
different hydro‐climatic zones for 2071‐2100 relative to 1971‐2000. Observed  (obs; grey) and control simulations of 
river discharge (ctrl; blue) are for 1971‐2000 and future simulations for the SRES A2 (red) and B1 (orange) emissions 
scenarios are for 2071‐2100. Dotted  lines show the results for the three GCMs  individually, coloured polygons show 
the range in results across the GCMs, and the thick line shows the overall GCM mean results for the control run and 
for the SRES A2 and B1 scenario.   

4.3.3  Global changes in river temperature under future climate 

Similar	to	river	flow,	global	patterns	of	changes	in	projected	mean	water	temperature	for	the	
period	2071‐2100	relative	to	1971‐2000	were	calculated	(Figure	4.6).	Overall,	the	patterns	of	
projected	 change	 in	 mean	 annual	 water	 temperature	 between	 the	 different	 GCMs	 are	
consistent,	but	 the	magnitude	of	water	 temperature	 increases	are	higher	 for	CNCM3	(global	
mean	increase	of	0.9‐1.8°C	for	SRES	B1‐A2)	and	IPSL	(1.1‐1.9°C)	than	for	ECHAM	(0.4‐1.0°C).	
Regions	 for	which	 largest	 increases	 in	mean	water	 temperature	 are	 projected	 are	 the	 U.S.,	
Europe,	 eastern	 China	 and	 parts	 of	 southern	 Africa	 and	 Australia	 (all	 of	 which	 have	mean	
increases	larger	than	2°C).	The	basin	average	increases	in	mean	water	temperature	based	on	
all	 six	 GCM	 experiments	 are	 2.4°C	 for	 the	Mississippi,	 1.9°C	 for	 the	 Colorado,	 2.1°C	 for	 the	
Danube,	1.9°C	 for	the	Rhine,	and	2.1°C	 for	 the	Rhone	(see	Table	4.1).	For	these	basins	 large	
increases	were	found	in	high	water	temperatures	(95th	percentile	in	daily	distribution;	Tw95)	
of	 2.6‐2.8°C.	 Overall,	 the	 regions	 for	 which	 strongest	 increases	 in	 water	 temperature	 are	
projected	also	experience	the	greatest	declines	in	 low	flow	(Figures	4.3c	and	4.6).	While	the	
largest	relative	increases	 in	 incoming	longwave	radiation	and	air	temperature	are	found	for	
the	 high	 northern	 latitude	 regions	 (Supplementary	 Figure	 A4),	 simulated	 mean	 water	
temperature	increases	are	generally	low	on	a	mean	annual	basis	for	the	northern	river	basins	
(e.g.	Lena	1.1°C,	Ob	0.9°C	and	Mackenzie	1.1°C;	Table	4.1).	This	is	mainly	because	rivers	are	
still	 frozen	 during	 a	 large	 part	 of	 the	winter	 period	 (simulated	water	 temperatures	 values		
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Table 4.1: Projected changes in mean flow (Qmean), low flow (10
th percentile; Q10) and high flow (95

th percentile; Q95) 
and changes  in mean  (Twmean) and high  (95

th percentile; Tw95) water  temperatures  for 2071‐2100  relative  to 1971‐
2000. Changes are averages for all grid cells in the river basin and are averaged for all six GCM experiments (A2 and B1 
experiments  are  combined).  Significance of  change was  tested using paired  t‐tests  for  the  gridcells  in  each basin. 
Changes at 99% significance  level are bold. Values between brackets  indicate changes  in mean summer  (JJA) water 
temperatures for rivers which are frozen during a large part of the year. 

river basin  dQmean 

[%] 

dQ10 

[%] 

dQ95 

[%] 

dTwmean 

[°C] 

dTw95 

[°C] 

North America     

Mackenzie  +22  +24 +20 +1.1 (+1.4)  +2.2

Mississippi  ‐6  ‐20 ‐3 +2.4  +2.7

Columbia  +25  ‐8 +20 +1.6  +1.9

Colorado  ‐1  ‐15 +2 +1.9  +2.6

Rio Grande  ‐13  ‐27 ‐15 +1.6  +1.4

South America     

Amazon  +21  +12 +23 +0.5  +0.7

Parana  +12  ‐2 +16 +1.0  +1.2

Europe     

Danube  ‐20  ‐43 ‐14 +2.1  +2.7

Rhine  ‐8  ‐37 +1 +1.9  +2.8

Loire  ‐23  ‐53 ‐7 +1.6  +1.8

Rhone  ‐11  ‐46 +1 +2.1  +2.8

Africa     

Congo  +20  +12 +24 +1.4  +1.2

Zambezi  +1  ‐10 +4 +1.5  +1.3

Niger  +9  ‐1 +11 +1.3  +1.7

Orange  +8  +1 +11 +1.3  +1.0

Asia     

Ganges‐Brahmaputra  +4  ‐13 +5 +1.2  +1.5

Indus  +65  +30 +78 +1.3  +0.8

Mekong  +3  ‐22 +7 +0.9  +0.9

Yangtze  ‐1  ‐18 +5 +1.8  +1.8

Yellow  +22  +10 +28 +1.8  +2.3

Asia (Arctic)     

Lena  +48  +31 +55 +1.1 (+2.1)  +2.3

Ob  +17  +5 +21 +0.9 (+1.3)  +1.2

Amur  +23  +10 +27 +1.5 (+2.0)  +2.2

Oceania     

Murray‐Darling  ‐10  ‐25 ‐8 +1.3  +1.3
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remain	 around	 freezing	 point).	 In	 addition,	 large	 increases	 in	 mean	 river	 discharge	 are	
projected	(Table	4.1)	which	increases	the	thermal	capacity	of	these	arctic	rivers	and	reduces	
the	sensitivity	of	river	temperatures	to	atmospheric	warming.	Increases	in	water	temperature	
in	 summer	 (JJA)	 are	 higher	 than	 in	 the	 annual	 mean	 values	 for	 the	 northern	 basins,	 and	
increases	in	Tw95	are	more	than	twice	as	large	as	increases	in	mean	water	temperature	(Table	
4.1).	Overall	moderate	increases	in	mean	and	high	water	temperatures	(Tw95)	are	projected	
for	river	basins	in	the	central	parts	of	South	America	and	Asia	with	mean	water	temperature	
increases	between	0.5°C	(Amazon)	and	1.3°C	(Indus)	(Table	4.1).	A	possible	reason	for	these	
moderate	 water	 temperature	 increases	 is	 the	 dominant	 impact	 of	 increased	 evaporative	
cooling	 (latent	 heat	 flux)	 and	 back	 radiation	 (blackbody	 radiation	 from	 the	water	 surface)	
under	warmer	 conditions	 in	 these	 tropical	 basins,	 in	 combination	with	 strong	 increases	 in	
projected	 mean	 annual	 river	 flow	 (thermal	 capacity)	 for	 most	 tropical	 basins	 (Table	 4.1).	
These	 processes	 reduce	 the	 magnitude	 of	 water	 temperature	 rises	 under	 increased	
atmospheric	energy	input.		

	

 

Figure 4.6: Global projected changes  in mean water temperature for 2071‐2100 relative to 1971‐2000 for the three 
GCMs for both the SRES A2 and B1 scenario. Regions with mean flow less than 1 m3s‐1 are masked. 
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Annual	mean	 cycles	 and	 probability	 distribution	 functions	 of	 simulated	water	 temperature	
also	show	stronger	 increases	for	the	Danube	and	Missouri	Rivers	(temperate	zone)	than	for	
the	Mekong	(tropical	zone)	(Figure	4.7).	For	the	Missouri	and	Danube	Rivers,	the	distribution	
of	water	 temperature	 is	 bimodal,	with	maxima	around	~0‐5°C	 and	~20‐25°C.	These	 values	
indicate	 the	 ranges	 when	 water	 temperature	 starts	 to	 show	 a	 nonlinear	 response	 to	
atmospheric	 cooling	 (because	 of	 freezing)	 and	warming	 (because	 of	 increased	 evaporative	
cooling	 and	 back	 radiation)	 (Mohseni	 and	 Stefan,	 1999).	 For	 the	 Danube,	 and	 to	 a	 lesser	
extent	 the	 Missouri,	 the	 increase	 in	 water	 temperature	 is	 largest	 during	 summer,	 while	 a	
moderate	increase	in	the	high	water	temperature	range	would	be	expected	due	to	increased	
evaporative	cooling.	The	strong	increase	in	high	water	temperature	during	summer	is	partly	
due	 to	 the	 strong	 declines	 in	 summer	 flow	 for	 these	 basins,	 which	 reduces	 the	 thermal	
capacity	 and	 increases	 the	 sensitivity	 to	 increased	 incoming	 radiation	 and	 increased	 air	
temperature.	 In	 addition,	 declines	 in	 river	 flow	 exacerbate	 water	 temperature	 rises	 in	
thermally	polluted	rivers	by	reducing	the	dilution	capacity	for	thermal	effluents.	Especially	for	
the	SRES	A2	scenario,	a	strong	increase	in	high	river	temperatures	is	projected	for	2071‐2100	
as	shown	by	the	probability	distribution	functions	of	simulated	water	temperature	(Figure	4.7	
lower	panel).	

Figure  4.7:  Mean  annual  cycles  of  projected  daily  river  temperature  and  probability  distribution  functions  for 
monitoring  stations  in different hydro‐climatic  zones  for 2071‐2100  relative  to 1971‐2000. Mean annual  cycles are 
based on 30‐day moving averages. Observed (obs; grey) and control simulations of water temperature (ctrl; blue) are 
for 1971‐2000 and  future simulations  for  the SRES A2  (red) and B1  (orange) emissions scenario are  for 2071‐2100. 
Dotted lines show the results for the three GCMs individually, coloured polygons show the range in results across the 
GCMs and the thick line shows the overall GCM mean results for the control run and for the SRES A2 and B1. 
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4.3.4  Critical regions for global freshwater ecosystems and human water use  

Regions	characterized	by	a	combination	of	large	reductions	in	(low)	river	flows	and	increases	
in	 water	 temperatures	 under	 future	 climate,	 could	 potentially	 experience	 increased	
deterioration	of	water	quality,	 freshwater	habitats	and	reduced	potentials	 for	human	water	
use	in	the	future	compared	to	the	current	situation.		

In	the	case	of	water	quality,	declining	river	flows	decrease	their	dilution	capacity,	resulting	in	
increased	 concentrations	of	 effluents	 from	point	 sources	 (Caruso,	2002;	Moore	et	 al.,	 1997;	
van	 Vliet	 and	 Zwolsman,	 2008).	 In	 addition,	 rising	 water	 temperatures	 decrease	 oxygen	
solubility	and	concentrations	 (Kundzewicz	and	Krysanova,	2010;	Murdoch	et	al.,	2000)	and	
increase	the	toxicity	of	pollutants	(e.g.	heavy	metals	and	organophosphates)	to	fish	and	other	
freshwater	species	(Ficke	et	al.,	2007).	Freshwater	organisms	might	also	experience	increased	
stress	due	 to	 lower	 summer	 flows	 that	decrease	available	habitats	 (Isaak	et	 al.,	 2012;	 Sabo	
and	 Post,	 2008)	 and	 the	 exceedances	 of	 critical	 water	 temperature	 thresholds	 (Eaton	 and	
Scheller,	1996;	Mantua	et	al.,	2010;	Mohseni	et	al.,	2003).		

Increases	 in	 the	 occurrence	 of	 low	 flow	 and	 high	water	 temperature	 events	may	 also	 have	
adverse	 socio‐economic	 impacts	 such	 as	 through	 reduced	 thermoelectric	 power	production	
(Forster	and	Lilliestam,	2011;	Koch	and	Vögele,	2009;	van	Vliet	 et	al.,	 2012b).	Rising	water	
temperatures	 are	 also	 expected	 to	 increase	 risks	 of	 health	 impacts	 due	 to	 increased	
concentrations	of	microbiological	 pollutants	 (e.g.	Legionella	Campylobacter,	Vibrio	cholerae).	
This	 could	 result	 in	 increased	 costs	 of	water	 treatment	 to	 produce	 potable	 drinking	water	
(Delpla	et	al.,	2009;	Schindler,	2001;	WHO,	2011).	

To	get	a	 first	 impression	of	regions	 that	could	potentially	experience	deterioration	of	water	
quality,	freshwater	habitat	and	reduced	potential	for	human	water	use	under	future	climate,	
we	combined	spatial	patterns	of	projected	changes	in	low	river	flow	with	patterns	of	changes	
in	mean	water	temperature	 for	2071‐2000.	Based	on	this,	we	 identified	regions	 for	which	a	
strong	decrease	in	low	flow	(change	of	<	‐25%	in	the	10th	percentile	of	daily	river	discharge)	
and	large	increases	in	mean	water	temperature	(>2.0°C)	for	2071‐2100	relative	to	1971‐2000	
are	projected.	Overall,	the	extent	of	such	regions	is	larger	for	the	SRES	A2	than	B1	emissions	
scenario	(Figure	4.8).	Regions	where	both	conditions	are	projected	to	occur	are	located	in	the	
south‐eastern	 U.S.,	 Europe	 (except	 the	 northern	 part),	 eastern	 China,	 southern	 Africa	 and	
southern	Australia.		

In	addition	to	these	spatial	patterns,	we	explored	whether	the	timing	of	low	flow	periods	and	
high	 water	 temperature	 periods	 correspond,	 because	 most	 critical	 impacts	 for	 freshwater	
ecosystems	and	human	water	use	occur	when	 low	 flow	and	high	water	 temperature	events	
coincide.	Therefore,	we	 tested	 for	 each	grid	 cell	whether	 the	month	with	 the	highest	water	
temperature	corresponds	to	the	month	of	lowest	river	flow	(±	one	month	deviation)	using	the	
daily	 simulated	 water	 temperature	 and	 river	 flow	 under	 both	 historical	 (1971‐2000)	 and	
future	climate	(2071‐2100).	For	18%	of	 the	global	 land	surface	area	(17%	for	SRES	B1	and	
19%	for	SRES	A2)	the	timing	of	high	water	temperature	and	low	flow	periods	coincide	(Figure		
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Figure  4.8:  Regions  characterized  by  strong  decreases  in  low  (10th  percentile)  river  flow  (orange),  high  water 
temperature rises (>2.0°C) (brown) and combination of both changes for 2071‐2100 using averages for both the SRES 
A2 and B1 scenario. 

 

Figure 4.9: Regions for which the month with the highest water temperature coincides with the month with  lowest 
flow (± one month deviation) for 2071‐2100 consistently for all six GCMs.   
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4.9).	 These	 global	maps	with	 areas	 for	which	 high	water	 temperature	 and	 low	 flow	period	
coincide	(condition	1)	were	combined	with	global	maps	showing	regions	with	projected	large	
(>25%)	decreases	in	low	flow	(condition	2)	and	large	increases	in	water	temperature	(>2°C)	
(condition	3).	Areas	where	all	three	conditions	occur	are	southern	and	central	Europe,	south‐
eastern	 U.S.	 and	 parts	 of	 south‐eastern	 Australia	 and	 southern	 Africa	 (Figure	 4.10).	 These	
regions	 could	 potentially	 experience	 a	 deterioration	 of	 water	 quality	 and	 freshwater	
ecosystems,	as	well	as	reduced	human	water	use	as	a	result	of	climate	change.	

To	 illustrate	 some	 potential	 effects	 of	 the	 projected	 changes	 in	 thermal	 and	 hydrologic	
regimes,	the	lower	panel	of	Figure	4.10	shows	mean	annual	cycles	of	daily	water	temperature	
and	river	discharge	changes	for	a	station	in	the	Snake	(Columbia	Basin),	Rhine,	and	Mekong	
basins	 for	 2071‐2100	 relative	 to	 1971‐2000.	 Considering	 the	 projected	 rises	 in	 water	
temperature	 in	 combination	 with	 relevant	 water	 temperature	 thresholds	 for	 these	 basins,	
there	 is	 a	 distinct	 increase	 in	 probability	 and	 magnitude	 of	 exceeded	 water	 temperature	
thresholds.	For	instance,	the	maximum	temperature	tolerance	value	for	pink	salmon	of	21°C	
(Eaton	and	Scheller,	1996;	Mantua	et	al.,	2010)	 in	 the	Columbia,	show	a	distinct	 increase	 in	
duration	and	magnitude	of	exceedance	 for	summer.	We	 found	comparable	results	when	we	
considered	 the	water	 temperature	projections	 for	 the	Rhine	with	 the	23°C	 limit	 of	 reduced	
cooling	 water	 discharge	 potential	 for	 European	 rivers	 (EEA,	 2008a).	 In	 addition,	 for	 river	
basins	in	Asia	like	the	Mekong,	an	increase	is	projected	in	the	duration	of	the	period	that	the	
25°C	 WHO	 water	 quality	 and	 health	 standard	 is	 exceeded	 (WHO,	 2011).	 Although	 the	
projected	 increases	 in	 water	 temperature	 are	 moderate	 compared	 to	 air	 temperature	
increases,	these	examples	illustrate	that	projected	water	temperature	rises	may	have	diverse	
and	adverse	consequences,	especially	when	they	coincide	with	decreases	in	river	flow	during	
the	same	period.		

4.4  Discussion and conclusions  

4.4.1   Impact of uncertainties in modelling framework 

The	 physically‐based	 hydrological	 and	 water	 temperature	 modelling	 framework	 VIC‐RBM	
was	 forced	 with	 different	 socio‐economic	 and	 climate	 change	 scenarios	 for	 2071‐2100	 to	
quantify	how	climate	change	will	affect	both	daily	river	discharge	and	water	temperature	on	a	
global	scale.	Output	of	three	GCMs	for	both	the	SRES	A2	and	B1	emissions	scenario	was	used	
to	reflect	some	uncertainties	arising	from	different	socio‐economic	storylines,	climate	model	
structures	 and	 parameterizations,	 notwithstanding	 that	 the	 use	 of	 a	 larger	 number	 of	 GCM	
outputs	 would	 better	 represent	 the	 structural	 uncertainty	 in	 climate	 models	 (Tebaldi	 and	
Knutti,	2007).	

The	use	of	a	cascade	of	impact	models	(VIC	hydrological	model	–	routing	model	–	RBM	water	
temperature	model)	 forced	with	 climate	model	 output	 results	 in	 a	 ‘cascade	 of	 uncertainty’	
(Schneider,	 1983).	 This	 can	 be	 described	 as	 the	 process	 whereby	 uncertainty	 accumulates		
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Figure 4.10: Maps with regions  for which the month with the highest water temperature and  lowest  flow coincides 
and/or where a strong decrease  (>25%)  in  low  flow and/or high water temperature  increase  (>2°C)  is projected  for 
2071‐2100  relative  to 1971‐2000  for  the  SRES A2 and B1  scenarios. Regions where one or  two out of  these  three 
conditions are projected are shown in yellow and orange. Regions where all three conditions occur are in red. Lower 
figures show mean annual cycles of 30‐day moving averages  in water temperature (Tw) and river discharge changes  
(dQ) for a station  in the Snake (Columbia), Rhine and Mekong with water temperature thresholds relevant for these 
river basins. 
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throughout	 the	process	of	climate	change	projections	(socio‐economic	storylines	–	emission	
scenarios	 –	biogeochemical	models	 –	 general	 circulation	models	 /	 regional	 climate	models)	
and	 impact	 assessment	 (Jones,	 2000).	 Uncertainties	 related	 to	 the	 structure	 and	
parameterization	of	the	hydrological	‐	water	temperature	modelling	framework	are	discussed	
in	Yearsley	(2012)	and	van	Vliet	et	al.	 (2012a).	These	studies	showed	that	uncertainties	are	
mainly	attributed	to	heterogeneity	in	hydraulic	characteristics	and	estimates	of	the	boundary	
conditions	 (headwater	 temperatures).	 To	 reduce	 uncertainties	 from	 GCM	 output	 we	 used	
statistically	bias‐corrected	GCM	output	of	precipitation	and	air	temperature	to	force	the	VIC‐
RBM	modelling	 framework.	Haddeland	et	 al.	 (2012)	used	 the	 same	data	 set	 in	 combination	
with	GCM	output	of	radiation,	humidity	and	wind	speed	data	to	force	four	global	hydrological	
models.	Their	results	showed	that	the	direct	use	of	(non‐bias	corrected)	radiation,	humidity	
and	wind	 speed	 can	 result	 in	 different	 evapotranspiration	 and	 runoff	 estimates	 than	 those	
based	on	observational	data.	In	our	study,	we	used	in	addition	to	bias‐corrected	precipitation	
and	 temperature	 only	 uncorrected	 wind	 speed	 as	 forcing.	 Although	 this	 might	 affect	 river	
discharge	 and	 water	 temperature	 simulations	 (as	 a	 result	 of	 their	 impacts	 on	
evapotranspiration	 and	 evaporative	 heat	 flux),	 our	 results	 did	 not	 show	distinct	 impacts	 of	
biases	 in	GCM	output	on	 simulated	 results	 (Section	4.3.1).	The	 statistics	 for	 simulated	 river	
flow	 and	water	 temperature	 for	 the	 control	 simulations	 of	 the	 GCMs	 generally	 correspond	
well	with	the	simulations	based	on	the	observed	meteorological	dataset	and	observed	values	
(Figure	4.2).		

4.4.2   Evaluation of projected changes in daily river discharge and water temperature 

Forcing	the	VIC‐RBM	framework	with	daily	bias‐corrected	GCM	output	allows	quantification	
of	 potential	 changes	 in	 daily	 river	 flow	 and	water	 temperature	 over	 the	 entire	 probability	
distribution,	 rather	 than	 just	mean	 values.	 Our	 results	 show	 an	 increase	 in	 river	 discharge	
seasonality,	 with	 increasing	 high	 flows	 (95th	 percentile	 of	 the	 daily	 distribution)	 and	
decreasing	 low	flows	(10th	percentile)	 for	27‐30%	of	the	global	 land	surface	area	(SRES	B1‐
A2).	On	an	annual	basis,	river	discharge	is	projected	to	increase	in	the	high	northern	latitude	
region	 due	 to	 increased	 precipitation,	 with	 seasonal	 shifts	 (earlier	 start	 of	 the	 snowmelt	
peak).	Discharge	will	also	increase	on	annual	basis	 in	 large	parts	of	the	tropical	zone	due	to	
increases	 in	monsoon	 rainfall.	However,	 an	overall	 decrease	 in	 river	 flow	 is	 found	 for	 river	
basins	 in	 the	 mid‐northern	 latitude	 region	 (U.S.,	 Central	 America,	 southern	 and	 central	
Europe,	Southeast	Asia)	and	the	southern	latitudes	(southern	parts	of	South	America,	Africa	
and	 Australia).	 These	 spatial	 patterns	 of	 projected	 change	 largely	 correspond	 with	 the	
outcomes	of	previous	global	hydrological	model	studies	(e.g.	Arnell,	2003a;	Milly	et	al.,	2005;	
Nijssen	 et	 al.,	 2001a;	 Sperna	 Weiland	 et	 al.,	 2012)	 despite	 different	 choices	 of	 emission	
scenarios	and	GCMs	and	different	hydrological	models	that	were	used.	Döll	and	Zhang	(2010)	
found	an	increase	in	mean	annual	discharge	for	one	half	of	the	global	land	surface	area	and	a	
decrease	 in	 monthly	 low	 flow	 (monthly	 10th	 percentile	 flow)	 for	 one	 quarter	 of	 the	 land	
surface	 area	 (e.g.	 Mediterranean,	 southern	 Africa,	 eastern	 China)	 for	 the	 2050s.	 The	 total	
extent	of	land	surface	where	river	flow	is	affected	by	climate	change	largely	corresponds	with	
our	results	(consistent	increase	in	mean	discharge	for	50%	and	decrease	in	low	flow	for	24%	
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of	 global	 land	 surface	 area),	 although	 some	 discrepancies	 exist	 in	 regions	 characterized	 by	
strong	declines	in	low	flow	due	to	different	model	choices.		

With	respect	to	water	temperature,	the	greatest	increases	are	projected	for	river	basins	in	the	
U.S.,	Europe,	Southeast	Asia,	South	Africa	and	Australia.	In	these	regions,	the	sensitivity	of	the	
river	 water	 to	 warming	 is	 exacerbated	 due	 to	 the	 reductions	 in	 low	 flows	 (resulting	 in	 a	
reduced	thermal	carrying	capacity	and	limited	dilution	capacity	for	thermal	effluents).		

Moderate	water	temperature	increases	are	projected	for	the	tropical	basins	due	to	dominant	
impacts	of	 increased	evaporative	cooling	and	back	radiation	under	warmer	conditions.	On	a	
global	 mean	 basis,	 the	 increases	 in	 mean	 (95th	 percentile)	 water	 temperature	 are	 0.8–1.6	
(1.0–2.2)°C	 for	 SRES	 B1‐A2	 for	 2071‐2100.	 This	 increase	 seems	 moderate	 compared	 to	
projected	 increases	 in	 global	 mean	 air	 temperature	 of	 3.0–4.9°C	 for	 the	 selected	 GCM	
experiments,	 but	 can	 be	 important	 when	 considered	 in	 combination	 with	 relevant	 water	
temperature	thresholds	for	specific	basins	(Section	4.3.4).	

4.4.3   Outlook and potential impacts for human water use and freshwater ecosystems 

The	combination	of	projected	rises	in	river	temperature	and	decreases	in	river	flow	may	have	
important	consequences	for	water	quality,	freshwater	ecosystems	and	human	water	use	(e.g.	
thermoelectric	 power	 and	 drinking	 water	 production,	 fisheries	 and	 recreation).	 Regions	
where	low	flow	and	high	water	temperature	periods	typically	coincide	and	for	which	strong	
increases	in	water	temperature	and	combined	with	declines	in	(low)	river	flow	are	projected	
are	the	south‐eastern	U.S.,	Europe	(except	northern	part)	and	parts	of		south‐eastern	Australia	
and	southern	Africa.	Combination	of	strong	increases	in	water	temperature	and	decreases	in	
river	flow	were	also	found	for	the	eastern	part	of	China.	In	these	regions,	the	economic	impact	
of	 limited	 water	 availability	 and	 increased	water	 temperatures	 for	 water	 use	 sectors	 (like	
thermoelectric	power	and	drinking	water	production)	is	generally	high.	For	example,	during	
the	recent	warm,	dry	summers	in	Europe	(2003	and	2006)	and	the	U.S.	(2007‐2008),	several	
thermoelectric	power	plants	were	forced	to	reduce	production	or	shut	down,	due	to	a	lack	of	
surface	water	 for	 cooling	 and	 environment	 restrictions	on	 thermal	 discharges	 (Forster	 and	
Lilliestam,	2011;	Macknick	et	al.,	2011).	In	Europe,	this	lead	to	significant	rises	in	electricity	
prices	(Boogert	and	Dupont,	2005;	McDermott	and	Nilsen,	2011).		

Some	 water	 use	 sectors	 require	 not	 only	 sufficient	 water	 availability	 (quantity),	 but	 also	
suitable	water	quality	(e.g.	water	temperature	for	cooling	water	use	of	thermoelectric	power	
plants	and	industries	or	 limited	salinity	for	agricultural	and	domestic	(drinking)	water	use).	
There	has	been	a	growing	recognition	of	the	need	to	expand	hydrological	impact	assessments	
to	 incorporate	 water	 quality	 issues	 (Kundzewicz	 and	 Krysanova,	 2010;	 Whitehead	 et	 al.,	
2009).	 Implementation	of	water	quality	 in	 large‐scale	(global)	hydrological	models	and	land	
surface	 schemes	 could	 be	 an	 important	 step	 toward	obtaining	more	 realistic	 projections	 of	
large‐scale	water	resources	in	relation	to	global	change.	Although	the	focus	of	our	study	has	
been	limited	to	climate	change	impacts	on	global	river	flow	and	water	temperature,	the	VIC‐
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RBM	modelling	 framework	 used	 in	 our	 study	 has	 the	 potential	 to	 incorporate	 other	water	
quality	parameters	as	well,	and	to	address	impacts	of	other	aspects	of	global	change	(e.g.	land	
use	change)	that	are	likely	to	affect	freshwater	ecosystems	and	human	water	use	in	the	21st	
century.				
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Vulnerability of U.S. and European                            

Electricity Supply to Climate Change 
	

Abstract 

In	 the	United	States	and	Europe,	at	present	91%	and	78%	(EIA,	accessed	2011)	of	 the	 total	
electricity	 is	 produced	 by	 thermoelectric	 (nuclear	 and	 fossil‐fuelled)	 power	 plants,	 which	
directly	 depend	 on	 the	 availability	 and	 temperature	 of	water	 resources	 for	 cooling.	 During	
recent	 warm,	 dry	 summers	 several	 thermoelectric	 power	 plants	 in	 Europe	 and	 the	 south‐
eastern	 United	 States	 were	 forced	 to	 reduce	 production	 owing	 to	 cooling‐water	 scarcity	
(Forster	 and	 Lilliestam,	 2011;	 Macknick	 et	 al.,	 2011;	 NETL,	 2009).	 Here	 we	 show	 that	
thermoelectric	power	in	Europe	and	the	United	States	is	vulnerable	to	climate	change	due	to	
the	 combined	 impacts	 of	 lower	 summer	 river	 flows	 and	 higher	 river	 water	 temperatures.	
Using	 a	 physically‐based	 hydrological	 and	 water	 temperature	 modelling	 framework	 in	
combination	with	 an	 electricity	 production	model,	we	 show	 a	 summer	 average	 decrease	 in	
capacity	of	power	plants	of	6.3–19%	in	Europe	and	4.4–16%	in	the	United	States	depending	
on	 cooling	 system	 type	 and	 climate	 scenario	 for	 2031–2060.	 In	 addition,	 probabilities	 of	
extreme	(>90%)	reductions	in	thermoelectric	power	production	will	on	average	increase	by	a	
factor	of	 three.	Considering	the	 increase	 in	 future	electricity	demand,	 there	 is	a	strong	need	
for	 improved	 climate	 adaptation	 strategies	 in	 the	 thermoelectric	 power	 sector	 to	 assure	
future	energy	security.		
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Worldwide,	 freshwater	 withdrawals	 for	 cooling	 of	 coal‐,	 gas‐,	 and	 nuclear‐fuelled	 power	
plants	are	highest	in	North	America	(224	km3	yr‐1),	followed	by	Europe	(121	km3	yr‐1),	which	
together	represent	about	86%	of	 the	global	 thermoelectric	water	withdrawals	 (Vassolo	and	
Döll,	 2005).	When	 compared	with	other	 sectors,	 thermoelectric	 power	 is	 one	of	 the	 largest	
water	users	in	both	the	U.S.	(40%)(King	et	al.,	2008)	and	Europe	(43%	of	total	surface	water	
withdrawals)(Rubbelke	and	Vögele,	2011).	

