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Abstract 

 

Fanwoua, J (2012) Tomato fruit growth: integrating cell division, cell growth and cell 

endoreduplication by experimentation and modelling. Doctorate thesis, Wageningen 

University, Wageningen, The Netherlands, 145 pp, with English and Dutch summaries. 

 

Fruit size is a major component of fruit yield and quality of many crops. Variations in fruit 

size can be tremendous due to genotypic and environmental factors. The mechanisms by 

which genotype and environment interact to determine fruit size are complex and poorly 

understood. Genotype-by-environment interactions emerge from cellular and molecular 

processes underlying fruit growth.  

In this thesis the basis for variations in tomato fruit size was analysed through the 

development of a dynamic fruit growth model integrating three fundamental fruit cellular 

processes: cell division, cell growth and cell endoreduplication. Experiments were carried out 

to understand the link between cellular processes and fruit growth and their responses to 

genotypic factors, contrasting fruit loads and temperature conditions.  

Experimental data showed that the contribution of cell number and cell size to the genotypic 

variation in final fruit size depends on the timing of assimilate supply to the fruit. Genotypic 

variation in fruit fresh weight, pericarp volume and cell volume was linked to pericarp 

glucose and fructose content. Genotypic variation in cell number was positively correlated 

with variation in pericarp fructose content.  Reduction in final fruit size of early-heated fruit 

was mainly associated with reduced final cell volume in the pericarp. Early heating increased 

the number of cell layers in the pericarp, but did not affect the total number of pericarp cells 

significantly. Continuously heating of a fruit reduced anticlinal (direction perpendicular to 

fruit skin) cell expansion more than periclinal (direction parallel to fruit skin) cell expansion.  

Information derived from the experiments was incorporated into a dynamic model of fruit 

growth. The model describes fruit growth from anthesis until maturation and covers the stages 

of cell division, endoreduplication and cell growth. Model development relied on 

understanding and integrating biological interactions between processes at the cell, tissue and 

fruit scales. The model was parameterized and calibrated for low fruit load conditions and was 

validated for high fruit load and various temperature conditions. The model was able to 

accurately predict final cell number, cell mass and pericarp mass under contrasting fruit load 

and most of the temperature conditions. Model sensitivity analysis showed that variations in 
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final fruit size are mainly associated with variations in parameters involved in the dynamics of 

cell division. Among these parameters, cell division duration had the strongest influence on 

final cell number and pericarp mass.  

The model can be used to carry out virtual experiments with treatments that are difficult or 

impossible to test experimentally and allows for predicting and analysing fruit growth 

responses to genotype-by-environment interactions.  

This thesis has contributed to closing the gap between genotype and phenotype related to 

tomato fruit growth. An integral and coherent development of models at relevant levels of 

plant organization can further help to close this gap.  

 

Keywords: cell division, cell growth, cell endoreduplication, fruit growth, genotype, G×E 

interaction, model, tomato. 
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1.  General introduction 

 

Variation in fruit size 

The fruit is the harvestable part of many horticultural crops. In these crops, fruit size is an 

important aspect of crop yield and quality. Variations in fruit size can be tremendous among 

different crop species, but also among cultivars from the same species. This is especially 

evident in tomato where large differences in fruit size are observed between varieties ranging 

from the small-fruited cherry tomato to the large-fruited beef tomato. Although fruit size is 

primarily a genotype-related trait, variations due to intrinsic and environmental factors can be 

appreciable. Experimental data showed that assimilate availability and temperature strongly 

affect fruit growth and final fruit size in many crop species (Marcelis and Baan Hofman-Eijer, 

1993; Calderón-Zavala et al., 2004; Bertin, 2005). For example, Prudent et al. (2010) found 

that growing tomato plants under limited sugar supply reduced their fruit weight by 47%. 

Sawhney and Polowick (1985) observed that the fruit size of tomato plants grown under 28/23 

o
C (Day/Night) was reduced by 42% compared to fruits of plants grown under 23/18 

o
C 

(Day/Night). Temporal fluctuations in environmental conditions during fruit growth may also 

cause variations in final fruit size (Calderón-Zavala et al., 2004, Adams et al., 2001). Fruit 

size differences between genotypes may vary widely across environments because of 

genotype-by-environment interactions (Prudent et al., 2010; Ortiz et al. 2007). The 

mechanism by which genotype and environment interact to determine fruit size remains 

poorly understood. This limited insight represents a real challenge in manipulating and 

predicting fruit yield and size. Genotype-by-environment interactions emerge from complex 

processes underlying fruit growth.  

 

Cellular processes underlying fruit growth 

In tomato, three cellular processes successively occur during the growth of a fruit. Before 

anthesis fruit growth is mainly the result of cell division. This process is temporally arrested 

at anthesis and resumes after a successful fertilization (Gillaspy et al., 1993). The duration of 

cell division after anthesis is variable in different fruit species. It ranges from 1-2 weeks in 

cucurbits and tomato, 3 weeks in apple and 4-7 weeks in peach (Bourdon et al., 2010). In 

avocado and strawberries, cell division continues for the entire period of fruit growth 

(Chevalier et al., 2011). For fruits in which the division phase is restricted to the first period
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 of fruit growth, cell division is gradually replaced by cell expansion. The cell expansion 

phase usually lasts the longest. During this phase, cells accumulate water and carbon resulting 

in an increase of up to 11000 fold their initial volume (Cheniclet et al., 2005). Cell expansion 

may be accompanied by endoreduplication, i.e. an increase in the ploidy level of fruit cells up 

to 2
8
 times the haploid nuclei DNA content in tomato fruits (Bertin, 2005). Endoreduplication 

has been postulated to play a role in the determination of cell and organ size (Cheniclet et al., 

2005), in plant adaptation to adverse environmental conditions (Barrow et al., 2006) and in 

cell differentiation (Chevalier et al., 2011). 

In the past two decades the cellular basis for variation in fruit growth have been studied 

extensively (Cheng and Breen, 1992; Higashi et al., 1999; Prudent et al., 2010). For example, 

many authors observed that genotypic variation in final fruit size in many fruit species is 

related to the variation in cell division activity (Scorzal et al., 1991; Higashi et al., 1999; 

Bertin et al., 2003a). Other studies investigated assimilate supply and temperature effects on 

fruit cellular processes (Marcelis and Baan Hofman-Eijer, 1993; Bertin, 2005) and related the 

observed effects with fruit growth variation. Although these studies provide some insight into 

the link between individual cellular processes and fruit growth, they do not explain how these 

underlying processes taken together regulate fruit growth. To progress in our understanding of 

fruit yield and quality build-up, it is fundamental to integrate the description of cellular 

processes underlying fruit growth and their interaction with the environment into a common 

knowledge base system. 

 

Dynamics of fruit growth 

Fruit growth starts long before anthesis with the initiation, differentiation and development of 

floral primordia (Anastasiou and Lenhard, 2008). In many fruit species, growth is interrupted 

at anthesis and resumes after pollination (Gillaspy et al., 1993). Fruit growth relies on the 

presence of many hormones such as auxins, cytokinins, and gibberellins which are mainly 

produced by the fruit seeds (Bohner and Bangerth, 1988a). The cumulative growth of many 

fleshy fruits follows an “S” shaped curve (Bourdon et al., 2010). A deviation from this pattern 

is observed in few fruit species such as stone fruits or some berries of which growth curves 

follow a double sigmoid pattern (Bourdon et al., 2010). The duration of fruit growth period is 

variable among different fruit species and ranges from 5-8 weeks in tomato and cucumber 

(Marcelis and Baan Hofman-Eijer, 1993; Cheniclet et al., 2005), to 60 weeks in many citrus 

species (Bourdon et al., 2010). Within the same species, variation in fruit growth duration is 
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cultivar dependent and can be modified by the environment (Bertin, 2005; Prudent et al., 

2010).  

Fruit growth depends mainly on the supply of assimilate produced in the leaves. When 

assimilate supply is higher than fruit demand, fruits can grow at their potential rate (Van der 

Ploeg and Heuvelink, 2005). When supply is lower than demand, fruits compete for 

assimilates. For each fruit on the plant the severity of the competition depends on its spatial 

and temporal relationship with vegetative organs and with other generative organs (Ho, 1992). 

For example, in monocarpic fruit species such as apple and pear, competition between fruits 

and vegetative organs is less severe because fruit development starts after the completion of 

vegetative growth (Ho, 1992). In polycarpic fruit species such as tomato, competition for 

assimilates is localized between a truss and its neighbouring leaves and fruits of the same 

truss, which are all developing at the same time. In these plants early set fruits might inhibit 

the growth of later initiated ones (Marcelis et al., 1998). Competition between fruits of the 

same truss can be alleviated through fruit pruning (Prudent et al., 2010) or fruit set 

synchronization  (Bohner and Bangerth, 1988b). In general competition for assimilates affects 

fruit growth rate more than growth duration. By contrast, temperature affects both fruit 

growth rate and duration (Marcelis and Baan Hofman-Eijer, 1993; De Koning, 2000). Above 

the minimum and below the optimum temperature threshold for fruit growth, increase in 

temperature increases fruit growth rate and reduces fruit growth duration (Marcelis and Baan 

Hofman-Eijer, 1993). The extent to which final fruit size is affected by high temperature 

depends on the magnitude of increase in growth rate relative to the decrease in growth 

duration (De Koning, 1994). When the increase in fruit growth rate compensates for the 

reduction in the fruit growth duration no effect of high temperature is expected on final fruit 

size. This situation is generally observed when assimilate supply is not limiting (Bertin, 

2005). When assimilate supply is limiting the effect of high temperature on fruit growth is 

more severe and results in smaller fruits (Marcelis and Baan Hofman-Eijer, 1993). In many 

studies where high temperature effects on fruit growth were investigated, whole plants were 

exposed to the temperature treatments (De Koning, 1994; Bertin, 2005). In these experiments 

high temperatures may partly affect fruit growth indirectly via the increase in the rate of plant 

development resulting in more sink organs competing for assimilates (Wubs  et al., 2009). To 

quantify direct temperature effects on fruit growth it is important to apply temperature 

treatments at the fruit level (Adams et al., 2001). Several studies showed that fruit sensitivity 

to temperature differs during fruit development in many fruit species including tomato 

(Adams et al., 2001), cucumber (Marcelis and Baan Hofman-Eijer, 1993) and apple 
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(Calderón-Zavala et al., 2004). This difference in fruit sensitivity during development is 

expected considering that very different underlying processes are successively involved 

during the development of a fruit. Understanding these underlying processes and their 

reaction to the environment is the first step towards the control of fruit growth and yield.  

 

Genotype-by-environment interactions in fruit growth 

Genotype-by-environment interactions are observed when variations in the performance of 

two or more genotypes depend on the environment to which they are exposed (Wright et al., 

1996). These interactions are common in multi-environment trials used in plant breeding 

programs to evaluate the relative performance of plant genotypes. G×E interactions can be 

observed on fruit growth characteristics at different scales of organization (Bertin et al., 2010; 

Prudent et al., 2010). Several studies reported the occurrence of G×E interactions for fruit size 

in tomato and other crop species. Prudent et al. (2010) observed that fruit load-induced 

assimilate limitation resulted in a reduction in tomato fruit size which was more pronounced 

for a large-fruited genotype than for a small-fruited genotype. Ortiz et al. (2007) reported a 

significant genotype by temperature interaction for tomato fruit size in a study involving 15 

tomato genotypes across 18 locations. G×E interactions for fruit size was also reported in 

other fruit species including cherry (Olmstead et al., 2007), banana (Ortiz and Vulylsteke, 

1995), eggplant (Muñoz-Falcón et al., 2008) and pumpkin (El-Hamed and Elwan, 2011). G×E 

interactions observed at the fruit level can be associated with genotypic variation in cellular 

processes underlying fruit growth and their response to the environment (Marcelis and Baan 

Hofman-Eijer, 1993; Higashi et al., 1999; Bertin, 2005; Bertin et al., 2010).  

 Variations in cell division activity have been associated to genotypic variation in final fruit 

size in many crops including tomato (Bertin et al., 2003a), melon (Higashi et al., 1999), 

strawberry (Cheng and Breen, 1992), cherry (Olmstead et al., 2007) and peach (Scorzal et al., 

1991). Cheniclet et al. (2005) observed that genotypic variation in tomato fruit size was partly 

related to variations in cell endoreduplication. Several other studies have shown that cellular 

processes are affected by environmental factors. Bertin (2005) found that fruit load-induced 

assimilate limitation reduced final cell number and cell size in tomato. Defoliation-induced 

assimilate limitation also reduced final cell size in chestnut (Famiani, 2000). Bertin (2005) 

observed that increasing air temperature from 20/20 
o
C to 25/25 

o
C (day/night) shortened the 

cell division period and extended the cell expansion period in tomato. In the same experiment 

the highest ploidy level was observed in fruits grown under the high temperature regime 



  General introduction     

     

13 

 

(Bertin, 2005). Increasing fruit temperature reduced final cell number in cucumber fruits, but 

did not affect final cell size when assimilate was limiting (Marcelis and Baan Hofman-Eijer, 

1993). Genotypic and environment related variations in cellular processes underlying fruit 

growth can be traced down at the molecular scale. 

 

Molecular control of fruit growth 

At the molecular scale, a network of interacting genes controls cell division, cell expansion 

and cell endoreduplication. Frary et al. (2000) identified a major quantitative trait locus (QTL) 

fw2.2, accounting for 30% difference in fruit fresh weight between domesticated and wild 

tomato. Fw2.2 is hypothesized to function as a negative regulator of cell division, but its 

precise role is not known yet (Baldet et al., 2006). Cell cycle genes play a key role in the 

regulation of cell division and endoreduplication (Francis, 2007). They control the transition 

between the different phases of the cell cycle. The classic cell cycle consists of four phases: 

the first gap phase (G1 phase) during which a cell grows before committing itself into DNA 

synthesis (S phase). The S phase is followed by a second gap phase (G2 phase) during which 

the cell grows again and prepare itself for mitosis (M phase) (Francis, 2007). During mitosis a 

mother cell divides into two daughter cells. The cell cycle is equipped with several “check 

points” where cell cycle events are monitored and signals are generated specifying whether 

the cell cycle should be temporally or definitely arrested (Murray, 2004). The classic four 

phases cell cycle occurs in dividing cells. As cell division stops, some fruit cells do not 

immediately exit the cell cycle, but continue to grow (Gap phases) and duplicate their DNA 

(S phase) without mitosis. This incomplete cell cycle of which the M phase is inhibited is 

called endocycle or endoreduplication cycle (Chevalier et al., 2011). The regulation of the 

mitotic cell cycle and the endocycle depends on the activity of two special classes of proteins 

termed cyclins and cyclins dependent kinases (CDKs). Cyclins and CDKs formed complexes 

that are active at different points of the cell cycle (Francis, 2007). Many types of cyclins and 

CDKs with known functions have been identified in fruit tissues. For instance, A-type cyclins  

are involved in the progression through the S-phase, B-type cyclins regulate the G2/M 

transition, and D-type cyclins are involved in the control of the progression through the G1 

and S phase (Bourdon et al., 2010). Some proteins in the cell act as activators of 

CDKs/cyclins complexes (CDK activating kinases or CAK), while others such as WEE1 

kinases or KRP (Kip-related proteins) act as inhibitors (Francis, 2007). WEE1 and KRP have 

been proposed to be involved in the switch from mitotic cycles to endocycles, but the exact 
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mechanisms through which they act is still under debate (Chevalier et al., 2011). 

Experimental data show that the expression of cell cycle genes can be affected by 

environmental factors such as hormone application or sugar supply (Baldet et al., 2002; 

Baldet et al., 2006).  

Genes that control sugar metabolism and cell wall properties have a direct effect on cell 

expansion. In tomato sugar is imported into fruit cells in the form of sucrose and may be 

transformed into glucose and fructose by invertase or into fructose and UDP glucose by 

sucrose synthase (Massot et al., 2010). Starch synthase converts hexoses into starch, which is 

temporally stored and used as a reservoir for the synthesis of hexoses (Ho, 1992). The 

accumulation of hexoses into fruit cells creates a gradient of osmotic potential leading to cell 

water import and cell expansion (Ho, 1992). Cell expansion itself partly depends on the 

expression of genes controlling cell wall synthesis and degradation such as expansins 

(Prudent et al., 2010). Genotypic variation in the expression of these genes has been reported 

in tomato fruit (Prudent et al., 2010). The expression of these genes can be influenced by 

hormone and sugar availability (Prudent et al., 2010).   

 

Modelling processes underlying fruit growth 

Understanding what determines fruit size in response to genotype and environment is 

challenging, as fruit growth emerges from underlying interrelated complex cellular and 

subcellular processes. To deepen our understanding of fruit growth it is important to well 

describe underlying processes involved in fruit response to genotype and environment 

(Génard et al., 2007). This objective motivated the development of many models of processes 

underlying fruit growth (Bertin et al., 2003b; Lee et al., 2004; Csikasz-Nagy et al., 2006; 

Bertin et al., 2007). An appealing feature of explanatory models is their ability to integrate 

knowledge.  

Recent progresses in the understanding of the molecular control of the cell cycle has led to the 

development of many models of the cell cycle regulation (Novak and Tyson, 2004; Csikasz-

Nagy et al., 2006; Barik et al., 2010). These models attempt to simulate protein interaction 

networks regulating the activity of cyclins and cyclin dependent kinases. Differential 

equations are used to describe the dynamics of each protein in the network. Bifurcation 

diagrams are used to analyse the transition between different phases of the cell cycle. The 

main drawback of these models is their high number of parameters (up to 90) and the 

difficulty to measure these parameters. A simpler and phenomenological model of cell 
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division in tomato fruit was proposed by Bertin et al. (2003b). In this model cell division is 

assumed to occur exponentially for an initial period after which the division activity declines 

progressively after each division cycle. The model was able to predict cell number in two 

contrasting tomato cultivars, but did not address environmental effects.  

Expansion models have mostly been described at the fruit scale. For example Fishman and 

Génard (1998) used the biophysical laws governing the expansion of a cell to describe fruit 

growth in peach. In their model the fruit is considered as a large cell receiving water and 

sugar from the parent plant through xylem and phloem tissues. Thermodynamic equations are 

used to describe water and sugar flow into the fruit. This model was used to simulate seasonal 

changes in fruit fresh and dry mass under different fruit load and water stress conditions. The 

Fishman and Génard model was later modified to simulate the shift from symplasmic to 

apoplasmic sugar unloading in tomato (Liu et al., 2007) and the plastic and elastic changes of 

cell wall in mango fruits (Lechaudel et al., 2007). Carbon import into the fruit has also been 

modelled using the sink regulation concept (Marcelis et al., 1998). This concept assumes that 

the ability of a fruit to attract assimilates depends on its sink strength relative to the sink 

strength of all organs. The sink strength of an organ is defined as its potential capacity to 

attract assimilates. It is measured as the organ potential growth rate, i.e. its growth rate when 

assimilate supply is non-limiting (Marcelis et al., 1998). The sink regulation concept was used 

to describe organ growth in many fruit species including cucumber (Marcelis, 1994), tomato 

(Heuvelink, 1996), kiwifruit (Lescourret et al., 1998a), peach (Lescourret et al., 1998b) and 

grape (Vivin et al., 2001). 

Compared to other cellular processes, the molecular mechanism underlying  

endoreduplication is not yet well understood, making it difficult to model this process 

mechanistically. This probably explains why only relatively few models describe 

endoreduplication. Schweizer et al. (1995) proposed a model of endoreduplication in maize 

endosperm. Their model assumed that the transition rate from a lower ploidy level to a higher 

ploidy level is linear. This assumption was later modified by Lee et al. (2004) in their model 

of endoreduplication in orchid flower. Lee et al. (2004) assumed that the transition from a 

lower to higher ploidy level decreases according to a fermi function. Their model agreed with 

measured data, but the large number of parameters required is a major drawback of this 

model. Bertin et al. (2007) proposed a simpler model of mitotic activity and 

enodoreduplication in tomato fruits. This model could well simulate the variation in the 

number of cells and ploidy levels in two tomato cultivars, but did not address environmental 

effects. 
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Although the models described above provide some insight into processes underlying fruit 

growth they were usually limited to describing one (Marcelis, 1994; Fishman and Génard, 

1998; Bertin et al., 2003b; Lee et al., 2004) or rarely two (Bertin et al., 2007) processes and 

environment effects were sometimes not considered (Bertin et al., 2003b, Bertin et al., 2007).  

As illustrated by the following examples, cellular processes underlying fruit growth are tightly 

interrelated. The link between cell growth and cell division can be seen in meristematic cells 

of which size remains constant after many cell division cycles (Beemster et al., 2003). It has 

been postulated that cells need to reach a critical cell mass for DNA synthesis or mitosis to 

occur (Jorgensen and Tyers, 2004; Francis, 2007). In many plant tissues, cells that have 

started endoreduplication cannot re-enter cell division (Sugimoto-Shirasu and Roberts, 2003; 

Sabelli et al., 2008). A positive correlation was reported between fruit cell size and 

endoreduplication level (Bertin, 2005; Cheniclet et al., 2005). Modelling fruit underlying 

cellular processes separately does not capture these interrelationships, which might lead to 

inaccuracies, especially in simulating fruit growth in the presence of genotype-by-

environment interactions or under fluctuating environmental conditions. In practice, the 

environment to which the fruit is exposed fluctuates during the development of a fruit. There 

is clearly a need to integrate fruit growth underlying processes in a model as such an 

integrated model can be used to analyse complex fruit responses to genotype-by-environment 

interactions and fluctuating environmental conditions. 

 

Objective and thesis outline 

The objectives of this study were 1) to develop a model of tomato fruit growth integrating cell 

division, cell endoreduplication and cell growth, and 2) to use the model to analyse fruit 

responses to fluctuating assimilate supply and temperature conditions, and genotype-by-

environment interactions. 

The study was divided into two sections: an experimental section and a modelling section. 

Results of the experimental section are presented in Chapters 2 and 3. Chapter 2 presents our 

findings on the investigation of the histological and molecular basis for genotypic and fruit 

load-induced variation in fruit size. First, the effects of low fruit load applied at two stages of 

fruit development on fruit size, fruit cell characteristics, fruit sugar content and cell cycle gene 

expression were investigated for a set of tomato genotypes differing in their final fruit size. 

Subsequently, we attempted to quantify the relationships between variations in final fruit size 

and cell characteristics or fruit sugar levels. Chapter 3 analyses the responses of fruit 
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underlying cellular processes to contrasting fruit temperatures. In this chapter we investigated 

the effects of increased temperature applied early or late during fruit development on fruit 

cellular processes. To ensure that the observed responses resulted from direct temperature 

effects on fruit growth, temperature treatments were applied at the fruit level.  

Results of the modelling section are presented in Chapters 4 and 5. In Chapter 4 results from 

previous chapters are incorporated in a dynamic model of tomato fruit growth integrating 

underlying fruit cellular processes. This chapter also presents the results of the model 

sensitivity analysis and compares model simulations under various fruit loads and temperature 

conditions with experimental data. Chapter 5 presents a theoretical framework for future 

modelling of fruit growth. 

The thesis concludes with a general discussion (Chapter 6). This chapter analyses the 

strengths and limitations of the findings presented in earlier chapters and presents suggestions 

for future research.   
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2. Fruit growth response to fruit load and genotype 

 

Fanwoua J, de Visser PHB, Heuvelink E, Angenent G, Yin X, Marcelis LFM, Struik PC (2012) 

Histological and molecular investigation of the basis for variation in tomato fruit size in response to 

fruit load and genotype. Functional Plant Biology. 39, 754-763 

 

 

Abstract 

Understanding the molecular mechanisms and cellular dynamics that cause variation in fruit 

size is critical to control fruit growth. This study aimed at investigating how both genotypic 

factors and carbohydrate limitation cause variation in fruit size. We grew a parental line 

(Solanum lycopersicum L.) and two inbred lines from Solanum chmielewskii producing small 

or large fruits under three fruit loads (FL): continuously 2 fruits/truss (2&2F) or 5 fruits/truss 

(5&5F) and a switch from 5 to 2 fruits/truss (5&2F) 7 DAA (days after anthesis). Final fruit 

size, sugar content and cell phenotypes were measured. The expression of major cell cycle 

genes 7 DAA was investigated using quantitative PCR. The 5&5F treatment resulted in 

significantly smaller fruits compared with the 5&2F and 2&2F treatments. In the 5&5F, 

treatment cell number and cell volume contributed equally to the genotypic variation in final 

fruit size. In the 5&2F and 2&2F treatment, cell number contributed twice as much to the 

genotypic variation in final fruit size than cell volume did. FL treatments resulted in only 

subtle variations in gene expression. Genotypic differences were detected in transcript levels 

of CycD3 (cyclin) and CDKB1 (cyclin-dependent-kinase), but not CycB2. Genotypic variation 

in fruit fresh weight, pericarp volume and cell volume was linked to pericarp glucose and 

fructose content (R
2
=0.41, R

2
=0.48, R

2
=0.11, respectively). Genotypic variation in cell 

number was positively correlated with pericarp fructose content (R
2
=0.28). These results 

emphasize the role of sugar content and of the timing of assimilate supply in the variation of 

cell and fruit phenotypes.  

 

Keywords: cell cycle genes, variety, histology, Solanum lycopersicum, assimilates. 

 

Introduction 

Fruit size is a major component of fruit yield and quality of many horticultural crops 

including tomato (Solanum lycopersicum L.). It is determined by the number of cells and size 

of individual cells (Gillaspy et al. 1993; Anastasiou and Lenhard 2008). Like other 

quantitative traits, both cell number and cell size are affected by interactions between 

environmental and genetic factors (Yin et al.  2004; Génard et al. 2007).  

In most fruit types, cell division only takes place in early stages of ovary and fruit 

development (Gillaspy et al. 1993). Active cell division is already present in the ovary of 
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young flowers before anthesis, then the division process gradually reduces and stops at 

anthesis (Gillaspy et al. 1993). After successful pollination cell division resumes and 

gradually declines about one to three weeks after anthesis (Bohner and Bangerth 1988a; 

Giovannoni 2004; Bertin et al. 2007). Fruit growth proceeds as a result of cell expansion, 

leading to more than 100 fold increase in fruit size (Gillaspy et al. 1993). In most fruits the 

expansion phase is accompanied by endoreduplication, i.e. a multiplication of the genome 

without mitosis, or, in other words, an incomplete cell cycle resulting in an increase of the 

nuclear DNA (Vlieghe et al. 2007). In mature tomato fruit cells, the nuclear DNA content can 

reach values as high as 256C, i.e. 2
8
 times the haploid nuclei DNA content (Tanksley 2004). 

A positive correlation between endoreduplication and pericarp cell size has been reported in a 

wide range of plants, including tomato (Kondorosi et al. 2000; Bertin 2005; Cheniclet et al. 

