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Abstract 
 
Improved quantification and monitoring of biophysical and biochemical 
attributes is required to predict the response of ecosystems to climate 
change and acquire deeper understanding of the carbon cycle. Remote 
sensing is widely viewed as a time- and cost-efficient way to proceed 
with large-scale monitoring of vegetation parameters. For over thirty 
years, use has been made of broadband sensors such as Landsat 
TM/ETM+. The advent of hyperspectral remote sensing or imaging 
spectrometry enlarged the number of available bands within the visible, 
near-infrared (NIR) and shortwave infrared (SWIR). Hyperspectrally 
detectable variables associated with leaf chlorophyll content, 
phenological state and vegetation stress such as the spectral shift of the 
red-edge (670-780 nm) slope and its inflection point termed the red-edge 
position (REP), are not accessible with broadband sensors. State of the 
art indices and analytical techniques applied for broad-band remote 
sensing are not always suitable for information extraction from high 
dimensional hyperspectral data. This study aimed to develop new 
hyperspectral indices and propose innovative ways for empirically 
estimating biochemical and biophysical parameters from hyperspectral 
data.  
 
The red edge position is estimated using the first derivative of the 
spectral curve. Existing curve fitting approaches localise the REP while 
assuming a derivative curve with a single peak. The proposed linear 
extrapolation method localises the red edge position while explicitly 
considering two peaks in the derivative curve. The major contribution of 
this study is that the linear extrapolation method allows optimised 
estimates of leaf chlorophyll or nitrogen content while minimising the 
confounding effects of background and the structure of leaves and 
canopy. By minimising these canopy effects, the linear extrapolation may 
be useful for detecting early physiological stresses associated with 
changes in leaf chlorophyll/nitrogen levels. The linear extrapolation 
method also shows high potential for discriminating tree and shrub 
species at both the leaf and canopy scales. Lastly, it could be used as a 
more stable predictor for monitoring green grass biomass in the Majella 
National park, Italy compared with two-band vegetation indices. The 
method is simple to implement, but sensitive to spectral noise. Spectral 
smoothing is recommended when noise is a problem.  
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The study also highlights the utility of partial least squares (PLS) 
regression based on airborne hyperspectral imagery (HyMap) for 
estimating grass biomass and beech (Fagus sylvatica L.) forest mean 
diameter-at-breast height (DBH) in the Majella National Park, Italy. PLS 
regression produced lower prediction errors for grass biomass and beech 
forest mean DBH compared with univariate regression involving 
vegetation indices such as NDVI. NDVI may be simple to implement but 
could be lacking in terms of exploiting the information content inherent 
in several narrow bands. 
 
In a nutshell, this study makes a contribution in the domain of 
information extraction from hyperspectral data for estimating vegetation 
parameters such as leaf chlorophyll/nitrogen concentration, grass 
biomass and forest structural parameter using empirical models. Other 
studies are focused on developing physically based methods given the 
lack of robustness and portability of empirical models for varying 
environmental conditions. However, empirical models that are less 
sensitive to environmental conditions such as models based on the linear 
extrapolation REP could be used to support the development of 
physically based models, particularly to estimate the values of the model 
parameters, or to refine the underlying concepts on which the model is 
constructed. The future of hyperspectral remote sensing could hinge on 
enhancing the link between empirical and physically based approaches. 
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Samenvatting 
 
Verbetering van de kwantificering en monitoring van biofysische en 
biochemische attributen is noodzakelijk voor het voorspellen van de 
invloed van klimaatsverandering op ecosystemen en het verkrijgen van 
een beter begrip in de koolstof cyclus. Aardobservatie door middel van 
remote sensing wordt algemeen beschouwd als de meest tijd- en kost-
efficiënte wijze voor grootschalige monitoring van vegetatie parameters. 
Traditioneel wordt hiervoor gebruik gemaakt van breed band sensoren 
zoals Landsat TM/ETM+. De komst van hyperspectrale remote sensing 
of beeldvormende spectrometrie vergrootte het aantal beschikbare 
banden in het zichtbare, nabije en korte golf infrarood bereik. 
Hyperspectraal detecteerbare variabelen geassocieerd met het chlorophyl 
gehalte, de fenologie en stress van bladeren zoals de verschuiving van de 
hellingshoek van de spectrale curve op de rand van rood en infrarood (de 
zogenaamde red edge, gelegen tussen 670-780 nm) en het bij deze curve 
behorend inflectie punt (red edge position, REP), zijn  niet waarneembaar 
met breed band sensoren. Gangbare indices en analyse technieken 
gebruikt voor breed band remote sensing zijn niet altijd geschikt voor het 
extraheren van informatie uit hoog dimesionele hyperspectrale data. Deze 
studie beoogt de ontwikkeling van nieuwe hyperspectrale indices en stelt 
innovatieve wegen voor voor het empirisch schatten van biochemische en 
biophysische parameters uit hyperspectrale data.  
 
De eerste afgeleide van de spectrale curve wordt gebruikt voor het 
schatten van de red edge positie. Bestaande curve fitting methodes 
veronderstellen voor het bepalen van de red edge positie een enkele piek 
in deze eerste afgeleide. De ontwikkelde lineaire extrapolatie methode 
maakt het mogelijk de positie van de red edge te schatten in geval van 
een dubbele piek in de eerste afgeleide. De belangrijkste bijdrage van 
deze studie is dat de lineaire extrapolatie methode een optimale schatting 
van het cholorophyl en stikstof gehalte van bladeren mogelijk maakt door 
minimalisatie van verstoring door de achtergrond en de structuur van 
blad en bladerdek. Door het minimaliseren van de effecten van blad en 
bladerdek zou de lineaire extrapolatie techniek nuttig kunnen zijn voor 
het in een vroeg stadium detecteren van fysiologische stress geassocieerd 
met veranderingen in het gehalte van chlorophyll en stikstof in bladeren. 
De lineaire extrapolatie techniek bleek ook grote potentie te hebben voor 
het onderscheiden van boom- en stuiksoorten, zowel op het niveau van 
blad en bladerdek. Bij toepassing in Majella Nationaal park in Italië 



 x 

bleek het ook een stabielere voorspeller voor het monitoren van de 
biomassa van groen gras te zijn dan een twee band vegetatie index. De 
methode is simpel toe te passen, maar gevoelig voor spectrale ruis. 
Gladstrijken van spectra wordt aanbevolen waar ruis een probleem is.  
 
De studie toonde ook het nut aan van partiële kleinste-kwadraten 
regressie voor het schatten van de biomassa van gras en de diameter op 
borst hoogte (DBH) in beukenbos, in een studie in Majella Nationaal 
Park waarbij gebruik werd gemaakt van airborne hyperstrale beelden 
(HyMap). Partiële kleinste-kwadraten regressie reduceerde de 
voorspellingsfouten voor gras biomassa en de DBH in beukenbos ten 
opzichte van de fouten verkregen met univariate regressie technieken die 
gebruik maakten van vegetatie indices zoals NDVI. NDVI mag dan wel 
simpel toepasbaar zijn, maar kan tekort schieten in het gebruik maken 
van het rijkere informatie gehalte inherent aan meerdere nauwe banden.  
 
Kort samengevat draagt deze studie bij aan het domein van de informatie 
extractie uit hyperspectrale data voor empirische schatting van vegetatie 
karakteristieken zoals chlorophyll en stikstof gehalte van blad, gras 
biomassa en de structuur van bos. Andere studies concentreren zich, om 
tegemoet te komen aan het door variatie in milieu omstandigheden 
veroorzaakte gebrekkige robustheid en overdraagbaarheid van 
empirische modellen, op het ontwikkelen van generieke op fysische 
processen gebaseerde modellen. Empirische modellen die minder 
gevoelig zijn voor milieu omstandigheden, zoals de lineaire extrapolatie 
methode, zouden kunnen worden gebruikt voor het ondersteunen van het 
verder ontwikkelen van fysisch gebaseerde modellen, in het bijzonder 
voor het inschatten van model parameters of het verfijnen van de 
concepten op basis waarvan deze modellen worden geconstrueerd. De 
toekomst van hyperspectrale aardobservatie ligt wellicht in een sterkere 
link tussen empirische en fysisch gebaseerde benaderingen. 
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1.1 Remote sensing of biochemical and biophysical 
parameters 

 
Ecological studies require quantification and monitoring of biochemical 
and biophysical attributes of ecosystems (Asner, 1998). Estimates of 
foliar biochemicals such as the levels of chlorophyll and nitrogen provide 
us with indicators of plant productivity, stress and the availability of 
nutrients (Knipling, 1970; Curran, 1989). Meanwhile, biophysical 
parameters such as leaf area index (LAI) and biomass are important for 
quantifying primary production or carbon cycle of terrestrial ecosystems 
(Mooney, 1986; Bonan, 1993). Direct field techniques for estimating 
these vegetation attributes require frequent destructive harvesting (Gower 
et al., 1999). Such techniques are difficult, extremely labour intensive, 
and costly in terms of time and money. They can hardly be extended to 
cover large areas (Scurlock and Prince, 1993). However, estimates of 
biochemical and biophysical parameters over large areas may be obtained 
using remote sensing data acquired from air or space platforms. Remote 
sensing techniques have been most successful for quantifying and 
monitoring biophysical parameters (Daughtry et al., 1992; Price, 1992; 
Clevers, 1997; Wylie et al., 2002; Cohen et al., 2003; Colombo et al., 
2003). There are fewer applications of air or spaceborne remote sensing 
for estimating biochemical properties (Wessman et al., 1989; Johnson et 
al., 1994; Boegh et al., 2002), primarily because of the low spectral 
resolution of most existing sensors.  
 
1.2 Conventional remote sensing of vegetation 

parameters 
 
Most of the remote sensing products for quantifying biochemical and 
biophysical parameters are derived from broadband sensors such as 
NOAA advanced very high resolution radiometer (AVHRR), SPOT and 
Landsat TM/ETM+ with three to seven spectral bands (Richardson et al., 
1983; Wiegand et al., 1991; Anderson et al., 1993; Duchemin, 1999; Van 
Wagtendonk and Root, 2003). Most studies have focused on developing 
empirical relationships between ground-measured vegetation parameters 
and spectral indices commonly known as vegetation indices. Vegetation 
indices are mathematical transformations of vegetation reflectance into 
dimensionless measures that function as predictors of vegetation 
parameters. The most known and widely used vegetation index is the 
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normalised difference vegetation index (NDVI) developed by Rouse et 
al. (1974). It is based on the contrast between the maximum absorption in 
the red due to chlorophyll pigments and the maximum reflectance in the 
near infrared (NIR) caused by leaf cellular structure (Eq. 1.1.).   
 

NDVI = (NIR-red) / (NIR + red)      (1.1) 
 
However, there are major limitations with the NDVI despite its wide 
application in ecological remote sensing. Several studies show that 
broadband NDVI can be unstable, varying with soil colour, canopy 
structure, leaf optical properties and atmospheric conditions (Huete and 
Jackson, 1988, Middleton, 1991, Kaufman and Tanré, 1992; Qi et al., 
1995, Todd et al., 1998). Furthermore, broadband NDVIs asymptotically 
approach a saturation level after a certain biomass or LAI (Sellers, 1985, 
Gao et al., 2000). Other variants of NDVI such as the soil adjusted 
vegetation index (SAVI) and atmospherically resistant vegetation index 
(ARVI) have been developed to correct for soil and atmospheric effects. 
Despite the developments of the improved variants of NDVI, it has been 
demonstrated that empirical models derived from vegetation indices are 
highly site and sensor specific and therefore unsuitable for application to 
large areas or in different seasons (Curran, 1994; Gobron et al., 1997). 
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Fig. 1.1 (A) Contiguous spectrum of healthy green vegetation using handheld GER 
3700 spectrometer and (B) the same spectrum re-sampled to 6 bands of Landsat 
TM band-setting.  
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1.3 Hyperspectral remote sensing of vegetation 
parameters 

 
A major limitation of broadband remote sensing products is that they use 
average spectral information over broadband widths resulting in loss of 
critical information available in specific narrowbands (Blackburn, 1998, 
Thenkabail et al. 2000). Recent developments in hyperspectral remote 
sensing or imaging spectrometry have provided additional bands within 
the visible, NIR and shortwave infrared (SWIR) (Fig.1.1.). Most 
hyperspectral sensors acquire radiance information in less than 10 nm 
bandwidths from the visible to the SWIR (400-2500 nm) (Asner, 1998). 
For example, the spectral shift of the red-edge (670-780 nm) slope 
associated with leaf chlorophyll content, phenological state and 
vegetation stress, is not accessible with broadband sensors (Collins, 
1978; Horler, et. al., 1983). 
 
Empirical techniques continue to dominate hyperspectral remote sensing 
studies of vegetation parameters. Two main empirical techniques are 
investigated with hyperspectral data; namely, univariate regression 
involving hyperspectral or narrowband indices, and multivariate 
techniques based on more than two wavebands. Recent applications of 
hyperspectral remote sensing show improvements not only in the 
estimation of biophysical parameters (Broge and Leblanc, 2000; Mutanga 
and Skidmore, 2004; Thenkabail et al., 2004) but also in the estimation 
specific biochemical compounds such as leaf pigments (e.g. chlorophyll) 
and nutrient (e.g. nitrogen) concentrations with spectral information of 
specific band(s) and narrowband vegetation indices (Blackburn, 1998; 
Filella and Peñuelas, 1994; Yoder and Pettigrew-Crosby, 1995).  
 
Since statistical techniques lack robustness and portability, some studies 
have focused on the development and application of deductive or 
physical-based approaches involving leaf and canopy radiative transfer 
models (Jacquemoud and Baret, 1990; Kuusk, 1991; Verstraete et al., 
1996). However, these models are computationally demanding and 
require a large number of leaf and canopy variables, which are often 
difficult to estimate (Fang et al., 2003). The focus of this study shall be 
on empirical methods for estimating vegetation parameters.  
 



General Introduction 

 6 

1.3.1 The red-edge position (REP) 
 
Prominent among new hyperspectral remote sensing products is the 
wavelength of maximum slope in the red-NIR transition or red-edge 
(670-780 nm). This wavelength point is known as the red-edge position 
(REP) (Horler et al., 1983; Clevers et al., 2002). Increases in the amount 
of chlorophyll causes a broadening of the major chlorophyll absorption 
feature centred around 680 nm (Buschmann and Nagel, 1993; Dawson 
and Curran, 1998), causing a shift in the red edge slope and REP towards 
longer wavelengths, i.e. the “red shift” (Gates et al., 1965; Collins et al., 
1977; Horler et al., 1980; Horler et al., 1983; Hare et al., 1984; Boochs et 
al., 1990; Clevers et al., 2002). Low leaf chlorophyll concentrations 
cause shifts of the red-edge slope and REP towards the shorter 
wavelengths i.e. the “blue shift”. These characteristic shifts in the REP 
have been used as a means to estimate foliar chlorophyll 
concentration/content and also as an indicator of vegetation stress (Chang 
and Collins, 1983; Horler et al., 1983; Curran et al., 1995; Clevers et al., 
2002; Lamb et al., 2002; Smith et al., 2004). An advantage of the REP 
over the NDVI is that it is less sensitive to varying soil and atmospheric 
conditions, and sensor view angle (Curran et al. 1995, Blackburn and 
Pitman, 1999, Clevers et al. 2001). 
 
However, one critical problem has limited the application of the REP for 
estimating leaf chlorophyll concentration or its correlates e.g. leaf 
nitrogen concentration. Derivative analysis of contiguous spectra, the 
simplest method for locating the REP usually reveals the presence of two 
dominant peaks in the red-edge around 700 and 725 nm causing a 
bimodal distribution of REP data around these peaks and a discontinuity 
in the REP/chlorophyll relationship (Horler et al. 1983). Experimental 
studies show that low leaf chlorophyll concentration is associated with 
REP values near 700 nm, while high chlorophyll concentration in 
combination with leaf internal scattering influence REP values near 725 
nm (Horler et al., 1980; Boochs et al., 1990; Lamb et al., 2002). Zarco-
Tejada et al. (2003) demonstrated in an experimental study that the 
existence of the double peak is due to chlorophyll fluorescence emission 
at about 690 nm and 730 nm. Earlier studies had shown that the 
chlorophyll fluorescence ratio (F690/F730) decreases with increasing 
chlorophyll content of developing leaves (Hák et al., 1990; Babani et al., 
1996) and increases during autumnal chlorophyll breakdown of various 
tree leaves (D'Ambrosio et al., 1992).  
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Several other techniques for locating the REP have been developed. 
These include model-fitting techniques such as the simple linear four-
point interpolation method (Guyot and Baret, 1988) and computational 
complex procedures including fitting a high-order polynomial function 
(Pu et al., 2003) or an inverted Gaussian function (Bonham-Carter, 1988) 
to the reflectance spectrum. The above techniques do mitigate the 
discontinuity in the REP data caused by the double-peak feature (Clevers 
et al., 2002), but do not particularly target changes around the dominant 
chlorophyll peaks (around 700 and 725 nm). Thus, could accurate 
estimates of chlorophyll or nitrogen concentration be obtained with REP 
derived by tracking changes near the dominant red-edge peaks?  
 
1.3.2 Multivariate regression techniques 
 
Most vegetation indices are computed from two bands. One of the 
disadvantages of this method is that it utilises a limited amount of the 
total spectral information available in an image (Foody et al., 2003). 
Fewer studies have evaluated statistical techniques that integrate 
information from several spectral bands. A commonly used technique 
that involves several hyperspectral bands is multiple stepwise regression 
(Kokaly and Clark, 1999; Curran et al., 2001; De Jong et al., 2003). 
However, Curran (1989) and De Jong et al. (2003) point out that this 
method might be affected by multicollinearity among hyperspectral 
bands. Increasingly, remote sensing studies of vegetation are making use 
of multivariate techniques such artificial neural networks (ANN) (Miller 
et al., 1995; Skidmore et al., 1997: Mutanga et al. 2004) and partial least 
squares regression (Hansen and Schjoerring, 2003; Huang et al., 2004) to 
avoid collinearity and having to deal with a large number of predictor 
variables. But their applications to various ecosystems remain limited. 
Thus, could the use of multiple hyperspectral bands improve the 
estimation of biophysical parameters compared to hyperspectral indices?  
 
1.4 Research Objectives  
 
(i) To develop a technique for locating the REP that mitigates the 

destabilising effect of the double-peak feature on the REP data 
and tracks changes around the dominant chlorophyll sensitive 
peaks (700 and 725 nm)?   

(ii) To test the performance of the new method vis-à-vis other REP 
techniques for estimating nitrogen concentrations, estimating 
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foliar chlorophyll for a wide range of canopy and environmental 
conditions, discriminating species at leaf and canopy scales and 
estimating grass biomass and forest structural attributes.   

(iii) To investigate the performance of empirical techniques based on 
multiple hyperspectral bands for estimating grass biomass and 
forest structural attributes.  

 

 
Fig.1.2 Location of the Majella National Park, Italy and HyMap flight lines. 

 
1.6 General methods  
 
The investigations were conducted using leaf and canopy spectra of 
plants that were grown in the greenhouse, data simulated from leaf and 
canopy reflectance models and field data from the Majella National Park, 
Italy (Fig.1.2). Different remote sensing devices were adopted. These 
include field spectrometers and an airborne hyperspectral sensor (i.e. 
HyMap).  
 
The Majella National Park, Italy (latitude 41o52' to 42o14'N, longitude 
13o50' to 13o14'E) covers an area of 74095 ha. The park extends into the 
southern part of Abruzzo, at a distance of 40 km from the Adriatic Sea. 
This region is situated in the massifs of the Apennines (Conti, 1998). The 
park is characterised by several mountain peaks, the highest being Mount 
Amaro (2794 m). More specifically, the study site (latitude 41o49' to 
42o14'N, longitude 13o57' to 14o6'E) is situated between Mounts Majella 
and Morrone to the east and west, respectively. It covers an area of 
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40 km by 5.5 km. Gallego Fernández et al. (2004) argue that plant 
community dynamics in Mediterranean basin ecosystems are driven 
mainly by alternating episodes of human intervention and land 
abandonment. For example, abandoned settlement and agricultural areas 
in Majella are returning to oak (Quercus pubescens) woodlands at the 
lower altitude (400 m to 600 m) and beech (Fagus sylvatica) forest at the 
higher altitude (1200 m to 1800 m). Between these two formations is a 
landscape composed of shrubby bushes, patches of grass/herb vegetation, 
and bare rock outcrops. 
 
1.7 Thesis outline 
 
The main body of this thesis starts with chapter two, entirely focused on 
the development of a new REP technique and its application for 
estimating leaf nitrogen concentration. Leaf and canopy spectra of plants 
grown in the greenhouse and the spectra of leaf stacks consisting of 
mixed grass/herb species collected from the Majella National Park have 
been used to test the new REP model.  
 
In the subsequent chapters (3 to 5), the performance of the new REP 
technique is compared with that of conventional techniques for (i) 
estimating leaf chlorophyll content under a wide range of perturbing 
factors such as varying soil background, leaf area and mass and sun view 
angles using simulated data from leaf and canopy reflectance models, (ii) 
discriminating shrub and tree species at the leaf and canopy scales, (iii) 
estimating green grass biomass in the Majella Park for two consecutive 
years (summers of 2004 and 2005) using airborne HyMap images.  
 
Chapters 6 and 7 are focused on testing other empirical techniques based 
on multiple HyMap bands such as partial least squares regression and 
artificial neural networks for estimating green grass biomass and beech 
forest structural parameters. 
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Chapter 2 
 

A new technique for extracting the red-edge 
position from hyperspectral data: The linear 

extrapolation method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter is based on 
Cho, M.A. and Skidmore, A.K. (2006), A new technique for extracting 
the red edge position from hyperspectral data: the linear extrapolation 

method. Remote sensing of Environment, 101:181-193. 
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Abstract 
 
The position of the inflexion point in the red edge region (680 nm to 780 
nm) of the spectral reflectance signature, termed the red edge position 
(REP), is affected by biochemical and biophysical parameters and has 
been used as a means to estimate foliar chlorophyll or nitrogen content. 
In this paper, we report on a new technique for extracting the REP from 
hyperspectral data that aims to mitigate the discontinuity in the 
relationship between the REP and the nitrogen content caused by the 
existence of a double-peak feature on the derivative spectrum. It is based 
on a linear extrapolation of straight lines on the far-red (680 nm to 700 
nm) and NIR (725 nm to 760 nm) flanks of the first derivative reflectance 
spectrum. The REP is then defined by the wavelength value at the 
intersection of the two lines. The output is a REP equation, REP = - (c1 - 
c2) / (m1 - m2), where c1 and c2, and m1 and m2 represent the intercepts 
and slopes of the far-red and NIR lines, respectively. Far-red wavebands 
at 680 nm and 694 nm in combination with NIR wavebands at 732 nm 
and 760 nm or at 724 nm and 760 nm were identified as the optimal 
combinations for calculating nitrogen-sensitive REPs for three spectral 
data sets (rye canopy, and maize leaf and mixed grass/herb leaf stack 
spectra). REPs extracted using this new technique (linear extrapolation 
method) showed high correlations with a wide range of foliar nitrogen 
concentrations for both narrow and wider bandwidth spectra, being 
comparable with results obtained using the traditional linear 
interpolation, polynomial and inverted Gaussian fitting techniques. In 
addition, the new technique is simple as is the case with the linear 
interpolation method, but performed better than the latter method in the 
case of maize leaves at different stages of development and mixed 
grass/herb leaf stacks with a low nitrogen concentration.    
 
Keywords: hyperspectral data; red edge position; linear extrapolation 
technique; foliar nitrogen concentration 



Chapter 2 

 13 

2.1 Introduction 
 
The region of the red-near infrared (NIR) transition has been shown to 
have high information content for vegetation spectra (Collins et al., 1977; 
Collins, 1978; Horler et al., 1983). This region is generally referred to as 
the “red edge”. It represents the region of abrupt change in leaf 
reflectance between 680 nm and 780 nm caused by the combined effects 
of strong chlorophyll absorption in the red wavelengths and high 
reflectance in the NIR wavelengths due to leaf internal scattering (Gates 
et al., 1965; Horler et al., 1983). Increases in the amount of chlorophyll, 
for example, results in a broadening of the major chlorophyll absorption 
feature centred around 680 nm (Buschmann and Nagel, 1993; Dawson 
and Curran, 1998), causing a shift in the red edge slope and wavelength 
of maximum slope (or inflection point) towards longer wavelengths 
(Gates et al., 1965; Collins et al., 1977; Horler et al., 1980; Horler et al., 
1983; Hare et al., 1984; Boochs et al., 1990; Clevers et al., 2002). The 
latter is termed the red edge position (REP). Shifts in the REP to longer 
or shorter wavelengths have been used as a means to estimate changes in 
foliar chlorophyll content and also as an indicator of vegetation stress 
(Chang and Collins, 1983; Horler et al., 1983; Curran et al., 1995; 
Clevers et al., 2002; Lamb et al., 2002; Smith et al., 2004). 
 
Since the REP is defined as the inflection point of the red-NIR slope, an 
accurate determination of the REP requires a number of spectral 
measurements in narrow bands in this region (Clevers et al. 2002). 
Fortunately, recent developments in imaging spectrometry have provided 
additional bands (contiguous spectra of less than 10 nm bandwidths) 
within the red edge region compared to broadband imagery such as 
Landsat Thematic Mapper (Asner, 1998). Subsequently, the REP is 
defined by the maximum first derivative of the reflectance spectrum. 
However, the limitation of this approach is that the maximum first 
derivatives of contiguous spectra have been well documented to occur 
within two principal spectral regions (around 700 and 725 nm) causing a 
bimodal distribution of REP data around 700 and 725 nm and a 
discontinuity in the REP/chlorophyll relationship (Horler et al. 1983). 
Several other studies have revealed the existence of this double-peak 
feature in the first derivative of contiguous spectra. Boochs et al. (1990) 
identified two peaks in winter wheat at 703 and 735 nm.  Smith et al 
(2004) also found peaks in canopy spectra of grass near 702 and 725 nm. 
Clevers et al. (2004) used the Analytical Spectral Devices (ASD) 
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FieldSpec FR spectroradiometer with a 1 nm spectral resolution and 
observed two peaks in canopy spectra of grass near 700 and 720 nm. 
Zarco-Tejada et al. (2003) observed the double-peak feature at 690-710 
nm and found out that it is a function of natural fluorescence emission at 
690 and 730 nm.  
 
Experimental studies have shown that low leaf chlorophyll concentration 
is associated with REP values near 700 nm, while high chlorophyll 
concentration in combination with leaf internal scattering influence REP 
values near 725 nm (Horler et al., 1980; Boochs et al., 1990; Lamb et al., 
2002). Model fitting techniques such as the simple linear four-point 
interpolation method (Guyot and Baret, 1988) and computational 
complex procedures including fitting a high-order polynomial function 
(Pu et al., 2003) or an inverted Gaussian function (Bonham-Carter, 1988) 
to the reflectance spectrum somewhat generate continuous REP data 
(Clevers et al., 2002). In other words, these techniques mitigate the 
discontinuity in REP data caused by the double-peak feature. But the first 
question we pose is whether these techniques adequately track variations 
in spectral reflectance near the low and high chlorophyll sensitive peaks 
(near 700 and 725 nm). Dawson and Curran (1998) proposed a three-
point Lagrangian interpolation approach. But Clevers et al. (2002) argue 
that this approach is suitable for coarsely sampled spectra and is not 
capable of resolving the destabilising effect of the double-peak feature 
when determining the REP. In this study, we hypothesise that first, the 
discontinuity in the REP/chlorophyll relationship caused by the existence 
of a double-peak feature on the derivative spectrum could be mitigated 
and secondly, spectral changes near the low and high chlorophyll 
sensitive peaks could be adequately tracked if the REP is determined as 
an intersection of two straight lines extrapolated through two points on 
the far-red (680 nm to 700 nm) and two points on the NIR (725 nm to 
760 nm) flanks of the first derivative reflectance spectrum. The second 
research question is whether the proposed linear extrapolation method 
yields similar results to conventional methods such as the linear four-
point interpolation, high-order polynomial and inverted Gaussian fitting 
techniques in explaining variations in foliar nitrogen concentration. 
 
Plant nitrogen status is often related to chlorophyll content (Everitt et al., 
1985; Boochs et al., 1990; Yoder and Pettigrew-Crosby, 1995). But such 
a relationship depends on the physiological status of the plant (Mooney, 
1986; Boochs et al., 1990), e.g. changing from low to high positive 
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correlations with increasing leaf age (Wenjiang et al., 2004). Nitrogen is 
used for the formation of components such as chlorophyll, the carbon 
fixing enzyme ribulose biphosphate carboxylase (Rubisco) and inert 
structural components in cell tissue (Mooney, 1986; Jongschaap and 
Booij, 2004). Reflectance measurements in the visible and red edge 
wavelengths (400-700 nm) have been used to determine foliar nitrogen 
concentration (Thomas and Oerther, 1972; Bausch and Duke, 1996; 
Sullivan et al., 2004). But the results rely on the close correlation 
between nitrogen and chlorophyll pigments (Yoder and Pettigrew-
Crosby, 1995; Hansen and Schjoerring, 2003; Haboudane et al., 2004) 
because pigments (chlorophyll, carotenoids and xanthophylls) 
predominantly determine most spectral features between 400 and 700 nm 
(Gates et al., 1965; Gausman, 1977; Yoder and Pettigrew-Crosby, 1995; 
Blackburn, 1998; Carter and Knapp, 2001; Merzlyak et al., 2003). 
Therefore, the estimation of foliar nitrogen concentration based on the 
REP as the predictor (Lamb et al., 2002; Jongschaap and Booij, 2004) 
indirectly depends on shifts in the REP mainly attributed to changes in 
chlorophyll concentration.  
 
Thus, the objectives of this study were to (i) define a simple technique 
for extracting the REP from hyperspectral data in order to first, mitigate 
the discontinuity in the REP/nitrogen relationship caused by the double-
peak feature on the first derivative spectrum and secondly, track 
variations in spectral reflectance near the dominant peaks (700 nm and 
725 nm) and (ii) compare the performance of the REPs retrieved by the 
new technique with REPs located by the maximum first derivatives and 
model fitting techniques such as the linear four-point interpolation, high-
order polynomial fitting, and inverted Gaussian fitting methods in 
explaining variations in foliar nitrogen concentration.   
 
2.2 Experiments and data sets 
 
Three spectral data sets were used in this study. First, greenhouse 
experiments were carried out to assess the performance of REPs 
extracted by the proposed linear extrapolation technique for predicting 
leaf nitrogen concentration with regard to spectral reflectance at (i) leaf 
scale for maize leaves and (ii) canopy scale for rye grass canopies. 
Secondly, leaf specimens were collected in the field at the Majella 
National Park in Italy for applying the same analysis on a stack of mixed 
grass/herb leaves. 
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2.2.1 Greenhouse experiment  
 
Maize (Zea mays, L.) and rye (Lolium perenne, L.) were separately 
grown in 5-litre pots in a greenhouse chamber for ten weeks. Three soil 
nitrogen treatments (low, medium and high) were used in order to create 
different foliar nitrogen concentration levels. The low nitrogen treatment 
consisted of potting soil. In the medium and high nitrogen treatments, 
nitrogen was applied as ammonium nitrate fertiliser at the rates of 50 kg 
N ha –1 and 150 kg N ha –1, respectively. Four maize and forty rye seeds 
were sown in each maize and rye pot, respectively.  A total of thirty pots 
were used for each nitrogen treatment. The experiment was carried out 
under a natural photoperiod (about 11 hours of daylight) with a 
maximum day temperature of 20ºC and night temperature of 15ºC.  
 