Changes	 in	 water	 availability	 and	 surface	 water	 temperature	 directly	 affect	 thermoelectric	
power	generation	potential	and	reliability.	During	recent	warm,	dry	summers	in	2003,	2006	
and	2009	several	 thermoelectric	power	plants	 in	Europe	were	 forced	to	reduce	production,	
because	of	restricted	availability	of	cooling	water	(Forster	and	Lilliestam,	2011).	The	limited	
supply	of	electricity	in	combination	with	increased	production	costs	lead	to	significant	rises	in	
electricity	 prices	 (Boogert	 and	 Dupont,	 2005;	 McDermott	 and	 Nilsen,	 2011).	 In	 the	 U.S.	 a	
similar	event	in	2007‐2008	caused	several	power	plants	to	reduce	production,	or	shut	down	
for	several	days	owing	to	a	lack	of	surface	water	for	cooling	and	environmental	restrictions	on	
thermal	discharges	(Macknick	et	al.,	2011;	NETL,	2009).		

In	 both	 Europe	 and	 the	 U.S.,	 power	 plants	 are	 highly	 regulated	 (European	 Fish	 Directive,	
Water	 Framework	 Directive,	 and	 U.S.	 Clean	Water	 Act)	 with	 restrictions	 on	 the	 amount	 of	
water	 withdrawn	 and	 temperatures	 of	 the	 water	 discharged.	 It	 is	 especially	 during	 warm	
periods	 with	 low	 river	 flows	 that	 conflicts	 arise	 between	 environmental	 standards	 of	
receiving	waters	and	economic	consequences	of	reduced	electricity	production.	Owing	to	the	
long	lifetime	of	thermoelectric	power	plants	and	magnitude	of	investments,	it	is	important	for	
the	 electricity	 sector	 to	 have	 realistic	 projections	 of	 both	 water	 availability	 and	 water	
temperature	 to	 be	 able	 to	 anticipate	 and	 adapt	 to	 changes	 in	 cooling	 water	 availability.	
Although	several	previous	 large‐scale	modelling	assessments	have	been	made	 that	evaluate	
the	 impact	 of	 climate	 change	 on	 freshwater	 availability	 on	 continental	 and	 global	 scales	
(Alcamo	 et	 al.,	 2007;	 Arnell,	 1999a;	 Oki	 and	 Kanae,	 2006),	 most	 of	 these	 studies	 focus	 on	
monthly	or	 annual	mean	estimates	of	 river	 flow,	 and	 ignore	 changes	 in	water	 temperature.	
Shorter	term	(e.g.	daily)	estimates	are	required	to	address	impacts	on	aquatic	ecosystems	and	
water	users,	such	as	thermoelectric	power.		

We	 used	 a	 physically‐based	 hydrological	 and	 water	 temperature	 modelling	 framework	
(Supplementary	Section	B1)	to	produce	a	multi‐model	ensemble	of	daily	river	flow	and	water	
temperature	projections	for	Europe	and	the	United	States	over	the	21st	century.	We	evaluated	
the	 modelling	 estimates	 using	 observed	 daily	 river	 flow	 and	 water	 temperatures,	 which	
showed	 an	 overall	 realistic	 representation	 of	 observed	 conditions	 for	 the	 historical	 period	
1971‐2000	(Supplementary	Section	B2,	Figure	B2‐B5).	We	then	produced	daily	simulations	of	
river	 flow	and	water	 temperature	 for	 the	periods	1971‐2000	 (control),	 2031‐2060	 (2040s)	
and	2071‐2100	(2080s)	by	forcing	the	coupled	hydrological	‐	water	temperature	model	with	
bias‐corrected	(Hagemann	et	al.,	2011)	general	circulation	model	(GCM)	outputs	for	both	the	
Intergovernmental	 Panel	 on	 Climate	 Change	 (IPCC)	 Special	 Report	 on	 Emissions	 Scenarios	
SRES	A2	and	B1	global	emissions	scenarios	(Nakicenovic,	2000)	(Supplementary	Section	B3).	
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The	A2	scenario	considers	a	world	of	fragmented	and	slow	technological	change,	whereas	the	
B1	 scenario	 assumes	 environmental	 sustainability	 and	 a	 much	 more	 rapid	 introduction	 of	
renewables	(Nakicenovic,	2000).	Both	SRES	A2	and	B1	were	selected,	because	they	represent	
contrasting	storylines	and	indicate	the	largest	range	from	the	four	IPCC	SRES	main	emissions	
scenarios.		

Based	 on	 the	 daily	 river	 flow	 simulations	 for	 six	 GCM	 experiments,	 we	 calculated	 spatial	
patterns	of	relative	changes	in	low	flows	for	the	future	periods	relative	to	the	control	period.	
To	account	for	uncertainty	in	GCM	output,	we	present	the	changes	in	the	ensemble	mean	daily	
flow	for	both	the	SRES	A2	and	B1	emissions	scenarios	relative	to	the	ensemble	mean	control	
simulations	 of	 the	 three	 selected	 GCMs.	 We	 focused	 our	 analyses	 on	 the	 mainland	 U.S.	
(excluding	 Alaska)	 and	 the	 European	 continent	 (excluding	 the	 Ural	 region	 and	 northern	
islands).	 Overall,	 a	 decrease	 in	 low	 flows	 (10th	 percentile	 of	 daily	 distribution)	 for	 Europe	
(except	Scandinavia)	is	projected	with	an	average	decrease	of	13‐15%	(16‐23%)	for	the	B1‐
A2	scenario	for	the	2040s	(2080s)	(Figure	5.1a).	For	the	U.S.,	a	decrease	in	low	flows	of	4‐12%	
(15‐19%)	 is	 simulated	 with	 the	 largest	 changes	 in	 the	 southern	 and	 south‐eastern	 states.	
Along	with	decreases	in	the	10th	percentile	of	daily	river	flow,	the	probability	of	flows	below	a	
given	threshold	will	increase	substantially	(Figure	5.1b).			

 
Figure 5.1: Changes in low river flows. Projected changes in low flows (10th percentile of daily distribution of river flow) 
for the 2040s (2031‐2060) and 2080s (2071‐2100) relative to the control period (1971‐2000) in the U.S. and Europe (a) 
and mean annual cycles and probability distribution  functions  (PDFs) of daily river  flow  for a selected station  in the 
Ohio River (U.S.) and Danube River (Europe) for the control and future periods (b). 
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As	for	river	flow,	we	calculated	changes	in	daily	water	temperature	for	the	2040s	and	2080s.	
The	overall	projected	increase	in	mean	summer	(21	Jun‐20	Sep)	water	temperatures	is	0.7‐0.9	
(1.4‐2.4)°C	for	the	U.S.	and	0.8‐1.0	(1.4‐2.3)°C	for	Europe	for	the	B1‐A2	scenario	for	the	2040s	
(2080s).	This	 is	on	average	0.2°C	higher	 than	 the	mean	annual	water	 temperature	 increase	
(Figure	 5.2a).	 Probability	 distributions	 of	 daily	 water	 temperature	 (Figure	 5.2c)	 indicate	
larger	 increases	 in	 the	high	water	 temperature	 range	 than	 in	mean	values	 (see	 e.g.	Danube	
River	 for	 which	 the	 basin	 average	 increase	 in	 95th	percentile	 water	 temperature	 is	 0.7°C	
higher	 than	 in	 mean	 water	 temperature	 for	 the	 2080s).	 In	 the	 U.S.,	 the	 largest	 water	
temperature	increases	are	projected	for	the	southern	part	of	the	Mississippi	basin	and	along	
the	 east	 coast.	 In	 Europe,	 projected	water	 temperature	 increases	 are	 highest	 in	 the	 south‐
western	and	south‐eastern	parts.		

For	 cooling	 water	 use,	 the	 combination	 of	 declines	 in	 low	 river	 flows	 and	 increases	 in	
(especially	 high)	 water	 temperature	 is	 problematic.	 We	 used	 daily	 water	 temperature	
projections	 to	 calculate	 the	 mean	 number	 of	 days	 per	 year	 that	 water	 temperature	 is	
predicted	to	exceed	the	inlet	limits	of	river	water	for	cooling	water	use	of	23°C	(Europe)(EEA,	
2008a)	 and	27°C	 (U.S.,	 derived	 on	basis	 of	 regulations	 for	 different	 states)	 (Supplementary	
Section	B4).	The	increase	in	the	number	of	days	per	year	with	water	temperature	exceeding	
23°C	is	generally	highest	for	southern	Europe	(median	of	44‐48	(59‐82)	days	per	year	for	B1‐
A2	scenario	for	the	2040s	(2080s)	relative	to	23	days	for	1971‐2000;	Figure	5.2b).	The	same	
magnitude	of	 increase	 in	number	of	days	with	water	 temperatures	exceeding	27°C	 is	 found	
for	the	south	and	south‐eastern	U.S..	Combined	with	projected	decreases	in	low	river	flows	of	
more	 than	 25%	 in	 these	 regions,	 cooling	 water	 problems	 are	 expected	 to	 be	 exacerbated	
substantially	in	the	future.	

To	 quantify	 climate	 change	 impacts	 on	 usable	 capacity	 of	 existing	 thermoelectric	 power	
plants,	 we	 used	 daily	 water	 temperature	 and	 river	 flow	 projections	 in	 combination	 with	
power	plant	specific	data	of	cooling	system,	efficiency	and	environmental	restrictions	for	61	
power	plants	in	the	U.S.	and	35	in	Europe.	In	the	U.S.,	we	focus	on	power	plants	located	in	the	
central	 and	eastern	part	of	 the	 country	 for	which	 the	most	data	were	available.	The	power	
plants	 contribute	 to	 11%	 of	 the	 total	 electricity	 production	 for	 the	 entire	 U.S.	 and	 10%	 in	
Europe.	 Both	 fossil‐fuelled	 and	 nuclear	 power	 plants	with	 different	 cooling	 systems	 (once‐
through,	 recirculation	 and	 combination	 cooling)	were	 included	 (see	 Supplementary	 Section	
B5).	Assuming	an	average	 lifetime	of	 thermoelectric	power	plants	of	50‐60	years	 (IEA‐NEA,	
2010)	more	 than	 60%	 of	 the	 power	 plants	 in	 our	 data	 set	 will	 still	 be	 operating	 in	 2030.	
Usable	capacity	of	each	thermoelectric	power	plant	was	quantified	on	the	basis	of	calculated	
daily	required	water	withdrawal,	river	flow	and	water	temperature	simulations	for	the	power	
plant	 site	 and	 environmental	 (water	 temperature	 and	 water	 withdrawal)	 limitations	 (see	
Supplementary	Section	B5).	An	evaluation	of	the	impacts	of	biases	in	water	temperature	and	
river	 flow	 simulations	 on	 the	 usable	 capacity	 of	 power	 plants	 showed	 that	 the	 strength	 in	
climate	signal	is	on	average	a	factor	of	three	higher	when	compared	with	the	effects	of	biases	
(see	Supplementary	Section	B5).		



Vulnerability U.S. and European electricity supply  

99 

	

 

Figure 5.2: Increases in river water temperatures and exceeded water temperature limits. Projected changes in mean 
river water temperature (a) and mean number of days per year that the 23°C (for Europe) and 27°C (for the U.S.) inlet 
water temperature limit is exceeded for the 2040s (2031‐2060) and 2080s (2071‐2100) relative to the control period 
(1971‐2000) (b). Regions with projected decreases in low flows of more than 25% are hatched. Mean annual cycles of 
daily water  temperature and probability distribution  functions  (PDFs) of water  temperature  for selected stations  in 
the Missouri River (U.S.) and Danube River (Europe) for the control and future periods (c).	 	
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For	76%	of	the	power	plants	with	once‐through	or	combination	cooling	systems	(n=37)	and	
41%	of	 the	power	plants	with	recirculation	systems	(n=59),	electricity	production	potential	
will	be	reduced	significantly	(p<0.01;	Wilcoxon	Rank	Sum	tests)	as	a	result	of	 the	projected	
increases	 in	 daily	 water	 temperature	 and	 decreases	 in	 summer	 flows	 for	 the	 2040s.	 The	
summer	average	usable	capacity	of	power	plants	with	once‐through	or	combination	cooling	
systems	 is	projected	 to	decrease	by	12‐16%	(U.S.)	and	13‐19%	(Europe)	 for	 the	2040s	(for	
B1‐A2	 SRES	 emissions	 scenario)	 (Figure	 5.3a).	 The	 occurrence	 of	 periods	 with	 large	
reductions	in	usable	capacity	will	increase	in	the	2040s,	as	shown	by	the	return	period	plots	
for	 the	 power	 plants	 New	 Madrid	 (U.S.)	 and	 Civaux	 (France)	 (Figure	 5.3b).	 These	 power	
plants	extract	water	from	large	rivers	(Mississippi	and	Vienne	(Loire))	and	are	illustrative	by	
showing	 impacts	on	usable	capacity	 that	are	close	 to	 the	overall	average	 impacts	 for	power	
plants	with	once‐through	and	recirculation	cooling	systems	in	these	regions.	For	recirculation	
(tower)	cooling	systems,	 the	decrease	 in	usable	capacity	during	summer	 is	much	 lower,	but	
non‐negligible	 (on	 average	 6.3‐8.0%	 for	 power	 plants	 in	 Europe	 and	 4.4‐5.9%	 in	 the	 U.S.).	
Although	power	plants	with	recirculation	systems	have	relatively	low	water	demand,	a	part	of	
the	 water	 withdrawn	 is	 also	 discharged	 back	 to	 the	 river	 and	 affects	 river	 water	
temperatures.	 Therefore,	 both	 limitations	 in	 water	 availability	 and	 exceeded	 water	
temperature	limits	can	reduce	the	usable	capacity,	but	the	mean	number	of	days	per	year	with	
production	limitations	is	lower	compared	to	power	plants	with	once‐through	systems	(Table	
5.1).	However,	similar	factors	of	increases	in	the	probability	of	large	capacity	reductions	are	
found	for	power	plants	with	once‐through	and	recirculation	cooling	systems.	The	probability	
of	capacity	reductions	>50%	will	increase	by	a	factor	of	1.4	for	the	2040s.	Capacity	reductions	
of	>90%	are	projected	to	increase	by	a	factor	of	2.8.	However,	these	probability	values	are	low	
and	 are	 more	 sensitive	 to	 uncertainties	 in	 the	 modelling	 framework	 than	 the	 probability	
values	for	moderate	capacity	reductions.	Overall,	the	results	present	a	higher	increase	in	the	
occurrence	 of	 extreme	 reductions	 (>90%)	 in	 thermoelectric	 power	 production	 than	 in	 the	
occurrence	of	moderate	reductions	(10‐25%),	showing	a	nonlinearity	of	the	system.		

We	studied	the	impact	of	climate	change	on	thermoelectric	power	production	in	Europe	and	
the	 U.S.	 using	 river	 flow	 and	 water	 temperature	 projections	 that	 were	 produced	 on	
continental	 scale	 and	 0.5°	 x	 0.5°	 spatial	 resolution.	 Although	 the	 parameterizations	 of	 the	
hydrological	 and	 water	 temperature	 model	 are	 suited	 to	 this	 coarse	 spatial	 resolution	
resulting	in	a	realistic	representation	of	the	observed	conditions,	our	results	do	not	reveal	the	
vulnerability	 of	 any	 particular	 power	 plant.	 Under	 both	 the	 SRES	 A2	 and	 B1	 scenario	
(Nakicenovic,	2000)	there	will	be	substantial	impacts	of	climate	change	on	the	usable	capacity	
of	power	plants.	However,	the	adaptive	capacity	of	the	energy	sector	will	be	much	lower	for	
the	SRES	A2	storyline,	which	considers	a	slow	technological	change	with	many	fossil‐fuelled	
power	plants	in	need	of	cooling	water,	compared	with	B1,	which	assumes	a	much	more	rapid	
introduction	 of	 renewables	 (Nakicenovic,	 2000).	 The	 vulnerability	 of	 the	 thermoelectric	
power	 sector	 to	 climate	 change	 under	 the	 A2	 scenario	 will	 therefore	 be	 higher	 when	
compared	with	the	B1	storyline.	
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Figure 5.3: Changes  in usable  capacity of  thermoelectric power plants. Projected  changes  in  summer mean usable 
capacity of power plants in the U.S. and Europe for the SRES A2 emissions scenario for the 2040s (2031‐2060) relative 
to  the  control  period  (1971‐2000)  (a). Mean  annual  cycles  of  usable  capacity  and  return  periods  of  production 
reductions for the New Madrid power station in the U.S. (coal power plant with installed capacity of 1200 MW using 
once‐through cooling with water from Mississippi River) and Civaux power station in France (nuclear power plant with 
installed capacity of 3122 MW using recirculation (tower) cooling with water from the Vienne (Loire) River) (b).   

 

Table 5.1: Reductions in usable capacity of power plants. Mean number of days per year that usable capacity (KWmax) 
is reduced by more than 25%, 50% and 90% for the control period (1971‐2000) and for the 2040s (2031‐2060) for the 
SRES B1 and A2 emissions scenario.  

  n power 

plants 

n days year‐1 

KWmax reduction > 25% 

n days year‐1

KWmax reduction > 50% 

n days year‐1 

KWmax reduction > 90% 

    ctrl  B1  A2 Ctrl B1 A2 ctrl  B1  A2

once‐through or combination cooling     

Europe  8  64  84   90 31 44 50 0.5 1.4  1.5

U.S.  29  24  29  30 11 15 15 0.8 1.0  1.2

total  37  34  43  45 16 22 24 0.7 1.1  1.3

recirculation  (tower) cooling      

Europe  27  14  18  19 9 10 11 0.02  0.09  0.08

U.S.  32  9  12  14 7 10 11 0.03  0.09  0.12

total  59  12  15  17 8 10 11 0.03  0.09  0.10
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We	conclude	that	climate	change	will	impact	thermoelectric	power	production	in	Europe	and	
the	 U.S.	 through	 a	 combination	 of	 increased	 water	 temperatures	 and	 reduced	 river	 flow,	
especially	during	summer.	In	particular,	thermoelectric	power	plants	in	southern	and	south‐
eastern	Europe,	and	 the	south‐eastern	U.S.	will	be	affected	by	climate	change.	Power	plants	
with	once‐through	cooling	are	most	strongly	impacted	by	future	water	temperature	rises	and	
reductions	in	summer	flows,	although	also	substantial	decreases	in	usable	capacity	for	power	
plants	with	recirculation	(tower)	cooling	were	found.		

Owing	to	the	smaller	adaptive	capacity	of	the	thermoelectric	sector	for	the	SRES	A2	scenario,	
the	 vulnerability	 to	 climate	 change	 will	 be	 substantially	 higher	 for	 the	 SRES	 A2	 when	
compared	 with	 the	 B1	 scenario.	 Although	 replacement	 of	 once‐through	 by	 recirculation	
systems	reduces	freshwater	withdrawal,	water	consumption	increases	(owing	to	evaporative	
losses)	and	could	therefore	contribute	to	higher	water	scarcity.	Dry	cooling	systems	or	non‐
freshwater	 sources	 for	 cooling	 are	 possible	 alternatives	 but	 may	 be	 limited	 by	 locally	
available	resources	and	have	costs	and	performance	disadvantages	(Macknick	et	al.,	2011).	A	
switch	to	new	gas‐fired	power	plants	with	higher	efficiencies	(~58%)	could	also	reduce	the	
vulnerability	 because	 of	 smaller	 water	 demands	 when	 compared	 with	 coal‐	 and	 nuclear‐	
fuelled	stations	(with	mean	efficiencies	of	~46%	and	~34%)(Koch	et	al.,	2012).	Considering	
the	projected	decreases	in	cooling	water	availability	during	summer	in	combination	with	the	
long	 design	 life	 of	 power	 plant	 infrastructure,	 adaptation	 options	 should	 be	 included	 in	
today’s	planning	and	strategies	to	meet	the	growing	electricity	demand	in	the	21st	century.	In	
this	 respect,	 the	 electricity	 sector	 is	 on	 the	 receiving	 (impacts)	 as	 well	 as	 producing	
(emissions)	side	of	the	climate	change	equation.		

Methods summary 

We	 used	 a	 physically‐based	 modelling	 framework	 to	 simulate	 daily	 river	 flows	 and	 water	
temperatures	 for	 the	 U.S.	 and	 Europe.	 This	 modelling	 framework	 consists	 of	 the	 Variable	
Infiltration	Capacity	 (VIC)	macro‐scale	hydrological	model	 (Liang	et	 al.,	 1994)	 and	 the	one‐
dimensional	stream	temperature	model	RBM	(Yearsley,	2009),	which	was	modified	to	apply	
for	the	whole	European	and	North	American	region	(Supplementary	Section	B1)	.	

The	performance	of	the	modelling	framework	was	tested	for	the	historical	period	1971‐2000.	
Observed	daily	series	of	river	flow	and	water	temperature	for	1,267	river	discharge	stations	
and	 240	 water	 temperature	 monitoring	 stations	 were	 used	 to	 evaluate	 the	 quality	 of	 the	
simulations	for	Europe	and	North	America	(Supplementary	Section	B2,	Figures	B2‐	B5).		

The	 modelling	 framework	 was	 forced	 with	 bias‐corrected	 output	 (Hagemann	 et	 al.,	 2011)	
from	three	GCMs	(ECHAM5/MPIOM,	CNRM‐CM3	and	IPSL‐CM4)	for	both	the	SRES	A2	and	B1	
emissions	scenarios	(Nakicenovic,	2000)	for	the	control	period	1971‐2000	and	future	periods	
2031‐2060	(2040s)	and	2071‐2100	(2080s)	(Supplementary	Section	B3).		
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Daily	water	temperature	projections	were	used	to	calculate	the	mean	number	of	days	per	year	
that	the	23°C	(Europe)	and	27°C	(U.S.)	limits	were	exceeded	for	the	control	and	future	periods	
for	both	the	SRES	A2	and	B1	scenario.	These	river	water	temperature	limits	reflect	the	start	of	
potential	 reductions	 in	 production	 capacity	 rather	 than	 full	 production	 stops	 (reflected	 by	
maximum	allowed	river	water	temperature	thresholds).	Selection	of	these	water	temperature	
limits	 is	discussed	 in	 the	Supplementary	Section	B4.	 In	 combination	with	areas	 for	which	a	
large	decrease	in	low	flows	(>25%)	is	expected,	we	identified	regions	in	Europe	and	the	U.S.	
where	cooling	water	problems	are	expected	to	increase.		

In	 addition,	 we	 calculated	 the	 effects	 on	 the	 usable	 capacity	 of	 35	 existing	 thermoelectric	
power	plants	 in	Europe	and	61	in	the	U.S.	using	the	daily	water	temperature	and	river	flow	
projections	for	the	2040s.	A	distinction	was	made	between	power	plants	using	recirculation	
systems	with	cooling	tower(s),	once‐through	systems	and	combination	cooling	systems	(once‐
through	with	supplementary	tower).	Data	of	the	National	Energy	Technology	Laboratory	Coal	
Power	 Plant	Database	 (NETL‐CPPDB)	 database	 (NETL,	 2007)	were	 used	 for	 thermoelectric	
power	 plants	 in	 the	U.S..	 For	 power	 plants	 in	 Europe	we	 used	 data	 of	 the	 selected	 nuclear	
power	stations	extracted	from	the	power	plant	database	at	the	Institute	of	Energy	and	Climate	
Research	–	Systems	Analyses	and	Technology	Evaluation	(IEF‐STE)	of	the	Forschunszentrum	
in	 Jülich	(Germany)	 in	combination	with	published	data	of	 fossil‐fuelled	power	plants	(VGE,	
2011).	The	equations	used	to	calculate	the	required	water	withdrawal	and	usable	capacity	of	
the	power	plants	are	modified	from	Koch	and	Vögele	(2009)	and	Rubbelke	and	Vögele	(2011)	
and	are	described	in	the	Supplementary	Section	B5,	along	with	the	criteria	that	were	used	to	
select	the	thermoelectric	power	plants.	
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Global Streamflow and Thermal Habitats of Freshwater 

Fishes under Climate Change 
	

Abstract 

Flow	 regimes	 and	 thermal	 regimes	 of	 rivers	 will	 be	 affected	 by	 climate	 change	 and	 other	
anthropogenic	 impacts	 during	 the	 21st	 century.	 This	will	 directly	 affect	 freshwater	 habitats	
and	ecosystem	health.	In	particular	fish	species,	which	are	strongly	adapted	to	a	certain	level	
of	flow	variability	will	be	sensitive	to	future	changes	in	flow	regime.	In	addition,	all	freshwater	
fish	 species	are	exotherms,	 and	 increasing	water	 temperatures	will	 therefore	directly	affect	
fishes’	 biochemical	 reaction	 rates	 and	physiology.	Until	 now,	 very	 few	 studies	 assessed	 the	
combined	 impacts	 of	 changes	 in	 river	 flow	 and	 water	 temperatures	 on	 fish	 habitats.	 In	
addition,	 most	 previous	 studies	 focussed	 on	 local	 and	 regional	 scales.	 Here	 we	 assess	 the	
potential	 impacts	 of	 climate	 change	 on	 large‐scale	 freshwater	 fish	 habitats	 by	 using	 global	
river	 flow	 and	 water	 temperature	 projections	 for	 the	 21st	century.	 These	 projections	 were	
produced	with	a	physically‐based	hydrological	and	water	temperature	modelling	framework	
forced	with	an	ensemble	of	climate	model	output.	Projections	were	used	in	combination	with	
current	spatial	distributions	of	several	fish	species,	thermal	tolerance	values	and	ecologically	
relevant	flow	indices	to	explore	impacts	on	fish	habitats	in	different	regions	worldwide.	Our	
results	 show	 that	 climate	 change	 will	 have	 distinct	 impacts	 on	 flow	 and	 thermal	
characteristics	of	freshwater	fish	habitat.	Climate	change	will	affect	seasonal	flow	amplitudes,	
magnitude	and	timing	of	high	and	low	flow	events	for	large	fractions	of	the	global	land	surface	
area.	Also,	significant	increases	in	both	the	occurrence	and	magnitude	of	exceeding	maximum	
temperature	 tolerance	 values	 of	 selected	 fish	 species	 were	 found.	 Although	 the	 adaptive	
capacity	of	fish	species	to	changing	hydrologic	regimes	and	rising	water	temperatures	could	
be	variable,	our	global	results	show	that	fish	habitats	are	likely	to	change	in	the	near	future,	
and	this	is	expected	to	affect	species	distributions.	
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6.1  Introduction 

Climate	change	and	other	anthropogenic	impacts	are	likely	to	increase	pressure	on	water	for	
ecosystems	 and	 human	 uses	 globally.	 Freshwater	 ecosystems	 have	 of	 all	 ecosystems	 the	
highest	proportion	of	species	threatened	with	extinction	due	to	climate	change	and	increased	
human	 impacts	 (Kundzewicz	 et	 al.,	 2007;	 Millennium	 Ecosystem	 Assessment,	 2005).	
Populations	of	freshwater	species	decreased	by	50%	during	1970‐2000,	which	is	greater	than	
found	 for	 terrestrial	 and	marine	 species	 included	 in	 the	 Living	 Planet	 Index	 (WWF,	 2004).	
Main	 stresses	 on	 freshwater	 ecosystems	 are	 habitat	 degradation	 (e.g.	 driven	 by	 climate	
change	 and	 other	 human	 impacts),	 invasive	 species,	 overexploitation	 and	 water	 pollution	
(Dudgeon	 et	 al.,	 2006;	Millennium	Ecosystem	Assessment,	 2005).	 Vörösmarty	 et	 al.	 (2010)	
found	 that	 freshwater	 habitats	 supported	 by	 65%	 of	 global	 river	 discharge	 are	 under	
moderate	 to	 high	 threat.	 Overall,	 stress	 on	 freshwater	 ecosystems	 that	 have	 already	 been	
(heavily)	 affected	 by	 human	 influences	 is	 expected	 to	 increase	 substantially	 due	 to	 climate	
change	(Kundzewicz	et	al.,	2007;	Millennium	Ecosystem	Assessment,	2005).		

Climate	 change	mainly	 affects	 freshwater	 ecosystems	 by	 altered	 river	 flow	 regimes	 (which	
involves	the	timing	of	river	flows	of	different	magnitudes),	changes	in	water	levels,	increases	
in	water	temperatures	and	changes	in	water	quality	(Ficke	et	al.,	2007;	Fischlin	et	al.,	2007).	
Future	river	flow	regimes	will	be	affected	by	changes	in	precipitation	and	evapotranspiration	
patterns	(Bates	et	al.,	2008).	Overall,	mean	river	discharges	in	the	tropical	and	high	northern	
latitudes	regions	are	 likely	to	 increase	under	climate	change,	while	consistent	decreases	are	
projected	for	southern	and	central	Europe,	South	Africa	and	South	America	(e.g.	Arnell,	2004;	
Sperna	Weiland	 et	 al.,	 2012).	 Flow	 seasonality	 is	 also	 expected	 to	 increase	 due	 to	 climate	
change,	resulting	in	higher	peak	flows	and	reduced	low	flows	for	several	regions	worldwide	
(e.g.	Bates	et	al.,	2008).	A	global	study	of	Döll	and	Zhang	(2010)	showed	that	climate	change	
significantly	affects	river	 flow	regimes	for	90%	of	the	global	 land	surface	area,	compared	to	
25%	of	the	land	area	where	flow	regime	is	affected	by	dams	and	human	water	withdrawals.		

In	 addition	 to	 changes	 in	 river	 flow,	 global	 freshwater	 habitats	will	 be	 directly	 affected	 by	
rising	 water	 temperatures	 under	 a	 warmer	 climate.	 River	 temperatures	 are	 expected	 to	
further	increase	due	to	atmospheric	warming	(e.g.	Mantua	et	al.,	2010;	Mohseni	et	al.,	1999;	
Stefan	and	Sinokrot,	1993),	and	 for	several	 rivers,	also	due	 to	expected	declines	 in	summer	
river	 flows,	which	 reduce	 the	 thermal	 capacity	 and	 increase	 the	 sensitivity	 to	 atmospheric	
warming	(van	Vliet	et	al.,	2011).	Worldwide,	the	highest	water	temperature	increases	under	
climate	change	are	projected	 for	 rivers	and	streams	 in	 the	United	States,	Europe,	Southeast	
Asia,	 South	 Africa	 and	 Australia	 (van	 Vliet	 et	 al.,	 in	 press).	 In	most	 of	 these	 regions,	water	
temperature	rises	are	exacerbated	due	to	projected	decreases	in	summer	river	flows.		

