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Abstract 

Genomic structural variations are important in their contribution to morphological variations for 

a wide range of traits in humans. Structural variants may have obvious phenotypic 

consequences, being associated with some complex diseases such as cancer. Recently, more 

interests have been grown on implications of structural variations for crop improvement and 

plant breeding. To detect high levels of structural variations in plants, robust software (caller) is 

required. Great advances on the next-generation sequencing techniques have helped 

dramatically for the discovery of structural variation. Most structural variation callers are freely 

available to the scientific community, and they are mainly based on three signatures: paired end 

distance, split-reads and read depth. However, each signature has its limitations. This thesis 

aims to evaluate available structural variation software and present a guideline to help users to 

choose callers for their re-sequencing projects. Benchmarking results suggested that the types 

and sizes of structural variants detected by individual caller were different. Performances of 

unique indels detection by Breakdancer_max, Clever, Pindel and SVDetect were size dependent. 

Pindel was the most favourable caller to detect very small indels (1-19bp), but its performance 

greatly decreased when the indel size increased. Clever was outstanding in predicting 

intermediate size indels (20-99 bp). Breakdancer_max better performed in detecting longer size 

indels (50 to 999 bp), while SVDetect was able to predict some long deletions. CnD and 

CNVnator could be used for downstream validation. To produce a more comprehensive set of 

calls, it is better to use a complementary method involving a variety of structural variation 

detection callers with different algorisms. 

Keywords: Benchmarking, Structural variation detection, SV, Insertion, Deletion, Indels 
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1. Introduction 

1.1 Background 

Brassica rapa, as one of the major commercial Brassica crops, provides vegetables and seed oil 

contributing to human nutrition. A remarkable morphological diversity has been found in 

Brassica rapa, but further research is still required to determine its underlying genetic basis      

[1-4]. Detection of genetic variants may provide new insights to explain morphological variation 

of target traits. Recently, paired end or mate pair methodologies help dramatically for the 

discovery of structural variants in expanding re-sequencing projects [5]. Generally speaking, 

Paired end data for the genome of interest (the donor, re-sequenced one) is generated by next-

generation sequencing (NGS) platforms and read pairs are mapped to the reference genome. 

These projects require robust software to detect structural variations. 

1.2 Methods to detect structural variations 

Structural variants (SV) include insertions/deletions (indels), inversions, imbalance substitutions 

and other genomic structural rearrangements. They could be detected more accurately and 

straightforwardly if it was possible to directly assemble the donor’s genome from the NGS reads. 

However, the very short length of reads make de novo assembly challenging, with the presence 

of repetitive sequences in large genomes [6-7]. Instead, current methods have been 

concentrated on analysing mapped reads compared to the reference. Based on different 

detection signatures (Figure 1), approaches for SV detection in software can be categorized into 

three groups: paired end distance/orientation, split reads and read depth [5].  

The first group uses discordant pairs to detect SV (Figure 1a, 1b, 1c). Discordant pairs refer to 

paired ends with incorrect different mapped distance or orientation when it is mapped to the 

reference genome. Differences of mapping distance or orientation suggest structural variants. 

Drawbacks of methods based on this signature are that it can only provide approximate 

breakpoint regions, and it cannot detect very small SV events [8].  

In split mapping, one end of a pair is mapped uniquely to the genome as anchor, while the other 

end is split. The second group uses split reads to predict SV, with single base resolution (Figure 

1d, 1e). However, it has difficulty to map in the repetitive regions and it is less efficient to map 

split reads with large gaps [9].  
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The rationale of last method based on read depth, is that SV events would influence the 

frequency of mapped reads in a certain genomic region (Figure 1f). Although this signature could 

provide information about copy number variation (CNV), It needs high coverage, and it is poor at 

identifying exact SV events and breakpoints [9].   