2.2.2 Field experiment 
 
Mixed grass/herb leaves were collected at thirty-four randomly chosen 
plots (30 m by 30 m) in the Majella National Park in Italy (latitude 41º 
52’N, longitude 13º 14’E). The dominant grass species include 
Brachypodium genuense, Briza media, Bromus erectus and Festuca sp. 
Herbs include Helichrysum italicum, Galium verum, Trifolium pratense, 
Plantago lanceolata, Sanguisorba officinalis and Ononis spinosa. Each 
mixed grass/herb leaf sample consisted of leaf specimens clipped at five 
subplots (1m by 0.5 m) within each 30 m by 30 m plot. The clipped 
leaves were placed in transparent polythene sampling bags. The leaf 
spectra were measured within two hours of collection in the field. The 
data was collected in September 2004. 
 
2.2.3 Spectral measurements 
 
Leaf and canopy spectral measurements were made using a GER 3700 
(Spectra Vista Corporation (NY) USA) spectroradiometer. The GER 
3700 is a three dispersion grating spectroradiometer using Si and PbS 
detectors with a single field of view. The wavelength range is 350 nm to 
2500 nm, with a resolution of 1.5 nm in the 350 nm to 1050 nm range, 
6.2 nm in the 1050 nm to 1900 nm range, and 9.5 nm in the 1900 nm to 
2500 nm range. 
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(a) Leaf spectral measurements – maize leaves 
 
Leaf spectra were obtained from maize leaves of different ages. The 
measurements were carried out ten weeks after sowing, before tassel 
initiation. Leaf specimens along the maize stems (representing different 
leaf age groups) were collected from 10 pots per treatment for the low 
and medium nitrogen treatments only. The stems of the low and medium 
nitrogen treatments had three and four pairs of leaves, respectively. Four 
corresponding pairs of leaves (i.e. a set of 8 leaves of same age group) 
collected from the four stems in each pot were taken to represent a leaf 
sample. We obtained a sample size of n = 67. This was three samples 
short of an expected n = 70, that is n = 30 and n = 40 for the low and 
medium nitrogen treatments, respectively, because three pots of the low 
treatment had an incomplete set of the oldest leaves.   
 
Leaf spectral measurements were made following the method described 
by Gong et al. (2002) and Vaiphasa et al. (2005). The spectral 
measurements were made in a dark laboratory room in order to ensure 
stable atmospheric and uniform illumination conditions (Mutanga et al., 
2003; Vaiphasa et al., 2005). The leaves were clipped and laid on a black 
tray, to reduce the effect of background spectra on sample spectrum 
(Gong et al., 2002). Spectral measurements were then taken using a fibre 
optic with a 23º field of view. The sensor was held at about 10 cm above 
a single leaf blade covering an instantaneous field of view of about 4 cm 
on the leaf. A 50W halogen lamp positioned next to the sensor was used 
to illuminate the target. The radiance was converted to reflectance, using 
scans of a white spectralon reference panel. The spectrum of each sample 
was determined as the average of 16 spectral measurements (i.e. two 
measurements per leaf from the eight leaves per sample). The two 
spectral measurements for each leaf were made at one third and two 
thirds of the distance from the leaf collar. Two target measurements were 
made after measuring the reference panel. 
 
(b) Leaf stack spectral measurements – Mixed grass/herb leaves 
 
Spectral measurements of the mixed grass/herb leaf specimens collected 
from Majella National Park in Italy were made in a dark laboratory room. 
A stack of mixed grass/herb leaves was placed on a black try in order to 
control for background reflectance. The measurements were made at 
about 40 cm at nadir above the leaf stack using a fibre optic with a 23º 
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field of view, covering an instantaneous field of view of about 16 cm. A 
50W halogen lamp positioned next to the sensor was used to illuminate 
the target. The spectrum of each mixed grass/herb sample was 
determined as the average of 15 spectral measurements. One target 
measurement was made after measuring the reference panel. The leaves 
were re-mixed after each measurement in order to capture the maximum 
variation in the leaf stack.   
 
(c) Canopy spectral measurements – Rye grass 
 
Canopy spectral measurements were obtained from the potted rye plants 
following the method described by Mutanga et al. (2003). The potted 
plants were transferred from the greenhouse to a laboratory room on each 
day of measurement. A total of 30 pots were measured on the third and 
fifth weeks after emergence (five pots/treatment/week). The sensor with 
a field of view of 3o was mounted on a tripod and positioned 2 m directly 
above the pot at nadir position, covering an instantaneous field of view of 
about 11 cm on the target. A 50W halogen lamp, positioned next to the 
sensor was used to supply illumination on the target. The pots were 
rotated by about 36o after every 4th measurement in order to average out 
differences in canopy orientation on each pot. The radiance was 
converted to reflectance, using scans of a white spectralon reference 
panel. Four target measurements were made after measuring the 
reference panel. The spectrum of each sample was determined as the 
average of 20 spectral measurements.  
 
2.2.4 Measurement of foliar nitrogen concentration  
 
Following spectral measurements, leaf samples were oven-dried at 70ºC 
for 24 hours. The dry leaf samples were milled before digestion in tubes 
with sulphuric acid (H2SO4), salicylic acid, hydrogen peroxide (H2O2) 
and selenium (Novozamsky et al., 1983). Afterwards, the nitrogen 
concentration was measured with a segmented flow analyser at 660 nm. 
Foliar nitrogen concentration was expressed as a percentage of dry 
matter. Table 2.1 shows the descriptive statistics of nitrogen 
concentration for the three data sets (rye, maize and mixed grass/herb).  
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Table 2.1 Statistics of nitrogen concentration (% dry matter) for rye, maize and mixed 
grass/herb leaves.  

Data set  Mean (%) 95% CI Minimum Maximum  SD 
Rye (n=30) 4.13 0.63 1.45 6.26 1.69 
Maize (n=67) 2.25 0.24 0.59 4.28 1.01 
Grass/herb (n=34) 1.23 0.06 0.95 1.69 0.17 

CI = confidence interval and SD = standard deviation  
 
2.3 Red edge position algorithms  
 
2.3.1 Maximum first derivative spectrum 
 
The REP is defined by the wavelength of the maximum first derivative of 
the reflectance spectrum in the region of the red edge. The first derivative 
was calculated using a first-difference transformation of the reflectance 
spectrum (Dawson and Curran, 1998) as follows: 
 

FDR(λi) = (Rλ(j+1) – Rλ(j))/Δ λ     (2.1) 
 
where FDR is the first derivative reflectance at a wavelength i, midpoint 
between wavebands j and j+1, Rλ(j) is the reflectance at the j waveband, 
Rλ(j+1) is the reflectance at the j+1 waveband, and Δ λ is the difference in 
wavelengths between j and j+1.. 
 
2.3.2 Linear four-point interpolation technique 
 
The linear four-point interpolation method (Guyot and Baret, 1988) 
assumes that the reflectance curve at the red edge can be simplified to a 
straight line centred near the midpoint between the reflectance in the NIR 
at about 780 nm and the reflectance minimum of the chlorophyll 
absorption feature at about 670 nm. It uses four wavebands (670, 700, 
740 and 780 nm), and the REP is determined by using a two-step 
calculation procedure.  
 
(i) Calculation of the reflectance at the inflexion point (Rre): 
 

( ) 2/780670 RRRre +=       (2.2) 
 
where R is the reflectance. 
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(ii) Calculation of the red edge wavelength or red edge position 
(REP): 

 

⎟⎟
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⎝

⎛
−
−
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700740

70040700
RR
RR

REP re       (2.3) 

700 and 40 are constants resulting from interpolation in the 700-740 nm 
interval.  
 
2.3.3 Polynomial fitting technique 
 
A fifth-order polynomial (Pu et al., 2003) function (Eq. 2.4) was fitted to 
the reflectance spectrum between the wavelengths corresponding to the 
minimum reflectance in the red and the maximum NIR (shoulder) 
reflectance.  
 

i

i iaaR ∑ =
+= 5

10)( λλ        (2.4) 
 
where λ represents 76 bands of GER 3700 from 670 nm to 780 nm. 
Subsequently, REP is determined from the maximum first derivative 
spectrum. The first derivative was calculated using a first-difference 
transformation of the reflectance spectrum obtained from the polynomial 
fit. 
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Fig.2.1 Original (a), smooth (b) and mean (c) first spectral derivative curves for rye 
canopies (n=30), showing the regions of occurrence of two peaks. 
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2.3.4 Inverted Gaussian fitting technique 
 
An inverted Gaussian (IG) model (Bonham-Carter, 1988; Dawson and 
Curran, 1998; Miller et al., 1990; Pu et al., 2003) was fitted to the 
spectral reflectance in the 660-780 nm band range. Accordingly, the IG 
model (Eq. 2.5) represents the red edge by the reflectance equation: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−−= 2

2
0

2
)(

exp)(
σ

λλλ oss RRRR     (2.5) 

   
where Rs is the maximum or “shoulder” spectral reflectance, Ro and λo 
are the minimum spectral reflectance and corresponding wavelength, and 
σ is the Gaussian function variance. The REP is then defined as:  
 

σλ += 0REP         (2.6) 
 
We used an iterative optimisation fitting procedure to determine 
parameters of the IG model (Miller et al., 1990). Initial guesses of the 
model parameters were made after review of each data set. The IG model 
employs a least-square criterion to fit a normal curve to the reflectance 
red edge. Typically, λo and σ were set at 670 nm and 30 nm, respectively. 
The values of λo, Ro, Rs and σ are then determined by the fitting 
procedure.  
 
2.3.5 Proposed technique: linear extrapolation technique 
 
2.3.5.1 Model description 
It is necessary to understand the nature of the first and second derivative 
spectral curves of the red edge in order to determine the regions of 
occurrence of the double-peak feature. We used a Savitzky-Golay second 
order polynomial least-squares function of five-band window (Savitzky 
and Golay, 1964) to smooth the first derivative spectra (Fig. 2.1). The 
second derivative was then calculated using a first-difference 
transformation of the first derivative reflectance spectrum.  
 
It could be observed from the first derivative curves (Fig. 2.2) that the 
double-peak feature is located between 690 nm and 740 nm. The multiple 
peaks correspond to points where the second derivative curves cut the 
wavelength axis. For example, two maxima can be located in the rye 
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spectra of the medium and high nitrogen treatments at approximately 698 
nm and 720 nm.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.2 Red edge first derivative curves (left) and their corresponding second derivative 
curves (right) for (a) rye canopies of different nitrogen treatments, (b) maize leaves of 
different ages and (c) three randomly selected mixed grass/herb samples, showing the 
presence of one or more peaks. The spectral range delineated by dashed lines shows the 
region of occurrence of multiple peaks.  
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Fig.2.3 Scatter plots between nitrogen concentration and red edge position for (a) rye 
canopies, (b) maize leaves and (c) mixed grass/herb leaf stacks, extracted from GER 
spectra (1.5 nm bandwidth) showing discontinuity in the nitrogen/red edge position 
relationship. 
 
A new technique for determining the REP was therefore designed based 
on these observations:  
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maximum first derivative). This effect is revealed by a 
discontinuity in REP/nitrogen relationship (e.g. Fig. 2.3). Fig. 2.3 
shows two groups of scatter points centred at around 700 nm and 
725 nm for low and high nitrogen concentration values, 
respectively.  Therefore, the second objective was:  

(ii) to track variations near the low and high nitrogen sensitive 
wavebands (700 nm and 725 nm).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.4 Schematic representation of the linear extrapolation technique for extracting the 
red edge position (REP) – wavelength of the meeting point between two straight lines 
extrapolated on the far-red and NIR flanks of the first derivative spectrum. 
 
The new technique is based on linear extrapolation of two straight lines 
(Eqs. 2.7 and 2.8) through two points on the far-red (680 nm to 700 nm) 
and two points on the NIR (725 nm to 760 nm) flanks of the first 
derivative reflectance spectrum of the red edge region as illustrated in 
Fig. 2.4. The REP is then defined by the wavelength value at the 
intersection of the straight lines (Eq. 2.9). 
 

Far-red line: FDR = m1λ+ c1     (2.7) 
 

NIR line: FDR= m2λ + c2     (2.8) 
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where m and c represent the slope and intercept of the straight lines. At 
the intersection, the two lines have equal λ (wavelength) and FDR values. 
Therefore, the REP, which is the λ at the intersection, is given by: 
 

( )
)(

21

21

mm
ccREP

−
−−

=       (2.9) 

 
In summary, only four coordinate points (or wavebands) are required to 
calculate the REP by the linear extrapolation method; for instance, two 
bands near 680 nm and near 700 nm to calculate m1 and c1 for the far-red 
line and two bands near 725 nm and near 760 nm to calculate m2 and c2 
for the NIR line.  
 
2.3.5.2 Sensitivity analysis  
The next step was to determine the four wavebands required to calculate 
nitrogen-sensitive REPs by the linear extrapolation method.  For that 
reason, we carried out a sensitivity analysis to assess the strength of the 
correlation between REPs and foliar nitrogen concentration using 
different waveband combinations. Using fixed wavebands at 680 nm and 
760 nm (representing the start and end of the red edge) for the far-red and 
NIR lines, respectively (Fig. 2.4), the most sensitive wavebands near 700 
nm i.e. region A (684-716 nm) for the far-red, and near 725 nm i.e. 
region B (723-736 nm) for the NIR lines were determined. All 
combinations (230 in total) of wavebands involving 23 wavebands in 
region A and 10 wavebands in region B using the GER 3700 instrument 
were used to calculate 230 (23 x 10) sets of REPs for each spectral data 
set (rye canopy, maize leaf and mixed grass/herb leaf stack spectra). 
Subsequently, Pearson correlation coefficients were calculated between 
REPs for all 230 REP sets and foliar nitrogen concentrations for each 
data set. The resulting 230 correlation coefficients and their 
corresponding far-red and NIR band combinations were plotted in a 
contour plot in order to visualise the most sensitive waveband 
combinations.   
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Table 2.2 Red edge spectral coverage for AVIRIS (~10 nm bandwidth), HyMap (15-16 
nm bandwidth) and Hyperion sensors (~ 10 nm bandwidth).  

AVIRIS HyMap Hyperion 
Band centre (nm) Band centre (nm) Band centre (nm) 
665.73 665 671.02 
675.62 680 681.20 
683.30 695 691.37 
692.88 711 701.55 
702.46 725 711.72 
712.04 740 721.90 
721.63 756 732.07 
731.21 771 742.25 
740.80 786 752.43 
750.38 801 762.60 
759.97  772.78 
769.56  782.95 
779.14  793.13 
788.73  803.30 
798.32   
807.91   

 
 
2.3.6 Comparing the performance of various REP extraction 

techniques for wider bandwidth spectra 
 
The GER spectra in the 350 to 1050 nm range (1.5 nm bandwidth) of all 
three spectral data sets used in this study were re-sampled to the spectral 
resolution of two current airborne sensors; the Airborne Visible and 
Infrared Imaging Spectrometer (AVIRIS) (~10 nm bandwidth), and 
HyMap (~15 nm bandwidth) instruments, and one spaceborne sensor; the 
Hyperion (~10 nm bandwidth), in order to assess the utility of the linear 
extrapolation technique with coarser resolution spectra. The re-sampling 
was conducted using ENVI (Environment for Visualising Images, 
Research System, Inc.) software. Table 2.2 shows the “red edge” spectral 
coverage for each sensor type. The following waveband combinations 
were used to determine REP values by the linear extrapolation method: 
 
AVIRIS: far-red 683.30 & 702.04 nm and NIR 731.21 & 759.97 nm. 
HyMap: far-red 680 & 695 nm and NIR 725 & 756 nm. 
Hyperion: far-red 681.20 & 701.55 nm and NIR 732 & 762.60 nm.  
 
The correlation results between foliar nitrogen concentrations and REPs 
determined by the linear extrapolation method using the broader 
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bandwidth data were compared to those determined by the linear four-
point interpolation, and polynomial and inverted Gaussian fitting 
methods. The nearest bands to 670, 700, 740 and 780 nm for each 
sensor’s band setting were used to calculate the REP by the linear four-
point interpolation technique.  
 
2.4 Results  
 
2.4.1 Sensitivity analysis 
 
The results of the sensitivity analysis of REP extracted by the linear 
extrapolation method (Fig. 2.5) show that far-red wavebands in the 690-
703 nm range in combination with NIR bands in the 723-733 nm range 
yielded high correlation coefficients with foliar nitrogen concentrations 
across all three spectral data sets (rye, maize and mixed grass/herb). Note 
that the REP derived from leaf and canopy spectral data show similar 
contour patterns, particularly in the case of the maize leaves and rye 
canopy reflectance data. The high correlation centre for the mixed 
grass/herb leaf stacks shows a shift towards shorter wavelength lengths, 
suggesting a less important role of longer NIR wavelengths.  
 
To determine the optimal combinations of wavebands that yielded the 
highest correlations for all three spectral data sets, the 230 combinations 
were ranked in ascending order according to decreasing correlation 
coefficients (r) for each data set (that is, number 1 representing the 
highest r). The corresponding ranks (across data sets) were then summed. 
The results of the first ten combinations that yielded the lowest sum of 
ranks are presented in Table 2.3.  
 
The most sensitive far-red waveband across all three spectral data sets is 
694.3 nm; it appears in six of the first ten best combinations. This is 
followed by the 692.83 nm and 689.9 nm wavebands. The best NIR band 
is located at 732.46 nm. Certainly, further research is needed to 
determine the optimal far-red and NIR wavebands for predicting nitrogen 
for a wide variety of plant species.  
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Fig.2.5 Contour plots showing the sensitivity of red edge positions (red edge 
position/foliar nitrogen concentration correlation – Pearson r) calculated by the linear 
extrapolation method using fixed wavebands at 680 and 760 nm for the far-red and NIR 
lines, respectively and different combinations of wavebands on the far-red and NIR 
flanks of the red edge derivative spectrum. 
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Table 2.3 The first ten best combinations of far-red and NIR coordinate points used in 
calculating the red edge position (REP) by the linear extrapolation method. The 
combinations were ranked in ascending order according to decreasing nitrogen/REP 
correlation (r) for each data set, followed by the summing of corresponding ranks. 

 Combinations Correlation (r) with leaf nitrogen 
 

Sum of 
ranks 

Far-red 
band (nm) 

NIR band 
(nm) 

Rye Maize Mixed 
grass/herb 

64 694.30 732.46 0.91 0.93 0.69 
67 694.30 723.64 0.91 0.93 0.69 
74 694.30 729.52 0.91 0.93 0.68 
76 694.30 726.58 0.91 0.93 0.68 
84 689.90 732.46 0.91 0.92 0.71 
84 692.83 732.46 0.90 0.93 0.68 
93 692.83 723.64 0.90 0.93 0.68 
94 694.30 728.05 0.89 0.93 0.69 
95 692.83 726.58 0.90 0.93 0.67 
97 694.30 725.11 0.89 0.93 0.69 

† All far-red and NIR lines cut the first derivative curve at 680 nm and 760 nm 
respectively. 
 
2.4.2 Comparing the statistics of red edge positions extracted by 

different techniques 
 
Table 2.4 shows the statistics for the REPs determined by the linear 
extrapolation technique (using far-red 679.65 nm and 694.30 nm 
wavebands and NIR 732.46 and 760.41 nm wavebands), and REPs 
extracted by the maximum first derivative, linear interpolation, fifth-
order polynomial fitting and Gaussian fitting techniques. It is evident 
from Table 2.4 that the results of REP calculations are dependent upon 
the choice of method. The REPs retrieved by the four-point interpolation 
method are biased towards the longer wavelengths, confirming results 
obtained by Dawson and Curran (1998).  
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Table 2.4 Statistics of red-edge positions (REP) extracted by various techniques. 
 
REP extraction technique 

Mean (nm) 95% CI Minimum 
(nm) 

Maximum 
(nm) 

Rye (canopy spectra, 
n=30) 

    

Maximum first derivative 711.95 4.46 697.23 726.58 
Linear interpolation 717.54 0.98 710.86 720.86 
Polynomial fitting 714.61 1.41 707.56 720.77 
Inverted Gaussian fitting 710.89 1.05 706.39 715.72 
Linear extrapolation 707.17 1.99 698.8 715.53 
Maize (leaf spectra, 
n=67) 

    

Maximum first derivative 711.64 2.54 694.30 723.64 
Linear interpolation 717.69 1.64 695.50 724.52 
Polynomial fitting 715.38 1.11 701.75 722.22 
Inverted Gaussian fitting 708.96 1.19 697.59 715.72 
Linear extrapolation 712.58 3.68 685.4 739.05 
Grass/herb (leaf stack 
spectra, n=34) 

    

Maximum first derivative 710.35 3.68 697.23 725.11 
Linear interpolation 717.83 0.46 714.31 720.98 
Polynomial fitting 713.06 1.17 704.56 719.24 
Inverted Gaussian fitting 710.31 0.71 705.44 714.92 
Linear extrapolation 705.63 1.65 694.2 714.76 

  CI denotes confidence interval. 
 
2.4.3 Performance of five techniques for estimating foliar nitrogen 

concentration   
 
To compare the strength of the relationship between REPs extracted by 
different techniques and foliar nitrogen concentration, a bootstrapping 
resampling technique (McGarigal et al., 2000) was applied to the 
correlation analyses. Bootstrapping with 1000 replicates was used to 
provide estimates of the statistics (mean, standard error, confidence 
interval) for the correlation coefficients between the REP and foliar 
nitrogen concentration.   
 
REPs extracted by the new technique (linear extrapolation) showed high 
correlations with a wide range of foliar nitrogen concentrations, being 
comparable with results obtained using the traditional linear 
interpolation, polynomial and inverted Gaussian fitting techniques (Table 
2.5). But the scatter plots (Fig. 2.6) indicate that the linear interpolation 
technique and to a lesser extent the polynomial and inverted Gaussian 
fitting techniques are less sensitive to lower and higher nitrogen 



New REP extraction technique 

 32 

concentrations, because the points tend to saturate at these extremes. For 
example, when we fitted exponential models to the maize scatter plots, 
the coefficients of determination (R2) increased from 0.73 to 0.80 (9.6% 
increase) for the linear interpolation technique, from 0.78 to 0.84 (7.7% 
increase) for the polynomial fitting technique, and from 0.83 to 0.86 
(3.6% increase) for the inverted Gaussian fitting technique, compared 
with a slight decrease from 0.86 to 0.85% for the linear extrapolation 
technique. This could be a further reason why, compared with the other 
techniques, the REP extracted using the linear extrapolation technique 
showed a higher R2 for the mixed grass/herb leaves with a low nitrogen 
concentration. The results show that the maximum first derivative 
technique is not an appropriate measure for the red edge position because 
of the discontinuity it creates in the REP data.  
 
Table 2.5 Bootstrapped correlation coefficients between foliar nitrogen concentrations 
and red edge positions (REP) extracted using various techniques. 
 
REP extraction technique 

Mean SE mean LCL 
95% 

UCL 95 
% 

Rye (canopy spectra, n=30)      
Maximum first derivative 0.85** 0.05 0.77 0.93 
Linear interpolation 0.91** 0.02 0.88 0.96 
Polynomial fitting 0.91** 0.03 0.86 0.96 
Inverted Gaussian fitting  0.90** 0.03 0.85 0.95 
Linear extrapolation (new technique) 0.91** 0.02 0.88 0.94 
     
Maize (leaf spectra, n=67)     
Maximum first derivative 0.86** 0.03 0.81 0.91 
Linear interpolation 0.86** 0.02 0.83 0.89 
Polynomial fitting 0.88** 0.02 0.85 0.91 
Inverted Gaussian fitting  0.91** 0.01 0.90 0.94 
Linear extrapolation (new technique) 0.93** 0.01 0.91 0.95 
     
Mixed grass/herb (leaf stack spectra, 
n=34) 

    

Maximum first derivative 0.53*  0.10 0.37 0.69 
Linear interpolation 0.54* 0.09 0.39 0.69 
Polynomial fitting 0.62** 0.08 0.48 0.76 
Inverted Gaussian fitting  0.59* 0.07 0.43 0.71 
Linear extrapolation (new technique) 0.69** 0.08 0.55 0.83 

* = p < 0.01, ** p < 0.001; LCL and UCL denote lower and upper confidence limits, 
respectively 



Chapter 2 

 33 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.6 Straight-line model fits for the regression between foliar nitrogen concentration 
and red edge position (REP) extracted using (a) maximum first derivative, (b) linear 
interpolation, (c) polynomial fitting, (d) inverted Gaussian modelling and (e) linear 
extrapolation (new approach) techniques. x = rye canopy, ♦ = maize leaves and ○ = 
mixed grass/herb leaf stack spectral data sets. 
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2.4.4 Comparing the performance of various REP extraction 
techniques for wider bandwidth spectra 

 
The correlations between REPs extracted by the new technique (linear 
extrapolation) from the three coarser resolution spectra (AVIRIS, HyMap 
and Hyperion) and foliar nitrogen concentration data also showed 
comparable results with those obtained using the traditional linear 
interpolation, high-order polynomial and inverted Gaussian fitting 
techniques (Table 2.6). The band setting of the HyMap instrument 
appears to be less favourable to the linear four-point interpolation 
technique. The results of the REP/nitrogen correlation for the maximum 
first derivative technique have not been included in Table 2.7 because 
this technique is not suitable for the small number of bands in the red 
edge region of the three coarser resolution spectra. 
 
We used one-way ANOVA (analysis of variance) to test if there are 
significant differences in the mean R2 between the linear interpolation 
and linear extrapolation techniques (two simple techniques) for the GER 
and three coarser resolution (AVIRIS, HyMap and Hyperion) spectra. 
The test was conducted for all three data sets used in the study (rye 
canopy, and maize and mixed grass/herb leaves spectra).  The results 
show significant differences between the linear interpolation and linear 
extrapolation methods only for the maize (p < 0.01) and mixed grass/herb 
(p < 0.05) data sets.  
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Table 2.6 Correlation (R2) between foliar nitrogen concentration and red edge position 
derived from AVIRIS, HyMap and Hyperion band settings for the linear interpolation, 
polynomial fitting, inverted Gaussian fitting and linear extrapolation techniques.   

 
Red edge extraction technique 

AVIRIS HyMap Hyperion 

Rye (canopy spectra, n=30)    
Linear interpolation 0.83 0.82 0.83 
Polynomial fitting 0.79 0.81 0.80 
Inverted Gaussian fitting 0.81 0.81 0.82 
Linear extrapolation 0.82 0.79 0.81 
    
Maize (leaf spectra, n=67)    
Linear interpolation 0.75 0.66 0.74 
Polynomial fitting 0.69 0.72 0.61 
Inverted Gaussian fitting 0.83 0.83 0.83 
Linear extrapolation 0.85 0.86 0.85 
    
Mixed grass/herb (leaf stack spectra, 
n=34) 

   

Linear interpolation 0.31 0.17 0.29 
Polynomial fitting 0.32 0.36 0.36 
Inverted Gaussian fitting 0.30 0.28 0.31 
Linear extrapolation 0.43 0.39 0.35 

 
2.5 Discussion 
 
In this study, we hypothesised that first, the discontinuity in the 
relationship between the REP and nitrogen concentration caused by the 
double-peak feature on the first derivative spectrum could be mitigated 
and secondly, spectral changes near the dominant peaks (700 nm and 725 
nm) could be adequately tracked if the REP is determined as an 
intersection of two straight lines extrapolated through two points on the 
far-red flank (680 nm to 700 nm) and two points on the NIR flank (725 
nm to 760 nm) of the first derivative reflectance spectrum. We have 
demonstrated that the REPs determined by this new approach, termed the 
linear extrapolation technique from three spectral data sets (rye canopy, 
maize leaf and mixed grass/herb leaf stack spectra) covered a wide range 
of wavelengths (from shorter to longer wavelengths) and generated 
continuous relationships with foliar nitrogen concentrations. More 
importantly, this study has shown that, by extrapolating straight lines 
near the first and second peaks in the red edge derivative spectrum, the 
resulting REPs can account for subtle variations in a wide range of foliar 
nitrogen concentrations (from low to high). This could be explained by 
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the fact that the REP values depend on changes in the magnitudes of the 
first and second peaks. The first and second peaks were shown to be 
sensitive to low and high foliar nitrogen concentrations, respectively 
(Fig. 2.3).  These results confirm those of Horler et al. (1983) for leaf 
chlorophyll content. Note that the high positive linear relationship 
between REPs and nitrogen concentrations obtained in this study depends 
on the high positive linear relationship between foliar nitrogen and 
chlorophyll content (Yoder and Pettigrew-Crosby, 1995) because shifts 
in the REP are mainly attributed to changes in chlorophyll content 
(Buschmann and Nagel, 1993; Dawson and Curran, 1998).  
 
The sensitivity of the REP using the new method depended on the choice 
of far-red and NIR bands. Far-red bands at 679.65 nm and 694.30 nm in 
combination with NIR bands at 732.46 nm and 760.41 nm or at 723.64 
nm and 760.41 nm were identified as the optimal combinations for 
calculating foliar-nitrogen-sensitive REPs for three spectral data sets (rye 
canopy, maize leaf and mixed grass/herb leaf stack spectra). Further 
research is needed to determine the optimal far-red and NIR bands for 
predicting nitrogen for a wide variety of plant species or vegetation 
communities. 
 
Table 2.7 Summary of the relative performances of five red edge position extraction 
techniques 

Correlation with 
foliar nitrogen  

 
 
 
REP extraction 
technique 

Complexity Required  
spectral 
type 

Suitability 
for coarse 
spectra Rye and 

maize 
Mixed 
grass/her
b 

Maximum first 
derivative 

Easy Derivative Poor  High but 
discont. 

Low 

Four-point 
interpolation  

Easy  Reflectance Good  High  Low  

Polynomial fitting Moderate  Derivative  Good  High Medium  
Inverted Gaussian 

fitting  
Difficult  Reflectance Good  High Low 

Linear 
extrapolation  

Easy  Derivative  Good  High Medium 

Note: discont. – discontinuous 
 
Table 2.7 summarises the relative performances of the five techniques 
used in this study for extracting the REP. REPs extracted using the new 
technique show high correlations with a wide range of foliar nitrogen 
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concentrations, being comparable with the results obtained using the 
traditional fitting techniques (linear interpolation, high-order polynomial 
and inverted Gaussian fitting techniques). Though, for all techniques, the 
REP/nitrogen correlation is low for leaves with a low nitrogen 
concentration or mixed species foliage (e.g. mixed grass/herb data), a 
slightly higher correlation result was obtained with the new technique 
(Table 2.5). The results show that the maximum first derivative technique 
is not an appropriate measure for the red edge position because of the 
discontinuity it creates in the REP data and therefore the REP/nitrogen 
relationship. The differences observed in REP/nitrogen correlations 
between the five techniques for the three spectral data sets used in this 
study suggest that the accuracy of different techniques depends on the 
biological characteristics of the plant material. REP has been shown to be 
dependent not only on chlorophyll content, but also on additional effects 
such as leaf developmental stage, leaf layering or stacking and leaf water 
content (Horler et al. 1983). Although the method used in this study to 
carry out leaf or leaf stack spectral measurements predominantly captures 
leaf reflectance, the additional effect of leaf layering (e.g. mixed 
grass/herb leaves with varying thickness and internal structure) or 
background material which has been shown to influence NIR reflectance 
(Horler et al. 1983) may affect the results. Even though (Baranoski and 
Rokne, 2005) suggest that no single REP extraction method may be 
considered superior in all cases, the linear extrapolation technique 
appears to be less sensitive to the effect of leaf stacking or layering.  
 