As	fish	species	are	commonly	adapted	to	specific	flow	and	thermal	regimes,	changes	are	likely	
to	affect	species	distribution	(e.g.	Ficke	et	al.,	2007;	Mohseni	et	al.,	2003;	Poff	and	Allan,	1995)	
with	potentially	increased	success	of	invasive	fish	species	(Baltz	and	Moyle,	1993;	Dudgeon	et	
al.,	 2006).	 Flow	 regime	 characteristics,	 in	 particular	 flow	 seasonality,	 affect	 life‐history	
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patterns	like	spawning	and	migration	(Dudgeon	et	al.,	2006).	Increases	in	flow	amplitude	for	
tropical	 rivers,	 like	 the	 Mekong,	 with	 higher	 flow	 peaks	 and	 declines	 in	 low	 flow	 could	
negatively	affect	 fish	populations	 (Ficke	et	al.,	2007;	Welcomme,	1979).	 Increases	 in	annual	
mean	high	flow	could	increase	habitat	availability	(e.g.	for	spawning)	on	flood	plains	(Ficke	et	
al.,	2007),	but	 increases	 in	severity	of	 flood	peaks	can	displace	adult	or	 injure	 juveniles	and	
larvae	 (Grossman	 et	 al.,	 1998;	Harvey,	 1987).	 Strong	declines	 in	 low	 flow	 and	more	 severe	
streamflow	 droughts	 can	 increase	 the	 severity	 of	 crowded,	 stressful	 conditions	 in	 refuge	
pools,	causing	population	declines	and	changes	in	fish	species	compositions	(Grossman	et	al.,	
1998;	Matthews	and	Marsh‐Matthews,	2003;	Richter	et	al.,	1997).		

All	 freshwater	 fish	 species	 are	 exotherms,	meaning	 that	 their	body	 temperature	 is	 virtually	
identical	 to	 their	 environmental	 (water)	 temperatures.	 Fish	 species	 thermoregulate	
behaviourally	 by	 selecting	 (migrating	 to)	 more	 suitable	 thermal	 habitats,	 but	 they	 are	
constraint	 by	 the	 temperature	 range	 available	within	 the	water	 system	 (Ficke	 et	 al.,	 2007;	
Jeppesen	et	al.,	2010).	Biochemical	reaction	rates	affecting	fish	physiology	vary	as	a	function	
of	 body	 temperature	 (Coutant,	 1969;	 Poole	 and	 Berman,	 2001),	 and	 aspects	 like	 growth,	
reproduction,	activity	and	migration	will	therefore	be	directly	impacted	by	water	temperature	
increases	(Ficke	et	al.,	2007;	Jeppesen	et	al.,	2010).	In	addition,	rising	water	temperatures	also	
decreases	oxygen	 solubility	 and	 increases	organic	matter	decomposition,	 resulting	 in	 lower	
dissolved	 oxygen	 concentrations	 (e.g.	 Caruso,	 2002;	 Kundzewicz	 and	 Krysanova,	 2010;	
Murdoch	et	al.,	2000).	This	increases	oxygen	stress	for	fish	(e.g.	Meyer	et	al.,	1999;	Mulholland	
et	 al.,	 1997).	 In	 addition,	 remobilisation	 and	 bioaccumulation	 of	 toxic	 substances	 (e.g.	
mercury,	 lead,	polyaromatic	hydrocarbons	 (PAHs))	 in	 fish	also	 increase	under	higher	water	
temperatures	 (Ficke	 et	 al.,	 2007;	 Whitehead	 et	 al.,	 2009).	 Water	 temperature	 rises	 could	
therefore	 also	 affect	 fish	 populations	 indirectly	 due	 to	 its	 impacts	 on	 other	 water	 quality	
parameters.		

Improved	understanding	of	climate	change	impacts	on	freshwater	fishes	is	relevant,	not	only	
in	 terms	 of	 biodiversity	 and	 ecosystems	 health,	 but	 also	 for	 food	 production.	 Freshwater	
fisheries	provide	an	important	source	of	affordable	protein	for	large	communities	around	the	
globe	 (for	 example	 China,	 India,	 Brasil)	 (Ficke	 et	 al.,	 2007),	 and	 contribute	 to	 a	 significant	
amount	 of	 economy,	 for	 example	 Bangladesh	 (Hossain,	 1994)	 and	 India	 (Chauhan,	 1994).	
Although	 the	 vulnerability	 of	 freshwater	 fisheries	 to	 climate	 change	 has	 been	 widely	
recognized	 (e.g.	 Ficke	 et	 al.,	 2007)	 the	 knowledge	 is	 very	 scattered	 and	 only	 a	 few	 studies	
assessed	the	impacts	on	a	large	(continental/global)	scale.	Previous	work	mainly	focussed	on	
either	the	impacts	of	streamflow	(e.g.	Döll	and	Zhang,	2010;	Xenopoulos	et	al.,	2005)	or	water	
temperature	 changes	 (Eaton	 and	 Scheller,	 1996;	Mohseni	 et	 al.,	 2003).	 However,	 there	 is	 a	
strong	need	for	assessments	that	integrate	impacts	of	streamflow	and	water	temperature	on	
freshwater	 ecosystems	 and	 fish	 habitats	 (Olden	 and	Naiman,	 2010;	 Thompson	 et	 al.,	 2012;	
Wenger	et	al.,	2011).		

The	objective	of	this	study	was	to	assess	the	combined	impacts	of	both	streamflow	and	water	
temperature	 changes	 on	 large‐scale	 freshwater	 fish	 habitats	 under	 climate	 change.	 Global	
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streamflow	 and	 water	 temperature	 projections	 were	 produced	 with	 a	 physically‐based	
hydrological	 and	 water	 temperature	 modelling	 framework	 (van	 Vliet	 et	 al.,	 2012a)	 forced	
with	 an	 ensemble	 of	 general	 circulation	 model	 (GCM)	 output	 (Section	 6.2).	 These	 global	
projections	were	used	in	combination	with	a	selection	of	ecologically	relevant	flow	and	water	
temperature	 indices,	 maximum	 temperature	 tolerance	 values	 and	 current	 spatial	
distributions	 of	 34	 fish	 species	 in	 different	 regions	 worldwide.	 Results	 of	 the	 impacts	 of	
streamflow	and	water	temperature	changes	on	freshwater	fish	habitats	under	climate	change	
are	 first	 discussed	 in	 general	 terms	 on	 a	 global	 level	 (Section	 6.3.1‐6.3.2),	 followed	 by	 the	
potential	 impacts	 for	 specific	 fish	 species	 in	 different	 regions	 (Section	 6.3.3).	 Potential	
consequences	of	projected	changes	 in	 streamflow	and	 thermal	habitat	 for	 freshwater	 fishes	
are	discussed	in	a	broader	context	in	Section	6.4.		

6.2  Methods 

The	 methodological	 framework	 of	 this	 study	 is	 summarized	 in	 Figure	 6.1.	 The	 global	
hydrological	 ‐	 water	 temperature	 modelling	 framework	 was	 forced	 with	 bias‐corrected	
output	of	three	different	GCMs	for	both	the	SRES	A2	and	B1	emissions	scenario	(Nakicenovic,	
2000)	for	2071‐2100	and	for	a	control	period	1971‐2000	(see	Section	6.2.1).	The	streamflow	
and	water	temperature	simulations	were	subsequently	used	in	combination	with	ecologically	
relevant	flow	and	water	temperature	indices	and	limits	(see	Section	6.2.2	and	6.2.3),	and	with	
maximum	 temperature	 tolerance	values	 and	 spatial	data	of	 suitable	habitat	distributions	of	
several	fish	species	in	different	regions	(Section	6.2.4).		

6.2.1  Global modelling of streamflow and water temperature under climate change 

A	physically‐based	hydrological	and	water	temperature	modelling	framework	was	used	on	a	
global	 scale	 and	 0.5°	 x	 0.5°	 spatial	 resolution.	 The	 modelling	 framework	 consists	 of	 the	
Variable	 Infiltration	Capacity	 (VIC)	macro‐scale	 hydrological	model	 (Liang	 et	 al.,	 1994)	 and	
one‐dimensional	 stream	 temperature	 River	 Basin	 Model	 (RBM)	 (Yearsley,	 2009;	 Yearsley,	
2012),	which	was	 adjusted	 for	 global‐scale	 applications	 (van	 Vliet	 et	 al.,	 2012a).	 Reservoir	
impacts	 on	 streamflow	 were	 simulated	 by	 using	 the	 reservoir	 scheme	 of	 Haddeland	 et	 al.	
(2006),	which	 is	 combined	with	 the	 river	 routing	model	of	 Lohmann	et	 al.	 (1998).	The	VIC	
hydrological	 model	 was	 applied	 using	 the	 elevation	 and	 land	 cover	 (vegetation,	 soil)	
classification	as	described	in	Nijssen	et	al.	(2001b).	The	global	DDM30	routing	network	(Döll	
and	 Lehner,	 2002)	 was	 used	 for	 lateral	 streamflow	 routing.	 Information	 about	 dams	 from	
University	of	New	Hampshire	were	used,	updated	according	 to	 the	World	Register	of	Dams	
(ICOLD,	 2003),	 as	 described	 by	 Haddeland	 et	 al.	 (2006).	 Hydraulic	 characteristics	 were	
calculated	 based	 on	 power	 relations	 relating	 mean	 cross‐sectional	 area	 and	 width	 to	
streamflow	 (Leopold	 and	 Maddock.,	 1953).	 For	 unregulated	 streams	 we	 used	 coefficients	
found	by	Allen	 et	 al.	 (1994).	 For	 river	 reaches	 controlled	 by	 reservoirs,	we	 assumed	water	
surface	elevation,	and	depth	and	width	to	remain	constant	in	time	(for	details	see	van	Vliet	et	
al.	(2012a)).	Head	water	temperatures	were	assessed	using	the	nonlinear	water	temperature	
regression	model	of	Mohseni	et	al.	(1998).	Impacts	of	thermal	effluents	on	water	temperature	
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Figure 6.1: Schematic  representation of methodological  framework. Abbreviations are used  for  streamflow  (Q) and 

water temperature (Tw). 

were	 included	 by	 using	 global	 gridded	 (0.5°	 x	 0.5°)	 datasets	 of	 thermoelectric	 water	
consumption	and	withdrawal	for	1971‐2000	to	calculate	return	flows	(Flörke	et	al.,	2011;	Voß	
and	Flörke,	2010).The	assumption	was	made	that	the	return	flow	water	temperature	was	3°C	
higher	than	inlet	water	temperature	(for	details	see	Supplementary	Information	B1).	

The	performance	of	the	modelling	framework	was	evaluated	for	large	river	basins	(van	Vliet	
et	al.,	2012a)	and	on	a	global	scale	(van	Vliet	et	al.,	in	press)	using	daily	streamflow	and	water	
temperature	 series	 for	 a	 high	 number	 of	 monitoring	 stations.	 The	 simulations	 showed	 an	
overall	 realistic	 representation	 of	 the	 observed	 conditions,	 although	 streamflows	 in	 some	
river	basins	(e.g.	Orange,	Murray‐Darling)	were	somewhat	overestimated	due	to	the	neglect	of	
human	water	withdrawals	(van	Vliet	et	al.,	2012a).	 In	this	study,	 impacts	of	both	reservoirs	
and	 human	 water	 uses	 were	 incorporated	 in	 the	 global	 modelling	 framework	 to	 improve	
streamflow	estimates	 for	ecological	 impact	assessment.	We	used	global	gridded	 (0.5°	x	0.5°	
spatial	resolution)	estimates	of	water	consumption	for	agriculture	(irrigation	and	livestock),	
energy,	industry	and	domestic	uses	for	1971‐2000	in	the	modelling	framework.	For	irrigation	
water	use,	monthly	mean	estimates	of	actual	irrigation	water	extraction	were	modelled	with	
VIC	 and	 its	 irrigation	 scheme	 (Haddeland	 et	 al.,	 2006)	 using	 similar	 forcing	 (Haddeland,	 in	
prep.).	 Global	 gridded	 (0.5°	 x	 0.5°)	 estimates	 of	 industrial,	 thermoelectric	 power,	 livestock,	
and	domestic	uses	on	annual	time	step	were	modelled	by	the	WaterGAP	water	use	modules	
(Alcamo	 et	 al.,	 2003a)	 and	 were	 provided	 within	 the	 EU	 FP6	WATCH	 project	 (Flörke	 and	
Eisner,	2011	;	Voß	and	Flörke,	2010;		Voß	et	al.,	2009).		

To	produce	projections	of	daily	streamflow	and	water	temperature	under	future	climate,	we	
forced	 the	VIC‐RBM	modelling	 framework	 (including	 reservoir	 scheme)	with	bias‐corrected	
output	of	three	different	GCMs:	ECHAM5/MPIOM,	CNCRM‐CM3,	IPSL‐CM4	(which	are	denoted	
as	ECHAM,	CNCM3	and	IPSL,	henceforth)	(Hagemann	et	al.,	2011).	Climate	model	output	for	
both	the	SRES	A2	(Figure	6.1;	red)	and	B1	emissions	scenario	(orange)	for	2071‐2100	and	for	
1971‐2000	 (control;	 blue)	 were	 used.	 This	 resulted	 in	 global	 daily	 streamflow	 and	 water	
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temperature	 simulations	 for	 three	 control	 experiments	 and	 six	 future	 GCM	 experiments	 to	
account	for	some	uncertainties	in	GCM	output	(van	Vliet	et	al.,	 in	press).	As	the	focus	of	this	
study	is	on	climate	change	impacts	on	global	freshwater	fish	habitats,	impacts	of	human	water	
uses	on	streamflow	and	effects	of	thermal	effluents	on	water	temperatures	were	assumed	to	
remain	constant	after	2000.	

6.2.2   Impacts of streamflow changes on freshwater habitats globally 

Several	 previous	 studies	 that	 addressed	 impacts	 of	 streamflow	 changes	 on	 freshwater	
ecosystems	used	the	concept	of	 ‘environmental	flows’	or	‘environmental	flow	requirements’,	
which	commonly	refer	to	the	amount	of	flows	that	needs	to	be	allocated	for	the	maintenance	
of	 freshwater	 ecosystem	 health	 and	 services	 (Dyson	 et	 al.,	 2003;	 Tharme,	 2003).	 In	 this	
respect,	freshwater	ecosystems	are	considered	as	a	‘water	use	sector’,	similar	to	agriculture,	
power	generation,	domestic	or	industrial	uses	(Smakhtin,	2008).	At	least	200	environmental	
flow	 methods	 and	 approaches	 have	 been	 used	 to	 quantify	 the	 water	 requirements	 for	
freshwater	ecosystems	(Arthington	et	al.,	2010;	Richter	et	al.,	2006;	Smakhtin,	2007;	Tharme,	
2003).	 Many	 environmental	 flow	 assessment	 studies	 focussed	 on	 definition	 of	 a	 minimum	
flow	 requirement	 or	 threshold,	 like	 the	 widely	 applied	 Tennant‐method	 (Tennant,	 1976).	
However,	 these	 thresholds	 are	 often	 arbitrary	 defined	 (Smakhtin	 et	 al.,	 2006),	 because	 of	
limited	availability	of	freshwater	species	response	data	in	large	parts	of	the	world	(Revenga	et	
al.,	2005).	In	addition	to	a	minimum	flow	requirement,	it	has	also	been	widely	recognized	that	
a	 dynamic	 river	 regime	 and	 flow	 variability	 is	 required	 to	 sustain	 ecosystem	 functioning	
(Arthington	et	al.,	2010;	Lytle	and	Poff,	2004;	Poff	et	al.,	1997).	However,	due	to	limited	data	
availability	 of	 freshwater	 species	 responses	 it	 is	 often	 not	 possible	 to	 directly	 derive	
transferable	 quantitative	 relationships	 between	 ecological	 responses	 (e.g.	 species	
distribution)	 and	 streamflow	 changes.	 Therefore,	 ecologically	 relevant	 flow	 indices	 (e.g.	
Richter	et	al.,	1996)	and	ecological	limits	(e.g.	Poff	et	al.,	2010)	have	been	developed	to	assess	
ecological	 risks	 of	 altered	 flow	 regimes	 and	 variability	 (Gibson	 et	 al.,	 2005;	 Poff	 and	
Zimmerman,	2010).		

Richter	 et	 al.	 (1996)	defined	32	hydrological	 indicators	 for	 identifying	ecologically	 relevant	
changes	in	mean	and	extreme	flow	conditions	using	a	set	of	natural	flow	and	a	set	of	altered	
river	 flow	 time	 series.	 Döll	 and	 Zhang	 (2010)	 assessed	 the	 impacts	 of	 climate	 change	 and	
human	flow	alternations	on	a	global	scale	by	using	five	ecologically	relevant	parameters.	The	
approach	 of	 our	 study	 extends	 the	 approach	 of	 Döll	 and	 Zhang	 (2010)	 by	 selecting	 more	
ecologically	relevant	flow	indicators	of	Richter	et	al.	(1996)	that	are	related	to	changes	in	flow	
extremes,	 and	 by	 integrating	 the	 results	 of	 changes	 in	 different	 ecologically	 relevant	 flow	
indices	with	changes	in	thermal	habitat	conditions	under	future	climate.	In	addition,	we	focus	
in	 more	 detail	 on	 changes	 in	 the	 probability	 and	 magnitude	 of	 low	 flow	 conditions	
(streamflow	droughts),	which	are	main	critical	aspect	for	fish	habitats	(Grossman	et	al.,	1998;	
Matthews	and	Marsh‐Matthews,	2003).	
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We	 calculated	 relative	 changes	 in	 mean	 flow,	 low	 flow	 (Q10;	 10‐percentile	 daily	 flow	
distributions),	 high	 flow	 (Q95;	 95‐percentile),	 annual	 1‐,	 7‐	 and	 30‐day	 minimum	 and	
maximum	 flow,	 and	 seasonal	 flow	 amplitude	 using	 future	 (2071‐2000)	 and	 control	 (1971‐
2000)	streamflow	simulations	(Table	6.1).	Absolute	changes	(shifts)	were	calculated	in	timing	
of	annual	high	and	low	flow	peaks.	We	calculated	GCM	ensemble	mean	changes	in	flow	indices	
for	the	SRES	A2	and	B1	scenario	(for	2071‐2100)	and	control	period	(1971‐2000).	Based	on	
spatial	patterns	of	 changes	 in	 these	ecologically	 relevant	 flow	 indices,	we	 identified	 regions	
with	strongest	(>50%)	increases	or	decreases	in	seasonal	flow	amplitude,	declines	in	low	flow	
(>25%)	and	shifts	in	timing	of	the	annual	maximum	flow	events	(>30	days).	These	regions	are	
considered	 to	 experience	 largest	 changes	 in	 fish	 habitats	 due	 to	 climate	 change	 induced	
streamflow	changes.	

We	 focussed	 in	more	detail	 on	 the	potential	 impacts	 of	 climate	 change	on	 available	 stream	
habitats	for	fishes	by	calculating	changes	in	occurrence	and	magnitude	of	streamflows,	which	
are	 below	 a	 threshold	 minimum	 flow	 under	 future	 compared	 to	 control	 climate.	 A	 fixed	
threshold	level,	which	has	been	widely	used	to	define	streamflow	droughts	(Fleig	et	al.,	2006;	
Hisdal	 et	 al.,	 2004),	 was	 selected	 to	 define	 a	 threshold	 minimum	 flow.	 Although	 variable	
threshold	levels	(on	seasonal,	monthly	and	daily	basis)	have	also	been	widely	used	to	identify	
streamflow	 droughts	 under	 current	 climate	 (e.g.	 Perez	 et	 al.,	 2011;	 van	 Huijgevoort	 et	 al.,	
2012),	we	used	a	fixed	threshold,	because	shifts	in	timing	of	mean	high	and	low	flow	events	
under	 climate	 change	 would	 make	 the	 use	 of	 a	 variable	 threshold	 level	 method	 (without	
corrections	of	future	changes	in	timing	of	flow	events)	less	suitable.	As	a	fixed	threshold	level,	
we	selected	 the	10th	percentile	of	 the	simulated	daily	 river	discharge	 for	 the	control	period	
1971‐2000	 (Q10,	 also	 known	 as	 90th	 exceedence	 percentile),	 which	 is	 a	 widely	 used	
ecologically	 relevant	 low	 flow	 threshold	 (Pyrce,	 2004;	 Smakhtin,	 2001;	Tharme,	2003).	The	
threshold	minimum	flow	was	quantified	on	grid	cell	level	using	the	control	simulations	(1971‐
2000).	Grid	cells	where	the	mean	flow	values	were	less	than	1	m3s‐1	were	excluded	from	the	
analysis.	We	 calculated	GCM	ensemble	mean	 changes	 in	 occurrence	 (mean	number	 of	 days	
per	year)	and	mean	magnitude	that	streamflows	were	below	the	threshold	minimum	flow	for	
both	 the	SRES	A2	and	B1	scenario	 for	2071‐2100	relative	 to	 the	control	period	1971‐2000.	
Regions	with	strongest	increases	in	occurrence	and	magnitude	of	flow	deficits	are	expected	to	
experience	the	largest	increase	in	the	severity	of	crowded,	stressful	conditions	for	freshwater	
fish	 species	 (Grossman	 et	 al.,	 1998;	 Matthews	 and	 Marsh‐Matthews,	 2003;	 Richter	 et	 al.,	
1997).	

6.2.3  Impacts of water temperature changes on freshwater habitats globally 

Changes	 in	 thermal	 characteristics	 of	 rivers	 affect	 life‐cycles	 of	 freshwater	 organisms	 and	
fishes	 (Coutant,	 1987;	 Olden	 and	 Naiman,	 2010).	 The	 thermal	 regime	 of	 rivers	 can	 be	
discomposed	 in	 components	of	magnitude,	 frequency,	duration,	 and	 timing	of	high	and	 low	
thermal	events.	The	quantification	of	its	characteristic	properties	can	thus	be	described	using	
similar	indices	as	used	for	streamflow	regime	(Olden	and	Naiman,	2010).	Therefore,	changes		
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Table  6.1:  Selected  ecologically  relevant  flow  (Q)  and  water  temperature  (Tw)  indices  and  their  definition  and 
references to previous studies that used these indices. 

ecologically relevant index  definition  reference flow/water 
temperature index 

dimension

A) mean streamflow and water temperature:  
Qmean,  
Twmean 

annual mean flow,
water temperature 

(Döll et al., 2009; Döll and 
Zhang, 2010; Oberdorff et al., 
1995; Xenopoulos et al., 2005)  

magnitude

B) high flow and water temperature:   
Q95,  
Tw95 

95th percentile daily flow, water 
temperature exceeded 5% of 
the time 

(Eaton et al., 1995) magnitude

     
1‐, 7‐ and 30‐day Qmax ,  
1‐, 7‐ and 30‐day Twmax             

annual 1‐, 7‐ and 30‐day 
average maximum flow,  
water temperature 

(Gibson et al., 2005; Richter et 
al., 1996)  

magnitude‐
duration 
 

     
date 1‐, 7‐ and 30‐day Qmax
 

Julian date of annual 1‐, 7‐, 30‐
day average maximum flow  

(Richter et al., 1996), but used 
1‐day Qmax) 

timing

C) low flow and water temperature:   
Q10 

Tw10 
10th percentile daily flow,
water temperature exceeded 
90% of time 

(Döll et al., 2009; Döll and 
Zhang, 2010), but used 
monthly 10th percentile 
 

magnitude

1‐, 7‐ and 30‐day Qmin, 
1‐, 7‐ and 30‐day Twmin, 

annual 1‐, 7‐ and 30‐day 
average minimum flow, water 
temperature 

(Gibson et al., 2005; Richter et 
al., 1996) 
 

magnitude‐
duration 
 

     
date 1‐, 7‐ and 30‐day Qmin
 

Julian date of annual 1‐, 7‐, 30 
day average minimum flow 

(Richter et al., 1996)  
 

timing

     
days Tw<=0.5   mean number of days per year 

with water temperatures 
reaching 0.5°C (minimum 
tolerance value for cold and 
cool water fishes) 

(Mohseni et al., 2003), but 
used 0°C as minimum 
temperature tolerance value 
for cold water species 

frequency

D) seasonal amplitude:   
30‐dayQmax – 30‐dayQmin,
30‐dayTwmax – 30‐dayTwmin 

seasonal amplitude flow and 
water temperature using 
annual 30‐day average 
minimum and maximum values 

(Döll et al., 2009; Döll and 
Zhang, 2010) 

magnitude

 

in	similar	ecologically	relevant	indices	were	calculated	to	assess	ecological	 impacts	of	water	
temperature	changes	under	climate	change	on	a	global	scale.	We	calculated	absolute	changes	
in	mean	water	 temperature,	 low	water	 temperature	 (Tw10;	10‐percentile	daily	 temperature	
distributions),	 high	 water	 temperature	 (Tw95;	 95‐percentile),	 annual	 1‐,	 7‐	 and	 30‐day	
minimum	and	maximum	water	 temperature,	and	seasonal	 temperature	amplitude	using	 the	
daily	 water	 temperature	 simulations	 for	 the	 future	 (2071‐2000)	 and	 control	 (1971‐2000)	
periods	 (Table	6.1).	Minimum	 temperature	 tolerance	values	 for	many	 cold	water	 fishes	 are	
assumed	 to	 be	 0°C	 (Mohseni	 et	 al.,	 2003).	 The	 minimum	 temperature	 value	 that	 RBM	



Freshwater fish habitats under climate change 

113 

	

simulates	during	 (almost)	 freezing	periods	 is	0.5°C.	We	 therefore	used	0.5°C	as	a	minimum	
water	temperature	value	to	assess	changes	in	the	mean	number	of	days	per	year	that	water	
temperatures	are	reaching	this	critical	low	value.	As	for	streamflow,	the	GCM	ensemble	mean	
changes	 in	 water	 temperature	 indices	 were	 calculated	 for	 the	 SRES	 A2	 and	 B1	 (for	 2071‐
2100)	relative	to	the	control	period	(1971‐2000).	

In	 addition,	 the	 physiological	 thermal	 tolerances	 are	 of	 importance	 by	 affecting	 the	
biogeographic	 of	 freshwater	 fish	 species	 distributions.	 Different	 fish	 species	 are	 commonly	
grouped	 based	 on	 climate	 zone,	 distinguishing	 (sub)arctic	 fishes,	 temperate	 fishes	 and	
(sub)tropical	fishes	(Ficke	et	al.,	2007).	Temperate	fishes	fall	into	three	thermal	classes	–	cold	
(e.g.	Salmonidae),	 cool	 (e.g.	Percidae)	and	warm	(e.g.	Cyprinidae)	water	 fishes	(Magnuson	et	
al.,	 1979).	 Climate	 change	 is	 expected	 to	 affect	 distributions	 of	 freshwater	 fishes,	 as	 some	
species	will	colonize	habitats	at	higher	latitudes	and/or	disappear	from	the	low	latitude	limits	
of	their	distribution	(Carpenter	et	al.,	1992;	Johnson	and	Evans,	1990;	Shuter	and	Post,	1990).	
It	is	therefore	relevant	for	fish	species	to	assess	the	distances	over	which	water	temperature	
(thermal	habitat)	zones	will	move	under	 future	climate.	Using	the	gridded	datasets	of	mean	
and	 high	 (95th	 percentile)	 water	 temperature	 values	 under	 control	 and	 future	 climate,	 we	
assessed	 latitude‐average	 values	 of	 mean	 and	 high	 water	 temperatures,	 and	 calculated	
isolines	 (joining	points	 (gridcells)	 of	 equal	water	 temperatures	above/below	a	 given	value)	
for	 both	 control	 and	 future	 climate.	 Based	 on	 the	 latitude‐average	 values	 of	 water	
temperature	 statistics	we	 calculated	 the	mean	 polewards	movement	 in	water	 temperature	
(thermal	habitat)	zones	under	future	(2071‐2100)	relative	to	control	(1971‐2000)	climate.	

