

System for Environmental and Agricultural Modelling;
Linking European Science and Society

Report no.: 27
June 2007
Ref: D3.2.18
ISBN no.: 90-8585-115-7
and 978-90-8585-115-8

Library of model components for process simulation

relevant to production activities, Prototype 1
versions

Donatelli, M, Rizzoli, A.E., van Evert, F.K., Rutgers, B., Trevisan, M.

et al.

Partners involved: CIRAD, CRA, IAMM, IDSIA, INRA, PRI, UNIABDN, WU

 Logo’s main partners involved in this publication Sixth Framework Programme

http://creativecommons.org/licenses/by-nc/2.5/

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 2 of 47

SEAMLESS integrated project aims at developing an integrated framework that allows ex-
ante assessment of agricultural and environmental policies and technological innovations.
The framework will have multi-scale capabilities ranging from field and farm to the EU25
and globe; it will be generic, modular and open and using state-of-the art software. The
project is carried out by a consortium of 30 partners, led by Wageningen University (NL).

Email: seamless.office@wur.nl
Internet: www.seamless-ip.org

Authors of this report and contact details

Name: Marcello Donatelli Partner acronym: CRA-ISCI
Address: Via di Corticella, 133 – 40128 Bologna, Italy
E-mail: m.donatelli@isci.it

Name: Andrea Rizzoli Partner acronym: IDSIA
Address: Manno-Lugano, Switzerland
E-mail: andrea@idsia.ch

Name: Frits van Evert, Ben Rutgers Partner acronym: PRI
Address: Wageningen, The Netherlands
E-mail: frits.vanevert@wur.nl

For the AgroManagement component:
Name: Marcello Donatelli Partner acronym: CRA-ISCI
Address: Via di Corticella, 133 – 40128 Bologna, Italy
E-mail: m.donatelli@isci.it

For the AgroChemicals component:
Name: Marco Trevisan, Andrea Sorce, Matteo Balderacchi, Andrea Di Guardo
 Partner acronym: CRA-UNICATT
Address: Piacenza, Italy
E-mail: marco.trevisan@unicatt.it

For the Crop component:
Name: Frank Ewert, Peter Leffelaar, Eelco Meuter, Myriam Adam
 Partner acronym: WUR-PPS
Address: Wageningen, The Netherlands
E-mail: frank.ewert@wur.nl

For the Soil Carbon and Nitrogen component:
Name: Jo Smith, Pia Gottschalk Partner acronym: UNIABDN
Address: Aberdeen, UK
E-mail: jo.smith@abdn.ac.uk

For the Soil Water and Runoff components:
Name: Marco Acutis, Patrizia Trevisiol, Antonella Gentile
 Partner acronym: CRA-UNIMI
Address: Milano, Italy
E-mail: marco.acutis@unimi.it

For the Weather components:
Name: Marcello Donatelli, Gianni Bellocchi, Laura Carlini
Address: Bologna, Italy Partner acronym: CRA-ISCI
E-mail: m.donatelli@isci.it

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 3 of 47

For the Grasses component:
Name: Michel Duru, Pablo Cruz, Myriam Adam Partner acronym: INRA
Address: Toulouse, France
E-mail: michel.duru@toulouse.inra.fr

For the Vineyards/Orchards components:
Name: Christian Gary, Kamal Kansou, Jacques Wery Partner acronym: INRA
Address: Montpellier, France
E-mail: christian.gary@cirad.fr

For the Agroforestry component:
Name: Christian Dupraz, Kamal Kansou Partner acronym: INRA
Address: Toulouse, France
E-mail: dupraz@ensam.inra.fr

For theSoil Water 2 component:
Name: Erik Braudeau Partner acronym: CIHEAM-IRD
Address: Montpellier, France
E-mail: erik.braudeau@ird.fr

Name: Pierre Martin Partner acronym: CIHEAM-CIRAD
Address: Montpellier, France
E-mail: pierre.martin@cirad.fr

Disclaimer 1:

“This publication has been funded under the SEAMLESS integrated project, EU 6th
Framework Programme for Research, Technological Development and Demonstration,
Priority 1.1.6.3. Global Change and Ecosystems (European Commission, DG Research,
contract no. 010036-2). Its content does not represent the official position of the European
Commission and is entirely under the responsibility of the authors.”