2005; Bourdon et al. 2010). 

Although cell expansion contributes by far the most to fruit growth, variation in final fruit size 

has been associated with differences in cell number in many plant species, including tomato 

(Bohner and Bangerth 1988a; Bertin et al. 2003; Prudent et al. 2010), pear (Zhang et al. 

2006), and melon (Higashi et al. 1999). Several studies have shown that final fruit cell 

number and cell size are both affected by the availability of assimilate to the fruit (Marcelis 

1993; Bertin 2005; Baldet et al. 2006;  Prudent et al. 2010). Bertin (2005) found that fruit 

size, cell number and cell size were reduced by fruit load-induced assimilate limitation in 

tomato. Other studies suggested that fruit size might be related to fruit sugar content (Klann et 

al. 1996; Massot et al. 2010). In many fleshy fruits including tomato, fruit sugar content is the 

result of imported sucrose and its enzymatic conversion into glucose and fructose or transient 

storage in the form of starch (Ho 1992). The relationship between fruit sugar content and fruit 

size could be linked to the role of sugar in osmotically driven cell expansion (Doerner 2008), 

or to the function of sugar as signal that promotes gene expression (Riou-Khamlichi et al. 

2000). The physiological mechanism through which assimilate supply regulates fruit size is 

still not well understood, but Baldet et al. (2006) proposed that carbohydrate controls fruit 

size by regulating the mitotic activity of pre- and post-anthesis ovaries. 

Cell division in the fruit is under the control of key regulators of the cell cycle such as cyclins 

(Cycs) and cyclin-dependent kinases (CDKs) (Chevalier 2007). The CDKs associate with 

specific cyclins to drive cells through the entire cell cycle. Three types of cyclins (so-called A, 

B and D types) and four types of CDKs (so-called A, B, D and F types) have known functions 

associated with the cell cycle in plants (Francis 2007). B-type cyclins and CDKs have been 

found to be essential for mitosis to occur, while most D-type cyclins and A-type CDKs are 
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involved in DNA synthesis (Francis 2007). Endoreduplication is controlled by the activity of 

cyclins and CDKs specific for DNA synthesis (Vlieghe et al. 2007).   

High assimilate supply to ovaries of tomato during the pre-anthesis phase can result in high 

transcript levels of CycB2, CycD3 and CDKB2, many cells and large fruits (Baldet et al. 

2006). Less attention has been paid to the response of post-anthesis cell division and 

expansion to assimilate supply and very few studies have addressed the quantitative 

contribution of both cell division and expansion to final fruit size (Bertin 2005). High 

assimilate supply induced by low fruit load applied after an initial period of assimilate 

limitation increased cucumber fruit size, fruit growth rate and cell size (Marcelis 1993). 

Similar results were observed for the fruit size with tomato (Heuvelink 2005; de Koning 

1994), but responses at cell and gene scale were not investigated.  

We hypothesize that the timing of high assimilate supply to the fruit affects final fruit size 

through its effects on cell number, cell volume, fruit sugar content and the expression of cell 

cycle genes. Moreover, we aim to quantify such effects for a set of genetically related 

genotypes, which differ in their final fruit size. To this end, we manipulated assimilate supply 

levels by using different fruit load treatments during fruit development for each genotype. The 

impact of these fruit load treatments on fruit size, cell number, cell volume and fruit sugar 

content was assessed. The differences in expression of major cell cycle genes between high 

and low fruit load treatments of the genotypes were examined. The relationships between the 

fruit sugar content and the measured phenotypes at the cell and fruit scale were analysed. 

 

Materials and methods 

Plant material 

Three tomato genotypes were used in this study: a genotype with large-sized fruits (Solanum 

lycopersicum ‘Moneyberg’) and two inbred lines originating from a cross between 

Moneyberg and Solanum chmielewskii and producing small (g36) or large (g49) fruits, 

respectively. Genotypes g36 and g49 carry their main introgression of Solanum chmielewskii 

on chromosome number three and eight, respectively.  

 

Growth conditions 

Plants were sown in the first week of November 2008. Eight weeks later seedlings were 

transplanted into a 144 m
2
 greenhouse (Wageningen 51.57N, 5.31E, the Netherlands) on 

stonewool slabs at a density of 2.5 plants m
-2

. Nutrients were provided by fertigation (EC 4.5, 
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pH 5.6). Climatic conditions in the greenhouse were 22/18 
o
C day/night temperature, 400 

mol mol
-1

 CO2, and 16-hour light daily (0.6-28.4 MJ m
-2

 d
-1

 natural light supplemented with 

artificial light using high pressure sodium lamps (SON-T Agro 600 Watt, Philips). Side 

shoots were removed once a week. Flowers were pollinated by vibrating each truss three 

times a week.   

 

Experimental design and treatments 

Fruit load treatments were applied starting from anthesis of flowers at the second proximal 

position of the third truss of the plant. We compared fruits grown under continuously low or 

high fruit load with fruits grown first under high fruit load during the first seven DAA (days 

after anthesis), then under low fruit load during the rest of the fruit growth period. So, for 

each genotype three fruit load treatments were applied (Fig. 1):  

1. a treatment with a continuously high fruit load where five fruits were kept on each truss 

from anthesis until the end of fruit growth (5&5F treatment); 

2. a treatment with a switch in fruit load where five fruits were kept on each truss during 

the first seven DAA, then all trusses were pruned to two fruits per truss for the rest of 

the fruit growth period (5&2F treatment); and  

3. a treatment with a continuously low fruit load treatment where two fruits were kept on 

each truss from anthesis until the end of fruit growth (2&2F treatment).  

All nine combinations between the three genotypes and the three fruit load treatments were 

arranged according to a completely randomized design with five replicate plants.  

 

Observations and measurements 

Flower and fruit measurements: Measurements were carried out for each plant on the second 

proximal fruit of the third truss of the plant. The anthesis of all flowers was recorded every 

day. Anthesis date was considered as the first date on which the flower opened fully. Fruits 

were harvested 7 DAA and at breaker stage. Fruits harvested at breaker stage were weighed 

and their diameters were measured using a digital calliper. Each fruit harvested 7 DAA or at 

breaker stage was split into two halves at the equatorial plane. Pericarp isolated from fruits 

harvested 7 DAA was used for the gene expression study. Pericarp isolated from fruits at the 

breaker stage was used for cell histology and sugar analyses.  
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Fig. 1. Schematic representation of fruit load treatments. A) in 5&5F plants each truss was pruned to 5 

fruits at anthesis of the second proximal fruit  and these were maintained until the end of fruit growth 

period; B) in 5&2F plants each truss was pruned to 5 fruits at anthesis of the second proximal fruit, then 7 

days after anthesis all trusses were pruned to 2 fruits for the rest of the fruit growth period; C) in 2&2F 

plants each truss was pruned to 2 fruits at anthesis of the second proximal fruit and these were maintained 

until the end of fruit growth period. All measurements were carried out on the second proximal fruit of the 

third truss. 

 

Cell histology: Isolated pericarps were fixed overnight at room temperature in a 1 acetic acid : 

2 formaldehyde : 5 ethanol solution.  During fixation partial vacuum was applied to extract 

intercellular gases. Samples were washed and dehydrated using ethanol and embedded in 

Technovit 7100 (Kulzer, Wehrheim, Germany). Sections of 3 m thick were made using 

metallic knives on a microtome (Leica, Rijswijk, Netherlands). Sections were stained using 

toluidine blue and photographed on a light microscope equipped with a colour digital camera. 

Images were analysed with Image J (National Institutes of Health, USA). During image 

analysis two tissues were distinguished in each pericarp section: the first 5 cell layers 

representing the exocarp and the region between the 5
th

 cell layer and the endocarp 

representing the mesocarp (Fig. 2A). 
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Fig. 2. Structure of tomato pericarp at breaker stage: A) the white rectangles are examples of the region 

within which mean cell area was estimated in the exocarp and mesocarp as detailed in the materials and 

methods; B) schematic representation of the ellipsoid cell shape in the pericarp. Rfruit is the fruit radius, Lp is 

the pericarp thickness, Vb is the vascular bundle, Ex is the exocarp, Me is the mesocarp, En is the endocarp, 

HT is the cell diameter perpendicular to the fruit skin, DT is cell diameter parallel to the fruit skin. We 

assumed that cell diameter parallel to the fruit skin and the diameter in the longitudinal direction (3
rd

 

dimension) are equal.  

 

To determine cell area a rectangle was drawn in each tissue centred in the area containing no 

vascular bundle (Fig. 2A). Vascular bundles and endocarp cells were excluded from the 

measurements because they do not contribute much to pericarp size. The mean pericarp cell 

area in each tissue was determined as the ratio between the area of the rectangle and the 

number of cells inside the rectangle. The mean cell area in each tissue was used to estimate 

mean cell volume assuming that tomato cells have an ellipsoid shape (Fig. 2B).   

        (1) 

where subscript T refers to the measured tissue, i.e. the exocarp or mesocarp,  is the 

average cell volume (in mm
3
) in the exocarp or mesocarp, is the average cell area in the 

exocarp or mesocarp (in mm
2
),  is the cell diameter in the longitudinal direction (3

rd
 

dimension of the ellipsoid) in the exocarp or mesocarp (Fig. 2B) calculated according to the 

formula: 

        (2) 
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where is the average cell diameter perpendicular to the fruit skin in the exocarp or 

mesocarp (in mm) (Fig. 2B).  was calculated by dividing the tissue thickness by its 

number of cell layers, =3.14. Equation 2 assumes that cell diameters parallel to fruit skin in 

the transversal and longitudinal direction are equal. To check this assumption we sectioned 

some pericarps in the longitudinal and transversal directions and analysed cell diameter 

differences in both directions. Cell diameter parallel to fruit skin in both directions was not 

statistically different (data not shown).  

The average cell volume of the pericarp was calculated as the weighted average of cell 

volume in the exocarp and mesocarp. 

The number of cells in the exocarp or mesocarp tissue ( ) was calculated by dividing the 

exocarp or mesocarp tissue volume,  by the mean tissue cell volume :  

         (3) 

where  (in mm
3
) is calculated approximating the tomato fruit to a sphere. In case of 

exocarp, the formula for is: 

      (4) 

where  is the fruit radius (in mm), and  is the exocarp thickness (in mm). Then 

for mesocarp is expressed as: 

     (5)   

where is the pericarp volume (in mm
3
), which was calculated as: 

      (6) 

where is the pericarp thickness (in mm). 

 

Extraction and analysis of soluble sugars and starch: Soluble sugars were extracted from 

freeze-dried powdered pericarp tissue according to the method described by Hajjaj et al. 

(1998). Samples were boiled in 80% ethanol (v/v) at 80 
o
C for 20 minutes. The mixture was 

cooled down and centrifuged for 5 minutes at 25,000 g. The resulting supernatant was dried 

by evaporation at 45 
o
C for 2 hours in a rotavapor apparatus. The dried residue was dissolved 
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in 1 ml distilled water in an ultrasonic bath for 10 minutes, centrifuged for 15 minutes, diluted 

20 times and analysed by high-performance liquid chromatography (HPLC) (Dionex, 

Sunnyvale, California, USA). 

To determine the pericarp starch content, pellets obtained after soluble sugar extraction were 

dissolved and digested in α–amylase and amyloglucosidase solutions (Smith, 1988). The 

resulting glucose was analysed by HPLC. 

 

Gene expression: RNA was isolated from fruit pericarp with Tripure Isolation Reagent kit 

(Roche Applied Science, Indianapolis, USA) and cleaned with RNeasy mini kit (Qiagen, 

Austin, USA). Isolated RNA was treated with DNAse using the DNAse kit (Invitrogen, 

Landsmeer, the Netherlands). Complementary DNA was synthesized using a cDNA synthesis 

kit (Biorad, Hercules, Canada). Quantitative PCR (qPCR) was performed on cDNA with the 

sets of primers defined in Table S1 [Supplementary Information] using the iQ SYBR Green 

Supermix kit (Biorad, Hercules, Canada) in a single colour real-time PCR detection system 

(Biorad, USA). The expression of three major cell cycle genes, CycB2, CycD3 and CDKB1, 

was investigated. The CycB2 gene is known to encode for a protein that regulates the 

transition between the second gap phase (G2 phase) and mitosis (M phase) in the cell cycle 

(Francis 2007). The CycD3 gene encodes for a protein that is involved in the transition 

between the first gap phase (G1 phase) and the DNA synthesis phase (S phase) and is 

proposed to be a primary sensor of external conditions such as sugar levels (Chevalier 2007). 

The CDKB1 gene encodes for a protein involved in the transition between the G2 and M 

phase (Chevalier 2007; Francis, 2007). Three technical replicates were run for each qPCR of a 

fruit. qPCR reactions were performed on four replicate fruits for each fruit load treatments 

seven DAA, a transition stage between the cell division and the cell expansion phase in the 

tomato fruit (Bohner and Bangerth 1988a; Giovannoni 2004). The expression of the genes at 

this stage should be the same between 5&5F and 5&2F treatments; so qPCR was conducted 

only for fruits of the 5&5F and 2&2F treatments. The levels of expression of each gene were 

normalized against the expression of the TIP41 gene, a housekeeping gene in tomato 

(Exposito-Rodriguez et al. 2008). Normalized gene expression was calculated according to 

the 2
-CT method (Livak and Schmittgen 2001).  

 

Statistical analysis 

The effects of fruit load and genotype on measured variables were analyzed by two-way 

ANOVA and F-tests were used to determine the statistical significance (Matlab, USA). When 
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significant effects were detected, Tukey's least significant difference test was used to compare 

means. The relationships between fruit fresh weight, pericarp volume, cell number and cell 

volume were analysed using linear regression. The coefficient of determination and the 

statistical significance of simple linear regression were used to assess the quality of 

relationships involving two variables. Multiple linear regression was used to study the joint 

effect of cellular variables (cell number and cell volume) on the phenotype at the fruit scale. 

We also used multiple linear regression to identify the sugar component of which the 

concentration was important for the variation in fruit phenotype, cell number or cell volume. 

When the regression model involved predictors measured in different units (e.g. cell number 

and cell volume), we first checked if the predictors were correlated or not. If there was no 

correlation between the predictors, the standardized regression coefficient was computed 

(Archdeacon 1994) to quantify the contribution of each predictor on the response.  

 

Results 

Effects of fruit load and genotype on fruit size,  pericarp size and number of cell layers 

Fruit load significantly affected fruit size (P<0.001). Continuously high fruit load on the truss 

(5&5F) resulted in smaller fruits compared to fruits subjected to continuously low fruit load 

(2&2F) (Table 1). Averaged over all genotypes fruit fresh weight did not differ significantly 

between the 5&2F and the 2&2F treatments (Table 1). Genotypic effects were large 

(P<0.0001) and consistent with expectations. No significant interaction was found between 

fruit load and genotype (P=0.77). Fruit growth duration was not affected by genotype 

(P=0.80) or fruit load treatments (P=0.37).  

Fruit load significantly affected pericarp volume (P<0.0001). In the 5&5F and 5&2F 

treatments pericarp volume was significantly reduced compared with the 2&2F treatment 

(Table 1). Genotypic effects were large (P<0.0001) and in line with genotypic differences in 

fruit size. The interaction between fruit load and genotype was not significant for pericarp 

volume (P=0.39). For all other comparisons, pericarp volume responded similarly as fruit 

fresh weight (Table 1). Pericarp volume appeared to be linearly related to fruit fresh weight, 

even when all genotype × fruit load treatment combinations were pooled in one analysis (Fig. 

3). Hence pericarp volume might be sufficient to describe variations in fruit fresh weight. 

Pericarp thickness was not affected by fruit load treatments (P=0.13). Averaged over all fruit 

load treatments pericarps of large-fruited genotypes (Moneyberg and g49) were significantly 

thicker compared with pericarps of the small fruited genotype (g36) (Table 1). 
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Table 1. Effects of fruit load treatments and genotype on final fruit fresh weight, pericarp volume, pericarp 

thickness, number of pericarp cell layers, exocarp cell volume, mesocarp cell volume, mean pericarp cell 

volume and cell number. 5&5F, 5&2F and 2&2F are continuously high, switch and continuously low fruit 

load treatments, respectively. Each value of fruit fresh weight and pericarp volume is the mean of 15 

replicate fruits; each value at the cell scale is the mean of 2 pericarp measurements performed on 15 

replicate fruits. Mon = Moneyberg. 

* For the same response variable, means across fruit load treatments were not statistically different when 

followed by the same letter (P>0.05). 

+ For the same response variable, means across genotypes were not statistically different when followed by 

the same letter (P>0.05). 

 

The interaction between fruit load and genotype was not significant for pericarp thickness 

(P=0.88). Thicker pericarp might result from increase in pericarp cell volume and/or 

formation of more cell layers. The number of cell layers in the pericarp responded similarly as 

pericarp thickness to fruit load and genotype (Table 1).  

 

Effects of fruit load and genotype on cell number and cell volume  

Continuously low fruit load on the truss (2&2F) resulted in significantly more cells compared 

with the 5&5F treatment (Table 1). Pruning the truss from five fruits to two fruits 7 DAA 

(5&2F) did not significantly increase pericarp cell number compared with treatment 5&5F 

(Table 1). Differences in cell number between 5&2F and 2&2F were not statistically 

significant (Table 1).  

 

 

 

Fruit load treatments
* 

Genotype
+ 

  
5&5F 5&2F 2&2F g36 Mon

 
g49 

 

Fruit fresh weight (g) 61.6
a 

80.2
b 

88.2
b 

44.4
a 

86.4
b 

99.2
c 

Pericarp volume (cm
3
) 39.7

a 
51.7

b 
59.4

c 
26.1

a 
56.7

b 
68.0

c 

Pericarp thickness (mm) 5.6
a 

5.9
a 

5.9
a 

4.2
a 

6.5
b 

6.7
b 

Number of pericarp cell layers 24
a 

24
a 

25
a 

21
a 

26
b 

26
b 

Exocarp cell volume  (×10
-3

) (mm
3
) 3.5

a 
3.6

a 
2.9

a 
3.1

a 
3.3

a 
3.7

a 

Mesocarp cell volume  (×10
-3

)  (mm
3
) 29.6

a 
35.7

a 
34.3

a 
27.4

a 
37.2

b 
35.0

b 

Mean pericarp cell volume  (×10
-3

) (mm
3
) 27.5

a 
33.2

a 
32.1

a 
25.0

a 
34.9

b 
32.9

b 

Cell number (×10
6
) 2.3

a 
2.6

ab 
3.1

b 
1.9

a 
2.8

b 
3.3

c 

 



  Response to fruit load and genotype      

     

33 

 

 

Fig. 3. Relationship between fruit fresh weight and pericarp volume. Each point is an individual fruit at the 

breaker stage of genotypes g36 (square), Moneyberg (circle), g49 (diamond) measured in 5&5F (open 

symbols), 5&2F (small, closed symbols) and 2&2F (large, closed symbols) fruit load treatments. Slope of 

regression is 1.5 g cm
-3

, R
2
=0.90, P<0.001. 

 

Within each fruit load treatment cell number was 1.4-2.0 times higher for the large-fruited 

genotypes (Moneyberg and g49) than for the small-fruited genotype (g36). No significant 

interaction was found between fruit load and genotype for cell number (P=0.33). Fruit load 

and genotype treatments resulted in similar exocarp cell volume (Table 1). No significant 

interaction was found between genotype and fruit load treatments for exocarp, mesocarp and 

average pericarp cell volume (P>0.05). Mesocarp cell volume was affected by genotype but 

not by fruit load treatments (Table 1). Mean pericarp cell volume responded similarly as 

mesocarp cell volume to genotype and fruit load treatments (Table 1). Averaged over all fruit 

load treatments the small-fruited genotype had significantly smaller pericarp cells than the 

large fruited genotypes (Table 1). Within each fruit load treatment cells were 1.2-1.6 times 

larger for large-fruited genotypes (Moneyberg and g49) compared with the small-fruited 

genotype (g36). Differences in cell volume between genotypes were less pronounced than 

differences in cell number, which suggests that fruit size differences between genotypes could 

be primarily related to differences in cell number rather than cell volume. 

 

Relative contribution of cell number and cell volume to variation in pericarp volume 

An analysis using a general linear model, in which cell number and cell volume were included 

as co-variants, showed that in contrast to the effect of fruit load treatments, the effect of 
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genotypes on pericarp volume can be explained by genotypic variation in cell number and cell 

volume. Therefore, the relationship between pericarp volume and cell number and/or cell 

volume was analysed to quantify the relative contribution of cell number and cell volume in 

affecting pericarp volume for individual fruit load treatment. 

 In each fruit load treatment, the separate contribution of cell number and cell volume to 

genotypic variations in pericarp volume was first examined using simple linear regression 

[Supplementary Information - Fig. S1]. The coefficients of determination of the regression 

lines suggest that cell number accounted for variations in pericarp volume in the 5&2F and 

2&2F treatments more than cell volume did [Supplementary Information - Fig. S1A and 

S1B]. By contrast, in the 5&5F treatment, both cell number and cell volume contributed 

significantly to variations in pericarp volume [Supplementary Information - Fig. S1A and 

S1B].  

 

Table 2. Estimates (± standard error) and statistics of parameters of regression (Pvol= αCn + ßCvol + ) fitted 

for different fruit load treatments. Pvol is the pericarp volume in cm
3
, Cn is the cell number (× 10

6
) and Cvol 

is the cell volume in mm
3
. Parameter α is expressed in cm

3
, ß is dimensionless,  is expressed in cm

3
 . 

 

Treatment 

 

Parameters
 

Parameter estimates
* 

Standardized 

coefficient 

R
2 

 

5&5F 

 

α 16.9 (± 2.6) 0.74 
0.85 

ß 1183.9 (± 223.2) 0.61 

  -31.2 (± 9.0)  

     

5&2F 

α 22.2 (± 2.6) 0.92 

0.87 ß 902.1 (± 240.7) 0.41 

 -36.8 (± 11.5)  

     

2&2F 

α 18.5 (± 1.6) 0.90 

0.94 ß 1322.0 (± 257.3) 0.39 

 -40.4 (± 9.7)  

 

* All parameters were significant (P < 0.01) 

This relative importance of cell number and cell volume in the prediction of pericarp volume 

was confirmed by more compelling multiple regression analyses (Table 2). 
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Since there was little correlation between cell number and cell volume in all fruit load 

treatments [Supplementary Information - Fig. S1C], the magnitude of the standardized 

regression coefficient was used to measure the relative importance of each predictor (Table 

2). In the 2&2F and 5&2F treatments, values of the standardized regression coefficient 

indicated that cell number contributed two times more than cell volume to the genotypic 

variation of pericarp volume. In the 5&5F treatment, genotypic variations in pericarp volume 

were almost equally shared between cell number and cell volume (Table 2). 

 

Effects of fruit load and genotype on pericarp sugar and starch content  

The interaction between fruit load and genotype was significant for sucrose content (P=0.01), 

but not for starch, fructose, glucose content and sucrose: hexoses ratio (P>0.05). The 

treatment with a switch in fruit load (5&2F) resulted in a significantly higher pericarp sucrose 

content in genotype g36 than the treatments with a constant fruit load, but not in Moneyberg 

and g49 (Table 3).  

 

Table 3. Effects of fruit load treatments and genotype on pericarp sucrose content
*
 (µg/mg dry weight). 

Each value is the mean of 5 replicate fruits at the breaker stage. 

 

Fruit load treatments Genotypes 

 g36 Moneyberg g49 

 

5&5F 

 

5.1
a 

     

3.9
a 

     

5.1
a 

5&2F 7.9
b 

    4.8
a 

3.8
a 

2&2F     4.7
a 

    4.9
a 

    4.2
a 

 

* Means per fruit load and genotype combination were not statistically different when followed by the 

same letter (P>0.05). 

 

Fruit load treatments did not affect starch, glucose, fructose content and the sucrose: hexoses 

ratio (P>0.05). Averaged over all fruit load treatments, glucose and fructose content were 

significantly higher in the large-fruited genotypes (Moneyberg, g49) compared with the 

small-fruited genotype (g36) (Table 4). By contrast starch content was highest in the small-

fruited genotype (g36) compared with the large-fruited genotypes (Moneyberg, g49) (Table 

4). Sucrose: hexoses ratio was also highest in the small-fruited genotype (g36) compared with 

the large-fruited genotypes (Moneyberg, g49). 
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Table 4. Effects of fruit load treatments and genotype on pericarp glucose, fructose and starch content 

(µg/mg dry weight), sucrose: hexoses ratio (%) and expression of CycB2, CycD3 and CDKB1 gene. Each 

value of sugar content is the mean of 15 replicate fruits at the breaker stage. Gene expression values are 

mRNA relative abundance normalized to TIP41 (a housekeeping gene in tomato). Each value of mRNA 

abundance is the mean of three technical replicates performed on 12 fruit replicates for each fruit load 

treatment or on 8 fruit replicates for each genotype. 5&5F, 5&2F and 2&2F are continuously high, switch 

and continuously low fruit load treatment respectively. DAA = days after anthesis; Mon = Moneyberg. 

 

* For the same response variable, means across fruit load treatments were not statistically different when 

followed by the same letter (P>0.05). 

+ For the same response variable, means across genotypes were not statistically different when followed by 

the same letter (P>0.05). 

 

To identify which of these four non-structural carbohydrate components were the most 

relevant for the genotypic variation in fruit or cell phenotype, we attempted to relate 

phenotypes (i.e. fruit fresh weight, pericarp volume, cell number and cell volume) to non-

structural carbohydrate contents. Phenotypic measurements and pericarp non-structural 

carbohydrate contents of individual fruits were related in multiple regression functions 

involving all four non-structural carbohydrate components (phenotype = a×starch + 

b×sucrose + c×glucose + d×fructose + e, where a, b, c, and d are regression coefficients and 

e is a constant). The number of regressors in the model was gradually reduced by backward 

elimination. For fruit fresh weight, backward elimination resulted in a model with glucose and 

fructose as regressors (R
2
=0.41; P<0.02). The model with glucose and fructose as regressors 

also best described pericarp volume (R
2
=0.48; P<0.0001) and cell volume (R

2
=0.11; P<0.03). 

    Fruit load treatments
* 

Genotype
+ 

    5&5F 5&2F 2&2F g36 Mon g49 

 

Pericarp sugar 

content of mature 

fruits  

Glucose 191
a 

188
a 

199
a 

176
a 

207
b 

195
b 

Fructose 200
a 

198
a 

208
a 

180
a 

218
b 

209
b 

Starch 3.1
a 

7.2
a 

9.2
a 

14.2
b 

3.5
a 

1.8
a 

Sucrose: hexoses 1.2
a 

1.5
a 

1.1
a 

1.7
b 

1.1
a 

1.1
a 

       

CycB2 0.9
a 

-
 

1.3
a 

1.3
a 

1.1
a 

0.9
a 

Relative mRNA 

abundance 7 DAA 

CycD3 0.9
a 

- 0.7
a 

1.2
b 

0.7
ab 

0.5
a 

CDKB1 1.3
a 

- 1.4
a 

1.9
b 

1.2
a 

0.9
a 
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For cell number, backward elimination resulted in a model with only fructose as regressor. 