6.2.4  Regional freshwater fish habitats under water temperature and streamflow changes  

In	addition	to	the	global	analyses,	we	assessed	the	impacts	of	water	temperature	increases	on	
several	 fish	species	 in	different	regions	around	the	globe,	combined	with	spatial	patterns	of	
large	 changes	 in	 streamflow	 habitat	 conditions.	 We	 used	 the	 global	 gridded	 water	
temperature	 simulations	 in	 combination	 with	 maximum	 temperature	 tolerance	 values	
(Twmax_tolerance)	 and	 spatial	 data	with	 current	 suitable	 habitats	 of	 selected	 cold	 (n=15),	 cool	
(n=8),	warm	water	(n=7)	and	(sub)tropical	(n=4)	fish	species	in	different	regions	(Americas,	
Europe,	 Africa	 and	 Southeast	 Asia).	 Fish	 species	were	 selected	 based	 on	 their	 large	 spatial	
extent	(geographic	distribution),	availability	of	information	on	Twmax_tolerance	and	relevance	for	
fisheries.	Although	suitable	thermal	habitat	 is	assumed	to	be	constrained	by	both	maximum	
temperature	 and	 minimum	 temperature	 tolerance,	 information	 of	 minimum	 temperature	
tolerances	of	 freshwater	 fishes	 is	 sparser.	This	 is	mainly	because	observations	of	 fishes	are	
mainly	during	summer	and	therefore	during	periods	with	high	water	temperatures	(Mohseni	
et	al.,	2003).	This	analysis	therefore	specifically	focusses	on	changes	in	thermal	habitat	using	
maximum	 temperature	 tolerance	 values	 of	 fish	 species.	 Table	 6.2	 presents	 an	 overview	 of	
selected	 fish	 species	 included	 in	 this	 analysis,	 along	 with	 the	 region	 of	 occurrence	 and	
Twmax_tolerance	value	and	purpose	(fisheries,	aquaculture	and	game	fish).	
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	Table 6.2: Selected fish species, Twmax_tolerance and purpose for fisheries (F), aquaculture (C) and game fish (G). 

 common name  scientific name  class  Twmax_tolerance source Twmax_tolerance  purpose 

 North America   

 Chum salmon   Oncorhynchus keta  cold  19.8  Eaton and Scheller (1996)  F, C, G 

 Pink salmon   Oncorhynchus gorbuscha  cold  21.0  Eaton and Scheller (1996)  F, C, G 

 Brook trout  Salvelinus fontinalis  cold  22.4  Eaton and Scheller (1996)  F, C, G 

 Mountain white fish  Prosopium williamsoni  cold  23.1  Eaton and Scheller (1996)  F, G 

 Coho salmon  Oncorhynchus kisutch  cold  23.4  Eaton and Scheller (1996)  F, C, G 

 Rainbow trout  Oncorhynchus mykiss  cold  24.0  Eaton and Scheller (1996)  F, C, G 

 Chinook salmon  Oncorhynchus tshawytscha  cold  24.0  Eaton and Scheller (1996)  F, C, G 

 Mottled sculpin  Cottus bairdi  cold  24.3  Eaton and Scheller (1996)  ‐ 

 Blacknose dace  Rhinichthys atratulus    cool  27.2  Eaton and Scheller (1996)  ‐ 

 White sucker    Catostomus commersoni  cool  27.4  Eaton and Scheller (1996)  F, C, G 

 Northern pike  Esox lucius  cool  28.0  Eaton and Scheller (1996)  F, C, G 

 North, Central and South America   

 Longnose dace   Rhinichthys cataractae   cool  26.5  Eaton and Scheller (1996)  C 

 Johnny darter    Etheostoma nigrum  cool  26.5  Eaton and Scheller (1996)  ‐ 

 Creek chub  Semotilus atromaculatus  cool  27.1  Eaton and Scheller (1996)  ‐ 

 Bluntnose minnow  Pimephales notatus   warm  30.1  Eaton and Scheller (1996)  ‐ 

 Black crappie  Pomoxis nigromaculatus   warm  30.5  Eaton and Scheller (1996)  F, G 

 Golden shiner  Notemigonus crysoleucas   warm  30.9  Eaton and Scheller (1996)  F, C 

 Emerald shiner  Notropis atherinoides   warm  31.8  Eaton and Scheller (1996)  F 

 Sand shiner  Notropis stramineus   warm  32.1  Eaton and Scheller (1996)  ‐ 

 Black bullhead  Amieurus melas   warm  34.0  Eaton and Scheller (1996)  F, C, G 

 Flathead minnow  Pimephales promelas   warm  34.0  Eaton and Scheller (1996)  F 

 Europe   

 Arctic char   Salvelinus alpinus alpinus  cold  16.0  Baench and Riehl (1991)  F, C, G 

 Spined loach  Cobitis taenia    cold  18.0  Riehl and Baensch (1991)  F 

 Burbot   Lota lota  cold  18.0  Baench and Riehl (1991)  F, C, G 

 Roach   Rutilus rutilus  cold  20.0  Riehl and Baensch (1991)  F, C, G 

 Wels catfish  Silurus glanis     cold  20.0  Baench and Riehl (1991)  F, C, G 

 Brown trout  Salmo trutta  cold  24.1  Eaton and Scheller (1996)  F, C, G 

 Freshwater bream   Abramis brama  cold  24.0  Baench and Riehl (1991)  F, C, G 

 Northern pike  Esox Lucius  cool  28.0  Eaton and Scheller (1996)  F, C, G 

 Africa   

 Nile tilapia   Oreochromis niloticus niloticus     tropical 33.0  Philippart and Ruwet (1982)  F, C 

 North African catfish  Clarias gariepinus     tropical 35.0  de Moor and Bruton (1988)  F, C, G 

 Asia   

 Mottled loach   Acanthocobitis botia     cool  26.0  Baensch and Riehl (1985)  ‐ 

 Silver carp   Hypophthalmichthys molitrix     cool  28.0  Li et al (1990)  F, C 

 Grass carp   Ctenopharyngodon idella     tropical 35.0  Laird and Page (1996)  F, C 

 Black carp   Mylopharyngodon piceus     tropical 40.0  Nico et al (2005)  F, C 
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Global	 gridded	 datasets	 with	 mean	 distributions	 of	 fish	 species	 on	 0.5°	 x	 0.5°	 spatial	
resolution	 were	 downloaded	 from	 the	 Freshwater	 Biodiversity	 Maps	 of	 Aquamaps	
(http://www.aquamaps.org/main/home_fw.php)	 (Kaschner	 et	 al.,	 2010).	 These	 datasets	
	represent	species’	distribution	maps	of	the	large‐scale	and	current	mean	annual	presence	of	a	
species	 in	 geographic	 space.	 The	 gridded	 maps	 are	 derived	 by	 combining	 numerical	
algorithms,	 that	 describe	 the	 relationships	 between	 known	 species’	 presence	 and	 selected	
environmental	 parameters	 (e.g.	water	 depth,	 temperature,	 salinity),	with	 expert	 knowledge	
and	 information	 on	 species	 habitat	 usage	 and	 occurrence.	 The	 datasets	 do	 not	 capture	 the	
effects	 of	 biological	 interactions	 (e.g.	 inter‐	 or	 intraspecific	 competition,	 predation),	 which	
affect	 the	 actual	 presence	or	 absence	of	 species	 on	 smaller	 scales.	 For	 each	 fish	 species	we	
selected	 all	 grid	 cells	 with	 current	 suitable	 habitats.	 Climate	 change	 impacts	 on	 thermal	
habitat	conditions	were	subsequently	assessed	by	calculating	for	each	grid	cell	the	occurrence	
and	annual	mean	and	maximum	magnitude	of	exceeded	Twmax_tolerance	under	both	control	and	
future	 climate.	 GCM	 ensemble	 mean	 changes	 in	 occurrence	 and	 magnitude	 of	 exceeded	
Twmax_tolerance	 were	 assessed	 for	 the	 SRES	 A2	 and	 B1	 scenario	 (2071‐2100)	 relative	 to	 the	
control	 climate	 period	 (1971‐2000).	 For	 each	 fish	 species,	 paired	 t‐tests	 were	 applied	 to	
assess	 the	 significance	 of	 changes	 in	 occurrence	 and	 magnitude	 of	 exceeded	 Twmax_tolerance	
using	 the	data	 for	 all	 gridcells	with	 suitable	habitat.	While	different	 fish	 species	 could	have	
different	 responses	 to	 flow	 changes	 (Mims	 and	 Olden,	 2012),	 limited	 information	 however	
exists	 regarding	 the	 magnitude	 to	 which	 species	 distributions	 are	 controlled	 by	 flow	
alterations.	We	defined	uniform	spatial	patterns	of	 large	changes	 in	 streamflow	habitat	 (i.e.	
more	 than	50%	 changes	 in	 seasonal	 flow	 amplitude,	 shifts	 in	 timing	 of	 high	 flow	 events	 of	
more	than	30	days,	or	declines	in	low	flow	larger	than	25%).	For	each	fish	species,	the	results	
of	changes	in	exceeded	Twmax_tolerance	were	combined	with	spatial	patterns	of	large	changes	in	
streamflow	habitat.	Based	on	this,	we	identified	 for	each	 fish	species	which	parts	of	current	
suitable	 habitats	 are	 likely	 to	 be	 most	 strongly	 affected	 by	 climate	 change	 and	 related	
streamflow	and	water	temperature	changes.	

6.3  Results 

6.3.1  Impacts of streamflow changes on freshwater habitats globally  

Global	 spatial	 patterns	 of	 changes	 in	 ecologically	 relevant	 flow	 indices,	 show	 increases	 in	
mean	 annual	 flow	 and	 associated	 streamflow	 habitat	 availability	 for	 the	 high	 northern	
latitude	 and	 parts	 of	 the	 tropical	 region	 (Figure	 6.2a).	Decreases	 are	 projected	 for	 the	U.S.,	
Central	America,	the	central	and	southern	Europe,	Southeast	Asia	and	southern	parts	of	South	
America,	 Africa	 and	 Australia.	 Substantial	 increases	 (>25%)	 in	 mean	 flow	 (using	 the	 GCM	
ensemble	mean	changes)	are	projected	for	28‐42%	and	decreases	for	6‐10%	of	global	surface	
area	for	2071‐2100	(SRES	B1‐A2)	relative	to	1971‐2000.	Spatial	patterns	of	changes	in	high	
flow	(Q95,	annual	1‐,	7‐,	30‐day	Qmax)	strongly	correspond	with	projected	changes	 in	mean	
flow	(see	Supplementary	Figure	C1	 for	 changes	 in	30‐day	Qmax).	 Increases	 in	annual	mean	
high	 flow	 could	 increase	 habitat	 availability	 (e.g.	 for	 spawning)	 on	 flood	 plains,	 and	 could		
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Figure 6.2: Global projected changes in annual mean flow (a), annual 30‐day average minimum flow (b), seasonal flow 
amplitude (c), shift in 30‐day average maximum flow (d) relative changes in occurrence (e) and magnitude (f) of flow 
deficits  (with  streamflow  below  threshold minimum  flow)  using  fixed  10th  percentile  of  river  flow  (under  control 
climate) as threshold. The changes in flow indices are averaged for the three selected GCMs for both the SRES A2 and 
B1 scenario for 2071‐2100 relative to 1971‐2000. Regions with mean flow less than 1 m3s‐1 are masked.  



Freshwater fish habitats under climate change 

117 

	

affect	geomorphology	of	rivers	(Ficke	et	al.,	2007).	Low	flows	(Q10,	annual	1‐,	7‐,	30‐day	Qmin)	
are	 likely	 to	 decline	 in	 the	 southern	 U.S.,	 Central	 America,	 Europe	 (expect	 northern	 part),	
Southeast	Asia,	Australia,	southern	South	America	and	southern	Africa	(Figure	6.2b	for	30‐day	
Qmin).	In	these	regions,	strong	increases	are	also	projected	in	the	occurrence	(mean	number	
of	days	per	year)	and	magnitude	of	streamflow	deficits	with	streamflows	below	the	threshold	
minimum	flow	values	(Figure	6.2e‐f).	This	could	potentially	deteriorate	fish	habitats	in	these	
regions,	 due	 to	 decreased	 habitat	 availability	 and	 connectivity	 of	 stream	 channels	 and	
deterioration	of	water	quality	(limited	dilution	capacity	for	pollutions)	(Matthews	and	Marsh‐
Matthews,	2003).	Substantial	increases	in	seasonal	flow	amplitude	are	projected	for	39‐50%,	
while	strong	decreases	(>25%)	are	expected	for	9‐11%	(Figure	6.2c	based	30‐day	Qmin	and	
Qmax).	 Changes	 in	 seasonal	 flow	 amplitude	 could	 affect	 habitat	 characteristics	 and	
compatibility	with	life	cycles	of	fish	species	(e.g.	spawning).	Overall,	climate	change	will	result	
in	an	earlier	onset	of	the	high	flow	(snowmelt)	peak,	especially	in	the	high	northern	latitude	
zone	 (Figure	 6.2d).	 For	 10‐12%	of	 the	 global	 surface	 area	 this	 earlier	 onset	 is	 >30	 days.	 A	
backward	shift	in	high	flow	peak	is	mainly	found	for	parts	of	the	tropical	regions	(delay	>30	
days	for	7‐8%	global	surface	area)	and	could	be	related	to	changes	in	onset	of	the	monsoon	
period.		

To	 identify	 regions	with	 expected	 largest	 impacts	 of	 climate	 change	 on	 streamflow	 habitat	
characteristics,	we	combined	areas	with	projected	largest	changes	in	seasonal	flow	amplitude,	
declines	 in	 low	 flow	 and	 shifts	 in	 timing	 of	 high	 flow	 for	 2071‐2100	 relative	 to	 1971‐2000	
(Figure	6.3).	These	integrated	patterns	of	changes	in	streamflow	habitat	characteristics	show	
strong	 (>50%)	 increases	 in	 seasonal	 flow	amplitude	 for	 parts	 of	 the	 high	northern	 latitude	
region	 and	 tropical	 region,	 substantial	 (>25%)	 declines	 in	 low	 flow	 for	 the	 southern	 U.S.,	
Central	and	southern	South	America,	Europe	(except	northern	part),	southern	Africa,	eastern	
China	and	parts	of	Australia.	Largest	shifts	 in	 the	 timing	of	high	 flow	events	(>30	days)	are	
projected	for	central	parts	of	Asia,	South	America	and	Africa,	western	part	of	North	America	
and	eastern	Australia.	

6.3.2  Impacts of water temperature changes on freshwater habitats globally 

Global	 spatial	 patterns	 of	 changes	 in	 water	 temperature	 indices	 show	 largest	 increases	 in	
mean	 annual	water	 temperature	 for	 the	 U.S.,	 Europe,	 eastern	 China,	 and	 parts	 of	 southern	
Africa	and	Australia	 (Figure	6.4a).	These	 regions	are	all	 characterized	by	 strong	declines	 in	
low	flow	(see	Figure	6.2b),	which	are	likely	to	exacerbate	water	temperature	rises	(van	Vliet	
et	 al.,	 in	 press).	 The	 combined	 effects	 of	 increased	 water	 temperatures	 and	 decreased	
streamflow	during	summer	can	be	critical	and	will	likely	reduce	the	reproductive	success	for	
fish	 species	 populations	with	 impacts	 varying	 for	 different	watershed	 types	 (Mantua	 et	 al.,	
2010).	Mean	water	temperatures	are	expected	to	increase	by	>1°C	for	39‐74%	and	>2°C	for	
10‐33%	 of	 the	 global	 land	 surface	 area	 (for	 SRES	 B1‐A2	 for	 2071‐2100	 relative	 to	 1971‐
2000).	 Increases	 in	high	water	 temperatures	are	 larger	than	 in	annual	mean	and	 low	water	
temperatures.	As	a	result,	 the	seasonal	thermal	regime	will	 increase	with	>1°C	under	future		
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Figure 6.3: Regions with projected  large  changes  in  streamflow habitat  characteristics. Regions  are  identified with 
large decreases in low flow (30‐day Qmin), large decreases or increases in seasonal flow amplitude (based on 30‐day 
Qmin and Qmax) and large shifts in timing of high flow (date 30‐day Qmax) by more than 30 days.  

climate	 for	65–66%	 (SRES	B1‐A2)	 of	 the	 global	 land	 surface	 area.	 The	 stronger	 increase	 in	
high	water	temperature	is	also	relevant	in	terms	of	the	probability	of	exceedance	of	maximum	
temperature	 tolerance	 values	 of	 fish	 species.	 High	 water	 temperatures	 are	 expected	 to	
increase	 on	 average	 by	 1.0	 –	 2.2°C	 (1‐day	 Twmax	 and	 Tw95;	 Figure	 6.4b)	 and	 1.0	 –	 1.9°C	
(annual	7‐	and	30‐day	Twmax).	Low	water	temperatures	(Tw10,	annual	1‐,	7‐,	30‐day	Twmin)	
will	increase	on	average	with	0.4	–	0.9°C.	In	case	regions	with	simulated	water	temperature	of	
0.5°C	(indicating	potential	ice	coverage	on	streams)	are	excluded,	the	global	mean	increase	in	
low	water	 temperature	 is	 0.6	 –	 1.3°C.	 The	mean	number	 of	 days	 per	 year	with	 critical	 low	
water	temperatures	of	0.5°C	are	expected	to	decrease	with	>15	days	per	year	for	14‐23%	and	
>30	days	per	year	for	1‐10%	of	the	global	land	surface	area	under	future	(SRES	B1‐A2	2071‐
2100)	 compared	 to	 control	 climate	 (1971‐2000)	 (Figure	 6.4c).	 Increases	 in	 low	 water		
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Figure 6.4: Global projected changes in mean water temperature (a), high (95‐percentile) water temperature (b) and 
decrease  in number  of  days  per  year with water  temperatures  of  0.5°C  (minimum  temperature  tolerance  of  cold 
water  fishes)  (c). The changes  in water  temperature  indices are averaged  for  the  three selected GCMs  for both  the 
SRES A2 and B1 scenario for 2071‐2100 relative to 1971‐2000. Regions with mean annual river flow less than 1 m3s‐1 
are masked. 

temperatures	and	duration	of	 ice‐free	periods	under	warmer	climate	could	be	beneficial	by	
decreasing	 overwintering	 stress	 and	 extending	 the	 growing	 season	 (Coleman	 and	 Fausch,	
2007).	However,	the	reproductive	success	of	temperate	fishes	can	also	be	negatively	affected	
by	 increases	 in	 low	 water	 temperatures	 (Ficke	 et	 al.,	 2007),	 because	 low	 overwinter	
temperatures	 (cold‐tempering)	 are	 often	 essential	 for	 the	 spawning	 success	 of	 temperate	
fishes,	such	as	salmonids	(Gerdaux,	1998).		

To	 assess	 the	 lateral	 distances	 over	 which	 thermal	 habitat	 zones	 are	 expected	 to	 move	
polewards	 under	 warmer	 climate,	 we	 show	 isolines	 and	 latitude‐average	 values	 of	 mean		
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Figure  6.5:  Global  mean  polewards  movement  of  mean  (Twmean)  and  high  (Tw95)  water  temperature  (a)  and 
movement  of  thermal  zones  in  the Americas with mean  annual water  temperature  classes  for  the  control  period 
1971‐2000  (colours) and  isolines of mean water temperature  for same classes  for 2071‐2100 under SRES A2  (black) 
and B1 (grey) scenario (b).  

water	 temperatures	 for	2071‐2100	relative	 to	1971‐2000	(Figure	6.5).	 In	addition,	 latitude‐	
average	values	 in	95th	percentile	values	 in	water	temperature	(Tw95)	are	shown,	because	of	
the	 relevance	 of	 this	 water	 temperature	 statistic	 for	 testing	 exceedence	 of	 maximum	
temperature	 tolerance	values	 for	 fish	species	(Eaton	et	al.,	1995).	The	 isoline	(boundary)	of	
Tw95<21.5°C	 and	 Tw95<27.0°C	 were	 selected,	 because	 these	 water	 temperature	 values	
indicate	the		average	Twmax_tolerance	for	selected	cold	water	and	cool	water	fishes.	The	21.5°C‐
isoline	is	expected	to	move	northwards	with	approximately	190‐400	km	and	southwards	with	
230‐275	 km	 (SRES	 B1‐A2).	 The	 global	 land	 surface	 area	 with	 Tw95	<21.5°C	 is	 expected	 to	
decreases	 from	 39%	 (1971‐2000)	 to	 32‐35%	 for	 SRES	 A2‐B1	 (2071‐2100).	 This	 reflects	 a	
potential	 decrease	 in	 suitable	 habitat	 for	 cold	 water	 fish	 species.	 For	 the	 27°C‐isoline,	 we	
found	 a	movement	 of	 approximately	 260‐415	 km	 (northern	 hemisphere)	 and	 250‐410	 km	
(southern	 hemisphere).	 Overall,	 the	 global	 surface	 area	 with	 Tw95>30°C	 is	 expected	 to	
increases	from	14%	(1971‐2000)	to	18‐26%	for	SRES	B1‐A2	(2071‐2100),	which	could	reflect	
a	potential	decrease	in	suitable	habitat	for	cold	and	cool	water	fishes,	and	increase	for	warm	
and	tropical	fish	species.	

6.3.3  Regional freshwater fish habitats under water temperature and streamflow changes 

For	each	 fish	species,	 the	magnitude	and	probability	of	exceeded	Twmax_tolerance	values	under	
control	 (1971‐2000)	 and	 future	 climate	 (2071‐2000)	were	 calculated	 for	 all	 grid	 cells	with	
suitable	 habitat.	 For	 all	 selected	 fish	 species	 statistically	 significant	 (p<0.01)	 increases	 in	
occurrence	(mean	number	of	days	per	year)	and	mean	and	maximum	magnitude	of	exceeded	
Twmax_tolerance	were	found.	Increases	are	highest	for	cold	and	cool	water	fish	species	in	Europe,		
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Figure  6.6: Mean  number  of  days  per  year  that maximum  temperature  tolerance  values  are  exceeded  (a), mean 
magnitude of exceeded water temperature limits (b) and relative change in number of days per year, and mean and 
maximum magnitude of exceeded water  temperature  limits  (c)  for control period  (1971‐2000) and SRES B1 and A2 
scenario (2071‐2100) using the ensemble mean changes for all six GCM experiments. The fish species are grouped per 
region  and ordered  from  lowest  to highest  Twmax_tolerance with  the  values  indicating  the  range  for  each  geographic 
region. 
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North	America	 and	Southeast	Asia	 (Figure	6.6).	 For	most	of	 these	 fish	 species	Twmax_tolerance	
were	 already	 exceeded	 during	 1971‐2000.	 The	 highest	 increases	 in	 occurrence	 and	
magnitude	 of	 exceeding	 Twmax_tolerance	 correspond	 with	 projected	 highest	 increase	 in	 mean	
water	 temperature	 for	 these	 regions	 (Figure	 6.4).	 The	 absolute	 increase	 in	 maximum	
magnitude	of	exceeded	Twmax_tolerance	is	on	average	a	factor	of	four	higher	than	the	increase	in	
mean	magnitude	of	exceeded	Twmax_tolerance.		

Spatial	patterns	of	changes	in	occurrence	of	exceeding	Twmax_tolerance,	combined	with	regions	of	
large	 changes	 in	 streamflow	habitat	 characteristics	 are	presented	 for	 seven	 fish	 species	 for	
control	 and	 future	 climate	 under	 SRES	 A2	 in	 Figure	 6.7.	 These	 fish	 species	 are	 situated	 in	
different	 regions	 and	 together	 cover	 a	 large	 range	 of	 Twmax_tolerance	 values	 (from	 19.8°C	 for	
chum	 salmon	 (Oncorhynchus	keta)	 in	North	America	 to	 33.0°C	 for	Nile	 tilapia	 (Oreochromis	
niloticus	 niloticus)	 in	 Africa).	 Curves	 combining	 the	 mean	 magnitude	 of	 exceeded	
Twmax_tolerance,	occurrence	of	exceedance	(>5	and	>20	days	per	year)	and	area	(as	 fraction	of	
current	suitable	habitat	area)	are	shown	for	SRES	B1	and	A2	in	Figure	6.8.		

Overall,	 the	 number	 of	 days	 per	 year	 with	 exceeded	 Twmax_tolerance	 and	 magnitude	 of	
exceedance	 is	 expected	 to	 increases	 for	 considerable	 fractions	 of	 current	 suitable	 habitat	
areas	 under	 future	 climate	 (Figure	 6.7	 and	 6.8).	 For	 chum	 salmon	 (O.	 keta)	 and	 chinook	
salmon	 (O.	 tshawytscha)	 in	 North	 America	 (Figure	 6.7a‐b),	 we	 found	 distinct	 increases	 in	
mean	number	of	days	per	year	with	exceeded	Twmax_tolerance	for	the	central	part	of	their	spatial	
extents	 (i.e.	 region	 northern	 of	 Great	 Lakes).	 This	 was	 also	 found	 for	 pink	 salmon	 (O.	
gorbuscha)	and	coho	salmon	(O.	kisutch)	(see	Supplementary	Figure	C2a‐b).	For	black	crappie	
(Pomoxis	nigromaculatus)	in	the	Americas	(Figure	6.7c),	overall	highest	increases	in	exceeded	
Twmax_tolerance	are	shown	for	the	south‐eastern	United	States.	In	this	region,	water	temperature	
increases	are	high	(Figure	6.4)	and	substantial	(>25%)	declines	in	low	flow	are	projected.	For	
wels	catfish	(Silurus	glanis)	and	freshwater	bream	(Abramis	brama)	in	Europe	(Figure	6.7d‐e)	
we	found	large	increases	in	Twmax_tolerance	exceedence	combined	with	distinct	declines	in	low	
flow	for	central	and	southern	Europe.	Relative	increases	in	fraction	area	of	suitable	habitats	
with	exceeded	Twmax_tolerance	are	especially	large	for	freshwater	bream	(Figure	6.8).	For	silver	
carp	 (Hypophthalmichthys	 molitrix)	 in	 Asia	 (Figure	 6.7f),	 largest	 increases	 in	 exceeded	
Twmax_tolerance	 in	 combination	 with	 substantial	 declines	 in	 low	 flows	 are	 projected	 for	 the	
eastern	 part	 of	 China.	 Nile	 talpia	 (Oreochromis	niloticus	niloticus)	 (Figure	 6.7g)	 and	 North	
African	catfish	(Clarias	gariepinus)	(see	Supplementary	Figure	C2c)	 in	Africa	has	the	highest	
Twmax_tolerance	of	 the	presented	 fish	species.	For	both	African	 fish	species	 the	occurrence	and	
magnitude	of	exceeding	Twmax_tolerance	is	low	for	the	control	period	but	increases	considerably	
under	 future	climate,	as	shown	by	 the	curves	combining	magnitude,	occurrence	and	area	of	
exceeded	 Twmax_tolerance	 for	 Nile	 talpia	 (Figure	 6.8).	 This	 could	 in	 combination	 with	 the	
projected	 large	 increases	 in	seasonal	 flow	amplitude	(owing	to	 large	 increases	 in	high	flow)	
affect	habitat	conditions	for	these	tropical	fish	species.	
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Figure  6.7a‐c:  Impact  of  water  temperature  increases  on  the  occurrence  (mean  number  of  days  per  year)  that 
Twmax_tolerance  is exceeded of selected fish species  in North America, Central and South America, combined with  large 
changes in streamflow habitat conditions. Changes are presented for the period 2071‐2100 for the SRES A2 scenario 
relative to 1971‐2000 using the average of the three GCM experiments. 
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Figure  6.7d‐g:  Impact  of  water  temperature  increases  on  the  occurrence  (mean  number  of  days  per  year)  that 
Twmax_tolerance  is  exceeded  of  selected  fish  species  in  Europe,  Asia  and  Africa,  combined  with  large  changes  in 
streamflow habitat conditions. Changes are presented for the period 2071‐2100 for the SRES A2 scenario relative to 
1971‐2000 using the average of the three GCM experiments. 
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Figure 6.8: Curves combining mean magnitude, occurrence (>5 and >20 days per year) and fractional area of current 
suitable habitat with exceeded Twmax_tolerance for control (1971‐2000) and future climate (2071‐2100) for SRES B1 and 
A2 emissions scenario. The horizontal scale of the graphs for wels catfish and silver carp is different from the graphs 
for other species.  

6.4  Discussion and conclusions  

Our	global	 results	 show	 that	 climate	change	will	have	distinct	 impacts	on	 flow	and	 thermal	
characteristics	of	freshwater	fish	habitat.	Climate	change	will	affect	seasonal	flow	amplitudes,	
magnitude	and	timing	of	high	and	low	flow	events	for	large	fractions	of	the	global	land	surface	
area.	 Substantial	 decreases	 in	mean	 streamflow	are	 projected	 for	 the	U.S.,	 Central	America,	
central	and	southern	Europe,	Southeast	Asia	and	southern	parts	of	South	America,	Africa	and	
Australia.	More	importantly,	relative	decreases	in	low	flows	for	most	regions	are	larger	than	
projected	 decrease	 in	 mean	 flows,	 and	 this	 is	 likely	 to	 reduce	 fish	 habitat	 availability.	 As	
expected,	 climate	 change	will	 further	 increase	water	 temperatures	 during	 the	 21st	 century.	
Using	 a	 physically‐based	 hydrological	 ‐	 water	 temperature	 modelling	 framework	 we	 were	
able	 to	 quantify	 the	 impacts	 of	 both	 atmospheric	 warming	 and	 changes	 in	 streamflow	 on	
water	 temperature	 (thermal	 habitat	 characteristics).	 Worldwide,	 largest	 mean	 water	
temperature	increases	are	projected	for	the	U.S.,	Europe,	eastern	China	and	parts	of	southern	
Africa	 and	Australia.	Most	of	 these	 regions	are	also	 characterized	by	 strong	declines	 in	 low	
(summer)	 flow	 for	 the	 end	 of	 the	 21st	 century,	 and	 this	 combination	 could	 in	 particular	
threaten	fish	populations	(Connor	et	al.,	2003).	Overall,	our	results	show	that	freshwater	fish	
habitats	and	species	distributions	will	not	only	be	affected	by	climate	change	on	a	local	level,	
as	previously	addressed	 for	 individual	river	systems	(e.g.	Mantua	et	al.,	2010),	but	 for	 large	
regions	worldwide.	
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Many	 previous	 studies	 have	 indicated	 the	 impacts	 of	 uncertainty	 of	 climate	 change	
projections	on	simulated	streamflow	or	river	runoff	changes	(e.g.	Chen	et	al.,	2011;	Haddeland	
et	 al.,	 2012;	 Sperna	 Weiland,	 2011).	 Especially	 the	 impact	 of	 climate	 change	 on	 regional	
precipitation	and	river	runoff	can	highly	differ,	depending	on	choice	of	climate	model	and/or	
emission	 scenario	 (e.g.	 Fowler	 et	 al.,	 2007a).	 To	 cover	 part	 of	 these	 uncertainties,	 the	
modelling	framework	was	forced	with	an	ensemble	of	bias‐corrected	GCM	output	to	produce	
streamflow	and	water	 temperature	projections	 for	both	 a	medium‐high	 (SRES	A2)	 and	 low	
(B1)	 emission	 scenario.	 A	 larger	 number	 of	 GCM	 outputs	 would	 better	 represent	 the	
structural	 uncertainty	 in	 climate	 models	 (Tebaldi	 and	 Knutti,	 2007).	 However,	 the	 mean	
change	in	precipitation	in	the	three	climate	models	is	similar	as	shown	by	all	21	models	used	
in	 CMIP3	 (Hagemann	 et	 al.,	 in	 prep.).	 Also,	 the	 spatial	 patterns	 of	 changes	 in	mean,	 annual	
high	and	low	flow,	and	shifts	in	timing	of	high	flow	peaks	generally	correspond	with	results	of	
other	 recent	 global	 hydrological	 model	 studies	 (Döll	 and	 Müller	 Schmied,	 2012;	 Döll	 and	
Zhang,	 2010;	 Sperna	Weiland	 et	 al.,	 2012),	 despite	 different	 choices	 of	 climate	models	 and	
hydrological	 impact	models.	 Our	 global	modelling	 projections	 under	 future	 climate	 change	
could	therefore	be	considered	as	robust.	