Degrading the spectral resolution of the GER spectra to the spectral 
configurations AVIRIS, Hyperion and HyMap, showed a negligible 
effect on the correlation results for the linear interpolation, higher order 
polynomial fitting, inverted Gaussian fitting and linear extrapolation 
techniques. However, the correlation results for the various REP 
techniques differ among sensors because of different band settings in the 
region of the red edge. For example, the results show that the HyMap 
band configuration is not suitable for the linear interpolation method. 
Thus, the linear extrapolation technique provides an additional choice of 
method for determining the REP given the increasing number of air-and 
spaceborne hyperspectral sensors. Another advantage of the linear 
extrapolation technique is its ease of implementation because only four 
spectral bands are required for the extrapolation. In addition, it requires 
first derivative spectrometry. Derivative analysis enhances absorption 
features and suppresses contributions of non-vegetative reflectance 
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components (Boochs et al., 1990; Curran et al., 1991). A drawback is that 
derivative spectra are more sensitive to the inherent spectral noise of the 
system (Broge and Leblanc, 2000).  
 
2.6 Conclusions 
 
The most important conclusions from this study are: 
 
i. The destabilising effect of the double-peak feature on the 

REP/nitrogen relationship can be mitigated and spectral changes near 
the low (700 nm) and high nitrogen (725 nm) sensitive peaks can be 
tracked by determining the REP as an intersection of two straight 
lines extrapolated on the far-red (680 nm to 700 nm) and NIR (725 
nm to 760 nm) flanks of the first derivative reflectance spectrum. 
This method has been termed the linear extrapolation method.  

ii. Far-red wavebands at 679.65 nm and 694.30 nm in combination with 
NIR wavebands at 732.46 nm and 760.41 nm or at 723.64 nm and 
760.41 nm are the optimal combinations for calculating foliar 
nitrogen-sensitive REPs by the linear extrapolation method. 

iii. The correlation results between REP extracted by the new method 
and foliar nitrogen concentration are comparable to those of the 
traditional linear four-point interpolation, and high-order polynomial 
and inverted Gaussian fitting techniques. However, the results of this 
study show that the linear extrapolation technique performs better 
than the linear four-point interpolation technique in the case of maize 
leaves at different developmental stages and mixed grass/herb leaves 
with a low nitrogen concentration.    

iv. The maximum first derivative technique is not an appropriate 
measure for the red edge position because of the discontinuity it 
creates in the REP data for both narrow and wider bandwidth spectra.  

v. The linear extrapolation technique is simple to implement. 
vi. A drawback of the linear extrapolation technique is that it uses the 

first derivative spectrum, which is more sensitive to the inherent 
spectral noise of the system.  

vii. The REP could be extracted by the linear extrapolation technique 
from wider bandwidth spectra e.g. AVIRIS, HyMap and Hyperion. 

 
In summary, the results indicate that the new technique is a practical and 
suitable technique for extracting REP from hyperspectral data for 
explaining a wide range of nitrogen concentrations. However, further 
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research is needed to assess the accuracy of the new technique to predict 
leaf nitrogen or chlorophyll for a wide variety of plant species.  In 
addition, the efficacy of the technique for predicting other plant 
parameters such as leaf area index and biomass also needs to be 
established.  
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Abstract 
 
Several methods for extracting the chlorophyll sensitive red-edge 
position (REP) from hyperspectral data are reported in literature. The 
objective of this study was to test the utility of a recently published 
approach, the linear extrapolation method under different conditions 
including variable canopy biophysical parameters, solar zenith angle, 
sensor noise and spectral bandwidth. REPs were extracted from synthetic 
canopy spectra that were simulated using PROSPECT and SAILH 
radiative transfer models. REPs extracted by the linear extrapolation 
method involving wavebands at 680, 694, 724 and 760 nm produced the 
highest correlation (R2 = 0.75) with leaf chlorophyll content with 
minimal effects of leaf and canopy biophysical confounders (leaf area 
index, leaf inclination distribution and leaf dry matter content) compared 
to traditional techniques including the linear interpolation, inverted 
Gaussian modelling and polynomial fitting techniques. In addition, the 
new technique is insensitive to changes in solar zenith angle. However, 
the advantage of using the linear extrapolation method compared to the 
various alternative methods diminishes with increasing sensor noise and 
decreasing spectral resolution.  In summary, the linear extrapolation 
technique shows high potential for leaf chlorophyll estimation with 
radiative transfer models. The efficacy of the technique under field 
conditions needs to be established. 
 
Keywords: red-edge position; linear extrapolation method; leaf 
chlorophyll; canopy biophysical parameters; radiative transfer models 
 



Chapter 3 

 43 

3.1 Introduction  
 
Accurate remotely sensed estimates of leaf chlorophyll content can 
provide valuable information on ecosystem functioning over a wide 
range of scales e.g. as an indicator of vegetation stress (Horler et al., 
1980; Collins et al., 1983; Hare et al., 1984; Daughtry et al., 2000; 
Clevers et al., 2004) or ecosystem productivity (Mooney, 1986; Peterson 
et al., 1988; Blackburn, 1998). Commonly used vegetation indices for 
chlorophyll estimation computed from visible and near infrared (NIR) 
bands  (Gausman, 1977; Gamon et al., 1992; Peñuelas et al., 1995; 
Lichtenthaler et al., 1996; Gitelson and Merzlyak, 1997; Blackburn, 
1998; Haboudane et al., 2002) are also influenced by other leaf and 
canopy parameters such as carotenoids (yellow pigments), leaf internal 
structure, mass and stacking, leaf area index (LAI), leaf angle distribution 
(LAD) and soil reflectance (Huete, 1988; Chappelle et al., 1992; Goward 
and Huemmrich, 1992; Blackburn, 1998; Daughtry et al., 2000). 
Research has also demonstrated a strong effect of the observation and 
illumination geometry on measured canopy spectra (Huete et al., 1992; 
Qi et al. 1995) that perturb the relation between vegetation indices and 
leaf chlorophyll content. 
 
A spectral measure that is less sensitive to the effect of variable leaf and 
canopy biophysical parameters, and environmental conditions on leaf 
chlorophyll estimation is the wavelength of maximum slope in the region 
of the red edge (680 to 780 nm), termed the red-edge position (REP) 
(Horler et al., 1983; Curran et al., 1995; Clevers et al., 2002). The red 
edge represents the region of abrupt change in leaf reflectance between 
680 nm and 780 nm caused by the combined effects of strong chlorophyll 
absorption in the red and leaf internal scattering in the NIR (Gates et al., 
1965; Horler et al., 1983). Increases in the amount of chlorophyll results 
in a broadening of the major chlorophyll absorption feature centred 
around 680 nm (Buschmann and Nagel, 1993; Dawson and Curran, 
1998) causing a shift in the slope and REP towards longer wavelengths 
(Gates et al., 1965; Collins et al., 1977; Horler et al., 1980; Horler et al., 
1983; Hare et al., 1984; Boochs et al., 1990; Clevers et al. 2002).  
 
A common approach for extracting the REP has been to locate the 
highest peak in the first derivative spectrum (Horler et al., 1983; Boochs 
et al., 1990; Buschmann and Nagel, 1993; Filella and Peñuelas, 1994). 
However, the limitation of this approach is that the first derivative of 
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contiguous spectra may contain two or more peaks (double-peak feature) 
near 700 and 725 nm (e.g. Horler et al., 1983; Boochs et al., 1990; Zarco-
Tejada et al., 2003; Clevers et al., 2004). The double peak feature causes 
a peak jump between 700 and 725 nm and a discontinuity in the 
REP/chlorophyll relationship (Horler et al., 1983).  
 
In our previous study (Cho and Skidmore, 2006), we proposed a new 
technique based on locating the REP as the point of intersection between 
two straight lines extrapolated on the far-red and NIR flanks of the first 
derivative spectrum (the linear extrapolation method). We showed that 
the linear extrapolation method not only mitigates the destabilising effect 
of the double peak feature, but also predicts leaf nitrogen concentration 
with high accuracy. The correlation between REP and nitrogen 
concentration depends on the close correlation between nitrogen and 
chlorophyll (Yoder and Pettigrew-Crosby, 1995; Hansen and 
Schjoerring, 2003; Haboudane et al., 2004; Wenjiang et al., 2004).  But 
the relationship between chlorophyll and nitrogen depends on the 
physiological status of the plant (Mooney, 1986; Boochs et al., 1990), 
e.g. changing from low to high positive correlations with increasing leaf 
age (Wenjiang et al., 2004). It should be noted that nitrogen is not only a 
major component of leaf chlorophyll, but also forms part of inert 
structural components of cell tissue (Mooney, 1986; Jongschaap and 
Booij, 2004). Thus, indices for chlorophyll estimation that are maximally 
sensitive to chlorophyll with minimal effects of leaf and canopy 
structure, solar zenith angle, etc. are potentially useful.   
 
The objective of this study was to test whether the linear extrapolation 
method may be applied under different conditions including variable leaf 
chlorophyll and canopy biophysical parameters, solar zenith angle, 
sensor noise and spectral bandwidth. To achieve this objective, we used a 
numerical experiment involving well-established canopy reflectance 
models, parameterised to represent a wide range of canopy 
characteristics. This allowed us to artificially create pseudo 
measurements that otherwise would have been difficult and expensive to 
obtain under experimental or field conditions.  
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3.2 Methods 
 
3.2.1 Radiative transfer models 
 
3.2.1.1 PROSPECT and SAILH models  
We simulated synthetic reflectance spectra using the PROSPECT and 
SAILH radiative transfer models. PROSPECT is a leaf optical properties 
model developed by Jacquemoud and Baret (1990). It simulates leaf 
reflectance (ρleaf) and transmittance spectra (tleaf) between 400 and 2500 
nm using four model inputs: leaf chlorophyll content (Cab; µg cm-2), 
equivalent leaf water thickness (Cw; cm), leaf dry matter content (Cm; g 
cm-2), and a leaf structure index (N; arbitrary units). Specific absorption 
and scattering coefficients of leaf components are provided with the 
model. The model is widely used and well validated (Fourty et al., 1996). 
 
SAILH is a four-stream radiative transfer model developed by Verhoef 
(1984). It was later modified by Kuusk (1991) to take the hot spot feature 
into account. For the purpose of this study, SAILH was chosen to 
simulate bi-directional canopy reflectance (ρ) since it requires only few 
input variables, while having a predictive power similar to more 
elaborated reflectance models (Jacquemoud et al., 1995; Jacquemoud et 
al., 2000; Bacour et al., 2002). SAILH assumes the canopy to be a 
homogeneous semi-infinite medium with Lambertian leaves 
characterized by their reflectance and transmittance spectra (ρleaf, tleaf). 
Soil reflectance (ρsoil) must be specified at the lower boundary. Canopy 
structure is characterized by the leaf area index (LAI; m2 m-2) and the 
average leaf angle of an ellipsoidal leaf inclination distribution with 
random azimuth orientation (ALA; degrees). The hot spot effect is 
modelled using the ratio between leaf size and canopy height (s; m m-1). 
Further variables characterise the measurement geometry (θz, θv), and 
the fraction of diffuse illumination (skyl).  
 
Soil reflectance at the lower boundary of the canopy (ρsoil) was modelled 
using a simple soil parameterization described in Atzberger et al. (2003). 
In contrast to similar studies, the soil reflectance parameterisation does 
not only change the overall brightness of a (standard) soil spectrum, but 
also allows for (small) changes in the spectral shape, for example due to 
variations in the chemical composition of the soil (here soil carbon 
content). For a more detailed description and experimental validation of 
the soil reflectance parameterization, see Atzberger et al. (2003). 



Towards REP less sensitive to canopy biophysical parameters 

 46 

Table 3.1 Specification of parameter ranges and distributions for SAILH+PROSPECT 
reflectance modelling. In all cases, a nadir looking sensor has been assumed. The solar 
zenith angle was set to 45°. This value was eventually varied by ± 20° to study its effect 
on the proposed leaf chlorophyll retrieval technique. 
Model parameter Abbreviation Units Distribution Range(1) 

     

Canopy parameter     

 Leaf Area Index LAI m2 m-2 uniform 0-10 

 Average Leaf Angle ALA ° (degree) uniform 30-80 

 Hot spot parameter hot no dimension normal 0.1 ± 0.01 
Leaf parameter     

 Leaf chlorophyll 
content 

Cab g cm-2 uniform 20-80 

 Leaf water content Cw cm uniform 0.004-
0.044 

 Leaf dry matter 
content(2) 

Cm g cm-2 uniform 1.25 x Cw
 

 Leaf structure 
parameter 

N no dimension normal 2 ± 0.2 

Soil parameter     

 Soil brightness SCALE no dimension normal 1 ± 0.14 
 Carbon content Cc g cm-3 uniform 0-6 
(1)In cases where distribution is normal, range indicates mean ± std. 
 (2)Cm is varied proportional to Cw as proposed by Combal et al. (2002) 
 
3.2.1.2 Model parameterisation 
For a given measurement geometry, the full parameterisation of the 
radiative transfer models involves nine (structural and biochemical) 
variables. Their parameter ranges and distributions are described in Table 
3.1. Within the distributions of Table 3.1, 1000 parameter sets were 
randomly chosen to simulate the synthetic canopy reflectance spectra. 
The wavelength range was restricted between 450 and 800 nm (351 
values in 1-nm steps) as the study focuses only on the visible and near 
infrared (VNIR). The distributions cover a wide range of canopy and leaf 
properties, including widely varying leaf angles (from planophile to 
erectophile), different canopy densities (from bare soil to fully developed 
canopies), different soil albedos and leaf optical properties, etc. For all 
simulations, a nadir looking sensor was assumed (θv=0°). The fraction of 
diffuse illumination (skyl) was fixed to 0.1, independent of wavelengths. 
For the main part of the study, a solar zenith angle (θz) of 45 degree was 
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used. This value was varied by ±20° to study its effect on the proposed 
REP extraction technique. Fig.3.1 illustrates some of the reflectance 
variability in the synthetic spectra, simulated within the Matlab 
processing environment (The Mathworks). 
 

(a)  

(b)  

(c)  

 
 
 
 
 
 
 
Fig.3.1 Illustration of 
reflectance variability in the 
noiseless synthetic spectra 
used in this study. (a) 
average background soil 
reflectance (thick line) and 
range (thin lines). (b) LAI 
values ranging from 0.5 
(thin line), 1.0 to 5.0 (thick 
line). (c) ALA values 
ranging from 30° (thick 
line), 55° to 80° (thin line). 
For (b) and (c) the average 
background spectra shown 
in (a) has been used with 
remaining 
SAILH+PROSPECT model 
parameters fixed to their 
average values (Table 3.1). 
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3.2.2 Red-edge position algorithms  
 
We have assessed the correlation between leaf chlorophyll content and 
REPs determined by the simple maximum derivative, linear interpolation 
(Guyot and Baret, 1988), inverted Gaussian modelling (Bonham-Carter, 
1988; Miller et al., 1990), high order polynomial fitting (Pu et al., 2003) 
and linear extrapolation (Cho and Skidmore, 2006) techniques. We have 
not considered the three-point Lagrangian interpolation technique 
(Dawson and Curran, 1998) because Clevers et al. (2002) show that it is 
only suitable for coarsely sampled spectra.   
 
(a) Maximum first derivative  
 
The REP is defined by the wavelength of the maximum first derivative of 
the reflectance spectrum in the region of the red edge. The first derivative 
was calculated using a first-difference transformation of the reflectance 
spectrum (Dawson and Curran, 1998) as follows: 
 

FDR(λi) = (Rλ(j+1) – Rλ(j))/Δλ       (3.1) 
 
where FDR = first derivative reflectance at a wavelength i midpoint 
between wavebands j and j+1 
Rλ(j)  = reflectance at the j waveband 
Rλ(j+1) = the reflectance at the j+1 waveband, and 
Δλ = difference in wavelengths between j and j+1. 
 
(b) Linear interpolation technique 
 
The linear interpolation method (Guyot and Baret, 1988) assumes that the 
reflectance curve at the red edge can be simplified to a straight line 
centred around the midpoint between the reflectance in the NIR at about 
780 nm and the reflectance minimum of the chlorophyll absorption 
feature at about 670 nm. It uses four wavebands (670, 700, 740 and 780 
nm), and the REP is determined by using a two-step calculation 
procedure.  
 
(i) Calculation of the reflectance at the inflexion point (Rre) 
 

( ) 2/780670 RRRre +=        (3.2) 
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where R = reflectance  
 
(ii) Calculation of the red edge wavelength or red edge position (REP) 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+=
700740

70040700
RR
RR

REP re       (3.3) 

 
where 700 and 40 are constants resulting from interpolation in the 700-
740 nm interval.  
 
(c) Inverted Gaussian fitting technique 
 
An inverted Gaussian (IG) model (Bonham-Carter, 1988; Miller et al. 
1990; Dawson and Curran, 1998; Pu et al. 2003) was fitted to the spectral 
reflectance in the 660-780 nm band range. Accordingly, the IG model 
(Eq. 3.4) represents the red edge by the reflectance equation: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−−= 2

2
0

2
)(

exp)(
σ

λλλ oss RRRR      (3.4) 

 
where Rs = maximum spectral reflectance 
Ro = minimum spectral reflectance 
λo = wavelength of minimum reflectance 
σ = Gaussian function variance.  
 
The REP is then defined as:  
 

σλ += 0REP        (3.5) 
 
We used an iterative optimisation fitting procedure to determine 
parameters of the IG model (Miller et al., 1990). Initial guesses of the 
model parameters were made after review of each data set. Typically, Ro 
was set at 670 and 30 nm was selected for σ. The IG model employs a 
least-square criterion to fit a normal curve to the reflectance red edge. 
The values of λo, Ro, Rs and σ are then determined by the fitting 
procedure.  
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(d) Polynomial fitting technique 
 
A polynomial (Pu et al. 2003) function (e.g. 3rd order polynomial - Eq. 
3.6) was fitted to the reflectance spectrum between the wavelengths, 
corresponding to the minimum reflectance in the red and the maximum 
NIR (shoulder) reflectance.  
 

i

i iaaR ∑ =
+= 3

10)( λλ        (3.6) 
 
where λ = band between 670 nm to 780 nm.  
 
Subsequently, REP was determined from the maximum first derivative 
spectrum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.2 First derivative curves for three SAILH+PROSPECT simulated spectra showing 
multiple peak regions near 700, 720 and 740 nm. 
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Fig.3.3. Schematic representation of the linear extrapolation technique for extracting the 
red edge position (REP) – wavelength of the meeting point between two straight lines 
extrapolated on the far-red and NIR flanks of the first derivative spectrum. 
 
 
(e) Linear extrapolation technique 
 
The linear extrapolation technique (Cho and Skidmore, 2006) is designed 
to (i) mitigate the destabilising effect of the double peak feature on the 
correlation between chlorophyll and REP, and (ii) track changes in slope 
near 700 nm and 725, where derivative peaks (Fig. 3.2) occur. The REP 
is calculated as the wavelength at the intersection of two straight lines 
(Eq. 3.7 & 3.8) extrapolated through two points on the far-red flank and 
two points on NIR flank of the red edge (680 – 760 nm) first derivative 
reflectance spectrum (Fig. 3.3).  
 

Far-re line: FDR = m1λ + c1      (3.7) 
 

NIR line: FDR = m2λ + c2       (3.8) 
 
where m and c represent the slope and intercept of the straight lines; c1 
and m1 for the far-red line and c2 and m2 for the NIR line.  At the 
intersection, the two lines have equal λ and FDR values. Therefore, the 
REP, which is the λ at the intersection, is given by: 
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Cho and Skidmore (2006) identified two combinations of wavebands for 
calculating leaf nitrogen-sensitive REPs. We shall call them linear 
extrapolation I involving far-red 680 and 694 nm in combination with 
NIR 724 and 760 nm, and linear extrapolation II involving far-red 680 
and 694 nm in combination with NIR 732 and 760 nm.   
 
3.2.3 Data analysis 
 
3.2.3.1 Relationship between leaf chlorophyll content and red edge 

position  
To evaluate the predictive powers of various REP extraction techniques, 
the simulated data was divided into training (n = 750) and testing (n = 
250) data sets. Linear regression equations (calibration equations) were 
derived between leaf chlorophyll content and REP using the training data 
set. The calibration equations were then applied on the REP data from the 
testing data set in order to predict leaf chlorophyll content. The accuracy 
of this prediction is reported in terms of the root mean square error 
(RMSE).  
 
3.2.3.2 Influence of canopy biophysical parameters on red edge 

positions extracted by various methods 
We quantified the main effects and interaction between leaf chlorophyll 
content and LAI, ALA or leaf dry matter content on REPs derived by the 
various methods. The contribution of each factor to the total variance in 
the REP was calculated by dividing its sum of squares by the total sum of 
squares (Webster, 2000).  
 
3.2.3.3 Effects of solar zenith angle and sensor noise on the linear 

interpolation method 
The effects of solar zenith angle and sensor noise on the linear 
extrapolation method were assessed by applying the calibration equation 
obtained from the standard data set (i.e. noise free data and solar zenith 
angle = 45°) to the corresponding test data for; (i) solar zenith angles at 
25° and 65° and (ii) four sensor noise levels (i.e. normally distributed 
white noise with zero mean and the following standard deviation: 0.05% 
0.10%, 0.50% and 1.00% relative to the reflectance). The root mean 
square errors (RMSE) between the measured chlorophyll and predicted 
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chlorophyll were used for comparative analyses. The results obtained 
from the linear extrapolation I and II methods were compared to those of 
the linear interpolation method because these less complicated methods 
compared to the inverted Gaussian and polynomial fitting techniques (Pu 
et al., 2003; Cho and Skidmore 2006).   
 
Table 3.2 Far-red (FR) and near infrared (NIR) wavelengths used for the calculation of 
the red edge position using the linear extrapolation methods. In case of Hyperion and 
HyMap spectra, the indicated wavelengths correspond to the central wavelengths. 

Wavelengths  (nm) of interest  
 
Spectral type 

Linear extrapolation I Linear extrapolation II 

ASD  
 

FR 680 & 694 
NIR 724 & 760 

FR 680 & 694 
NIR  732 & 760 

Hyperion 
 

FR 681 & 691 
NIR 722 & 763 

FR 681 & 691 
NIR 732 & 763 

HyMap 
 

FR 680 & 695 
NIR  725 & 756 

FR 680 & 695 
NIR 740 & 756 

 
3.2.3.4 Effects of degrading the bandwidth on the linear 

extrapolation method 
The synthetic 1 nm-data (later called ASD) was re-sampled to the 
spectral coverage of Hyperion (~10 nm bandwidth) and HyMap (~15 nm 
bandwidth). The re-sampling was conducted using the ENVI 
(Environment for Visualising Images, Research System, Inc.) software. 
REPs were derived by the linear extrapolation method using the 
wavebands shown in Table 3.2.  Subsequently, the strength of the 
correlations (R2) between leaf chlorophyll and REP was used to assess 
the effect of degrading the bandwidth on the linear extrapolation and 
interpolation methods.    
 
Table 3.3 The relationship between leaf chlorophyll content and red edge position 
(REP) extracted by various methods.  

REP extraction method 
R2 
(calibration 
data set) 

Predictive equation 

Standard error 
of prediction 
(test data set, n 
= 250) 

Max. first derivative 0.50(748 df)  - 647.56 + 0.97*REP 12.75 
Linear interpolation  0.60 (748 df) - 2494.31 + 3.53*REP 10.76 
Inverted Gaussian modelling 0.61 (723 df) - 1707.99 + 2.46*REP 13.87 
3rd order polynomial fitting 0.62 (748 df) - 595.28 + 0.88*REP 10.36 
Linear extrapolation I 0.75 (746 df) - 1111.01 + 1.63*REP 8.98 
Linear extrapolation II 0.70 (746 df) - 866.41 + 1.28*REP 9.77 
df = degree of freedom 
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3.3 Results 
 
3.3.1 Relationship between leaf chlorophyll content and red edge 

position 
 
The linear regression between leaf chlorophyll content and REP derived 
by the linear extrapolation method (I and II) yielded higher coefficients 
of determination (R2) with the calibration data set and lower standard 
errors of prediction with the test data compared to the traditional methods 
(maximum first derivative, linear interpolation, inverted Gaussian and 
polynomial fitting techniques) (Table 3.3). The REPs located by the 
inverted Gaussian technique showed several outliers.   
 
Table 3.4 Main and interaction effects (quantified by the coefficient of determination – 
R2) between leaf chlorophyll content and canopy biophysical parameters on the red edge 
position extracted by the wavelength of the maximum slope, linear interpolation, 
inverted Gaussian, polynomial fitting and linear extrapolation methods. 
 Maximum 

first 
derivative 

Linear 
interpolat-
ion 

Inverted 
Gaussian 
modelling 

3rd order 
polynomial 
fitting 

Linear 
extrapola-
tion I 

Linear 
extrapola-
tion II 

Cab and  LAI 
 

      

Cab  0.490*  0.608*  0.604*  0.625*  0.751*  0.701* 
LAI  0.025*  0.015*  0.025*  0.015*  0.008  0.016* 
Cab*LAI   0.000  0.008*  0.000  0.000  0.000  0.000 
Total R2   0.515  0.631  0.629  0.641  0.759  0.717 
Cab and ALA 
 

      

Cab  0.490*  0.608*  0.605* 0.620*  0.750*  0.698* 
ALA  0.009*  0.020*  0.013* 0.009*  0.012*  0.011* 
Cab*ALA   0.001  0.002*  0.000 0.002*  0.000  0.000 
Total R2   0.630 0.618 0.632 0.767 0.709 
Cab and Cm  
 

      

Cab  0.490*  0.608*  0.608*  0.621*   0.755*  0.704* 
Cm  0.207*  0.250*  0.222*  0.159*   0.142*  0.181* 
Cab*Cm   0.004*  0.000  0.004*  0.027*   0.001*  0.001* 
Total R2   0.701  0.858 0.834 0.807 0.898 0.886 
* p < 0.05, LAI = leaf area index; ALA = average leaf angle of an ellipsoidal leaf 
inclination distribution with random azimuth orientation; Cm = leaf dry matter content.   
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Table 3.5 Effect of different solar zenith angles on the prediction accuracy (root mean 
square error) of leaf chlorophyll by red-edge positions (REP) for the linear extrapolation 
and interpolation methods.  
 
Solar zenith angle 

Linear 
extrapolation I 

Linear 
extrapolation II 

Linear 
interpolation  

25o 8.47 9.40 10.80 
45o 8.98 9.77 10.76 
65o 8.34 9.01 10.46 
 
3.3.2 Influence of canopy biophysical parameters on red edge 

positions extracted by various methods 
 
Among the investigated perturbing canopy biophysical variables (LAI, 
ALA and leaf dry matter content), leaf dry matter content showed the 
highest influence on the REP (Table 3.4). However, the influence of dry 
matter content was lowest on the REP derived by the linear extrapolation 
I method. The contribution of LAI to the total variance of REP was low 
(R2 ranges from 0.008 to 0.025) but statistically significant for all the 
REP techniques with the exception of the linear extrapolation I method. 
The effect of ALA was equally low but significant for all REP 
techniques. The interaction effects between the chlorophyll content and 
biophysical parameters on REP were generally low. We should note that 
there was no significant (p>0.05) correlation between leaf chlorophyll 
content and LAI or ALA or leaf dry matter.  
 
3.3.3 Effects of solar zenith angle and sensor noise on the linear 

extrapolation method 
 
The RMSE obtained between the measured and predicted leaf 
chlorophyll contents for the solar zenith angles at 25°, 45° and 65° were 
similar (Table 3.5). We used the student’s t test to test if there were 
significant differences between the means of the predicted leaf 
chlorophyll content for solar zenith angle at 45° (standard data) and 25° 
or 65°. The results showed that the means are not significantly different 
(p>0.05 in all cases). With respect to noise, the RMSE increased with 
increasing sensor noise for the linear extrapolation technique (Table 3.6).  
The linear interpolation technique is not affected by senor noise.  
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Table 3.6 Effect of different noise levels on the prediction accuracy (root mean square 
error) of leaf chlorophyll by red-edge positions (REP) for linear extrapolation and 
interpolation methods. 
Noise levels (standard 
deviation relative to the 
reflectance - %) 

Linear 
extrapolation I 

Linear 
extrapolation II 

Linear 
interpolation 

0.00 (noise free) 8.98 9.77 10.76 
0.05 9.01 9.97 10.83 
0.10 11.17 16.97 10.75 
0.50 74.91 45.40 10.98 
1.00 190.7 80.67 11.03 
 
3.3.4 Effects of degrading the bandwidth on the linear 

extrapolation method 
 
Degrading the bandwidth from 1nm in the original data to the spectral 
coverage of Hyperion (~10 nm) and HyMap (~15 nm) lowered the 
correlation between REP and chlorophyll content for the linear 
extrapolation and interpolation techniques (Table 3.7).  
 
Table 3.7 Correlation (R2) between leaf chlorophyll content and red edge position 
derived from ASD, Hyperion and HyMap band settings for the linear extrapolation and 
interpolation methods. 
 Linear 

extrapolation I 
Linear 
extrapolation II 

Linear 
interpolation 

ASD (1 nm) 0.75 0.70 0.61 
Hyperion (~10 nm) 0.66 0.59 0.63 
HyMap (~15 nm) 0.55 0.50 0.55 
 
3.4 Discussion 
 
The objective of this study was to test whether the linear extrapolation 
method may be applied under different conditions including variable leaf 
chlorophyll and canopy biophysical parameters, solar zenith angle, 
sensor noise and spectral bandwidth.  
 
The results of this study show that REPs derived by linear extrapolation I 
and II are better predictors of leaf chlorophyll content compared to other 
traditional methods including the wavelength of maximum first 
derivative, linear interpolation, inverted Gaussian modelling, and 
polynomial fitting techniques. In our previous study (Cho and Skidmore, 
2006), we obtained the same correlation coefficient between leaf nitrogen 
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concentration and REP extracted by linear extrapolation I and II for each 
of the following data sets; rye (Lolium perenne) canopy, maize leaf and 
mixed grass/herb leaf stack spectra.  But this study shows that linear 
extrapolation I performs better than linear extrapolation II for leaf 
chlorophyll estimation.  Note that the correlation between nitrogen and 
REP depends on the positive relationship between foliar nitrogen and 
chlorophyll content (Yoder and Pettigrew-Crosby, 1995). But this 
relationship depends on the physiological status of the plant (Mooney, 
1986; Boochs et al., 1990).  
 