Cell number was positively correlated to pericarp fructose content (R
2
=0.28; P<0.001).  

Negative correlations were found between sucrose: hexoses ratio and fruit fresh weight 

(R
2
=0.14; P<0.01), pericarp volume (R

2
=0.21; P=0.001) and cell number (R

2
=0.19; P=0.002). 

Cell volume was not correlated with sucrose: hexoses ratio (P=0.6). 

 

Effects of fruit load on expression of cell cycle genes 

We investigated whether high or low fruit load had an effect on the expression of cell cycle 

genes in the three genotypes. Therefore the expression of three major cell cycle genes, CycB2, 

CycD3 and CDKB1, was analyzed. For all genes investigated no significant interaction 

between fruit load and genotype was found (P>0.05). Variations in the expression levels of 

CycB2, CycD3 and CDKB1 were subtle and not significantly enhanced by the continuously 

low fruit load (2&2F) treatment (Table 4). No genotypic differences were detected in the 

expression of CycB2 (P=0.51). By contrast significant differences in the expression of 

CDKB1 (P=0.01) and CycD3 (P=0.04) were found among the three genotypes. Surprisingly, 

the highest transcript levels of CycD3 and CDKB1 were found in the small-fruited genotype 

(g36), which were about two times higher than transcript levels in large-fruited genotypes 

(Moneyberg and g49) (Table 4). The overall transcript level of CDKB1 was almost twice as 

high as that of CycD3, but did not differ significantly from that of CycB2 (Table 4; analysis 

not shown). 

 

Discussion 

Low fruit load increases individual fruit weight in tomato (Bertin 2005; Baldet et al. 2006). In 

our experiment continuously low fruit load (2&2F) effectively resulted in a strong increase in 

individual tomato fruit fresh weight and pericarp volume compared with the continuously 

high (5&5F) fruit load treatment (Table 1). At the cell scale, continuously low fruit load 

treatment increased cell number compared with the continuously high fruit load treatment 

(Table 1). Similar observations were made by Bertin (2005) and Baldet et al. (2006) on 

tomato fruits. Continuously low fruit load treatment did not significantly increase cell volume 

(Table 1). This result disagrees with many studies which showed that high assimilate supply 

increased cell size in tomato fruits (Bertin 2005; Bohner and Bangerth 1988b). These authors 

also observed that within a tomato truss distal fruits are more sensitive to assimilate 

limitations than proximal fruits (Bohner and Bangerth 1988b; Bertin 2005). For example, 
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Bohner and Bangerth (1988b) found that plant defoliation resulted in a decrease in cell 

number and cell size that was more pronounced for distal than for proximal fruits. In this 

experiment, competition between individual fruits for assimilates was probably more severe 

than in our experiment. Bertin (2005) observed that low fruit load increased cell number in 

distal fruits, but not in proximal fruits. Prudent et al. (2010) found that cell size measured on 

proximal fruits was not significantly affected by fruit load treatments in one of the two tomato 

genotypes they investigated. In our experiment fruit size differences among genotypes were 

more related to cell number than to cell volume. These results collectively indicated that cell 

number played a more important role than cell volume in determining fruit size in our 

experiment. Genotypic or fruit load-induced variations in final tomato fruit size have been 

mainly associated with differences in cell number (Bertin et al. 2003; Baldet et al. 2006; 

Prudent et al. 2010).  

In our experiment fruit load did not affect pericarp starch, glucose or fructose content (Table 

4). A wide range of responses of pericarp starch and sugar content to fruit load treatments has 

been reported in tomato (Prudent et al. 2009; 2010; Do et al. 2010; Massot et al. 2010). For 

example,  Massot et al. (2010) found that low fruit load increased pericarp hexose content 

while Prudent et al. (2009) observed that fruit load reduction did not affect pericarp sugar 

content. Differences in starch and sugar responses to fruit load treatments might be caused by 

several interacting factors including cultivar differences, the stage of fruit development or 

plant growing conditions (Luengwilai et al. 2010). Fruit sugar content is the net result of 

carbohydrate import and utilization. If a higher carbohydrate supply is expected to increase 

fruit sugar content, a higher utilization would result in the opposite effect. Hence in our 

experiment the absence of fruit load effects on pericarp sugar content could be explained by 

the fact that the effects of higher assimilate supply in the 2&2F mature fruits were 

counteracted by a higher sugar utilization, which resulted in a similar sugar content as found 

for the 5&5F treatment.  

Our results showed that the genotypic variation in final fruit fresh weight and pericarp volume 

was related to fruit glucose and fructose content (R
2
=0.41 and R

2
=0.48, respectively). 

Variation in fruit size has been associated with changes in fruit sugar content in many plant 

species including tomato (Klann et al. 1996; Massot et al. 2010), avocado (Richings et al. 

2000) and muskmelon (Kultur 2001). At the cell scale, genotypic variation in cell volume was 

related to pericarp fructose and glucose content (R
2
=0.11), while the genotypic variation in 

cell number was positively correlated with pericarp fructose content (R
2
=0.28). Since the 

expression of cell cycle genes is sensitive to hexose availability (Riou-Khamlichi et al. 2000), 
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our results suggest that differences in cell division and final fruit size among genotypes might 

be partly linked to their differences in sugar metabolism. Kwon and Wang (2011) observed 

that increased cell number in transgenic tobacco plants overexpressing CycD3 gene was 

related to high invertase activity and high hexose levels. In plant cells, invertase is responsible 

for the enzymatic conversion of sucrose into fructose and glucose (Ho 1992) and might play 

an important role in the endogenous levels of hexoses necessary to enhance the cell cycle 

machinery (Kwon and Wang 2011). Genotypic variations in the activity of invertase was 

reported in tomato fruits (Elliott et al. 1993; Prudent et al. 2010). Genotypic differences in 

carbohydrate metabolism in our experiment were suggested by the higher sucrose: hexoses 

ratio observed in the small-fruited genotype compared with the large-fruited genotypes (Table 

4). Besides its role in the cell cycle machinery, the sucrose: hexoses ratio was proposed to be 

involved in osmotically driven cell expansion (Doerner 2008). In our experiment sucrose: 

hexoses ratio was correlated with cell number, but not with cell volume.  

In our study gene expression levels of the small fruited genotype (g36) were similar (CycB2) 

to, or higher (CycD3 and CDKB1) than, those of the large fruited genotypes (Moneyberg, 

g49) (Table 4). Variations in the expression levels of CycB2, CycD3 and CDKB1 genes were 

only subtle and not significantly affected by fruit load treatments (Table 4). Small changes in 

expression levels over a long period of fruit development could lead to substantial effects on 

fruit growth. Baldet et al. (2006) and Joubès et al. (2000) have shown that the expression of 

the CycB2 and CycD3 genes measured at five time points before or after anthesis increased 

when tomato fruits were subjected to high sugar supply. In another study Baldet et al. (2002) 

observed that darkness-induced assimilate limitation reduced the expression of eight cell cycle 

genes measured at five time points during tomato fruit growth. In our experiment gene 

expression was investigated only once during fruit development. At this time point (7 DAA) 

each fruit could be in a slightly different phase of the fruit developmental program. More 

expression analyses at different time points during fruit development could give a better view 

on the expression levels and patterns associated with the treatments. 

Lowering fruit load from five fruits per truss at anthesis to two fruits per truss 7 DAA (the 

5&2F treatment) increased the final fruit weight and pericarp volume by up to 30% compared 

with the 5&5F treatment (Table 1). Similar observations were made on cucumber (Marcelis 

1993) and tomato (de Koning 1994; Heuvelink 2005). Since fruit growth duration was not 

affected by fruit load treatments in our experiment, increase in final fruit size must have been 

related to an increase in fruit growth rate. Heuvelink (2005) and de Koning (1994) observed 

that a sudden change from limiting to non-limiting assimilate supply during the development 
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of the tomato fruit gradually increased fruit growth rate, but did not affect its growth duration. 

A similar but faster response to sudden assimilate increase was reported with cucumber 

(Marcelis 1993). Our results suggest that the low fruit load applied from 7 DAA onwards 

affected fruit growth processes responsible for fruit size increase. Indeed fruit histological 

analyses revealed that the 5&2F treatment resulted in similar cell number as the 2&2F 

treatment (Table 1). One argument can be put forward to explain the effect of the treatment 

with the switch in fruit load on cell number. During the first 7 DAA when the fruit load was 

high (5 fruits/truss), genes of the cell cycle machinery such as CycB2 and CDKB1 that drive 

the entry into the M-phase (Francis 2007) were exposed to low assimilate. This probably 

resulted in a lower expression of these genes (Joubès et al. 2000; Baldet et al. 2006) and thus 

in a lower cell number. Although high fruit load did not affect the expression of cell cycle 

genes in our experiment, other studies involving more measurement time points early in 

tomato fruit growth reported a reduction in the expression of cell cycle genes under low 

assimilate supply (Joubès et al. 2000; Baldet et al. 2002; Baldet et al. 2006). Seven DAA 

when the truss was pruned to two fruits per truss in our experiment, assimilate supply 

increased. This probably resulted in enhanced expression of all cell cycle genes (Joubès et al. 

2000; Baldet et al. 2006). However, since the cell division phase is almost over 7 DAA in 

tomato fruits (Giovannoni 2004), the enhancing effect of high assimilate supply on cell cycle 

genes involved in mitosis was probably present for a short period in the 5&2F treatment. This 

might explain the slight increase in pericarp cell number in the 5&2F treatment compared 

with the 5&5F treatment (Table 1).  

Our data showed that genotypic variation in pericarp volume could be partly accounted for by 

cell number or cell volume in the 5&5F treatment (Table 2). This indicates that both cell 

number and cell volume were limiting to pericarp volume in this treatment. When fruits were 

subjected to high assimilate supply from anthesis onwards or 7 days later (5&2F and the 

2&2F) cell number contributed about twice as much to the variation in final pericarp volume 

than cell volume did (Table 2). These results suggest that cell number rather than cell volume 

was more limiting in these treatments. The most likely explanation is that in the 5&2F and 

2&2F treatments, high assimilate supply covers the entire period of cell expansion (Bohner 

and Bangerth 1988a) and has probably enabled cells to reach their potential size (Marcelis 

1993). On the contrary, in none of our fruit load treatments was high assimilate supplied 

during the entire period of cell division (Gillaspy et al. 1993) and the potential cell number 

was probably never reached. Indeed even in the 2&2F treatment, high assimilate supply was 

imposed from anthesis onwards and pre-anthesis ovary development took place under high 
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fruit load. Cell division before anthesis is important in determining final cell number in 

tomato fruits (Bohner and Bangerth 1988a; Bourdon et al. 2010). Baldet et al. (2006) 

observed that high fruit load reduced pre-anthesis cell division and final cell number in 

tomato fruits. Therefore, the contribution of cell number or cell volume to fruit load-induced 

variations in fruit size may depend on the timing of assimilate supplied to the fruit. 

 

Conclusions 

This study aimed at investigating how both growth factors (i.e. carbohydrate limitation) and 

genotypic factors cause variation in fruit size. Fruit load-induced variations in fruit size were 

more related to cell number than to cell volume. Our results suggest that the timing of 

assimilate supply affects the relative contribution of cell number and cell volume to the 

genotypic variation in fruit size. Differences in transcript levels of cell cycle genes between 

genotypes could be associated with genotypic differences in the scheduling of gene 

expression. These results also illustrate the difficulty of assessing gene response at a single 

developmental stage. This study suggests a link between pericarp sugar content and genotypic 

variation in fruit and cell phenotypes. Measuring the activity of enzymes involved in sugar 

metabolism in these genotypes might help to elucidate this relationship.  
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Supplementary information  

 

Table S1. Primer sequences used to amplify gene-specific regions. For each gene the accession number and 

reference are given. 

 

cDNA Primer sequence Accession 

number 

References 

 

CycB2 Forward ATTCAATCTTGGAGAGGATTAAAG 

Reverse GTAGCCATTTCAGCCCTATC 

AJ243455 Joubès et al., 2000 

CycD3 Forward CAAGGAGAAGGTGGAGAGGATG 

Reverse GGTGATGAAGTAACTGATGTAGC 

AJ002590 Kvarnheden et al., 2000 

CDKB1 Forward ATGGAGAAATACGAGAAATTGGAG 

Reverse ACGATGTAGAGAGAATGAGATAGC 

AJ297916 Joubès et al., 2001 

TIP41 Forward  GCTGCGTTTCTGGCTTAGG 

Reverse  ATGGAGTTTTTGAGTCTTCTGC 

SGN-

U321250 

Exposito-Rodriguez et 

al., 2008 
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Fig. S1. Relationships between A) pericarp volume and cell number, B) pericarp volume and cell volume, 

C) cell number and cell volume. Each point is an individual fruit at the breaker stage of genotypes g36 

(square), Moneyberg (circle) and g49 (diamond) measured in 5&5F (opened symbols and dash-dot lines), 

5&2F (small symbols and continuous lines) and 2&2F (filled symbols and dashed lines) fruit load 

treatments. Slope (α) of regression is A) α =15.8, R
2
=0.48, P=0.006 (5&5F); α =20.0; R

2
=0.71, P<0.001 

(5&2F) and α =18.2, R
2
=0.79, P <0.001 (2&2F);  B) α =1.08; R

2
=0.31, P=0.04 (5&5F); α =0.50; R

2
=0.05, 

P=0.43 (5&2F), and α =1.19; R
2
=0.12, P=0.23 (2&2F), C) α=-0.006; R

2
=0.006, P=0.80 (5&5F), α =-0.017; 

R
2
=0.04, P=0.50 (5&2F), α =-0.007; R

2
=0.002, P=0.89 (2&2F).  

 

 

 

 

(A) 

(C) 

(B) 
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Abstract 

To improve our understanding of fruit growth responses to temperature it is important to 

analyse temperature effects on underlying fruit cellular processes. This study aimed at 

analysing the response of tomato (Solanum lycopersicum L.) fruit size to heating as affected 

by changes in cell number and cell expansion in different directions. Individual trusses were 

enclosed into cuvettes and heating was applied either only during the first 7 days after 

anthesis (DAA) or from 7 DAA until fruit maturity (breaker stage) or both. Fruit size and 

histological characteristics in the pericarp were measured. Heating fruit shortened fruit growth 

period and reduced final fruit size. Reduction in final fruit size of early-heated fruit was 

mainly associated with reduction in final pericarp cell volume. Early heating increased the 

number of cell layers in the pericarp, but did not affect the total number of pericarp cells. 

These results indicates that in the tomato pericarp, periclinal cell divisions respond differently 

to temperature than anticlinal or randomly oriented cell divisions. Late heating only decreased 

pericarp thickness significantly. Continuously heating fruit reduced anticlinal cell expansion 

(direction perpendicular to fruit skin) more than periclinal cell expansion (direction parallel to 

fruit skin). This study emphasizes the need to measure cell expansion in more than one 

dimension in histological studies of fruit.  

 

Keywords. Fruit temperature, Solanum lycopersicum, fruit size, histology, periclinal cell 

expansion, anticlinal cell expansion. 

 

 

Introduction 

Fruit growth is strongly influenced by temperature. A shorter fruit growth period as a result of 

an increase in temperature has been reported in several plant species including kiwi (Actinidia 

deliciosa) (Greer et al., 2003), apricot (Prunus armeniaca L.) (Jackson and Coombe, 1966), 

cucumber (Cucumis sativus) (Marcelis and Baan Hofman-Eijer, 1993) and tomato (De 

Koning, 1994). Temperature also has a direct effect on the rate of fruit growth (Van der Ploeg 

and Heuvelink, 2005). In general no fruit growth is expected below a certain temperature 

threshold (Van der Ploeg and Heuvelink, 2005), estimated to be 5.7 
o
C in tomato (Adams et 

al., 2001). Above this base temperature and below the optimum temperature threshold of 30 
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o
C (Pearce et al., 1993), increase in air temperature increases fruit growth rate, but final fruit 

size might be decreased (Adams et al., 2001; Sawhney and Polowick, 1985) or not affected 

(Bertin, 2005; Van der Ploeg and Heuvelink, 2005) due to a shorter fruit growth period. Air 

temperature may also influence fruit growth indirectly through other plant growth and 

development processes (Adams et al., 2001; Bertin, 2005). For example, within a certain 

temperature range, an increase in air temperature is associated with an increase in the rate of 

plant development resulting in more sink organs formed by the plant (De Koning, 1994). This 

creates a stronger competition among individual sinks for assimilates, sometimes leading to 

abortion of flowers or incipient fruit (De Koning, 1989; Van der Ploeg and Heuvelink, 2005; 

Wubs et al., 2009).  

When whole plants are exposed to various temperatures, indirect temperature effects make it 

impossible to quantify the extent to which temperature directly affects fruit growth. To 

overcome this limitation it is important to apply temperature treatments locally at the fruit 

level (Adams et al., 2001; Gautier et al., 2005). So far most studies have investigated the 

effects of whole plant temperatures on fruit growth (Bertin, 2005; De Koning, 1994), 

probably because of the technical challenges involved in implementing local temperature 

treatments. Adams et al. (2001) observed that heating individual tomato trusses from 15 
o
C to 

20 and 25 
o
C in transparent chambers increased absolute fruit growth rate, but this effect was 

compensated by a reduced growth duration resulting in no significant temperature effects on 

the final fruit size. By contrast Gautier et al. (2005) found that fruit heating from 18.5/15.5 to 

21/18.4 
o
C day/night reduced tomato fruit size with more pronounced effects under limited 

assimilate supply. Marcelis and Baan Hofman-Eijer (1993) also showed that heating 

individual cucumber fruit from 17.5 to 27.5 
o
C reduced their final size when fruit were grown 

under limited assimilate supply. 

Experimental data showed that the sensitivity of fruit growth to temperature is not the same 

during the whole fruit growth period in many plant species including cucumber (Marcelis and 

Baan Hofman-Eijer, 1993), apple (Malus domestica) (Calderón-Zavala et al., 2004) and 

tomato (De Koning, 2000). For instance, tomato fruit size and time to maturity were reduced 

when fruit were heated during the first 3 weeks after anthesis, but were not affected when 

heating was applied 1 or 2 weeks later (Adams et al., 2001). This difference in fruit sensitivity 

to temperature is not surprising considering that different processes are successively involved 

during the growth of a fruit (Gillaspy et al., 1993). During the first 7 to 10 DAA, fruit growth 

in tomato is mainly the consequence of cell division. As cell division progressively stops, 

individual cells expand until the fruit reaches its final size (Bohner and Bangerth, 1988). To 
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improve our understanding of fruit growth responses to temperature it is important to analyse 

temperature effects on underlying fruit cellular processes. 

Many studies described the effects of temperature on fruit growth at the fruit level (De 

Koning, 1994; Greer et al., 2003), but more rarely at the cell level (Bertin, 2005; Marcelis and 

Baan Hofman-Eijer, 1993). Increasing air temperature reduced cell number and increased cell 

sizes in tomato fruit due to a reduced cell division period and extended cell expansion period 

(Bertin, 2005). The author applied temperature treatments on whole plants and local 

temperature responses were not measured. In cucumber increasing local fruit temperature 

reduced cell number, but did not affect cell size when fruit were grown under limited 

assimilate supply (Marcelis and Baan Hofman-Eijer, 1993). Other experiments suggest that 

temperature effects on cell expansion might not be the same in all expansion directions 

(Erwin et al., 1991; Strøm and Moe, 1997). These experiments were carried out on plant 

stems and leaves (Erwin et al., 1991; Strøm and Moe, 1997). To the best of our knowledge, no 

studies on the effects of temperature on cell expansion in different expansion directions have 

been reported in fruit tissue.  

This study investigates the response of tomato fruit growth to local temperature applied early 

or late during fruit growth. The objectives were first to analyse whether the reduction in final 

fruit size of early or late heated fruit is related to reduction in cell number or cell size and, 

second to investigate temperature effects on fruit cell expansion in different expansion 

directions.  

 

Materials and methods 

Plant material and growth conditions 

Two experiments were conducted in 2010 (Exp. 1) and 2009 (Exp. 2) to study the effects of 

local heating on the growth of tomato fruit. In both experiments seedlings of tomato (Solanum 

lycopersicum ‘Moneyberg’) were grown for 8 weeks (Exp. 1: Jan.-Feb. 2010; Exp. 2: Nov.-

Dec. 2009), and then transplanted in the greenhouse on stonewool slabs at a density of 2.5 

plants/m
2
. Nutrient solution was prepared according to De Kreij et al. (1997) and provided by 

fertigation (Electrical conductivity 3.0 dS· m
-1

, pH 5.6). Climatic conditions in the greenhouse 

were 21.5 ± 0.09 SE (standard error) 
o
C (day temperature) and 18.1 ± 0.05 SE 

o
C (night 

temperature) in Exp. 1 or 22.0 ± 0.17 SE 
o
C (day temperature) and 18.5 ± 0.10 SE 

o
C (night 

temperature) in Exp. 2, 16 h photoperiod (0.6-28.4 MJ·m
-2

·d
-1

 natural light supplemented with 

artificial light using high pressure sodium lamps (135 µmol·m
-2

·s
-1

 photosynthetic active 
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radiation (PAR), SON-T Agro, Philips, Eindhoven, The Netherlands) and 400 mol·mol
-1

 

CO2. Flowers were pollinated by vibrating each truss three times per week. All trusses on the 

plants were pruned to five fruit. Side shoots were removed once per week. 

 

Heating system  

Individual trusses were heated into small cuvettes constructed from perspex (WSV 

Kunststoffen BV, Utrecht, The Netherlands) (Fig. 1A). Each heating cuvette consisted of a 

cylindrical chamber  (13 cm diameter and 20 cm long) equipped with an electronic heating 

unit (Bausatz, Conrad Electronic SE, Hirschau, Germany); a fan (1004KL-04W-B40-B00, 

NMB-Minebea, Chatsworth, California) at the base of the chamber blew air into the chamber 

and released it via an outlet at the top. The maximum flow rate of the fan was 40 L/min. 

Sensors (Bausatz, Conrad Electronic SE, Hirschau, Germany) continually monitored air 

temperature inside and outside the chamber. The heating unit was calibrated to control the 

functioning of the heating block (Cirrus 25, DBK, Spartanburg, South Carolina) and to 

regulate the temperature of the air inside the chamber. The realised air temperature inside the 

chamber was 26.9 ± 0.12 SE 
o
C (day) and 22.7 ± 0.10 SE 

o
C (night) in Exp. 1 or 27.0 ± 0.44 

SE 
o
C (day) and 23.0 ± 0.20 SE 

o
C  (night) in Exp. 2. When cuvettes were used for the control 

treatment the heating unit was switched off, but not the fan, and the temperature inside the 

chamber was the same as the temperature outside. 

 

Experimental design and treatments 

Heating treatments were implemented 10 weeks after transplanting. For each plant at this 

stage the truss of which the second proximal flower was at anthesis was selected to receive 

one of the treatments and was enclosed into the cuvette. All other trusses on the plant were 

not enclosed into a cuvette. 

In Exp. 1 treatments were applied to investigate the effects of continuous local heating on 

fruit growth. In the heating treatment, trusses were heated continuously until the breaker stage 

of the second proximal fruit which was reached 46 DAA. In the control treatment, trusses 

were also enclosed into cuvettes until the breaker stage of the second proximal fruit, which 

was reached 54 DAA.  

In Exp. 2, treatments were applied to investigate the effects of local heating at two different 

stages of fruit growth on final fruit phenotype. We studied the effects of heating fruit during 

the first 7 DAA, the effects of heating fruit from 7 DAA until fruit maturation and the 

interaction between these two heating schemes. In the interaction, we tested whether the 
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effects of fruit heating applied during the first 7 DAA on a response variable was affected by 

the heating treatment applied from 7 DAA until breaker stage. Four treatments were applied 

as described in Fig. 1B. Treatments were applied to experimental units, each of which 

consisted of six plants (Exp. 1) or one plant (Exp. 2). Experimental units were arranged 

according to a completely randomized design with five replicates. 

 

 

 

 Anthesis 7   DAA Breaker stage 

     

D0D0                      No heating           No heating 

D4D0                      Heating            No heating  

D4D4                      Heating            Heating 

D0D4                      No heating            Heating 

 

Fig. 1. (A) Schematic representation of the heating system: hb = heating block, is = inside temperature 

sensor, ch = chamber, tr = tomato truss, hu = heating unit, os = outside temperature sensor, fa = fan. (B) 

Scheme of tomato fruit heating treatments in Exp. 2: in D0D0 treatment fruit were not heated from anthesis 

until breaker stage, in D4D0 fruit were heated from anthesis until 7 days after anthesis (DAA) and not 

heated from 7 DAA until breaker stage, in D4D4 fruit were heated from anthesis until breaker stage, in 

D0D4 fruit were not heated from anthesis until 7  DAA and heated from 7 DAA until breaker stage.  

 

D4D_ 

D_D4 

 

(A) 

(B) 
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Observations and measurements 

Flower and fruit measurements: In each experimental unit, observations and measurements 

were carried out on one fruit located at the second proximal position of the selected truss. For 

all selected trusses, observations of anthesis were recorded before trusses were enclosed into 

the cuvettes. Anthesis was considered as the first day on which a flower opens fully. In Exp. 

1, the second proximal fruit in each selected truss was harvested at a specific thermal time 

(calculated as the temperature sum above a base temperature of 5.7 °C (Adams et al., 2001)), 

i.e., 0, 69, 129, 232, 374 
o
Cd after anthesis, and at breaker stage (reached at 881 

o
Cd after 

anthesis). This corresponded to 0, 2, 5, 11, 18 and 46 DAA in the heating treatment or to 0, 3, 

7, 15, 25 and 54 DAA in the control treatment. In Exp. 2 the second proximal fruit in all 

cuvettes was harvested at breaker stage which was reached at 853 
o
Cd after anthesis, and 

corresponded to 55, 52, 46 and 45 DAA respectively in the D0D0, D4D0, D0D4 and D4D4 

treatments (Fig. 1B).  

Harvested fruit were weighed and their diameters in the horizontal plane measured using a 

digital calliper (Schneider-klein, Suki-international, Landscheid, Germany). Average fruit 

diameter was calculated after estimating fruit diameter in the vertical direction calculated 

from the relationship between fruit diameter in the vertical and horizontal directions, 

estimated in cv. ‘Moneyberg‘ (N=58) (Fig. S1). Each harvested fruit was split into two halves 

at the equatorial plane, the pericarp was isolated and used for cell histology.  