Global	patterns	of	changes	 in	streamflow	and	water	 temperature	were	used	 in	combination	
with	spatial	extent	of	suitable	habitats	and	maximum	thermal	tolerance	values	of	fish	species	
in	different	regions.	We	found	significant	increases	in	both	the	occurrence	and	magnitude	of	
exceeding	maximum	 temperature	 tolerance	 values	 of	 all	 selected	 fish	 species	 under	 future	
(2071‐2100)	 compared	 to	 control	 (1971‐2000)	 climate.	 Our	 results	 confirm	 outcomes	 of	
previous	local	and	regional	studies	that	showed	reductions	in	suitable	thermal	habitats	of	cold	
water	fishes	(e.g.	salmonides)	for	streams	in	North	America	under	climate	change	(Mantua	et	
al.,	2010;	Rahel	et	al.,	1996).	Chu	et	al.	(2005)	suggested	that	cold	water	fish	species	in	Canada	
may	be	 extirpated	 from	a	 large	part	 of	 their	present	 range,	while	warm	water	 species	may	
expand	northward.	In	our	study,	we	quantified	a	northwards	movement	of	the	21.5°C‐isoline	
of	approximately	190‐400	km	(northern	hemisphere)	and	a	reduction	in	global	surface	area	
with	high	water	temperatures	(Tw95)	below	21.5°C	(39%	for	1971‐2000	to	32‐35%	for	2071‐
2100).	Hence,	 climate	change	 is	 likely	 to	 reduce	 the	spatial	area	of	 suitable	habitats	of	 cold	
water	 fishes,	 which	 could	 be	 invaded	 by	 cool	 or	 warm	 water	 species	 if	 other	 habitat	
requirements	 (e.g.	 food	 availability)	 are	 also	 fulfilled	 (Chu	 et	 al.,	 2005;	 Ficke	 et	 al.,	 2007;	
Mohseni	et	al.,	2003).	

Several	 previous	 studies	 focussed	 on	 either	 impacts	 of	 water	 temperature	 increases	 (e.g.	
Eaton	and	Scheller,	1996;	Stefan	et	al.,	2001)	or	streamflow	changes	 (e.g.	Xenopoulos	et	al.,	
2005).	 However,	 in	 particular	 the	 combination	 of	 alterations	 in	 water	 temperature	 and	
streamflow	 characteristics	 e.g.	 reduced	 low	 flows	 and	 higher	 water	 temperatures,	 could	
threaten	fish	populations.	Prediction	of	future	species	distributions	is,	however,	difficult	due	
to	uncertainties	in	the	adaptive	capacity	of	different	fish	populations	to	changes	in	streamflow	
and	 thermal	 habitat	 conditions.	 The	duration	 over	which	water	 temperatures	 are	 below	or	
above	 the	 minimum	 and	maximum	 temperature	 tolerance	 values	 is	 also	 a	 relevant	 factor.	
However,	for	most	fish	species	it	is	uncertain	to	what	extent	their	distribution	is	affected	by	
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the	 duration	 of	 water	 temperatures	 above	 or	 below	 the	 temperature	 tolerance	 values.	
Physiological	adaptation	to	thermal	habitat	changes	occurs	at	a	local	level,	and	depends	on	the	
population	and	genetic	diversity,	as	shown	for	sockeye	salmon	in	the	Fraser	River	(Eliason	et	
al.,	2011).	There	is	also	a	strong	need	for	an	improved	understanding	of	adaptive	response	of	
freshwater	(fish)	species	to	streamflow	changes	(Arthington	et	al.,	2010)	and,	in	particular,	to	
the	combination	of	streamflow	and	thermal	habitat	changes.		

Our	results	show	a	need	for	the	development	of	adaptation	strategies	to	minimize	habitat	loss.	
This	is	not	only	relevant	in	terms	of	biodiversity	conservation,	but	also	for	future	fisheries	and	
food	 production	 (FAO,	 2008).	 An	 obvious	 measure	 to	 reduce	 habitat	 loss	 is	 to	 minimize	
anthropogenic	activities	that	affect	the	quality	of	the	river	systems	habitats,	such	as	limits	on	
human	water	extractions	during	low	flow	periods.	However,	this	could	increase	conflicts	with	
human	water	 use	 sectors	 (e.g.	 agriculture,	 energy	 and	 domestic	 uses)	 that	 commonly	 have	
highest	water	demands	during	warm,	dry	periods.	Reductions	 in	 thermal	pollution	of	rivers	
would	 be	 desirable	 to	 reduce	 water	 temperature	 increases,	 especially	 during	 periods	 with	
high	water	temperature	and	low	flow	(limited	dilution	capacity	for	thermal	effluents).	In	the	
United	 States	 and	 Europe,	 strict	 regulations	 exist	 for	 the	maximum	 temperatures	 of	 water	
discharged	 by	 thermoelectric	 power	 plants.	 However,	 in	 case	 these	 regulations	 are	
maintained,	 the	 thermoelectric	 power	 sector	 in	 the	 U.S.	 and	 Europe	 could	 be	 seriously	
hampered	over	the	next	20‐50	years	(van	Vliet	et	al.,	2012b).	To	prevent	strong	reductions	in	
electricity	 production	 potentials,	 the	 thermoelectric	 power	 sector	 would	 benefit	 by	 more	
flexible	 regulations	 (i.e.	 higher	 water	 temperature	 and	 extraction	 permits),	 but	 this	 could	
negatively	affect	freshwater	(fish)	habitats.	

While	changes	in	anthropogenic	impacts	(e.g.	water	use	extractions,	reservoir	regulation	and	
thermal	pollution)	will	affect	future	streamflow	and	water	temperature	on	a	local	(subbasin)	
level,	climate	change	will	inevitably	impact	streamflow	and	thermal	habitats	on	a	larger	scale.	
River	management	and	conservation	strategies	should	therefore	take	 into	account	that	both	
streamflow	and	 thermal	characteristics	of	 freshwater	habitats	are	changing	on	a	 large	scale	
due	to	climate	change,	and	this	is	expected	to	affect	species	distributions.	
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Synthesis 
	

7.1   Introduction  

Worldwide,	 the	pressure	on	water	between	 freshwater	 ecosystems	and	different	water	use	
sectors	is	expected	to	increase	due	to	climate	change	and	increasing	water	demands	under	a	
growing	global	population.	Several	macro‐scale	hydrological	studies	addressed	the	impacts	of	
climate	 change	 on	 global	water	 resources	 (e.g.	 Alcamo	 et	 al.,	 2007;	Arnell,	 1999a;	Döll	 and	
Müller	Schmied,	2012;	Sperna	Weiland	et	al.,	2012),	but	with	a	clear	focus	on	water	quantity.	
However,	 climate	 change	 is	 also	 likely	 to	 increase	 river	 temperatures	 on	 a	 large	 scale,	 and	
combined	with	changes	in	river	flow	patterns	this	may	have	direct	consequences	for	human	
water	uses,	like	cooling	use,	and	freshwater	ecosystems.	

This	study	 therefore	 focussed	on	 the	effects	of	climate	change	on	global	 river	 temperatures	
and	river	flows,	and	the	potential	consequences	for	cooling	water	use	in	the	energy	sector	and	
freshwater	 ecosystems.	 Four	 research	 questions	 were	 defined	 (Chapter	 1)	 and	 addressed	
(Chapter	2‐6).	For	the	 first	question,	we	evaluated	the	performance	of	both	a	statistical	and	
physically‐based	water	temperature	model.	Both	models	were	further	developed	and	used	for	
the	first	time	on	a	worldwide	level.	A	global	database	with	observed	daily	water	temperature	
series	 (from	 different	 data	 sources)	 was	 developed	 and	 used	 to	 evaluate	 modelling	
performances.	 Both	 the	 statistical	 and	 physically‐based	 modelling	 approach	 were	 used	 to	
obtain	more	robust	estimates	of	 the	sensitivities	of	 river	 temperature	 to	river	 flow	changes	
under	 current	 climate	 variability	 (Chapter	 2	 and	 3).	 For	 the	 second	 question,	 this	 study	
quantified	 and	 combined	 the	 effects	 of	 climate	 change	 on	 both	 river	 flows	 and	 water	
temperatures	globally,	 and	showed	which	regions	will	 experience	 largest	 river	 temperature	
and	flow	changes	(Chapter	4).	 In	a	next	step,	a	 translation	was	made	from	hydrological	and	
water	 temperature	 impacts	 to	 the	 consequences	 for	 electricity	 supply	 on	 a	 large	 scale.	We	
quantified	how	 electricity	 production	 in	 Europe	 and	 the	United	 States	 could	 be	 affected	 by	
changes	 in	cooling	water	availability	and	water	temperatures	under	future	climate	(Chapter	
5).	In	addition,	we	addressed	the	consequences	of	climate	change	on	flow	and	thermal	habitat	
characteristics	 of	 fish	 species	 in	 different	 regions	worldwide	 (Chapter	 6).	 Dependencies	 of	
both	 the	 energy	 sector	 and	 freshwater	 ecosystems	on	 climate,	water	 availability	 and	water	
temperature	have	not	previously	been	addressed	on	such	a	 large	scale.	The	main	results	of	
this	study	are	summarized	in	Table	7.1.	In	the	next	section	of	this	chapter	the	four	research	
questions	 and	 results	 are	 discussed	 in	 a	 broader	 context.	 In	 addition,	 the	 contribution	 to	
science	and	water	management,	and	an	outlook	for	further	research	on	this	topic	are	given.	
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Table  7.1:  Overview  of  research  questions  and  main  results  and  conclusions.  Abbreviations  are  used  for  water 
temperature (Tw) and river flow (Q) (see Figure 1.7 for schematic representation of methodological framework used 
to address these research questions). 

research question         main results and conclusions

Q1: Performance of 

statistical and physical 

Tw modelling, and 

sensitivity Tw to Q 

changes? 

(Chapter 2 and 3) 

 

 Realistic daily Tw estimates were obtained with both  the  statistical and physically‐

based  Tw modelling  approach.  Although modelling  errors  for  the  physical model 

were slightly higher, better performances for  locations with  limited data availability 

were  obtained.  The  physically‐based  Tw  model  is  also  more  suitable  for 

extrapolation  (in  space  and  time)  and  for  scenario  analyses  (e.g.  climate  change 

impact). 

 

 Both modelling approaches showed moderate impacts of Q on mean Tw values, but 

significant impacts on high Tw extremes. This shows the importance of incorporation 

of  hydrological  conditions  in  Tw modelling  to  obtain more  realistic  Tw  estimates, 

especially during dry, warm spells. 

Q2: Effects of climate 

change on Q and Tw 

globally? 

(Chapter 4) 

 

 Climate change  is  likely  to  increase Q seasonality  for about one‐third of  the global 

land  surface  area.  Consistent  increases  in  mean  Q  are  projected  for  the  high 

northern latitudes and parts of the tropical region. Decreases in mean and low Q are 

projected  for  the U.S., Central America, Europe,  Southeast Asia,  and  the  southern 

parts of South America, Africa and Australia. 

 

 Global mean Tw is projected to increase on average by 0.8–1.6°C for the SRES B1‐A2 

scenario for 2071‐2100 relative to 1971‐2000. Largest Tw increases are projected for 

the U.S., Europe, eastern China, and parts of  southern Africa and Australia, where 

the sensitivities of Tw are exacerbated by decreases in low Q.  

 

 These  regions  could  potentially  experience  a  deterioration  of  water  quality, 

freshwater  habitats  and  reduced  potentials  for  human water  uses  under  climate 

change. 

Q3: Impacts on cooling 

water use and 

thermoelectric power 

production? 

(Chapter 5) 

 

 

 

 Lower  summer  Q  combined  with  higher  Tw  under  future  climate  will  increase 

environmental  restrictions on cooling water use  in  the U.S. and Europe. This could 

result in substantial reductions in thermoelectric power production, especially in the 

south‐eastern U.S. and southern Europe. 

 

 Considering expected  increases  in electricity and water demand, there  is a need for 

improved climate adaptation strategies to ensure future water and energy security, 

without compromising environmental objectives. 

Q4: Impacts on 

freshwater (fish) 

habitats? 

(Chapter 6) 

 Freshwater  (fish) habitats  are  likely  to  change  for  large  regions worldwide due  to 

rising Tw combined with changes in Q characteristics (e.g. seasonal amplitude, timing 

and magnitude of low and high Q). Thermal habitat zones are expected to move pole 

wards.  

 

 Significant  increases  in both  the  frequency and magnitude of exceeding maximum 

Tw tolerances of freshwater fish species in different regions were found. This could, 

in combination with changes in Q regime, affect species distributions, depending on 

the adaptive capacity of freshwater (fish) species.  
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7.2   Discussion of main results  

7.2.1  Global hydrological ‐ water temperature modelling under current climate variability and 

sensitivities (Q1) 

Performance of statistical and physically‐based water temperature model  

Both	 a	 statistical	 (regression)	 and	 physically‐based	 (heat	 transport)	 water	 temperature	
modelling	 approach	were	used	 to	 estimate	 river	 temperatures	 globally,	 and	 to	quantify	 the	
sensitivities	 to	 river	 flow	 changes.	 The	 performances	 of	 both	water	 temperature	modelling	
approaches	were	evaluated	using	observed	daily	water	temperature	series	for	river	stations	
on	a	global	scale.		

The	nonlinear	water	temperature	regression	model	of	Mohseni	et	al.	(1998)	was	modified	to	
include	river	discharge	as	independent	variable,	in	addition	to	air	temperature,	and	to	apply	
the	 regression	 model	 on	 a	 daily	 time	 step	 (Chapter	 2).	 This	 resulted	 in	 a	 significant	
improvement	 in	 water	 temperature	 estimates,	 especially	 during	 warm	 and	 dry	 periods.	
Despite	 its	 simplicity,	 the	 modified	 regression	 model	 was	 able	 to	 estimate	 daily	 water	
temperatures	for	present‐day	climate	(1980‐1999)	with	a	reasonable	performance	(Chapter	
2,	median	RMSE	of	1.8°C	for	global	GEMS/Water	stations).	Differences	in	performances	were	
mainly	explained	by	the	number	of	water	temperature	measurements	to	fit	relations.	As	the	
regression	 model	 was	 fitted	 for	 point	 (station)	 locations	 and	 for	 a	 specific	 period,	 the	
approach	 is	 limited	 in	 application	 for	 extrapolation,	 such	 as	 spatially‐variable	 water	
temperature	 projections	 under	 changing	 climate.	 However,	 the	 regression	 modelling	
approach	 was	 useful	 to	 explore	 sensitivities	 of	 daily	 water	 temperature	 distributions	 to	
changes	 in	 air	 temperature	 (reflecting	 atmospheric	 energy	 input)	 and	 river	 discharge	
(reflecting	thermal	capacity	and	dilution	capacity	for	thermal	effluents)	under	current	climate	
variability.	 The	 results	 showed	 largest	 impacts	 of	 river	 flow	on	water	 temperatures	 during	
warm,	dry	spells.	Hence,	the	results	of	the	regression	modelling	provided	the	rational	for	use	
of	a	coupled	hydrological	‐	water	temperature	modelling	framework	in	this	study.	

The	heat	 transport	model	RBM	(Yearsley,	2009),	 linked	to	 the	VIC	macro‐scale	hydrological	
model	 (Liang	 et	 al.,	 1994),	 was	 further	 developed	 to	 apply	 RBM	 on	 a	 global	 scale	 and	 to	
improve	 water	 temperature	 simulations	 for	 river	 basins	 which	 are	 strongly	 affected	 by	
reservoirs	and	heat	effluents	of	thermoelectric	power	plants	(Chapter	3).	The	performance	of	
the	 VIC‐RBM	 framework	 for	 daily	 river	 discharge	 and	 water	 temperature	 simulations	 was	
evaluated	at	 river	basin	 (Chapter	3),	 continental	 (Supplementary	 Information	B)	and	global	
level	 (Supplementary	 Information	A).	Overall,	 simulated	daily	water	 temperatures	generally	
correspond	 well	 with	 observations.	 Compared	 to	 the	 regression	 modelling	 approach,	
however,	slightly	higher	values	of	RMSE	(Chapter	3,	Table	3.3;	median	of	2.8°C	and	range	of	
1.6	to	6.7°C	for	study	basin	stations)	were	obtained,	although	it	should	be	kept	in	mind	that	
RBM	was	 not	 directly	 calibrated.	 In	 addition,	 an	 overall	 better	 performance	with	RBM	was	
found	 for	 stations	 with	 limited	 availability	 of	 measurements	 (<	 150)	 to	 fit	 the	 regression	



Chapter 7     

132 

	

model	(Figure	7.1).	This	indicates	the	usefulness	of	this	heat	transport	modelling	approach	for	
areas	with	limited	or	no	availability	of	water	temperature	measurements.	

Overall	the	best	water	temperature	modelling	estimates	with	RBM	were	found	for	river	basins	
in	 the	 temperate	 climate	 zone,	 while	 water	 temperatures	 in	 the	 tropical	 region	 were	 on	
average	 slightly	 overestimated	 (see	Table	 3.3	 (e.g.	Mekong);	 Supplementary	 Figures	A2–A3	
(global	 validation)).	 This	 overestimation	 is	 likely	 due	 to	 overestimations	 in	 incoming	
shortwave	 radiation,	 partly	 related	 to	 the	 neglect	 of	 vegetation	 shading	 effects.	 Some	
underestimations	 were	 found	 in	 water	 temperatures	 during	 summer	 for	 high	 northern	
latitude	rivers	(see	Table	3.3	(e.g.	Ob,	Yenisey,	Lena);	Figures	A2–A3	(global	validation)).	This	
could	 be	 due	 to	 the	 neglect	 of	 impacts	 of	 complex	 snowmelt	 processes	 on	 the	 water	
temperature	simulations.	

Significant	 improvements	 in	 water	 temperature	 estimates	 with	 RBM	 were	 obtained	 in	
thermally	 polluted	 basins	 (Rhine,	 Meuse,	 Danube,	 Mississippi)	 by	 implementing	 heat	
discharges	as	advected	heat	sources	 in	the	heat	transport	equation.	In	addition,	 the	use	of	a	
reservoir	 routing	 model	 and	 corrected	 geometry	 ‐	 streamflow	 relations	 significantly	
improved	 river	 discharge	 and	water	 temperature	modelling	 in	 highly	 regulated	basins,	 like	
the	Columbia.	Incorporation	of	vertical	stratification	and	mixing	in	reservoirs	and	lakes	could	
further	 improve	 water	 temperature	 estimates	 downstream	 of	 reservoirs.	 The	 newest	 VIC	
version	 is	 able	 to	 simulate	 lake	water	 temperatures	 (Bowling	 and	 Lettenmaier,	 2010),	 and	
could	 be	 linked	 to	 the	 reservoir	 routing	 model	 and	 RBM.	 As	 this	 step	 requires	 detailed	
information	of	outlet	depths	of	reservoirs,	and	vertical	water	temperature	profiles,	which	are	
rather	 difficult	 to	 collect	 on	macro‐hydrological	 scale,	 a	 focus	 on	 selected	 regulated	 basins	
with	sufficient	data	availability	is	recommended.			

 
Figure  7.1:  Comparison  of  median  RMSE  (°C)  for  daily  water  temperature  estimates  using  the  nonlinear  water 
temperature  regression model NonlinQ  (including  river discharge  as  independent  variable)  and  the heat  transport 
model RBM. Median values of RMSE are based on water temperature simulations  (1980‐1999) with both modelling 
approaches for the same monitoring stations globally. 
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Further	 implementations	 to	 the	 VIC‐RBM	 modelling	 framework	 (such	 as	 improved	
representation	of	frozen	soils	and	snowmelt	on	water	temperatures,	vegetation	shading	and	
thermal	stratification	 in	reservoirs	and	 lakes)	and	calibration	are	recommended	to	 improve	
water	 temperature	 estimates.	 A	 relevant	 improvement	 of	 the	 VIC	 hydrological	 model	 for	
simulations	 of	 extreme	 low	 flow	 (streamflow	 droughts)	 would	 be	 to	 explicitly	 model	 the	
representation	of	groundwater.	However,	considering	the	general	objective	of	this	study,	we	
believe	 the	 VIC‐RBM	 framework	 produces	 spatially‐variable	 daily	 river	 flow	 and	 water	
temperatures	estimates	with	an	acceptable	performance	 for	 further	sensitivity	analyses	and	
for	climate	change	impact	assessment	on	macro‐hydrological	(continental,	global)	scale.	

Sensitivity of water temperatures to river flow changes  

Both	 the	 regression	 and	 heat	 transport	 modelling	 approach	 were	 used	 to	 assess	 the	
sensitivity	of	water	 temperatures	 to	changes	 in	river	 flow.	While	 contrasting	conclusions	of	
the	magnitude	of	river	discharge	changes	on	water	temperatures	were	reported	by	previous	
studies,	 showing	 limited	 effects	 (e.g.	 Crisp	 and	Howson,	 1982;	Webb	 and	Nobilis,	 2007)	 or	
substantial	 effects	 of	 river	 flow	 changes	 (Sinokrot	 and	 Gulliver,	 2000;	 Webb	 et	 al.,	 2003),	
consistent	results	were	obtained	 for	both	modelling	approaches	used	 in	 this	 thesis.	Overall,	
moderate	 effects	 of	 river	 flow	 on	 water	 temperatures	 in	 mean	 values	 were	 found,	 but	
significant	 impacts	 on	 the	 outer	 ranges,	 and	 especially	 high	 water	 temperature	 extremes	
(Chapter	2	and	3).	Decreases	 in	river	 flow	reduce	the	thermal	capacity,	which	 increases	the	
sensitivity	 to	 atmospheric	warming	 and	 cooling,	 especially	when	 river	 discharges	 (volumes	
and	flow	velocities)	are	low	and	atmospheric	energy	input	is	high.	In	addition,	reductions	in	
river	 flow	 also	 reduce	 the	 dilution	 capacity	 for	 thermal	 effluents,	 which	 contributes	 to	
nonlinear	 increases	 in	water	 temperature	 in	 thermally	 polluted	 rivers.	 An	 increase	 in	 river	
flow	has	an	opposite	impact	on	water	temperature	and	extremes.		
	
The	magnitude	of	sensitivities	of	water	temperatures	to	streamflow	changes	were	compared	
for	both	modelling	approaches	using	simulations	for	river	stations	in	14	study	basins	globally	
(described	 in	 Chapter	 3).	 Overall,	 the	 calculated	 sensitivities	 in	mean	 and	maximum	water	
temperatures	are	comparable	for	both	approaches.	For	minimum	water	temperatures,	RBM,	
however,	shows	smaller	sensitivities	to	river	flow	changes	than	the	regression	model	(Table	
7.2).	Smaller	impacts	of	river	flow	changes	on	minimum	water	temperatures	are	expected	in	
high	 latitude	 regions,	 because	 water	 temperatures	 remain	 around	 freezing	 point	 during	
winter	(see	Section	3.3.5;	Figure	3.9).	 In	addition,	 the	impact	of	changes	in	dilution	capacity	
for	 thermal	 effluents,	 which	 is	 explicitly	 included	 in	 RBM,	 is	 opposite	 to	 (partly	
counterbalances)	the	effects	of	thermal	capacity	changes.	This	can	result	in	smaller	decreases	
(or	even	slight	increases)	in	minimum	water	temperatures	in	thermally	polluted	basins	under	
decreasing	river	flow	and	atmospheric	cooling	(see	for	example	Figure	3.10,	Danube	station).		
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Table 7.2: Impacts of changes in river flow on minimum, mean and maximum water temperatures (°C). Mean absolute 
differences  in water temperature statistics are calculated based on water temperature simulations under river  flow 
changes of  ‐50%,  ‐25%, +25% and +50% and  reference water  temperature  simulations  for both  the heat  transport 
model RBM and regression model NonlinQ (including discharge). The differences are calculated with both modelling 
approaches for the same water temperature monitoring stations in different hydro‐climatic zones and with different 
anthropogenic impacts (see river basins Chapter 3). 

‐50%Q  ‐25%Q  +25%Q  +50%Q 

RBM  NonlinQ  RBM  NonlinQ  RBM  NonlinQ  RBM  NonlinQ 

minimum Tw  ‐0.3  ‐1.3  ‐0.2  ‐0.5  +0.1  +0.3  +0.2  +0.5 

mean Tw  +0.4  +0.6  +0.1  +0.2  ‐0.0  ‐0.1  ‐0.1  ‐0.1 

maximum Tw  +1.0  +1.2  +0.3  +0.4  ‐0.2  ‐0.2  ‐0.4  ‐0.3 

	

To	 conclude,	 realistic	 water	 temperature	 estimates	 were	 obtained	 on	 daily	 time	 step	 with	
both	 the	 statistical	 (regression)	 and	 physically‐based	 (heat	 transport)	modelling	 approach.	
Although	modelling	errors	 for	the	physically‐based	RBM	model	were	slightly	higher,	RBM	is	
more	 suitable	 for	 extrapolation	 (in	 space	 and	 time)	 and	 for	 scenario	 analyses	 (e.g.	 climate	
change	 impact)	 than	 the	 regression	 model.	 Both	 modelling	 approaches	 were	 consistent	 in	
showing	moderate	 impacts	of	 river	 flow	on	mean	water	 temperature	values,	but	 significant	
impacts	 on	 especially	 high	 water	 temperature	 extremes.	 This	 shows	 the	 importance	 of	
incorporation	 of	 hydrological	 conditions	 in	water	 temperature	modelling	 to	 obtain	 realistic	
water	temperature	estimates,	especially	during	dry,	warm	spells.		

7.2.2  Effects of climate change on global river flow and water temperatures (Q2) 

The	VIC‐RBM	modelling	 framework	was	 forced	with	 an	 ensemble	 of	 bias‐corrected	 climate	
model	output	to	assess	global	river	flows	and	water	temperatures	under	climate	change,	and	
to	 identify	 in	 which	 regions	 impacts	 will	 be	 largest.	 Prior	 to	 these	 results,	 we	 discuss	 the	
impacts	 of	 uncertainties	 in	GCM	output	 on	 simulated	 river	 flow	and	water	 temperature	 for	
historic	(control)	climate.		

Impacts of uncertainties in GCM output   

In	this	thesis,	a	chain	of	impact	models	(VIC	hydrological	model	–	routing	model	–	RBM	water	
temperature	model	–	thermoelectric	power	production	model)	was	forced	with	climate	model	
output	 (Chapter	 4‐6).	 This	 results	 in	 a	 ‘cascade	 of	 uncertainty’	 (Schneider,	 1983)	whereby	
uncertainty	 accumulates	 throughout	 the	 process	 of	 climate	 change	 projections	 and	 impact	
assessment.	We	used	output	of	three	GCMs	for	both	the	SRES	A2	and	B1	emissions	scenario	to	
reflect	 some	 uncertainties	 arising	 from	 different	 socio‐economic	 storylines,	 climate	 model	
structures	 and	 parameterizations,	 notwithstanding	 that	 the	 use	 of	 a	 larger	 number	 of	 GCM	
outputs	would	 better	 represent	 the	 structural	 uncertainty	 in	 climate	models	 (Fowler	 et	 al.,	
2007a;	Sperna	Weiland,	2011;	Tebaldi	and	Knutti,	2007).		
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The	VIC‐RBM	modelling	framework	was	forced	with	statistically	bias‐corrected	GCM	output	of	
precipitation	 and	 air	 temperature.	We	 used	 a	minimum	of	 forcing	 variables	 into	 VIC	 (bias‐
corrected	precipitation,	 air	 temperature	 and	uncorrected	wind	 speed)	 to	 reduce	 impacts	of	
uncorrected	 GCM	 output	 of	 radiation,	 humidity	 and	 wind	 speed	 data,	 which	 considerably	
affect	 evapotranspiration	 and	 runoff	 estimates	 (Haddeland	 et	 al.,	 2012).	 In	 this	 case,	 vapor	
pressure,	 incoming	 shortwave	 and	 net	 longwave	 radiation	 are	 calculated	 based	 on	
precipitation	 and	 minimum	 and	 maximum	 temperature,	 using	 algorithms	 developed	 by	
Kimball	et	al.	(1997),	Thornton	and	Running	(1999)	and	Bras	(1990),	as	described	by	Nijssen	
et	al.	(2001b).	Although	it	should	be	kept	in	mind	that	uncertainties	are	also	associated	with	
estimating	 these	 variables	 internally	 within	 VIC,	 overall	 better	 results	 for	 the	 control	
simulation	 period	 were	 obtained	 when	 the	 forcing	 was	 restricted	 to	 bias‐corrected	
precipitation,	 temperature	 and	 (uncorrected)	wind	 speed.	 The	 statistics	 for	 simulated	daily	
river	discharge	 and	water	 temperature	 for	 the	 control	 simulations	of	 the	GCMs	 correspond	
well	with	the	simulations	using	the	observed	forcing	dataset	and	observed	values	(Chapter	4,	
Figure	 4.2).	 While	 river	 discharge	 simulations	 are	 used	 as	 input	 into	 the	 RBM	 water	
temperature	model,	 we	 found	 an	 overall	 greater	 robustness	 (i.e.	 persistence	 of	 the	 system	
under	 uncertainties	 in	 input)	 for	 the	water	 temperature	 predictions	 compared	 to	 the	 river	
discharge	predictions.	This	is	mainly	because	water	temperature	is,	in	contrast	to	river	flow,	
less	 strongly	 affected	 by	 precipitation	 and	 its	 uncertainties,	 which	 potentially	 have	 a	 large	
impact	 on	 simulated	 river	 discharge	 on	 a	 global	 scale	 (Biemans	 et	 al.,	 2009;	 Fekete	 et	 al.,	
2004;	 Voisin	 et	 al.,	 2008).	 This	 shows	 that	 a	 larger	 cascade	 of	 impact	 models	 does	 not	
necessarily	increases	the	uncertainties	throughout	the	modelling	chain.		