Figure 1 Illustrations of SV detection signatures [5-6]. Paired ends (orange and blue arrows) from 

the donor are ordered with opposite orientation and mapped to the reference. In the case of an insertion 

(a), the mapped distance is closer than expected. Conversely for the deletion (b), pairs will map farther. If 

the donor has an inversion, the order of pairs is preserved but one end of pairs inside the inversion 

changes its orientation. (d) and (e) are deletion and insertion signatures in split mapping. one end of a 

pair is mapped uniquely to the genome as anchor, while the other end is split. For a deletion (d), the 

prefix and suffix of the split read will be separated while for an insertion (e) they are adjacent with the 

middle part unmapped. (f) shows a CNV region (green) detected by signature of read depth. The donor 

contains twice of a CNV region in the reference, therefore, there will be twice the expected number of 

reads mapped to the reference. 

To sum up, each category has its limitations. Software based on different signature differs with 

respect of sensitivity and specificity [10]. The SV detection will certainly benefit from a 

combination of SV callers from different categories. In order to determine which callers should 

be used under which criteria, we started to benchmark eleven pre-selected SV callers.  
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1.3 Minor thesis 

The objectives of this thesis were to 1) evaluate available SV software; 2) build a pipeline to run 

all the software automatically; 3) better select and merge the results. The research was carried 

out within plant breeding and bioinformatics groups from Wageningen University . This thesis 

lasts for four months, from 23rd April till 24th August, 2012.   

 

2. Data sets and Methods 

2.1 Data sets 

The sequence data sets used for software benchmarking were three Arabidopsis thaliana 

accessions: No-0, Po-0 (the donor) and Col-0 (the reference) from 19 genomes project of 

Arabidopsis thaliana (http://mus.well.ox.ac.uk/19genomes/). They were generated by the NGS 

Illumina platform [11]. They used two libraries for No-0 and Po-0. Phase 1 corresponded to 36bp 

paired end reads with ~200bp inserts, while Phase 2 comprised 51bp reads with ~400bp inserts. 

Reads had been aligned to the Col-0 (TAIR10 annotation) using BWA v0.5.9, and information was 

stored in BAM files. BAM files could also be downloaded from the project website. Outcomes of 

the benchmarking would be used in the later research for three Brassica rapa accessions: Turnip 

VT117, Rapid Cycling and Chiifu. 

2.2 Methods 

2.2.1 SV detection 

To detect SV, we used eleven structural variants callers: Breakdancer_max, Breakway, Clever, 

cnD, CNVnator, CREST, GASVpro, Hydra, Pindel, SVDetect, SplazerS [12-22], which were 

categorized to three groups based on their detection signatures.  

Groups A included Breakdancer_max, Breakway, Clever, GASVpro, Hydra and SVDetect, using 

paired end distance/orientation as the signature; Groups B included CREST, Pindel and SplazerS, 

using split reads; Groups C includes cnD, CNVnator and SVDetect, based on the read depth.  

All callers were downloaded and installed in advance. They received BAM/SAM files as input, 

relying on SAMtools to function properly. 
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2.2.2 Pipeline building 

To improve the efficiency for data analysis, we built a pipeline to run all the software. First, 

scripts were written to make sure each software runs properly. For callers which cannot run 

properly, errors were sent to the author and a conjoint effort was made to solve the problem. 

After that, more scripts were added to combine workflows of properly functioning software 

together. Python language was used to write the scripts. With this pipeline, possible users 

should be able to generate results from all callers at one time. The value of various parameters 

were defined in a configuration file before running this pipeline. 

2.2.3 Benchmarking SV detection callers 

As “reference results”, we used lists of sequence variants of No-0 and Po-0 relative to TAIR10, as 

downloaded from 19 genome project website. Around 40% of indels in the lists were 1bp, and 

~40% of indels were between 2-19bp, while the rest 20% were bigger than 19 bp. We regarded 

them as reliable results, because they were coming from a combination of iterative mapping 

and de novo assembly, which had the most accuracy so far. These published results were only 

comprising of SNPs and indels (deletion and insertion), therefore, we only focused on 

benchmarking indels detection ability of different callers.  