Cell histology: For each harvested fruit, four pericarp samples were fixed overnight at room 

temperature in a 1 acetic acid : 2 formaldehyde : 5 ethanol solution. Sections of 3 m thick 

were stained using toluidine blue and photographed on a light microscope (Eclipse 50i, Nikon 

Instruments Europe, Kingston, UK) equipped with a colour digital camera. Images were 

analysed with image J (National Institutes of Health, Bethesda, Maryland). During image 

analysis two tissues were distinguished in each pericarp section: the first five cell layers 

(including the cuticle) representing the exocarp and the region between the 5th cell layer and 

the endocarp representing the mesocarp (Fig. 2A). To determine cell area a rectangle was 

drawn in each tissue centred in the area containing no vascular bundle (Fig. 2A).  
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Fig. 2. Structure of tomato pericarp at breaker stage: A) the white rectangles are examples of the region 

within which mean cell area was estimated in the exocarp and mesocarp as detailed in the materials and 

methods; B) schematic representation of the ellipsoid cell shape in the pericarp. Rfruit is the fruit radius, Lp is 

the pericarp thickness, Vb is the vascular bundle, Ex is the exocarp, Me is the mesocarp, En is the endocarp, 

HT is the cell length (anticlinal direction i.e., perpendicular to the fruit skin), DT is cell width (periclinal 

direction i.e., parallel to the fruit skin).  

 

Vascular bundles and endocarp cells were excluded from the measurements because they do 

not contribute much to pericarp size. The mean pericarp cell area in each tissue was 

determined as the ratio between the area of the rectangle and the number of cells inside the 

rectangle. The mean cell area in each tissue was used to estimate mean cell volume assuming 

that tomato cells have an ellipsoid shape (Fig. 2B).   

        (1) 

where subscript T refers to the measured tissue, i.e., the exocarp or mesocarp,  is the 

average cell volume (in millimeters
3
) in the exocarp or mesocarp, is the average cell area 

in the exocarp or mesocarp (in millimetres
 2

),  is the cell width in the 3rd dimension of the 

ellipsoid (Fig. 2B) calculated according to the formula: 

        (2) 

where is the average cell length (in the anticlinal direction i.e., perpendicular to the fruit 

skin) in the exocarp or mesocarp (in millimetres) (Fig. 2B).  was calculated by dividing 

the tissue thickness by its number of cell layers, =3.14. Eq. [2] assumes that cell width (in 

TTaTvol DCC ,, 5.0
3

4
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,
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the periclinal direction i.e., parallel to fruit skin) in 2-dimensional plane equals cell width in 

the 3rd dimension of the ellipsoid. To check this assumption we sectioned some pericarps in 

the longitudinal and transversal directions and analysed cell length and width differences in 

both directions. Cell width in both directions was not statistically different (data not shown).  

The average cell volume of the pericarp was calculated as the weighted average of cell 

volume in the exocarp and mesocarp. 

The number of cells in the exocarp or mesocarp tissue ( ) was calculated by dividing the 

exocarp or mesocarp tissue volume,  by the mean tissue cell volume :  

         (3) 

where  (in millimeters
3
) is calculated approximating the tomato fruit to a sphere. In case 

of exocarp, the formula for is: 

      (4) 

where  is the fruit radius (in millimetres), and  is the exocarp thickness (in 

millimetres). Then for mesocarp is expressed as: 

     (5)   

where is the pericarp volume (in millimeters
3
), which was calculated as: 

      (6) 

where is the pericarp thickness (in millimetres). 

 

Statistical analysis 

The effects of heating treatments on variables measured on fruit at the same growth stage 

were analysed by ANOVA and F-tests were used to determine the statistical significance 

(Matlab, The Mathworks, Natick, Massachusetts). The relationships between fruit fresh 

weight, pericarp volume, cell number and cell volume were analysed using linear regression. 

The coefficient of determination and the statistical significance of the simple linear regression 

were used to assess the quality of the relationships. 
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Results 

Effects of continuous heating on fruit and cell characteristics during fruit growth 

Continuous heating significantly reduced final fruit fresh weight (P = 0.002), fruit diameter (P 

= 0.004) and fruit volume (P = 0.003) in Exp. 1. In Exp. 2, final fruit size of continuously 

heated fruit was also reduced (P = 0.02), but the effects were less pronounced than in Exp. 1 

(Fig. 3A, 3B). The time course of fruit growth measured in Exp. 1 showed that reduction in 

final fruit size was mainly accounted for by the effect of heating on fruit growth duration.  

 

  

  

 

Fig. 3. Time course of (A) tomato fruit fresh weight, (B) fruit volume, (C) pericarp volume and (D) 

pericarp thickness during fruit growth (Exp. 1; circles). Each point is the mean (± standard error) of three to 

five replicate fruit heated continuously (closed symbols) or non-heated (open symbols). The last data points 

were measured from fruit at the breaker stage, at which data were also available from Exp. 2 (triangles) and 

were presented for comparison between the two experiments. 

 

Heating initially increased fruit growth rate (Figs. 3A, S2A), but this increase was more than 

compensated by a drastic reduction in fruit growth duration of 8 ± 1.6 d (P = 0.010) in the 

A B 

C D 



Chapter 3 

58 

 

heating treatment compared with the control (Fig. S2A). When fruit size was plotted against 

temperature sum, final fruit size was reached at approximately the same temperature sum (881 

± 17 
o
Cd) in heated and non-heated fruit (Fig. 3, 3B). The time course of pericarp volume 

growth responded similarly to continuous fruit heating as fruit fresh weight (Fig. 3C). Final 

pericarp volume was reduced by 36% (Exp. 1) or 26% (Exp. 2) in heated fruit. In contrast, 

fruit heating did not significantly affect final pericarp thickness (P = 0.18), although during 

fruit growth increase in pericarp thickness started earlier in the heating treatment compared 

with the control (Figs. 3D, S2D). At the same temperature sum, pericarp thickness was similar 

in heated and non-heated fruit except at 232 
o
Cd (Fig. 3D).  

From anthesis until maturity cell volume increased approximately 11,000 fold in both heated 

and non-heated fruit. Continuously heating the fruit significantly reduced their final pericarp 

cell volume in Exp. 2 (Figs. 4A, S3A). In Exp. 1, increase in cell volume started earlier in 

heated fruit compared with non-heated fruit (Figs. 4A, S3A), but this did not result in 

significant differences in final volume of pericarp cells (P = 0.79). A similar pattern was 

observed with exocarp and mesocarp cells where heating treatment did not significantly affect 

their final volume either (P > 0.65; data not shown). Interestingly, although heating did not 

affect final pericarp cell volume in Exp. 1, its effect was not the same in all cell expansion 

directions. At 232 
o
Cd cell length was larger in heated fruit than in non-heated fruit (P = 

0.003; Fig. 4B). After this point, cell expansion in the anticlinal direction (i.e., increase in cell 

length) was faster in non-heated fruit than in heated fruit (P = 0.07 at 374 
o
Cd; Fig. 4B) 

leading to a significant reduction in final cell length in heated fruit compared with non-heated 

fruit (P = 0.001). The effects of heating on periclinal cell expansion (i.e., increase in cell 

width) did not result in significant differences in final pericarp cell width (P = 0.35).  

The generation of new cell layers occurred from anthesis onwards at similar rate in heated and 

non-heated fruit (Fig. 4D). In non-heated fruit the maximum number of cell layers was 

reached at 129 
o
Cd. However, new cell layers continued to be formed up to 232 

o
Cd in heated 

fruit (Fig. 4D), which led to significantly more cell layers in matured heated fruit compared 

with non-heated fruit (P = 0.01). In Exp. 2 the increase in the final number of cell layers in 

continuously heated fruit was less pronounced than in Exp. 1.  

Cell division occurred at a higher rate in the pericarp of non-heated fruit compared with 

heated fruit (Figs. 4E, S3E). In both treatments no more cells were produced after 232 
o
Cd 

(Fig. 4E). Matured heated fruit had 3.8 (± 0.66) 10
6
 (Exp. 1) or 2.8 (± 0.22) 10

6
 (Exp. 2) 

cells compared with 4.8 (± 0.34) 10
6
 (Exp. 1) or 3.1 (± 0.25) 10

6
 (Exp. 2) cells in non-

heated fruit.  
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Fig. 4. Time course of (A) tomato fruit pericarp cell volume, (B) pericarp cell length (anticlinal direction), 

(C) pericarp cell width (periclinal direction), (D) number of cell layers and (E) pericarp cell number during 

fruit growth (Exp. 1; circles). Each point is the mean (± standard error) of three to five replicate fruit heated 

continuously (closed symbols) or not heated continuously (open symbols). The last data points were 

measured from tomato fruit at the breaker stage, at which data were also available from Exp. 2 (triangles) 

and were presented for comparison between the two experiments. 
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Effects of heating applied during the first 7 days after anthesis and from 7 days after anthesis 

onwards on final fruit characteristics 

For all fruit and cell characteristics measured, no interaction was detected between heating 

during the first 7 DAA and heating from 7 DAA onwards. Therefore main effects were tested. 

Heating fruit during the first 7 DAA reduced final fruit fresh weight by 12%, fruit volume by 

21% and pericarp volume by 16% compared to the situation where no heating was applied 

during the first 7 d (Table 1). Heating fruit from 7 DAA onwards had no significant effects on 

final fruit fresh weight, fruit volume and pericarp volume (P > 0.07).  

 

Table 1. Effects of fruit heating from anthesis until 7 days after anthesis (DAA) (D4D_) and of fruit heating 

from 7 days after anthesis onwards (D_D4) on final tomato fruit and cell phenotypes. In the D0D_ 

treatment, fruit were not heated from anthesis until 7 DAA; in the D_D0 treatment, fruit were not heated 

from 7 DAA until breaker stage. Each value is the mean of 8-10 replicate fruit (Exp. 2).* 

 

  

Heating from anthesis until 7 

DAA   

Heating from 7 DAA until 

maturity 

  

Not Heated 

(D0D_) 

Heated 

(D4D_) 

P-

value   

Not Heated 

(D_D0) 

Heated 

(D_D4) 

P-

value 

 

Fruit fresh weight  (g) 64.2 56.2 0.05  63.7 56.7 0.09 

Fruit volume (cm
3
) 61.2 48.3 0.01  57.0 52.5 0.28 

Pericarp volume (cm
3
) 36.6 30.7 0.01  35.7 31.6 0.08 

Pericarp thickness (mm) 6.4 6.5 0.77  6.7 6.2 0.02 

Number of cell layers 23.8 26.1 0.02  25.1 24.8 0.70 

Average cell volume (10
-3

 mm
3
)  22.3 16.3 0.02  20.0 18.5 0.54 

Cell volume exocarp (10
-3

 mm
3
) 1.6 1.5 0.68  1.6 1.5 0.81 

Cell volume mesocarp (10
-3

 mm
3
) 23.6 17.1 0.02  21.2 19.6 0.54 

Cell number (10
6
) 3.21 3.19 0.96  3.34 3.06 0.51 

Pericarp cell width (mm) 0.36 0.33 0.17  0.34 0.34 0.99 

Pericarp cell length (mm) 0.31 0.28 0.07   0.30 0.29 0.19 

 

* For all response variables measured, no significant interaction was observed between the effects of  

heating from anthesis until 7 DAA and heating from 7 DAA until breaker stage.  

 

Final pericarp thickness was not affected by early heating but was statistically significantly 

reduced by 8% when fruit were heated from 7 DAA onwards (Table 1). Early heating 

significantly increased the number of cell layers, but not the total number of cells in the 
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pericarp (Table 1). Heating fruit from 7 DAA onwards did not affect the final number of cell 

layers nor the total number of cells (Table 1). Average pericarp cell volume was significantly 

decreased by 27% in fruit heated during the first 7 DAA (Table 1).  

The effect of heating applied from 7 DAA onwards on pericarp cell volume was not 

statistically significant (Table 1). Mesocarp cell volume responded similarly to heating 

treatments as average pericarp cell volume did (Table 1). The effects of heating treatments on 

final exocarp cell volume were not statistically significant (Table 1).  

 

Effects of fruit heating on the correlation between fruit and histological variables in mature 

fruit 

We investigated whether heating fruit during the first 7 DAA or from 7 DAA onwards had an 

influence on the correlations between fruit and histological characteristics. We used simple 

linear regression to analyse the relationships between fruit weight, pericarp volume, pericarp 

cell number and pericarp cell volume in different heating treatments. In all heating treatments, 

pericarp volume linearly correlated to fruit fresh weight (Fig. 5A). Regression analysis was 

carried out between pericarp volume and other histological traits. In none of the heating 

treatments cell volume significantly correlated with pericarp volume (P > 0.25) (Fig. 5B). 

Positive correlations were noted between cell number and pericarp volume for fruit heated 

during the first 7 DAA (P = 0.01), but not for fruit heated from 7 DAA onwards (P = 0.07; 

Fig. 5C). Negative correlation coefficients were found between cell number and cell volume 

for fruit heated during the first 7 DAA (P = 0.01), but not for fruit heated from 7 DAA 

onwards (P = 0.16; Fig. 5D).  

 

Discussion 

In agreement with the literature (De Koning, 1994; Gautier et al., 2005; Greer et al., 2003) 

continuous fruit heating in our experiments reduced fruit growth duration and final fruit size. 

Surprisingly, the effects of continuous heating on final fruit size were more pronounced in 

Exp. 1 than in Exp. 2 (Fig. 3A). Since fruit temperature was similar in both experiments the 

reasons for this difference in the magnitude of effects remain unclear. In our experiments we 

used moderate temperature range, far below the temperatures responsible for heat stress in 

tomato fruit (Pearce et al., 1993). We showed that in this temperature range, fruit size 

reduction was mostly due to heating during the first week of fruit growth (Table 1).  
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Fig. 5. Correlations between (A) tomato fruit fresh weight and pericarp volume, (B) pericarp volume and 

pericarp cell volume, (C) pericarp volume and pericarp cell number, and (D) pericarp cell volume and 

pericarp cell number. Regression in (A) is fitted over all data points.  Each point is an individual fruit at the 

breaker stage of fruit heated from anthesis to 7 days after anthesis (DAA) (D4D_: closed symbols and solid 

line), fruit heated from 7 DAA until maturity (D_D4: diamond and dotted line) and fruit not heated from 

anthesis until maturity (D0D0: open circles). The slope (α) of regression is (A) α=1.8 g·cm
-3

, R
2
=0.82, P < 

0.001; (B) α=-0.43 cm
3
·mm

-3
, R

2
=0.16, P = 0.26 (D4D_) and α=0.20 cm

3
·mm

-3
, R

2
=0.04, P = 0.58 

(D_D4); (C) α=3.63 cm
3
, R

2
=0.59, P = 0.01 (D4D_) and α=3.72 cm

3
, R

2
=0.36, P = 0.07 (D_D4); (D) α=-

3.39 mm
3
, R

2
=0.61, P = 0.01 (D4D_) and α=-2.97 mm

3
, R

2
=0.22, P = 0.17 (D_D4). 

 

This result is consistent with the findings of De Koning (1994) and Adams et al. (2001) who 

observed that tomato fruit are more sensitive to heating applied during the first weeks of fruit 

growth than to heating applied later. Similar observations were reported by Marcelis and Baan 

Hofman-Eijer (1993) in cucumber fruit.  

The linear correlation found between fruit fresh weight and pericarp volume in all our heating 

treatments suggests that pericarp volume might be sufficient to describe variations in fruit 

fresh weight. In our experiment, final pericarp thickness was not affected by heating 

  

  

A B 

C D 
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treatments (Fig. 3D). Pericarp thickness is the consequence of two underlying cellular 

processes: cell expansion and the generation of new cell layers. The absence of heating effects 

on final pericarp thickness was the result of the opposite effects of heating on cell expansion 

and on cell layer generation. 

The onset of cell expansion was advanced in heated fruit. This early cell expansion probably 

explains the initial increase in fruit growth rate observed in heated fruit in our experiment. 

Several authors reported an increase in the growth rate of young fruit exposed to high 

temperatures (Bertin, 2005; Marcelis and Baan Hofman-Eijer, 1993). Bertin (2005) observed 

that growing tomato plants under high temperatures (25/25 
o
C) advanced the onset of cell 

expansion in tomato fruit, but did not alter cell expansion rate. In the same experiment, she 

reported that final cell volume was increased by high temperature (Bertin, 2005), which 

contrasts with our results where final cell volume was either reduced (early heating or 

continuous heating (Exp. 2)) or not significantly affected (continuous heating (Exp. 1) or 

heating from 7 DAA onwards) by heating treatments. This discrepancy might be linked to the 

low fruit assimilate supply in our experiments induced by high fruit load (5 fruit/truss) 

compared with the high assimilate supply in Bertin’s experiment induced by low fruit load (2 

fruit/truss). Indeed Gautier et al. (2005) showed that the effects of fruit heating were more 

pronounced when tomato fruit were grown under limited assimilate supply. In cucumber fruit, 

Marcelis and Baan Hofman-Eijer (1993) observed that high temperature increased final cell 

size when fruit were grown under non-limiting assimilate supply, but temperature did not 

affect final cell size when assimilate supply was limiting.  

In our experiments the effects of continuous fruit heating on final cell length was more 

pronounced than on cell width (Fig. 4B, 4C). This suggests that heating might not affect 

periclinal and anticlinal cell expansion in a similar way. In kidney bean (Phaseolus vulgaris 

L.) and soybean (Glycine max L.) stems, Ikeda et al. (1999) observed that cell elongation rates 

and durations were very different in the cell length and cell width directions. The direction of 

cell expansion in plants is mainly determined by the orientation of cellulose microtubules and 

microfibrils (Wasteneys and Ambroise, 2009). In the internode of pea (Pisum sativum L.) 

seedlings, Akashi and Shibaoka (1987) observed that transverse and longitudinal microtubules 

responded differently to low temperature treatment and hormone application. Exposing potato 

(Solanum tuberosum) stolons to gibberellins resulted in the transversal orientation of cell 

microtubules and microfibrils (Prat, 2010). In tomato fruit, high temperatures are known to 

affect the production of plant hormones such as gibberellins (Sasaki et al., 2005) and could 

indirectly influence the orientation of cell microtubules and microfibrils, and thus the 
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orientation of cell expansion in our experiments. High temperature increased cell length but 

did not affect cell width in stems of Campanula isophylla (Strøm and Moe, 1997) and Lilium 

longiflorum (Erwin et al., 1991). These results together with our data underscore the need in 

histological studies to measure cell expansion in more than one dimension in order to reflect 

the dynamics of cell expansion in plant organs. 

In our experiments the final number of cell layers was increased in heated fruit. The formation 

of new cell layers in tomato pericarp mainly occurs early in fruit growth (Fig. 4D; Cheniclet 

et al., 2005) and, as expected, the final number of cell layers in our experiment was sensitive 

to heating applied during the first week of fruit growth (Table 1). The number of cell layers in 

the pericarp is an indication of periclinal cell division (i.e., division plane parallel to fruit 

skin) activity (Cheniclet et al., 2005). Our results suggest that heating prolonged periclinal 

cell division as new cell layers continued to be generated until 232 
o
Cd in heated fruit 

compared with 129 
o
Cd in non-heated fruit. In a tomato fruit, the total number of cells in the 

pericarp results not only from periclinal cell divisions, but also from anticlinal cell divisions 

(i.e., division plane perpendicular to fruit skin) and randomly oriented cell divisions 

(Cheniclet et al., 2005). With increasing fruit temperature, a decrease in cell division period 

and final fruit cell number is usually found (Bertin, 2005; Marcelis and Baan Hofman-Eijer, 

1993). Continuous fruit heating also shortened the cell division period in our experiment (Fig. 

S3E), but not to the extent that reduction in final cell number was statistically significant. 

Early heating had no effect on final pericarp cell number (Table 1). This might be due to the 

fact that in our experiment, early heating was applied only during the first week of fruit 

growth. During this period heating mainly affected periclinal cell division which occurs 

during the first week of fruit growth, whereas anticlinal and randomly oriented cell division 

continued for a longer period in the pericarp. A longer heating period early in fruit growth 

would probably affect all types of cell division in the pericarp and final cell number. In this 

study, final fruit size reduction of early heated fruit was not related to the reduction in cell 

number, but to the reduction in final cell volume (Table 1). 

In contrast with the duration of cell layers production which was prolonged in continuously 

heated fruit, we observed that the duration of cell division in the whole pericarp was 

shortened by continuous heating (Fig. S3E). These contrasting effects suggest that periclinal 

cell division and other types of cell divisions might respond differently to temperature and 

might be regulated differently. In tomato fruit Cheniclet et al. (2005) observed that periclinal 

cell division was completed 5 DAA, whereas other types of cell divisions continued up to 20 

DAA. Similar observations were reported by Joubès et al. (1999) and Cong et al. (2002). They 
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showed that the major quantitative trait locus fw2.2, which controls fruit size in tomato, is 

involved in the regulation of anticlinal and randomly oriented cell divisions, but not periclinal 

cell divisions (Cheniclet et al., 2005; Cong et al., 2002). The regulation of periclinal cell 

division is not well understood yet. 

In our experiment final pericarp volume was positively correlated with cell number but not 

with cell volume within each heating treatment (Fig. 5). This suggests that within each 

heating treatment, variation in pericarp volume was mainly accounted for by cell division. 

Bertin (2005) found that the size of tomato fruit grown under similar temperature regimes was 

positively correlated with cell number. The negative correlations noted between cell number 

and cell volume in our experiment agreed with Bertin’s findings and suggest that pericarp 

cells could be viewed as a population of competing sinks.  

 

Conclusions 

This study aimed at analysing the response of tomato fruit size to heating as affected by 

changes in cell number and cell expansion in different directions. Our results showed that 

reduction in final fruit size of early-heated fruit was mainly associated with reduction in final 

pericarp cell volume. This study also suggests that in the tomato pericarp, periclinal cell 

divisions respond differently to temperature than anticlinal and randomly oriented cell 

divisions.  The effects of fruit heating on the time course of cell length and cell width suggest 

that high temperature reduces expansion in the anticlinal direction more than in the periclinal 

direction. Our results emphasize the need to measure cell expansion in more than one 

dimension in histological studies of fruit.  
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Supplementary information 

 

 
 

Fig. S1. Relationship between tomato fruit diameter measured in the horizontal and vertical axis in tomato 

(cv. ‘Moneyberg’). The slope of the regression line forced through the origin is α=0.84, R
2
=0.98. Data were 

collected in 2011 from an independent experiment (N=58).  
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Fig. S2. Time course of (A) tomato fruit fresh weight, (B) fruit volume, (C) pericarp volume and (D) 

pericarp thickness during fruit growth (Exp. 1; circles). Each point is the mean of three to five replicate 

fruit heated continuously (closed symbols) or non-heated (open symbols). Vertical bars represent standard 

errors of the mean. The last data points were measured from fruit at the breaker stage, at which data were 

also available from Exp. 2 (triangles) and were presented for comparison between the two experiments. 
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Fig. S3. Time course of (A) tomato fruit pericarp cell volume, (B) pericarp cell length (anticlinal direction), 

(C) pericarp cell width (periclinal direction), (D) number of cell layers and (E) pericarp cell number during 

fruit growth (Exp. 1; circles). Each point is the mean of three to five replicate fruit heated continuously 

(closed symbols) or non-heated (open symbols). Vertical bars represent standard errors of the mean. The 

last data points were measured from fruit at the breaker stage, at which data were also available from Exp. 

2 (triangles) and were presented for comparison between the two experiments. 
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4. A dynamic model of tomato fruit growth integrating cell 

division, cell growth and endoreduplication 
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Fanwoua J, de Visser PHB, Heuvelink E, Yin X, Struik PC, Marcelis LFM. A dynamic model 

of tomato fruit growth integrating cell division, cell growth and endoreduplication.  

 

Abstract 

In this study a model of tomato fruit growth integrating cell division, cell growth and 

endoreduplication was developed. The fruit is considered as a population of cells grouped in 

cell classes differing in their initial cell age and cell mass. The model describes fruit growth 

from anthesis until maturation and covers the stages of cell division, endoreduplication and 

cell growth. The transition from one stage to the next is determined by predefined cell ages 

expressed in thermal time. Cell growth is the consequence of sugar import from a common 

assimilate pool according to the sink/source concept. Cell growth rate increases with 

increasing cell ploidy. Cell division or endoreduplication occur when cells exceed a critical 

threshold cell mass: ploidy ratio. The model was parameterized and calibrated for low fruit 

load conditions and was validated for high fruit load and various temperature conditions. The 

model was able to accurately predict final cell number, cell mass and pericarp mass under 

various contrasting fruit load and most of the temperature conditions. The framework 

developed in this model opens the perspective to integrate information on molecular control 

of fruit cellular processes into the fruit model and to analyse gene-by-environment interaction 

effects on fruit growth. 

 
Keywords: model, fruit growth, tomato, cell division, cell growth, cell endoreduplication 

 

Introduction 

The control of fruit size is complex. This complexity emerges from the cumulative and 

interactive effects of successive genetically and environmentally controlled, diverse cellular 

processes during fruit development. In most fleshy fruits, growth starts with intense cell 

division (Gillaspy et al. 1993). After the first weeks of fruit growth cell division gradually 

declines and rapid cell growth starts to occur (Gillaspy et al. 1993; Bertin et al. 2003a). 

During this period individual cells accumulate water and carbon resulting in spectacular 

increase in cell volume (more than 10,000-fold in tomato (Solanum lycopersicum L.) 

mesocarp cells) and fruit volume (Cheniclet et al. 2005). In many fleshy fruits, cell growth is
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 accompanied by an increase in cell DNA content through the process of endoreduplication, 

i.e. an incomplete cell cycle where cells continue to increase their DNA content (S-phase) 

without mitosis (M-phase) (Bourdon et al. 2010). At the subcellular scale, cell division, cell

 growth and endoreduplication are controlled by networks of multiple genes of which 

expression is sensitive to the environment (Baldet et al. 2006; Chevalier 2007). The regulation 

of fruit size is further complicated by the interrelationships between fruit cellular processes. 

For example, a positive correlation between cell size and the number of endoreduplication 

cycles was reported in some plant organs, including tomato fruits (Kondorosi et al.  2000; 

Bertin 2005; Cheniclet et al. 2005; Bourdon et al. 2010). Several authors observed that most 

cells that start endoreduplication are not able to re-enter mitosis (Sugimoto-Shirasu and 

Roberts 2003; John and Qi 2008; Sabelli et al. 2008). Experimental data show that cell 

growth is strongly linked with cell cycle regulation and suggest that there is a critical cell size 

for endoreduplication or cell division to occur (Nasmyth 1979; Jorgensen and Tyers 2004; 

Francis 2007).  