Climate change impacts on river flows and water temperatures 

Global	projections	of	river	flow	and	water	temperatures	under	climate	change	were	obtained	
by	 forcing	 the	VIC‐RBM	modelling	 framework	with	bias‐corrected	GCM	output	 for	both	 the	
SRES	A2	and	B1	emissions	scenario.	Our	results	project	an	increase	in	the	seasonality	of	river	
discharge	(increase	 in	high	 flow	and	decrease	 in	 low	flow)	 for	about	one‐third	of	 the	global	
land	 surface	area	 for	2071‐2100	 relative	 to	1971‐2000	 (Chapter	4).	Consistent	 increases	 in	
mean	flow	for	the	tropical	region	and	the	high	northern	latitudes	(with	an	earlier	start	of	the	
snowmelt	peak)	are	projected	for	the	different	GCM	experiments.	Our	results	show	consistent	
decreases	in	mean	flow	for	the	U.S.,	southern	and	central	Europe,	Southeast	Asia	and	southern	
parts	 of	 South	 America,	 Africa	 and	 Australia.	 These	 results	 generally	 correspond	 with	
previous	global	hydrological	model	studies	(Arnell,	2004;	Döll	and	Zhang,	2010;	Milly	et	al.,	
2005;	Nijssen	et	al.,	2001a;	Sperna	Weiland	et	al.,	2012),	despite	different	choices	of	emission	
scenarios	and	GCMs	and	different	hydrological	models	that	were	used.	Low	(10th	percentile)	
flows	 are	 projected	 to	 decrease,	 especially	 in	 the	 southern	 U.S.,	 Central	 America,	 Europe	
(except	 northern	 part),	 Southeast	 Asia,	 Australia	 and	 southern	 parts	 of	 South	 America	 and	
Africa.			

Global	 mean	 and	 high	 (95th	 percentile)	 water	 temperatures	 are	 projected	 to	 increase	 on	
average	by	0.8–1.6	(1.0–2.2)°C	for	the	SRES	B1‐A2	scenario	for	2071‐2100	relative	to	1971‐
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2000.	 Moderate	 water	 temperature	 increases	 are	 projected	 for	 the	 tropical	 basins	 due	 to	
dominant	 impacts	 of	 increased	 evaporative	 cooling	 and	 back	 radiation	 under	 warmer	
conditions.	 Largest	 increases	 in	mean	water	 temperature	 are	 projected	 in	 the	U.S.,	 Europe,	
eastern	 China,	 and	 parts	 of	 southern	 Africa	 and	 Australia,	 where	 the	 sensitivities	 of	 river	
temperatures	are	exacerbated	by	projected	declines	in	low	flows.		

Strong	declines	in	low	flow	(>25%)	combined	with	high	water	temperature	increases	(>2°C)	
are	 mainly	 projected	 for	 the	 south‐eastern	 U.S.,	 central	 and	 southern	 Europe	 and	 eastern	
China	(see	Figure	4.8).	These	regions	could	potentially	experience	an	increased	deterioration	
of	water	quality,	 freshwater	habitats	and	reduced	potentials	 for	human	water	uses,	 such	as	
thermoelectric	 power	 and	 drinking	 water,	 under	 future	 climate.	 Figure	 7.2	 shows	 these	
regions	 hatched	 (based	 on	 results	 for	 2071‐2100	 SRES	 A2)	 combined	 with	 global	 gridded	
population	 counts	 (CIESIN,	 2005)	 and	 gross	 domestic	 product	 (GDP)	 (IIASA,	 2007)	 for	 the	
year	2000.	Especially	Europe	and	eastern	China	are	 regions	with	 relatively	high	population	
densities	and	counts.	In	total	1.2	billion	people	currently	live	in	regions	that	are	expected	to	
experience	large	declines	in	low	flow	combined	with	high	water	temperature	increases.	This	
number	is	expected	to	increase	to	1.8	billion	in	2070,	using	population	scenarios	for	SRES	A2	
(IIASA,	2007).	From	economic	perspective,	 the	developed	regions	(U.S.	and	Europe)	and	the	
economically	fast	growing	China,	are	expected	to	experience	largest	declines	in	(low)	flow	and	
strongest	increases	in	water	temperature,	while	the	economic	consequences,	for	instance,	the	
costs	of	insufficient	water	availability	and	high	water	temperatures	(e.g.	for	cooling	water	use	
in	 energy	 and	 industrial	 sector)	 are	 also	 highest	 in	 these	 parts	 of	 the	world.	 Regions	with	
projected	 large	 declines	 in	 low	 flow	 combined	 with	 high	 water	 temperatures	 currently	
represent	39%	of	global	GDP.	In	this	respect,	the	economic	impacts	of	changes	in	river	flows	
and	water	temperatures	are	expected	to	be	largest	for	the	developed	regions	of	the	world.		

To	conclude,	climate	change	is	expected	to	increase	river	discharge	seasonality	for	one‐third	
of	the	global	land	surface	area.	Largest	water	temperature	increases	are	mainly	projected	for	
the	 U.S.,	 Europe	 and	 eastern	 China,	 where	 sensitivities	 are	 exacerbated	 by	 declines	 in	 low	
flow.	 In	 these	 regions,	 the	socio‐economic	 impacts	of	 large	 river	 temperature	 increases	and	
declines	in	low	(summer)	flow	could	be	potentially	large	(e.g.	for	beneficial	uses	like	cooling	
water	use	in	energy	and	industrial	sector,	and	drinking	water	production).	

7.2.3   Impact on cooling water use and thermoelectric power production (Q3) 

For	 the	 third	question,	we	quantified	how	river	 flow	and	water	 temperature	changes	under	
future	climate	can	affect	thermoelectric	power	production	(Chapter	5).	This	part	focussed	on	
Europe	 and	 the	U.S.,	where	most	 electricity	 is	 currently	 produced	 by	 thermoelectric	 power	
plants	 that	 depend	 on	 water	 resources	 for	 cooling.	 In	 addition,	 both	 regions	 already	
experienced	 reductions	 in	 electricity	 production	 during	 recent	warm,	 dry	 periods	with	 low	
river	flow	and	high	water	temperatures.	



Synthesis 

137 

	

	
Fig 7.2: Regions with strong declines in low flow combined with high increases in water temperature for SRES A2 2071‐
2100  (relative  to 1971‐2000),  and global gridded population  counts  (CIESIN, 2005)  (a)  and gross domestic product 
(GDP) at market exchange rates (MER) (IIASA, 2007) (b) in 2000. 

Overall,	 the	 results	 show	 that	 projected	 water	 temperature	 increases	 and	 declines	 in	 low	
summer	 flows	 for	 both	 regions	 are	 likely	 to	 increase	 cooling	 water	 shortage	 and	
environmental	restrictions	on	thermal	discharges.	This	can	result	in	substantial	reductions	in	
electricity	production	potentials	of	thermoelectric	power	plants	in	both	the	U.S.	and	Europe.	
For	76%	of	the	power	plants	with	once‐through	or	combination	cooling	systems	and	41%	of	
the	power	plants	with	recirculation	(tower)	cooling	systems	electricity	production	potentials	
will	be	reduced	significantly.	The	summer	mean	usable	capacity	of	power	plants	with	once‐
through	or	 combination	 cooling	 systems	 is	 projected	 to	decrease	by	12‐16%	 (U.S.)	 and	13‐
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19%	 (Europe)	 (B1‐A2	 SRES	 emissions	 scenario	 for	 2031‐2060).	 For	 recirculation	 (tower)	
cooling	 systems,	 the	 decrease	 in	 usable	 capacity	 during	 summer	 is	 much	 lower,	 but	 non‐
negligible	 (on	 average	 6.3‐8.0%	 for	 power	 plants	 in	 Europe	 and	 4.4‐5.9%	 in	 the	 U.S.).	 In	
particular,	thermoelectric	power	plants	in	south	and	south‐eastern	U.S.	and	southern	Europe	
could	be	affected	by	climate	change.	Considering	the	expected	increase	in	electricity	demand	
in	 both	 regions	 and	 globally	 (GEA,	 2012),	 there	 is	 a	 need	 for	 improved	 climate	 adaptation	
strategies.	 Adaptation	 strategies	 could	 be	 defined	 for	 the	 thermoelectric	 power	 sector	
specifically	 (e.g.	 new	 cooling	 technologies	 and	 non‐freshwater	 sources	 for	 cooling	 as	
alternatives).	 However,	 the	 vulnerability	 of	 the	whole	 energy	 sector	will	 be	 lower	 under	 a	
rapid	 transition	 to	 renewable	 energy	 resources	 than	 in	 future	 world	 with	 many	 (fossil‐
fuelled)	power	plants	still	in	need	of	cooling	water.	Hence,	an	increase	in	diversity	of	energy	
resources	 is,	 therefore,	 recommended	 to	 decrease	 the	 vulnerability	 of	 the	 energy	 sector	 to	
climate	change.		

While	this	study	focussed	on	thermoelectric	power	plants,	the	industrial	sector	could	also	be	
affected	 by	 changes	 in	 cooling	water	 availability.	 Several	 industrial	 processes	 need	 cooling	
water	 to	 operate	 efficiently	 (e.g.	 refineries,	 paper	 mills,	 steel	 mills,	 petrochemical	
manufacturing).	 A	 cross‐sectoral	 water	 use	 study	 that	 includes	 cooling	 water	 use	 for	 both	
thermoelectric	 power	 and	 manufacturing	 could	 be	 a	 next	 research	 step.	 In	 addition,	
integration	with	 the	potential	 impacts	on	hydropower	would	also	provide	a	more	complete	
‘picture’	of	how	climate	change	could	affect	water	 for	electricity	production.	 	 In	Europe	and	
the	U.S.,	16%	and	6%	(EIA,	accessed	2011)	(data	for	2008)	of	the	total	electricity	is	currently	
produced	by	hydropower.	Lehner	et	al.	(2005)	provided	a	first	assessment	of	the	impacts	of	
climate	change	on	river	discharge	and	hydropower	potential	of	Europe.	Their	results	show	an	
average	decrease	in	hydropower	potential	for	Europe	by	6%	for	the	2070s,	with	a	projected	
increase	for	Scandinavia	(with	15‐30%	and	above)	and	decreases	for	southern	Europe	(with	
20‐50%	 and	 more).	 Given	 these	 results,	 both	 thermoelectric	 and	 hydroelectric	 power	
production	potentials	 are	 projected	 to	 decline	 in	 the	 southern	part	 of	 Europe.	 This	 urges	 a	
need	 for	 a	 transition	 to	 alternative	 energy	 resources	 (e.g.	 solar	 and	 wind	 energy)	 in	 this	
region,	 without	 compromising	 environmental	 objectives	 to	 compensate	 for	 reductions	 in	
summer	flow	and	increasing	water	temperatures.		

To	 conclude,	 lower	 summer	 flows	 combined	 with	 higher	 water	 temperature	 under	 future	
climate	 are	 expected	 to	 increase	 environmental	 restrictions	 on	 cooling	 water	 use,	 with	
substantial	 reductions	 in	 thermoelectric	 power	 production	 (especially	 in	 southern	 Europe	
and	the	south‐eastern	U.S.).	Considering	the	increases	in	electricity	demand,	there	is	a	strong	
need	for	improved	climate	adaptation	strategies	in	the	energy	sector.			

7.2.4   Impacts on freshwater (fish) habitats (Q4) 

For	 the	 final	 research	 question,	 we	 addressed	 the	 consequences	 of	 climate	 induced	
streamflow	and	water	temperature	alterations	for	freshwater	fish	habitats	in	different	regions	
worldwide.	 We	 focussed	 on	 fish	 habitats,	 because	 fish	 species	 are	 in	 particular	 strongly	
adapted	 to	a	 certain	 level	 of	 flow	variability,	 and	all	 freshwater	 fish	 species	 are	 exotherms,	
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meaning	that	water	temperature	changes	will	directly	affect	fishes’	biochemical	reaction	rates	
and	physiology.	

Global	streamflow	and	water	temperature	projections	under	current	and	future	climate	were	
used	in	combination	with	ecologically	relevant	flow	and	water	temperature	indices	to	identify	
regions	 with	 largest	 changes	 in	 streamflow	 and	 thermal	 habitats	 (Chapter	 6).	 For	 most	
regions	with	largest	projected	water	temperature	increases	(e.g.	U.S.,	Europe,	eastern	China,	
and	parts	of	southern	Africa	and	Australia)	also	strong	declines	in	low	flow	are	projected,	and	
this	 could	 in	 particular	 threaten	 fish	 populations	 (Connor	 et	 al.,	 2003).	 Also	 large	 shifts	 in	
timing	of	 low	and	high	flow	events	(e.g.	North	America,	central	parts	of	Asia,	South	America	
and	Africa,	 and	eastern	Australia)	 and	 strong	 changes	 in	 seasonal	 flow	amplitude	 (e.g.	 high	
northern	 latitudes	and	tropical	region)	could	affect	habitat	characteristics	and	compatibility	
with	life	cycles	of	fish	species	(e.g.	spawning).	

Increasing	water	 temperatures	 under	 future	 climate	 are	 expected	 to	 result	 in	 a	 pole	wards	
movement	 of	 thermal	 habitat	 zones	 in	 the	 order	 of	 200‐400	 km	 (for	 cold	 and	 cool	 water	
fishes)	for	2071‐2100	relative	to	1971‐2000.	As	a	result,	the	global	surface	area	with	suitable	
habitat	for	cold	water	fishes	is	expected	to	decrease	(from	39%	for	1971‐2000	to	32‐35%	for	
2071‐2100),	 while	 habitats	 for	 warm	 and	 tropical	 fishes	 could	 increase	 (from	 14%	 to	 18‐
26%).		

Streamflow	 and	 water	 temperatures	 projections	 were	 also	 combined	 with	 spatial	
distributions	and	 thermal	 tolerances	of	 fish	 species	 (with	 large	geographic	distributions)	 in	
the	 Americas,	 Europe,	 Africa	 and	 Southeast	 Asia.	 Overall,	 the	 results	 show	 significant	
increases	in	both	the	frequency	and	magnitude	of	exceeding	maximum	temperature	tolerance	
values	 of	 all	 fish	 species.	 Combined	 with	 changes	 in	 streamflow	 characteristics	 (seasonal	
amplitude,	timing	and	magnitude	of	high	and	low	flow),	this	will	affect	the	physical	conditions	
of	 freshwater	 habitats.	 Although	 the	 adaptive	 capacity	 of	 fishes	 to	 changing	hydrologic	 and	
thermal	regimes	could	be	highly	variable	(depending	on	the	population	and	genetic	diversity),	
our	results	show	that	fish	habitats	are	likely	to	change	for	large	regions.	This	could	affect	fish	
populations	and	species	distributions,	which	is	not	only	relevant	in	terms	of	biodiversity	and	
conservation,	but	also	for	future	food	production	and	fisheries	(FAO,	2008;	Ficke	et	al.,	2007;	
Williams,	1996).	River	basin	management	and	conservation	strategies	should	therefore	focus	
on	 minimizing	 habitat	 loss,	 for	 example	 by	 reducing	 human	 pressure	 of	 large	 water	
withdrawals	and	thermal	pollution	as	much	as	possible,	especially	during	low	flow	conditions.	

To	conclude,	 increasing	water	temperatures	combined	with	river	flow	changes	under	future	
climate	 will	 affect	 freshwater	 (fish)	 habitats	 for	 large	 regions	 worldwide.	 Thermal	 habitat	
zones	 are	 expected	 to	 move	 polewards.	 Increased	 exceedences	 of	 maximum	 temperature	
tolerance	values	of	freshwater	species	combined	with	streamflow	changes	are	likely	to	affect	
freshwater	(fish)	species	distributions,	depending	on	the	adaptive	capacity	of	species.		
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7.3   Scientific contribution 

While	 integrated	 hydrological	 and	 water	 temperature	 modelling	 approaches	 have	 been	
successfully	applied	for	small‐scale	catchments	(e.g.	Caissie	et	al.,	2007;	Haag	and	Luce,	2008;	
St‐Hilaire	et	al.,	2000),	considerably	less	work	was	done	at	coarse	(continental,	global)	scales.	
Although	 macro‐scale	 hydrological	 models	 have	 been	 widely	 applied	 to	 simulate	 river	
discharge	 (commonly	 on	 monthly	 or	 annual	 basis),	 only	 one	 study	 is	 known	 to	 us	 that	
assessed	water	temperature	on	a	macro‐hydrological	scale	(van	Beek	et	al.,	2012).	This	thesis	
is	 the	 first	 study	 that	 quantifies	 and	 combines	 climate	 change	 impacts	 on	 both	 river	
temperatures	 and	 flows	 on	 a	 global	 scale.	 Robust	 estimates	 were	 obtained	 with	 both	 a	
statistical	(regression)	and	physically‐based	water	modelling	approach	under	current	climate	
variability,	 showing	 considerable	 impacts	 of	 river	 flow	 changes	 on	 water	 temperatures,	
especially	during	dry,	warm	conditions.	This	 study	 therefore	assessed	 the	effects	of	 climate	
variability	 and	 change	 on	 water	 temperatures	 by	 including	 both	 the	 direct	 effects	 of	
atmospheric	warming	and	indirect	effects	of	changes	in	river	flow.			
	
For	 the	 evaluation	 of	 the	 performances	 of	water	 temperature	models,	 a	 global	 database	 of	
observed	 daily	 water	 temperature	 series	 was	 created	 using	 observation	 records	 of	 water	
temperature	 of	 the	 United	 Nations	 GEMS/Water	 database	 and	 water	 temperature	 records	
provided	by	various	sources	 (e.g.	 river	basin	management	commissions,	 researchers,	online	
databases).	 The	 database	 and	 the	 global	 simulations	 of	 water	 temperature	 and	 river	 flow	
produced	in	this	study	provide	new	opportunities	for	research,	for	example	global	assessment	
of	water	quality	and	ecosystem	health	in	relation	to	climate	change.		

We	 have	 identified	 which	 regions	 are	 characterized	 by	 strong	 declines	 in	 low	 river	 flow	
combined	with	high	increases	in	water	temperatures	under	climate	change.	These	areas	could	
potentially	 experience	an	 increased	deterioration	of	water	quality,	 freshwater	habitats,	 and	
reduced	 potentials	 for	 beneficial	 uses,	 such	 as	 thermoelectric	 power	 production.	 This	
provides	opportunities	for	case	studies	in	these	regions	to	address	potential	consequences	for	
human	water	use	sectors	and	freshwater	ecosystems	in	more	detail.	
	
This	study	shows	the	vulnerability	of	 the	electricity	sector	 in	the	U.S.	and	Europe	to	climate	
change.	An	integrated	modelling	approach	of	large‐scale	hydrological	and	water	temperature	
models	 and	 a	 thermoelectric	 power	production	model	was	used	 for	 the	 first	 time,	 and	was	
forced	with	different	socio‐economic	and	climate	change	scenarios.	We	show	that	especially	
the	combination	of	lower	summer	flows	and	higher	water	temperatures	under	future	climate	
will	result	in	significantly	high	(and	nonlinear)	reductions	in	electricity	production	potential.	
To	 our	 knowledge,	 no	 previous	 studies	 have	 quantified	 the	 climate,	 water	 and	 energy	
dependencies	on	such	a	large	scale.	These	results	can	be	used	by	a	broad	scientific	community	
involved	 in	 water,	 energy,	 climate	 and	 socio‐economic	 research.	 The	 results	 could,	 for	
example	provide	a	basis	 for	economic	assessments,	 such	as	 impacts	on	electricity	exchange	
prices	or	calculations	of	optimal	adaptation	within	the	thermoelectric	power	sector.		
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In	addition,	a	translation	was	made	from	macro‐hydrological	impacts	to	the	consequences	for	
freshwater	fish	habitats	on	macro‐ecological	scale.	While	most	previous	studies	 focussed	on	
individual	 river	 systems	 and	 on	 either	 impacts	 of	 streamflow	 or	 water	 temperature,	 our	
integrated	 results	 show	 that	 freshwater	 fish	 habitats	 and	 species	distributions	 are	 likely	 to	
change	for	large	regions	worldwide.	The	results	provide	possibilities	for	ecological	studies	on	
large	scales.	Global	water	temperature	and	streamflow	series	could,	 for	example,	be	used	to	
derive	quantitative	relations	between	freshwater	species	assemblages,	streamflow	and	water	
temperature.	 These	 relations	 could	 be	 useful	 to	 improve	 understanding	 of	 freshwater	
ecosystem	 responses	 in	 relation	 to	 alterations	 in	 hydrological	 and	 thermal	 regimes,	 and	 to	
define	 ‘environmental	 flows’	 (flows	 to	 be	 allocated	 for	 the	 maintenance	 of	 freshwater	
ecosystem	health	and	services	(Dyson	et	al.,	2003;	Tharme,	2003)).		

Overall,	 this	 is	 the	 first	 large‐scale	 study	 that	 addresses	 the	 increasing	 pressure	 on	 water	
between	freshwater	ecosystems	and	cooling	water	use	in	the	energy	sector,	considering	both	
the	changes	 in	river	 flow	and	temperature	under	climate	change.	The	results	and	modelling	
framework	 of	 this	 study	 could	 contribute	 to	 cross‐sectoral	 studies	 addressing	 the	 linkages	
between	human	water	uses	(energy,	industry,	agriculture	and	domestic	uses)	and	freshwater	
ecosystems	for	the	next	decades.		

7.4   Contribution to water management 

For	effective	management	of	water	and	freshwater	ecosystems,	high	temporal	resolution	(e.g.	
daily)	 estimates	 of	 streamflow	 and	 water	 temperature	 are	 required,	 since	 water	 quality	
standards	 for	 protecting	 freshwater	 ecosystems	 are	 based	 on	 time	 periods	 of	 the	 order	 of	
days	rather	than	months. The	global	modelling	framework	of	this	study	was,	for	that	reason,	
tested	 for	 daily	 time	 step	 simulations.	Notwithstanding	 that	 a	 direct	 calibration	 of	 the	VIC‐
RBM	 modelling	 framework	 and	 further	 implementations	 (e.g.	 improved	 representation	 of	
groundwater,	soil	heat	and	snowmelt)	are	recommended,	the	framework	shows	potential	for	
providing	useful	 information	 for	 large‐scale	water	management.	For	 instance,	 the	modelling	
framework	can	be	used	for	risk	and	scenario	analyses,	and	has	potential	for	operational	use	
(now‐	and	forecasting	of	streamflow	and	water	temperature)	on	continental	and	global	scale.	
	
Recent	warm,	dry	periods,	raised	concern	of	the	consequences	of	higher	water	temperatures	
and	 lower	 summer	 flows	 on	 freshwater	 ecosystems	 and	 electricity	 supply	 in	 the	 U.S.	 and	
Europe.	 To	 anticipate	 and	 adapt	 to	 changes	 in	 cooling	 water	 availability,	 the	 projected	
changes	in	river	flow,	water	temperature,	and	quantified	impacts	on	power	plant	production	
capacity	 could	 be	 useful	 for	 climate	 services	 for	 the	 energy	 sector	 in	 the	 U.S.	 and	 Europe.	
While	the	simulations	were	performed	on	a	coarse	(0.5°	x	0.5°)	spatial	resolution,	the	results	
are	consistent	in	showing	that	especially	the	combination	of	lower	summer	flows	and	higher	
water	 temperatures	will	 result	 in	 significantly	high	reductions	 in	 thermoelectric	production	
potential.	 In	 addition,	 this	 study	 shows	 that	 climate	 change	 is	 expected	 to	 exacerbate	 the	
pressure	 on	 the	water	 in	 the	 energy	 sector.	 Considering	 the	 projected	 decreases	 in	 cooling	
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water	 availability	 during	 summer	 in	 combination	 with	 the	 long	 design	 life	 of	 power	 plant	
infrastructure,	 adaptation	 options	 should	 be	 included	 in	 today’s	 planning	 and	 strategies	 to	
meet	the	growing	electricity	demand	in	the	21st	century.		
	
In	 addition,	we	 addressed	 how	 climate	 change	 could	 affect	 large‐scale	 fish	 habitats,	 due	 to	
changes	 in	 both	 river	 temperature	 and	 flow	 patterns.	 The	 results	 could	 be	 used	 to	 define	
future	river	basin	management	and	conservation	strategies,	which	should	 take	 into	account	
that	 streamflow	and	 thermal	 characteristics	of	 freshwater	habitat	 are	 likely	 to	 change	on	 a	
large	scale.	Overall,	conflicts	between	water	for	freshwater	ecosystems	and	cooling	water	use	
in	the	energy	sector	are	expected	to	 increase	under	climate	change.	This	urges	the	need	for	
improved	river	basin	conservation	strategies	and	adaptation	strategies	in	the	energy	sector	to	
assure	future	water	and	energy	security	and	ecosystem	health.	

7.5  Outlook and directions for further research 

This	 thesis	 focussed	on	 climate	 change	 impacts	 on	 river	 flow	and	water	 temperatures	on	 a	
global	 scale,	 and	 addressed	 the	potential	 consequences	 for	 cooling	water	use	 in	 the	 energy	
sector	and	 freshwater	habitats.	Although	 the	 focus	of	 this	study	has	been	 limited	 to	climate	
change	impacts,	the	modelling	framework	of	this	study	has	the	potential	to	address	impacts	of	
other	 aspects	 of	 global	 change	 (e.g.	 land	 use	 change)	 that	 are	 likely	 to	 affect	 freshwater	
resources	 and	 ecosystems	 during	 the	 21st	 century.	 A	 next	 step	 would,	 for	 instance	 be	 to	
include	 also	 impacts	 of	 land	 use	 and	 water	 use	 changes	 (including	 reservoir	 construction,	
future	water	extractions	and	heat	effluents	of	power	plants	and	industries).		

For	 further	 research	 on	 the	 combined	 impacts	 of	 climate	 change	 and	 land	 use	 changes	 on	
water	resources,	new	climate	and	land	use	scenarios	based	on	representative	concentration	
pathways	(RCPs)	(Moss	et	al.,	2010)	(see	Section	1.4)	could	be	used.	While	it	is	not	yet	clear	
whether	 the	 new	 scenarios	 based	 on	 RCPs	 will	 show	 different	 impacts	 compared	 to	 the	
previous	scenarios,	an	 important	advantage	 is	 that	 the	new	scenarios	provide	opportunities	
to	study	impacts	of	climate	change	and	socio‐economic	changes	separately.	For	instance,	the	
vulnerability	 of	 the	 thermoelectric	 power	 sector	 to	 climate	 change	 could	 be	 assessed	 for	
climate	scenarios	based	on	one	specific	RCP	(emission	scenario),	but	using	a	set	of	different	
corresponding	 Shared	 Socioeconomic	 Pathways	 (SSPs;	 socio‐economic	 scenarios	 with	
different	focusses	on	mitigation	versus	adaptation)	(IPCC,	2012).			

In	addition	to	new	scenarios	for	climate	research,	alternative	impact	assessment	approaches	
could	 be	 used	 for	 decision	 making	 and	 climate	 adaptation	 policies,	 such	 as	 the	 use	 of	
‘adaptation	tipping	points’	(Kwadijk	et	al.,	2010)	or	‘adaptation	turning	points’	(Werners	et	al.,	
2012)	 (ATPs)	 in	 water	 management.	 ATPs	 are	 critical	 points	 where	 the	 magnitude	 of	
alterations	due	to	climate	change	is	such	that	current	management	practices	and	policies	will	
no	longer	be	able	to	meet	the	objectives.	The	ATP‐approach	starts	at	the	opposite	end	of	the	
impact	chain.	First,	threshold	values	and	the	resilience	of	sectors	of	concern	are	defined.	In	a	
next	 step,	 projections	 of	 future	 climate	 (impacts)	 are	 used	 to	 assess	 the	 expected	 time	 left	
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when	 the	 critical	 points	 (thresholds)	will	 be	 reached.	 An	 ATP‐approach	was	 used	 to	 study	
whether	 a	 reintroduction	 of	 Atlantic	 salmon	 in	 Rhine	 basin	 could	 be	 sustainable	 under	
projected	 water	 temperature	 rises	 during	 the	 21st	 century	 (Bölcher	 et	 al.,	 submitted).	 A	
comparable	 approach	 could	 be	 used	 to	 explore	 the	 expected	 time	 left	 until	 the	 production	
capacities	of	 thermoelectric	power	plants	are	no	 longer	able	 to	meet	 the	growing	electricity	
demand.		
	
Another	logical	next	research	step	to	be	taken	is	testing	of	adaptation	strategies.	While	not	all	
adaptation	 strategies	 could	 be	 directly	 implemented	 in	VIC‐RBM,	 the	modelling	 framework	
could	 provide	 a	 basis,	 for	 instance,	 for	 testing	 whether	 flow	 regulation	 (construction	 of	
reservoirs)	 could	 be	 used	 as	 an	 adaptive	 measure	 to	 regulate	 low	 flows	 and	 high	 water	
temperatures	 during	 warm,	 dry	 periods.	 In	 addition,	 the	 modelling	 framework	 could	 be	
optimized	to	explore	new	suitable	production	sites	with	sufficient	cooling	water	availability	
for	thermoelectric	power	under	future	climate.		
	
The	 concept	 of	 ‘water	 footprints’	 (total	 volume	 of	 freshwater	 used	 to	 produce	 goods	 and	
services)	(e.g.	Hoekstra	and	Mekonnen,	2012)	could	be	useful	in	the	decision	making	of	which	
adaptation	 measures	 are	 suitable	 to	 reduce	 the	 pressure	 on	 water	 by	 the	 energy	 sector.	
Recently,	 water	 footprints	 of	 bioenergy	 (Gerbens‐Leenes	 et	 al.,	 2009)	 and	 electricity	 from	
hydropower	(Mekonnen	and	Hoekstra,	2012)	have	been	quantified.	Regarding	thermoelectric	
power,	it	would,	for	instance,	be	interesting	to	assess	how	a	switch	in	energy	source	(e.g.	from	
coal‐	to	nuclear‐	or	gas‐fuelled)	or	cooling	system	(e.g.	from	once‐through	to	tower	cooling)	of	
power	plants	will	affect	water	footprints.	
	
Considering	 the	 growing	 recognition	 of	 the	 need	 for	 information	 about	 climate	 change	
impacts	 on	 water	 quality	 (Kundzewicz	 and	 Krysanova,	 2010;	 Whitehead	 et	 al.,	 2009)	 and	
health	 issues,	 an	 extension	 of	 the	modelling	 framework	 to	 other	water	 quality	 parameters,	
which	 are	 affected	 by	water	 temperature	 (e.g.	 dissolved	 oxygen),	 streamflow	 (e.g.	 chloride,	
fluoride)	 or	 both	 (nutrients,	 chlorophyll‐a	 (algae),	 pathogens)	 could	 be	 a	 next	 step.	 The	
stream	 temperature	 model	 RBM	 used	 in	 this	 study	 has	 potential	 to	 include	 other	 water	
quality	 parameters,	 because	 of	 the	 strength	of	 the	 semi‐Lagrangian	numerical	 scheme	with	
regard	to	accuracy	and	computational	efficiency	(Yearsley,	2009).	
	