Raw calls from each structural variant caller were transformed into BED format, and then 

compared to the “reference results” by BEDTools. If deletions (DEL) and insertions (INS) 

overlapped with the “reference results”, they were regarded as  “proved indels”.  

Uniqueness and size based benchmarking 

In normal benchmarking, the caller which calls more SV comparing to the standard would be 

regarded as a better caller. Since our aim was to benefit from a combination of SV callers from 

different categories, we proposed here a novel way of benchmarking, based on their uniqueness 

and SV sizes. We firstly check the performance of the caller to detect unique proved indels, in 

other words, the ability to detect indels that was private to itself, not sharing by other callers. To 

check whether the caller performance is size dependent, we divided detected indels into 5 

intervals: 1-19bp, 20-49bp, 50-99bp, 100-999bp, 1000-9999bp, >9999bp. The ability of different 

callers to detect indels of different sizes was studied. With this sized based approach, we 

wanted to provide better choice of SV callers to detect specific sizes of indels . 
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Minimum supported reads  

In paired end distance/orientation based algorism, each call is detected by a certain number of 

reads aligning to reference genome. The smallest number of reads the caller requires to detect a 

certain call, we referred it as, minimum supported reads.  To see whether this value would 

reflect detection sensitivity, we randomly selected several shared SV from different callers and 

compared this value with each other.   

Multiple anchored reads 

For short reads, there is high possibility that they will align to multiple regions on the reference 

genome, especially for repetitive regions. These reads are called multiple anchored reads. 

Detection of SV on the repetitive regions has been a barrier for all computational methods for a 

long time. In our research, we tried to summarize the ratio of multiple anchored reads for 

different algorisms and discuss which callers might be better performing for genomes containing 

more repetitive regions. 

Read depth coverage validation 

It is possible that within the same region, the types of SV different callers claimed are 

contradictory. With read depth based callers, we zoomed in specific region to further validate 

the result in a visible way. An example was shown in the results part. 

2.2.4 Results merging 

After benchmarking, we merged results (calls) from all raw callers into a non-redundant result 

based on SV type and chromosomal coordinates. The rules applied for merging results are 

outlined as  follows: 

(1) Calls that were private to each caller were accepted; 

(2) If the coordinate of calls from different callers overlapped and the types of SV those 

callers claimed were consistent, we merged the calls, taking the outer coordinates of the 

union of the spans;  

If the coordinate of calls from different callers overlapped, but the types of SV those 

callers claimed were contradictory, first checked the location and size of this SV, and 

then further analysed these calls by validating depth of coverage in that region.  

The final call set consisted of four types of SV: insertions, deletions, inversions and imbalance 

substitutions.  
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3. Results  

3.1 Software, analysis method and called SV types 

We have tested a variety of SV detection callers, in total, eleven software. In which, GASVPro 

and SplazerS did not run properly. GASVPro gave disordered format of intermediate files and 

successive procedure was interrupted. According to our communication with the authors of 

GASVPro, errors might be caused by the incompatibility of inconsistent versions between 

different components. New version of GASVPro has released several days before, but not 

enough time was left for testing before deadline. SplazerS could not recognize our SAM files. 

Changing of parameter did not solve this problem and no response was from the author so far. 

Hydra and Crest run properly, but no results were output. Reasons for this still remained to be 

discussed. In a word, we got outputs from 7 callers. Table 1 lists the software, analysis signature 

and SV types called by these algorithms.  As expected, 5 algorithms mainly based on paired end 

distance/orientation or split reads could call exact SV, like DEL and INS with chromosomal 

coordinates, while the other 2 algorithms using read depth, could only provide information on 

approximate copy number gain or lost in some regions. It was reasonable that we started 

benchmarking on callers based on the first two signature and then further validated with read 

depth based callers.   