The REPs extracted by the various methods are in general less sensitive 
to leaf and canopy biophysical parameters compared to leaf chlorophyll 
content. However, the results suggest that REPs derived by the linear 
extrapolation I technique are least sensitive to LAI and leaf dry matter 
content compared to the various alternatives. Results reported in 
literature on the relationship between REP and LAI are mixed. Some 
studies using one or at most a few closely related species suggest that 
REP is influenced by both chlorophyll content and LAI (Filella and 
Peñuelas, 1994; Danson and Plummer, 1995; Pu et al., 2003). On the 
contrary, Boegh et al. (2002) found no relationship between REP and 
LAI across eight crop fields consisting of both winter-sown and spring-
sown crops but observed a high positive relationship between REP and 
leaf nitrogen concentration. Broge and Leblanc (2000) using PROSPECT 
and SAIL simulated data observed that REP poorly relates to LAI.   
 
The results of this study show that changes in the solar zenith angle have 
no significant effects on the predictive capability of REPs extracted by 
the linear extrapolation technique. But the method is sensitive to sensor 
noise. The comparative advantage of the linear extrapolation method 
over other methods is lost with noise levels greater than 0.05 % standard 
deviation relative to the reflectance. The sensitivity to spectral noise is 
attributed to the fact that the linear extrapolation method requires 
derivative analysis (first difference transformation of the spectrum). 
Derivative analysis enhances absorption features and suppresses 
contribution of non-vegetative reflectance components (Boochs et al., 
1990), but is sensitive to the inherent spectral noise of the system (Broge 
and Leblanc, 2000). We have not yet tested the use of smoothing for 
reducing sensor noise prior to REP calculation. The advantage of using 
the linear extrapolation I method compared to the linear interpolation 
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method diminishes with decreasing spectral resolution, confirming 
results obtained by Cho and Skidmore (2006).  
 
3.5 Conclusions 
 
This study has shown that REPs extracted by the linear extrapolation 
method involving wavebands at 680, 694, 724 and 760 nm have the 
potential for maximally explaining variations in leaf chlorophyll content 
with minimal effects of leaf and canopy biophysical confounders such as 
LAI, leaf inclination distribution, leaf dry mass content and soil 
brightness compared to traditional techniques including the linear 
interpolation, inverted Gaussian and polynomial fitting techniques. In 
addition, the linear extrapolation method is insensitive to changes in solar 
zenith angle. However, the advantage of using the linear extrapolation 
method compared to the various alternative REP algorithms diminishes 
with increasing sensor noise and decreasing spectral resolution.  In 
summary, the linear extrapolation technique shows high potential for 
chlorophyll estimation with radiative transfer models. The efficacy of the 
technique under field conditions needs to be established.  
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Abstract 
 
Developments in hyperspectral remote sensing have provided new 
indices or indicators of biochemical and biophysical properties. Most of 
the studies involving the novel spectral indices have been conducted at 
the leaf scale and have been rarely investigated for species 
discrimination. The objectives of the study were to determine 
hyperspectral indices that (i) are likely to be influenced by change in 
spectral measurement from the leaf to the canopy scale and (ii) can 
discriminate species at both scales. Leaf and canopy reflectance 
measurements were made from six species (3 shrubs, 3 trees) using an 
ASD spectroradiometer. The two-sample t test was used to evaluate 
whether significant differences exist between leaf and canopy indices, 
while differences between species pairs (15 pairs) were evaluated with 
ANOVA and pair-wise Bonferroni adjusted t tests. The hyperspectral 
indices evaluated in this study were, in general, sensitive to the change in 
spectral measurement scale from the leaf to the canopy. However, among 
the indices studied, red-edge positions (REP) extracted by the linear 
extrapolation I method were least sensitive to the change in measurement 
scale as three out of the six species showed no significant differences 
between the leaf and canopy indices. With respect to species 
discrimination, the canopy indices were better discriminators than the 
leaf indices. This is essential for air- or spaceborne remote sensing of 
species assemblages. The photochemical reflectance index (PRI) showed 
the highest potential to discriminate species at the canopy scale (all 15 
pairs), while the linear extrapolation REPs showed the highest potential 
to discriminate the same species pairs (10 pairs) at both scales. 
Hyperspectral indices might provide new possibilities of differentiating 
plant species.  
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4.1 Introduction  
 
Developments in hyperspectral remote sensing have provided more 
accurate information on structural, biochemical and physiological 
properties of vegetation (Blackburn, 1998). Most the work on 
hyperspectral remote sensing of biophysical and biochemical parameters 
has been achieved through the development of new hyperspectral indices 
(Chappelle et al., 1992; Vogelmann et al., 1993; Carter, 1994; Gitelson 
and Merzlyak, 1997). Spectral indices are mathematical transformations 
of spectral reflectance to enhance vegetation signal (Huete and Jackson, 
1988; Qi et al., 1995). Hyperspectral indices might provide new 
possibilities of differentiating plant species or communities that differ in 
canopy structure and/or biochemical compositions (Nagendra, 2001).     
 
The normalised difference vegetation index (NDVI) is the most 
commonly used multi-spectral index of canopy greenness, a correlate of 
structural aspects such as canopy cover and leaf area index. NDVI 
calculation is based on the difference in canopy reflectance at red (670-
680 nm) and near-infrared (750–850 nm) wavelengths (Rouse et al., 
1974; Tucker, 1979). NDVI has been used to differentiate communities 
consisting of structurally distinct formations e.g. savannah, shrubland and 
dense forest (Achard and Blasco, 1990; Saney and Elliott, 2002) or 
phenological distinct formations e.g. deciduous versus evergreen forests 
(Achard and Estreguil, 1995; Van Wagtendonk and Root, 2003). 
However, attempts to differentiate plant species have been unsuccessful 
because they tend to produce overlapping canopy NDVI values 
(Nagendra, 2001; Pettorelli et al., 2005).  
 
New hyperspectral indices that provide closer correlation with the 
biochemical and physiological properties of intact leaves or canopies 
have been developed. Several studies show that narrowband vegetation 
indices involving visible reflectance near 550 and 700 nm can precisely 
estimate leaf pigments such as chlorophyll a and b (Carter, 1994; 
Chappelle et al., 1992; Vogelmann et al., 1993; Gitelson and Merzlyak, 
1997) and carotenoids (Gamon et al., 1992; Gamon and Surfus, 1999; 
Gitelson et al., 2002). These pigments have different roles within the 
process of photosynthesis and their concentrations can depend on factors 
such as phenology, degree of canopy development and type of 
environmental stress (Blackburn and Pitman, 1999).  
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Another hyperspectral index of interest is the wavelength of maximum 
slope in the red-edge (670-780 nm) (Curran et al., 1995; Jago et al., 
1999). This point is termed the red-edge position (REP). Changes in leaf 
chlorophyll content cause shifts in the REP to shorter and longer 
wavelengths for low and high chlorophyll contents, respectively (Horler 
et al., 1980; Horler et al., 1983; Miller et al., 1990; Clevers et al., 2002). 
By using data simulated with radiative transfer models (PROSPECT-
SAILH), Cho et al. (2006) showed that REPs located by a novel 
approach, the linear extrapolation method are more sensitive to leaf 
chlorophyll content than REPs derived by alternative algorithms, 
including the linear interpolation (Guyot and Baret, 1988), and inverted 
Gaussian (Bonham-Carter, 1988) and higher order polynomial fitting (Pu 
et al., 2003) methods.  
 
Most of the studies involving the novel spectral indices have been 
conducted at the leaf scale and have not been tested for species 
discrimination. Fewer studies have been carried out at the canopy scale, 
for example, using plants grown under controlled conditions (Yoder and 
Pettigrew-Crosby, 1995), natural canopies (Blackburn, 1998) and 
simulated data (Barton and North, 2001; Cho et al., 2006). It is 
questionable whether spectral information acquired at the leaf level can 
be linearly scaled up to understanding the spectral characteristics at the 
whole plant or community scale. Several experimental and modelling 
studies show that vegetation reflectance at the latter scale is not only a 
function of leaf optical properties but also canopy biophysical attributes 
(foliage clumping, leaf orientation, leaf area, bark, twigs, flowers), soil 
reflectance, illumination conditions, viewing geometry and atmospheric 
conditions (Verhoef, 1984; Kuusk, 1991; Jacquemoud et al., 1995; Yoder 
and Pettigrew-Crosby, 1995; Asner, 1998). Thus, the main objectives of 
the study were to determine hyperspectral indices that: 
 
i are likely to be influenced by change in spectral measurement from 

the leaf to the canopy scale and 
ii can discriminate species at both scales.  
 
To achieve the above objectives, leaf and top-of-canopy reflectance 
measurements were made in situ from three species of shrubs and three 
species of trees. Statistical differences between the leaf and canopy 
indices and between species pairs were examined using the two-sample 
student t-test.   
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4.2 Material and methods 
 
4.2.1  Spectral measurements 
 
Leaf and canopy reflectance spectra of three shrub and three tree species 
(Table 4.1) were collected on clear sky days (30 August and 2 September 
2005) using an ASD spectroradiometer (FieldSpec Pro FR, Analytical 
Spectral Device, Inc, USA.).  The ASD covers the spectral range between 
350 to 2500 nm. The sampling interval over the 350-1050 nm range is 
1.4 nm with a resolution of 3 nm (bandwidth at half maximum). Over the 
1050-2500 nm range, the sampling interval is about 2 nm and the spectral 
resolution is between 10 and 12 nm. The results are then interpolated by 
the ASD software to produce readings at every 1nm. A 1.2 m long fibre 
optic cable with a 25˚ field of view was used for the measurements. 
 
Leaf reflectance measurements were made at about 5 cm above sunlit 
sides of 20 to 30 leaves on the shrub or tree crowns. A crane was used to 
attain the crowns of tall trees. With respect to the canopy spectra, 20 to 
30 measurements were made at different points above the crown at a 
distance of 1 m to 1.5 m. Measurements were taken on clear sunny days 
near solar noon (11 am to 2 pm). The radiance data was converted to 
reflectance using scans of a white spectralon reference panel. At most 
two target measurements were made after measuring the reference panel.  
 
Table 4.1 Shrub and tree species used in the study. 
 
Plant species 

Structural characteristics of the plants  

Hedera helix . Evergreen creeping plant, the adult plants consist of self-
support erect stems with unlobed cordate leaves 

Rhododendron sp. Dense shrub, ~1.5 m, evergreen leaves 
Prunus spinosa Dense prickly shrub, ~ 3 m, deciduous 
Corylus avellana. Tree, ~ 4 m, deciduous 
Malus domestica Tree, ~ 4 m, deciduous 
Aesculus hippocastanum Tree, ~ 3 m, deciduous 
 
 
4.2.2 Spectral indices 
 
Only the leaf and canopy spectra in visible-NIR (VNIR, 400-900 nm) 
range were considered in this study because the SWIR region showed 
high noise levels, particularly in the major water absorption bands. The 
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VNIR spectra for each species were smoothed using a Savitzky-Golay 
(Savitzky and Golay, 1964) second order polynomial least-squares 
function with a five-band window. Vegetation indices and REPs were 
then computed from the leaf and canopy spectra.  
 
4.2.2.1 Vegetation indices 
Apart from the traditional NDVI, narrowband indices that are sensitive to 
chlorophyll and carotenoids were adopted in this study. See Table 2 for 
the full description of the vegetation indices.  
 
Table 4.2 Vegetation indices selected in the study. 

 
Vegetation index 

Formula  Biophysical 
significance 

Reference  

Normalised difference 
vegetation index 
(NDVI) 

(R830–
R670)/(R830 + 
R670) 

Canopy greenness, 
Leaf area index (LAI), 
fraction of 
photosynthetically 
active radiation 

Rouse et al., 
1974; Tucker, 
1979 

Carter index (CI) R760/R695 Chlorophyll content Carter, 1994 
Gitelson and Merzylak 
index (GMI) 

R750/R700 Chlorophyll content Gitelson and 
Merzlyak, 1997 

Vogelman index 
(VOG) 

R740/R720 Chlorophyll content Vogelmann et 
al., 1993 

Photochemical 
reflectance index (PRI) 

(R531–
R570)/(R531 + 
R570) 

Conversion of 
xanthophylls-cycle 
pigments, 
photosynthetic light-
use efficiency, LAI 

Gamon et al., 
1992; Peñuelas 
et al., 1995; 
Barton and 
North, 2001 

Carotenoid reflectance 
index (CRI) 

R800(1/R520 - 
1/R550) 
 

Carotenoids (alpha- 
and beta-xanthophylls), 
indicator of plant stress 

Getilson et al., 
2002 

Note: R = reflectance 
 
4.2.2.2 Red-edge position (REP) 
REPs were derived by the linear four-point interpolation approach 
(Guyot and Baret, 1988), inverted Gaussian modelling (Bonham-Carter, 
1988), polynomial fitting technique (Pu et al., 2003) and the linear 
extrapolation method (Cho and Skidmore, 2006).  
 
(i) Linear interpolation technique 
The linear interpolation method (Guyot and Baret, 1988) assumes that the 
reflectance curve at the red edge can be simplified to a straight line 
centred around the midpoint between the reflectance in the NIR at about 
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780 nm and the reflectance minimum of the chlorophyll absorption 
feature at about 670 nm. It uses four wavebands (670, 700, 740 and 780 
nm), and the REP is determined by using a two-step calculation 
procedure.  
 
(a) Calculation of the reflectance at the inflexion point (Rre) 
 

( ) 2/780670 RRRre +=        (4.1) 
 
where R = reflectance  
 
(b) Calculation of the red edge wavelength or red edge position (REP) 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
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where 700 and 40 are constants resulting from interpolation in the 700-
740 nm interval.  
 
(ii) Inverted Gaussian fitting technique 
An inverted Gaussian (IG) model (Bonham-Carter, 1988; Miller et al., 
1990) was fitted to the spectral reflectance in the 660-780 nm band range. 
Accordingly, the IG model (Eq. 4.3) represents the red edge by the 
reflectance equation: 
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where Rs = maximum spectral reflectance 
Ro = minimum spectral reflectance 
λo = wavelength of minimum reflectance 
σ = Gaussian function variance.  
 
The REP is then defined as:  
 

σλ += 0REP        (4.4) 
 
We used an iterative optimisation fitting procedure to determine 
parameters of the IG model (Miller et al. 1990). Initial guesses of the 
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model parameters were made after review of each data set. Typically, Ro 
was set at 670 and the σ was approximated at about 30 nm. The IG model 
employs a least-square criterion to fit a normal curve to the reflectance 
red edge. The values of λo, Ro, Rs and σ are then determined by the fitting 
procedure.  
 
(iii) Polynomial fitting technique 
A polynomial (Pu et al. 2003) function (e.g. 3rd order polynomial - Eq. 
4.5) was fitted to the reflectance spectrum between the wavelengths, 
corresponding to the minimum reflectance in the red and the maximum 
NIR (shoulder) reflectance.  
 

i

i iaaR ∑ =
+= 3

10)( λλ        (4.5) 
 
where λ = band between 670 nm to 780 nm.  
 
Subsequently, REP was determined from the maximum first derivative 
spectrum. The first derivative was calculated using a first-difference 
transformation of the reflectance spectrum (Dawson and Curran, 1998) as 
follows: 
 

FDR(λi) = (Rλ(j+1) – Rλ(j))/Δ λ      (4.6) 
 
where FDR is the first derivative reflectance at a wavelength i, midpoint 
between wavebands j and j+1, Rλ(j) is the reflectance at the j waveband, 
Rλ(j+1) is the reflectance at the j+1 waveband, and Δλ is the difference in 
wavelengths between j and j+1. 
 
(iv) Linear extrapolation method 
The linear extrapolation method (Cho and Skidmore, 2006) is designed to 
track changes near chlorophyll sensitive peaks in the first derivative of 
the reflectance red-edge i.e. around 700 and 725 nm (Horler et al., 1983) 
and to mitigate the destabilising effects of multiple peaks feature on the 
red-edge derivative spectra on the location of the REP. The spectra of the 
six species used in this study showed multiple peaks around 700, 720, 
730 and 760 nm (Fig.4.1). Smith et al. (2004) observed similar peaks in 
grass spectra. Zarco-Tejada et al. (2003) observed the multiple-peak 
feature and showed that it is a function of natural fluorescence emission 
at 690 and 730 nm.  
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According to the linear extrapolation approach, the REP is calculated as 
the wavelength at the intersection of two straight lines (Eq. 4.7 and 4.8) 
extrapolated through two points on the far-red flank and two points on 
the NIR flank of the first derivative spectrum. Cho and Skidmore (2006) 
identified two combinations of wavebands for calculating leaf nitrogen-
sensitive REPs. They are hereby termed as linear extrapolation I 
involving far-red 680 and 694 nm in combination with NIR 724 and 760 
nm, and linear extrapolation II involving far-red 680 and 694 nm in 
combination with NIR 732 and 760 nm. 
 

Far-red line: FDR = m1λ+ c1     (4.7) 
 

NIR line: FDR= m2λ + c2     (4.8) 
 
Where, FDR denotes the first derivative value, and m and c represent the 
slope and intercept of the straight lines. At the intersection, the two lines 
have equal λ (wavelength) and FDR values. Therefore, the REP, which is 
the λ at the intersection, is given by: 
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−−

=        (4.9) 

 
where c1 and c2 are the intercepts, and m1 and m2 are the slopes of the 
far-red and NIR lines, respectively.  
 
4.2.3 Data analysis 
 
The two-sample t-test for testing whether differences exist between two 
population means was adopted in this study to determine spectral indices 
that are likely to be influenced by the canopy effect. Numerous studies 
have shown that the two-sample t test is robust to considerable departures 
from its theoretical assumptions (that both samples come at random from 
normal populations with equal variances), especially if the sample sizes 
are equal or nearly equal (Boneau, 1960; Cochran, 1947; Posten et al., 
1982; Zar, 1996). We tested the research hypothesis that the means of the 
leaf and canopy indices for each species were different, i.e., Ho: μ1 = μ2 
versus the alternative hypothesis, H1: μ1 ≠ μ2, where μ1 and μ2 are the 
means of leaf and canopy indices, respectively. The test was conducted 
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for each species using the various spectral indices. The t values were 
calculated using Eq. 4.10.   
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Where, 
_

1X and
_

1X , sd1 and sd2, and n1 and n2 represent the means, 
standard deviations and sample sizes of the leaf and canopy data, 
respectively.  
 
A two-step procedure was adopted in order to evaluate the potential of 
the various indices to discriminate between species. First, single factor 
analysis of variance (ANOVA) was used to test whether differences exist 
between the species means: the null hypothesis, H0: µ1 = µ2 = µ3 = µ4 = 
µ5 = µ6 versus the alternative hypothesis, H1: µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6. 
Secondly, a multiple comparisons test using Bonferroni adjusted t test 
was carried out in order to determine which pairs of species means differ. 
Bonferroni adjusted test reduces the chance of committing Type I error 
(Zar, 1996). We applied the Bonferroni multiple comparisons procedure 
with α = 0.05 to the data. The alpha level was adjusted downwards by 
dividing 0.05 by 15 (number of species pairs) i.e. 0.05/15 = 0.003. The 
critical t for this value is 3.26 for a sample size of n = 20 to 30.  
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Fig.4.1 Mean first derivative reflectance for (A) leaf and (B) top-of-canopy level 
measurements for six plant species showing multiple red-edge peaks around 700, 720, 
730 and 760 nm. 
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4.3 Results 
 
4.3.1 Differences between leaf and canopy indices 
 
 

Fig.4.2 Mean leaf and canopy reflectance for six plant species. Spectral 
measurements were carried out in situ, on sunlit sides of the leaves and 1-1.5 m 
above the canopy for leaf and canopy measurements, respectively.  
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The leaf VNIR reflectances were higher than canopy reflectances for all 
six species (Fig. 4.2). The question as to whether the differences were 
significant for each band was tackled using the two-sample t test. The 
differences were statistically significant (p < 0.05) in all the VNIR bands 
for all six species, but for Malus in the wavelength region between 703-
718 nm (Fig.4.3).  
 
The descriptive statistics of the spectral indices have not been presented, 
but it can be inferred from the negative t values (Tables 4.3 and 4.4) 
calculated using Eq. 4.10 that the canopy means were higher than the leaf 
means. These results contradict those of the reflectance data. There were 
a few exceptions e.g. for most cases of Malus where the leaf means were 
higher that the canopy means.  It is unclear why Malus showed the odd 
behaviour. The leaf-scale data showed higher variability compared to the 
canopy-scale data for each species as illustrated with NDVI and linear 
extrapolation I REP using Rhododendron (Fig. 4.4). The results of the 
two-sample t test showed that the differences between leaf and canopy 
means were significant (p < 0.05) in 81% and 74% of the cases for 
vegetation indices and REPs, respectively. However, when the individual 
indices were compared, the linear extrapolation I REP showed the 
highest number cases where the differences were not significant (3 
species) followed by the linear extrapolation II REP, Carter index, and 
Getilson and Merzylak index with two cases each.  
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Fig.4.3 Results of two-
sample t test for 
differences between 
leaf and canopy 
reflectance for all 
visible and NIR bands. 
The wavelength axis 
cuts the t-values axis at 
t = 2. Above this 
critical t value, the 
difference between the 
leaf and canopy means 
is significant (p < 
0.05). 
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Table 4.3 Two-sample t-test for differences between leaf and canopy vegetation indices 

Species NDVI CI GMI VOG PRI CRI 

Hedera  -2.22* -0.90ns -1.24ns -3.38** -4.95** -0.44ns 
Rhododendron  -7.43** -8.73** -7.40** -5.66** 7.44** -10.98** 
Prunus  -4.11** -4.00** -4.45** -7.94** -5.26** -3.39** 
Corylus  -8.03** -8.45** -4.86** -3.41** 2.22* -9.11** 
Malus  -2.02* -0.5ns 0.88ns 2.33* 6.47** -3.94** 
Aesculus  -4.78** -4.2** -3.49** -5.08** 1.34ns -5.23** 

*= p<0.05, ** = p<0.01, ns = not significant (p>0.05) 
 
Table 4.4 Two sample t-test for differences between leaf and canopy red-edge position 
calculated by various methods. 

Species Linear 
interpolation 

Linear 
extrapola-
tion I 

Linear 
extrapola-
tion II 

Inverted 
Gaussian 
modelling 

Polynomial 
fitting  

Hedera  -6.28** -2.76* -3.65** -6.24** -4.94** 
Rhododendron -6.98** -1.48ns -2.17* -5.64** -4.46** 
Prunus  -11.83** -4.60** -5.99** -11.26** -10.25** 
Corylus  -9.45** 0.73ns -0.21ns -7.57** -7.62** 
Malus  1.22ns 6.16** 5.88** 1.64ns 1.83ns 
Aesculus  -9.75** -0.56ns -1.92ns -8.56** -6.84** 

* = p<0.05, ** = p<0.01, ns = not significant (p>0.05) 
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Fig.4.4. Comparing the leaf and canopy distributions for (A) NDVI and (B) red-edge 
positions derived by the linear extrapolation II method for Rhododendron.  
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Fig.4.5. Results of two-sample t tests for differences between species (15 pairs) at leaf 
and canopy scale using NDVI, Carter index (CI), Gitelson and Meryzlak index (GMI), 
Vogelman index (VOG), photochemical reflectance index (PRI) and carotenoid 
reflectance index (CRI). Broken lines denote critical t value (t = 3.26) after Bonferroni 
adjustment above which differences were significant. Hedera (He), Rhododendron (Rh), 
Prunus (Pr), Corylus (Co), Malus (Ma) and Aesculus (Ae). 
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Linear interpolation 
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Fig.4.6. Results of two-sample t tests for differences between species (15 pairs) at leaf 
and canopy scale using red-edge positions extracted using linear interpolation, linear 
extrapolation I, linear extrapolation II, inverted Gaussian modelling and polynomial 
fitting methods. Broken lines denote critical t value (t = 3.26) after Bonferroni 
adjustment above which differences were significant. Hedera (He), Rhododendron (Rh), 
Prunus (Pr), Corylus (Co), Malus (Ma) and Aesculus (Ae). 
 
4.3.2 Discriminating species 
 
The results of the one-way analysis of variance (ANOVA) showed 
significant differences between the species means for all the spectral 
indices using the leaf and canopy-scale data, i.e. the null hypothesis, H0: 
µ1 = µ2 = µ3 = µ4 = µ5 = µ6 was rejected for all the indices. P-values less 
than 0.0001 were obtained for all the tests except for the NDVI using 
leaf-scale data, which showed a p-value of 0.0139. The results of the 
multiple comparison test using Bonferroni adjusted t test subsequently 
showed which pairs of means differ (Fig. 4.5 and 4.6).   
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More species pairs were differentiated using canopy-scale data than the 
leaf-scale data (Table 4.5). The potential for NDVI, PRI or CRI to 
discriminate species was highly biased towards the canopy-scale. The 
above indices showed the highest differences between the number of 
separable pairs at the leaf and canopy scales. For example, all 15 species 
pairs could be differentiated at the canopy level using PRI as against 5 
pairs at the leaf scale. The histograms of leaf and canopy PRI in Fig. 
4.7(A) provide a visual appreciation of its species discrimination 
capability at both levels. The NDVI showed the lowest potential to 
discriminate species at the leaf level, being able to differentiate only a 
single pair. GMI and VOG were the best vegetation indices at both leaf 
and canopy scales. 
 
In general, REPs performed better than vegetation indices in 
discriminating species at both scales. When all indices are compared, 
REPs extracted by the linear extrapolation I and II showed the highest 
potential in discriminating the same species pairs at both scales (10 
pairs). This is further illustrated with the histograms of the linear 
extrapolation I REPs in Fig 4.7(B).  
 
A general species separability pattern based on the phenological 
characteristics appears to emerge at the canopy scale for VOG and REPs. 
There were lower canopy t values for pairs consisting of species of the 
same phenology i.e. evergreen vs. evergreen (Hedera-Rhododendron) or 
deciduous vs. deciduous (Prunus-Corylus, Prunus-Malus, Prunus-
Aesculus and Corylus-Malus) in contrast to species of opposing 
phenology i.e. evergreen vs. deciduous (Hedera or Rhododendron – 
Prunus, Corylus, Malus or Aesculus). See Fig 4.8. for an illustration of 
the above phenomenon.  There were some few exceptions where species 
of opposing phenology were weakly discriminated at the canopy scale 
e.g. Hedera-Prunus and Rhododendron-Prunus. 
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Table 4.5 Summary of two-sample t tests for differences between species (15 pairs in 
total), showing number of pairs of species significantly discriminated (t > 3.26, p 
<0.003) at the leaf, canopy, and at both scales. 

Number of significant cases  
Spectral index Total at leaf 

scale 
Total at 
canopy scale 

Same species pairs 
at both scales 

Vegetation indices    
 NDVI 1 10 0 
 CI 4 10 2 
 GMI 8 9 5 
 VOG 10 11 7 
 PRI 5 15 5 
 CRI 3 13 2 
Red-edge position    
 Linear interpolation 11 13 9 
 Linear extrapolation I 11 13 10 
 Linear extrapolation II 10 13 10 
 Inverted Gaussian modelling 11 12 8 
 Polynomial fitting 11 12 8 
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Fig.4.7 Histograms of leaf and canopy indices, namely (A) Photochemical reflectance 
index (PRI) and (B) linear extrapolation I REP for six species of plants. The histograms 
illustrate the ability of the indices to differentiate species at the leaf and canopy scales.  
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Fig.4.8 Results of two-sample t tests for differences between species (15 pairs) at leaf 
and canopy scales using red-edge positions extracted using linear interpolation method. 
Species of opposing phenology (evergreen-deciduous) are better discriminated than 
species of the same phenology. Hedera (He), Rhododendron (Rh), Prunus (Pr), Corylus 
(Co), Malus (Ma) and Aesculus (Ae).  
 
 
4.4 Discussion 
 
4.4.1 Differences between leaf and canopy indices 
 
The results of this study revealed systematically higher VNIR 
reflectances at the leaf scale than at the top-of the canopy. The higher 
leaf VNIR reflectance may be explained by the effect of multiple 
scattering caused by leaf stacking since the leaf reflectance were 
measured in situ. Blackburn (1999) showed that the NIR and to a lesser 
degree, the visible reflectance increases with leaf stacking. He equally 
argues that the spectral reflectance properties of background materials 
and areas of shadow can have large influence upon that of the whole 
canopy even when there is complete canopy. For example, Fig. 4.9 shows 

0
3
6
9

12
15
18
21
24
27
30
33

He-R
h

He-P
r
He-C

o
He-M

a
He-A

e
Rh-P

r
Rh-C

o
Rh-M

a
Rh-A

e
Pr-C

o
Pr-M

a
Pr-A

e

Co-M
a
Co-A

e

Ma-A
e

t v
al

ue
s

leaf canopy

Evergreen 
Vs. 

Evergreen 

Evergreen 
Vs. 

Deciduous 

Deciduous 
Vs. 

Deciduous 
 



Chapter 4 

 79 

canopy pictures of Hedera and Rhododendron with dark areas, which 
may be due to shadow cast by the uppermost leaves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.9 Top-of-canopy view of (A) Hedera and (B) Rhododendron. 
 
The results of this study equally showed significant differences between 
leaf and canopy indices in 81% and 74% of the cases for vegetation 
indices and REPs, respectively. Thus, the information contents at both 
levels are largely different. The change in the spectral information 
content from the leaf to the canopy scale could be due to differences 
introduced by the complexity of the canopy, e.g. LAI, foliage clumping 
and the presence of twigs, flowers and shadow. However, the linear 
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extrapolation I REP appears to be the least sensitive index to these 
canopy properties followed by the linear extrapolation II REP, Carter 
index, and Getilson/Merzylak index. These indices are all chlorophyll 
content indices. The results of this study support growing evidence that 
REP extracted by the linear extrapolation method might be less sensitive 
to canopy structural.  For example, by using data simulated with radiative 
transfer models (PROSPECT-SAILH), Cho et al. (2006) showed that 
REPs located by the linear extrapolation method are more sensitive to 
leaf chlorophyll content with minimal effect of LAI and leaf mass 
compared to REPs located by various alternative algorithms. Cho and 
Skidmore (2006) in an experimental study using leaf stacks showed that 
REPs located by the linear extrapolation approach were more sensitive to 
leaf nitrogen concentration than the various REP alternatives. 
 
Other factors that might have affected the canopy spectra include 
atmospheric conditions and the bidirectional reflectance (BRDF) effect 
caused by varying view and solar zenith angles. The ratio or vegetation 
indices are designed to minimise these effects and to enhance the spectral 
signal of leaf and canopy biochemical and biophysical properties. The 
impact of the above perturbing factors on NDVI has long been 
established (Huete and Jackson, 1988; Kaufman and Tanré, 1992; Qi et 
al., 1995). Only recently was the impact of the BRDF effect on PRI 
apparent. Barton and North (2001) using simulated data showed that LAI 
has a high impact on PRI values followed by changing solar and view 
zeniths. On the other hand, Clevers et al. (2001) demonstrated that REP 
are less sensitive to atmospheric conditions and Cho et al. (2006) showed 
that REPs are not sensitive to varying solar zenith angles.  
 
4.4.2 Discriminating species 
 
In this study, we have shown that species were more easily discriminated 
at the canopy than at the leaf scale. This conclusion held across a variety 
of hyperspectral indices. This is essential for air-spaceborne remote 
sensing of species assemblages. It is possible that the optimum spectral 
information required to discriminate species at the leaf level was not 
captured in the leaf samples. This could be explained by the high 
variability in the leaf indices. Hence, the poorer species separability 
results at the leaf scale. On the other hand, in addition to the possibility 
of covering the total spectral information among the leaves, canopy 
reflectance might provide extra information on the canopy structure (leaf 
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orientation, leaf clumping, and colour of twigs and flowers), which might 
enhance the ability of the indices to discriminate between species.   
 