"The information in this document is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability."

Disclaimer 2:

Within the SEAMLESS project many reports are published. Some of these reports are
intended for public use, others are confidential and intended for use within the SEAMLESS
consortium only. As a consequence references in the public reports may refer to internal
project deliverables that cannot be made public outside the consortium.

When citing this SEAMLESS report, please do so as:

Donatelli, M, Rizzoli, A.E., van Evert, F.K., Rutgers, B., Trevisan, M. et al. 2007. Library of
model components for process simulation relevant to production activities, Prototype 1
versions, SEAMLESS Report No.27, SEAMLESS integrated project, EU 6th Framework
Programme, contract no. 010036-2, www.SEAMLESS-IP.org, 47 pp., ISBN no. 90-8585-
115-7 and 978-90-8585-115-8.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 5 of 47

Table of contents
Table of contents.. 5

General part ... 7

Objective within the project ... 7

General Information ... 7

Executive summary ... 7

Scientific and societal relevance ... 8

Specific part ... 9

1 Introduction.. 9

2 The library of components .. 13
2.1 Component architecture ... 15

2.1.1 Component requirements... 15
2.1.2 Ontology .. 16
2.1.3 Components design.. 17
2.1.4 Discovering component and model interfaces ... 20

2.2 Components available .. 22
2.2.1 AgroManagement .. 22
2.2.2 AgroChemicalsFate ... 25
2.2.3 SoilWater and SoilErosionRunoff ... 26
2.2.4 Weather.. 28
2.2.5 Preconditions ... 31

2.3 Components under development... 33
2.3.1 Crops.. 33
2.3.2 Grasses... 34
2.3.3 Vineyards and Orchards .. 35
2.3.4 Soil Carbon-Nitrogen... 36
2.3.5 Soil Water 2 ... 37
2.3.6 Agroforestry... 37

References .. 41

Glossary.. 43

Appendix A - Documentation of components.. 45

Appendix B – Component availability... 47

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 7 of 47

General part

Objective within the project

Provide a library of discrete software units implementing models / utilities for use both
by third parties and to build the Agricultural Production and Externalities Simulator
(APES)

General Information

Task(s) and Activity code(s): T3.2 – A3.2.9

Input from (Task and Activity codes): T3.2 – A3.2.1/2/3/5/7

Output to (Task and Activity codes): T3.2 - A3.2.1/2/3/5/7/9 – WP5

Related milestones: M3.2.1

Executive summary

In systems analysis, it is common to deal with the complexity of an entire system by
considering it to consist of interrelated sub-systems. This leads naturally to consider models
as consisting of sub-models. Such a (conceptual) model can be implemented as a computer
model that consists of a number of connected component models. Component-oriented
designs actually represent a natural choice for building scalable, robust, large-scale
applications, and to maximize the ease of maintenance in a variety of domains, including
agro-ecological modelling.

The modular approach was chosen to develop Agricultural Production and Externalities
Simulator (APES). APES is a modular simulation system targeted at estimating the
biophysical behaviour of agricultural production systems in response to the interaction of
weather, soils and different options of agro-technical management. Although a specific,
limited set of components is available in the first release, the system is being built to
incorporate, at a later time, other modules which might be needed to simulate processes not
included in the first version. The processes are simulated in APES with deterministic
approaches which are mostly based on mechanistic representations of biophysical processes.
The criteria for selecting modelling approaches are based on the need for: 1) accounting for
specific processes to simulate soil-land use interactions, 2) input data to run simulations,
which may be a constraint at EU scale, 3) simulation of agricultural production activities of
interest (e.g. crops, grasses, orchards, agroforestry), and 4) simulation of agro-management
implementation and its impact on the system.