Table 1 Analysis signatures and called SV types of 11 callers 

Software Signature SV types called N/A 

Breakdancer_max Paired end distance/orientation DEL, INS, INV, 

Translocation 

- 

Clever Paired end distance/orientation DEL, INS  

Pindel Split reads DEL, INS, INV, 

Duplication  

- 

SVDetect Paired end distance/orientation 

& Read depth 

 

DEL, INS, INV, 

Translocation, 

Duplication, Copy 

number gain/lost 

- 

Breakway Paired end distance/orientation DEL, INS, Translocation - 

CNVnator Read depth Copy number gain/lost - 

cnD Read depth Copy number gain/lost - 

GASVpro Paired end distance/orientation - Disordered format of 

intermediate files 

Hydra Paired end distance/orientation - No outputs in final step 

Crest Split reads - No outputs in final step 

SplazerS Split reads - Input unrecognized   
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3.2 Indels detection 

As referred in Data sets and Methods, we used lists of sequence variants of No-0 and Po-0 

relative to TAIR10 as “reference results”. DEL and INS were the two SV types we used for 

benchmarking. Pindel had the most calls as expected because it was the only caller having 1 

base resolution. Within 5 algorithms based on mapping, Breakway did not show overlaps with 

reference results for both of DEL and INS, it might be due to an inappropriate set up of its 

parameters. SVDetect gave no proved calls for INS. Here we took results from No-0-1 as an 

illustration. Table 2 shows the number of proved DEL detected by 4 callers, and INS detected by 

3 callers for No-0-1. For DEL detection, each caller had shared SV calls with other 3 callers and 

unique calls private to itself (Figure 2). For INS detection, Breakdancer_max and Clever had 

common calls, while Pindel only comprised unique calls (Figure 3).  

Table 2 the number of proved deletions detected by 4 callers and insertions detected by 3 

callers on No-0-1 

Software DEL INS 

Breakdancer_max 1537 29 

Clever 3783 1694 

Pindel 21809 11144 

SVDetect 742 - 

 

 

Figure 2 Unweighted Venn diagrams of  

4 DEL call sets from 4 callers on No-0-1. 

Green for Pindel, red for Clever, blue for 

Breakdancer_max and purple for 

SVDetect. Each call set comprises of 

shared DEL and unique DEL. Numbers in 

overlapping regions indicate shared DELs.  
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Figure 3 Unweighted Venn diagrams of  3 INS call set from Breakdancer_max, Clever and 

Pindel on No-0-1. Breakdancer_max and Clever shared 28 INS. All proved INS detected by Pindel 

were unique. 

 

3.3 Uniqueness and size based benchmarking 

We calculated proved unique indels detected by 4 callers for No-0 and Po-0. To check whether 

their performance was size dependent, we divided detected indels into 6 intervals: 1-19bp, 20-

49bp, 50-99bp, 100-999bp, 1000-9999bp, >9999bp.  

3.3.1 Unique DEL detection 

Table 3 shows the proved DEL calls for two Phases of No-0 and Po-0 within each size intervals. 

Average number of proved DEL calls for each caller in each interval had been calculated and 

plotted to a line chart. From Figure 4, we could see caller performance greatly depended on the 

size of DELs. 

1-19 bp: Pindel and Clever were the only callers that made unique predictions, where the split 

reads based algorism of Pindel yielded the most favourable results. 

20-49 bp: Within this size range, Clever started performing better than Pindel. Breakdancer_max 

could also achieved some unique calls, but the number was much less than the other two. 

50-99 bp: Clever clearly outperformed Breakdancer_max and Pindel. The ability of Pindel to 

detect unique DEL here had been decreased quickly. 
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100-999 bp: Clever delivered the largest amount of unique DEL, followed by Breakdancer_max, 

while Pindel and SVDetect predicted much less unique DEL. 

1000-9999 bp: Here, Clever still achieved best performance than other callers. 

>9999 bp: Rare calls could be detected only by Clever and SVDetect. 