Implementation	 of	 water	 quality	 in	 macro‐scale	 hydrological	 models	 could	 also	 be	 an	
important	 step	 to	 obtain	 more	 realistic	 projections	 of	 large‐scale	 water	 resources	 and	
competition	between	water	use	sectors	in	relation	to	climate	change.	Most	water	use	sectors	
require	 not	 only	 sufficient	 water	 availability	 (quantity),	 but	 also	 suitable	water	 quality.	 As	
pointed	out	 in	this	study,	water	temperature	 is	a	critical	parameter	for	cooling	water	use	of	
thermoelectric	 power	 plants	 and	 industries,	 while	 salinity	 and	 nutrient	 concentrations	 are	
important	for	agricultural	and	domestic	(drinking)	water	uses.	
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This	study	shows	an	increase	in	pressure	on	water	between	cooling	water	use	in	the	energy	
sector	and	freshwater	ecosystems	under	future	climate.	Overall,	conflicts	between	water	 for	
human	uses	(agriculture,	energy,	industry	and	domestic	uses)	and	ecosystems	are	expected	to	
increase	under	climate	change	and	a	growing	global	population.	We	therefore	need	to	better	
understand	 how	 water,	 food	 and	 energy	 security	 can	 be	 ensured	 in	 the	 future	 without	
compromising	on	 the	needs	 that	ecosystems	have	on	water.	A	cross‐sectoral	analysis	of	 the	
competition	for	water	between	different	water	use	sectors	and	freshwater	ecosystems	under	
future	 climate	 and	 land	 use	 changes	 will	 be	 a	 next	 step.	 This	 could	 provide	 improved	
understanding	 of	 how	 global	 change	 (climate	 change,	 land	 use	 changes)	 will	 affect	 the	
developments	 of	 the	 ‘water‐energy‐food‐ecosystem	 nexus’	 (i.e.	 complex	 linkages	 among	
water,	energy	and	food	security,	and	ecosystem	health).	Overall,	 improved	understanding	of	
the	 relations	 between	 water	 resources	 (water	 availability	 and	 quality)	 and	 cross‐sectoral	
water	uses,	including	water	needs	for	ecosystems,	will	be	an	important	step	towards	solutions	
for	sustainable	water,	food	and	energy	supply	in	the	coming	decades.	
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Global River Discharge and Water Temperature     

under Climate Change (Chapter 4) 
	

 

 

Figure  A1:  Performance  of  hydrological  modelling  for  current  climate.  Global  maps  of  normalized  mean  bias, 
normalized  root mean  squared error  (RMSE) and Pearson correlation coefficient  for  simulated daily  river discharge 
using the historical WATCH forcing data (WFD) as input to the VIC model and observed daily river discharge series of 
1612 GRDC stations globally for 1971‐2000.	
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Figure A2:  Performance of water  temperature modelling  for  current  climate. Global maps of mean bias  (°C),  root 
mean squared error  (RMSE;  °C) and Pearson correlation coefficient  for simulated daily  river  temperature using  the 
historical WATCH  forcing  data  (WFD)  as  input  into  VIC‐RBM  and  observed  daily water  temperature  series  of  347 
GEMS/Water  stations globally  for 1980‐2000. Correlation coefficients between  simulated and observed daily water 
temperature  for  tropical basins  are  lower, because  seasonal  signal  in water  temperature  is weaker,  resulting  in  a 
lower signal‐to‐noise ratio and thus a lower explained variance.  
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Figure A3: Performance coefficients of daily simulated river discharge (a) and water temperature (b) for selected river 
stations in the A (tropical; n=68), B (dry; n=31), C (temperate; n=170), D (continental; n=66) and E (polar; n=9) Köppen 
climate zones. 
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Figure A4: Global projected changes  in mean climate  forcing  for 2071‐2100  relative  to 1971‐2000 averaged  for  the 
three GCMs  for both  the SRES A2 and B1 scenario. Radiation  is derived  from  the VIC hydrological model based on 
minimum and maximum air temperature and used as input into the RBM water temperature model. 
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Figure A5: Global projected changes in mean precipitation and simulated evaporation and total runoff (sum of direct 
runoff and baseflow) for 2071‐2100 relative to 1971‐2000 for both the SRES A2 and B1 scenario.  
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Figure A6: Global projected changes  in mean flow for 2071‐2100 relative to 1971‐2000 for the three selected GCMs 
for both the SRES A2 and B1 scenario. Regions with mean flow less than 1 m3s‐1 are masked. 
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Vulnerability of U.S. and European                    

Electricity Supply to Climate Change (Chapter 5) 
	

B1   Hydrological ‐ water temperature modelling framework 

We	 used	 a	 physically‐based	 modelling	 framework	 to	 simulate	 river	 flow	 and	 water	
temperature	for	Europe	and	the	U.S.	at	a	daily	time	step	and	0.5°	x	0.5°	spatial	resolution.	This	
modelling	 framework	 consists	 of	 the	 Variable	 Infiltration	 Capacity	 (VIC)	 macro‐scale	
hydrological	model	 (Liang	et	al.,	1994)	and	 the	one‐dimensional	stream	temperature	model	
RBM	(Yearsley,	2009).	

The	VIC	model	 and	 an	 offline	 routing	model	 (Lohmann	 et	 al.,	 1998)	were	 used	 to	 simulate	
daily	river	 flow.	The	routing	model	was	modified	 to	 include	 the	calculation	of	 the	hydraulic	
characteristics	 based	 on	 power	 equations	 relating	 mean	 cross‐sectional	 area	 and	 width	 to	
river	 discharge	 (Leopold	 and	 Maddock.,	 1953).	 The	 coefficients	 of	 these	 relations	 were	
obtained	 using	 the	 empirical	 relations	with	 river	 discharge	 based	 on	 674	 river	monitoring	
stations	 from	watersheds	 across	 the	U.S.	 found	 by	Allen	 et	 al.	(1994).	 The	 assumption	was	
made	 that	 these	 fitted	 relations	 can	 be	 applied	 to	 estimate	 the	 hydraulic	 characteristic	 of	
rivers	 in	other	 regions	as	well.	The	VIC	hydrological	model	was	applied	using	 the	elevation	
and	 land	 cover	 classification	 procedure	 (elevation,	 vegetation,	 and	 soil	 characteristics)	 as	
described	in	Nijssen	et	al.	(2001c),	which	was	later	implemented	at	0.5°	x	0.5°.	In	their	study,	
direct	calibration	on	soil	characteristics	was	performed	for	selected	large	river	basins	globally	
and	the	calibrated	parameters	values	were	subsequently	transferred	to	other	basins	based	on	
climate	characteristics.	The	global	DDM30	routing	network	(Döll	and	Lehner,	2002)	was	used	
for	the	lateral	routing	of	streamflow.			

Daily	 water	 temperature	 was	 simulated	 with	 the	 stream	 temperature	 River	 Basin	 Model	
(RBM)(Yearsley,	2009),	which	directly	uses	output	from	the	VIC	hydrological	model.	RBM	is	a	
process‐based	model	 that	 solves	 the	1D‐heat	advection	equation	using	 the	 semi‐Lagrangian	
(mixed	 Eulerian‐Langrangian)	 approach.	 Water	 temperature	 in	 each	 stream	 segment	 is	
simulated	based	on	the	upstream	water	temperature	and	inflow	into	the	stream	segment,	the	
dominant	heat	exchange	at	the	air	‐	water	surface,	and	the	inflow	and	temperature	of	water	
advected	from	tributaries	and	(anthropogenic)	point	sources	of	heat.	RBM	was	developed	for	
subbasins	of	the	Columbia	(Yearsley,	2009;	Yearsley,	2012).	For	our	study,	modifications	were	
made	to	apply	RBM	for	the	whole	European	and	North	American	region.	To	make	the	model	
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also	applicable	in	thermally	polluted	river	basins,	heat	dumps	of	thermoelectric	power	plants	
were	included	as	advected	heat	source	resulting	in	the	following	heat	advection	equation.	

( ) w p trb trb w p effl efflw x
w p air water x

C Q T C Q TT A
C H w

t x x

 
  

 
   			 (B1)	

Where:	ρw	 =	density	of	water	 [kg	m‐3];	Cp	 =	 specific	heat	 capacity	of	water	 [J	 kg‐1	°C‐1];	Tw	=	
water	 temperature	 [°C];	Ax	=	 cross‐sectional	 area	of	 river	 at	distance	x	 [m2];	Hair‐water	 =	heat	
flux	at	air	‐	water	interface	[J	m‐2	s‐1];	wx	=	stream	width	at	distance	x	[m];	Qtrb	=	advected	flow	
from	tributaries	or	 subsurface	 [m3	s‐1];	∆Ttbr	=	 the	difference	between	advected	 temperature	
from	 tributaries	 or	 subsurface,	 Ttbr,	 and	 Tw	[°C];	 Qeffl	 =	 advected	 flow	 from	 heat	 dumps	 of	
thermoelectric	power	plants	[m3	s‐1];	∆Teffl	=	the	difference	between	the	advected	temperature	
from	heat	dumps	of	 thermoelectric	 power	plants,	Teffl,	 and	Tw	[°C];	x	=	 longitudinal	 distance	
along	the	axis	of	the	river	[m];	t	=	time	[s].		

We	 used	 global	 gridded	 (0.5°	 x	 0.5°)	 estimates	 of	 thermoelectric	 water	 consumption	 and	
water	 withdrawal	 for	 the	 20th	 century	 and	 21st	 century	 for	 the	 SRES	 A2	 and	 B1	 scenario	
(Flörke	 et	 al.,	 2011)	 to	 calculate	 return	 flows	 of	 thermoelectric	 water	 use	 (Qeffl).	 For	 the	
difference	 between	 return	 flow	 temperatures	 and	 river	 temperatures	we	 assumed	 that	 the	
temperature	 of	 return	 flow	 (∆Teffl)	 is	 on	 average	 3°C	 higher	 than	 the	 inlet	 river	 water	
temperature.	This	value	was	selected	because	standards	for	heat	discharges	in	the	U.S.,	which	
are	written	under	the	requirements	of	the	Clean	Water	Act,	limit	the	∆Teffl	to	3°C	in	most	of	the	
states	in	our	study.	In	addition,	the	best	overall	results	of	daily	simulated	water	temperature	
were	obtained	under	a	∆Teffl	of	3°C	when	we	tested	this	 for	thermally	polluted	basins	in	the	
U.S.	and	Europe	with	values	ranging	from	2	to	10°C.	Results	of	that	sensitivity	analysis	show	
that	 the	 selected	 values	 of	 ∆Teffl	 (3,	 5	 and	 7°C)	 have	 relatively	 moderate	 impact	 on	 the	
simulated	 water	 temperature	 compared	 to	 the	 impact	 of	 thermal	 effluents	 on	 water	
temperatures	 in	 thermally	polluted	basins	 like	 the	Rhine	and	the	Danube	 in	Europe	(Figure	
B1).	 For	 the	 Mississippi	 we	 found	 larger	 differences	 in	 simulated	 water	 temperature,	 but	
overall	best	results	were	found	under	a	∆Teffl	of	3°C.	Based	on	dominant	cooling	type	in	each	
grid	 cell,	Qeffl,	 and	∆Teffl,	we	 calculated	 gridded	 (0.5°	 x	 0.5°)	 datasets	 of	 heat	 dumps	 for	 the	
control	period	1971‐2000	and	for	the	future	periods	2031‐2060	and	2071‐2100	according	to	
equation	B2.	These	datasets	were	subsequently	used	as	input	into	RBM.			

efflefflpw TQCHD  
	 	 	

(B2)	

Where:	HD	=	heat	dump	[MW];	Qeffl	=	discharge	of	cooling	water	[m3	s‐1];	∆Teffl	=	difference	in	
temperature	between	heat	effluents	and	river	water	[°C];	ρw	=	density	fresh	water	[kg	m‐3];	Cp	
=	heat	capacity	of	water	[J	kg‐1	°C‐1].	

The	boundary	conditions	of	RBM	were	estimated	by	fitting	the	water	temperature	regression	
model	of	Mohseni	et	al.	(1998)	for	a	selection	of	333	GEMS/Water	river	stations	globally	for		
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Figure B1: Sensitivity of simulated mean water temperatures to difference in temperature between heat effluents and 
river water (∆Teffl). Spatial patterns of mean water temperature impact of heat effluents in the Mississippi, Rhine and 
Danube basins under ∆Teffl of 3, 5 and 7°C. 

the	 period	 1980‐2000.	 The	 estimated	 parameter	 values	 were	 globally	 interpolated	 using	
ordinary	kriging,	resulting	in	0.5°	x	0.5°	interpolated	grids	of	these	parameter	values.	Water	
temperature	 for	 the	 headwater	 grid	 cells	 in	 RBM	 is	 estimated	 based	 on	 the	 daily	 air	
temperature	series	and	the	parameter	values	for	these	head	water	grid	cells.		 

B2  Model validation 

The	performance	of	 the	hydrological	 ‐	water	 temperature	modelling	 framework	was	 tested	
for	 large	 river	 basins	 for	 the	 historical	 period	 1971‐2000	 using	 a	 global	 meteorological	
dataset	on	a	0.5°	x	0.5°	spatial	resolution	(Weedon	et	al.,	2011)	produced	by	the	EU	FP6	Water	
and	Global	Change	(WATCH)	project.	

Observed	daily	river	discharge	and	water	temperature	records	of	selected	monitoring	stations	
were	 used	 to	 evaluate	 the	 performance	 of	 the	 hydrological	 ‐	 water	 temperature	modelling	
framework.	We	used	daily	series	of	river	discharge	for	766	and	501	river	discharge	stations	in	
North	 America	 and	 Europe,	 respectively,	 which	 were	 provided	 by	 the	 Global	 Runoff	 Data	
Centre	(GRDC;	http://grdc.bafg.de/)	for	the	period	1971‐2000.	For	water	temperature,	daily	
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records	of	58	(North	America)	and	182	(Europe)	river	stations	for	the	period	1980‐2000	of	
the	 United	 Nations	 Environment	 Programme	 Global	 Environment	 Monitoring	 System	
(GEMS/Water;	 http://www.gemswater.org)	 were	 used	 to	 evaluate	 the	model	 performance.	
We	 used	 all	 observed	 daily	 data	 available	 for	 the	 validation	 periods.	 The	 observed	 daily	
records	 for	 these	 long	 (>20	year)	periods	were	used	without	 interpolation	 for	missing	data	
values	because	interpolation	could	introduce	uncertainties	in	the	observed	records,	which	is	
undesirable	for	evaluations	of	model	performance.	

To	 quantify	 the	 performance	 of	 VIC‐RBM	 for	 daily	 river	 flow	 and	 water	 temperature	
simulations,	 the	 Pearson	 correlation	 coefficient	 was	 calculated	 to	 assess	 the	 linear	
dependence	between	the	daily	simulated	and	daily	observed	values.	In	addition,	we	used	the	
root	mean	 squared	 error	 (RMSE)	 and	mean	 BIAS	 to	 assess	 the	 quality	 of	 the	 fit.	 For	 river	
discharge,	 normalized	 values	 of	 RMSE	 and	 BIAS	were	 calculated	 (by	 dividing	 by	 the	mean	
observed	 river	 discharge	 values).	 For	 stations	 in	 Europe,	 the	 river	 discharge	 is	 on	 average	
slightly	 overestimated	 (largest	 group	 of	 stations	 had	 positive	 NBIAS	 0.25	 ‐	 0.50)	 while	 a	
normal	distribution	in	NBIAS	is	found	for	the	stations	in	the	U.S.	(see	histograms	Figure	B2).	

	

Figure B2: Performance of daily river flow modelling. Maps with the calculated normalized BIAS (a), normalized RMSE 
(b), and Pearson correlation coefficient (c) for the period 1971‐2000 for river discharge monitoring stations in the U.S. 
and  Europe.  Histograms  at  the  left  and  right  present  the  relative  frequency  distribution  of  the  performance 
coefficients for the stations in the U.S. and Europe, respectively. 
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For	water	temperature,	the	largest	group	of	stations	in	Europe	and	the	U.S.	have	a	very	small	
(negative)	BIAS	of	‐1.0	‐	0.0°C	and	high	correlation	coefficient	(>0.9)	(Figure	B3).	In	addition,	
scatter	 plots	 and	 histograms	 of	 daily	 simulated	 versus	 daily	 observed	 water	 temperature	
(Figure	B4)	and	river	discharge	(Figure	B5)	for	selected	stations	presented	in	the	paper,	show	
that	simulated	water	temperature	and	river	discharge	values	strongly	relate	to	the	observed	
values.			

B3  Climate change scenarios 

The	 hydrological	 ‐	 water	 temperature	 modelling	 framework	 was	 forced	 with	 daily	 bias‐
corrected	 output	 of	 three	 different	 coupled	 atmosphere/ocean	 general	 circulation	 models	
(GCMs)	(ECHAM5/MPIOM,	CNRM‐CM3	and	IPSL‐CM4)	for	both	the	SRES	A2	and	B1	emissions	
scenario	(Nakicenovic,	2000),	resulting	in	six	GCM	experiments.	The	A2	scenario	considers	a	
 

 

Figure B3: Performance of daily river water  temperature modelling. Maps with  the calculated mean BIAS  (a), RMSE 
(b), and Pearson correlation coefficient (c) for the period 1980‐2000 for water temperature monitoring stations in the 
U.S.  and  Europe. Histograms  at  the  left  and  right  present  the  relative  frequency  distribution  of  the  performance 
coefficients for the stations in the U.S. and Europe, respectively.  
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Figure B4: Scatter plots and histograms of daily simulated river temperature versus daily observed river temperature. 
Histograms  on  the  vertical  axis  are  for  simulated  values  and  histograms  on  horizontal  axis  for  observed  water 
temperature values for selected stations in the U.S. and Europe for 1980‐2000.  

world	 of	 fragmented	 and	 slow	 technological	 change,	 while	 the	 B1	 scenario	 assumes	
environmental	 sustainability	 and	 a	 much	 more	 rapid	 introduction	 of	 renewables	
(Nakicenovic,	2000).	Both	SRES	scenarios	were	selected,	because	they	represent	contrasting	
storylines	and	emissions	scenarios,	which	results	in	the	largest	range	from	the	four	IPCC	SRES	
main	emissions	scenarios.	 In	addition,	 climate	data	were	widely	available	 for	both	SRES	A2	
and	B1.	The	three	GCMs	were	selected	because	output	was	available	on	a	daily	 time	step.	A	
bias	correction	was	performed	on	daily	precipitation,	mean,	minimum	and	maximum	surface	
air	 temperature	 for	 these	 six	 selected	 GCM	 experiments	 (Hagemann	 et	 al.,	 2011)	 based	 on	
transfer	functions	that	describe	the	relation	between	the	daily	modelled	(corrected)	and	daily	
observed	time	series	(Piani	et	al.,	2010).	
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Figure B5:  Scatter plots  and histograms,  and mean  annual  cycles of daily observed  and  simulated  river discharge. 
Histograms on the vertical axis are for simulated values and histograms on horizontal axis for observed river discharge 
values for selected stations in the U.S. and Europe for the 1971‐2000 period. For these simulations we used the global 
historical WATCH forcing data set (wfd) as  input  (a). Lower panel shows mean annual cycles for observed discharge 
and simulated river discharge based on wfd and based on the control runs of the three selected GCMs presented as 
ensemble mean (ctrl) for 1971‐2000 (b). 

B4  Cooling water shortage regions 

Daily	water	temperature	projections	were	used	to	calculate	the	mean	number	of	days	per	year	
(probability)	that	river	water	temperature	thresholds	for	cooling	water	use	were	exceeded	in	
the	 U.S.	 and	 Europe.	 For	 cooling	 water	 use	 in	 Europe,	 the	 Water	 Framework	 Directive	
(Directive	 2000/60/EC)	 and	 the	 Freshwater	 Fish	 Directive	 (Directive	 2006/44/EC)	 are	 of	
importance.	The	highest	maximum	allowed	river	water	temperature	for	cooling	water	use	in	
the	EU	countries	is	28°C	(EU	Freshwater	Fish	Directive	2006/44/EC).	This	value	is	defined	for	
cyprinid	 waters	 and	 a	 large	 part	 of	 thermoelectric	 power	 plants	 in	 Europe	 are	 extracting	
water	from	such	river	bodies.	Water	temperature	standards	for	the	U.S.	are	defined	on	state	
level	 and	 vary	 throughout	 the	 year	 (EPA,	 1988).	 The	 highest	 maximum	 allowed	 river	
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temperatures	during	summer	are,	however,	quite	consistent	between	different	states,	with	a	
median	 value	 for	 all	 states	 of	 89°F	 (~32°C).	 As	 indicator	 of	 changes	 in	 the	number	 of	 days	
with	cooling	water	problems	and	potential	 reductions	 in	 thermoelectric	power	capacity,	we	
selected	 a	 water	 temperature	 limit	 which	 reflects	 the	 start	 of	 potential	 reductions	 in	
production	capacity	rather	than	a	full	production	stop	(which	would	be	reflected	by	the	use	of	
maximum	 river	 water	 temperature	 limits).	 According	 to	 EEA	 (2008a),	 the	 23°C	 water	
temperature	value	can	be	considered	as	a	critical	limit	for	the	inlet	of	river	water	for	cooling	
water	use	in	Europe,	which	is	5°C	lower	than	the	maximum	river	water	temperature	limit	of	
28°C.	We	used	the	23°C	threshold	as	river	water	temperature	limit	for	which	potential	cooling	
water	problems	start.	Under	these	conditions	the	maximum	allowed	temperature	difference	
between	 inlet	 river	 water	 temperature	 and	 discharge	 temperature	 is	 reduced	 and	 water	
demands	of	thermoelectric	power	need	to	be	increased	to	continue	production	at	maximum	
capacity.	Similar	as	for	Europe,	we	selected	a	river	water	temperature	threshold	that	reflects	a	
potential	start	 in	cooling	water	problems	 for	 the	U.S.,	which	 is	~5°C	 lower	 than	the	median	
value	 in	 maximum	 allowed	 water	 temperature	 of	 89°F.	 This	 resulted	 in	 a	 river	 water	
temperature	threshold	of	27°C	for	the	U.S..	

Using	the	daily	water	temperature	simulations	for	the	control	and	future	periods	for	both	the	
SRES	 A2	 and	 B1	 scenario,	 we	 calculated	 the	mean	 number	 of	 days	 per	 year	 that	 the	 23°C	
(Europe)	and	27°C	(U.S.)	thresholds	were	exceeded.	In	combination	with	areas	for	which	large	
decreases	 in	 low	 flows	 (>25%)	 are	 expected,	 we	 identified	 regions	 in	 Europe	 and	 the	 U.S.	
where	cooling	water	problems	are	expected	to	increase	due	to	reduced	water	availability	and	
exceeded	water	temperature	limits.		

To	 evaluate	 the	 impact	 of	 biases	 in	 simulated	 water	 temperature,	 we	 compared	 the	mean	
number	 of	 days	 per	 year	 that	water	 temperature	 limits	 are	 exceeded	 based	 on	 the	 control	
period	simulations	with	values	based	on	observed	daily	water	temperature	for	all	monitoring	
stations	 for	 1980‐2000	 (Figure	 B6a).	 Overall,	 the	 mean	 number	 of	 days	 per	 year	 with	
exceeded	 water	 temperature	 limits	 corresponds	 with	 values	 based	 on	 observed	 water	
temperature	series,	although	there	is	an	overestimation	(positive	biases)	of	~10–50	days	per	
year	with	an	exceeded	23°C	and	27°C	limit	for	some	stations	in	southern	Europe	and	southern	
U.S..	An	underestimation	(negative	bias)	in	the	same	order	of	magnitude	is	found	for	several	
stations	 in	Central	Europe	 (Figure	B6b),	 resulting	 in	an	average	negative	bias	 in	number	of	
days	with	exceeded	water	temperature	 limits	 for	Europe	(Figure	B6c).	However,	 the	bias	 in	
days	with	exceeded	water	temperature	thresholds	is	small	 for	Europe	and	negligible	for	the	
U.S.	for	the	largest	group	of	river	stations.		
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Figure  B6:  Impact  of  biases  in  daily water  temperature  simulations  on  exceeded water  temperature  limits. Mean 
number of days per year that the water temperature limit of 27°C (in the U.S.) and 23°C (in Europe) is exceeded using 
the mean of the control water temperature simulations for the three GCMs and the daily observed water temperature 
records at the monitoring stations for 1980‐2000  (circles) (a). The absolute bias in mean number of days per year with 
exceeded water temperature limits for the mean of the control water simulations and observed water temperature is 
calculated at each monitoring station (b). Histograms present the relative frequency distribution of the bias in number 
of days per  year  that  the water  temperature  limit  is  exceeded  for  the  river  stations  in  the U.S.  (left)  and  Europe 
(right)(c). 
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B5  Usable capacity of thermoelectric power plants 

In	 addition	 to	 the	 analyses	 of	 cooling	 water	 scarcity	 regions,	 we	 calculated	 the	 potential	
effects	of	climate	change	on	the	usable	capacity	of	61	existing	thermoelectric	power	plants	in	
the	U.S.	and	35	power	plants	in	Europe.	We	focus	on	power	plants	located	in	the	central	and	
eastern	part	of	the	U.S.,	 for	which	most	data	was	available.	A	distinction	was	made	between	
power	 plants	 using	 once‐through	 systems,	 recirculation	 (closed‐loop)	 systems	with	 cooling	
tower(s)	and	combination	cooling	systems	(once‐through	with	supplementary	tower).	Once‐
through	 systems	 withdrawn	 relatively	 large	 quantities	 of	 surface	 water,	 and	 subsequently	
discharge	high	heat	loads	to	the	same	water	body	after	leaving	the	condenser.	These	cooling	
systems	 are	 commonly	 used	 when	 sufficient	 surface	 water	 is	 available	 for	 cooling	 of	 the	
power	plant.	Recirculation	systems	use	cooling	towers	to	cool	the	water	via	contact	with	air	
before	the	water	is	discharged	back	to	the	surface	water	body.	These	systems	require	smaller	
amounts	of	surface	water	withdrawal,	but	water	consumption	 is	higher	(due	 to	evaporative	
losses)	compared	to	once‐through	systems	(Koch	and	Vögele,	2009).		

Both	 nuclear‐	 and	 fossil‐fuelled	 power	 plants	 were	 selected.	We	 used	 data	 of	 the	 National	
Energy	 Technology	 Laboratory	 Coal	 Power	 Plant	 Database	 (NETL‐CPPDB)	 database	 (NETL,	
2007)	for		thermoelectric	power	plants	in	the	U.S..	For	power	plants	in	Europe	we	used	data	of	
the	selected	nuclear	power	stations	extracted	from	the	power	plant	database	at	the	Institute	
of	Energy	and	Climate	Research	–	Systems	Analyses	and	Technology	Evaluation	(IEF‐STE)	of	
the	 Forschunszentrum	 in	 Jülich	 (Germany)	 in	 combination	 with	 published	 data	 of	 fossil‐
fuelled	power	plants	(VGE,	2011).		

We	 selected	 power	 plants	 according	 to	 the	 following	 criteria:	 1)	 availability	 of	 detailed	
location	 (latitude‐longitude)	 information	 of	 power	plant;	 2)	 use	 of	 river	water	 as	 source	 of	
cooling;	 3)	 availability	 of	 information	 on	 the	 type	 of	 cooling;	 4)	 availability	 of	 water	
temperature	 limitations	 (maximum	 intake	 and	 discharge	 temperature	 during	 summer	 and	
winter)	at	power	plant	location;	and	5)	installed	capacity	of	power	plants	>	370	MW.		Plants	
with	 cooling	 ponds	 or	 reservoirs	 were	 excluded	 since	 these	 systems	 have	 different	
performance	and	contribute	to	only	a	small	percentage	of	the	total	number	of	thermoelectric	
power	plants	(EPA,	2011).		

The	location,	cooling	type	and	installed	capacity	of	the	power	plants	included	in	the	analyses	
are	 presented	 in	 Figure	 B7.	 For	 a	 high	 number	 of	 power	 plants	 in	 Europe	 the	 installed	
capacity	 is	>2500	MW.	For	power	plants	 in	 the	U.S.,	 a	 large	part	has	a	 capacity	<1000	MW,	
although	several	power	plants	were	also	included	with	installed	capacities	of	>2500	MW.	

The	 methodology	 used	 to	 assess	 the	 impact	 of	 climate	 change	 induced	 daily	 water	
temperature	 and	 river	 flow	 changes	 on	 the	 usable	 capacity	 of	 thermoelectric	 power	 plants	
was	based	on	Koch	and	Vögele	(2009)	and	Rubbelke	and	Vögele	(2011).	However,	we	slightly	
modified	the	equations	for	use	on	a	daily	time	step	(with	daily	estimates	of	water	temperature	
and	river	discharge)	and	to	include	limitations	in	withdrawal	of	river	water	for	thermoelectric	
cooling.		
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Figure B7: Location, cooling system  (symbols) and  installed capacity  (colours) of  the thermoelectric power plants  in 
the U.S. and Europe included in the analyses. 