This report presents the current state of development of the model components being
developed for APES and for third parties use. The intended use and modelling capabilities of
each component are summarized.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 8 of 47

Scientific and societal relevance

Creating a library of model components is a key part of developing a flexible simulation
system that can be extended according to operational needs, and of sharing knowledge
making available the relevant models for operational use. The modelling solutions and the
implementation technology used are a realization of a goal being shared in the scientific
community for more than a decade.

The envisioned impact is both on improving the use of resources by providing a way to avoid
duplications, and by making available building blocks for quicker tool development, in order
to match the demand from institutions and extension services.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 9 of 47

Specific part

1 Introduction

In systems analysis, it is common to deal with the complexity of an entire system by
considering it to consist of interrelated sub-systems. This leads naturally to think of models as
made of sub-models. Such a (conceptual) model can be implemented as a computer model
composed of a number of connected component models. An implementation based on
component models has at least two major advantages. First, new models can be constructed
by connecting existing component models of known and guaranteed quality together with
new component models. This has the potential to increase the speed of development.
Secondly, the predictive capabilities of two different component models can be compared, as
opposed to compare whole simulation systems as the only option. Further, common and
frequently used functionalities, such as numerical integration services, visualisation and
statistical ex-post analyses tools, can be implemented as generic tools and developed once for
all and easily shared by model developers.

As a consequence of the above, in the last decade there has been an increasing demand for
modularity and replaceability in biophysical model development (e.g. Jones et al., 2001;
David et al., 2002; Donatelli et al., 2003, 2004), aiming both at improving the efficiency of
use of resources and at fostering higher quality of modelling units via specialization of model
builders in a specific domain. The modular approach developed in the software industry is
based on the concept of encapsulating the solution of a modelling problem in a discrete,
replaceable, and interchangeable software unit. Such discrete units are called components. A
software component can be defined as “a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be deployed
independently and is subject by composition by third parties” (Szypersky et al., 2002).
Component-oriented designs actually represent a natural choice for building scalable, robust,
large-scale applications, and to maximize the ease of maintenance in a variety of domains,
including agro-ecological modelling (Argent, 2004). The concept of developing modular
systems for biophysical simulation has lead to the development of several modelling
frameworks (e.g. Simile, ModCom, IMA, TIME, OpenMI, SME, OMS, as listed in Argent
and Rizzoli, 2004, and Rizzoli et al., 2004), which allow making use of components by
linking them either together or to a simulation engine. In fact, three major parts of the
implementation of models are usually prototype specific, resource intensive, and prevent
transferability: (1) data input/output procedures (e.g. input/output data handling, file
management), (2) common services (e.g. state variables integrator, simulation events handler)
and (3) graphical user interfaces (GUI). Modelling frameworks can play a key role to address
these issues. First, the framework allows segregating the application-specific parts of
simulations from the code employed to accomplish common tasks, thus greatly enhancing
code reuse (Hillyer et al., 2003). Second, by defining the elements of the framework that
actually contain the model implementation and how those elements are used, a designer can
be presented with a clear path from conceptual model to simulation (Hillyer et al., 2003).
Furthermore, avoiding the reimplementation of common services allows the concentration of
resources on the development of simulation components.

Developing a simulation system adopting the component-oriented paradigm poses specific
challenges, both in terms of 1) biophysical model linking, and 2) implementation architecture.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 10 of 47