Table 3 The number of unique proved DEL calls for two phases of No-0 and Po-0 in 6 size 

intervals 

Caller Accession Length of unique DEL (bp) Total 

  1-19 20-49 50-99 100-999 1000-9999 >9999  

Breakdancer_max No-0-1 - 14 54 12 - - 80 

 No-0-2 - - 31 65 - - 96 

 Po-0-1 - 65 57 15 - - 137 

 Po-0-2 - - 27 124 1 - 152 

 Avg - 47 42 54 1 -  

Clever No-0-1 162 876 148 251 40 5 1482 

 No-0-2 19 386 130 109 19 1 664 

 Po-0-1 556 672 80 127 21 - 1459 

 Po-0-2 71 345 103 41 10 - 572 

 Avg 202 570 115 132 23 3  

Pindel No-0-1 20552 232 16 1 - - 20771 

 No-0-2 30032 735 56 16 2 - 30841 

 Po-0-1 24823 196 7 2 - - 25028 

 Po-0-2 32064 726 46 4 2 - 32842 

 Avg 26868 472 31 6 2 -  

SVDetect No-0-1 - - - 2 - - 2 

 No-0-2 - - - 1 5 1 7 

 Po-0-1 - - - 2 3 - 5 

 Po-0-2 - - - - 4 - 4 

 Avg - - - 2 4 1  
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Figure 4 Performances of 4 callers to detect different sizes of unique DEL 

3.3.2 Unique INS detection 

Table 4 shows the proved INS calls from 3 callers for two Phases of No-0 and Po-0 within each 

size intervals. For unique INS detection, caller performance also greatly depended on the size 

(Figure 5). 

1-19 bp: Similarly as in DEL detection, Pindel and Clever made unique predictions in this range, 

and Pindel performed much better. 

20-49 bp: Clever had the best performance and it was the only caller to detect unique INS. 

50-99 bp: Both of Clever and  Breakdancer_max could delivered unique INS calls, but Clever 

performed better than Breakdancer_max. 

100-999 bp: As in 50-99 bp, Clever provided more predictions than Breakdancer_max, although 

the performance of Breakdancer_max increased slightly. 

>999 bp: None of the callers could predict unique INS that were larger than 999bp. 
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Table 4 The number of proved unique INS calls detected by 3 callers for two phases of No-0 

and Po-0 within 5 size intervals. 

Caller Accession Length of unique INS (bp) Total 

  1-19 20-49 50-99 100-999 >999  

Breakdancer_max No-0-1 - - 1 - - 1 

 No-0-2 - - - 10 - 10 

 Po-0-1 - - - - - - 

 Po-0-2 - - - - - - 

 Avg - - 1 10 -  

Clever No-0-1 128 1293 219 26 - 1666 

 No-0-2 37 1124 277 100 - 1538 

 Po-0-1 1136 1380 175 4 - 2695 

 Po-0-2 85 1002 193 124 - 1404 

 Avg 347 1200 216 64 -  

Pindel No-0-1 11144 - - - - 11144 

 No-0-2 17508 - - - - 17508 

 Po-0-1 13785 - - - - 13785 

 Po-0-2 18245 - - - - 18245 

 Avg 15171 - - - -  

 

 

Figure 5 Performances of 3 callers to detect different sizes of unique INS 
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3.4 Comparison of minimum supported reads 

For the comparison of minimum supported reads, we randomly selected 6 shared DEL detected 

by 4 callers (Table 5). Results showed that Pindel required least reads to detect the same DEL, 

followed by Clever and Breakdancer_max, while SVDetect needed to aligned more reads to the 

same region to detect this DEL. It was possible that this value could reflected caller detection 

sensitivity. More contents about this would be discussed in the discussion part. 

Table 5 Minimum supported reads of 6 shared DELs detected by 4 callers. 