The impact of the canopy characteristics seems to be highest on NDVI, 
PRI and CRI, which showed the highest differences between the number 
of separable species pairs at the leaf and canopy scales. Though Gamon 
et al (1992) proposed the PRI as a sensitive index to xanthophyll cycle 
pigment contents; Barton and North (2001) showed that it is highly 
sensitive to canopy structural properties (LAI and leaf angle distribution). 
This double property of the PRI might have accounted for the high 
species separability potential at the canopy scale. A drawback of the PRI 
is that it is strongly influenced by soil background (Barton and North, 
2001). However, soil background was not an important factor in this 
study. Finally, the results of this study show that the REP largely 
preserves leaf information for discriminating species when the 
reflectance measurement is scaled up the canopy, with the linear 
extrapolation REPs having a slight urge over alternative REP algorithms. 
However, care should be taken when applying the linear extrapolation 
method because Cho et al. (2006) showed that it is sensitive to spectral 
noise. We recommend smoothing of the spectrum when noise is a 
problem.  
 
4.4.3 Implications for upscaling leaf level information to the canopy 

scale 
 
The results of this study support experimental and modelling studies, 
which demonstrate poor signal propagation from the leaf to canopy scale 
(Verhoef, 1984; Kuusk, 1991; Jacquemoud et al., 1995; Yoder and 
Pettigrew-Crosby, 1995; Asner, 1998). But the significant finding in this 
study is that canopy indices have a far superior discriminating power than 
leaf level indices, which is essential for remote sensing of species at the 
ecosystem level. Moreover, the study shows that the REP provides the 
best chance for upscaling leaf level information on species discrimination 
to the canopy scale. Since leaf chlorophyll content was not measured in 
this study, it remains to be explained why the REP showed a higher 
ability to discriminate species at both scales than ratio-based vegetation 
indices.   
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4.5 Conclusions 
 
This study, although limited in data set, allowed an evaluation of the 
effects of upscaling reflectance measurements from individual leaves to 
the top-of-canopy on hyperspectral indices.  The conclusion from this 
study is that spectral indices are generally sensitive to the change in scale 
of spectral measurement from the leaf to the canopy. However, among 
the spectral indices studied, the linear extrapolation I REP is least 
sensitive to the change in measurement scale.   
 
Differences between leaf and canopy indices appear to affect the ability 
of the spectral indices to differentiate species at both levels. The canopy 
indices were better discriminators of species than the leaf indices. This is 
essential for air- or spaceborne remote sensing of species assemblages. 
The PRI showed the highest potential to discriminate species at the 
canopy scale. But the REP in general showed the highest potential to 
discriminate the same species pairs at both scales. Hyperspectral indices 
might provide new possibilities of differentiating plant species or 
communities.  
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Abstract 
 
The research objective was to determine robust hyperspectral predictors 
for monitoring grass/herb biomass production on a yearly basis in the 
Majella National Park, Italy. HyMap images were acquired over the 
study area in mid and early July of 2004 and 2005, respectively. The 
robustness of vegetation indices and red-edge positions (REP) were 
assessed by: (i) comparing the consistency of the relationships between 
green grass/herb biomass and the spectral predictors for both years and 
(ii) assessing the predictive capabilities of linear regression models 
developed for 2004 in predicting the biomass of 2005 and vice versa. 
Frequently used normalised difference vegetation indices (NDVI) 
computed from red (665-680 nm) and near-infrared bands, modified soil 
adjusted index (MSAVI), soil adjusted and atmospherically resistant 
index (SARVI) and water difference vegetation index (NDWI) were 
highly correlated with biomass (R2 ≥ 0.50) only for 2004 when the 
vegetation was in the early stages of senescence. Although high 
correlations (R2 ≥ 0.50) were observed for NDVI involving far-red bands 
at 725 and 786 nm for 2004 and 2005, the predictive regression model 
for each year produced a high prediction error for the biomass of the 
other year. Conversely, predictive models derived from REPs computed 
by the three-point Lagrangian interpolation and linear extrapolation 
methods for 2004 yielded a lower prediction error for the biomass of 
2005, and vice versa, indicating these approaches are more robust than 
NDVI. The results of this study are important for selecting hyperspectral 
predictors for monitoring annual changes in grass/herb biomass 
production in the Mediterranean mountain ecosystems.  
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5.1 Introduction 
 
Monitoring grass biomass through time can provide important 
information about the stability of natural ecosystems and whether 
significant changes are taking place (Jensen, 2000). Remote sensing 
techniques have been widely used to model the spatial and temporal 
variability of grass biomass over large areas (Richardson et al., 1982; 
Everitt et al., 1989; Anderson et al., 1993; Wylie et al., 2002).    
 
The most widely used remote sensing product for biomass estimation is 
the normalised difference vegetation index (NDVI) developed by Rouse 
et al. (1974). NDVI is commonly computed from canopy reflectance in 
the red and near-infrared (NIR) using broadband imagery such as NOAA 
advanced very high resolution radiometer (AVHRR). However, there are 
major limitations with the NDVI despite its wide application.  Several 
studies show that broad-band NDVI can be unstable, varying with soil 
colour, canopy structure, leaf optical properties and atmospheric 
conditions (Huete and Jackson, 1988; Middleton, 1991; Kaufman and 
Tanré, 1992; Qi et al., 1995; Todd et al., 1998). It has also been 
demonstrated that empirical models derived from NDVI are highly site 
and sensor specific and therefore unsuitable for application to large areas 
or in different seasons (Curran, 1994; Gobron et al. 1997). Furthermore, 
broadband NDVIs asymptotically approach a saturation level after a 
certain biomass or leaf area index (Sellers, 1985, Gao et al. 2000).  
 
A major limitation of broadband NDVI is that, it uses average spectral 
information over broadband widths resulting in loss of critical 
information available in specific narrowbands (Blackburn, 1998, 
Thenkabail et al. 2000). However, recent developments in hyperspectral 
remote sensing have provided additional bands (narrowbands) within the 
red-NIR transition that have been utilised to improve grass biomass 
estimation. For example, Mutanga and Skidmore (2004) show that NDVI 
computed from 746 and 755 nm solves the saturation problem of 
estimating grass biomass at high canopy cover. Another hyperspectral 
predictor that has been assessed for grass biomass estimation is the 
wavelength of maximum slope in the red-NIR region termed the red-edge 
position (REP) (e.g. Gilabert et al., 1996; Mutanga and Skidmore, 2004). 
An advantage of the REP over the NDVI is that it is less sensitive to 
varying soil and atmospheric conditions, and sensor view angle (Curran 
et al., 1995; Blackburn and Pitman, 1999; Clevers et al., 2001). Many 
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recent studies assessing the utility of hyperspectral predictors for 
estimating grass biomass have focused on single crops or species 
canopies (Thenkabail et al. 2000, Hansen and Schjoerring 2003, Mutanga 
and Skidmore 2004). The utility of hyperspectral predictors for 
estimating or monitoring biomass in natural grass and/or herb 
communities remains to be established.  
 
The Mediterranean mountain grasslands in the region of Abruzzo, Italy 
consist of mixed grass/herb communities (Conti, 1998). These systems 
attain peak biomass in summer. But the hot summer climate, and variable 
cloud presence and precipitation in the region imply that the vegetation 
and atmospheric conditions are not stable. Therefore, the monitoring of 
peak grass/herb biomass on an annual basis would require that the 
relationship between biomass and the spectral predictor remains stable 
for different summer atmospheric and vegetation conditions.  
 
Thus, the research objective was to determine stable or robust 
hyperspectral predictors for estimating biomass production in 
Mediterranean mountain grasslands on a yearly basis. HyMap data was 
acquired in the study area, the Majella National Park, Italy in mid and 
early July 2004 and 2005, respectively. The robustness of vegetation 
indices and REP for monitoring grass/herb biomass was determined by: 
(i) comparing the consistency of the linear relationship between biomass 
and hyperspectral predictors for 2004 and 2005 and (ii) assessing the 
predictive capabilities of empirical models developed for 2004 in 
predicting the biomass of 2005 and vice versa.   
 
5.2 Material and methods 
 
5.2.1 The study area 
 
The study site is located in Majella National Park, Italy (latitude 41o52' to 
42o14'N, longitude 13o50' to 13o14'E), which covers an area of 74095 ha. 
The park extends into the southern part of Abruzzo, at a distance of 40 
km from the Adriatic Sea. This region is situated in the massifs of the 
Apennines (Conti, 1998). The park is characterised by several mountain 
peaks, the highest being Mount Amaro (2794 m).  
 
More specifically, the study site (latitude 41o49’ to 42o14’N, longitude 
13o57’ to 14o6’E) is situated between Mounts Majella and Morrone to the 
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east and west, respectively. It covers an area of 40 km by 5.5 km. 
Gallego Fernández et al. (2004) argue that plant community dynamics in 
Mediterranean basin ecosystems are driven mainly by alternating 
episodes of human intervention and land abandonment. For example, 
abandoned settlement and agricultural areas in Majella are returning to 
oak (Quercus pubescens) woodlands at the lower altitude (400 m to 
600 m) and beech (Fagus sylvatica) forest at the higher altitude (1200 m 
to 1800 m). Between these two formations is a landscape composed of 
shrubby bushes, patches of grass/herb vegetation, and bare rock outcrops. 
The dominant grass species include Brachypodium genuense, Briza 
media, Bromus erectus and Festuca sp. Herbs include Helichrysum 
italicum, Galium verum, Trifolium pratense, Plantago lanceolata, 
Sanguisorba officinalis and Ononis spinosa. 
 
5.2.2 Field data collection  
 
Two field campaigns were carried out in the summers of 2004 (28 June 
to July 16) and 2005 (16 to 29 June). There are four main 
phytosociological classes (semi-natural/farmlands, grazed/periodically 
flooded areas, open garrigues and abandoned farmlands) of varying areas 
within the specific study area. The phytosociological map of the park was 
provided by the park management. Random sampling with clustering was 
adopted in the study. Twenty-five coordinates (x, y) were randomly 
generated in four phytosociological classes using ArcGIS software; eight 
plots in the semi-natural/farmlands/abandoned farmlands, five plots in 
the open garrigues and twelve plots in the grazed/periodically flooded 
areas. The number of samples per vegetation class was proportional to 
the size of the class. A GPS was used to locate the sample plots in the 
field. A 30 m by 30 m plot size was adopted in this study. For each of the 
initially randomly generated plot, an extra plot located at about 150 m 
away was sampled for fresh green grass/herb biomass. Only plots with 
more than 20% homogeneous grass/herb cover were sampled, resulting 
in a total of 47 plots.  Above-ground biomass was clipped within five 
randomly selected subplots (1 m by 0.5 m) from each plot. All dry 
material was removed from the clipped plants before measuring the green 
grass/herb biomass. Average green grass/herb biomass per plot was 
calculated from the five subplot measurements.  
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5.2.3 Image acquisition and pre-processing 
 
Airborne HyMap data of the study site were obtained on 15 July 2004 
and 4 July 2005. The flights were carried out by DLR, Germany's 
Aerospace Research Centre and Space Agency. The HyMap sensor 
comprised 126 wavebands, operating over the wavelength range 436 nm 
to 2485 nm, with average spectral resolutions of 15 nm (436 nm to 1313 
nm), 13 nm (1409 nm to 1800 nm) and 17 nm (1953 nm to 2485 nm). 
The spatial resolution of the data was 4 m. The data was collected at solar 
noon. The specific study site was covered by four image strips, each 
covering an area of about 40 km by 2.3 km. The solar zenith and azimuth 
angles for the image strips ranged between 30-33.7o and 111.5-121o, 
respectively.  
 
The 2004 and 2005 image strips were atmospherically corrected by DLR. 
But only the 2005 images were geometrically corrected by DLR. The 
2004 images strips were then geometrically corrected from the 2005 
images using image-to-image registration. The atmospheric correction 
was carried out using ATCOR4-r (rugged terrain). ATCOR4 is based on 
MODTRAN-4 radiative transfer code. However, there were differences 
between the reflectance of similar pixels in the overlapping sections 
between image strips for the 2005 image. Spectral calibration between 
strips was carried out using the empirical line method in Environment for 
Visualising Images (ENVI 4.2) software (Research System, Inc.) in order 
to minimize the differences. Ten image spectra collected from a reference 
strip (e.g. strip 2) and corresponding targets from its overlapping 
neighbour (strip1 or 3) were used to compute a linear regression function 
for each channel.  Using the regression functions, strips 1 and 3 were 
then adjusted to have a spectral response similar to that of strip 2. The 
same process was carried out using corrected strip 3 as the reference 
image to correct strip 4. The spectra were collected from targets such as 
roads, agricultural fields, quarry fields, and dense beech forest pixels. 
 
5.2.4 Collecting image spectra for grass/herb plots 
 
Grass/herb areas were extracted from the image strips in order to 
eliminate mixed grass/shrubs and or tree pixels. First, an NDVI image 
involving bands at 665 nm and 831 nm was computed for each image 
strip using the ENVI 4.2 software. A point map of the grass/herb plots 
was then overlaid on the NDVI images. Pixels of pure grass/herb plots 
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were used to determine minimum and maximum NDVI threshold values 
for grass/herbs. Next, a grass/herb region-of-interest map was created 
using the NDVI threshold values. Subsequently, the region-of-interest 
map was used to subset grass/herb areas from the image. All other pixels 
were masked out.  
 
A 7 by 7 pixels window was used to collect grass/herb image spectra 
from each sample plot in order to avoid including pixels located outside 
the plot (30 m by 30 m). The spectra were collected and averaged. The 
spectra of five out of the 47 plots were not extracted from the 2005 image 
strips because the plots were located in portions covered by clouds.  
 
5.2.5 Data analysis 
 
5.2.5.1 Spectral predictors  
 
Two types of spectral predictors were adopted in this study: 
 
(a) Vegetation indices  
Four vegetation indices were used in the study: Narrowband NDVIs 
calculated from all combinations of red or far-red (600 to 740 nm) and 
NIR (756 to 1000 nm) bands, Modified soil adjusted vegetation index 
(MSAVI), soil adjusted and atmospherically resistant vegetation index 
(SARVI) and normalised difference water index (NDWI). The indices 
are presented in Table 5.1.  
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Table 5.1 Summary of vegetation indices analysed in this study. RNIR and Rred denote 
reflectances in the NIR and red, respectively.  
Index Formula  Description References 

(e.g.) 
NDVI 
(Normalised 
difference 
vegetation 
index). 

(RNIR - Rred)/(RNIR + Rred) Related to 
changes in 
amount of green 
biomass and 
pigment content. 

Rouse et al. 
1974  

MSAVI 
(Modified soil 
adjusted 
vegetation 
index) 

( ) ( )

2

81212 2
redNIRNIRNIR RRRR −−+−+

 

 

Minimises soil 
influences on 
canopy spectra. 
Red and NIR 
bands at 831 and 
665 nm, 
respectively. 

Huete, 
1988; Qi et 
al., 1994. 

SARVI  
(Soil adjusted 
and 
atmospherically 
resistant 
vegetation 
index). 

Rrb = Rred - γ(Rblue - Rred)  
γ = atmospheric aerosol 
correction function  
SARVI = (RNIR  - Rrb)/(RNIR  - Rrb 
+ L) 
L = soil adjustment factor  
 

Blue and red 
bands at 466 and 
665 nm, 
respectively.  
γ = 0.9, L = 0.5 

Kaufman & 
Tanre, 
1992; Huete 
et al., 1994. 

NDWI 
(Normalised 
difference 
water index) 

(R860 nm − R1240 nm) / (R860 nm + 
R1240 nm) 

Sensitive to 
changes in liquid 
water content of 
vegetation 
canopies. Gao 
(1996) show that 
NDWI is less 
sensitive to 
atmospheric 
effects than 
NDVI 

Gao, 1996.  

 
(b)  Red-edge position (REP) 
Red-edge positions were extracted by three simple methods; the linear 
four-point interpolation (Guyot and Baret, 1988), three-point Lagrangian 
interpolation (Dawson and Curran, 1998) and the linear extrapolation 
(Cho and Skidmore, 2006) methods.  
 
(i) Linear four-point interpolation method 
 
The linear four-point interpolation method (Guyot and Baret, 1988) 
assumes that the reflectance curve at the red edge can be simplified to a 
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straight line centred near the midpoint between the reflectance in the NIR 
at about 780 nm and the reflectance minimum of the chlorophyll 
absorption feature at about 670 nm. It uses four wavebands, 670, 700, 
740 and 780 nm i.e. 665, 695, 740 and 786 for the HyMap spectrum. The 
REP is then determined by using a two-step calculation procedure.  
Calculation of the reflectance at the inflexion point (Rre): 
 

 ( ) 2/786665 RRRre +=       (5.1) 
 
where R is the reflectance at a specified wavelength (e.g. 665 nm). 
 
Calculation of the red edge wavelength or red edge position (REP): 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+=
695740

69545695
RR
RR

REP re     (5.2) 

 
695 and 45 are constants resulting from interpolation in the 695-740 nm 
interval.  
 
(ii) Three-point Lagrangian interpolation method 
 
The three-point Lagrangian interpolation technique (Dawson and Curran, 
1998) is designed to locate REP in spectra that have been sampled 
coarsely. Lagrangian interpolation is applied to the first derivative of the 
reflectance spectrum, which is computed as follows:  
 

D(λi) = (Rλ(j+1) – Rλ(j))/Δ λ      (5.3) 
 
where D(λi) is the first derivative reflectance at a wavelength i, midpoint 
between wavebands j and j+1, Rλ(j) is the reflectance at the j waveband, 
Rλ(j+1) is the reflectance at the j+1 waveband, and Δ λ is the difference in 
wavelengths between j and j+1. 
The value of the first derivative at any wavelength (i.e. estimated value) 
will be Dλ. The Lagrangian interpolation technique for three known 
bands is given by  
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The band having the maximum first derivative will be λi, with λi-1 and 
λi+1 representing the two bands on either side of the maximum derivative. 
To determine the REP, a second derivation on Eq. 5.4 is performed and 
resolved for when the second derivative is zero. i.e.  
 

( ) ( ) ( )
( )CBA

CBA
REP iiiiii

++
+++++

= −+−+

2
1111 λλλλλλ     (5.5) 
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Fig.5.1 First derivative spectra of 2005 sample plots showing bands used in the 
calculation of red-edge positions by the linear extrapolation method. 
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(iii) Linear extrapolation technique 
 
The linear extrapolation technique (Cho and Skidmore, 2006) is designed 
to track changes near chlorophyll sensitive peaks in the first derivative 
(D) of the red edge i.e. around 700 and 725 nm (Horler et al. 1983). The 
REP is calculated as the wavelength at the intersection of two straight 
lines (Eq. 5.7 & 5.8) extrapolated through two points on the far-red flank 
and two points on NIR flank of first derivative reflectance spectrum. For 
example, for the HyMap derivative spectra used in this study, the lines 
were extrapolated through derivative bands at 672 and 703 nm for the 
far-red line and 732 and 778 nm for the NIR line (Fig. 5.1).  
 

Far-red line: D = m1λ + c1      (5.7) 
 

NIR line: D = m2λ + c2       (5.8) 
 
where m and c represent the slope and intercept of the straight lines; c1 
and m1 for the far-red line and c2 and m2 for the NIR line.  At the 
intersection, the two lines have equal λ and D values. Therefore, the REP, 
which is the λ at the intersection, is given by: 
 

( )
)(

21

21

mm
cc

REP
−
−−

=                (5.9) 

where  
 

( )
( )672703

672703
1 λλ −

−
=

DD
m , ( )

( )732778

732778
2 λλ −

−
=

DD
m , 70317031 λmDc −= , 73227322 λmDc −=   (5.10)

          
5.2.5.2 Assessing the robustness of hyperspectral predictors for 

monitoring grass/herb biomass 
 
The robustness of the various spectral predictors for monitoring grass 
biomass was determined in two ways:   
 
(i) the consistency of the linear relations between biomass and the 

spectral predictors were compared for both 2004 and 2005. The 
coefficient of determination and prediction errors (the root mean 
square errors of leave-one-out cross-validation (RMSECV)) were 
used for the comparison.  
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(ii) regression models developed for 2004 were used to predict the 
biomass of 2005 and vice versa. The performances of the various 
models for predicting either the next or previous years’ biomass 
were compared using the standard errors of prediction (RMSE).   

 
Table 5.2 Green grass/herb biomass data for 2004 and 2005 collected in Majella 
National Park, Italy.  
 
year 

N Mean  
(g m-2) 

SD Minimum Maximum 

June/July 2004 47 768 366 200 1750 
June 2005 42 774 369 210 2010 
SD = standard deviation 
 
5.3 Results  
 
5.3.1 Spectral and green grass/herb biomass characteristics for 

2004 and 2005 
 
The visible (450-700 nm), NIR (700-1300) and SWIR (1300-2500) 
reflectances were higher for 2004 than 2005 (Fig. 5.2). These results are 
consistent with changes that occur when vegetation loses pigmentation 
and water (Knipling, 1970), e.g. during the early stages of senescence. 
Furthermore, compared with 2005, the 2004 reflectance spectra showed 
higher variability (standard deviations) in the chlorophyll (600-700), and 
leaf/atmospheric water absorption (1450 and 1940 nm) bands (Curran, 
1989).  
 
The descriptive statistics for the green grass/herb biomass of 2004 and 
2005 are presented in Table 5.2; the data distributions are assumed 
normal. We used the 2-Sample Student’s t-test to compute the confidence 
interval and perform a hypothesis test for the difference between the 
means of the biomass of 2004 and 2005. The null hypothesis was H0: μ1-
μ2 = 0 versus the alternative hypothesis H1: μ1-μ2 ≠ 0, where μ1 and μ2 are 
the mean biomass of 2004 and 2005, respectively. The confidence 
interval (CI) for the difference in the means at 95% was CI (-161, 149 g 
m-2). The means were not significantly different at p<0.05.  
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Fig.5.2 Mean reflectance spectra (A) and their corresponding standard deviations (B) 
for grass/herb plots extracted from HyMap images acquired over Majella National Park, 
Italy in mid and early July 2004 and 2005, respectively.  
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Table 5.3 Best NDVI combinations for predicting grass/herb biomass in the Majella 
National Park, Italy for 2004 and 2005. R2 = coefficient of determination. 
Near-infrared  
wavelength (nm) 

Red or far-red 
 wavelength (nm) 

R2 

2004 HyMap 
image 

  

786 695 0.56 
801 695 0.56 
771 695 0.56 
756 695 0.56 
816 695 0.56 
   
2005 HyMap 
image 

  

786 740 0.64 
801 740 0.64 
771 740 0.62 
756 740 0.62 
879 725 0.62 
 
 
Table 5.4 Overall best NDVI combinations for predicting grass/herb biomass in the 
Majella National Park, Italy for both 2004 and 2005. They are classified according to 
decreasing difference in the coefficients of determination (R2) between 2004 and 2005 
for combinations that yielded high correlations (R2 ≥ 50) for both years.  

R2 Near-infrared  
wavelength (nm) 

Red or far-red 
 wavelength (nm) 2004 2005 

786 725 0.55 0.58 
801 725 0.54 0.59 
756 740 0.51 0.62 
771 740 0.51 0.62 
786 740 0.50 0.64 
 
 
5.3.2 Predictive performance of vegetation indices  
 
The linear relationships between grass/herb biomass and NDVIs 
computed from all combinations of wavebands between the NIR (756 to 
1000 nm) and red or far-red (600 to 740 nm) produced different patterns 
for 2004 and 2005 (Fig. 5.3):  
 
(i) in general, more combinations, i.e. 152 out of a total of 180 

combinations yielded high coefficients of determination (R2 ≥ 
0.50) for 2004 compared with 2005 (35 combinations)  
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(ii) the best five combinations for 2004 involved NIR bands and the 
red band at 695 nm, while for 2005, the best five combinations 
involved NIR bands and red-edge bands located at the longer 
wavelength end between 725 - 740 nm (Table 5.3) 

(iii) the best five combinations for both 2004 and 2005 involved NIR 
bands located at the upper limit of the red edge (786 - 801 nm) 
and red-edge bands located mid-way along the red-edge slope 
(725 - 740 nm) (Table 5.4) and  

(iv) the more traditional NDVI band combinations involving NIR and 
red wavelengths around the chlorophyll absorption centre (660-
680 nm) performed poorly for 2005 biomass estimation.  

 
A comparative analysis of the predictive performance of the NDVI 
involving analogous Landsat TM bands (831 & 665 nm), best NDVI for 
2004, best NDVI for 2005, overall best NDVI (786 & 725 nm), MSAVI, 
SARVI and NDWI is presented in Table 5.5. The MSAVI and SARVI 
provided an insignificant improvement over NDVI computed from red 
and NIR bands. NDWI produced a higher correlation for 2004 than 2005. 
Although NDVI (786 & 725 nm) and NDVI (786 & 740 nm) showed 
high correlations (R2 ≥ 0.50) and low RMSECV for both 2004 and 2005, 
they were poor predictors of the following or previous years’ biomass.  
 



Hyperspectral predictors for monitoring grass biomass 

 98 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5.3. Contour plots showing the sensitivity (based on the coefficient of determination 
i.e. R-square) of the relations between Majella green grass/herb biomass and NDVIs 
calculated from all combinations of near-infrared (756 to 1000 nm) and red or far-red 
(600 to 740 nm) bands for (A) 2004 and (B) 2005 HyMap images. 
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Table 5.5 A comparative analysis of the performance of vegetation indices and red-edge 
position (REP) extracted by three methods for predicting grass/herb biomass using 
HyMap images. The images were acquired over Majella National Park, Italy in the 
summers of 2004 and 2005. R2 and RMSECV denote the coefficient of determination 
and the root mean square error of leave-one-out cross validation, respectively. 

2004 HyMap image Linear regression model R2 RMSECV 
(g m-2) 

Prediction 
error 
(RMSE) 
based on 
2005 
model  

NDVI (831 & 665 nm) - 758.8 + 2328.7 NDVI 0.55 255 301 
NDVI(786 & 695 nm) - 455.7 + 2326.6 NDVI 0.56 252 298 
NDVI (786 & 740 nm) - 425 + 17522 NDVI 0.50 264 273 
NDVI (786 & 725 nm)  - 205.1 + 5786.8 NDVI 0.55 252 294 
MSAVI - 1791.5 + 1627.5 MSAVI 0.54 258 304 
SARVI - 283.2 + 1847.6 SARVI 0.55 255 290 
NDWI  804.69 + 5729.6 NDWI 0.55 251 389 
REP (linear 

interpolation) 
- 146667 + 205131 REP 0.47 272 352 

REP (three-point 
Lagrangian 
interpolation) 

- 52499 + 74475 REP 0.50 265 266 

REP (linear 
extrapolation) 

- 27980 + 40498 REP 0.53 258 279 

     
2005 HyMap image 
 

Linear regression model R2 RMSECV Prediction 
error 
(RMSE) 
based on 
2004 
model 

NDVI (831 & 665 nm) - 744 + 2040.4 NDVI 0.32 319 361 
NDVI(786 & 695 nm) - 523 + 2121 NDVI 0.38 306 346 
NDVI (786 & 740 nm) - 697 + 20149 NDVI 0.64 231 349 
NDVI (786 & 725 nm)  - 470.2 + 6393.5 NDVI 0.58 253 280 
MSAVI - 1703.4 + 1458.6 MSAVI 0.30 325 365 
SARVI - 270.5 + 1556.4 SARVI 0.31 322 356 

NDWI  496.6 + 4866.4 NDWI 0.49 280 444 
REP (linear 
interpolation) 

- 181974+ 254570 REP 0.62 239 295 

REP (three-point 
Lagrangian 
interpolation) 

- 51651 + 73184 REP 0.56 258 254 

REP (linear 
extrapolation) 

- 33500 + 48110 REP 0.58 252 258 

Note: All the relations where statistically significant at p<0.05 
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5.3.3 Predictive performance of the red-edge position 
 
Among the REP methods, only REPs extracted by the Lagrangian and 
linear extrapolation methods were highly correlated (R2 ≥ 0.50) with 
biomass for 2004 and 2005. Nevertheless, REPs extracted by the linear 
interpolation method yielded the highest correlation (R2 = 0.62) and the 
lowest RMSECV (239 g m-2) for 2005 when the vegetation was fresher. 
Compared with regression models developed using the best overall 
NDVI (786 & 725), the Lagrangian and linear extrapolation REP models 
for each year produced higher accuracies for grass/herb biomass 
prediction for the other year (Table 5.5 and Fig. 5.4). Fig.5.4 shows the 
predicted grass/herb biomass for a subset area of the 2005 image based 
on linear regression models derived from the best overall NDVI (786 & 
725) and linear extrapolation REP for 2004 and 2005. It could be 
observed that the predicted maps based on the REP models showed 
higher similarities compared with the NDVI models.   
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Fig.5.4 Predicted green grass/herb biomass for a subset area of the 2005 HyMap image 
based on (i) 2005 and (ii) 2004 regression models for (A) NDVI (786 & 725 nm) and 
(B) red-edge position extracted by the linear extrapolation method.  (C) Histogram 
showing the differences between (i) and (ii), i.e. number of pixels against difference in 
biomass. 
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5.4 Discussion 
 
The present study evaluates the robustness or stability of hyperspectral 
predictors for estimating grass/herb biomass between consecutive yearly 
hyperspectral images. HyMap images were acquired in the study area, 
the Majella National Park, Italy on 15 and 4 July 2004 and 2005, 
respectively. Despite the short period (11 days) between these two 
consecutive summer acquisition dates, the spectral analyses of grass/herb 
plots (Fig.5.2) seem to suggest that the vegetation and atmospheric 
conditions were different.  No significant difference was however found 
between the means of green grass/herb biomass for 2004 and 2005.  
 
This study shows that frequently used NDVIs computed from canopy 
reflectance in the red (665-680 nm) and near-infrared bands, MSAVI, 
SARVI and NDWI are not reliable predictors of grass/herb biomass on a 
yearly basis. The above indices were highly correlated (R2 ≥ 0.50) with 
biomass only for 2004 when the vegetation was in the early stages of 
senescence. Conversely, the results do support the growing body of 
evidence which shows that narrow-bands in the red-edge are more 
consistent predictors of plant biophysical parameters (Thenkabail et al., 
2000; Gupta et al., 2003; Hansen and Schjoerring, 2003; Mutanga and 
Skidmore, 2004). However, the linear regression models derived from 
the best overall NDVI involving narrow-bands at 725 and 786 nm were 
year-specific because the models for one year poorly predicted the 
biomass of another year. Differences in phenological and atmospheric 
conditions between 2004 and 2005 might have affected the stability or 
robustness of the empirically derived NDVI models. It has been shown in 
several other studies that empirical models derived from vegetation 
indices are highly site and sensor specific and unsuitable for application 
to large areas or in different seasons (e.g. Curran, 1994; Gobron et al., 
1997).  
 