About the former, the component-based architecture demands for defining and implementing
sub-systems which minimize the need for links to other components, minimizing also the
need for repeated communication across components. Even when a system to be simulated is
divided into sub-systems which minimize the need of communication across them, data
exchange prior to integration within a time step is needed, hence requiring an articulated
interfaced which allows for such calls. Another conceptual problem, often attributed to
component-based systems as intrinsically and potentially prone to mix and match
“everything”, is shifted to components themselves using semantically rich interfaces which
ensure that the linked variables are the correct ones. To illustrate the concept, if a component
makes available a variable characterized by units, range of use, type and description, and
another component requires the same variable as an input, the link can be considered correct
if a check of the variable attributes can be successfully performed, whereas the correctness of
using the variable as an input must be investigated within the component itself. The principle
of applying “parsimony” is of course still valid in model building. For instance, there is no
point in coupling two components in which the possible strong assumptions (and thus the
limitations) of the former impose an unnecessary burden on the possibly extensive modelling
capabilities of the latter; this, however, is a concept that applies both to monolithic and
component based systems development. As always, it is the goal of both model application
and system analysis which must suggest model choices, and this is independent of the type of
implementation.
With regards to implementation architecture and use of modelling frameworks, there are two
major problems: 1) the framework design and implementation must be optimized to balance
carefully its flexibility and its usability to avoid incurring either a performance penalty or
users having too steep a learning curve, and 2) developing components for a specific
framework constrains their use to that framework.

In essence, two main options are available to overcome such problems. The most immediate
is developing inherently reusable components (i.e. non framework specific), which can be
used in a specific modelling framework by encapsulating them using dedicated classes called
“wrappers”; such classes act as bridges between the framework and the component interface.
The disadvantage of this solution is the creation of another “layer” in the implementation,
which adds to the already implemented machinery in the framework. The appropriateness of
this solution, both as ease of implementation and overall performance, must be evaluated case
by case. The first prototypes of components developed in SEAMLESS for use in APES are
based on this option, that is, developing non framework specific components which can be
linked to different modelling frameworks, among which Modcom (Hillyer et al., 2003) is the
one used in the current pre-release of APES. Other components under development, not
available yet as discrete software units, are implemented as Modcom classes.

Regardless of the choice of developing framework specific or intrinsically reusable
components, there is a basic choice which must be carefully evaluated prior to that and which
is related, in general terms, to the framework as a flexible modelling environment to build
complex models (model linking), but also to the framework as an efficient engine for
simulation, calibration and simulation of model components (model execution).
Modern software technologies allow building flexible, coherent and elegant constructs, but
that comes at a performance cost. Without even introducing Object Oriented Programming
(OOP) and the meaning of the features cited later in this sentence, which is definitely beyond
the scope of this report, it seems important to point out that the use of object-oriented
programming constructs, which actually enhance flexibility, modularity and reuse of
software, all nice things, require the compiler to use virtual methods calls, dynamic
dispatching, and so on. All these operations are resource intensive and in some cases, they
can heavily affect the code performance, and this becomes evident in applications in which
such use is done thousand times every simulation step. Even if compiler technology and

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 11 of 47

implementation solutions are progressing rapidly to overcome the problems by enhancing
dynamic code generation (e.g. Richter, 2005; Duffy, 2005; Golding, 2005; Pobar, 2005;
Erisman 2006), the problem is not about re-designing or re-factoring software; instead, it is
about the general strategy to follow. Be aware that we do not mean that such features should
not be used, instead it addresses that using them at run-time is very costly. In other terms, the
full use of OOP in the phase of building applications based on biophysical models is an
extremely valuable resource, as it is to extend applications and to provide an effective
architecture of applications themselves, but it probably should be minimized for use of
biophysically based models at run-time. An alternative option is introduced in the next
paragraph.