Models have proven to be powerful tools to understand the behaviour of complex systems 

(Struik et al. 2005). In order to unravel the complexity of fruit size, ecophysiological models 

describing underlying fruit growth processes have recently been proposed (Liu et al. 2007; 

Génard et al. 2007; Martre et al. 2011). Bertin et al. (2003b) proposed a simple 

phenomenological model of cell proliferative activity in growing tomato fruits under constant 

environmental conditions. Their model assumes an initial phase of exponential cell 

proliferation after which the proliferative activity declines as division proceeds. This model 

was able to predict differences in cell number between two tomato cultivars, but did not 

address environmental effects (Bertin et al. 2003b). In the last two decades, progress in the 

understanding of molecular control of the cell cycle inspired the development of several 

models of cell cycle regulation (Tyson et al. 2002; Novák and Tyson 2004; Csikász-Nagy et 

al. 2006; Barik et al. 2010; Roodbarkelari et al. 2010). These models attempt to predict the 

behaviour of cells based on differential equations describing the network of protein 

interactions. The main drawbacks of these models are their complexity and the difficulty to 

measure model parameters, limiting the possibilities for their application at the tissue and fruit 

scales (Bertin et al. 2007; Martre et al. 2011). 

Most expansion models describe fruit growth at the organ scale. A typical example is the 

peach (Prunus persica L.) model of Fishman and Génard (1998) in which the fruit is 

considered as one big cell and thermodynamic equations are used to describe water and 

carbon accumulation in the fruit. This model was used to predict fruit load and tree water 
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status effects on the fresh and dry mass of peach fruits (Fishman and Génard 1998). The 

model was further modified to describe plastic and elastic changes of cell wall in mango 

(Mangifera indica L.) fruits (Lechaudel et al. 2007) and the switch from symplasmic to 

apoplasmic phloem unloading in growing tomato fruits (Liu et al. 2007). Carbon 

accumulation in the fruit has also been modelled using the sink regulation concept (Marcelis 

et al. 1998). This concept assumes that carbon import into a fruit depends on the fruit sink 

strength relative to the sink strength of all other organs. In these models an organ sink strength 

is defined as the potential capacity of the organ to accumulate assimilates and is quantified by 

the organ’s potential growth rate (Marcelis et al. 1998). The sink strength approach has been 

used to model assimilate import in several fruit species including cucumber (Cucumis sativus) 

(Marcelis 1994), tomato (Heuvelink 1996), kiwifruit (Actinidia deliciosa) (Lescourret et al. 

1998a), peach (Lescourret et al. 1998b) and grapevine (Vitis vinifera L.) (Vivin et al.  2002). 

In comparison to the number of expansion and cell division models, only few models of 

endoreduplication have been developed so far. A mathematical model was proposed to 

describe endoreduplication in maize (Zea mays L.) endosperm (Schweizer et al. 1995) and 

later in orchid flowers (Lee et al. 2004). The model of Lee et al. (2004) assumes that the 

potential for endoreduplication decreases for cells with higher ploidy levels. Model 

predictions agreed well with experimental data, but the high number of relevant parameters is 

a major disadvantage of this model. The same holds for two modelling studies on cell cycle 

regulation including endoreduplication (Csikász-Nagy et al. 2006; Roodbarkelari et al. 2010). 

A simpler model describing mitotic activity and endoreduplication in tomato fruits was 

proposed by Bertin et al. (2007). Their model was able to predict the number of cells and 

ploidy levels in two contrasting tomato cultivars, but environmental effects were not 

considered.  

An interesting feature of the Bertin et al. (2007) model is that it integrates the arrest of mitosis 

with the onset of endoreduplication. Although experimental data suggest that underlying fruit 

cellular processes are interrelated, integrating two or more cellular processes has been rarely 

done in fruit ecophysiological models. An attempt to integrate cell division and cell growth 

was made by Beemster et al. (2006) in their model of Arabidopsis leaf growth. Their model 

assumes that a critical ratio between cell size and cell DNA content triggers the synthesis of 

cyclins and CDKs regulating the S and M phases. This model was used to simulate the effects 

of an overproduction of cell cycle inhibitor on cell division and expansion, but 

endoreduplication was not presented (Beemster et al. 2006). Even though it is difficult to 

integrate all physiological processes in one model, several authors agree that models 
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integrating the main underlying processes would improve our understanding of the emerging 

properties of a complex system (Génard et al. 2007; Yin and Struik 2010). In the case of fruit 

growth, such models would also open the way to analyse complex fruit environment 

responses (Liu et al. 2007; Martre et al. 2011). In order to achieve this goal, Génard et al. 

(2007) proposed to describe each process underlying fruit growth in a simple way.   

The objectives of this study were 1) to develop a model of tomato fruit growth integrating cell 

division, cell growth and endoreduplication, and 2) to use the model to analyse assimilate 

supply and temperature effects on fruit growth at the cell and fruit scale. 

 

Model description 

The model describes the growth of a tomato fruit pericarp from anthesis until maturation, thus 

covering the period of cell division, cell endoreduplication and cell expansion. In our previous 

studies we showed that there is a linear relationship between pericarp size and fruit size 

(Fanwoua et al. 2012a, b). In the model the pericarp consists of a population of cells grouped 

into q cell classes (Fig. 1). Cell classes are defined based on the mass and age of cells at the 

beginning of the simulation. This definition accounts for the variability already present at 

anthesis in many fleshy fruits including tomato (Bertin 2005; Baldet et al. 2006). The 

distributions of initial cell mass and age across cell classes are assumed to follow a normal 

distribution. Cells do not move from class to class during fruit development and within each 

class all cells have the same mass, age and behaviour. Cell age is expressed in degree-hours 

and calculated as follows: 

        ( )         ( ) ∑         
            (1) 

where,         ( ) is the age of cells in class   (     ) at step   in degree-hours (°Ch), 

and         ( ) is the age of cells in class   at the beginning of the simulation. The second 

expression in equation (1) integrates hourly values of deghour, i.e. the differences between 

hourly temperature and the base temperature Tb (Tb=5.7 °C, Adams et al. 2001). 

In each cell class, cells are able to increase their mass (cell growth), increase their number 

(cell division), or increase their ploidy level (cell endoreduplication) (Fig. 2). Each of these 

processes are closely linked to cell age as described below. 
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Fig. 1. General scheme of the fruit model structure showing sugar distribution between different cell 

classes in the fruit. Rectangles represent state variables in a cell class, valves represent rates, circles are 

model parameters, solid arrows represent sugar flow, dashed arrows indicate information flow. For 

simplicity, we represent only three cell classes for this illustration. 

 

Cell growth 

Cell growth involves the increase in total cytoplasmic mass (Génard et al. 2007) and is the 

consequence of resource exchange between the cell and the rest of the plant. At the fruit level, 

growth has often been modelled using the source/sink concept (Marcelis et al. 1998). We 

applied this approach to the cell scale.  
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Fig. 2. Schematic representation of the decision for an average cell to grow, divide or endoreduplicate 

(Endo) within a cell class in the fruit model. Rectangles represent cellular processes, diamonds are decision 

rules, solid arrows show progression through the scheme.  

 

For each time step, the cell growth rate and cell mass in each class are calculated: 

          ( )                      ( )                           (2) 

where TimeStep is the model time step (1 hour), CellMassn is the average cell mass in class   

(mg), and ActualCellgrowthraten is the actual growth rate of each cell in class   (mg h
-1

) and 

is calculated as the ratio between the actual amount of sugar imported by class   

(                        , mg h
-1

) and the number of cells in class   (                ). 

  

                    
 
                          

 
                            (3) 

 

Calculation of ClassCellNumbern is described in the cell division section. The actual amount of 

sugar imported by class   depends on the pericarp sugar input (              , mg h
-1

) and 

should not exceed the sink strength or potential growth rate of class   (                 
 
, mg 

h
-1

).  
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                                                                        (4) 

Pericarp sugar input (              ) depends on the pool of sugar available for the fruit 

(         , mg), the contact surface area between the vascular and pericarp tissue (        , 

mm
2
) and the respiration coefficient (        ). 

                                                               (5) 

where   is a constant proportionality factor (h
-1 

mm
-2

). The pool of sugar available for the fruit 

(         ) and the respiration coefficient (        ) are assumed to be constant. The contact 

surface area between the vascular tissue (        ) depends on the area of the pericarp tissue 

according to an empirical relationship determined experimentally (see later).  

In equation 4,                 
  describes the competitive ability of cells in class   to import 

sugar relative to that of all other cell classes. This variable accounts for the interaction 

between fruit cells (Bertin 2005). As pointed out by Génard et al. (2007), “a tissue cannot be 

considered as being a simple juxtaposition of independent cells”. In the model 

                
   is calculated by dividing the sink strength of class   (                 

 
) by 

the total sink strength of all classes. 

                 ( ) 
                  ( )

∑                   ( )
 

   

       (6) 

Sink strength of a class   is the product of the potential growth rate of individual cells in class 

  (PotCellGrowthRaten, mg h
-1

) and the number of cells in class   (ClassCellNumbern).  

                  
 
                                                (7) 

For dividing cells, we assumed that the potential growth rate (                  ) during one 

division cycle length (CycleLength) is a constant (RateDiv) estimated experimentally. For 

non-dividing cells,                    depends on cell ploidy             
 
  and cell age 

(        ) following a Richards growth rate equation (Hunt 1982). 

                      
     

 
      

 (
 

 
  )

                                 (8) 

where                                       , parameters a (mg), b, c (mg mg
-1

 
o
Ch

-1
) and d 

characterize the potential growth of a diploid cell in the fruit and CellAge_division (
o
Ch) is the 



Chapter 4 

80 

 

total time a cell spends in the division phase. The function                was determined 

experimentally and describes the fold changes in potential cell growth rate per unit change in 

cell ploidy. Calculation of           
 
 is described in the endoreduplication section.  

 

Cell division 

The cell cycle machinery is equipped with several “checkpoints” where cell cycle events are 

monitored and signals generated, which determine whether the cell cycle should proceed or be 

temporally or definitively arrested (Murray 2004). This probably explains why DNA 

synthesis and mitosis are each preceded by a gap phase (G1 and G2 phases) during which a 

cell needs to grow before committing itself to the next cycle event (Francis 2007). For 

example, in several organisms it has been postulated that a cell must reach a critical cell size 

per unit DNA content for DNA synthesis (S phase) or mitosis to occur (Zetterberg et al. 1995; 

Csikász-Nagy et al. 2006). To account for this role of cell size and DNA content in cell 

division, we assumed in the model that cell division occurs if cell mass: ploidy ratio in a class 

  (                 ) reaches a critical threshold value (                       ). 

                      
            

                 
         (9) 

In the model,                         increases with increasing cell cycle number 

(            ), so that the potential of cells to divide decreases with increasing cell cycle 

number. 

                                                                            
                   (10) 

where                          is the threshold cell mass: ploidy ratio just before the first cell 

division cycle,  
 
 and  

 
 are constant parameters ( 

 
 and                ). 

Division events are accompanied by the doubling of the number of cells and halving of mass 

per cell in a class. 

                     
 
      DNACellMassThresholdDivn  

                                                (11) 

                                  (12) 

The model assumes a predefined age above which a cell should exit cell division, 

CellAge_division (
o
Ch) (Fig. 2). It has been observed in most fruits, including tomato, that the 
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cell division period is restricted to the first weeks of fruit development and can be modified 

by the environmental factors like temperature (Bertin 2005).  

 

Cell endoreduplication 

Endoreduplication is a modified cell division cycle where cells continue to increase their 

DNA content (S phase) without cell division (Chevalier et al. 2011). It has been observed that 

most cells that start endoreduplication are no longer able to divide (Sugimoto-Shirasu and 

Roberts 2003; Sabelli et al. 2008). In the model endoreduplication can only occur in cells that 

have exited the cell division phase and their age is below a threshold value CellAge_endo 

(Fig. 2). The “decision” of a cell to endoreduplicate follows a similar mechanism as described 

above for cell division. Endoreduplication occurs if cell mass: ploidy ratio 

(DNACellMassRation) reaches a threshold value (                        ) (Fig. 2). 

Endoreduplication events are characterized by the doubling of cell ploidy.   

                     
 
                                 

                                  (13) 

We assumed that the threshold cell mass: ploidy ratio for endoreduplication to occur in a class 

  (                        ) is not constant, but increases with increasing cell cycle number 

(            ) and cell  ploidy. Thus a cell with a higher cell cycle number (number of 

divisions or number of endocycles) or with a higher ploidy needs to grow larger in order to 

endoreduplicate. 

                           =                          (               
         

                
                             

 )  (14) 

where                          is the threshold cell mass: ploidy ratio just before the first 

endoreduplication cycle, endocountn is the number of endocycles performed by cells in class 

 , and µ1,  µ2, µ3 and µ4 are constant parameters (µ1,  µ2, µ3 and µ4 are unitless).   
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Materials and methods 

Experimental data 

To parameterize and validate our model, we used our recent experimental data (Fanwoua et 

al. 2012a, b) and those published in other literature (e.g. Nafati et al. 2011). We give below 

brief information about the experiments of Fanwoua et al. (2012a, b). 

Three experiments were conducted in a glasshouse in Wageningen (51.57N, 5.31E, the 

Netherlands) using a large-fruited tomato (Solanum lycopersicum) cv. Moneyberg of which 

final fruit fresh weight is approximately 80 g.  

The experiments were conducted to investigate the effects of fruit load (Experiment 1) and 

temperature (Experiment 2, Experiment 3) on tomato fruit growth. In Experiment 1 and 

Experiment 2, plants were grown at 22/18 
o
C day/night temperature. In Experiment 1, three 

fruit load treatments were applied on all trusses starting from the anthesis of flowers at the 

second proximal position of the third truss: a continuously low fruit load of 2 fruits per truss 

(2&2 fruits/truss), a continuously high fruit load of 5 fruits per truss (5&5 fruits/truss) and a 

switch from high (5 fruits per truss) to low fruit load treatment (2 fruits per truss) seven days 

after anthesis (5&2 fruits/truss). Each treatment was replicated five times. The second 

proximal fruit of the third truss in each treatment was harvested at anthesis, 7 DAA (days after 

anthesis) and at breaker stage (detailed in Fanwoua et al. 2012a).  

In Experiment 2 all trusses were pruned to five fruits. Trusses flowering at the same moment 

were selected and enclosed in small transparent cuvettes (diameter: 13 cm, length: 20 cm). 

Heated air was continuously blown in the cuvette to heat the trusses by 4-5 
o
C compared to 

the greenhouse air temperature (22/18 
o
C day/night). Heating was applied either only during 

the first 7 DAA (D4&D0), from 7 DAA until fruit maturity (breaker stage) (D0&D4) or both 

(D4&D4). In the control treatment (D0&D0) trusses were also enclosed into cuvettes but the 

heating systems was switched off, so that  the temperature inside the cuvette was the same as 

the greenhouse air temperature. Each treatment was replicated five times. The second 

proximal fruit of the third truss in each treatment was harvested at breaker stage for 

measurement (detailed in Fanwoua et al. 2012b). 

Experiment 3 aimed at investigating the effect of continuous heating on fruit growth. 

Greenhouse air temperature was 21/18 
o
C day/night. All trusses were pruned to five fruits. 

Trusses flowering at the same moment were enclosed in small cuvettes as described in 

Experiment 2. Heating was applied continuously from anthesis until breaker stage. In the 

control treatment trusses were also enclosed in cuvettes but not heated. Each heating 
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treatment was replicated five times. The second proximal fruit in each selected truss was 

harvested at a specific thermal time (calculated as the temperature sum above a base 

temperature of 5.7°C (Adams et al. 2001)), i.e. 0, 69, 129, 232, 374 
o
Cd after anthesis, and at 

breaker stage. This corresponded to 0, 2, 5, 11, 18 and 46 DAA in the heating treatment or to 

0, 3, 7, 15, 25 and 54 DAA in the control treatment (detailed in Fanwoua et al. 2012b). 

In all three experiments, fruit diameter, fruit mass, and pericarp mass were measured. 

Pericarps isolated from the fruits were fixed and embedded in Technovit 7100 (Kulzer, 

Wehrheim, Germany) (detailed in Fanwoua et al. 2012a). Sections of 3 μm thick were made, 

stained and photographed on a light microscope (Eclipse 50i, Nikon Instruments Europe, 

Kingston, UK). Images obtained were analysed in Image J (National Institutes of Health, 

Bethesda, Maryland) to measure pericarp volume, cell volume, cell number according to the 

method described by Fanwoua et al. (2012a). Cell mass was calculated as the ratio between 

pericarp mass and cell number. Image J was also used to analyse the distribution of individual 

cell volumes (converted into cell mass) in the pericarp of young tomato fruits at anthesis. 

From this distribution the mean, standard deviation, minimum, maximum cell mass at 

anthesis were estimated. 

 

Model simulation and sensitivity analysis 

Model simulation and sensitivity analysis were carried out in Matlab (The Mathworks, 

Natick, Massachusetts). The sensitivity of final model output to changes in parameter values 

was analysed. For each parameter and output investigated, model sensitivity was quantified 

by the normalized sensitivity coefficient:  

Sensitivity Coefficient=(ΔY/Y)/( ΔP/P)  (15) 

where ΔP/P is the relative change in model parameter value, ΔY/Y is the relative change in 

model output. Model output were: final pericarp cell mass, pericarp cell number, pericarp cell 

ploidy and pericarp mass.  

 

Results 

Model parameter estimation  

Model parameters were either estimated from measurements on tomato fruits cv. Moneyberg 

as described in the materials and methods or derived from the literature. Table 1 presents a 

summary of model parameters estimated experimentally or derived from the literature. The 
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value of few model parameters could not be estimated experimentally or found in the 

literature. For each of these parameters model calibration was carried out by comparing model 

output obtained for several values of the parameters with experimental data of final cell and 

pericarp characteristics measured under low fruit load treatment  (Experiment 1). Table 2 

presents a summary of model parameters estimated by model calibration. 

Simulations started at anthesis. At this stage the average number of cell layers in the pericarp 

was measured to be 12 and used as the number of cell classes in the model.  

Four parameters described the initial conditions within each cell class: the initial cell number 

n0, initial cell mass mass0, initial cell age age0, and initial cell ploidy ploidy0. The initial cell 

number was estimated as the measured number of cells in the tomato pericarp at anthesis 

(1.13×10
6
 cells) distributed equally among the 12 cell classes (n0=0.94×10

5
 cells). The 

distribution of initial cell mass across cell classes was assumed to follow a normal distribution 

with mean µm0 and standard deviation σm0. Measurements performed on tomato pericarp at 

anthesis resulted in estimates of µm0 and σm0 of 7.65×10
-8

 mg and 8.56×10
-9

 mg, respectively. 

The distribution of cell age across the different cell classes was also assumed to follow a 

normal distribution with mean µage0 and standard deviation σage0. Cell age at anthesis could not 

be measured directly from our experiments. In a population of tomato pericarp cells Bertin et 

al. (2003a) observed 80% of 2C cells and 20% of 4C cells at anthesis and few 8C cells 2 days 

after anthesis. These data suggest that in the tomato fruit at anthesis, few cells have just 

stopped cell division. Based on the observations of Bertin et al. (2003a) we assumed that in 

the tomato pericarp at anthesis the oldest cells have just reached the threshold age for a cell to 

exit the cell division phase (CellAge_division) and the youngest cells have just been produced 

by the meristem and have an age of zero. Maximum cell age at anthesis was assumed to be 

equal to CellAge_division (Table 1) and for a normal distribution it is known that 99% of the 

probability density lies between mean minus 3 times standard error, and mean plus 3 times the 

standard error. This enables the estimation of µage0 and σage0 (µage0 = 2745.6 
o
Ch and σage0 = 

915.2 
o
Ch). The initial cell ploidy was assumed to be 2C or 4C if cell age was below or above 

the threshold cell age for cell division, respectively.   

Six parameters were involved in the dynamics of cell division: the duration of one complete 

cell cycle, CycleLength, the constant RateDiv representing the potential growth rate of a cell 

in the division phase, the threshold cell mass: ploidy ratio that triggers the first cell division, 

                       , the parameters (     ) describing the variation in 

                         after the first division cycle and the threshold cell age above which a 

cell should exit the cell division phase, CellAge_division.  
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Table 1. List of parameters estimated experimentally or derived from the literature. In Experiment 1 

parameter estimation was based on 5 replicate fruits from the continually low from load treatment. 

Parameter estimation in Experiment 3 was based on 3-5 replicate fruits.  

   

Parameter description Symbol Value Source 

Number of cell classes q 12 Experiment 1  

Initial conditions    

Mean initial cell dry mass µm0 7.65*10
-8 

mg Experiment 1 

Standard deviation initial cell dry mass σm0 8.56*10
-9

 mg Experiment 1 

Mean initial cell age µage0 2745.6 
o
Ch Experiment 1 

Standard deviation initial cell age σage0 915.2  
o
Ch Experiment 1 

Initial cell number n0 1.13 *10
6
 Experiment 1 

Base temperature Tb 5.7 
o
C Adams et al. (2001) 

Cell division    

Cell cycle length CycleLength 892.3 
o
Ch or 2.6 days  Experiment 1 

Potential growth rate of dividing cells RateDiv 8.2*10
-10

 mg/h Experiment 1 

Age above which cells cannot divide   CellAge_division 16 days or 384 h 

 

Experiment 3 

Threshold cell mass: ploidy ratio that 

triggers the first division cycle 

DNACellMassTres

holdDiv0  

2.5*10
-8

 Chevalier et al. 

(2011), Experiment 1 

Cell endoreduplication    

Threshold cell mass: ploidy ratio that 

triggers the first endocycle 

DNACellMassTres

holdEndo0 

3.2*10
-8

 Kononowicz et al. 

(1992), Experiment 1 

Age above which cells can no longer 

endoreduplicate   

CellAge_Endo 40 days or 960 h Nafati et al. (2011) 

    

Cell growth    

Age above which cells can no longer 

grow  

CellAge_growth 60 days or 1440 h Experiment 3 

Parameter in the Richards function a 1.32*10
-4

 mg Experiment 1 

Parameter in the Richards function b -7.24 Van der Ploeg and 

Heuvelink (2005)  

Parameter in the Richards function c 2.7*10
-4

 mg mg
-1

 
o
Ch

-1
 Van der Ploeg and 

Heuvelink (2005)  

Parameter in the Richards function d 10
-4

 Van der Ploeg and 

Heuvelink (2005)  

Fruit sugar input           6.3 mg Van der Ploeg and 

Heuvelink (2005) 

Respiration coefficient          0.3 Ho et al. (1987) 
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Table 2. List of parameters estimated by model calibration. Model calibration was based on data measured 

from 5 replicate fruits in the low fruit load treatment (Experiment 1).  

 

Description Parameter
* 

Value 

   

Parameter describing variation in 

DNACellMassTresholdDivn 

ρ1 0.584 

 

   

Parameter describing variation in 

DNACellMassTresholdDivn 

ρ2 0.815 

 

   

Parameter describing variation in 

DNACellMassTresholdEndon 

µ1 0.1 

   

Parameter describing variation in 

DNACellMassTresholdEndon 

µ2 0.4 

   

Parameter describing variation in 

DNACellMassTresholdEndon 

µ3 1.2 

   

Parameter describing variation in 

DNACellMassTresholdEndon 

µ4 0.1 

   

Constant proportionality factor    0.0928 h
-1

 mm
-2

 
 

*
 ρ1, ρ2, µ1, µ2, µ3, and µ4 are unitless. 

 

The numbers of cells at anthesis and 7 DAA in the pericarp of fruits grown under low fruit 

load were used to calculate CycleLength (CycleLength = 892.3 
o
Ch). Considering that cell 

mass is doubled during one CycleLength enabled us to estimate the potential growth rate of 

dividing cells RateDiv. Parameter RateDiv was estimated experimentally to be 0.378 *10
-9

 mg 

h
-1

.                         was estimated as the ratio between cell mass and cell ploidy at 

the G2/M transition. We assumed that in a population of dividing cells, the largest cells 

correspond to cells at the G2/M transition. Cell mass at G2/M transition was thus estimated as 

the average mass of the largest cells in the pericarp at anthesis.                         was 

calculated as the ratio between the average mass of the largest cells at anthesis and cell ploidy 

at the G2/M transition (i.e. 4C) (Chevalier et al. 2011), (                        = 0.225*10
-

7
). Parameters              were estimated by model calibration. CellAge_division was 

calculated experimentally as the temperature sum above which no more cell division occurs in 

the pericarp (CellAge_division 5491 
o
Ch).   

Five sets of parameters described the dynamics of cell growth and endoreduplication after the 

division phase: the parameters of the Richards function describing the growth rate of a diploid 

cell (a, b, c and d), the threshold cell mass: ploidy ratio just before the first endoreduplication 



  The fruit model        

     

87 

 

cycle,                           parameters describing the variation in 

                         during fruit development (µ1, µ2, µ3 and µ4), the fold increase in 

potential cell growth rate per unit increase in cell ploidy, f(ploidy), and the age above which 

cell endoreduplication and cell growth stops, CellAge_endo and CellAge_growth, 

respectively. 

Parameters defining the potential growth rate of a diploid cell (a, b, c and d)  were estimated 

assuming that potential cell growth follows a similar growth curve as potential fruit growth 

reported for tomato (Van der Ploeg and Heuvelink 2005). (a = 13.2*10
-5

 mg; b = 7.6*10
-8
; c 

= 0.27*10
-3

 mg mg
-1

 
o
Ch

-1
; d = 0.1*10

-3
). 

 

                         was estimated as the ratio between cell mass and cell ploidy at the 

G1/S transition. It is well established that before the first endoreduplication cycle cells are 

diploid (ploidy=2C) at G1/S transition (Chevalier et al. 2011). Measurement of cell mass at 

G1/S transition is not straightforward and could not be directly carried out from our 

experiments. To estimate cell mass at G1/S transition, we assumed that cell growth rates 

during the G1 and G2 phases are similar. This assumption implies that the proportion of time 

a cell spends in the G1 phase (compared to the sum of time spent in G1 and G2) equals the 

proportion of mass contributed by the G1 phase (compared to the sum of mass due to G1 and 

G2 i.e. cell mass at G2/M transition). Kononowicz et al. (1992) observed that tobacco cells 

spend 63.8% of time in G1 phase based on the sum of time spent in G1 and G2 phases. Cell 

mass at G1/S transition was estimated as 63.8% of cell mass at G2/M transition 

(                         = 0.33*10
-7

). 

f(ploidy) was deduced from a relationship between cell size and endoreduplication index 

described by Nafati et al. (2011) as shown in Fig. 3. Based on known duration of 

endoreduplication (Bertin et al. 2003a; Nafati et al. 2011) and cell growth in tomato pericarp, 

we adopted the values 13728 
o
Ch and 20592 

o
Ch for  CellAge_endo and CellAge_growth, 

respectively. 
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Fig. 3. Relationship between fold increase in cell growth rate and increase in cell ploidy (estimated from 

Nafati et al. 2011).   

