Mapping Invasive Woody Species In Coastal Dunes: A Remote Sensing Approach

WAGENINGEN UNIVERSITY

WAGENINGEN UNIVERSITY WAGENINGEN UR

WAGENINGENUR

Dune Mapping Team

Wouter Hantson

Eric Baptist

- Lammert Kooistra 🚚 WAGENINGEN UNIVERSIT
- Pieter Slim

Dune Scrub and Woodland Conference, 12 Sept. 2012, Liverpool

Introduction

- Coastal zones are amongst the most threatened natural areas in the world due to acidification and eutrophication, sea level rise, demographic pressure,...
- Many of the habitats within the coastal zone of The Netherlands are listed as Natura 2000 habitat types.
 - We conducted a RS-based inventory of coastal habitats in the dynamic coastal zone of Ameland.
- 'Grey dunes' are a threatened 'key' habitat on the Wadden Sea Islands (NL)
 - We conducted a RS mapping of (invasive) shrub species in Vlieland
 - Applied it to measure the effect of management practices
- Flexible High Resolution Habitat Mapping
 - Future perspective: UAV imagery

The Wadden Sea Islands (NL)

Why Remote Sensing?

- Up-to-date and accurate maps allow targeted and efficient dune management
- RS techniques can provide the spatial distribution of habitats and species
- Coastal management deliver large amounts of RS data in The Netherlands
- Using existing data for vegetation mapping and monitoring in coastal areas

RS data: Aerial Imagery & LIDAR

- Aerial Imagery
 - RGB & CIR
 - High spatial resolution (<1m)
 - eCognition
- LIDAR
 - Obtained for AHN-2
 - Dense point distribution (<0,2m)</p>
 - FUSION
 - Integration with Aerial Imagery

Airborne laser scanning system (McGaughey, 2010).

Canopy Surface model

Terrain Model

Canopy Height Model

OBIA

Object based image analysis (OBIA)

- Clustering pixels to larger "meaningful" objects
- The size of the created objects is determined by the scale parameter
- The scale parameter is a dimensionless threshold which controls the heterogeneity of the objects

Scale Parameter

Multiscale Image AnalysisUse the scale parameter

Scale parameter 750

Scale parameter 250

Scale parameter 50

Multi-Scale Image Analysis

Classification of Natura2000 Habitats

B1: EUNIS Habitat Classification: criteria for coastal dunes and sandy shores (B1) to Level 3

(number) refers to explanatory notes to the key (see following page).

RS: Habitat Mapping

- Study site: Ameland
- Areas not of interest masked
- Image layers:
 - False Color
 - True Color
 - DEM
 - Vegetation height
- First segmentation based on DEM
- Second and third based on True color imagery
- Thresholds (rules) based on known variables or found by iterations

Habitat Map of Ameland

W-- E 0 0.5 1 2 Kilometers

RS Habitat Mapping: Accuracy

- Overall accuracy: 49%
- Confusion
 - Sand flats, bare dunes and drift lines
 - Buckthorn and Creeping willow
 - Humid dune slacks, Atlantic and Glasswort salt marshes

Discussion:

- To classify the coastal Natura 2000 habitats accurate this method has potential.
- Studies conducted in the more or less fixed dune communities have found better results.
- Studies conducted in a dynamic coastal environment (rare) have found similar results.

Priority Habitat: 'Grey Dunes'

- Threats:
 - Inappropriate grazing
 - Afforestation
 - Growth of shrubs
 - Invasion of alien species
- RS mapping of the Shrub species

(Houston, 2008)

RS: Mapping (Invasive) Shrubs

- Study Site: Vlieland
- Areas with lacking information are masked
- Image layers:
 - False Color Imagery
 - Vegetation Height
 - Vegetation Structure
- Different techniques were compared.
 - Image: Maximum Likelihood)
 - Maximum Likelihood + Vegetation Height
 - OBIA

Maximum Likelihood +

Object Based

RS Shrub Mapping: Accuracy

OBIA: overall accuracy increased till 60%

Prunus serotina & Salix repens <30%</p>

Shrub management

Effect of management practices

Results: Shrub map of N-Vlieland

Results: Shrub detection

Future perspective: UAV mapping

- High resolution imagery
- Mapping of Small Landscape Elements
- Flexible use makes UAV imagery interesting for:
 - Event monitoring like the effect of a storm, fire,...
 - Creation of time series
- Legal issues depends on country!

Google Earth mapping

Avia-GIS: Falcon 8

Future perspective: UAV mapping

Conclusions

- RS can deliver detailed Natura2000 habitat maps
- More research could increase the mapping accuracy
- RS can create shrub distribution maps, useful for shrub and dune management.
- More info:

Hantson, W., L. Kooistra & P.A. Slim 2012. Mapping Invasive Woody Species in Coastal Dunes in The Netherlands: a Remote Sensing Approach Using LIDAR and Aerial Photographs. Applied Vegetation Science, 15: 536–547