The second option to overcome the problems deriving from modelling framework
architecture and use, as defined in the previous page, is far more interesting and can be very
effective also with respect to other desirable features in a modelling system, such as complete
transparency (the ability of a model to be a self-documenting construct), reproducibility, and
verification of models as components of scientific argumentation (Muetzelfeldt and
Massheder, 2003). It involves defining models declaratively (as opposed to imperative
implementation given by coding), using for instance as declarative language a dedicated
definition based of the extended mark-up language (XML), and then producing platform- and
framework-specific implementation of either single components or even of the whole
simulation system. Making reference to the discussion at the end of the previous paragraph,
code generation in this case allows optimizing code, using the less expensive, more direct
options to link both models being implemented and existing libraries. In fact, appropriateness
of links, matching of types, all is done during the phase of model building, hence it is not
needed to “keep alive” resource-intensive mechanisms to allow both for flexibility and
extensibility in the phase of model building at run-time, that is when such mechanisms are
not needed anymore. The modelling environments Simile (Muetzelfeldt and Massheder,
2003) and Modelica (http://www.modelica.org/) are examples of such architectures to move
from model building to operational use. Modern platforms (.NET and Java) provide
extremely powerful features for code generation (e.g the NET namespaces
System.Reflection.Emit and System.Codedom).
Visual environment software tools allow the conceptual model to be translated into
declarative code. This is very important as it allows the modeller to concentrate on the
simulation approach, which is described via a graphical language (or via a language than can
be easily visualized with an icon-based approach), rather than forcing the modeller to write
code, which will necessarily include dependencies on the functioning of the whole simulation
system. The use of visual modelling tools, which allows a formal description of models, is by
definition cross-language and cross-platform because it provides a standard description of the
model that can be easily and automatically translated into different computer languages.
Finally, the visual approach allows the development of models and simulation systems that
are auto-documented. However, as yet there are only the first prototypes of software that
allows, to some extent, switching between textual and graphical representations of a model.
These have not yet found favour among model developers, except in principle. The reasons
are in part due to habits and in part to functionalities, for instance related to the use of arrays,
which can be fairly simply managed using an imperative language (for developers used to
coding) but are rather more difficult to handle in a visual representation. Furthermore, it has
not yet been clarified how to deal with debugging.

What has emerged in the first 18 month of the project, opposite to past experience when
implementation has often being the most challenging task, is that the major effort is thinking
in “modular”, “multiple choices”, modelling terms. Elaborating on model modularization will
have positive consequences also on implementations different than the one used in the
prototype 1, to the extent of being a sound foundation also for making models available using

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 12 of 47

a declarative language. The use of declarative modelling is one of the key methodologies
chosen for SEAMLESS, and it is consequently a goal to develop the infrastructure needed to
make a full operational use of it. This is the priority for the prototype 2 in terms of software
implementation, as partial development of the set of tools needed will not allow operational
use of declarative modelling, and will not convince modellers to use the declarative
modelling implementation paradigm.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 13 of 47

2 The library of components

Components, as defined in the introduction, are discrete software units to be used for
composition, hence, components cannot be used in isolation. The interface that a component
makes available and the steps to follow to use it, all consequences of its design and
implementation, are then of primary importance for its use. Further, the reason for adopting a
component-based paradigm for implementing models as computer programs is to achieve
specific functionalities not available with monolithic structures. Consequently, component
architecture and implementation are crucial in developing a component base system for
biophysical simulation.

The modelling domain of each component and the subdivision of the modelling system in
sub-systems are presented in the following figure, where the main components of APES are
shown. To meet the requirements of the system (see 2.1.1) a finer granularity was sometimes
chosen, i.e. by subdividing a component into more than one discrete software unit.

APES - Agricultural Production and Externalities Simulator

CLIMA

PRODUCTION ENTERPRISE

SOIL

«library»
Simulation Engine

(ModCom)

The simulation engine allows
linking model components, and it
provides common services (e.g.
integrator, simulation time
manager, events handler,
datastore). «library»

CROPS

«library»
WEATHER

«library»
PESTICIDES

Model components may or may not
activated in specific istances of APES.
Other model components may be
added to the system

«library»
PRODUCTION ACTIVITIES

MANAGER

«library»
ORCH/VINEYIARD

«library»
SOIL-WATER2

«library»
SOIL-WATER

«library»
GRASSES

«executable»
APES.GUI

«library»
APES.core

O
penM

I
Interfaces

«library»
AGROFOR

«library»
C - NITROGEN

«executable»
CLIMA

Fig. 1 APES component diagram. APES is composed of three main groups of software units:
the graphical user interface and the core services component to run Modcom; the simulation
engine Modcom, and the model components. Model components can be grouped as soil
components, production enterprise components, weather and agricultural management. Note
that an alternate option for simulating soil water (SOIL WATER 2) is being developed to
provide a first test for components replaceability.