 

The relationships between firstly, pericarp mass and pericarp area, and secondly, pericarp area 

and vascular area estimated experimentally are shown in Fig. 4.  

Variation in environmental conditions was defined by two parameters: the pool of sugar 

available for the fruit, SugarPool, and the fruit local temperature, TempFruit. SugarPool was 

estimated from the maximum growth rate of tomato fruit under non-limiting assimilate 

conditions (Van der Ploeg and Heuvelink 2005) and including the respiration costs 

(SugarPool = 6.3 mg). The constant proportionality factor   was estimated by calibrating the 

model to the situation of non-limited assimilate supply (   0.0927 h
-1 

mm
-2

). Hourly 

greenhouse temperature measured during the experiment was used in the model as TempFruit.  

Since the initial cell age and cell mass in the model were derived from a normal distribution 

each model run could result in a different output. For this reason simulation results were 

presented as the average of 70 model runs, which correspond to the number of runs at which 

the average model output remained stable.  

 

Model sensitivity analysis 

The sensitivity of final model output to 10% increase or 10% decrease in model parameters 

was analysed. Simulations were carried out under the conditions of non-limited fruit sugar 

supply and standard temperature (22/18 
o
C day/night). Final cell ploidy level was not 

influenced by a 10% change in model parameter values. Influence of model parameters on 

final cell ploidy was observed only after changes in parameter values larger than 30%.  
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Fig. 4. Relationship between A) pericarp area and a transformed expression of pericarp mass and B) 

vascular area and pericarp area. Each point represents the mean of measurements on 3-5 tomato fruits. The 

slope of the linear regression in A) is α=5.34, P<0.0001, R
2
=0.99; the equation fitted in B) is 

y=a1/(1+(x/a2)
a3

), a1=14.07, a2=306.7, a3=-1.36, P<0.0001, R
2
=0.99. (Data source: Experiment 3).  

 

When these large perturbations were applied, final pericarp cell ploidy was positively 

influenced by the duration of cell growth period (CellAge_growth) and parameter b of the 

Richards function (Equation 8), but was negatively influenced by two parameters describing 

the variation in the threshold cell mass: ploidy ratio (µ3 and µ4) for endoreduplication 

(Equation 14) (data not shown). 
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Table 3 shows the sensitivity coefficients of final cell mass, final cell number and final 

pericarp mass to 10% increase or decrease in parameter values. Final cell mass was largely 

influenced by three parameters of the Richards function (a, b, c of Equation 8), the duration of 

cell growth period (CellAge_growth) and the duration of cell division period 

(CellAge_division). The sensitivity coefficients of final cell mass to a change in the value of  

these parameters were on average larger than 0.3. A 10% increase or decrease in parameter a 

resulted in a proportional change in final cell mass (Sensitivity coefficient = 1; Table 3). The 

sensitivity coefficients of parameter b, c and  CellAge_growth on final cell mass were larger 

for a 10% decrease than a 10% increase in parameter value. An increase in the duration of the 

cell division period (CellAge_division) negatively influenced final cell mass with a slightly 

larger effects for a 10% increase than for a 10% decrease in parameter value. 

Final pericarp cell number was largely influenced by seven parameters of which sensitivity 

coefficients were higher than 0.3 (Table 3): the duration of cell division (CellAge_division), 

the threshold cell mass: ploidy ratio for the first division cycle (DNACellMassTresholdDiv0) 

and two parameters describing its variation over time (ρ1, ρ2), the cell cycle length 

(CycleLength), the initial pericarp cell number (n0) and parameter b of the Richards function 

(Equantion 8). Final pericarp cell number was positively influenced by CellAge_division and 

n0. The effect of CellAge_division on final cell number was more than proportional to the 

change in the value of this parameter with larger effects when its value was increased by 10% 

(Table 3). A 10% increase or decrease in n0 resulted in a proportional change in final pericarp 

cell number (Table 3).  

The effects of DNACellMassTresholdDiv0 and of ρ1 and ρ2 on final pericarp cell number were 

exactly the same. These three parameters negatively influenced final cell number with larger 

effects when their value was decreased by 10%. CycleLength also negatively influenced the 

final pericarp cell number with larger effects when its value was decreased by 10%. Final cell 

number was decreased by 6.2% when the value of parameter b was increased by 10%, but was 

not affected by a 10% decrease in the value of b.  

In general, if a change of parameter value strongly affected final pericarp cell number, it had a 

weaker and opposite effect on final cell mass (Table 3). For each model parameter analyzed, 

the additive combination of its effects on final cell mass and final cell number was equivalent 

to its effects on pericarp mass. Final pericarp mass was largely influenced by the duration of 

cell division period (CellAge_division), the parameters describing the threshold cell mass: 

ploidy ratio threshold (DNACellMassTresholdDiv0, ρ1 and ρ2), the cell cycle length 

(CycleLength), parameter a of the Richards function and the initial cell number (n0).  
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Table 3. Sensitivity coefficients of final simulated pericarp cell mass, pericarp cell number and pericarp 

mass after 10% increase or decrease in model parameter values. Simulations were carried out under the 

conditions of non-limited fruit sugar supply and standard temperature (22/18 
o
C day/night).  

  

Parameter Cell mass (mg) Cell number 

Pericarp mass 

(mg) 

 

10% -10% 10% -10% 10% -10% 

 

CycleLength 0.001 0.028 -0.625 -2.500 -0.624 -2.465 

q 0 0 0 0 0 0 

a 1.019 1.022 0 0 1.019 1.022 

b 0.189 1.225 -0.625 0 -0.448 1.225 

c 0.420 0.604 0 0 0.420 0.604 

d 0.104 0.132 0 0 0.104 0.132 

n0 -0.002 -0.001 1.0 1.0 0.998 0.999 

       

DNACellMassTresholdDiv0 0.001 0.218 -0.625 -5.625 -0.624 -5.284 

DNACellMassTresholdEndo0 -0.023 -0.022 0 0 -0.023 -0.022 

CellAge_division -0.435 -0.172 5.625 1.250 4.945 1.100 

CellAge_growth 0.305 0.882 0 0 0.305 0.882 

CellAge_Endo 0 0 0 0 0 0 

ɤ 0.001 0.010 0 0 0.001 0.010 

SugarPool 0.001 0.010 0 0 0.001 0.010 

       

ρ1 0.001 0.218 -0.625 -5.625 -0.624 -5.284 

ρ2 0.001 0.219 -0.625 -5.625 -0.624 -5.283 

µ1 -0.001 0 0 0 -0.001 0 

µ2 -0.046 -0.040 0 0 -0.046 -0.040 

µ3 -0.065 -0.050 0 0 -0.065 -0.050 

µ4 -0.001 -0.001 0 0 -0.001 -0.001 

 

Model validation: analysis of fruit growth characteristics in response to assimilate supply 

The model was calibrated for the situation of non-limited fruit sugar supply. The predictive 

quality of the model was evaluated for the situation of limited fruit sugar supply by comparing 

model predictions with final pericarp characteristics measured on fruits grown in Experiment 

1 under continuously high fruit load of 5 fruits per truss (5&5 fruits/truss) or under high fruit 

load (5 fruits per truss) during the first seven days after anthesis and  low fruit load (2 fruits 

per truss) for the rest of fruit growth duration (5&2 fruits/truss). To simulate the effects of 

sugar limitation on fruit growth, the pool of sugar available for the fruit SugarPool was 

reduced to 62.5%. Assuming a fruit load-induced assimilate limitation, the percentage of 

reduction of SugarPool was calculated as the ratio between the amount of dry matter 



Chapter 4 

92 

 

partitioned into individual tomato fruits of a five-fruits truss and a two-fruits truss. This 

calculation was based on the known proportion of dry matter partitioned into a tomato truss 

(i.e. 70%, (Heuvelink 1996)) under standard fruit load (i.e. 7 fruits/truss for Moneyberg, 

Prudent et al. 2009).  

Fig. 5 depicts the time course of cell mass, cell number, cell ploidy and pericarp mass 

simulated by the model under continuously non-limited (2&2 fruits/truss) or limited (5&5 

fruits/truss) sugar supply, or under limited sugar supply during the first seven days after 

anthesis and non-limited supply for the rest of fruit growth (5&2 fruits/truss). Continuously 

limited sugar supply during fruit growth did not affect cell growth duration, but reduced cell 

growth rate resulting in a decrease in final pericarp cell mass compared to the situation where 

sugar supply was not limiting (Fig. 5A). Simulated final pericarp cell mass under 

continuously limited sugar supply agreed with cell mass measured experimentally in the 5&5 

fruits/truss treatment (Table 4). When sugar limitation was imposed only during the first 

seven days after anthesis, the model did not predict a reduction in cell growth, which 

remained potential (Fig. 5A). This prediction agreed well with measured final cell mass in the 

5&2 fruit load treatment which was similar to cell mass measured in the 2&2 fruit load 

treatment (Table 4).  

Endoreduplication was slightly delayed when sugar supply was continuously limiting, but this 

delay did not result in differences in the final ploidy levels between the three sugar supply 

schemes (Fig. 5B).  

Limited sugar supply resulted in a reduction in the final number of pericarp cells (Fig. 5C). 

This effect was more pronounced when sugar limitation was imposed continuously than when 

sugar limitation was applied only during the first seven days after anthesis (Fig. 5C). Model 

prediction of final number of pericarp cells in the 5&5 fruits/truss and 5&2 fruits/truss 

treatments was not statistically different from experimental data (Table 4). Sugar limitation-

induced reduction in final cell number was directly linked to the reduction of cell division 

duration as sugar supply did not affect cell division rate (Fig. 5C).  
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Fig. 5. Dynamics of simulated A) cell mass, B) cell ploidy, C) cell number, and D) pericarp mass during 

tomato fruit growth in the treatments with continuously low fruit load (2&2 fruits/truss, solid line), 

continuously high fruit load (5&5 fruits/truss, dashed line) and a switch from high to low fruit load 7 DAA 

(5&2 fruits/truss, dash-dotted line). Each line represents the mean of 70 model runs. 

 

Limited sugar supply induced a decrease in final simulated pericarp mass (Fig. 5D). This 

response was more severe when sugar was continuously limiting than when sugar limitation 

was imposed only during the first seven DAA. Model prediction of final pericarp mass in the 

5&5 fruits/truss and 5&2 fruits/truss was not significantly different from experimental data 

(Table 4). Sugar limitation did not affect pericarp growth duration, so that the reduction of 

final pericarp mass could be attributed to a lower pericarp growth rate (Fig. 5D). 
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Table 4. Measured and simulated final pericarp characteristics in the treatments with continuously low fruit 

load (2&2 fruits/truss), continuously high fruit load (5&5 fruits/truss) and a switch from high to low fruit 

load (5&2 fruits/truss). Each measured value is the mean ± standard error of the mean of 4-5 fruits at 

breaker stage in Experiment 1. Each simulated value is the mean of 70 model runs at day 60.  

 

  Treatments Measured Simulated 

Cell number (×10
6
) 2&2F 3.11±0.34 3.00 

 5&5F 2.62±0.26 2.60 

 

5&2F 2.73±0.36 2.89 

 

Average cell mass (×10
-3

) mg 2&2F 0.87±0.14 0.85 

 5&5F 0.75±0.12 0.75 

 

5&2F 0.88±0.02 0.85 

 

Pericarp mass (×10
3
) mg 2&2F 2.63±0.07 2.56 

 5&5F 1.87±0.19 1.97 

 

5&2F 2.37±0.27 2.41 

 

 

Model validation: analysis of fruit growth characteristics in response to temperature 

Hourly fruit temperatures recorded from the four fruit heating treatments (D0&D0, D4&D4, 

D4&D0, D0&D4) in Experiment 2 were input in the model to simulate temperature effects on 

fruit growth. For these simulations we used the initial cell number measured in Experiment 2 

(n0 = 1.15*10
5
 cells), which was slightly higher than the value measured in Experiment 1. Fig. 

6 shows the time course of simulated cell mass, cell ploidy, cell number and pericarp mass in 

each heating treatment. The largest final cell mass were simulated when fruits were not heated 

continuously (D0&D0) or when heating was applied only during the first seven days after 

anthesis (D4&D0) (Fig. 6A). In these two heating treatments cell growth lasted the longest. 

Continuously heating fruits (D4&D4) increased cell growth rate, but this increase was more 

than compensated by the reduction in cell growth duration resulting in a reduction in final 

simulated cell mass (Fig. 6A). A shorter cell growth duration was also responsible for the 

reduction in final simulated cell mass of fruits heated from 7 DAA until maturity (Fig. 6A). 

Comparison between model predictions and experimental data revealed that the model 

overestimated the final cell mass in the D0&D0 and D4&D0 treatments (Table 5). Reduction 

in final cell mass in the D4D0 treatment was underestimated by the model. The model 

predicted similar final cell mass in the D4D4 and D0D4 treatments, which agreed with the 

values measured experimentally (Table 5). 
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Fig. 6. Dynamics of simulated A) cell mass, B) cell ploidy, C) cell number, and D) pericarp mass during 

tomato fruit growth in the treatments without fruit heating (D0&D0, solid line), with heating applied 

continuously from anthesis till breaker stage (D4&D4, dashed line), with heating applied only during the 

first seven days after anthesis (D4&D0, dotted line), and with heating applied only from 7 DAA till breaker 

stage (D0&D4, dash-dotted line). Each line represents the mean of 70 model runs.  

 

 

Endoreduplication rate was increased in fruits heated continuously (D4&D4) or heated only 

during the first seven days after anthesis (D4&D0). In these treatments the increase in 

endoreduplication rate was compensated by a short endoreduplication duration. This resulted 

in a similar simulated final ploidy level as in the D0&D0 and D0&D4 treatments. 

Heating fruits continuously (D4&D4) increased cell division rate, but this increase was more 

than compensated by a reduction in cell division duration which resulted in the decrease of 

simulated final cell number (Fig. 6C). When fruits were heated only during the first seven 

days after anthesis (D4&D0), cell division rate was also increased but cell division duration 

was slightly prolonged, which led to slightly more cells in matured D4&D0 fruits compared to 

fruits in the continuously heating treatment (Fig. 6C). 
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Table 5. Measured and simulated final pericarp characteristics in the treatments without fruit heating 

(D0&D0), with heating applied continuously from anthesis till breaker stage (D4&D4), with heating 

applied only during the first seven days after anthesis (D4&D0), with heating applied only  from 7 DAA till 

breaker stage (D0&D4). Each measured value is the mean ± standard error of the mean of 4-5 fruits at 

breaker stage in Experiment 2. Each simulated value is the mean of 70 model runs at day 60.  

 

  Treatments Measured Simulated 

Cell number (×10
6
) D0&D0 3.14±0.09 3.11 

 D4&D4 2.85±0.29 2.94 

 

D4&D0 3.53±0.50 3.05 

 

D0&D4 3.28±0.51 3.06 

 

Cell mass (×10
-3

) mg D0&D0 0.57±0.04 0.63 

 D4&D4 0.47±0.03 0.44 

 

D4&D0 0.47±0.04 0.63 

 

D0&D4 0.49±0.06 0.44 

 

Pericarp mass (×10
3
) mg D0&D0 1.80±0.10 1.88 

 D4&D4 1.32±0.08 1.29 

 

D4&D0 1.58±0.11 1.85 

 

D0&D4 1.51±0.11 1.37 

 

 

The model simulated the largest final number of cells in continuously non-heated fruits 

(D0&D0) and in fruits where heating was applied only from 7 DAA until fruit maturation 

(D0&D4). In these two treatments the high final cell number was due to a prolonged cell 

division period (Fig. 6C). Comparison between 2009 experimental data and model 

simulations shows that in all heating treatments the model accurately predicted final number 

of pericarp cells. Heating treatments did not significantly affect final measured perimarp cell 

number.  

Model simulations of pericarp growth under continuous fruit heating (D4&D4) showed an 

increase in the pericarp growth rate (Fig. 6D). This increase was relatively small and did not 

compensate for the reduction in pericarp growing period. This resulted in the decrease in final 

pericarp mass. A short growing period was also responsible for the reduction in simulated 

final pericarp mass in fruits heated from 7 DAA until fruit maturation (D0&D4) (Fig. 6D). 

The largest final simulated pericarp masses were observed in the treatments with the longest 

pericarp growth durations (D0&D0 and D4&D0). Final pericarp masses predicted by the 

model in continuously non-heated fruits (D0&D0) and fruits heated continuously (D4&D4) 

were within the range of values measured experimentally (Table 5). The reduction in final 
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simulated pericarp mass was underestimated in the D4&D0 treatment and overestimated in 

the D0&D4 treatment. In the D4&D4 treatment the model predicted 31% reduction in final 

pericarp mass compared with 26% measured experimentally.   

 

Discussion 

Our dynamic model of fruit growth integrates three fundamental cellular processes 

responsible for the variation in fruit size: cell division, cell growth and endoreduplication. It 

describes variation in cell number, cell mass and cell ploidy in tomato fruit pericarp from 

anthesis until maturation. In the model cell division or endoreduplication are triggered by a 

threshold cell mass: ploidy ratio (Fig. 2). This assumption implies a link between cell growth 

and cell division. Several authors suggested that cell growth and the progress through the cell 

cycle might be closely related (Nasmyth 1979; Jorgensen and Tyers 2004; Francis 2007). This 

link between cell growth and cell division can be clearly seen in meristematic tissues where 

cell size remains fairly constant despite having divided several times (Beemster et al. 2003). 

At the sub-cellular scale cell division and endoreduplication are controlled by a complex 

network of genes. The main components of this network are CDKs and Cyclins of which 

concentrations determine whether the cell duplicates its DNA (S phase) or divides (M phase) 

(Chevalier et al. 2011). Csikasz-Nagy et al. (2006) proposed that the rate of synthesis of 

cyclins involved in the triggering of DNA synthesis or cell division might be proportional to 

cell mass. This hypothesis suggests an indirect link between cell division  and cell growth.   

In our model the threshold cell mass: ploidy ratio that triggers cell division and 

endoreduplication increases with the number of cycles or the cell ploidy level. This implies 

that the capacity of a cell to perform the next division or endoreduplication cycle decreases as 

cell ploidy or cell cycle number increases. Experimental data confirm that the rate of cell 

division and endoreduplication decreases during fruit development (Bertin 2005; Nafati et al. 

2011). In their model of orchid flower, Lee et al. (2004) used an empirical function 

decreasing with time to describe the reduction of endoreduplication rate during organ 

development. A similar function was used by Bertin et al. (2007) to describe the decrease in 

cell division rate during the development of tomato fruits. Bertin et al. (2007) proposed that 

during fruit development, the proportion of endoreduplicating cells might decrease with an 

increase in the number of cell cycles and in the number of endoreduplication cycles already 

performed by the cell, although these hypotheses were not implemented in their model. The 

down-regulation of endoreduplication might be related to a longer S-phase required to 
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duplicate larger DNA sizes, a down-regulation of S-phase CDKs or the build-up of S-phase 

inhibitors during fruit development (Bertin et al. 2007; Bourdon et al. 2010). More studies are 

necessary to understand the control of endoreduplication during fruit development. 

The arrest of cellular processes in our model is determined by a predefined cell age. This 

simplification was based on the experimental observation that cellular processes are restricted 

to specific periods during fruit development (Bertin 2005; Nafati et al. 2011). In reality the 

molecular mechanism controlling the arrest of cellular processes is complex and not yet well 

understood. It is generally accepted that the arrest of cell division and the onset of 

endoreduplication require the inhibition of specific regulators of the M-phase or mitosis 

inducing factors (MIF) (Chevalier et al. 2011). The role of these MIF in the transition from 

cell division to endoreduplication is suggested by their temporal expression pattern during 

fruit development. For example CDKB1, CycA3, CycA2, CycD3 are highly expressed in 

dividing cells and down-regulated at the onset of endoreduplication (Inzé and de Veylder 

2006). In tomato, it was observed that endoreduplication and fruit maturation are  associated 

with the maximum expression of KRP1 and KPR2 genes, respectively (Bourdon et al. 2010). 

Our fruit growth model could be extended by associating the onset/arrest of cellular processes 

with the expression profile of these genes. 

Model sensitivity results showed that decreasing the value of some parameters by 10% had 

different magnitude of effects on the output than decreasing their value (Table 3). Such effects 

could be related to non-linear relationships between these parameters and the output variable. 

Surprisingly final cell ploidy was only sensitive after large perturbations in model parameters. 

This suggests that endoreduplication might be a more stable process compared to cell growth 

and cell division. The sensitivity of final cell mass to parameters describing cell growth was 

in line with our expectations (Table 3). Final pericarp cell mass was also influenced by the 

duration of cell division (Table 3). Its negative effect on final cell mass was probably an 

indirect effect resulting from the positive influence of cell division duration on cell number. A 

large cell number in the pericarp could lead to a stronger competition between cells for 

assimilates, and smaller final cell mass. Many examples in the literature illustrate the fact that 

an increase or decrease in cell division duration can have the opposite effects on final cell size 

(Higashi et al. 1999; Bertin 2005). 

In general final pericarp mass was strongly sensitive to parameters involved in the dynamics 

of cell division. Experimental data showed that genotypic or environmentally related 

variations in fruit size are mainly associated with variations in cell division activity in many 

fruit species including tomato (Bertin et al. 2003a), melon (Cucumis melo L.) (Higashi et al. 
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1999), strawberry (Fragaria ananassa Duch.) (Cheng and Breen 1992), cherry (Prunus avium 

L.) (Olmstead et al. 2007) and peach (Scorzal et al. 1991). Cell division duration had the 

largest influence on final cell number and final pericarp mass. Its influence on final cell 

number was about 10 times larger than on final cell mass (Table 3). The effects of this 

parameter on final pericarp mass could thus be accounted for by its large effects on cell 

number. In melon Higashi et al. (1999) observed that differences in final cell number and fruit 

size between a large and a small-fruited melon cultivar was caused by differences in cell 

division duration. Similar results were reported in pear (Pyrus pyrifolia) (Zhang et al. 2006), 

peach (Yamaguchi et al. 2002) and tomato (Bertin et al. 2003a). Besides the duration of cell 

division period, final cell number was sensitive to all other parameters involved in the 

dynamics of cell division in the model (Table 3). The negative effects of cell cycle length and 

the positive effects of the initial cell number was in line with our expectations. The sensitivity 

of final pericarp cell number and final pericarp mass to the initial cell number highlight the 

importance of pre-anthesis cell division in the determination of final cell number and fruit 

size. Baldet et al. (2006) showed that fruit-load induced variations in pre-anthesis cell division 

and cell number at anthesis were important in determining the final cell number and fruit size 

in tomato. Similarly, variations in the final cell number and fruit size at the proximal and 

distal positions of a tomato truss have been associated with differences in cell number at 

anthesis (Bertin et al. 2003a).   

We simulated the effects of limited sugar supply to the fruit by reducing the common sugar 

pool to 62.5%.  A similar approach was used by Fishman and Génard (1998) in the peach fruit 

model and later by Liu et al. (2007) in the tomato fruit model. In these models the common 

sugar pool was reduced by 50% to simulate the effects of high fruit load on fruit growth. Our 

calculation of the reduction of pool of sugar (62.5%) took into account the fraction of 

assimilates partitioned to individual fruits under low and high fruit load conditions. This 

calculation was validated by the comparison between model output and measurements. The 

model was able to accurately predict final cell mass, cell number and pericarp mass for the 

continuously high fruit load treatment (5&5F) and for the treatment with a switch from high 

to low fruit load (5&2F). The reduction of simulated cell growth rate, cell division duration 

and pericarp growth rate under limited assimilate supply agreed well with the observations of 

Bertin (2005).  

Globally the model simulated reasonably well the final cell number, cell mass and pericarp 

mass under several contrasting temperature conditions (Table 3). The model predicted that 

heating increases the rate and decreases the duration of cell division, cell growth and pericarp 
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growth. The magnitude of increase in the rate of these processes relative to the decrease in 

their duration determined the final pericarp and cell phenotypes. This is in agreement with the 

responses of cell division, cell expansion and fruit growth described by other authors 

(Marcelis and Baan Hofman-Eijer 1993; Bertin 2005).  

Comparison between simulated and measured mean endoreduplication levels could not be 

directly carried out because we did not have enough experimental data. Bertin (2005) 

observed that the mean ploidy level measured during tomato fruit growth follows a sigmoidal 

function. The time course of endoreduplication emerging from our model also followed a 

sigmoidal pattern (Fig. 5B). Bertin (2005) reported a higher final mean C-value (24C) than 

the value predicted by our model (16C) (Fig. 5B; Fig. 6B); however it is worth mentioning 

that this represents a difference of less than one endocycle. Interestingly high fruit load 

delayed endoreduplication in Bertin’s experiment but did not affect the final ploidy level, 

which agree with our simulations. These results together support the hypothesis that 

endoreduplication might set the potential for cell growth, but actual cell growth might be 

determined by the amount of assimilate available for the cell.  

 

Concluding remarks  

The model presented here uniquely integrates three main underlying processes during fruit 

growth from anthesis until fruit maturation: cell division, cell growth and endoreduplication. 

It demonstrated the importance of cell division in the variation of final fruit size. The model 

was able to generate acceptable predictions of fruit and cell phenotypes under various 

contrasting fruit load and temperature conditions. This shows that the present model has the 

potential to predict fruit growth under various environmental conditions and can be used to 

carry out in silico experiments on fruits. The model does not consider sugar transformations, 

nor does it take into account water relations within the fruit. One perspective is to incorporate 

these aspects of fruit growth into the fruit model, as this would improve our understanding of 

fruit quality build-up and its interaction with the environment. The present model could also 

be extended by incorporating information on the molecular control of fruit cellular processes. 

This can be done by relating some model parameters with the expression profile of specific 

genes. Such a model could be used to gain more insight into the gene-by-environment 

interaction effects on fruit growth. 
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5. A theoretical framework for future modelling of fruit 

growth 

 

Adapted from 

de Visser PHB., Kromdijk W, Okello RC, Fanwoua J, Struik PC, Yin X, Heuvelink E Marcelis LFM (2012) 

Explaining tomato fruit growth by a multi-scale model on regulation of cell division, cell growth and 

carbohydrate dynamics. Acta Horticulturae  957, 167-172. 

 

Abstract 

A multi-scale approach to model tomato fruit growth is proposed, in order to account 

for the interaction between gene functioning and growth conditions, and, ultimately, to 

explain the fruit phenotype of various genotypes in diverse growth environments. There is 

particular focus on: (I) cell division regulated by cell cycle genes, (II) cell expansion as 

influenced by polyploidy resulting from endoreduplication and carbohydrate and water 

dynamics. The growth processes at gene, cell, tissue, fruit and plant scale have been identified 

and included in the model. Sub-populations of cells differing in age are considered to act as 

sinks competing for carbohydrates. The key cell cycle genes of tomato could be incorporated 

into an existing model of the gene regulatory network of the cell cycle. This model can be 

modified to simulate endoreduplication. Moreover, the modelled cell cycle process can be 

made sensitive to temperature and assimilate supply. Fruit sugar and water import can be 

linked to plant sugar and water status. Using the multi-scale approach in future fruit models 

can contribute in improving the understanding and prediction of GE interactions for fruit 

growth and quality. 