The results of this study show that REPs extracted by the Lagrangian and 
linear extrapolation methods correlated highly (R2 ≥ 0.50) with green 
grass/herb biomass for both 2004 and 2005. Interestingly, the Lagrangian 
and linear extrapolation REP models for one year predicted the biomass 
of the other year with higher accuracies compared with the linear 
interpolation REP and NDVI (786 & 725 nm) regression models. 
Differences in phenological and atmospheric conditions might have only 
a minor effect on the relationship between biomass and the Lagrangian or 
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linear extrapolation REP compared with the linear interpolation REP. In 
fact, Clevers et al. (2001) demonstrated that the REPs are least sensitive 
to atmospheric and soil conditions. This may apply particularly to the 
Lagrangian and linear extrapolation REPs that are computed from 
derivative spectra. Derivative analysis enhances absorption features and 
suppresses contributions of non-vegetative reflectance components 
(Boochs et al., 1990; Curran et al., 1991). The applicability of the 
Lagrangian and linear extrapolation REP regression models for different 
Mediterranean mountain grassland habitats and/or sensor types needs to 
be established.   
 
In summary, the determination of spectral predictors that produce 
consistent correlations with peak grass/herb biomass for slightly different 
phenological and atmospheric conditions could be useful for monitoring 
annual changes in biomass production. These results are particularly 
crucial for the Mediterranean mountain landscape because of the unstable 
summer climate in this region, which makes it difficult to obtain cloud- 
or haze-free images at a desired phenological stage. Moreover, the 
robustness of regression models derived from the Lagrangian and linear 
extrapolation REPs, means that more reliable estimates of biomass can be 
obtained for a new HyMap image for which field-measured biomass data 
are unavailable.    
 
5.5 Summary and conclusions 
 
The robustness of hyperspectral predictors for estimating green 
grass/herb biomass in the Majella National Park, Italy on a yearly basis 
were assessed in terms of (i) the consistency of the relationships between 
biomass and the spectral predictors and (ii) the capability of empirical 
models developed for 2004 to predict the biomass of 2005 and vice versa.  
We conclude that the relationships between green grass/herb biomass and 
frequently used NDVIs computed from canopy reflectance in the red 
(665-680 nm) and near-infrared bands, MSAVI, SARVI and NDWI are 
not consistent from one year to the other. However, NDVI involving 
wavebands at 725 and 786 nm, or REPs extracted by the three-point 
Lagrangian interpolation and linear extrapolation techniques, produced 
high correlation (R2 ≥ 0.50) for both 2004 and 2005. But only the 
regression models based on REPs extracted by the Lagrangian and linear 
extrapolation methods for each year produced reliable estimates of 
biomass for the other year. The results of this study could be useful for 
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selecting hyperspectral predictors for monitoring annual changes in 
grass/herb biomass production across other Mediterranean mountain 
ecosystems.   
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Abstract 
 
The main objective was to determine whether partial least squares (PLS) 
regression improves grass/herb biomass estimation when compared with 
hyperspectral indices, that is normalised difference vegetation index 
(NDVI) and red-edge position (REP). To achieve this objective, fresh 
green grass/herb biomass and airborne images (HyMap) were collected in 
the Majella National Park, Italy in the summer of 2005. The predictive 
performances of hyperspectral indices and PLS regression models were 
then determined and compared using calibration (n = 30) and test (n = 
12) data sets.  The regression model derived from NDVI computed from 
bands at 740 and 771 nm produced a lower standard error of prediction 
(SEP = 264 g m-2) on the test data compared with the standard NDVI 
involving bands at 665 and 801 nm (SEP = 331 g m-2), but comparable 
results with REPs determined by various methods (SEP = 261 to 295 g 
m-2).  PLS regression models based on original, derivative and 
continuum-removed spectra produced lower prediction errors (SEP = 149 
to 256 g m-2) compared with NDVI and REP models. The lowest 
prediction error (SEP = 149 g m-2, 19% of mean) was obtained with PLS 
regression involving continuum-removed bands. In conclusion, PLS 
regression based on airborne hyperspectral imagery provides a better 
alternative to univariate regression involving hyperspectral indices for 
estimating grass/herb biomass in the Majella National Park. 
 
Keywords: Green grass/herb biomass; NDVI; red-edge position; HyMap; 
partial least squares regression; continuum-removal. 
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6.1 Introduction  
 
Accurate estimates of grass biomass at peak productivity can provide 
valuable information about the productivity and functioning of 
rangelands. For example, the quantity of forage influences the grazing 
patterns of animals (Senft et al., 1985; Pierce et al., 1994). Remote 
sensing techniques have been widely used to model the spatial variability 
of grass biomass over large areas (Richardson et al., 1982; Everitt et al., 
1989; Anderson et al., 1993; Wylie et al., 2002).     
 
There are major limitations with the normalised difference vegetation 
index (NDVI) despite its wide application for modelling the spatial 
variability of biomass. NDVI developed by Rouse et al. (1974) is 
commonly computed from canopy reflectance in the red and near-
infrared (NIR) using broad-band imagery such as NOAA advanced very 
high resolution radiometer (AVHRR). Several studies show that broad-
band NDVI can be unstable, varying with soil colour, canopy structure, 
leaf optical properties and atmospheric conditions (Huete and Jackson, 
1988; Middleton, 1991; Kaufman and Tanré, 1992; Qi et al., 1995). 
Furthermore, broad-band NDVI asymptotically approaches a saturation 
level after a certain biomass or leaf area index (LAI) (Sellers, 1985; Gao 
et al., 2000). Broad-band NDVI uses average spectral information over 
broad-band widths resulting in loss of critical information available in 
specific narrow-bands (Blackburn, 1998; Thenkabail et al., 2000).   
 
Recent developments in hyperspectral remote sensing have provided 
additional bands for vegetation analysis within the visible, NIR and 
shortwave infrared (SWIR). The results of several studies show that 
NDVIs computed from specific narrow-bands improve LAI or biomass 
estimation (Gong et al., 2003; Lee et al., 2004; Mutanga and Skidmore, 
2004). Using grass (Cenchrus ciliaris) grown in the greenhouse, Mutanga 
and Skidmore (2004) showed that narrow-band NDVI computed from 
740 and 755 nm solves the saturation problem of estimating grass 
biomass at high canopy cover. Another hyperspectral index that has been 
assessed for grass biomass estimation is the wavelength of maximum 
slope in the red-NIR region, termed the red-edge position (REP) 
(Gilabert et al., 1996; Mutanga and Skidmore, 2004). An advantage of 
the REP over NDVI is that it is less sensitive to varying soil and 
atmospheric conditions, and sensor view angle (Curran et al., 1995; 
Blackburn and Pitman, 1999; Clevers et al., 2001).    
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NDVI requires only two bands and could be limited in terms of 
exploiting the rich information content of hyperspectral data. 
Alternatively, multiple linear regression based on more than two 
hyperspectral bands has been used to predict vegetation parameters such 
as foliar nutrient contents and biomass (Curran, 1989; Kokaly and Clark, 
1999; Curran et al., 2001; De Jong et al., 2003). However, multiple 
regression with hyperspectral data is likely to suffer from 
multicollinearity (Curran, 1989; De Jong et al. 2003). This usually occurs 
when the number of samples is smaller than the number of wavebands 
used in the analysis (Curran, 1989; Nguyen and Lee, 2006). In contrast, a 
multivariate statistical technique that is widely used in chemometrics to 
deal with this problem is partial least squares (PLS) regression (Feudale 
and Brown, 2005; Geladi and Kowalski, 1986; Kooistra et al., 2004; van 
den Broek et al., 1996).  
 
PLS regression is closely related to principal component regression. But 
instead of first decomposing the spectra into a set of eigenvectors and 
scores and regressing them against the response variables as a separate 
step, PLS regression actually uses the response variable information 
during the decomposition process (Geladi and Kowalski, 1986). Few 
studies have explored the potential of PLS regression for estimating 
vegetation parameters using airborne hyperspectral imagery. For 
example, Schmidtlein and Sassin (2004) used PLS regression for 
mapping floristic gradients in grasslands and Huang et al. (2004) 
demonstrated that PLS regression was a better alternative to conventional 
stepwise regression for estimating foliar nitrogen. Recently, PLS 
regression was used for predicting wheat biomass using reflectance 
measurement obtained with a field spectrometer (Hansen, and 
Schjoerring, 2003). The utility of partial least square regression based on 
airborne hyperspectral imagery for estimating biomass in natural grass 
and/or herb communities remains to be established.  
 
Thus, the research objectives were to (i) ascertain the utility of 
hyperspectral indices derived from airborne hyperspectral imagery for 
estimating green grass/herb biomass in a semi-natural landscape and (ii) 
determine whether PLS regression increases the accuracy of green 
grass/herb biomass estimation when compared to hyperspectral indices.  
To achieve these objectives, green grass/herb biomass and airborne 
images (HyMap) were collected in the Majella National Park, Italy in the 
summer of 2005. The predictive performance of hyperspectral indices 
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(NDVI and REP) and PLS regression models were then determined and 
compared using calibration and test data sets.   
 
6.2 Material and methods 
 
6.2.1 The study area 
 
The study site is located in Majella National Park, Italy (latitude 41o52' to 
42o14'N, longitude 13o50' to 13o14'E), which covers an area of 74095 ha. 
The park extends into the southern part of Abruzzo, at a distance of 40 
km from the Adriatic Sea. This region is situated in the massifs of the 
Apennines. The park is characterised by several mountain peaks, the 
highest being Mount Amaro (2794 m).  
 
More specifically, the study site (latitude 41o49' to 42o14'N, longitude 
13o57' to 14o6'E) is situated between Mounts Majella and Morrone to the 
east and west, respectively. It covers an area of 40 km by 5.5 km. 
Gallego Fernández et al. (2004) argue that plant community dynamics in 
Mediterranean basin ecosystems are driven mainly by alternating 
episodes of human intervention and land abandonment. For example, 
abandoned settlement and agricultural areas in Majella are returning to 
oak (Quercus pubescens) woodlands at the lower altitude (400 m to 
600 m) and beech (Fagus sylvatica) forest at the higher altitude (1200 m 
to 1800 m). Between these two formations is a landscape composed of 
shrubby bushes, patches of grass/herb vegetation, and bare rock outcrops. 
The dominant grass species include Brachypodium genuense, Briza 
media, Bromus erectus and Festuca sp. Herbs include Helichrysum 
italicum, Galium verum, Trifolium pratense, Plantago lanceolata, 
Sanguisorba officinalis and Ononis spinosa. 
 
6.2.2 Field data collection  
 
A field campaign was carried out from 16 to 29 June 2005. There are 
four main phytosociological classes (semi-natural/farmlands, 
grazed/periodically flooded areas, open garrigues and abandoned 
farmlands) of varying areas within the specific study area. The 
phytosociological map of the park was provided by the park 
management. Random sampling with clustering was adopted in the study. 
Twenty-five coordinates (x, y) were randomly generated in four 
phytosociological classes using ArcGIS software; eight plots in the semi-
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natural/farmlands/abandoned farmlands, five plots in the open garrigues 
and twelve plots in the grazed/periodically flooded areas. The number of 
samples per vegetation class was proportional to the size of the class. A 
GPS was used to locate the sample plots in the field. A 30 m by 30 m 
plot size was adopted in this study. For each of the initially randomly 
generated plot, an extra plot located at about 150 m away was sampled 
for fresh green grass/herb biomass. Only plots with more than 20% 
homogeneous grass/herb cover were sampled, resulting in a total of 47 
plots.  Above-ground biomass was clipped within five randomly selected 
subplots (1 m by 0.5 m) from each plot. All dry material was removed 
from the clipped plants before measuring the green grass/herb biomass. 
Average green grass/herb biomass per plot was calculated from the five 
subplot measurements.  
 
6.2.3 Image acquisition and pre-processing 
 
Airborne HyMap data of the study site were obtained on 4 July 2005. 
The flight was carried out by DLR, Germany's Aerospace Research 
Centre and Space Agency. The HyMap sensor comprised 126 
wavebands, operating over the wavelength range 436 nm to 2485 nm, 
with average spectral resolutions of 15 nm (436 nm to 1313 nm), 13 nm 
(1409 nm to 1800 nm) and 17 nm (1953 nm to 2485 nm). The spatial 
resolution of the data was 4 m. The images were collected at solar noon. 
The specific study site was covered by four image strips, each covering 
an area of about 40 km by 2.3 km. The solar zenith and azimuth angles 
for the image strips ranged between 30-33.7o and 111.5-121o, 
respectively.  
 
The image strips were atmospherically and geometrically corrected by 
DLR. The atmospheric correction was carried out using ATCOR4-r 
(rugged terrain). ATCOR4 is based on MODTRAN-4 radiative transfer 
code. However, there were differences between the reflectance of similar 
pixels in the overlapping sections between image strips. Spectral 
calibration between strips was carried out using the empirical line 
method in Environment for Visualising Images (ENVI 4.2) software 
(Research System, Inc.) in order to minimize the differences. Ten image 
spectra collected from a reference strip (e.g. strip 2) and corresponding 
targets from its overlapping neighbour (strip1 or 3) were used to compute 
a linear regression function for each channel.  Using the regression 
functions, strips 1 and 3 were then adjusted to have a spectral response 
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similar to that of strip 2. The same process was carried out using 
corrected strip 3 as the reference image to correct strip 4. The spectra 
were collected from targets such as roads, agricultural fields, quarry 
fields, and dense beech forest pixels. 
 
6.2.4 Collecting image spectra for grass/herb plots 
 
Grass/herb areas were extracted from the image strips in order to 
eliminate mixed grass/shrubs and or tree pixels. First, an NDVI image 
involving bands at 665 nm and 831 nm was computed for each image 
strip using the ENVI 4.2 software. A point map of the grass/herb plots 
was then overlaid on the NDVI images. Pixels of pure grass/herb plots 
were used to determine minimum and maximum NDVI threshold values 
for grass/herbs. Next, a grass/herb region-of-interest map was created 
using the NDVI threshold values. Subsequently, the region-of-interest 
map was used to subset grass/herb areas from the image. All other pixels 
were masked out.  
 
A 7 by 7 pixels window (i.e. 28 m by 28 m) was used to collect 
grass/herb image spectra from each sample plot in order to avoid 
including pixels located outside the plot (30 m by 30 m). The spectra 
were collected and averaged. The spectra of five out of the 47 plots were 
not extracted from the image strips because the plots were located in 
portions covered by clouds.  
 
6.2.5 Data analysis 
 
Two main approaches were adopted in this study: (ii) hyperspectral 
indices (NDVI and REP) and (i) partial least squares regression. The data 
was randomly split into the training or calibration (n = 30) and test (n = 
12) sets. Regression analyses were performed on the calibration set. 
Empirical validation of the linear regression models for the indices and 
PLS regression models were carried out using the test set. The 
performances of the various regression models were compared using the 
coefficient of determination (R2) for calibration, the standard error of 
calibration (SEC, Eq. 6.1) and standard error of prediction based on the 
independent test data (SEP).  
 



Estimating grass biomass from hyperspectral imagery using PLS 

 112 

( )
n

yy
SEC

n

i∑ =
−

= 1
2'

       (6.1) 

 
where y = measured biomass, y′ = estimated biomass for test data and n = 
number of observations.  
 
6.2.5.1 Hyperspectral indices 
 
(i) Normalised difference vegetation index (NDVI) 
 
Broad-band NDVI is commonly calculated from the red and NIR 
reflectance (Eq. 6.2). But hyperspectral data provides additional bands in 
the red (600-700 nm) and red-edge/NIR (700-1300 nm) regions. Narrow-
band NDVIs were calculated from all two-band combinations between 
red or far-red (600 to 740 nm) and NIR (756 to 1000 nm) using the 
calibration data set (n = 30) in order to determine the best NDVI.  
 

( ) ( )redNIRredNIR RRRRNDVI +−= /      (6.2) 
 
where R =  reflectance 
 
(ii) Red-edge position (REP) 
 
Red-edge positions were extracted by three simple methods; the linear 
four-point interpolation (Guyot and Baret, 1988), three-point Lagrangian 
interpolation (Dawson and Curran, 1998) and the linear extrapolation 
(Cho and Skidmore, 2006) methods.  
 
(a) Linear four-point interpolation method 
 
The linear four-point interpolation method (Guyot and Baret, 1988) 
assumes that the reflectance curve at the red edge can be simplified to a 
straight line centred near the midpoint between the reflectance in the NIR 
at about 780 nm and the reflectance minimum of the chlorophyll 
absorption feature at about 670 nm. It uses four wavebands, 670, 700, 
740 and 780 nm i.e. 665, 695, 740 and 786 nm for the HyMap spectrum. 
The REP is then determined by using a two-step calculation procedure.  
 
Calculation of the reflectance at the inflexion point (Rre): 
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 ( ) 2/786665 RRRre +=       (6.3) 
 
where R is the reflectance at a specified wavelength (e.g. 665 nm). 
 
Calculation of the red edge wavelength or red edge position (REP): 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+=
695740

69545695
RR
RR

REP re     (6.4) 

   
695 and 45 are constants resulting from interpolation in the 695-740 nm 
interval.  
 
(b)  Three-point Lagrangian interpolation method 
 
The three-point Lagrangian interpolation technique (Dawson and Curran, 
1998) is designed to locate REP in spectra that have been sampled 
coarsely. Lagrangian interpolation is applied to the first derivative of the 
reflectance spectrum which is computed as follows:  
 

Dλ(i) = (Rλ(j+1) – Rλ(j))/Δ λ      (6.5) 
 
where Dλ(i) is the first derivative reflectance at a wavelength i, midpoint 
between wavebands j and j+1, Rλ(j) is the reflectance at the j waveband, 
Rλ(j+1) is the reflectance at the j+1 waveband, and Δλ is the difference in 
wavelengths between j and j+1. 
 
The value of the first derivative at any wavelength (i.e. estimated value) 
will be Dλ. The Lagrangian interpolation technique for three known 
bands is given by  
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The band having the maximum first derivative will be λi, with λi-1 and 
λi+1 representing the two bands on either side of the maximum derivative. 
To determine the REP, a second derivation on Eq. 6.6 is performed and 
resolved for when the second derivative is zero, i.e.  
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Fig. 6.1 Schematic representation of the linear extrapolation technique for extracting the 
red-edge position (Cho and Skidmore, 2006). 
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Fig. 6.2 First derivative spectra of grass/herb plots showing bands used in the 
calculation of red-edge positions by the linear extrapolation method.   
 
 
(c) Linear extrapolation technique 
 
The linear extrapolation technique (Cho and Skidmore, 2006) is designed 
to track changes near chlorophyll sensitive peaks in the first derivative 
(D) of the red edge i.e. around 700 and 725 nm (Horler et al. 1983). The 
REP is calculated as the wavelength at the intersection of two straight 
lines (Eq. 6.9 & 6.10) extrapolated through two points on the far-red 
flank and two points on NIR flank of first derivative reflectance spectrum 
(Fig. 6.1). For example, for the HyMap derivative spectra used in this 
study, the lines were extrapolated through derivative bands at 672 and 
703 nm for the far-red line and 732 and 778 nm for the NIR line (Fig. 
6.2).  
 

Far-red line: D = m1λ + c1      (6.9) 
 
NIR line: D = m2λ + c2      (6.10) 
 
where mi and ci (for i = 1, 2) represent the slope and intercept of the 
straight lines, respectively; c1 and m1 for the far-red line and c2 and m2 for 
the NIR line.  At the intersection, the two lines have equal λ and D 
values. Therefore, the REP, which is the λ at the intersection, is given by: 
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Fig. 6.3 Continuum removal applied to five absorption features (A) and the resulting 
continuum-removed curve (B). 
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6.2.5.2 Partial least squares regression  
PLS regression is a bilinear calibration method using data compression 
by reducing the large number of measured collinear spectral variables to 
a few non-correlated latent variables or factors (Geladi and Kowalski, 
1986; Hansen and Schjoerring, 2003). As in multiple regression, the main 
purpose of PLS regression is to build a linear model (Eq. 6.13),  
 
Y =Xb+E         (6.13) 
 
Where Y: mean-centred matrix containing the response variables (n by 1 
matrix in this study), X: the mean-centred matrix containing the predictor 
variables (the spectral bands in this study). b: matrix containing the 
regression coefficients and E: the matrix of residuals.  In PLS regression, 
the above principle is used on latent variables of X. In this sense, PLS 
regression is closely related to principal component regression (Geladi 
and Kowalski, 1986 and Geladi et al., 1999). But instead of first 
decomposing the spectra into a set of eigenvectors and scores and 
regressing them against the response variables as a separate step, PLS 
regression actually uses the response variable information during the 
decomposition process. Further information on the PLSR model can be 
obtained in Geladi and Kowalski (1986). 
 
The PLS regression analyses were performed using the original and 
transformed spectra i.e. first derivative and continuum-removed spectra. 
The main atmospheric water absorption regions i.e. 1400-1600 nm and 
1800-2100 nm were not included in the analyses. Continuum removal 
was applied to five major absorption troughs in the vegetation spectrum, 
from the visible to the SWIR (Fig.6.3). The continuum is removed by 
dividing the original reflectance values in the absorption trough by the 
corresponding values of the continuum line (Kokaly and Clark, 1999). 
The output curves have values between zero and one in which the 
absorption troughs are enhanced (Schmidt and Skidmore, 2001). 
 
Before performing the PLS regression, the spectral data were mean-
centred by subtracting their means. The leave-one-out cross-validation 
method was used to select the optimal number of PLS factors or latent 
variables to be included in the regression models (Geladi and Kowalski, 
1986; Viscarra Rossel, 2005). In order to avoid the collinearity problem 
and to maintain model parsimony, the criterion to add an additional 
factor to the model was that it had to reduce the root mean square error of 
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cross-validation (RMSECV) by > 2% (Kooistra et al., 2004). The 
RMSECV was determined from the residuals of each cross-validation 
phase. The performance of PLS models were estimated with the 
independent test data using the standard error of prediction (Eq. 6.1). The 
analyses were carried out using STATISTICA software (StatSoft, Inc.) 
 
It has been shown that variable selection enhances PLS regression results 
(Davies, 2001; Kubinyi, 1996; Martens and Martens, 2000; Schmidtlein 
and Sassin, 2004). A sub-objective therefore, was to test PLS models 
based on all HyMap bands with the exception of the main atmospheric 
water absorption regions and on a small number of selected bands. The 
selection was based on bands related to vegetation parameters such as 
leaf chlorophyll, LAI and leaf mass (Table 6.1). The continuum-removed 
bands were slightly different and involved 466 nm, 495 nm, 679 nm, 695 
nm, 725 nm, 710 nm, 740 nm, 895 nm, 975 nm, 1128 nm, 1215 nm, 2260 
nm and 2359 nm.  
 
Table 6.1 Wavebands selected for estimating green grass biomass using partial least 
squares regression.  
Waveband centre 
(nm) 

Description  References 

466 chlorophyll b Curran, 1989 
695 total chlorophyll Carter 1994;  Gitelson and 

Merzylak, 1997 
725 total chlorophyll, leaf mass  Horler et al, 1983 
740 leaf mass and LAI Horler et al. 1983 
786 leaf mass  Guyot and Baret, 1988 
846 leaf mass, LAI, chlorophyll Thenkabail et al. 2004 
895 leaf mass, LAI Thenkabail et al. 2004 
1113 leaf mass, LAI Thenkabail et al. 2004 
1215 plant moisture, cellulose, starch  Thenkabail et al. 2004, 

Curran, 1989 
1661 lignin, leaf mass, starch  Thenkabail et al. 2004 
2173 protein, nitrogen  Curran, 1989 
2359 cellulose, protein, nitrogen  Curran, 1989 
 
 
6.3 Results 
 
The results of hyperspectral indices are first presented. Subsequently, the 
results of PLS regression are examined to find out if they provide any 
improvements over the spectral indices. 
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Fig. 6.4 Contour plot showing the sensitivity (R-square) of the relations between green 
grass/herb biomass and NDVIs calculated from all combinations of near-infrared (756-
1000 nm) and red or far-red (600-740 nm) using HyMap bands.  
 
6.3.1 Hyperspectral indices (NDVI and REP) 
 
A comprehensive analysis of the relationships between green grass/herb 
biomass and NDVIs computed from all two-band combinations between 
the red or far-red (600-740 nm) and NIR (756-1000 nm) reflectance is 
presented in Fig. 6.4. The calibration data set (n = 30) was used in this 
analysis. NDVIs involving far red-edge bands in the 725 nm to 800 nm 
range produced higher coefficients of determination compared with the 
traditional NDVIs computed from red and NIR bands. The best five 
NDVIs are shown in Table 6.2.  
 
Table 6.2 Best NDVI combinations for predicting grass/herb biomass in the Majella 
National Park, Italy (n = 30). R2 = coefficient of determination.  
Near-infrared band (nm) Red or far-red band  (nm) R2 
771 740 0.702 
756 740 0.700 
786 740 0.690 
801 740 0.674 
862 725 0.670 
879 725 0.669 
877 725 0.669 
846 725 0.665 
831 725 0.661 
896 725 0.661 
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Table 6.3 Performance of normalised difference vegetation indices (NDVI) for 
predicting green grass/herb biomass in Majella National Park, Italy. R2 = coefficient of 
determination, SEC = standard error of calibration and SEP = standard error of 
prediction. 

Calibration (n = 30)  Independent 
validation (n = 12) 

Spectral predictors  R2 
Actual vs 
predicted 

SEC 
 (g m-2)  SEP 

(g m-2) 
% of 
mean  

NDVI      
Standard NDVI (801 & 665 nm) 0.42 298  331 43 
Best NDVI (771 & 740 nm) 0.70 214  264 34 
      
Red-edge position (REP)      
Linear interpolation  0.70 216  261 34 
Lagrangian interpolation  0.66 229  295 38 
Linear extrapolation  0.67 223  284 37 
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Fig. 6.5 (i) Calibration (n = 30) and (ii) independent validation (n = 12) results for 
predicting green grass/herb biomass in the Majella National Park using (A) standard 
NDVI computed from 801 and 665 nm and (B) best NDVI in this study computed from 
771 and 740 nm. SEC = standard error of calibration and SEP = standard error of 
prediction.   
 
A comparative analysis of the predictive performances of the best NDVI 
involving 740 and 771 nm, standard NDVI involving 665 and 801 nm 
and REP is presented in Table 3. The regression model involving the best 
NDVI produced a lower SEC (214 g m-2nd SEP (264 g m-2) compared 
with the standard NDVI which yielded SEC and SEP values of 298 g m-2 
and SEP = 331 g m-2, respectively. The calibration model based on the 
standard NDVI under-estimated biomass values above 1400 g m-2. The 
high values fall below the diagonal in the plot of predicted versus actual 

200 400 600 800 1000 1200

(ii)

200

400

600

800

1000

1200

R2 = 0.005, p = 0.824
SEP = 331 g m -2

200 400 600 800 1000 1200

Actual biomass (g m -2)

(ii)

200

400

600

800

1000

1200

R2 = 0.15, p = 0.215
SEP = 264 g m -2

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

(A)
(i)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Pr
ed

ic
te

d 
bi

om
as

s (
g 

m
-2

)

R2 = 0.42, p = 0.000
SEC = 298 g m-2

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Actual biomass (g m -2)

(B)
(i)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Pr
ed

ic
te

d 
bi

om
as

s (
g 

m
-2

)

R2 = 0.70, p = 0.000
SEC = 214 g m -2



Estimating grass biomass from hyperspectral imagery using PLS 

 122 

biomass. The relationship between the actual and predicted biomass in 
the calibration was highly influenced by the three highest biomass values 
(Fig. 6.5). These values belong to plots located in seasonally flooded 
grasslands. The calibration R2 values dropped from 0.42 to 0.27 and 0.70 
to 0.44 for the standard and best NDVI, respectively when the regression 
was established without the three high biomass values.  
 
REP extracted by the linear interpolation method showed a slightly better 
performance than REP located by the three-point Lagrangian 
interpolation and linear extrapolation methods (Table 6.3). In general, the 
best NDVI and REP models produced similar correlations and prediction 
errors.    
 
Table 6.4 Performance of partial least squares (PLS) regression for predicting green 
grass/herb biomass in Majella National Park, Italy. R2 = coefficient of determination, 
RMSECV = root mean square error of cross validation, SEC = standard error of 
calibration and SEP = standard error of prediction.  

Calibration (n = 30)  Independent 
validation (n = 
12) 

 

No. of 
PLS 
factors 

RMSECV 
(g m-2) 

R2 
Actual vs. 
predicted 

SEC 
(g m-2) 
 

 SEP 
(g m-2) 

% of 
mean 

All bands         
 Original 

reflectance 
3 251 0.72 207  204 26 

 First derivative 2 238 0.73 202  228 29 
 Continuum-

removed 
reflectance 

3 279 0.66 230  256 33 

        
Selected bands        
 Original 

reflectance 
3 248 0.71 210  199 26 

 First derivative 2 243 0.71 212  216 28 
 Continuum-

removed 
reflectance 

6 263 0.83 163  149 19 
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Fig. 6.6 (A) Calibration and (B) independent validation results for predicting 
grass/herb biomass in the Majella National Park using partial least squares 
regression based on continuum-removed reflectance bands. SEC = standard 
error of calibration, SEP = standard error of prediction.    

 
6.3.2 Partial least squares regression  
 
PLS models produced lower ranges of prediction errors for both the 
calibration (SEC = 163 to 230 g m-2) and validation (SEP = 149 to 256 g 
m-2) analyses compared to the NDVI and REP models (SEC = 214 to 298 
g m-2 and SEP = 261 to 295 g m-2).  
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A comparative analysis of the performances of PLS regression models 
based on the full HyMap spectrum (with the exception of atmospheric 
water absorption bands) and selected bands for the original, first 
derivative and continuum-removed spectra is presented in Table 6.4. 
Models based on the full spectrum and selected bands for the original and 
derivative spectra yield similar prediction errors for both the calibration 
and validation analyses. But the selected continuum-removed bands 
produced lower prediction errors (SEC = 163 g m-2 and SEP = 149 g m-2) 
compared with models based on all continuum-removed bands (SEC = 
230 g m-2 and SEP = 256 g m-2). In fact, the selected continuum-removed 
bands produced the lowest SEP in the study (SEP = 149 g m-2, 19% of 
the mean). Furthermore, the validation R2 for the prediction based on the 
selected continuum-removed bands (Fig. 6.6) was significant (p < 0.05) 
contrary to results obtained from NDVI-based models (Fig. 6.5).  
 
6.4 Discussion and conclusions 
 
The present study demonstrates the utility of partial least squares 
regression based on hyperspectral airborne imagery for predicting 
grass/herb biomass in a semi-natural landscape. Predictive models based 
on partial least squares regression produced higher accuracies compared 
with hyperspectral indices, namely, vegetation indices and the REP. 
These results are consistent with those of Hansen and Schjoerring (2003) 
who in a field experimental study on winter wheat reported a better 
predictive performance of partial least squares regression analysis 
compared with NDVI for green biomass estimation.   
 
The results of the study are inclusive with respect to whether band 
selection improves the predictive performance of PLS regression for 
grass biomass. With the exception of the model based on continuum-
removed bands, bands selection did not improve the predictive 
performance of PLS regression for predicting the grass/herb biomass of 
Majella National park. However, the prediction using the selected 
continuum-removed bands was based on a high number of PLS factors 
(six in total). A high number PLS factors might compromise the 
parsimony of the model. 
 