Several criteria have driven the selection of a sub-set of components for prototype 1, starting
from time constraints, which forced to concentrate on a subset of actions to maximize
chances to match the deadline. Such criteria can be grouped as 1) due to simulation
input/output needs, and 2) due to technical needs. Such criteria are listed below.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 14 of 47

1) Criteria due to simulation input/output needs. In SeamFrame, APES is linked to the
Production Enterprise Generator, the Production Technique Generator, and the Technical
Coefficients Generator (see deliverable 3-2-19). More specifically, the former two provide
inputs to APES, whereas the latter uses its outputs. The three generators mention are also
under development and needed to test a basic set of inputs (to be supplied to APES) and
outputs (to be received from APES). Further, the test cases analyses planned for the first
prototypes also required some specific outputs to be transformed in indicators and to be used
in the analysis. Consequently, components selection was driven by the need of:

• Make available simulation water and nitrogen limited production;

• Make available simulation of processes which lead to main possible externalities of
the system: soil erosion, runoff, nitrogen dynamics in the soil, agrochemicals fate;

• Make available the simulation event driven of agricultural management;

• Test links from components beyond the technical aspect, that is, testing the process of
building a consistent input-output matrix and using semantically rich interfaces;

• Have concrete realizations to discuss criteria for model selection within component
and then component matching

• Provide an articulated example of parameter needs

• Provide an articulated example of models implemented to derive abstractions for
model testing, thus leading to designing proper tools for the purpose

2) Criteria due to technical needs. Whether the abstractions and general concepts of a
modelling framework are consolidated, moving from simple proofs of concept to actual,
articulated applications needs to be tested and worked out not only with respect to
implementation details, but also testing aspects related to multi-team work. The criteria for
selecting components for prototype 1 consequently were:

• Implement various components to test different types of connections: for instance, all
components are connected to agro-management and weather, agro-chemicals and soil
carbon-nitrogen needs soil water, crop should be able to run, for potential production,
with the weather component only, soil water might be able to simulate a bare soil
with the weather components only;

• Link different components from the point of view of matching inputs-outputs from
the technical point (e.g. arrays, units) and at various times during simulation (across
and within time steps);

• Implement “one per type”, meaning including a crop component (grasses / vineyards
/ orchards / agroforestry will basically fill the same “slot”), a soil water component
(components replaceability will be tested using soil water 2), a soil carbon and
nitrogen component, an agro-chemicals component, an agro-management component,
a weather component, in order to start:

o Building proper graphical user interfaces (e.g. to show soil profiles for water,
nitrogen, agro-chemicals outputs; to test agricultural management
configurations input and output);

o Testing input/output procedures (access to input sources, various forms of
simulation outputs persistence)

o Testing system performance (ease of model building and execution time)

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 15 of 47

• Provide articulated samples to allow designing and testing of the relevant part of the
knowledge base

• Evaluate the impact of using relatively new IT technologies with teams with different
expertise

Within components, beyond what stated in the introduction, a mandatory criteria for model
selection is that single models must be peer reviewed to build the foundation of confidence
not only in APES, but also in the content of the knowledge base to be built. Developing a
component for a specific domain could also be seen as making a review of modelling
approaches available as peer reviewed sources, and make them available also for use by third
parties. If a new modelling approach is needed because no peer reviewed model is available
for a specific purpose, the modellers involved in the project may develop new approaches, in
this case submitting a paper to review.

The following section presents the architecture (section 2.1) of the components currently
available (section 2.2) as first prototypes, while a third section (section 2.3) presents other
components being developed, some already used in the current APES release, others to be
included in the coming releases.