 

Keywords: gene regulatory network, cell dynamics, assimilate supply, sucrose 

 

 

Introduction 

Until now, most fruit growth models used experimentally determined, empirical 

relationships between environment and growth. Only a few models explain fruit growth as a 

result of processes occurring at lower hierarchical scales. For tomato, Liu et al. (2007) 

explained fruit growth by water and sucrose uptake and for turgor driven expansion regarding 

the fruit as one big cell. The model of Bertin et al. (2007) explained fruit growth on the basis 

of cell dynamics. This model did not explain cell division from biological underlying 

processes but merely described this by an empirical function, fitted to the data. Creating a 

more realistic growth model requires incorporating basic insight into processes related to cell 

division, cell expansion, endoreduplication and cell fate. These cell dynamics follow from 

processes that occur across several organizational levels, starting at the gene level and
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 probably ending at the fruit and plant levels. Incorporating these organizational levels would 

facilitate the simulation and prediction of gene – environment interactions explicitly, in a 

more mechanistic way than the GE approach that uses Quantitative Trait Loci and treats 

underlying genetic processes as a black box (Quilot et al., 2005; Yin et al., 2004). Such a 

multi-scale model that considers several organizational levels could tackle questions as to 

what extent tomato fruit sink strength is determined by the developmental, genetic programme 

of cell and tissue formation, and how much control is exerted by environmental factors during 

growth. Grosso modo, many of the mechanisms explaining tomato fruit growth can be 

subdivided into two categories: 

 Up-scaling of sub cellular gene related processes to the organ level to unravel the basis 

for differences in fruit yield among genotypes. 

 Exploring possible mechanisms of temperature and carbohydrate effects on fruit 

growth by including effects on cell division and cell growth. 

Although decades of research on tomato have generated much knowledge, only a 

small part of the relevant processes is quantitatively known, potentially hampering model 

development. Yet, a provisional model could show to what extent the current advances in 

genetic and physiological knowledge can already predict fruit growth with a bottom-up 

approach, and identify the gaps in knowledge. A mechanistic modelling approach is proposed, 

which captures the integrated behaviour of cell division, cell and tissue expansion, 

endoreduplication, as well as transport and metabolism of water and carbohydrates.  

The modelling consists of separate models at five different aggregation levels (Fig. 1): 

A. the gene, B. the cell, C. the tissues, D. the fruit, and E. the plant level.  Besides,  a platform 

that exchanges information between models is needed. 

 

Gene regulatory network of the cell cycle  

An ordinary differential equation (ODE) model on the gene regulated cell cycle could be used 

to derive cell division events. A division is initiated when the checkpoint of the end of the so-

called gap phase 2 is reached. For this, the existing generic model of the eukaryotic cell cycle 

(Tyson and Novak, 2001) could be adapted for tomato. Although a gene network can be very 

complex, examples in literature show that it might not be necessary to model the complete 

network (Beemster et al., 2006; Welch et al., 2003). The model could simulate the expression 

of major genes involved in the cell cycle as observed for tomato (see, e.g., Czerednik et al., 

2012) (Fig. 2). The model could also be extended with a module on endoreduplication using 
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the mechanisms of the endocycle in Arabidopsis (Magyar et al., 2012). The switch to 

endoreduplication is determined by passing a threshold of cyclin built-up. The cell mass 

affecting cyclin concentrations and thus exerting its influence on the checkpoints in the cell 

cycle, is itself again affected by processes at other scales and therefore, is an important 

variable in interactions between models.  

 

 
Model 

sections: 

E 

 

 

 

 

D 

 

 

 

 

C 

 

 

B 

 

 

 

 

A 

 
 
Fig. 1. State variables at the different aggregation levels, dealt with in model sections A to E (see main 

text). The thick solid arrows between levels indicate sugar flow. The open arrows indicate shift 

from cell division to expansion phase. The dividing and endoreduplicating cells are the sink for 

sugars from photosynthesis. 

 

Cell 

In the model, fruit cells are initiated at the moment of anthesis, i.e. directly after pollination, 

and all existing cells obtained a specific identity. The mechanistic model only considers two 

cell types: undifferentiated proliferating cells and specialized parenchyma cells that expand. 

At anthesis a number of cell classes on the basis of their age in thermal time is assumed. The 

model keeps track of cell numbers and size within each age class (Chapter 4). Thus, for each 

age class a calculation at gene level (A) and cell level (B) that is representative of all cells in 
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the age class is performed. In the fruit model presented in Chapter 4, the onset/arrest of 

cellular processes was determined by predefined cell ages. Here the gene regulatory network 

determines the occurrence of cell cycle events (Fig. 2), the number of cycles during the cell 

division period, and the onset and duration of the endoreduplication phase. Endoreduplication 

is limited to parenchyma cells in the pericarp and jelly tissue. Cell expansion is the results of 

cell water and sugar import. Cell water import is described using thermodynamic equations 

according to the method proposed by  Fishman and Génard (1998) for peach fruit and later 

adapted by Liu et al. (2007) on tomato fruit. In these models the whole fruit was considered as 

a big cell (Fishman and Génard, 1998; Liu et al., 2007).  

 

 

Fig. 2. Illustration of the oscillations of cyclin concentrations in the cell cycle model. A cell cycle event is 

initiated when cyclin X drops below a given threshold concentration level. Thus, the time period 

between two divisions depends on cyclin dynamics. 

 

Water import into the cells is calculated based on the differences in hydrostatic and osmotic 

potential between the cells and fruit vascular tissues. In the Liu et al. (2007) model, a constant 

proportion of soluble sugar was assumed to contribute to fruit osmotic potential. This last 

assumption could be modified and changes in cell soluble sugar content could be described 

using simple rules capturing the main reactions involved in carbohydrate metabolism during 

fruit growth. Only essential chemical processes for cell growth can be dealt with in the model, 

given the extreme complexity of the cell’s biochemistry. Sucrose is assumed to be the sole 

form of imported sugar by cells prior to hydrolysis into hexoses (fructose and glucose) by 

sucrose synthase (SuSy). The hexoses are an energy and carbon source for growth of cell 
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organelles, growth and maintenance respiration. Hexoses are also transported into the vacuole 

where they act as precursors during starch formation (Ho, 1996). Finally, most of the hexoses 

are transformed into starch (Schaffer and Petreikov, 1997; N’tchobo et al., 1999). Starting at 

around 20 days after anthesis, starch is degraded to form soluble sugars. Simple 

approximation of these processes could be assumed by keeping enzyme concentrations 

constant. Enzyme reactions can be calculated with Michaelis-Menten kinetics. Temperature 

influence on modelled processes could be incorporated by an Arrhenius equation. In the peach 

model of Fishman and Génard (1998), sugar was imported by active transport, by mass flow 

or by passive diffusion. Later, Liu et al. (2007) introduced a parameter describing the decrease 

in cell wall permeability to sugar to account for the shift from symplasmic to apoplasmic 

transport of sugar in tomato (Ruan and Patrick, 1995). The simulation of sugar import in a 

population of cells should take into account the competition between fruit cells for sugar 

(Bertin, 2005). This can be implemented using the relative sink strength approach (Marcelis et 

al., 1998). This approach implies that sugars are allocated to a cell class according its sink 

strength relative to that of all other classes. The sink strength of a cell class depends on its cell 

number (Chapter 4). Ultimately, sugar, water and temperature driven cell size increase should 

result in a new mitosis or endocycle if a specific threshold size is attained, and under the 

condition that the checkpoint for end of gap phase (level A) has been reached.  

 

Tissues 

The model  should be able to mechanistically calculate the size, i.e. volume, of two tissues 

(jelly and pericarp) only, using for each tissue models of level A and B. The size of other 

tissues (columella, seed, vascular bundles, endocarp, exocarp) is estimated on the basis of the 

size of these two tissues. Tissue growth limitations are apparent at the fruit scale. Constraints 

with respect to growing space for different tissues, physical pressure of surrounding tissue and 

rigidness of the skin could be simulated in a future 3D model version. The import of water is 

directed through vascular bundles, situated in the middle of the pericarp. Water conductivity 

of these bundles is derived from their surface area in cross sections of the pericarp, as 

measured in fruits of different development stages.   

 

Fruit 

At a truss usually five fruits are held which differ in age. From level C for each fruit the sink 

strength per time step is calculated from the total sink strength of different tissues. Different 
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fruits are assumed to compete for assimilates arriving from the phloem in the supporting truss 

rachis. Moreover, all trusses on the plant compete for sugars residing in one central pool, and 

receive sugars in proportion to their sink strength relative to total plant sink strength (relative 

sink strength approach following Marcelis et al., 1998). Phloem sugar supply is assumed 

constant within the day and calculated from sugar supply at plant level on a daily basis (see 

level E). Simulated fruit sugar and water content could be converted into fruit organoleptic 

qualities such as sweetness following the approach of Génard et al. (2003) or acidity as 

described in the model of Wu et al. (2007). Fruit sugar and water import should be linked to 

sugar and water status of the plant. Xylem and phloem flows are described based on the 

differences in hydrostatic and osmotic potential between the fruit and the plant stem.  

 

 Plant  

A mechanistic tomato plant model, based on Marcelis et al. (2009), could be used to calculate 

assimilation and dissimilation of carbohydrates (CH2O). The plant is described in terms of 

biomass in the fractions leaves, stems, fruits and roots. The growing leaf biomass is translated 

into area according to a seasonally changing specific leaf area. Photosynthetically active 

radiation (PAR) is captured by the leaf canopy quantified by LAI and following a Lambert-

Beer type negative exponential decay with depth. Absorbed PAR is converted into CH2O 

using the Farquhar-von Caemmerer-Berry model (Farquhar et al., 1980; Qian et al., 2012). 

The hydrostatic and osmotic water potential in the plant stem could be described based on the 

model proposed by De Swaef (2011). 

 

Platform 

The platform should manage the tasks of the different models and invoke a 

computation at a specific aggregation level if a modelling process needs the outcome to 

proceed. The platform and all the models at different aggregation levels can be programmed 

in for instance Matlab.  

 

Conclusions  

In the current model framework the cell clearly has a pivotal role in fruit growth. The 

different cell types create the upper threshold of the fruit size, because (1) the number of 

vascular cells determine the supply capacity of sugars and water, (2) the number of pericarp 
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cells together with (3) the maximum cell size determines the fruit sink size, (4) the 

competition between cells for sugars determines the slope of the sugar concentration gradient 

and the size of the adjacent cells. Yet, such cell related constraints again are a result of 

internal cell physiological mechanisms, e.g. activity of enzymes that control sink strength.  

The theoretical model presented here involves five hierarchical scales influencing fruit 

growth. It contains the most relevant processes that are reported in the literature to drive fruit 

growth. Implementing these processes into future fruit models will contribute in improving 

the understanding and prediction of GE interactions for fruit growth and quality.   
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6. General discussion 

 

 

This study attempted to unravel the complexity of tomato fruit growth through the 

development of a dynamic model of fruit growth integrating cell division, cell growth and cell 

endoreduplication. The development of such an integrated model should rely on a good 

understanding of fruit growth at different scales and the biological relationships between the 

different scales. Therefore, several experiments were carried out to understand the link 

between cellular processes and fruit growth and their responses to genotypic factors, 

contrasting fruit loads and temperature conditions. Information derived from the experiments 

was partly used to parameterize and validate the model. This chapter discusses the strength 

and practical applications of the results presented in this thesis. It also proposes possibilities 

and needs for future research. 

 

Experimental investigation of the response of cell division, cell growth and 

endoreduplication to genotypic variation, fruit load and temperature 

One of the hypotheses tested in this study was that genotypic factors, assimilate supply and 

temperature influence fruit growth through effects on cell division, cell expansion or both 

(Chapter 2, 3). In our experiments we did not detect significant genotype by environment 

(G×E) interactions for all final fruit characteristics measured at the cell and organ levels. The 

absence of G×E interactions in this study could be associated with the fact that we used 

tomato genotypes of similar genetic background, displaying similar responses to changes in 

the environment despite their phenotypic differences in final fruit size. Many authors reported 

significant G×E interaction effects on fruit growth in tomato and other fruit species (Asins et 

al., 1994; Eduardo et al., 2007; Prudent et al., 2010). Understanding what cause of G×E 

interactions is fundamental to control fruit growth. Although no significant G×E interaction 

was observed in our experiments, the fruit model developed in this study was constructed to 

simulate and analyse G×E interactions (see Model applications). 

    

Cell division In Chapter 2 we investigated the relationship between cell division and fruit 

growth in three tomato genotypes related genetically but differing in their final fruit size. 

Genotypic variation in final fruit size was mainly accounted for by variation in final pericarp 

cell number (Chapter 2). Other studies showed that differences between large and small
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 fruited genotypes were mainly associated with variation in cell division in many crop species 

including tomato (Bertin et al., 2003), melon (Higashi et al., 1999), strawberry (Cheng and 

Breen, 1992), cherry (Olmstead et al., 2007) and peach (Scorzal et al., 1991). In the literature 

a longer cell division duration is usually associated with a high final cell number in large 

fruited genotypes (Higashi et al., 1999). We observed that genotypic variation in final cell 

number was positively correlated to the variation in pericarp fructose content (Chapter 2). 

Tomato fruit imports sugar in the form of sucrose, which is later converted into fructose and 

glucose. In plant tissues, high hexose levels might have a positive effect on cell division by 

promoting the expression of cell cycle genes (Kwon and Wang., 2011). Our results suggest 

that variations in sugar metabolism and endogenous fructose levels could partly account for 

the genotypic variation in final cell number and fruit size. High assimilate supply increased 

the final number of cells in the pericarp (Chapter 2). This result agrees with several other 

studies (Baldet et al., 2006; Bertin 2005; Bohner and Bangerth 1988). Baldet et al. (2006) 

showed that high assimilate supply induced by low fruit load treatment increases the 

expression of cell cycle genes and final cell number in tomato.   

In this study temperature treatments did not affect the total number of cells in the pericarp, but 

increased the number of cell layers (Chapter 3). We proposed that periclinal cell division 

which is responsible for the generation of new cell layers in the pericarp might respond 

differently to temperature than anticlinal and randomly oriented cell divisions. Other authors 

suggested that periclinal and other types of cell division in the pericarp might be regulated 

differently (Joubès et al., 1999; Cong et al., 2002; Cheniclet et al., 2005). Although 

temperature treatments did not affect the number of pericarp cells in this study, intra-

treatment variation in fruit size was mainly associated with variation in cell number. Similar 

observations were made by Bertin et al. (2003) and Bertin (2005). Intra-treatment variations 

between fruits can be minimized through a better control of non-experimental factors that can 

affect cell division. Alternatively, increasing the number of replicate fruits would help in 

detecting treatment effects. 

 

Cell growth In this study cell growth partly accounted for the differences between large and 

small fruited tomato genotypes. When assimilate was limiting during the entire period of fruit 

growth, both cell number and cell volume contributed equally to the genotypic variation in 

final fruit size (Chapter 2). When assimilate was not limiting during the entire (or most part 

of) fruit growth, cell volume contributed only half to the genotypic variation in final fruit size 

compared to cell number (Chapter 2). This observation probably emerges from the successive 
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scheduling of cellular processes underlying fruit growth, implying that different cellular 

processes are affected by environmental conditions to which the fruit is exposed during its 

development. We proposed that the timing of assimilate supply affects the relative 

contribution of cell number and cell size to the variation in final fruit size (Chapter 2).   

Reduction in final fruit size caused by high temperatures was associated with the reduction in 

final cell volume when fruits were heated early during fruit growth (Chapter 3). Our results 

showed that the effects of high temperature on cell expansion in the fruit pericarp might not 

be the same in all expansion directions. Similar observations were reported in other plant 

organs (Akashi and Shibaoka, 1987; Strøm and Moe, 1997; Prat and Davies, 2010). In plant 

cells, the orientation of cellulose microtubules and microfibrils, which determines the 

direction of cell expansion has been shown to be influenced by organ temperature (Prat and 

Davies, 2010). Our results emphasize the need in histological studies to measure cell 

expansion in more than one dimension in order to reflect the dynamics of cell expansion in 

plant tissues.  

 

Cell endoreduplication Although endoreduplication was not directly quantified in our 

experiments, its responses to genotypic variation, assimilate supply and temperature have 

been investigated experimentally by other authors (Bertin et al., 2003; Bertin, 2005; Cheniclet 

et al., 2005). Cheniclet et al. (2005) studied the genetic variability of endoreduplication in a 

population of 20 tomato genotypes differing in their final fruit sizes. They observed large 

genotypic variability in cell ploidy of matured fruit pericarps. In general high mean pericarp 

cell ploidy was associated with large-fruited genotypes. However, in the same study, low 

mean pericarp cell ploidy was also encountered in a few large fruited genotypes. Such 

conflicting results further emphasize the need to investigate the molecular mechanism 

regulating the process of endoreduplication.  

Only a limited number of studies investigated the effects of assimilate supply and temperature 

on the process of endoreduplication. Fruit load-induced assimilate limitation slightly delayed 

the endoreduplication process, but did not affect the final average cell ploidy in tomato 

pericarp (Bertin et al., 2003; Bertin, 2005). Bertin (2005) observed that growing tomato fruits 

under 25/25 
o
C day/night temperature regime increased their final pericarp cell ploidy 

compared with fruits grown under 25/20 
o
C day/night temperature. However, in the same 

experiment, fruits grown under  20/20 
o
C day/night temperature had a higher pericarp cell 

ploidy than fruits grown under 25/20 
o
C day/night temperature. Barrow et al. (2006) argued 
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that endoreduplication, as a mechanism for the plant to cope with adverse environmental 

conditions, may be increased under low or high temperature conditions. 

 

Modelling the interactions between processes in a multi-scale fruit model 

The phenotype of a fruit emerges from complex interrelated underlying processes at the 

molecular, cellular, tissue and organ scales. Although it is hard to include all underlying 

processes in a fruit model, integrating the main underlying processes would improve our 

understanding of the emerging fruit phenotype (Génard et al., 2007). In this study we focused 

mainly on modelling processes at the cell scale. Cellular processes are directly linked to organ 

growth and occur at organizational level intermediate between the molecular and tissue/organ 

scale. De Vos et al. (2012) proposed to begin the construction of a multi-scale mechanistic 

model of organ growth at the cellular scale, as this would make it easier to further link 

processes at the molecular and tissue/organ scale. In this work, three main cellular processes 

underlying fruit growth were considered: cell division, cell endoreduplication and cell growth 

(Chapter 4). Model development relied on understanding and integrating biological 

interactions between processes at the cell scale, but also the relationships between the 

processes at the cell scale and the tissue scale following to the bottom-up approach, and the 

feedback relationships between different processes. Fig. 1 summarizes the inter-relationships 

between processes at the cell and tissue scale considered in the model.  

At the cell scale the relationship between cell growth and cell division was incorporated in the 

model by assuming that a critical cell mass: ploidy ratio triggers cell division. This 

assumption was based on the experimental observation that cells need to reach a certain size 

for division to occur (Beemster et al., 2003). A similar mechanism was used to describe the 

relationship between cell growth and endoreduplication. Through a feedback relationship 

endoreduplication also affected cell growth. The effect of endoreduplication on cell growth 

was introduced in the model by assuming that cell growth rate is increased with increasing 

cell ploidy. This assumption was based on the positive correlations between cell size and cell 

ploidy in fruit cells reported in the literature (Kondorosi et al., 2000; Bertin, 2005; Cheniclet 

et al., 2005; Nafati et al., 2011). In the model cell division influenced endoreduplication in 

two ways: first, a cell could start endoreduplication only after it has exited the cell division 

phase; second, the number of cell division cycles a cell experienced during the division phase 

affected its potential to continue endoreduplication.  
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Fig. 1. Schematic representation of intra-scale and inter-scale interactions between processes in the fruit 

model. The symbols + and – represent positive and negative relationships, respectively.  

 

The number of cell division cycles also negatively influenced cell division rate. Following the 

bottom-up approach, cell number and cell mass together determined pericarp mass, thus 

affecting the area of the vascular tissue (Chapter 4) and pericarp sugar import (Fig. 1). A 

similar approach was used to model leaf growth (Beemster et al., 2006) and flowering time 

(Welch et al., 2003) in Arabidopsis. Our fruit model also involved feedback relationships 

between the tissue scale and the cell scale. The amount of sugar imported by the pericarp 

tissue directly influenced cell growth, and indirectly affected cell division and cell 

endoreduplication (through threshold cell mass: ploidy ratio) (Fig. 1). Although the model 

was developed and parameterized for the pericarp tissue, model predictions can be easily 

scaled up to the fruit level. In our experiments we observed a linear relationship between 

pericarp size and fruit size. This relationship was stable across different genotypes, assimilate 

supply levels (Chapter 2) and temperature conditions (Chapter 3). Strong correlations between 

pericarp tissue size and fruit size have also been reported by other authors (Mariguele and 

Silva, 2010; Wetzstein et al., 2011).  
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The validation of our fruit model demonstrated how integrating processes underlying the 

functioning of biological systems can improve model predictive power (Baldazzi et al., 2012). 

Although the fruit model was parameterized for the conditions of constant low fruit load and 

normal temperature conditions, it could generate accurate predictions of final cell and tissue 

characteristics under various contrasting and fluctuating fruit load and temperature conditions 

(Chapter 4). 

  

Model applications 

The model developed in this study may serve as a research tool to carry out virtual 

experiments. Treatments that are difficult or impossible to apply in reality may be easily 

tested in silico. For example in Chapter 2, we applied three fruit load treatments (2&2 

fruits/truss, 5&2 fruits/truss and 5&5 fruits/truss) to investigate the effects of low and high 

fruit loads applied early or late during fruit growth on final fruit and cell phenotype. In theory, 

a fourth fruit load treatments should be added in this experiment, where low fruit load (2 

fruits/truss) is applied early and high fruit load (5 fruits/truss) is applied late during fruit 

growth (2&5 fruits/truss). This fourth treatment is impossible to implement on real plants, but 

its effects can now be tested using the model. Fig. 2 shows the effects of all four fruit load 

treatments (including the fourth treatment 2&5 fruits/truss) on cell number, cell mass, cell 

ploidy and pericarp mass. The effects of 2&5 fruits/truss were similar to those of 5&5 

fruits/truss for all simulated tissue and cell characteristics except for cell number, which was 

slightly increased in the 2&5 fruits/truss treatment. 

The model can be used for testing fruit growth responses under more fluctuating 

environmental conditions than those used for model validation (Chapter 4). In practice, the 

environment to which the fruit is exposed may fluctuate due to a vertical gradient in climatic 

factors in the greenhouse, seasonal changes, cultivation practices, etc. The model may be used 

to predict fruit growth under fluctuating environments. In this way, the model may serve as a 

tool to support decisions related to cultivation practices and climate manipulations.   

The model sensitivity analysis presented in Chapter 4 indicated clearly which cellular 

parameters are most influential on fruit phenotype. We found that final fruit size is largely 

influenced by parameters affecting the cell division process (Chapter 4). Among these 

parameters, the duration of cell division period had the strongest influence on final fruit 

phenotype (Chapter 4). Such analysis may be useful in plant breeding programmes through 

the identification of the most influential traits needed for the development of new varieties. 
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Fig. 2. Dynamics of simulated A) cell mass, B) cell ploidy, C) cell number, and D) pericarp mass during 

tomato fruit growth in the treatments with continuously low fruit load (2&2 fruits/truss, solid line), 

continuously high fruit load (5&5 fruits/truss, dashed line), a switch from high to low fruit load 7 daa (5&2 

fruits/truss, dash-dotted line) and a switch from low to high fruit load 7 daa (2&5 fruits/truss, dotted line). 

Each line represents the mean of 70 model runs. 

 

The model allows for testing and analysing genotypic responses to changes in the 

environment. Such analysis may provide valuable insights into G×E interactions on fruit 

growth as illustrated by the following example. We simulated the responses of a large and a 

small-fruited virtual tomato genotype grown under high (5 fruits/truss) and low (2 fruits/truss) 

fruit load conditions (Table 1). The two genotypes were assumed to differ only in their cell 

division duration, which was twice as long for the large-fruited genotype as for the small-

fruited genotype (Bertin et al., 2009). In this case, the virtual small-fruited genotype had 

higher final cell mass than the large-fruited genotype (Table 1). The effect of high fruit load  
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Table 1. Model predictions of final cell mass, cell number, pericarp mass of large and small virtual tomato 

genotypes under high (5 fruits/truss) and low (2 fruits/truss) fruit load treatment. Cell division duration was 

assumed to be 18 days in the large fruited genotype and 9 days in the small fruited genotype. Each value is 

the mean of 70 model runs. 

  Large fruited genotype   Small fruited genotype 

 

2 Fruits/truss 5 Fruits/truss 

 

2 Fruits/truss 5 Fruits/truss 

Final cell mass (× 10
-3

 mg) 0.8165 0.6278 

 

0.9056 0.8445 

Final cell number (× 10
6
) 4.0872 3.7620 

 

1.3172 1.2150 

Final pericarp mass (× 10
3
 mg) 3.3024 2.2959   1.1930 1.0275 

 

 

was more pronounced in the large-fruited genotype reducing its final pericarp mass by 30% 

compared with only 14% reduction in the small-fruited genotype (Table 1). Similar 

interactions between fruit load and genotype were observed in an experiment with two tomato 

genotypes differing in their final fruit size (Prudent et al., 2010). Considering how fruit load 

affected processes at the cell scale in each virtual genotype helps in explaining the interaction 

between fruit load and genotype observed on pericarp mass. Interestingly high fruit load 

reduced final cell number by approximately 8% in both genotypes (Table 1). However, in 

absolute terms the large-fruited genotype had three times more cells than the small-fruited 

genotype (Table 1). This implies assuming that assimilate supply was non limiting under 2 

fruits/truss, that under high fruit load, competition between cells for assimilate was more 

severe in the large-fruited genotype than in the small-fruited genotype. This resulted in the 

larger reduction in final cell mass (23%) and thus pericarp mass in the large fruited genotype 

compared with cell mass (7%) and pericarp mass reduction in the small fruited genotype 

(Table 1).  

The example presented above may be extended to analyse G×E interactions in more 

genotypes across a much wider environmental conditions. In plant breeding, genotypes are 

generally tested across several locations and seasons to evaluate their adaptation and stability 

in different environments. The model may assist in evaluating breeding lines, and in analysing 

G×E interactions across several environments, thus helping in saving time and efforts.  