Chromosome Coordinate1 Coordinate2 Pindel Clever Breakdancer_max SVDetect 

Chr1 3342445 3343052 3 4 4 5 

Chr1 3728971 3730422 5 8 10 13 

Chr1 3935854 3936316 4 6 9 16 

Chr1 6722873 6723422 4 15 19 24 

Chr1 7714701 7715145 3 13 21 23 

Chr1 9475997 9480635 5 15 17 24 

 

3.5 Comparison of the ratio of multiple anchored reads 

According to the manual, Clever already considered multiple anchored reads in its algorism, 

although it did not output intermediate files with used reads. After calculation, we found 

Breakdancer_max did not consider any multiple anchored reads in its algorism. For Pindel, 

around 6-7% of reads it used for calling SV were multiple anchored reads, while SVDetect had 

11.6-13.1% reads that could map to multiple regions on genomes (Table 6).  

Table 6 Ratios of multiple anchored reads used by 4 callers in their algorisms. 

Caller Ratio of multiple anchored reads (%) 

 No-0-1 No-0-2 Po-0-1 Po-0-2 

Breakdancer_max 0 0 0 0 

Pindel 7.0 7.0 6.2 6.0 

SVDetect 14.4 11.6 13.3 13.1 

 

3.6 Read depth coverage validation 

For unproved contradictory results claimed by different callers in the same region, we validated 

them with read depth coverage based callers. An example was shown as follows. For an indel on 

Chr5 of No-0, Clever predicted it as an 106bp DEL, while Breakdancer_max  claimed it as an 

131bp INS. Using CNVnator, the result of Clever was more likely to be true in this case. Between 

chromosomal coordinates 10936768 to 10896884 (blue line, Figure6), there was an obvious 
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copy number lost shown by red lines within yellow oval. It was also possible to validate results in 

this way using cnD and SVDetect, but we should be aware that they could only provide numbers 

for relative copy number change without graphs.   

 

Figure 6 A DEL validated by CNVnator on chromosome 5 of No-0. The horizontal axis represents 

the chromosome coordinates, while vertical axis illustrates the level of read depth coverage.  

Green line shows the read depth of the reference. Black line shows the read depth coverage of 

each bin in the donor, and red line shows the read depth in the donor. The difference of red line 

compared to green line suggests copy number gain/lost. The blue line in this picture represents 

where a big copy number lost  happened, corresponding to the DEL claimed by Clever.  
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4. Discussion   

According to the results above, types and sizes of SV detected by individual SV callers were 

different. To detect exact SV, especially indels, users should choose callers based on pair end 

distance/orientation or split reads. Although 4 callers (Breakdancer_max, Clever, Pindel, 

SVDetect) had shared DELs with each other, each caller was able to predict unique DELs that 

were private to itself, using their own algorisms. The presence of INS were more difficult to 

detect. 3 callers (Breakdancer_max, Clever, Pindel) gave much lower numbers of results than 

DEL detection. Unique indels detection by callers were size dependent, which means users 

should take SV size into account to choose a suitable combination of SV callers instead of 

consisting to one favourite caller for indels of all size.  

We recommend to use Pindel to detect very small indels (1-19bp), using split reads signature, 

which guarantee its accuracy with one based resolution. However, users should notice that its 

performance greatly decreased when the indel size is increasing. It is sensible to consider other 

software for longer indels. Breakdancer_max better performed in detecting longer size indels 

(50 to 999 bp). SVDetect could also add some value to detect long DELs. 

Clever in our benchmarking has seem to be an “all round” caller on average. It was possible to 

detect indels in all sizes. It complemented predictions for split reads caller Pindel for very small 

indels, and other pair end mapping callers (Breakdancer_max and SVDetect) for longer indels. 

Most of all, it clearly outperformed other callers  for mediate size indels (20-99 bp). The strength 

of Clever to detect indels of this size has also been emphasised in its paper [14].  

Using 6 shared DEL calls, a similar pattern on minimum supported reads was found between 

Pindel, Clever, Breakdancer_max and SVDetect. Pindel always required least reads to detect the 

same DEL, followed by Clever and Breakdancer_max, while SVDetect needed most. One of the 

explanation for this might be that, this value reflects caller detection sensitivity.  The less reads a 

caller requires to detect an SV, the lower coverage of libraries that caller needs as a start input. 