In	 this	 approach,	 a	 distinction	 is	 made	 between	 power	 plants	 with	 once‐through	 cooling	
systems	 and	 power	 plants	 with	 recirculation	 systems	 (tower)	 cooling.	 In	 a	 first	 step,	 the	
required	water	withdrawal	(q)	of	the	power	plant	is	calculated	based	on	the	installed	capacity	
(KW),	 efficiency	 (ƞtotal,	 ƞelec)	 and	 parameters	 related	 to	 the	 cooling	 system	 (once‐through	
cooling:	 α;	 tower	 cooling:	 α,	 β,	 ω,	 EZ)	 of	 the	 power	 plant	 in	 combination	 with	 water	
temperature	 limitations	 (Tlmax,	 ΔTlmax)	 and	 simulated	 daily	 water	 temperature	 (Tw)	 at	 the	
power	 plant	 location.	 In	 the	 second	 equation,	 the	 maximum	 usable	 capacity	 is	 calculated	
based	on	the	daily	required	water	withdrawal	(q),	river	discharge	(Q)	and	water	temperature	
(Tw),	 in	 combination	with	 parameters	 describing	 the	maximum	 fraction	 of	 river	 discharge	
withdrawn	 for	 cooling	 (ɣ),	 water	 temperature	 limitations	 (Tlmax,	 ΔTlmax)	 and	 parameters	
related	to	the	cooling	system	(α,	β,	ω,	EZ).		
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Recirculation	(tower)	cooling	systems:	
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Where:	KW	 =	 installed	 capacity	 [MW];	ƞtotal	=	 total	 efficiency	 [%];	 	ƞelec	 =	 electric	 efficiency	
[%];	α	=	 share	 of	waste	 heat	 not	 discharged	by	 cooling	water	 [%];	β	 =	 share	 of	waste	 heat	
released	into	the	air;	ω:	correction	factor	accounting	for	effects	of	changes	in	air	temperature	
and	humidity	within	a	year;	EZ	=	densification	factor;	λ	=	correction	factor	accounting	for	the	
effects	of	changes	in	efficiencies;	ρw	=	density	fresh	water	[kg	m‐3];	Cp	=	heat	capacity	of	water	
[J	 kg‐1	°C‐1];	 Tlmax	 =	 maximum	 permissible	 temperature	 of	 the	 cooling	 water	 [°C];	 ΔTlmax	 =	
maximum	permissible	temperature	increase	of	the	cooling	water	[°C];	ɣ	=	maximum	fraction	
of	river	discharge	to	be	withdrawn	for	cooling	of	thermoelectric	power	plants	[%];	q	=	daily	
cooling	 water	 demand	 [m3s‐1];	 Tw	 =	 daily	 mean	 river	 temperature	 [°C];	 Q	 =	 daily	 river	
discharge	[m3s‐1];	KWmax	=	usable	capacity	of	power	plant	[MW].	

The	equations	show	that	during	warm	periods,	when	water	temperature	(Tw)	increases	to	a	
level	that	the	permitted	temperature	difference	between	river	water	(inlet)	temperature	and	
discharge	 temperature	 is	 reduced	 ((Tlmax	–	Tw)	<	∆Tlmax),	 water	 withdrawal	 q	 needs	 to	 be	
amplified	 in	 order	 to	 discharge	 the	 same	 waste	 heat	 load.	 The	 power	 plant	 can	 continue	
operation	at	maximum	capacity	(KWmax	=	KW)	if	the	required	water	withdrawal	is	smaller	or	
equal	 than	 the	 availability	 of	 river	 water	 for	 thermoelectric	 water	 extraction	 (q	 <=	 γQ).	
However,	when	required	water	withdrawal	further	increases	and/or	river	water	availability	
decreases	and	becomes	 inadequate	 to	 fulfil	 the	 thermoelectric	water	requirements	(q	>	γQ),	
the	 usable	 capacity	 needs	 to	 be	 reduced	 (KWmax<	KW).	 This	 decrease	 in	 KWmax	is	 gradual.	
However,	in	case	river	temperatures	reach	the	maximum	discharge	water	temperature	((Tw	‐	
Tlmax)	≈	0)	the	usable	capacity	of	the	power	plant	needs	to	be	drastically	reduced	or	operation	
must	be	curtailed.	

For	power	plants	with	combination	cooling	systems,	we	used	the	equations	for	recirculation	
systems	with	 parameter	 values	 representing	 the	 combined	 conditions	 of	 once‐through	 and	
tower	cooling.	 	For	each	power	plant,	we	calculated	daily	q	 and	KWmax	using	 the	daily	 river	
discharge	 and	 water	 temperature	 simulations	 for	 the	 grid	 cell	 where	 the	 power	 plant	 is	
located.	In	case	that	several	power	plants	units	are	located	in	the	same	grid	cell	we	calculated,	
comparable	with	 the	 studies	 of	 Flörke	 et	 al.	 (2011)	 and	 Vassolo	 and	Döll	 (2005),	 the	 total	
daily	water	withdrawals	of	all	power	plants	within	the	cell.	In	our	study,	we	used	the	sum	of	
installed	capacity	of	all	power	plant	units	and	calculated	weighted	mean	values	of	the	other	
parameters	 of	 equation	 B3‐B4	 to	 estimate	 daily	 water	 withdrawal	 and	 usable	 capacity.	
Weights	were	defined	based	on	the	ratio	of	the	installed	capacities	of	each	power	plant	unit	to	
the	 sum	of	 the	 installed	 capacity	 of	 all	 power	plant	 units	 in	 that	 cell.	 This	 resulted	 in	 daily	
estimates	of	the	total	water	withdrawal	and	total	usable	capacity	for	all	power	plant	units	in	
that	cell.	Daily	river	discharge	and	water	temperature	simulations	were	used	for	the	control	
period	1971‐2000	and	future	period	2031‐2060	for	all	six	climate	change	scenarios.	



Vulnerability U.S. and European electricity supply 

163 

	

The	impact	of	biases	in	daily	river	discharge	and	water	temperature	simulations	on	the	usable	
capacity	was	addressed	 for	 three	power	plants	 in	Europe	and	 two	power	plants	 in	 the	U.S..	
These	power	plants	were	selected	because	of	the	availability	of	daily	observed	river	discharge	
and	 water	 temperature	 records	 of	 a	 nearby	 monitoring	 station.	 We	 compared	 values	 of	
summer	mean	 usable	 capacity	 for	 the	 control	 simulations	 of	 water	 temperature	 and	 river	
discharge	with	values	based	on	observed	daily	river	discharge	and	water	temperature	for	the	
period	1980‐2000.	Summer	period	was	defined	as	21	June‐20	September,	which	is	generally	
also	the	period	when	decreases	in	usable	capacity	are	highest.	Overall,	the	impact	of	biases	in	
simulated	 water	 temperature	 and	 river	 discharge	 on	 the	 summer	 mean	 values	 in	 usable	
capacity	 is	 moderate.	 For	 the	 power	 plants	 Cattenom‐4	 (Moselle),	 mean	 summer	 usable	
capacity	for	the	control	simulations	is	slightly	overestimated	(relative	bias	of	+1.4%),	while	a	
relative	negative	bias	in	summer	mean	usable	capacity	of	‐0.1%	for	Nogent	(Seine),	‐4.2%	for	
New	Madrid	(Mississippi)	and	‐2.6%	for	White	Bluff	(Arkansas)	was	found	(Table	B1).	For	the	
analysis	 of	 the	 number	 of	 days	with	 production	 limitations,	 impacts	 of	 biases	 in	 simulated	
daily	river	discharge	and	water	temperature	are	larger,	although	the	strength	in	climate	signal	
is	on	average	a	factor	3	higher	than	the	range	in	bias	for	these	power	plants. 

Table B1: Impact of biases in daily river flow and water temperature simulations on usable capacity of power plants. 
Summer mean  usable  capacity  using  observed  daily water  temperature  and  river  discharge  of  nearby monitoring 
station  for 1980‐2000  (obs) and using control simulations of daily water  temperature and  river discharge  for 1980‐
2000 (ctrl). The five power plants were selected based on the availability of daily observed river discharge and water 
temperature records of a nearby monitoring station. 

N = nuclear; C = coal; CT = cooling tower(s); OT = once‐through, freshwater 

   

      summer   mean KWmax 

plant 

name 

river  plant

type 

cooling

type 

KWinstalled

(MW) 

obs

(MW) 

ctrl 

(MW) 

relative

bias(%) 

Cattenom‐4  Moselle 

(France) 

N  CT 5200 5125 5177  +1.4 

Nogent  Seine (France)  N  CT 2620 2619 2617  ‐0.1 

Beznau  Aare 

(Switzerland) 

N  OT 730 730 730  0 

New Madrid  Mississippi   C  OT 1200 896 858  ‐4.2 

White Bluff  Arkansas   C  CT 1700 1685 1656  ‐2.6 
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Supplementary Information C 

	

	

Global Streamflow and Thermal Habitats of Freshwater 

Fishes under Climate Change (Chapter 6) 
	

	

	

	

Figure C1: Global projected changes in annual 30‐day average maximum flow. The changes are averaged for the three 
selected GCMs for both the SRES A2 and B1 scenario for 2071‐2100 relative to 1971‐2000. Regions with mean annual 
river flow less than 1 m3s‐1 are masked.  
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Figure  C2:  Impact  of  water  temperature  increases  on  the  occurrence  (mean  number  of  days  per  year)  that 
Twmax_tolerance  is  exceeded  of  selected  fish  species  in  North  America  and  Africa,  combined  with  large  changes  in 
streamflow habitat conditions. Changes are presented for the period 2071‐2100 for the SRES A2 scenario relative to 
1971‐2000 using the average of the three GCM experiments. 
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Summary 
	

Climate	 change	will	 affect	 flow	 and	 thermal	 regimes	 of	 rivers	 worldwide.	 This	 will	 have	 a	
direct	impact	on	freshwater	ecosystems	and	human	water	uses	during	the	21st	century.	Up	to	
present,	 limited	 knowledge	 exists	 of	 the	 magnitude	 of	 both	 streamflow	 and	 water	
temperature	 changes	 under	 future	 climate,	 especially	 for	 large	 rivers	 worldwide.	 Recent	
warm,	 dry	 summers	 showed	 adverse	 impacts	 of	 high	 river	 temperatures	 and	 low	 flows	 on	
freshwater	ecosystems	and	human	water	uses,	like	cooling	of	thermoelectric	power	plants,	for	
large	regions.	Therefore,	we	need	to	better	understand	to	what	extent	large‐scale	changes	in	
river	 flow	and	water	 temperature	under	climate	change	could	affect	 freshwater	ecosystems	
and	cooling	water	use.	This	thesis	addresses	the	impacts	of	climate	change	on	river	flows	and	
water	 temperatures	 globally,	 along	 with	 the	 potential	 consequences	 for	 freshwater	
ecosystems	and	cooling	water	use	in	the	energy	sector.		

It	first	shows	the	sensitivity	of	river	temperatures	to	atmospheric	warming	(air	temperature	
rises)	 and	 changes	 in	 river	 flow	 (thermal	 capacity)	 using	 a	 water	 temperature	 regression	
model	(Chapter	2).	The	regression	model	was	fitted	based	on	historical	air	temperature,	river	
discharge	and	water	temperature	series	for	river	stations	worldwide.	The	performance	of	the	
regression	model	improved	for	87%	of	the	global	river	stations	by	including	river	discharge	
as	 input	 variable.	 Significant	 impacts	 of	 river	 flow	 changes	 on	 water	 temperatures	 were	
found,	especially	during	warm,	dry	periods.	Hence,	river	flow	impacts	on	water	temperature	
should	 be	 incorporated	 to	 provide	 more	 accurate	 water	 temperature	 estimates	 during	
historical	and	future	projected	dry	and	warm	periods.	

A	 coupled	 hydrological	 ‐	 water	 temperature	 modelling	 approach	 was	 used,	 including	 the	
physically‐based	RBM	stream	temperature	model	linked	to	the	macro‐scale	VIC	hydrological	
model	 (Chapter	 3).	 RBM	 was	 further	 developed	 for	 application	 to	 large	 river	 basins	
worldwide,	 including	 anthropogenic	 impacts	 of	 heat	 effluents	 and	 reservoirs.	 Model	
performance	was	tested	for	large	basins	in	different	hydro‐climatic	zones	and	with	different	
anthropogenic	 impacts	 at	 1/2°	 spatial	 resolution	 and	 on	 a	 daily	 time	 step.	 Significant	
increases	in	model	performances	were	obtained	for	strongly	regulated	and	thermally	polluted	
basins.	 Overall,	 realistic	 daily	 estimates	 were	 obtained	 for	 both	 river	 flow	 and	 water	
temperature	 for	 the	 validation	 period	 1971‐2000,	with	 similar	 performances	 during	warm,	
dry	periods.		

In	 a	 next	 step,	 we	 assessed	 the	 impacts	 of	 climate	 change	 on	 both	 river	 flows	 and	 water	
temperatures	 globally	 (Chapter	 4).	 The	 global	 VIC‐RBM	 modelling	 framework	 was	 forced	
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with	bias‐corrected	output	of	three	general	circulation	models	(GCMs)	for	both	the	SRES	A2	
and	B1	emissions	scenario.	Our	results	show	a	decline	in	low	flow	combined	with	an	increase	
in	high	 (peak)	 flow	 for	about	one‐third	of	 the	global	 land	surface	area	 for	 the	period	2071‐
2100	 relative	 to	 1971‐2000.	 Consistent	 increases	 in	 mean	 flow	 are	 projected	 for	 the	 high	
northern	 latitudes	 and	 parts	 of	 the	 tropical	 region,	 and	 consistent	 decreases	 for	 the	 U.S.,	
central	and	southern	Europe,	Southeast	Asia	and	southern	parts	of	South	America,	Africa	and	
Australia.	Global	mean	water	temperatures	are	expected	to	increase	on	average	by	0.8–1.6∘C.	
The	largest	water	temperature	increases	are	projected	for	the	U.S.,	Europe,	eastern	China	and	
parts	of	southern	Africa	and	southern	Australia.	In	most	of	these	regions,	water	temperature	
rises	are	exacerbated	by	declines	in	low	flows,	resulting	in	reductions	in	thermal	capacity	and	
dilution	capacity	for	thermal	effluents.	Under	changing	climate,	these	regions	could	therefore	
be	affected	by	increased	deterioration	of	water	quality	and	freshwater	habitats,	and	reduced	
water	available	for	human	uses	(e.g.	cooling	water	use	for	thermoelectric	power	production). 

For	Europe	and	 the	U.S.,	where	most	 electricity	 is	produced	by	power	plants	depending	on	
cooling	water,	we	quantified	how	climate	change	could	affect	 cooling	water	availability	and	
thermoelectric	 power	 production	 over	 the	 next	 20‐50	 years	 (Chapter	5).	 VIC‐RBM	 and	 an	
electricity	 production	model	were	 forced	with	 the	 ensemble	 of	 bias‐corrected	 GCM	 output.	
Impacts	on	production	 capacities	were	quantified	 for	96	existing	nuclear‐	 and	 fossil‐fuelled	
power	plants	(with	different	cooling	systems)	in	the	U.S.	and	Europe.	Results	show	that	higher	
water	 temperatures	 and	 lower	 summer	 flow	 under	 climate	 change	 are	 likely	 to	 increase	
environmental	restrictions	on	cooling	water	use.	This	could	result	in	substantial	reductions	in	
summer	mean	usable	 capacity	of	6–19%	 for	Europe	and	4–16%	 for	 the	U.S.	 (depending	on	
cooling	system	type	and	climate	scenario	for	2031‐2060	relative	to	1971‐2000).	Considering	
the	 long	design	 life	of	power	plant	 infrastructure,	 adaptation	options	 should	be	 included	 in	
today's	planning	and	strategies	to	meet	the	growing	electricity	demand	in	the	21st	century.	

In	 addition,	 we	 focussed	 on	 the	 potential	 consequences	 of	 climate	 change	 for	 global	
freshwater	 fish	 habitats	 (Chapter	 6).	 Global	 projections	 of	 daily	 streamflow	 and	 water	
temperature	under	future	climate	were	used	with	spatial	distributions	and	thermal	tolerance	
values	of	 several	 fish	 species	 in	different	 regions	worldwide,	 and	 ecologically	 relevant	 flow	
indices.	 The	 results	 show	 significant	 increases	 in	 both	 the	 frequency	 and	 magnitude	 of	
exceeding	maximum	temperature	tolerance	values	of	all	fish	species	for	2071‐2100	relative	to	
1971‐2000.	This	could,	in	combination	with	alterations	in	river	flow	regime,	affect	freshwater	
fish	habitats	and	possibly	species	distributions	on	a	large	scale.		

This	thesis	shows	that	climate	change	will	affect	river	temperatures	directly	by	atmospheric	
warming	and	indirectly	by	changes	in	river	flow.	High	water	temperature	increases	combined	
with	 large	declines	 in	 low	flows	are	projected	for	the	U.S.,	Europe	and	eastern	China,	where	
socio‐economic	consequences	of	these	changes	can	potentially	be	large.	In	addition,	it	shows	
that	climate	change	is	likely	to	increase	pressure	on	water	between	cooling	water	use	in	the	
energy	 sector	 (electricity	 supply)	 and	 freshwater	 ecosystems	 on	 a	 large	 scale.	 This	 study	
shows	 the	 need	 for	 improved	 adaptation	 strategies	 to	 ensure	 future	 water	 and	 energy	
security,	without	compromising	water	needs	for	ecosystems.	
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Samenvatting 
	

Klimaatverandering	 zal	 afvoerregimes	 en	 watertemperatuur	 van	 rivieren	 wereldwijd	
beïnvloeden.	Dit	zal	directe	gevolgen	hebben	voor	ecosystemen	en	watergebruik	door	mensen	
tijdens	de	21ste	eeuw.	Tot	op	heden	was	er	echter	weinig	kennis	over	de	mate	waarin	zowel	
watertemperaturen	 als	 afvoeren	 van	 grote	 riviersystemen	 wereldwijd	 kunnen	 veranderen.	
Recente	warme,	droge	zomers	lieten	in	grote	regio’s	zien	dat	rivierecosystemen	en	menselijke	
gebruiksfuncties,	 zoals	 koeling	 van	 elektriciteitscentrales,	 negatieve	 gevolgen	 kunnen	
ondervinden	tijdens	perioden	met	lage	rivierafvoer	en	hoge	watertemperatuur.	Het	is	daarom	
van	 groot	 belang	 om	 beter	 inzicht	 te	 verkrijgen	 in	 de	 mate	 waarin	 rivierafvoer	 en	
watertemperatuur	op	grote	schaal	kunnen	veranderen.	Dit	proefschrift	beschrijft	de	effecten	
van	klimaatverandering	op	zowel	rivierafvoer	als	watertemperatuur	wereldwijd,	samen	met	
de	mogelijke	consequenties	voor	rivierecosystemen	en	koelwatergebruik	in	de	energiesector.		

Eerst	 is	 gekeken	 naar	 de	 effecten	 van	 atmosferische	 opwarming	 (luchttemperatuur	
stijgingen)	 en	 veranderingen	 in	 rivierafvoer	 (thermische	 capaciteit)	 op	 riviertemperaturen	
wereldwijd,	 gebruikmakend	 van	 een	watertemperatuur	 regressiemodel	 (Hoofdstuk	2).	Het	
regressiemodel	 was	 toegepast	 met	 meetreeksen	 van	 lucht‐	 en	 watertemperatuur	 en	
rivierafvoer	 voor	 rivierstations	 wereldwijd.	 De	 kwaliteit	 van	 het	 regressiemodel	 werd	
significant	 verbeterd	 voor	 87%	 van	 de	 rivierstations	 door	 naast	 luchttemperatuur,	
rivierafvoer	 als	 onafhankelijke	 variabele	 toe	 te	 voegen.	 De	 effecten	 van	 veranderingen	 in	
rivierafvoer	 op	 watertemperatuur	 zijn	 het	 sterkst	 tijdens	 warme,	 droge	 perioden.	 Het	 is	
daarom	van	groot	belang	om	de	invloed	van	rivierafvoer	in	beschouwing	te	nemen	om	meer	
betrouwbare	simulaties	te	verkrijgen	van	riviertemperatuur	tijdens	warme,	droge	situaties.		

Een	 gekoppeld	 hydrologisch	 ‐	 water	 temperatuur	modelsysteem,	 bestaande	 uit	 het	 fysisch	
gebaseerde	RBM	riviertemperatuur	model	gekoppeld	aan	het	macro‐schaal	VIC	hydrologisch	
model,	 was	 gebruikt	 voor	 verdere	 analyses.	 RBM	 was	 verder	 ontwikkeld	 voor	 toepassing	
wereldwijd	 en	 voor	 stroomgebieden	 die	 sterk	 beïnvloed	 worden	 door	 stuwmeren	
(reservoirs)	 en	warmtelozingen	 van	 elektriciteitscentrales	 (Hoofdstuk	3).	 De	 kwaliteit	 van	
het	modelsysteem	werd	geëvalueerd	op	1/2°	ruimtelijke	resolutie	en	een	dagelijkse	tijdstap	
voor	 grote	 stroomgebieden	 in	 verschillende	 klimaatzones	 en	 met	 verschillende	 menselijke	
invloeden.	De	aanpassingen	resulteerden	in	een	significante	verbetering	in	de	modelkwaliteit.	
Realistische	 simulaties	 van	 dagelijkse	 rivierafvoer	 en	watertemperatuur	werden	 verkregen	
voor	de	gehele	validatieperiode	1971‐2000,	ook	tijdens	warme,	droge	perioden.		
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Het	 VIC‐RBM	 modelsysteem	 werd	 in	 een	 volgende	 stap	 gebruikt	 om	 de	 effecten	 van	
klimaatverandering	 op	 rivierafvoer	 en	 watertemperatuur	 wereldwijd	 door	 te	 rekenen	
(Hoofdstuk	4).	 Klimaatscenario’s	 van	 drie	 mondiale	 klimaatmodellen	 (GCMs)	 en	 voor	 het	
SRES	 A2	 en	 B1	 emissiescenario	 werden	 als	 invoer	 datasets	 in	 VIC‐RBM	 gebruikt.	 De	
modelprojecties	tonen	voor	ongeveer	één	derde	van	het	mondiale	landoppervlak	een	daling	in	
lage	rivierafvoer	gecombineerd	met	een	toename	in	hoge	(piek)afvoer	voor	de	periode	2071‐
2100	 ten	 opzichte	 van	 1971‐2000.	 Consistente	 toenamen	 in	 jaargemiddelde	 afvoer	 zijn	 te	
verwachten	 voor	 de	 hoge	 noordelijke	 breedtegraden	 en	 delen	 van	 de	 tropische	 zone;	
consistente	afnamen	voor	de	VS,	centraal	en	zuidelijk	Europa,	Zuidoost	Azië	en	de	zuidelijke	
delen	 van	 Zuid‐Amerika,	 Afrika	 en	 Australië.	 Riviertemperaturen	 zullen	 naar	 verwachting	
stijgen	met	een	mondiaal	gemiddelde	van	0.8–1.6°C	voor	deze	periode.	De	sterkste	stijgingen	
zijn	 geprojecteerd	 voor	 de	 VS,	 Europa,	 oostelijk	 China	 en	 zuidelijke	 delen	 van	 Afrika	 en	
Australië.	In	deze	regio’s	zijn	de	stijgingen	in	riviertemperatuur	sterker	door	dalingen	in	lage	
afvoer	 wat	 leidt	 tot	 afnamen	 in	 thermische	 capaciteit	 en	 verdunningscapaciteit	 voor	
warmtelozingen.	 Door	 klimaatverandering	 kunnen	 deze	 regio’s	 te	 maken	 krijgen	 met	 een	
verslechtering	van	waterkwaliteit	en	zoetwater‐habitats	en	verminderde	mogelijkheden	voor	
menselijk	gebruik	(b.v.	koelwatergebruik	voor	de	energiesector).		

Voor	 Europa	 en	 de	 VS,	 waar	 het	 grootste	 deel	 van	 de	 elektriciteit	 wordt	 opgewekt	 door	
centrales	 die	 koelwater	 vereisen,	 is	 nader	 onderzocht	 hoe	 klimaatverandering	 de	
waterbeschikbaarheid	 voor	 koeling	 en	 potentiële	 elektriciteitsproductie	 kan	 beïnvloeden	 in	
de	komende	20‐50	jaar	(Hoofdstuk	5).	Een	ensemble	van	klimaatscenario’s	werd	als	invoer	
in	 VIC‐RBM	 en	 een	 elektriciteitsproductiemodel	 gebracht	 om	 de	 potentiële	 elektriciteits‐
productie	 door	 te	 rekenen.	 Deze	 analyse	 richt	 zich	 op	 96	 bestaande	 (kern‐	 en	 fossiele	
brandstof)	 centrales	 met	 verschillende	 koelsystemen	 verspreid	 over	 Europa	 en	 de	 VS.	
Resultaten	 laten	 zien	 dat	 beperkingen	 in	 koelwatergebruik	 (door	 overschrijding	 van	
ecologische	normen)	naar	verwachting	zullen	toenemen	door	hogere	watertemperaturen	en	
lagere	 zomerafvoeren	 onder	 een	 veranderend	 klimaat.	 Dit	 kan	 leiden	 tot	 substantiële	
afnamen	 in	 de	 productiecapaciteit	 van	 centrales	 tijdens	 zomer	met	 gemiddeld	 6–19%	voor	
Europa	 en	 4–16%	 voor	 de	 VS	 (afhankelijk	 van	 koelsysteemtype	 en	 klimaatscenario	 voor	
2031‐2060	ten	opzichte	van	1971‐2000).	Gezien	de	lange	levensduur	van	centrales	is	het	van	
groot	belang	dat	adaptatiemaatregelen	nu	al	getroffen	worden	om	te	kunnen	blijven	voldoen	
aan	de	groeiende	vraag	naar	elektriciteit	in	de	21ste	eeuw.	

Verder	 is	 ook	 gekeken	 naar	 de	 mogelijke	 consequenties	 van	 klimaatverandering	 voor	
habitatcondities	van	verschillende	vissoorten	wereldwijd	(Hoofdstuk	6).	Mondiale	projecties	
van	dagelijkse	rivierafvoer	en	watertemperatuur	werden	gecombineerd	met	datasets	van	de	
ruimtelijke	 verspreiding	 en	 thermische	 tolerantiewaarden	 van	 verschillende	 vissoorten	 en	
ecologisch	relevante	indexen	voor	rivierafvoer.	De	resultaten	tonen	een	significante	toename	
in	 zowel	 de	 frequentie	 als	 mate	 waarin	 maximale	 temperatuur‐tolerantiewaarden	 van	
verschillende	vissoorten	overschreden	worden	voor	2071‐2100	ten	opzichte	van	1971‐2000.	
In	combinatie	met	veranderingen	in	afvoerregime	van	rivieren	kan	dit	leiden	tot	grootschalige	
veranderingen	in	habitatcondities	en	verspreiding	van	vissoorten.		
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Dit	 proefschrift	 laat	 zien	 dat	 klimaatverandering	 riviertemperatuur	 zal	 beïnvloeden	 door	
zowel	 de	 directe	 effecten	 van	 atmosferische	 opwarming	 en	 indirecte	 effecten	 van	
veranderingen	 in	 rivierafvoer.	 Sterke	 stijgingen	 in	 watertemperatuur	 gecombineerd	 met	
sterke	 dalingen	 in	 rivierafvoer	worden	 verwacht	 voor	 de	 VS,	 Europa	 en	 oostelijk	 deel	 van	
China,	waar	de	maatschappelijk‐economische	consequenties	van	deze	veranderingen	mogelijk	
groot	 kunnen	 zijn.	 Daarnaast	 toont	 dit	 proefschrift	 aan	 dat	 klimaatverandering	 de	 druk	 op	
water	voor	behoud	van	huidige	rivierecosystemen	enerzijds	en	koelwatergebruik	binnen	de	
energiesector	 anderzijds	 zal	 doen	 toenemen.	De	 studie	 indiceert	 het	 belang	 van	verbeterde	
aanpassingsstrategieën	 om	 de	 water‐	 en	 energiezekerheid	 in	 de	 toekomst	 te	 kunnen	
garanderen,	zonder	daarbij	te	schikken	op	waterbehoeften	voor	het	behoud	van	ecosystemen.	
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In the media ... 
	

Scientific	American	made	a	60‐seconds	podcast	based	on	the	article	in	Nature	Climate	Change	
(Chapter	 5)	 published	 on	 3rd	 of	 June	 2012.	 The	 text	 of	 the	 podcast	 is	 given	 below	 (with	
permission	from	the	author	David	Biello).	

	

	

	

How	Climate	Change	May	Impact	Electricity	Supplies	

Fossil	fuel	burning	power	plants	aren't	only	causing	climate	change,		
they're	likely	to	suffer	from	such	global	warming.	David	Biello	reports	

Ironic	twist	alert:	most	electricity	production	requires	vast	amounts	of	water.		
Cold	water.	Which	means	that	climate	change	is	going	to	be	bad	for	electricity	supplies.	
Why's	that	ironic?	Here's	how	we	make	electricity.	In	the	U.S.,	we	burn	coal	or	natural	gas,	
which	produces	massive	quantities	of	the	greenhouse	gases	causing	climate	change,	or	we	
fission	uranium.	The	heat	from	those	processes	boils	water	that	makes	steam	that	spins	a	
turbine.	And	those	turbines	produce	more	than	90	percent	of	our	electricity.	Massive	cooling	
towers	then	help	chill	the	power	plant	back	down	using	river	water,	for	example.	Only	river	
water	isn't	quite	as	cold	as	it	used	to	be,	or	as	available.	As	a	result,	in	recent	years,	such	
thermal	power	plants	in	the	southeastern	U.S.	have	had	to	decrease	power	production	

because	river	temperatures	were	too	high	or	water	levels	were	too	low.	
That	problem	is	only	going	to	get	worse,	according	to	an	analysis	in	the	journal	Nature	
Climate	Change	(Scientific	American	is	part	of	Nature	Publishing	Group).	By	the	2040s,	

available	electricity	could	be	down	by	16	percent	in	the	summertime.		

When	you’d	most	like	electricity.	To	run	your	air	conditioner.	To	beat	the	heat.		

Told	you	it	was	ironic.	

—David	Biello	
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The	New	York	Times	blog,	4	June	2012,	USA:	

‘Climate	Change	Threatens	Power	Output,	Study	Says’	

	

The	Washington	Post	blog,	4	June	2012,	USA:	

‘Even	coal	and	nuclear	plants	are	vulnerable	to	climate	change’	

	

USA	Today,	4	June	2012,	USA	

‘Climate	change	causes	nuclear,	coal	power	plant	shutdowns’		

	

Spiegel	Online,	4	June	2012,	Germany:	

‘Wassermangel	könnte	Stromproduktion	gefährden’	

	

National	Geographic,	Aktuelles,	4	June	2012,	Germany:	

‘Klimawandel	könnte	Stromproduktion	gefährden’	

	

Berliner	Morgen	Post,	4	June	2012,	Germany:	

‘Warme	Flüsse	und	Trockenheit	gefährden	Krafwerke’	

	

Kleine	Zeitung,	4	June	2012,	Austria:	

‘Stromversorgung	gerät	in	Gefahr’	

	

NU.nl,	4	June	2012,	The	Netherlands:	

‘Kolencentrales	hebben	last	van	warmer	klimaat’	

	

NRC	Handelsblad,	9	June	2012,	The	Netherlands:	

‘Warmer	water,	minder	elektriciteit’	

	

Actualit	News,	4	June	2012,	France:	

‘Les	centrales	électriques	nucléaires	et	au	charbon	manqueront	bientôt	d’eau’	
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