The model developed in this study was parameterized and validated for tomato fruits. 

However, the approaches used in the model to describe the dynamics of fruit growth at the 

tissue and cell scales are relatively generic and may serve as a basis to integrate fruit 

underlying processes in other fruit species. For example the model simulated sugar 
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distribution among different cell classes using the sink/source approach (Chapter 4). This 

approach is not limited to tomato as it is well accepted that in many crop species individual 

fruit cells compete for assimilates (Marcelis and Baan Hofman-Eijer, 1993). Likewise the 

generic mechanism of a critical cell mass: ploidy ratio was used to model cell division and 

endoreduplication events (Chapter 4). Thus the present model can be adapted to predict fruit 

and cell phenotypes and their responses to environmental and genotypic factors in many other 

fruit crops. Although model structure may be applied to other fruit species, model parameters 

certainly need to be estimated for different species and even different cultivars from the same 

species.    

 

Future research directions 

In the model we assumed that the arrest of fruit cellular processes occurs after a predefined 

temperature sum is reached (Chapter 4). Although this assumption was based on the 

experimental observations that fruit underlying cellular processes are restricted to specific 

periods of fruit growth (Chapter 3), it ignores the fact that genetic and hormonal factors play 

an important role in the regulation of cellular processes. The arrest of fruit cellular processes 

is controlled by a complex network of interacting genes. The exact mechanism through which 

these genes act to trigger the arrest of cellular processes is still under debate. However the 

temporal expressions of some cell cycle genes during fruit development suggest that they 

might play a role in the control of cellular process arrest (Baldet et al., 2006). Molecular 

control of cellular process arrest could be incorporated in the present model by relating 

parameters describing the duration of cellular processes to expression pattern of these cell 

cycle genes (Chapter 5). This relationship could not be implemented in this study as our gene 

expression study was limited to only one time point during fruit growth (Chapter 2). Future 

experiments could investigate the link between the duration of cellular processes and the 

expression of cell cycle genes measured at several time points during fruit growth. It should 

be especially important to investigate this link for the duration of the cell division period as 

model sensitivity analysis revealed that this parameter has the largest influence on final fruit 

phenotype. Doing so should give more insight into the G×E interactions not only at the 

cellular scale (as already demonstrated by the current model), but also at the gene scale.  

Our model does not consider sugar transformation and water relations within the fruit. These 

are important aspects of fruit growth as they directly affect fruit quality. Fruit sugar 

composition depends on sugar supply, enzymatic sugar transformation and sugar dilution 



Chapter 6 

126 

 

owing to fruit growth. Future model improvements might involve incorporating water 

relations and fruit sugar transformation into the fruit model, as this would improve our 

understanding of fruit quality build-up (Chapter 5).  

The present model was developed and validated for a single tomato fruit. We assumed that 

there is a constant sugar pool available for the fruit during its development (Chapter 4). In a 

tomato crop, the amount of sugar imported by an individual fruit depends on leaf assimilate 

production, and competition between fruits of the same truss and other sink organs on the 

plant. A next step could be to scale-up the fruit model to the truss and plant scale to include 

actual plant assimilate production and the competition between plant organs for assimilate. 

One way of doing so would be to link the fruit model with a crop growth model (Chapter 5). 

In this aggregated model, the crop model should supply the fruit model with the actual 

assimilate production computed based on the plant photosynthetic capacity and the 

environmental conditions (e.g. light, temperature, CO2) prevailing in the greenhouse. 

Competition between sink organs could be incorporated in the model using the sink/source 

approach similar to that used in the fruit model to described sugar distribution between cell 

classes (Chapter 5).  

Linking the fruit model to a crop model should also make it possible to simulate direct and 

indirect temperature effects on fruit growth. The model developed in this study was 

parameterized partly using data collected from fruits subjected to local fruit temperature 

treatments. In practice, whole plants are exposed to the greenhouse climate, and temperature 

affects fruit growth not only directly, but also indirectly via other plant growth and 

developmental processes. For example, high air temperatures are known to increase plant 

development rate resulting in the formation of many sink organs on the plant, creating a 

strong competition among individual organs for assimilates (Van der Ploeg and Heuvelink, 

2005; Wubs et al., 2009). Linking a crop model to the fruit model would contribute in 

incorporating these indirect temperature effects into the fruit model.  

 

Conclusions 

This study demonstrated how integrated multi-scale models can be used to predict and 

understand complex fruit responses to G×E interactions and fluctuating environmental 

conditions. The success of this modelling approach depends on careful experimentation 

aiming at providing a good understanding of the biological processes at different scales and 

their responses to the environment. The ability of the model to predict fruit phenotype based 
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on cellular processes underlying fruit growth has several applications in research, plant 

breeding and cultivation. We hope that more insights into fruit growth and more applications 

will be identified as information at the molecular and plant scales are integrated into the fruit 

model. 
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Summary 

 

Fruit size is a major component of fruit yield and quality of many horticultural crops 

including fresh tomato. Variations in fruit size can be tremendous due to genotypic and 

environmental factors. Experimental data show that assimilate availability and temperature 

strongly affect fruit growth and final fruit size in many crop species. The mechanisms by 

which genotype and environment interact to determine fruit size remain poorly understood. 

This limited insight represents a real challenge in manipulating and predicting fruit yield and 

size. Genotype-by-environment interactions emerge from complex processes underlying fruit 

growth. Cell division, cell growth and cell endoreduplication are three fundamental cellular 

processes responsible for fruit growth. The cellular basis for variation in fruit growth has been 

studied extensively. Although these studies provide some insights into the link between 

individual cellular or molecular processes and fruit growth, they do not explain how these 

underlying processes taken together regulate fruit growth. To improve our understanding of 

fruit yield and quality, it is fundamental to integrate the description of fruit cellular processes 

and their interaction with the environment into a common knowledge base system. 

The aims of this study were 1) to develop a model of tomato fruit growth integrating cell 

division, cell endoreduplication and cell growth, and 2) to use the model to analyse fruit 

responses to fluctuating assimilate supply and temperature conditions, and genotype-by-

environment interactions. Experiments were carried out to understand the link between 

cellular processes and fruit growth and their responses to genotypic factors, contrasting fruit 

loads and temperature conditions. Information derived from the experiments was partly used 

to parameterize and validate the model. 

In Chapter 2 we investigated the histological and molecular basis for genotypic and fruit load-

induced variation in fruit size. We grew three genetically related tomato genotypes differing 

in their final fruit size under three fruit load treatments: continuously 2 fruits/truss (2&2F) or 

5 fruits/truss (5&5F) and a switch from 5 to 2 fruits/truss (5&2F) 7 days after anthesis. The 

5&5F treatment resulted in significantly smaller fruits than in the 5&2F and 2&2F treatments. 

In the 5&5F treatment cell number and cell volume contributed equally to the genotypic 

variation in final fruit size. In the 5&2F and 2&2F treatments, cell number contributed twice 

as much to the genotypic variation in final fruit size than cell volume did. Fruit load 

treatments resulted in only subtle variations in gene expression. Genotypic differences were 

detected in transcript levels of CycD3 (cyclin) and CDKB1 (cyclin-dependent-kinase), but not
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 in those of CycB2. Genotypic variation in fruit fresh weight, pericarp volume and cell volume 

was linked to pericarp glucose and fructose content (R
2
=0.41, R

2
=0.48, R

2
=0.11, respectively). 

Genotypic variation in cell number was positively correlated with pericarp fructose content 

(R
2
=0.28). These results emphasize the role of sugar content and of the timing of assimilate 

supply in the variation of cell and fruit phenotypes. 

In Chapter 3 we analysed the responses of cell division and cell expansion to fruit heating 

applied early or late during fruit growth. To ensure that the observed responses resulted from 

direct temperature effects on fruit growth, temperature treatments were applied at the fruit 

level. Individual trusses were enclosed into cuvettes and heating was applied either only 

during the first 7 days after anthesis or from 7 days after anthesis until fruit maturity (breaker 

stage) or both. Heating fruit shortened fruit growth period and reduced final fruit size. 

Reduction in final fruit size of early-heated fruit was mainly associated with reduction in final 

pericarp cell volume. Early heating increased the number of cell layers in the pericarp, but did 

not affect the total number of pericarp cells. These results indicate that in the tomato pericarp, 

periclinal cell divisions (division plane parallel to fruit skin) respond differently to 

temperature than anticlinal  (division plane perpendicular to fruit skin) or randomly oriented 

cell divisions. Late heating only decreased pericarp thickness significantly. Continuously 

heating fruit reduced anticlinal cell expansion (direction perpendicular to fruit skin) more than 

periclinal cell expansion (direction parallel to fruit skin). This study emphasizes the need to 

measure cell expansion in more than one dimension in histological studies of fruits in order to 

reflect the dynamics of cell expansion. Within each temperature treatment, variation in final 

fruit size correlated with variation in cell number. This implies that, intra-treatment variations 

between fruits can be minimized through a better control of non-experimental factors that can 

affect cell division.  

In Chapter 4, results from the previous chapters were incorporated into a dynamic model of 

tomato fruit growth integrating cell division, cell growth and cell endoreduplication. In the 

model the fruit was considered as a population of cells grouped in cell classes differing in 

their initial cell age and cell mass. The model describes fruit growth from anthesis until 

maturation and covers the stages of cell division, cell growth and cell endoreduplication. 

Within each cell class, the transition from one stage to the next is determined by predefined 

cell ages expressed in thermal time. Cell growth is the consequence of sugar import from a 

common assimilate pool into each cell class according to the sink/source concept. Import of 

assimilate depends on the contact surface area between the vascular and pericarp tissue. Cell 

growth rate increases with increasing cell ploidy. Cell division or endoreduplication events 
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occur when cells exceed a critical threshold of the cell mass: ploidy ratio. The ability of cells 

to divide or endoreduplicate decreases with increasing number of cell division cycles or cell 

endocycles. The model was parameterized and calibrated for low fruit load conditions and 

was validated for high fruit load and various temperature conditions.  The model sensitivity 

analysis showed that parameters which strongly affected final pericarp cell number had a 

weaker and opposite effect on final cell mass. Variations in final fruit size were mainly 

associated with variations in parameters involved in the dynamics of cell division. Among 

these parameters, cell division duration had the strongest influence on final cell number and 

pericarp mass. Final cell ploidy appeared to be sensitive only after large perturbations in 

model parameters. This implies that endoreduplication might be a more stable process than 

cell division and cell growth. The model was able to accurately predict final cell number, cell 

mass and pericarp mass under continuously high fruit load and under a switch from high to 

low fruit load during fruit development in tomato. The model could also generate acceptable 

predictions of fruit and cell phenotypes in most of the contrasting temperature conditions.  

Chapter 5 presents a theoretical framework for future modelling of fruit growth. A multi-scale 

approach to model tomato fruit growth is proposed, in order to account for the interaction 

between gene functioning and growth conditions, and, ultimately, to explain the fruit 

phenotype of various genotypes in diverse growth environments. There is particular focus on: 

(I) cell division regulated by cell cycle genes, (II) cell expansion as influenced by polyploidy 

resulting from endoreduplication and carbohydrate and water dynamics. The growth processes 

at gene, cell and tissue, fruit and plant scale are included in the theoretical model. Sub-

populations of cells differing in age are considered to act as sinks competing for 

carbohydrates. The key cell cycle genes of tomato could be incorporated into an existing 

model of the gene regulatory network of the cell cycle. This model could be modified to 

simulate endoreduplication. Moreover, the modelled cell cycle process could be made 

sensitive to temperature and assimilate supply. Implementing these processes into future fruit 

models will contribute in improving the understanding and prediction of fruit growth and 

G×E interactions 

Chapter 6 discusses the strengths and limitations of the present study and proposes 

possibilities for further research. This study demonstrated how an integrated multi-scale 

model can be used to predict and understand complex fruit responses to fluctuating 

environmental conditions. The success of this modelling approach depends on careful 

experimentation aiming at a good understanding of biological processes at different scales and 

their responses to the environment. The ability of the model to predict fruit phenotype from 
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fruit cellular processes has several applications in research, plant breeding and cultivation. 

The model can be used to carry out virtual experiments with treatments that are difficult or 

impossible to test experimentally. The model may serve as a tool to support decision related 

to cultivation practices and climate manipulations. The model allows for predicting and 

analysing G×E interactions and may assist in evaluating breeding lines, across several 

environments, thus helping in saving time and efforts. The approaches used in model 

development are relatively generic and may serve as a basis to integrate fruit underlying 

processes in other fruit species.  

A next step could be to integrate information on molecular control of fruit cellular processes 

into the fruit model, and to analyse G×E interactions not only at the cellular scale (as already 

demonstrated by the current model), but also at the gene scale. Other model improvements 

might involve incorporating water relations and fruit sugar transformation into the fruit 

model, as this would improve our understanding of fruit quality build-up. The fruit model 

could be scaled-up to the truss and plant levels to include actual plant assimilate production 

and the competition between plant organs for assimilates. Scaling-up to the plant level would 

contribute in incorporating indirect temperature effects into the fruit model. It is our hope that 

more insights into fruit growth and more applications will be identified as information at the 

molecular and plant scales are integrated into the fruit model. 

This thesis has contributed to closing the gap between genotype and phenotype related to 

tomato fruit growth. An integral and coherent development of models at relevant levels of 

plant organization can further help to close this gap. 
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Samenvatting 

Vruchtgrootte is een belangrijk aspect van vruchtproductie en –kwaliteit in veel 

tuinbouwgewassen waaronder tomaat. De vruchtgrootte kan door genotypische en 

klimaatverschillen enorm variëren. Experimenten laten zien dat assimilatenvoorziening en 

temperatuur het meest bepalend zijn voor de vruchtgroei en de uiteindelijke vruchtgrootte in 

de meeste gewassen. Er is weinig bekend over de mechanismen waarmee de interactie tussen 

genotype en milieu tot een specifieke vruchtgrootte leidt. Dit beperkte inzicht betekent dat het 

gevolg van een teeltmethode op productie en vruchtgrootte lastig te voorspellen is. Genotype-

milieu interacties komen voort uit een complex van onderliggende processen. Celdeling, 

celgroei en endoreduplicatie zijn drie fundamentele, cellulaire processen die de vruchtgroei 

bepalen. Dit celniveau als basis voor vruchtgroei is recentelijk uitgebreid onderzocht. Hoewel 

die studies enigszins aangeven wat de mogelijke link is tussen processen op cel of moleculair 

niveau en groei, is er nog geen totaalbeeld hoe deze processen samen uitwerken op 

orgaanniveau. Voor een beter inzicht in vruchtgroei en –kwaliteit is het noodzakelijk om 

cellulaire processen en hun interactie met milieufactoren te integreren binnen een 

kennissysteem. 

De doelen van deze studie waren 1) het ontwikkelen van een model voor de groei van de 

tomaat op basis van celdeling, endoreduplicatie en celexpansie, en 2) met het model de 

groeirespons op variaties in assimilatenvoorziening en temperatuur, en de genotype-milieu 

interacties te analyseren. Experimenten met verschillende genotypen, plantbelastingen en 

vruchttemperaturen zijn uitgevoerd om de reacties op celniveau te toetsen. Informatie uit de 

proeven is benut voor parametrisatie en validatie van het model. 

 

In Hoofdstuk 2 is de histologische en moleculaire basis onderzocht van genotypische 

verschillen en effecten van plantbelasting, i.e. aantal vruchten per tros. Drie genotypen die 

verschillende vruchtgrootten voortbrengen werden bij 3 plantbelastingen onderzocht: continue 

2 vruchten per tros (2&2F) of 5 vruchten per tros (5&5F), en een wijziging vanaf 7 dagen na 

vruchtzetting van 5 naar 2 vruchten per tros (5&2F). De 5&5F vruchten waren significant 

kleiner dan die in de overige behandelingen. In de 5&5F behandeling droegen celaantal en 

celvolume in gelijke mate bij aan de genotypische variaties in vruchtgrootte. In de 5&2F en 

de 2&2F behandeling droeg het celaantal dubbel zo veel bij aan de variatie in vruchtgrootte 

tussen genotypen dan celvolume. Plantbelasting gaf slechts subtiele verschillen in 

genexpressie. Genotypische verschillen zijn gevonden voor transcriptieniveau’s van CycD3 
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(cycline D3) en CDKB1 (cycline afhankelijke kinase B1), maar niet in die van CycB2. 

Genotypische variatie in vrucht versgewicht, pericarp volume en cel volume waren met een 

R2 van resp. 0.41, 0.48 en 0.11 enigszins gerelateerd aan glucose- en fructosegehalte in het 

pericarp weefsel. Genotypische variatie in cel aantal was positief gecorreleerd met pericarp 

fructose gehalte (R2=0.28). Deze resultaten benadrukken de rol van suikergehalten en de 

timing van de assimilatenvoorziening in de variatie in cel- en vruchtfenotype. 

 

In Hoofdstuk 3 is de reactie van celdeling en celexpansie op vruchtverwarming in een vroeg 

en een laat ontwikkelstadium van vruchtgroei onderzocht. Lokale verwarming die zich slechts 

beperkt tot de te onderzoeken vruchten werd gerealiseerd door gebruikmaking van cuvettes 

die de tros geheel omsloten. Verwarming werd toegepast in de vroege ontwikkeling, i.e. de 

eerste 7 dagen na anthesis, of alleen in de late ontwikkeling, i.e. vanaf 7 dagen na anthesis tot 

oogst (‘breaker’ stadium), of in de gehele groeiperiode. Verwarming verkleinde de 

groeiperiode tot breaker stadium en verlaagde het eindgewicht van de tomaat. De kleinere 

vrucht bij verwarming in het vroege groeistadium leek verband te houden met een verkleind 

celvolume in het pericarpweefsel; daarnaast resulteerde deze behandeling in een vergroot 

aantal cellagen in het pericarp, maar dit vergrootte het aantal cellen in de pericarp niet. Deze 

resultaten geven aan dat in het pericarp de periclinale celdelingen (delingsvlak evenwijdig aan 

vruchtepidermis) anders reageren dan de anticlinale (delingsvlak loodrecht op 

vruchtepidermis) of random georiënteerde delingen. Late verwarming had alleen significant 

effect op verkleining van de pericarp dikte. Verwarming gedurende de hele groeiperiode 

reduceerde anticlinale celexpansie meer dan de periclinale expansie. Deze studie geeft 

daarmee aan dat voor een juiste beoordeling van cel expansie deze in meer ruimtelijke 

dimensies moet worden onderzocht. De variatie in vruchtgrootte binnen elke 

temperatuurbehandeling correleerde met het aantal waargenomen cellen. Dit geeft aan dat 

vermindering van invloeden op celaantal, die los staan van de specifieke behandeling, van 

belang is om een duidelijker behandelingseffect met minder variatie tussen vruchten in een 

behandelde tros te realiseren. 

 

In Hoofdstuk 4 zijn de resultaten van voorgaande hoofdstukken verwerkt in een dynamisch 

model van de vruchtgroei van tomaat, met medeneming van deling, groei en endoreduplicatie 

van cellen. Het model beschouwt de vrucht als een populatie van cel groepen of cel klassen 

die verschillen in initiële leeftijd en gewicht. De vruchtgroei wordt beschreven vanaf anthesis 

tot einde van de groei, waarbij de cellen achtereenvolgens de fasen deling, groei en 
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endoreduplicatie doorlopen. Binnen elke cel klasse wordt de transitie naar de volgende fase 

gerealiseerd na het bereiken van een bepaalde temperatuursom, gerekend vanuit initiatie van 

de cellen. De geschatte potentiële groei per cel klasse geeft een suikervraag weer per tijdstap. 

Het totaal van suikers per vrucht wordt verdeeld over de aanwezige cel klassen volgens hun 

relatieve sinksterkte, hetgeen dan resulteert in de actuele groei per cel klasse. Import van 

suikers door de vrucht hangt af van het contactoppervlak tussen pericarp en transportweefsel. 

Celgroei neemt toe bij toenemende ploïdie. Deling of endoreduplicatie wordt voltrokken als 

de celmassa/ploïdie ratio boven een grenswaarde komt. Het vermogen van een cel klasse om 

te delen of te endoredupliceren vermindert naarmate er meer van dergelijke delingscycli 

hebben plaatsgevonden. Het model is geparametriseerd en gecalibreerd voor een situatie met 

lage plantbelasting (weinig vruchten aan de plant) en gevalideerd voor een hoge 

plantbelasting en diverse temperatuurbehandelingen. De gevoeligheidsanalyse toonde aan dat 

modelparameters die van grote invloed waren op cel aantal in de pericarp juist een zwak maar 

tegengesteld effect hadden op de cel massa. Variatie in uiteindelijke vruchtgrootte werden 

vooral bepaald door parameters die betrokken zijn bij de dynamiek van celdeling. Daarbij 

hadden de parameters voor duur van de delingsperiode veel effect op de uiteindelijke 

aantallen en gewichten van pericarp cellen. Voor variatie in ploïdie aan eind van groei 

moesten de betrokken modelparameters fors gewijzigd worden. Endoreduplicatie lijkt 

daarmee een veel stabieler proces dan cel deling en groei. Het model kon het uiteindelijke cel 

aantal, de cel massa en de massa van de pericarp goed voorspellen voor situaties met hoge 

plantbelasting en bij een plotselinge wijziging van hoge naar lage plantbelasting gedurende de 

groei. Ook voor een aantal temperatuurbehandelingen werden cel en vrucht fenotype redelijk 

voorspeld. 

 

Hoofdstuk 5 behandelt een theoretisch raamwerk voor toekomstige modellering van 

vruchtgroei. Een multi-schaal model wordt benut voor simulatie van de interactie tussen 

genwerking en groeicondities, om uiteindelijk het fenotype van vruchten van verschillende 

genotypen te verklaren. Het model kent 2 kernregels: (I) cel deling regulatie door celcyclus 

genen, (II) cel expansie regulatie door endoreduplicatie en water- en suikerhuishouding. 

Groeiprocessen op niveau van gen, cel, weefsel, vrucht en plant zijn geïntegreerd. 

Subpopulaties van cellen van gelijke leeftijd worden gezien als afzonderlijke sinks die 

onderling concurreren om suiker. In een bestaand model van gengereguleerde celcyclus 

werden de celcyclus genen vervangen door degene die bekend waren voor tomaat, en werd dit 

model uitgebreid met endoreduplicatie. Daarnaast werd het celcyclus model gevoelig gemaakt 
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voor temperatuur en suikeraanbod. Deze modelbenadering kan in de nabije toekomst 

bijdragen aan een verder inzicht en voorspelling van vruchtgroei en GxE interacties. 

 

Hoofdstuk 6 bediscussieert de sterkten en zwakten van de huidige studie en doet voorstellen 

voor toekomstig onderzoek. Deze studie demonstreert hoe een geïntegreerd, multi-schaal 

model bruikbaar is om complexe reacties van vruchtgroei op omgevingsinvloeden te 

begrijpen en te voorspellen. Het succes van deze modelbenadering hangt af van een 

zorgvuldige experimentele toetsing van biologische processen op verschillende 

aggregatieniveaus en hun reactie op omgevingscondities. Het vermogen van het huidige 

model om het vrucht fenotype te voorspellen op grond van cellulaire processen kan tot 

toepassing leiden in onderzoek, plantenveredeling en teeltstrategie. Het model kan gebruikt 

worden voor virtuele experimenten die in werkelijkheid moeilijk of niet uitvoerbaar zijn. Het 

model kans als beslissingsondersteunende tool benut worden ten behoeve van teeltingrepen en 

klimaatregeling. Het model kan binnen zijn validatiedomein GxE interacties voorspellen en 

analyseren en kan helpen bij het evalueren van de prestatie van nieuwe genotypen in een 

specifiek groeiklimaat om zo tijd en kosten te besparen. De modelbenadering aangaande 

integratie van onderliggende processen is relatief generiek en kan aldus bruikbaar zijn voor 

vruchtgroei bij andere gewassen. 

 

Een volgende mogelijke stap is om informatie van moleculaire controle van cellulaire 

processen in het model te incorporeren, en om GxE interacties niet alleen op celniveau maar 

ook op gen niveau analyseren. Andere relevante modelverbeteringen zijn de simulatie van de 

waterhuishouding en van suikertransformaties, zodat ook simulatie van inhoudsstoffen en 

meer uitgebreide kwaliteitsaspecten mogelijk wordt. Daarnaast is gewenst om het 

vruchtmodel op te schalen naar tros- en plantniveau zodat de effecten van de actuele 

assimilatenvoorziening en van de competitie tussen plantorganen op orgaangroei expliciet in 

het model aanwezig zijn. Opschaling zou ook de effecten van temperatuur op orgaangroei in 

het competitieverband tussen en binnen de trossen kunnen verrekenen. De hoop is dat de 

verwachte kennistoename, met name op het moleculaire gebied, verder in het model benut 

gaat worden.  

Dit proefschrift heeft een bijdrage geleverd aan het overbruggen van de kloof tussen genotype 

en fenotype van de tomatenvrucht. Een verdere modelontwikkeling welke de processen over 

de diverse relevante schaalniveaus integreert kan deze kloof verder verkleinen.  
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- Mathematics and biology; Agro ParisTech (2007) 

- The art of modelling; Wageningen University (2009) 

- Advanced statistics-generalized linear models; Wageningen University (2009) 

 

Laboratory training and working visits (4.5 ECTS) 

- Fruit modelling; INRA Avignon, France (2007) 

 

Deficiency, refresh, brush-up courses (2.1 ECTS) 

- Matlab fundamentals and programming techniques (2007) 

- Basic statistics (2007) 

 

Competence strengthening / skills courses (4.4 ECTS) 

- Techniques for writing and presenting a scientific paper; Wageningen University 

(2007) 

- Science, the press and general public; Wageningen University (2009) 

- Advanced course guide to scientific artwork; Wageningen University (2009) 

- Career perspective; Wageningen University (2010) 

 

PE&RC Annual meetings, seminars and the PE&RC weekend (1.2 ECTS) 

- PE&RC Weekend (2008) 

- PE&RC Day (2009) 

 

Discussion groups / local seminars / other scientific meetings (6.3 ECTS) 

- Frontier literature in plant physiology (2007-2011) 

- Systems biology day (2009) 

  



 

142 

 

International symposia, workshops and conferences (3.5 ECTS) 

- Systems biology conference; Stanford (2009) 

- Systems biology conference; Edinburg (2010) 

 

Lecturing / supervision of practical ‘s / tutorials (0.9 ECTS) 

- Research methods; 1 day (2009) 

- Research methods; 2 days (2011) 

 

Supervision of 2 MSc students; 20 days 

- Effects of temperature, fruit load and gene expression in a tomato crop 

- Effects of fruit load on fruit growth, cell number, cell size and gene expression of four 

tomato genotypes 
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