This idea by far was only a hypothesis and it was tested above with random sampling. More 

statistically analysis might help to confirm this. 

Detection of SV in repetitive regions has remained an challenge for all computational methods. 

Callers that did not consider any multiple anchored reads in its algorism, like Breakdancer_max, 

may have problems to detect SV in repetitive regions. By contrast, callers using multiple 
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anchored reads have already taken repetitive regions in to account. In our case, SVDetect used 

around 6-7% more multiple anchored reads than Pindel, but it did not show great advantage of 

detecting more indels. Possible reason might be that, more multiple anchored reads involved 

also increased false positives.  

Read depth based callers (CnD and CNVnator) could only provide approximate copy number 

gain/lost without determining breakpoints, therefore, they might be more suitable for 

downstream SV validation.   

Despite limitations of single callers, we were able to produce a more comprehensive set of SV 

calls by incorporating more algorisms from a wider variety of SV callers. Based on the idea of a 

complementary method, we are ready for creating an SV detection optimizer with parameters 

related to SV types, sizes and genome characteristics. 

5. Conclusion 

Benchmarking results suggested that the types and sizes of structural variants detected by 

individual caller were different. Performances of unique indels detection by Breakdancer_max, 

Clever, Pindel and SVDetect were size dependent. Pindel was the most favourable caller to 

detect very small indels (1-19bp), but its performance greatly decreased when the indel size 

increased. Clever was outstanding in predicting intermediate size indels (20-99 bp). 

Breakdancer_max better performed in detecting longer size indels (50 to 999 bp), while 

SVDetect was able to predict some long deletions. CnD and CNVnator could be used for 

downstream validation. To produce a more comprehensive set of calls, it is better to use a 

complementary method involving a variety of structural variation detection callers with 

different algorisms. 

6. Acknowledgements 

I would like to express my gratitude to Guusje Bonnema and Ke Lin for trusting me with this 

project. I am grateful for Guusje Bonnema for always directing me to the right way. Ke Lin has 

been a tremendous support and help for me during the intensive work. Many thanks to other 

members in plant breeding and bioinformatics groups. This project was not just a technical task 

for me, but also an enjoyable experience before graduation of my MSc in the Netherlands. 



Minor Thesis Report  

18 

 

7. References 

1. Paterson, A. H., Lan, T., Amasino, R., Osborn, T. C., & Quiros, C. (2001). Brassica genomics: a 

complement to, and early beneficiary of the Arabidopsis sequence. Genome Biology, 2, 

1339-1347. 

2. Lou, P., Zhao, J., Kim, J. S., Shen, S., Del Carpio, D. P., Song, X., Koornneef, M. (2007).       

Quantitative trait loci for flowering time and morphological traits in multiple populations of 

Brassica rapa. Journal of experimental botany, 58, 4005-4016. 

3. Lou, P., Xie, Q., Xu, X., Edwards, C., Brock, M., Weinig, C., & McClung, C. (2011). Genetic 

architecture of the circadian clock and flowering time in Brassica rapa. Theoretical and 

Applied Genetics, 123, 397-409. 

4. Pino Del Carpio, D., Basnet, R. K., De Vos, R. C. H., Maliepaard, C., Visser, R., & Bonnema, G. 

(2011). The patterns of population differentiation in a Brassica rapa core collection. 

Theoretical and Applied Genetics, 122, 1105-1118. 

5. Medvedev, P., Stanciu, M., Brudno, M. (2009). Computational methods for discovering 

structural variation with next-generation sequencing. Nature Methods, 6, S13-20. 

6. Dalca, A. V., & Brudno, M. (2010). Genome variation discovery with high-throughput 

sequencing data. Briefings in bioinformatics, 11, 3-14. 

7. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z. & Kristiansen, K. (2010). De novo assembly 

of human genomes with massively parallel short read sequencing. Genome research, 20, 

265-272. 