The model based on the standard NDVI under-estimated biomass values 
above 1400 g m-2. Geladi et al. (1999) argues that such a bias can be 
caused by random noise or nonlinearities in the true physical relationship. 
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But this bias was not systematic across the other indices and PLS models, 
suggesting that it might be caused by the nonlinearity in the standard 
NDVI/biomass relationship. The standard NDVI has been shown to 
saturate at high biomass or LAI in several other studies (e.g. Mutanga 
and Skidmore, 2004; Sellers, 1985; Tucker, 1979). The explanation for 
the saturation problem is that, as from a LAI of 3, the amount of red light 
at about 660-680 nm that can be absorbed by leaves reaches a peak while 
NIR reflectance continues to increase due to the multiple scattering 
effects (Kumar et al., 2001). This imbalance between the saturation of 
red light absorption and high NIR reflectance results in a slight change in 
the NDVI resulting in a poor relationship with biomass (Mutanga et al. 
2004). The results of this study showed a better predictive performance 
of NDVI involving far-red bands compared to the standard NDVI being 
consistent with those of Mutanga and Skidmore (2004) involving blue 
buffalo grass (Cenchrus ciliaris) grown in a greenhouse.   
 
The predictive performance of the REP derived by various methods was 
comparable to that of the best NDVI in the study. However several 
studies show that REP is less sensitive to varying soil brightness, 
atmospheric condition and sensor view angle compared to NDVI (Curran 
et al., 1995; Blackburn and Pitman, 1999; Clevers et al., 2001).  We 
showed in a recent study that REPs derived by the Lagrangian and linear 
extrapolation methods are better than NDVI-based models for monitoring 
grass/herb biomass between two consecutive yearly HyMap images 
(summers of 2004 and 2005) in Majella (Cho and Skidmore, in review).  
 
In summary, the study demonstrates the potential utility of PLS 
regression involving HyMap bands for estimating green grass/herb 
biomass in the Majella National Park. However, it should be noted that 
empirical models might be site or sensor specific and unsuitable for 
application to large areas or in different seasons (Curran 1994; Gobron et 
al. 1997). In conclusion, PLS regression based on airborne hyperspectral 
imagery provides a better alternative to univariate regression involving 
hyperspectral indices for grass/herb biomass estimation in the Majella 
National Park.  
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Abstract 
 
The objective of this study was to investigate whether multivariate 
statistical models such as partial least squares (PLS) regression and 
artificial neural networks (ANN) perform better than univariate models 
based on vegetation indices for estimating and mapping forest structural 
parameters of a closed canopy beech forest (Fagus sylvatica L). Airborne 
HyMap images and data on forest structural attributes including mean 
diameter-at-breast-height (DBH), mean tree height and tree density were 
collected from the Majella National Park, Italy in July 2004. The 
predictive performances of the various statistical techniques were 
evaluated using calibration (n = 33) and test (n = 20) data sets. The 
various calibration models provided higher prediction accuracies for 
Mean DBH and mean height (standard error of prediction i.e. SEP = 28 
to 38% of mean) compared with tree density (SEP = 65 to 70% of mean).  
The best predictions for DBH (SEP = 5.50 cm, 28% of mean) and height 
(SEP = 5.61 m, 30% of mean) were provided by PLS regression and 
ANN, respectively. Soil and atmospherically resistant vegetation index 
(SARVI) was the best vegetation index for mean DBH (SEP = 6.03 cm, 
30% of mean) and mean height (6.25 m, 33% of mean). The predicted 
map of mean DBH using PLS regression revealed a high heterogeneity of 
DBH which could be attributed to thinning, the principal management 
practice in the Park. The results of this study highlight the potential 
utility of multivariate techniques such as ANN and PLS regression based 
on several narrowbands for providing improved estimates of beech forest 
structural attributes compared with univariate methods based on 
vegetation indices. PLS regression has rarely been applied in this sense 
and thus offers new possibilities for mapping and monitoring beech 
forest structure. 
 
Keywords: diameter-at-breast height, tree height, vegetation indices, 
partial least squares regression, artificial neural networks, HyMap 
imagery 
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7.1 Introduction  
 
Information about the distribution of forest structural attributes such as 
tree diameter, basal area, height and density is essential for forest 
management. For example, thinning of high-density areas could promote 
diameter growth (Messina, 1992; Baldwin, et al., 2000; Fuhr et al., 
2001). Conventional forest inventory data have been collected by means 
of field surveys. Such surveys are time consuming, labour intensive and 
expensive when carried out over broad areas (Gower et al., 1999). 
Remote sensing, using current or anticipated air-spaceborne sensors is 
widely viewed as a time- and cost-efficient way to proceed with large-
scale estimation of forest structural attributes.  
 
A variety of remote sensing products have been used in forest inventory 
studies including passive optical and active (radar and lidar) sensors 
(Nilsson, 1996; Kasischke et al., 1997; Lefsky et al., 1999). By far the 
most commonly used sensors are multispectral optical sensors such as 
Landsat TM/ETM+ and SPOT HVR with three to six broad spectral 
bands covering the visible, near infrared (NIR) and shortwave infrared 
(SWIR) regions (Woodcock et al., 1997; Franco-Lopez et al., 2001; 
Ingram et al., 2005). Mathematical transformations of NIR and visible 
reflectance into ratio indices (vegetation indices) are the most widely 
used remote sensing predictors of forest parameters. Many vegetation 
indices have been developed, but the normalised difference vegetation 
index (NDVI) developed by Rouse et al. (1974) is the most common in 
use. With increases in leaf area index (LAI), red reflectance decreases as 
leaf pigments absorb light, while NIR reflectance increases as more leaf 
layers are present to scatter the radiation (Gates et al., 1965). Thus, the 
spectral response of forest is directly determined by LAI, foliage mass 
and canopy biochemical contents and indirectly by the attributes that 
influence the canopy structure such as density, basal area, mean tree 
diameter and height (Lefsky et al., 1999; Ingram et al., 2005). However, 
the major limitation of using NDVI is that it saturates for a certain range 
of canopy cover or LAI (LAI > 3) (Sellers, 1985; Gao et al., 2000). In 
addition, NDVI is affected by soil and background reflectance (Huete, 
1988), solar zenith and viewing angles (Middleton, 1991; Qi et al., 1995), 
and atmospheric conditions (Kaufman and Tanré, 1992).  
 
Broadband indices use average spectral information over broad 
bandwidths, resulting in loss of critical information available in specific 
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narrowbands (Gong et al., 2003; Thenkabail et al., 2004). The advent of 
narrowband or hyperspectral sensors has raised new expectations about 
the possibilities of improving the estimation forest parameters. This is 
based on the assumption that increased identification of particular 
spectral features associated with narrowbands could improve estimation 
of forest attributes compared to broadband sensors (Lefsky et al., 1999; 
Lee et al., 2004). However, it is difficult to infer from existing literature 
whether hyperspectral sensors provide an improvement over 
multispectral sensors for remote sensing of forest structural attributes. 
For example, Lefsky et al. (2000) observed a slight increase in the ability 
of Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to predict 
forest stand attributes relative to single date Landsat TM data, but a better 
performance of multitemporal TM data. Gong et al (2003) showed that 
indices involving NIR and SWIR Hyperion bands were better than NIR-
red indices for LAI estimation. Lee et al. (2004) found no improvement 
of AVIRIS NDVI over ETM+ NDVI for LAI estimation.  
 
An additional disadvantage of using two-band vegetation indices such as 
NDVI is that it utilises a limited amount of the total spectral information 
available in an image (Lee et al., 2004; Ingram et al., 2005). Few studies 
have assessed statistical techniques that integrate information from 
several spectral bands. For example, multiple stepwise regression was 
used by Lefsky et al. (2001) and De Jong et al. (2003) to estimate forest 
parameters. However, this method might be affected by multicollinearity 
(De Jong et al., 2003). Alternatively, multivariate techniques such as 
artificial neural networks (ANN) and partial least squares (PLS) 
regression are capable of mitigating multicollinearity. Foody et al. (2003) 
and Ingram et al. (2005) using Landsat TM and ETM+, respectively 
showed that ANN produced higher correlation with forest structural 
attributes compared to traditional vegetation indices including NDVI. On 
the other hand, PLS regression has not been assessed for estimating 
forest parameters. However, Hansen and Schjoerring (2003) and Cho et 
al. (2006) using a handheld spectrometer and airborne HyMap data, 
respectively showed that PLS regression improves grass biomass 
estimation compared to NDVI.  
 
The objective of this study was to investigate whether multivariate 
statistical models such as partial least squares (PLS) regression and 
artificial neural networks (ANN) perform better than univariate models 
based on vegetation indices for estimating and mapping forest structural 
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parameters of a closed canopy beech forest (Fagus sylvatica L). HyMap 
images and data on forest structural attributes including mean diameter-
at-breast-height (DBH), mean tree height and tree density were collected 
from the Majella National Park, Italy in July 2004. The predictive 
performances of the various statistical techniques were evaluated using 
calibration (n = 33) and test (n = 20) data sets.  
 
7.2 Material and methods 
 
7.2.1 Study site 
 
The study site was located in Majella National Park, Italy (latitude 41o52’ 
to 42o14’N, longitude 13o14’E), covering an area of 74095 ha. The Park 
extends into the southern part of Abruzzo, at a distance of 40 km from 
the Adriatic Sea. This region is situated in the massifs of the Apennines. 
The park is characterised by several mountain peaks, the highest being 
mount Amaro (2794 m). The region is characterised by Mediterranean 
climate: hot and dry summers and cool and wet winters. The specific 
study site (latitude 41o49’ to 42o14’N, longitude 13o57’ to 14o3’E) is 
situated between mounts Majella and Morrone to the east and west, 
respectively. It covers an area of 40 by 5.5 km.  
 
The Majella beech forest is located at altitude range of about 1200-
1800m. Over the last 60 years, depopulation, changes in the socio-
economic conditions and the creation of the National Park in 1995 have 
led to a pronounced drop in the local demand for small size timber, 
firewood and charcoal (Ciancio et al., 2006). As a consequence, many 
coppices are returning to high forest. However, a combination of thinning 
and the occurrence of avalanches in Majella have given rise to a 
compound coppice, which is a mixture of coppice and high forest.  
 
7.2.2 Image acquisition and processing 
 
Airborne HyMap data of the study site were obtained on 15 July and 4 
July for 2004 and 2005, respectively. The flight was carried out by DLR, 
Germany's Aerospace Research Centre and Space Agency. The HyMap 
sensor comprised 126 wavebands, operating over the wavelength range 
436 nm to 2485 nm, with average spectral resolutions of 15 nm (436 nm 
to 1313 nm), 13 nm (1409 nm to 1800 nm) and 17 nm (1953 nm to 2485 
nm). The spatial resolution of the data was 4 m. The data were collected 
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at solar noon. The specific study site was covered by four image strips, 
each covering an area of about 40 km by 2.3 km. The solar zenith and 
azimuth angles for the image strips ranged between 30-33.7o and 111.5-
121o, respectively. The 2004 and 2005 image strips were atmospherically 
corrected by DLR. But only the 2005 images were geometrically 
corrected by DLR. The 2004 images strips were then geometrically 
corrected from the 2005 images using image-to-image registration. The 
atmospheric correction was carried out using ATCOR4-r (rugged 
terrain). 
 
7.2.3 Field measurements of forest stand attributes  
 

Field data for mean DBH, mean height and number of trees were 
collected from 53 plots within the flight strips. Initially, 20 points were 
randomly generated using Arc GIS. The plots were located in the field 
with a GPS. Measurements were made from each randomly selected plot 
(30 m by 30 m) and from two to three other plots at about 150 and 300 m 
away. The data were only collected from closed canopy forest only. The 
DBH of all trees above 7 cm was measured while the tree heights of five 
to ten trees were measured using a Haga meter. The mean DBH and 
height were subsequently calculated per plot.  Tree density was calculated 
as the number of trees per hectare.  
 
7.2.4 Data analysis 
 

A 7 by 7 pixels window was used to collect image spectra from each 
sample plot in order to avoid including pixels located outside the plot (30 
m by 30 m). An average spectrum was subsequently calculated for each 
plot.  
 
7.2.5 Data analysis 
 
The forest parameters were predicted as continuous variables rather than 
as a set of discrete classes. Lefsky (2001) argues that continuous variable 
approach offers flexibility because the predictions can be used directly or 
arranged into multiple sets of classes that match varying purposes.  
 
The predictive capabilities of models based on spectral indices, stepwise 
regression, PLS regression and ANN were investigated. The data was 
randomly split into the training or calibration (n = 33) and test (n = 20) 
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sets. Regression analyses were performed on the calibration set. 
Empirical validation of the calibration models was carried out using the 
test set.  
 
Table 7.1 Spectral indices adopted in the study. 
 
Spectral index 

Formula  Biological significance Reference 

Simple ratio (SR) R801/R665 Canopy greenness, Leaf 
area index (LAI) 

Tucker, 1979 

Normalised 
difference 
vegetation index 
(NDVI) 

(R801–R665)/(R801 + R665) Canopy greenness, Leaf 
area index (LAI), 
fraction of 
photosynthetically 
active radiation 

Rouse et al., 
1974; 
Tucker, 1979 

Narrowband 
normalised 
difference 
vegetation index 
(NNDVI) 

(R756–R740)/(R756 + R740) Grass biomass Mutanga and 
Skidmore, 
2004 

Soil adjusted and 
atmospherically 
resistant vegetation 
index (SARVI) 

Rrb = Rred - γ(Rblue - Rred) 
γ = atmospheric aerosol 
correction function  
SARVI = (RNIR  - 
Rrb)/(RNIR  + Rrb + L) 
L = soil adjustment 
factor 
 γ = 1, L = 0.5 

Blue and red bands at 
466 and 665 nm, 
respectively. SARVI 
minimises atmosphere 
and soil induced 
variations 
 

Kaufman and 
Tanre, 1992; 
Huete et al., 
1994 

Modified ratio 
index (MSR) 

(R801/R665 – 
1)/(R801/R665)1/2 +1) 

Canopy greenness, Leaf 
area index (LAI) 

Chen, 1996 

Normalised 
difference water 
index  (NDWI) 

(R860 nm − R1240 nm) / 
(R860 nm + R1240 nm) 

NDWI is sensitive to 
changes in liquid water 
content of vegetation 
canopies.  

Gao, 1996  

Carter index (CI) R760/R695 Chlorophyll content Carter, 1994 
Vogelman index 
(VOG) 

R740/R720 Chlorophyll content Vogelmann 
et al., 1993 

Red edge position 
(REP) 

Linear extrapolation 
method 

Chlorophyll or nitrogen 
content, grass biomass 

Cho and 
Skidmore, 
2006 

 
 
The predictive performances of the various models were estimated and 
compared using the coefficient of determination (R2) for calibration and 
validation, the standard error of calibration (SEC, Eq. 7.1) and standard 
error of prediction (SEP) based on the independent test data.  
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−
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2'       (7.1) 

where y = measured DBH, height or density, y′ = predicted DBH, height 
or density and n = number of observations. 
 
7.2.5.1 Spectral indices  
The spectral response of forest is directly determined by LAI, foliage 
mass, leaf water content and canopy biochemical contents and indirectly 
by the attributes that influence the canopy structure such as density, basal 
area, mean tree diameter and height (Ingram et al., 2005; Lefsky et al., 
1999). Thus, spectral indices related to LAI, leaf mass leaf water and 
pigments were investigated in this study (Table 7.1).  
 
7.2.5.2 Stepwise regression  
Forward stepwise multiple was used to relate band reflectance and forest 
structural attributes. The criterion for selecting the optimum number of 
bands was that the inclusion of an additional band into the regression 
model should significantly (p<0.05) increase the coefficient of 
determination (R2).  
 
7.2.5.3. Partial least squares regression (PLS) 
PLS regression is a bilinear calibration method using data compression 
by reducing the large number of measured collinear spectral variables to 
a few non-correlated latent variables (Geladi and Kowalski, 1986; Geladi 
et al., 1999; Hansen and Schjoerring, 2003). As in multiple regression, 
the main purpose of PLS regression is to build a linear model (Eq. 7.2),  
 

Y =Xb+E        (7.2) 
 
where Y: mean-centred matrix containing the response variables (n by 1 
matrix in this study), X: mean-centred matrix containing the predictor 
variables (the spectral bands in this study), b: matrix containing the 
regression coefficients and E: the matrix of residuals.  In PLS regression, 
the above principle is used on latent variables of X. In this sense, PLS 
regression is closely related to principal component regression (Geladi 
and Kowalski, 1986 and Geladi et al., 1999). But instead of first 
decomposing the spectra into a set of eigenvectors and scores and 
regressing them against the response variables as a separate step, PLS 
regression actually uses the response variable information during the 
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decomposition process. Further information on the PLS regression can be 
obtained in Geladi and Kowalski (1986). 
 
It has been shown that variable selection enhances the predictive 
performance of PLS regression (Kubinyi, 1996; Martens and Martens, 
2000; Davies, 2001; Schmidtlein and Sassin, 2004). A sub-objective 
therefore, was to test PLS models based on all the HyMap bands and on a 
small number of selected bands. The selection was based on bands 
related to leaf chlorophyll, LAI and leaf mass (Table 7.2). 
 
Before the PLS regression models were developed, the spectra and forest 
parameters were mean-centred, i.e. the average value for each variable 
was calculated from the calibration set and then subtracted from each 
corresponding variable. The root mean square error of leave-one-out 
cross validation (RMSECV) was used as a selection criterion to choose 
the optimum number of PLS factors or latent variables for predicting the 
forest structural parameters (Geladi and Kowalski, 1986; Viscarra 
Rossel, 2005). The RMSECV was determined for each cross-validation 
phase. The number of factors which yielded the lowest RMSECV was 
used to develop the calibration equations. The analyses were carried out 
using STATISTICA software (StatSoft, Inc.) and ParLes software 
developed by Viscarra Rossel (2005).  
 
Table 7.2 Wavebands selected for estimating green grass biomass using partial least 
squares regression.  
Waveband centre 
(nm) 

Description  References 

466 chlorophyll b Curran, 1989 
695 total chlorophyll Carter, 1994; Gitelson and 

Merzylak, 1997 
725 total chlorophyll, leaf mass  Horler et al, 1983 
740 leaf mass and LAI Horler et al. 1983 
786 leaf mass  Guyot and Baret 1988 
846 leaf mass, LAI, chlorophyll Thenkabail et al. 2004 
895 leaf mass, LAI Thenkabail et al. 2004 
1113 leaf mass, LAI Thenkabail et al. 2004 
1215 plant moisture, cellulose, starch  Thenkabail et al. 2004, 

Curran, 1989 
1661 lignin, leaf mass, starch  Thenkabail et al. 2004 
2173 protein, nitrogen  Curran, 1989 
2359 cellulose, protein, nitrogen  Curran, 1989 
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7.2.5.4 Artificial neural networks (ANN) 
ANNs are artificial intelligence techniques based on the function of the 
human brain (Atkinson and Tatnall, 1997).  ANNs are non-parametric 
and have the advantages over traditional statistical approaches in their 
ability to handle non-linear relationships and non-Gaussian distribution 
of data (Mas et al., 2004; Miller et al., 1995; Paola and Schowengerdt, 
1995). Although in early studies, ANNs were mostly used to classify land 
cover or vegetation types (Miller et al., 1995; Bruzzone et al., 1997; 
Skidmore et al., 1997), the method has shown great potential for 
predicting continuous forest data (Bacour et al., In press; Schlerf and 
Atzberger, 2006).  
 
A multi-layer perceptron consisting of an input, one hidden and an output 
layer was used in this study. The ANN was trained by the back-
propagation algorithm. In order to minimise the risk of over-fitting which 
may results from a large number of input variables (Uno et al., 2005), 
only the bands of known spectral features for foliar nutrients and 
structure were applied in the study (Table 7.2). Because of the small 
number of samples in the calibration data, cross validation was used as a 
resampling technique to generate a number of networks.  The calibration 
data (n = 33) was divided into approximately ten equal parts. For each 
experiment, nine tenths of the data were used for the training while one 
part (n = 3) acted as the test set to determine the best network. Each 
experiment was performed with the same process parameters (number of 
epochs or iterations, learning rates and momentum). The best networks 
were subsequently formed into an ensemble and predictions on the 
independent test data (n = 20) were made by averaging the re-sampled 
networks. We also investigated the effect of using an increasing number 
of epochs on the prediction accuracy of the forest structural parameters.  
Skidmore et al. (1997) show that the system error decreases as the 
number of epoch increases.  
 
7.3. Results 
 
Only the results obtained from the 2004 HyMap image are reported in 
this study, first because parts of image strips 2 and 3 for 2005 were 
covered by clouds and secondly, none of the regression analysis adopted 
in the study produced a statistically significant relationship with mean 
DBH, height or tree density. As illustrated in Fig. 7.1 one difference 
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between 2004 and 2005 was that the vegetation was drier in 2004 than in 
2005 at the time of image acquisition.  
 

2004 

 
2005         

 
Fig. 7.1 True colour composite images for a subset area of HyMap images acquired on 
15 July 2004 and 04 July 2005. The vegetation was drier in 2004.  
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7.3.1 Structural parameters 
 
Table 7.3 Descriptive statistics of beech forest structural parameters. 

Parameter  Mean  
(n = 53) Minimum Maximum Standard 

deviation  Skewness 

Mean DBH 
(cm) 19.94 8.00 43.07 8.02 1.01 

Mean 
height (m)  18.70 7.00 45.00 7.23 1.35 

Tree density 
(No. ha-1) 1208 222 3089 739 0.77 

 
The descriptive statistics of the beech forest structural parameters are 
presented in Table 7.3. Each parameter showed a positive skewness 
indicating a bias of the distribution towards higher values. The Shapiro-
Wilk test was used to test the data for normality, the hypotheses were, the 
null hypothesis (Ho): data follow a normal distribution versus the 
alternate hypothesis (H1): the data do not follow a normal distribution. 
The null hypothesis was rejected in all cases (p <0.05).  The relationships 
among parameters were analysed using Spearman’s rank correlation test 
(a non-parametric test). Mean DBH was positively related to mean height 
(r = 0.70, p < 0.05) but negatively related to tree density (r = -0.91, p < 
0.05). Mean height was less highly related to density (r = -0.60) than to 
mean DBH.  
 
7.3.2 Relationship between mean DBH, mean height or tree density 

and individual band reflectance 
 
The relationships between forest parameters and individual band 
reflectance were analysed using Spearman’s rank correlation test. 
Statistically significant (p<0.05) correlations were predominantly 
observed in the NIR (Fig. 7.2). The relationships were significant in the 
following regions: 
 
Mean DBH and tree density: 711-1342 nm 
Mean height: 528-589 nm, 725-1405 nm, 1530-1806 nm and 2257 nm.   
 
Mean DBH and mean height on one hand and density on the other 
showed opposing correlation directions in the NIR. Mean DBH and mean 
height were negatively correlated with NIR bands, while density was 
positively correlated with the NIR bands.  
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Fig. 7.2 Correlograms of mean tree diameter-at-breast height (DBH), mean height 
and tree density.  

 
7.3.3 Predicting forest parameters  
 
The predictive capabilities of spectral indices, stepwise regression, PLS 
regression and ANNs have been assessed. Although the data of mean 
DBH, mean height and density were not normally distributed; the use of 
parametric statistical analysis was justified assuming normality under the 
central limit theorem (n ≥ 30) 
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Table 7.4 Predicting forest structural parameters; mean diameter at breast height (DBH), 
mean height and tree density using spectral indices. SEC = standard error of calibration, 
SEP = standard error of prediction. 

Calibration   (n = 33)  Independent validation (n = 20) 
Spectral indices 

R2 actual vs. 
predicted  

SEC   SEP % of mean  

Mean DBH (cm)      
SR 0.39** 6.39  6.75 34 
NDVI 0.39** 6.39  6.64 33 
SARVI 0.40** 6.34  6.03 30 
MSR 0.39** 6.39  6.72 34 
NNDVI 0.15** 7.56  7.32 37 
CI 0.26** 7.08  6.84 34 
VOG 0.12* 7.71  7.32 37 
NDWI 0.43** 6.21  6.11 31 
REP 0.07ns     
 
Mean height (m) 

     

SR 0.18* 6.29  6.84 37 
NDVI 0.21** 6.19  6.76 36 
SARVI 0.28** 5.89  6.25 33 
MSR 0.19* 6.26  6.81 36 
NNDVI 0.11ns     
CI 0.13* 6.48  7.02 38 
VOG 0.07ns     
NDWI 0.19* 6.25  6.47 35 
REP 0.05ns     
 
Density (no. trees 
ha-1) 

     

SR 0.40** 460  848 70 
NDVI 0.38** 468  831 69 
SARVI 0.40** 459  788 65 
MSR 0.39** 461  839 69 
NNDVI 0.18* 538  908 75 
CI 0.27** 506  863 71 
VOG 0.13* 553  903 75 
NDWI 0.47** 428  850 70 
REP 0.08ns     
*  = p < 0.05, ** = p <0.01 
 
7.3.3.1 Using spectral indices 
Mean DBH was the best-predicted parameter using the spectral indices. 
SARVI was the best linear predictor of mean DBH (SEP = 6.03 cm, 30% 
of the mean), mean height (SEP = 6.25, 33% of mean) and density (SEP 
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= 788 trees ha-1, 65% of the mean) (Table 7.4). In general, the predictions 
of low mean DBH values were poor for both the calibration and test data 
(Fig. 7.3). For example, when three classes of mean DBH values were 
taken into account, namely, low DBH: less than 15 cm, medium DBH: 
15-25 cm and high DBH: greater than 25 cm, then 2/8 (25%), 7/9 (78%) 
and 3/3 (100%) samples for low, medium and high mean DBH classes 
are correctly predicted on the test data (Fig. 7.3). This analysis revealed 
an overall prediction accuracy of 60% on the test data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.3 Relationship between predicted and actual tree diameter at breast height (DBH) 
for (A) calibration and (B) validation analyses using soil adjusted and atmospherically 
resistant vegetation index (SARVI). SEC = standard error of calibration, SEP = standard 
error of prediction. I, II and III indicate low medium and high DBH classes.  
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The graphs of predicted versus actual mean DBH for both the calibration 
and validation analyses showed that higher values are predicted low and 
low values are predicted high (Fig 7.3). This phenomenon is known as 
‘local bias’ or contraction (Geladi et al., 1999). Predicted mean DBH 
values below 15 cm and above 25 cm appear to saturate. Further analyses 
were carried out with three mean DBH subsets: 

 
(i) Mean DBH less than 25 cm 
(ii) Mean DBH greater than 15 cm and  
(iii) Mean DBH greater than 15 cm but less than 25 cm 
 
Despite the tendency for saturation at both the low (less than 15 cm) and 
high mean DBH (greater than 25 cm) values as shown in Fig. 7.3, the 
results in Fig. 7.4 seem to suggest that the performance of the mean 
DBH/SARVI regression model is limited by the low and high mean DBH 
values. The predictive performance of the regression model decreased in 
the absence of the low or high mean DBH values. The effect was more 
pronounced in the absence of the low values (Fig. 7.4B). There was no 
significant relationship between mean DBH and SARVI when both the 
low and high mean DBH values were kept out of the analysis (Fig. 7.4C).  
 
The NDWI produced the highest calibration R2 for mean DBH and tree 
density but produced higher prediction errors on the test data when 
compared with SARVI. The red-edge indices, namely, carter index, 
vogelman index and the REP performed poorly for all three structural 
parameters.  
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Fig.7.4 Calibration (i) and validation (ii) analyses using soil adjusted and 
atmospherically resistant vegetation index (SARVI) for (A) mean diameter at breast 
height (DBH) < 25 cm, (B) mean DBH > 15 cm and (C) 15 cm < mean DBH < 25 cm.  
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Table 7.5 Predicting forest structural parameters; mean diameter at breast height (DBH), 
mean height and tree density using forward stepwise regression. SEC = standard error of 
calibration, SEP = standard error of prediction. 

Calibration   (n = 33)  Independent 
validation (n = 20) Forest 

parameter Bands (nm) R2 actual 
vs 
predicted 

SEC 
 

 SEP  % of 
mean  

Mean DBH 
(cm) 

604, 619, 
680, 771, 
1158, 1258 

0.80** 3.36  7.94 40 

Mean Height 
(m) 

695, 1129 0.39** 5.40  6.11 33 

Density (no. of 
trees ha-1) 

771, 1287 0.61** 370  845 70 

** = p < 0.01 
 
7.3.3.2 Using stepwise regression 
The prediction of mean DBH using multiple stepwise regression (Table 
7.5) was poorer (SEP = 7.94 cm) than that of most vegetation indices. 
The low prediction could be attributed to collinearity amongst the 
predictor wavebands, i.e. bands at 604, 619, 680, 771, 1158 and 1258 
nm. The collinearity is reflected by the high R2 obtained in the calibration 
analysis. We used the variance inflation factor (Brauner and Shacham, 
1998) computed from Eq. 7.3 to detect the bands causing collinearity.  
 

VIFj = 1/(1-R2
j)        (7.3) 

 
where R2

j is the multiple correlation coefficient of xj (i.e. the jth predictor 
band) regressed on the remaining columns of the X matrix (i.e. predictor 
bands). The value of VIFj is calculated for j = 0, 1, …,n (all the columns 
of the matrix X). A high level of collinearity leads the R2

j value close to 
1, which causes VIFj to attain a large positive value (Brauner and 
Shacham, 1998). This process showed that bands located at 604, 619, 
1158, and 1258 nm contributed to the high collinearity. When the 
multiple regression analysis was conducted with predictor bands at 680 
and 771 nm after eliminating the bands that cause harmful collinearity, 
the SEP dropped to 6.13 cm. The forward stepwise process yielded only 
two predictor bands for the estimation of mean tree height or density. The 
prediction of mean height was comparable to that of SARVI. 
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7.3.3.3 Using partial least squares regression 
The predictive performances of PLS regression based on all the HyMap 
bands and selected bands were basically similar (Table 7.6). Like in the 
case of spectral indices, mean DBH was the best-predicted parameter, 
followed by mean height and lastly density. However, there was a slight 
improvement in the prediction accuracy of mean DBH (SEP = 5.50 cm, 
28% of mean) compared with SARVI (SEP = 6.03 cm, 30% of mean). As 
was the case with the regression model involving SARVI, the results of 
the PLS modelling showed a strong ‘local bias’ in the calibration and test 
data (Fig. 7.5). The higher values were predicted low and the low values 
were predicted high.  
 
When three classes of mean DBH were taken into account as suggested 
in section 3.3.1, 1/8 (25%), 8/9 (89%) and 3/3 (100%) samples for low, 
medium and high mean DBH classes were correctly predicted on the test 
data. As with SARVI, this resulted into an overall prediction accuracy of 
60%. There was some inconsistency in the prediction of the low mean 
DBH values between the calibration and test data. As could be observed 
in Fig. 7.5, the calibration model performed better than the validation 
model in predicting the low mean DBH values.  