8. Suzuki, S., Yasuda, T., Shiraishi, Y., Miyano, S., & Nagasaki, M. (2011). ClipCrop: a tool for 

detecting structural variations with single-base resolution using soft-clipping information. 

BMC Bioinformatics, 12, S7. 

9. Zhang, J., Wang, J., & Wu, Y. (2012). An improved approach for accurate and efficient calling 

of structural variations with low-coverage sequence data. BMC Bioinformatics, 13, S6. 

10. Wong, K., Keane, T. M., Stalker, J. & Adams D. J. (2010). Enhanced structural variant and 

breakpoint detection using SVMerge by integration of multiple detection methods and local 

assembly. Genome Biology, 11, R128. 

11. Gan, X., Stegle, O., Behr, J., Steffen, J. G., Drewe, P., Hildebrand, K. L., Sreedharan, V. T. 

(2011). Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, 

477, 419-423. 



Minor Thesis Report  

19 

 

12. Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., Locke, D. P. 

(2009). BreakDancer: an algorithm for high-resolution mapping of genomic structural 

variation. Nature Methods, 6, 677-681. 

13. Clark, M. J., Homer, N., O'Connor, B. D., Chen, Z., Eskin, A., Lee, H., Nelson, S. F. (2010). 

U87MG decoded: the genomic sequence of a cytogenetically aberrant human cancer cell 

line. PLoS genetics, 6, e1000832. 

14. Marschall, T., Costa, I, Canzar, S., Bauer, M., Klau, G., Schliep, A., & Schonhuth, A. (2012). 

CLEVER: Clique-Enumerating Variant Finder. Quantitative biology, under revision. 

15. Emde, A. K., Schulz, M. H., Weese, D., Sun, R., Vingron, M., Kalscheuer, V. M., Reinert, K. 

(2012). Detecting genomic indel variants with exact breakpoints in single-and paired-end 

sequencing data using SplazerS. Bioinformatics, 28, 619-627.  

16. Abyzov, A., Urban, A. E., Snyder, M., & Gerstein, M. (2011). CNVnator: An approach to 

discover, genotype, and characterize typical and atypical CNVs from family and population 

genome sequencing. Genome research, 21, 974-984. 

17. Wang, J., Mullighan, C. G., Easton, J., Roberts, S., Heatley, S. L., Ma, J., Ding, L. (2011). CREST 

maps somatic structural variation in cancer genomes with base-pair resolution. Nature 

Methods, 8, 652-654.  

18. Sindi, S. S., Onal, S., Peng, L., Wu, H. T., & Raphael, B. J. (2012). An integrative probabilistic 

model for identification of structural variation in sequencing data. Genome Biology, 13, R22.  

19. Quinlan, A. R., Clark, R. A., Sokolova, S., Leibowitz, M. L., Zhang, Y., Hurles, M. E., Hall, I. M. 

(2010). Genome-wide mapping and assembly of structural variant breakpoints in the mouse 

genome. Genome research, 20, 623-635.  

20. Zeitouni, B., Boeva, V., Janoueix-Lerosey, I., Loeillet, S., Legoix-Né, P., Nicolas, A., Barillot, E. 

(2010). SVDetect: a tool to identify genomic structural variations from paired-end and 

mate-pair sequencing data. Bioinformatics, 26, 1895-1896. 

21. Ye, K., Schulz, M. H., Long, Q., Apweiler, R., & Ning, Z. (2009). Pindel: a pattern growth 

approach to detect break points of large deletions and medium sized insertions from 

paired-end short reads. Bioinformatics, 25, 2865-2871. 

22. Zeitouni, B., Boeva, V., Janoueix-Lerosey, I., Loeillet, S., Legoix-Né, P., Nicolas, A., Barillot, E. 

(2010). SVDetect: a tool to identify genomic structural variations from paired-end and 

mate-pair sequencing data. Bioinformatics, 26, 1895-1896. 