 
When further analyses were carried out using three subsets of the data as 
suggested in section 7.3.3.1, a different pattern (Fig. 7.6) emerged 
compared with the results for SARVI: (i) the absence of high mean DBH 
values enhanced the calibration R2 but led to a poorer prediction on the 
test data (ii) while the absence of the low DBH value reduced the 
calibration R2 but resulted into a better prediction on the test data and (iii) 
when both low and high values were left out, the calibration and 
validation models remained significant. In contrast to SARVI, the 
calibration R2 was significant in all three cases. More importantly, 
leaving out the low mean DBH values reduced the ‘local bias’ around the 
1:1 diagonal line.  
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Table 7.6 Performance of partial least squares (PLS) regression for predicting mean 
diameter at breast height (DBH), mean height and tree density in Majella National Park, 
Italy. R2 = coefficient of determination, RMSECV = root mean square error of cross 
validation, SEC = standard error of calibration and SEP = standard error of prediction.  

Calibration (n = 33) 
 Independent 

validation (n = 
20) 

 

No. of 
PLS 
factors 

RMSEC
V 

R2 
Actual vs 
predicted 

SEC 
 

 SEP 
 

% of 
mean 

All bands         
 Mean DBH 

(cm) 
3 6.56 53** 5.63  5.66 28 

 Mean Height  
(m) 

2 6.15 36** 5.54  6.12 33 

 Density (no. of 
trees ha-1) 

2 461 50** 420  828 68 

        
Selected bands        
 Mean DBH 

(cm) 
3 6.54 51** 5.74  5.50 28 

 Mean Height  
(m) 

2 6.16 37** 5.52  6.21 33 

 Density (no. of 
trees ha-1) 

3 451 50** 421  824 67 

** = p <0.01 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.5 Relationship between predicted and actual tree diameter at breast height (DBH) 
for (A) calibration and (B) validation analyses using partial least squares regression. 
SEC = standard error of calibration, SEP = standard error of prediction. I, II and III 
indicate low medium and high DBH classes.  
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Fig. 7.6 Calibration (i) and validation (ii) analyses using partial least squares for 
(A) mean diameter at breast height (DBH) < 25 cm, (B) mean DBH > 15 cm and 
(C) 15 cm < mean DBH < 25 cm. 
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7.3.3.4 Using artificial neural networks 
The predictive performance of the ANN depends on the number of 
epochs (Fig. 7.7). The SEC decreases with increasing number of epochs 
up to a point where the data becomes erratic. We used the lowest SEC 
value corresponding to the lowest number of epochs in the comparative 
analyses (Table 7.7). The SEP for DBH based on the selected bands (SEP 
= 5.80 cm, 29% of mean) was slightly higher than that of the PLS 
regression model (SEP = 5.50 cm, 28% of mean) but lower than that of 
SARVI (SEP = 6.03 cm, 31% of mean). ANN model was the best 
predictor of tree height (SEP = 4.61, 30% of mean) among all the 
statistical methods adopted in this study. However, as was observed for 
the prediction of DBH using SARVI and PLS models, the graphs of the 
predicted versus actual height also showed the phenomenon of ‘local 
bias’ (Fig. 7.8).  
 
Table 7.7 Artificial neural networks. 

Calibration    
(n = 33) 

 Independent validation (n = 
20) 

 
 
 
Forest parameter 

R2 actual vs 
predicted  

SEC  SEP % of mean  

DBH (cm) 0.56 5.50  5.80 29 
Height (m) 0.56 4.70  5.61 30 
Density (no. of 
trees ha-1) 

0.74 301  825 68 
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Fig. 7.7. Relationship between standard error of calibration and number of epochs for 
estimating (A) mean tree diameter-at-breast-height (DBH), (B) mean height and (C) tree 
density using artificial neural networks. 
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Fig. 7.8 Relationship between predicted and actual values for (A) mean tree diameter-
at-breast-height (DBH) and (B) mean tree height using artificial neural networks. (i) 
calibration and (ii) validation analyses. SEC = standard error of calibration, SEP = 
standard error of prediction. 
 
7.3.6 Mapping forest structure  
 
The Majella beech forest structure was mapped using the best-predicted 
parameter, i.e., mean DBH. Mean DBH maps were produced using 
SARVI and PLS calibration models. Before the maps were produced, 
beech forest areas were subset from the HyMap image strips using 
SARVI threshold values, thus eliminating areas occupied by other land-
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cover types (mainly grasslands and housing areas). The following 
calibration equation was used for mapping mean DBH with SARVI:  
 

Mean DBH = 469.83 – 499.4*SARVI      (7.4) 
 
The regression coefficients for the PLS model are presented in Table 8. 
The reflectance values of the predictor bands for each image pixel were 
mean centred, i.e., by subtracting the mean value in the calibration data 
set from the pixel value. The mean-centred DBH for each pixel was 
subsequently calculated from Eq. 7.5. 
 

y = x1b1+x2b2+…+xnbn       (7.5) 
 
where y = mean-centred DBH, x1 to xn = predictor bands and b1 to bn = 
regression coefficients. The final mean DBH value for each image pixel 
was calculated from Eq.7.6.  
 

Mean DBH = predicted mean-centred DBH + mean DBH of the calibration data  (7.6) 
 
Table 7.8 Regression coefficients of partial least squares regression used in predicting 
beach forest diameter at breast height (DBH). 

Predictor bands (nm)  Regression coefficients 
466 0.717 
695 0.860 
725 0.207 
740 -0.975 
786 -1.795 
846 -1.104 
895 -0.473 
1113 0.870 
1215 2.013 
1661 1.829 
2173 1.094 
2359 0.765 

 
The predicted maps of mean DBH using SARVI and PLS models are 
presented in Fig. 7.9 and their corresponding histograms in Fig. 7.10. The 
mean DBH for all the image pixels predicted by PLS regression (18.74 
cm) was closer to the actual sample mean (18.70 cm, n = 53) compared 
with that of SARVI (15.80 cm) (Table 7.9). When the 95% confidence 
interval is taken into account, the predicted DBH values lie between 6.12 
cm and 31.36 cm for mean DBH predicted by PLS regression compared 
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to 2.38 cm to 29.22 cm for SARVI. Apart from the above statistical 
results, we could also affirm that the spatial distribution of DBH as 
predicted by PLS regression is more similar to what we observed on the 
ground during the field campaign than that predicted by SARVI.  The 
map of DBH shows a high heterogeneity of DBH within the various 
forest patches. There is no clear effect of altitude on the forest structure.  
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Fig. 7.9 Predicted maps of beech forest tree diameter at breast height in the Majella 
National Park, Italy using: (A) soil adjusted and atmospherically resistant vegetation 
index (SARVI) and (B) partial least squares regression.  

             (A)                     (B) 
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Fig. 7.10 Histograms of predicted diameter at breast height using soil adjusted and 
atmospherically resistant vegetation index and partial least squares regression.  
 
Table 7.9 Statistics of predicted tree diameter at breast height using soil adjusted and 
atmospherically resistant vegetation index and partial least squares regression for 
3749094 pixel elements. 
 
Method 

Minimum  Maximum  Mean  Standard 
deviation  

- 95% 
CI 

+95 CI 

SARVI 0.10 49.98 15.80 6.71 2.38 29.22 
Partial least 
squares 0.10 49.99 18.74 6.31 6.12 31.36 
CI = confidence interval 
 
7.4 Discussion  
 
The main objective was to investigate whether multivariate techniques 
perform better than univariate regression methods based on vegetation 
indices in estimating and mapping forest structural parameters.  
 
7.4.1 Predictive performance of various methods 
 
Overall, mean DBH and mean height were better predicted using the 
various statistical methods compared with tree density. The prediction 
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errors for mean DBH and mean height ranged between 28 to 38% of the 
mean compared with tree density (65 to 75% of mean). PLS regression 
and ANN, the multivariate statistical methods adopted in this study, 
respectively, showed a slight improvement in the prediction of mean 
DBH (SEP = 5.50 cm, 28 % of mean) and mean height (5.61 cm, 30% of 
mean) compared with univariate regression models based on vegetation 
indices. PLS regression has rarely been applied for estimating forest 
attributes from remotely sensed data. However, in two related studies 
Hansen and Schjoerring (2003) and Cho et al. (In press) showed that PLS 
regression performs better than univariate techniques involving 
vegetation indices in predicting grass biomass. PLS regression has some 
advantages over ANN: (i) PLS is simple to implement and (ii) does not 
produce variable estimation accuracy in contrast to ANN whereby, the 
estimation accuracy varies because of the stochastic nature of the model 
(Skidmore et al, 1997). In this study, PLS regression models based on a 
few selected bands and on all HyMap bands produced similar calibration 
and validation accuracies. The spectral information content required for 
estimating forest structural parameters might be contained in a few 
narrowbands. Therefore, an optimum band selection procedure would 
enhance the PLS model parsimony.  
 
SARVI was the best vegetation index for the prediction of mean DBH 
(6.03 cm, 30% of mean) and mean height (6.25 cm, 33% of mean). 
SARVI might have performed better than NDVI because of its ability to 
mitigate atmospheric effects. The prediction of mean DBH by multiple 
stepwise regression was affected by collinearity amongst the predictor 
bands, thus supporting the assertions by Curran (1989) and De Jong et al. 
(2003).  
 
The prediction of the forest structural attributes in this study reveals the 
phenomenon of ‘local bias’. Local bias occurs when high values of the 
response variable are predicted low and the low values predicted high 
(Geladi et al, 1999). Geladi et al. (1999) argue that some of the 
deviations from the diagonal representing the 1:1 relationship between 
the predicted and actual values may be attributed to random noise. 
However, when the bias becomes systematic, as was the case in our 
study, it may be attributed to non-linearity in the true physical 
relationship (Geladi et al. 1998). Ingram et al. (2006) also observed local 
bias in the prediction of basal area of tropical forest in southeastern 
Madagascar. They attributed it to changes in basal area that might have 
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occurred between time of field data collection and the acquisition of the 
satellite imagery used in the study.  But we argue that the ‘local bias’ 
observed in our study may be largely attributed to non-linearity in 
relationship between forest structural parameters and spectral data. The 
saturation of the spectral signal in dense and multi-layered canopy cover 
is a well-known phenomenon (Sellers, 1985; Gao et al., 2000). Although 
several authors argue that PLS and ANN can be used to model nonlinear 
relationships (Miller et al., 1995; Paola and Schowengerdt, 1995; Mas et 
al., 2004), albeit mildly for PLS (Geladi et al., 1999), PLS and ANN 
modelling of beech forest parameters as illustrated in this study still 
produced non-linear relationships. Nevertheless, they provided an 
improvement over traditional vegetation indices for estimating mean 
DBH and mean tree height. However, a possible drawback of empirical 
models in remote sensing of vegetation parameters as observed in this 
study and suggested by Curran (1994) and Gobron et al. (1997) is that 
they might be site, sensor or season specific.   
 
The red-edge indices, namely, Carter index and Vogelman index, and 
REP showed poor predictive capabilities for forest structural parameters. 
These indices have shown high sensitivity to leaf chlorophyll and grass 
biomass (Vogelmann et al., 1993; Carter, 1994; Mutanga and Skidmore, 
2004; Cho et al., 2006). Their performance for predicting structural 
parameters could be limited by foliage chlorophyll content because the 
beech forest parameters were weakly correlated with the chlorophyll 
(visible) spectrum (see Fig. 7.2).   
 
7.4.2 Predictive map of DBH and implications for beech forest 

management 
 
 
The maps show a high heterogeneity of mean DBH within the various 
forest patches. This pattern could be attributed to the forest management 
practice in the park. A combination of thinning and the occurrence of 
avalanches in the Majella National Park, have given rise to a compound 
coppice, which is a mixture of coppice and high beech forest. Thus, the 
spatial information of mean DBH revealed by the maps could be used to 
identify areas for specific management measures, e.g. thinning of low 
mean DBH coppice to promote diameter growth, to assess the effects of 
management on the beech forest or to detect changes in the forest 
structure caused by external factors such as avalanches. 
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7.5 Conclusions  
 
The results of this study highlight the potential utility of multivariate 
techniques such as ANNs and PLS regression based on several 
narrowbands for providing improved estimates of beech forest structural 
attributes compared with univariate methods based on vegetation indices. 
PLS regression has rarely been applied in this sense and thus offers new 
possibilities for mapping and monitoring beech forest structure.  
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8.1 Introduction  
 
Improved quantification and monitoring of biochemical and biophysical 
attributes is required to acquire deeper understanding of the carbon cycle 
and predict the response of ecosystems to climate change (Scurlock and 
Prince, 1993). Remote sensing, using current or anticipated technology, 
is widely viewed as a time- and cost-efficient way to proceed with large-
scale monitoring of vegetation parameters. However, the information that 
can be extracted from remotely sensed data depends on the sophistication 
of the sensors, our understanding of how radiation interacts with a 
vegetation canopy and on spectral information extraction techniques 
(Curran, 1989).  
 
Most studies have focused on developing empirical relationships between 
ground-measured vegetation parameters and spectral indices commonly 
known as vegetation indices. The most frequently used remote sensing 
product is the normalised difference vegetation index (NDVI) (Rouse et 
al. 1974) derived from broadband or multispectral sensors e.g. Landsat 
TM/ETM+ with seven spectral bands (Richardson et al., 1983; Wiegand 
et al., 1991; Anderson et al., 1993; Duchemin, 1999; Van Wagtendonk 
and Root, 2003). Multispectral sensors integrate radiance data over wide 
bands of the electromagnetic spectrum, resulting in loss of critical 
information available in specific narrowbands (Wessman et al., 1989; 
Gong et al., 2003). Several studies show that broadband NDVI can be 
unstable, varying with soil colour, atmospheric conditions and 
illumination/view angles (Huete and Jackson, 1988, Middleton, 1991, 
Kaufman and Tanré, 1992, Qi et al. 1995, Todd et al. 1998). 
Furthermore, NDVI also asymptotically saturates at higher biomass or 
LAI (Sellers, 1985, Gao et al. 2000).  
 
The advent of hyperspectral remote sensing or imaging spectrometry 
provides additional bands within the visible, near-infrared (NIR) and 
shortwave infrared (SWIR). Most hyperspectral sensors (e.g. Airborne 
visible/infrared Imaging Spectrometer (AVIRIS) and Hyperion) acquire 
radiance information in less than 10 nm bandwidths (Asner, 1998). 
Hyperspectral data contain more information on subtle spectral features, 
which could otherwise be masked by the broad nature of multispectral 
imagery (Wessman et al., 1989). For example, the spectral shift of the 
red-edge (670-780 nm) slope and its inflection point termed the red-edge 
position (REP) associated with leaf chlorophyll content, phenological 
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state and vegetation stress, is not accessible with broadband sensors 
(Collins, et. al., 1977; Horler, et al., 1983). Furthermore, leaf chlorophyll 
concentration can be used to provide more accurate estimates of 
productivity (Chappelle et al., 1992) and to improve the discrimination of 
species by monitoring the phenological dynamics (Blackburn, 1998).  
The REP could be considered as a spectral index of interest because of its 
low sensitivity to disturbing factors such as atmospheric conditions and 
soil brightness (Clevers et al., 2001).  
 
The REP is commonly defined by the maximum first derivative of the 
red-edge spectrum. However, the limitation of this approach is that the 
maximum first derivatives of contiguous spectra have been shown to 
occur within two principal spectral regions (around 700 and 725 nm) 
causing a bimodal distribution of REP data and a discontinuity in the 
REP/chlorophyll relationship (Horler et al. 1983). Experimental studies 
show that low leaf chlorophyll concentration is associated with REP 
values near 700 nm, while high chlorophyll concentration in combination 
with leaf internal scattering influence REP values near 725 nm (Horler et 
al., 1980; Boochs et al., 1990; Lamb et al., 2002). Zarco-Tejada et al. 
(2003) demonstrated in an experimental study that the existence of the 
double peak is due to chlorophyll fluorescence emission at about 690 nm 
and 730 nm. Earlier studies had shown that the chlorophyll fluorescence 
ratio (F690/F730) decreases with increasing chlorophyll content of 
developing leaves (Hák et al., 1990; Babani et al., 1996) and increases 
during autumnal chlorophyll breakdown of various tree leaves 
(D'Ambrosio et al., 1992). Thus, could more accurate estimates of leaf 
chlorophyll or leaf nitrogen concentration be obtained with REP derived 
by tracking changes that occur at the dominant peaks? 
 
The spectral response of vegetation is directly determined by leaf and 
stem area, leaf and stem orientation, foliage clumping and leaf 
biochemical contents (Asner, 1998; Jacquemoud et al., 1995; Lefsky et 
al., 1999) and indirectly by canopy structural attributes such as biomass, 
tree diameter at breast height (DBH) and tree height (Lefsky et al., 1999), 
as well as non-plant attributes such as soil colour, shadows and dead 
material (Asner, 1998). Thus, the estimation of biomass, DBH and tree 
height may depend on fully exploiting the spectral information content of 
leaf and stem biophysical and biochemical spectral features that directly 
influence vegetation reflectance. However, two-band vegetation indices 
utilise a limited amount of the total spectral information available in a 
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high spectral resolution image (Lee et al. 2004). The question is whether 
multivariate statistical techniques based on more than two bands can 
improve estimation of grass biomass and forest structural parameters 
when compared to vegetation indices?   
 
Thus, the objectives of this study were:  
 
(i) to develop a technique for locating the REP that mitigates the 

destabilising effect of the double-peak feature on the REP data 
and tracks changes around the dominant chlorophyll-sensitive 
peaks (700 and 725 nm) 

(ii) to test the performance of the new method vis-à-vis other REP 
techniques for estimating foliar chlorophyll and nitrogen 
concentrations, discriminating species and estimating green grass 
biomass under a wide range of canopy and environmental 
conditions.   

(iii) to investigate the performance of other empirical techniques 
based on multiple hyperspectral bands for estimating grass 
biomass and forest structural attributes.  

 
8.2 Towards red-edge positions less sensitive to canopy 

structure for chlorophyll/nitrogen estimation  
 
We developed a new technique for estimating the REP that maximally 
estimates leaf chlorophyll or nitrogen content with minimal effects from 
LAI, leaf thickness, leaf mass and leaf developmental stage. The new 
technique is designed to mitigate the destabilising effect of the derivative 
double-peak feature on the correlation between nitrogen and REP 
(determined as the maximum first derivative) and to track variations near 
the low and high chlorophyll sensitive wavebands (700 nm and 725 nm) 
as illustrated in Fig. 8.1.   
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Fig.8.1. Schematic representation of the linear extrapolation technique for extracting the 
red edge position (REP) – wavelength of the meeting point between two straight lines 
extrapolated on the far-red and NIR flanks of the first derivative spectrum.  
 
The new technique is based on linear extrapolation of two straight lines 
(Eqs. 8.1 and 8.2) through two points on the far-red (680 nm to 700 nm) 
and two points on the NIR (725 nm to 760 nm) flanks of the first 
derivative reflectance spectrum of the red edge region as illustrated in 
Fig. 8.1. The REP is then defined by the wavelength value at the 
intersection of the straight lines (Eq. 8.3). 
 

Far-red line: FDR = m1λ+ c1     (8.1) 
 

NIR line: FDR= m2λ + c2     (8.2) 
 
where m and c represent the slope and intercept of the straight lines, and 
FDR = first derivative reflectance. At the intersection, the two lines have 
equal λ (wavelength) and FDR values. Therefore, the REP, which is the λ 
at the intersection, is given by: 
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In summary, the technique is simple to implement, as is the case with the 
linear four-point interpolation method developed by Guyot and Baret 
(1988). Only four coordinate points (or wavebands) are required to 
calculate the REP by the linear extrapolation method; for instance, two 
bands near 680 nm and near 700 nm to calculate m1 and c1 for the far-red 
line and two bands near 725 nm and near 760 nm to calculate m2 and c2 
for the NIR line.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.2. Straight-line model fits for the regression between foliar nitrogen concentration 
and red edge position (REP) extracted using (a) maximum first derivative, (b) linear 
interpolation, (c) polynomial fitting, (d) inverted Gaussian modelling and (e) linear 
extrapolation (new approach) techniques. x = rye canopy, ♦ = maize leaves and ○ = 
mixed grass/herb leaf stack spectral data sets. 
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Far-red wavebands at 680 nm and 694 nm in combination with NIR 
wavebands at 724 nm and 760 nm or at 732 nm and 760 nm were 
identified as the optimal combinations for calculating nitrogen-sensitive 
REPs for three spectral data sets (rye canopy, maize leaves at different 
stages of development and mixed grass/herb leaf stacks). REPs extracted 
by the linear extrapolation method showed high correlations with a wide 
range of foliar nitrogen concentrations for both narrow and wider 
bandwidth spectra, being comparable with results obtained using the 
traditional linear four-point interpolation (Guyot and Baret, 1988), 
polynomial and inverted Gaussian fitting techniques (Bonham-Carter, 
1988). However, the linear extrapolation method performed better than 
various REP alternatives in the case of maize leaves at different stages of 
development and mixed grass/herb leaf stacks (Fig. 8.2). This suggests 
that the relationship between linear extrapolation REP and leaf nitrogen 
concentration might be minimally confounded by differences in leaf 
phenology, leaf density or species.  
 
The performance of the linear extrapolation method for chlorophyll 
content was further investigated under extreme leaf and canopy 
characteristics including variable biophysical parameters, soil brightness, 
solar zenith angle and sensor noise. Synthetic data were created using 
well-known leaf and canopy radiative transfer models (PROSPECT-
SAILH). The linear extrapolation REPs involving 680, 694, 724 and 760 
nm produced the highest correlation (R2 = 0.75) with leaf chlorophyll 
content with minimal effects of leaf area index and leaf dry matter 
content compared with various REP alternatives (R2 = 0.49 to 0.62). In 
addition, the linear extrapolation REPs were insensitive to changes in 
solar zenith angle. However, the advantage of using the linear 
extrapolation method compared to the various alternative methods 
diminished with increasing sensor noise and decreasing spectral 
resolution.  
 
In conclusion, the linear extrapolation method demonstrates that REPs 
based on tracking changes that occur near the dominant red-edge peaks 
are less sensitive to the effect of differences in leaf LAI, developmental 
stage and species. These results have some important implications for 
ecological studies and precision agriculture. Sims and Gamon (2002) 
argue that for spectral indices to be most useful in ecological studies e.g. 
in assessing vegetation health, their relationships with chlorophyll 
content should be generalisable across species and leaf developmental 
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stages. In addition, early estimates of crop chlorophyll or nitrogen 
concentration with REP could be useful in yield forecasting or to 
manipulate nutrient application in order to improve crop yield in 
precision agriculture (Haboudane et al., 2002; Goel et al., 2003), 
provided they are insensitive to variable LAI, leaf thickness and leaf 
biomass (Pinar and Curran, 1996).   
 
8.2 Application of the linear extrapolation method for 

discriminating species at leaf and canopy scales 
 
Experimental studies demonstrate poor signal propagation from the leaf 
to canopy scale because of the complexities introduced by the canopy 
(Verhoef, 1984; Kuusk, 1991; Jacquemoud et al., 1995; Yoder and 
Pettigrew-Crosby, 1995; Asner, 1998). However, the low sensitivity of 
the linear extrapolation method to leaf and canopy structural 
characteristics might be advantageous for up-scaling leaf level spectral 
information to the canopy scale. This conclusion was made based on an 
investigation involving six species (3 shrubs and 3 trees). Among several 
spectral indices including NDVI, Carter index (Carter, 1994), Vogelman 
Index (Vogelman et al., 1993), Gitelson and Merzylak index (Gitelson 
and Merzylak, 1997), Photochemical reflectance index (Gamon et al., 
1992), Carotenoid reflectance index (Gitelson et al., 2002), and REPs 
derived by various methods, the linear extrapolation REPs were least 
sensitive to the change in measurement scales and showed the highest 
potential to discriminate the same pairs of species at both scales. Linear 
extrapolation REPs could significantly discriminate 10 out of a total of 
15 pairs of species at both scales compared with none for NDVI 
involving 800 and 670 nm. The photochemical reflectance index was the 
best discriminator at the canopy scale (Fig. 8.3). But the significant 
finding in this study is that canopy indices have a superior discriminating 
power than leaf level indices as illustrated in Fig. 8.3. This is essential for 
remote sensing of species at the ecosystem level.  
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Fig.8.3. Histograms of leaf and canopy indices, namely (A) Photochemical reflectance 
index (PRI) and (B) linear extrapolation REP for six species of plants. The histograms 
illustrate the ability of the indices to differentiate species at the leaf and canopy scales. 
 
8.3 Comparing univariate and multivariate statistical 

techniques for estimating vegetation structural 
parameters with hyperspectral data  

 
It has been argued that two-band vegetation indices utilise a limited 
amount of the total spectral information available in a high spectral 
resolution image (Lee et al. 2004). We therefore, investigated the utility 
of multivariate statistical techniques based on more than two bands in 
general and partial least squares (PLS) regression in particular for 
estimating grass biomass and forest structural parameters. PLS regression 
model based on continuum-removed bands produced the lowest 
prediction error for estimating green grass/herb biomass in the Majella 
National Park (standard error of prediction, SEP = 149 g m-2) compared 
to NDVI and REP models (SEP = 261 to 295 g m-2). Furthermore, more 
accurate estimates of beech (Fagus sylvatica L.) forest mean diameter-at-
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breast height (DBH) (Fig. 8.4) were obtained with PLS regression model 
than with models based on vegetation indices.  PLS regression has an 
advantage over traditional multiple regression technique in that it can 
deal with the problem of a large number of collinear predictor bands 
inherent in hyperspectral data (Geladi and Kowalski, 1986). 
 
The critical question at this juncture is whether the use of two-band 
vegetation indices such as NDVI is still relevant in the context of 
hyperspectral remote sensing? NDVI may be simple to implement but 
could be lacking in terms of exploiting the information content inherent 
in several narrowbands. The use of multivariate statistical techniques is 
recommended for hyperspectral remote sensing of vegetation structural 
parameters. 
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Fig.8.4. Spatial distribution of beech forest tree diameter at breast height (DBH) in the 
Majella National Park, Italy using partial least squares regression.  
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8.5 Utility of Empirical methods  
 
Empirical models derived from vegetation indices have been criticised as 
highly site, time and sensor specific (Curran, 1994; Gobron et al. 1997). 
The results of this study do support the above assertion for both 
univariate models based on vegetation indices and multivariate statistical 
models involving more than two hyperspectral bands. For example, 
models relating vegetation spectra and beech forest structural 
characteristics were significant for 2004 and not 2005. Differences in 
phenological and atmospheric conditions might have affected the 
relationships.  
 
However, the results of this study show that predictive models derived 
from REPs computed by the Lagrangian interpolation (Dawson and 
Curran, 1998) and linear extrapolation methods for 2004 HyMap image 
were able to produce more accurate estimates of the fresh grass/herb 
biomass for 2005 and vice versa compared with normalised difference 
vegetation indices, in the Majella National Park, Italy (e.g. Fig. 8.5). 
Narrowband NDVI involving 786 and 725 nm showed high correlations 
with grass/herb biomass for both years (R2 >0.50), but the regression 
model for 2004 produced a low prediction accuracy for 2005 and vice 
versa. One reason that could have accounted for the stability of the 
REP/biomass relationship for different years is that the REPs are less 
sensitive to varying soil and atmospheric conditions, sensor view angle 
and illumination angle (Curran et al. 1995, Blackburn and Pitman, 1999, 
Clevers et al. 2001; Cho et al., In review). This may apply particularly to 
the Lagrangian and linear extrapolation REPs that are computed from 
derivative spectra. Derivative analysis enhances absorption features and 
suppresses contributions of non-vegetative reflectance components 
(Boochs et al., 1990; Curran et al., 1991). Given the limited nature of 
these results in terms of the spatial/temporal coverage and number of 
sensors involved, it could be premature to draw a definite conclusion 
about the stability of the Lagrangian and linear extrapolation REPs for 
modelling and monitoring grass biomass over large areas on yearly basis.  
Further research is needed.  
 
The lack of robustness and portability of empirical models is therefore of 
critical concern. The validity of empirical models is limited to the 
environmental conditions where it has been developed (Asner et al., 
2003). The retrieval of biophysical variables using canopy reflectance or 



Chapter 8 

 171 

radiative transfer models is viewed as an alternative (e.g. Atzberger, 
2004; Schlerf and Atzberger, 2006). Radiative transfer models are 
physically based or process driven. This class of models describe the 
interactions between the electromagnetic radiation and the vegetation 
canopy, so that many different types of environmental conditions can be 
handled (Iaquinta et al. 1997). However, empirical models that are less 
sensitive to environmental conditions such as models based on the linear 
extrapolation REP could be used to support the development of 
physically based models, particularly to estimate the value of the model 
parameters, or to refine the underlying concepts on which the model is 
constructed (Skidmore, 2002). The future of hyperspectral remote 
sensing could hinge on enhancing the link between empirical and 
physically based approaches. 
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Fig.8.5. Predicted green grass/herb biomass for a subset area of the 2005 HyMap image 
based on (i) 2005 and (ii) 2004 regression models for (A) NDVI (786 & 725 nm) and 
(B) red-edge position extracted by the linear extrapolation method.  (C) Histograms 
showing the differences between (i) and (ii), i.e. number of pixels against difference in 
biomass. 
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8.4. Conclusions 
 
A new technique for estimating the chlorophyll-sensitive REP (Horler, 
1983) was developed by considering changes that occur at the dominant 
red-edge inflection points (double-peak feature). The method is termed 
the linear extrapolation technique (Cho and Skidmore, 2006). The 
principle underlining the linear extrapolation method contradicts earlier 
curve fitting approaches (Bonham-Carter, 1988), which tend to avoid the 
double-peak feature. The major contribution of this study is that REPs 
extracted by the linear extrapolation provide optimal estimates of leaf 
chlorophyll or nitrogen content with minimal influence of leaf/canopy 
structural and background confounders. By minimising the effects of 
canopy structure, the linear extrapolation may be useful for detecting 
early physiological stresses associated with changes in leaf 
chlorophyll/nitrogen levels.  
 
The linear extrapolation method also shows high potential for 
discriminating tree and shrub species at both the leaf and canopy scales. 
Lastly, it could be used as a more stable predictor for monitoring green 
grass biomass in the Majella National park, Italy compared with two 
band vegetation indices. The method is simple to implement but is 
sensitive to spectral noise. Spectral smoothing is recommended when 
noise is a problem.  
 
The study also highlights the utility of PLS regression based on several 
HyMap bands for estimating grass biomass and beech (Fagus sylvatica 
L.) forest mean DBH. PLS regression produced more accurate estimates 
grass biomass and beech forest mean DBH than univariate regression 
involving vegetation indices. The use of multivariate statistical 
techniques is recommended for hyperspectral remote sensing of 
vegetation parameters.  
 
In line with many recent studies (e.g. Dawson and Curran, 1998; Kokaly 
and Clark, 1999), this study makes a contribution in the domain of 
information extraction from hyperspectral data for estimating vegetation 
parameters. Considerable advances have been achieved in harnessing the 
predictive capability of spectral data for specific biochemical and 
biophysical parameters by minimising the effects of environmental 
conditions. These include, derivation of new vegetation indices, 
development of new methods to locate the REP, and the use of spectral 
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transformations such as continuum-removal and derivative analysis. 
Other studies are focused on developing physically based methods given 
the lack of robustness and portability of empirical models for varying 
environmental conditions. However, empirical models that are less 
sensitive to environmental conditions such as models based on the linear 
extrapolation REP could be used to support the development of 
physically based models, particularly to estimate the value of the model 
parameters, or to refine the underlying concepts on which the model is 
constructed. The future of hyperspectral remote sensing could hinge on 
enhancing the link between empirical and physically based approaches. 
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