2.1 Component architecture

2.1.1 Component requirements

The solution of biophysical modelling problems can be implemented with different designs
and different technologies. Developing a design and selecting a technology should be the
result of a careful definition of requirements. The requirements below were defined for model
components:

Functional requirements

• Estimate/generation of variables via different models;

• Estimate parameters from observational data;

• Provide data at run time, accessing either observational or generated data, and
making available model outputs;

• Provide quality checks on data imported;

• Provide quality checks on outputs produced;

Non-functional requirements

• Ease of use: the components must be usable by clients easily: impact on technology
and on documentation;

• Extensibility: the capability of easily adding alternate processing capabilities to the
ones of the component from the side of the component user, without needing to
recompile the component, and using the same interface;

• Reusability: the practical possibility of using the component in different software
systems; ease of use and solution to a common modelling problem are the keywords;

• Replaceability: the capability of being replaced by a different component respecting
the same contract. “Different” here means either a newer version of the same
component, or an implementation from a different party;

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 16 of 47

• Documentation: models, software design, code;

• Unit tests: units tests for each public method, input-output tests reported on
documentation.

Technological requirements

• Language: C# (.NET platform);

• Documentation: HTML-style, PDF.

2.1.2 Ontology

The components contain information extracted from a public ontology. Information consist
of concepts (variables in this case, which can be seen as instances of the concepts) and of
several attributes for each variable, encapsulated using the VarInfo type available in the
Preconditions component (see 2.2.5). The description of the VarInfo type follows, with some
comments:

• varName: the name chosen for a variable. The variable name uniquely identifies the
variable with its scope. Note that the naming convention used, although sometimes
not correct with respect to English, is used to keep similar/related variables close in
lists ranked alphabetically. For instance, instead of extraterrestrialRadiation and
hourlyExtraterrestrialRadiation, we called the variables extraterrestrialRadiation and
extraterrestrialRadiationHourly.

• description: the information to complement what might not be unequivocally
understandable from meaningful variable names.

• default value: a default value assigned to the variable. This is used to set up initial
conditions (when applicable), or to provide a value for parameters (parameters will
have the same metadata structure).

• minValue, maxValue: minimum and maximum values attached to the variable. They
are used to restrict the range of variability (in order to prevent the client from using
unreasonable values) and perform pre- and post condition tests. Note that a variable
may be estimated from other variables via a model. In this case, the minValue and
maxValue of the latter variables allows the range of the derived variable to be
computed.

• units, varType: units and enumeration types. They are used to link components to
the simulation engine, and in case of the units, to perform consistency checks.

Among these attributes the properties with respect to data flow are not included as they are
not an intrinsic attribute of the variable. In other words, a variable can be an input in a model,
and an output in another model.
The use of this information is in the domain classes described below. The components also
contain internal information about parameters and variables, using the same VarInfo type.
Such information is defined in the component and used as described in the paragraph pre post
conditions).

The information above was used to populate a shared ontology, which is implemented in the
project as a web based application available at:
http://seamless.idsia.ch/seamontology/chooser/chooser.php?page=Variables

A model interface is defined as a collection of variable definitions. Collections of variables
that are associated with particular domains define the Domain Classes (e.g. we could define
the SoilDomainClass as the collection of all measurements that are measured on Soil). Such
collections can be manually entered by a user or they can be automatically built, using the
built-in reasoning features of an ontology. The definition of domain classes in the component

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 17 of 47

interface allows abstracting the dependency of the model from the data and fostering the
extensibility of models via design patterns.
Having defined a domain class in the ontology, an OWL file can be parsed to generate the
source code of the model interface or the domain class respectively. An application to
generate C# code of domain classes has been developed (Domain Class Coder,
http://craisci.icamodelling.it/dcc/). Using domain classes, a modeler can exploit the
knowledge structured in the ontology in different modeling frameworks or different
programming languages. The adoption of an ontology-driven approach for defining a model
interface has clear advantages as it enables the reusability of models in a more easy way,
while common problems related to poor semantics of model interfaces can be effectively
tackled. Currently, the APES ontology is being populated.

2.1.3 Components design

Different designs have being used in the first, exploratory development of components for
APES, basically limiting the requirements to the use of a .NET language (all have used C#).
The reason was to facilitate as much as possible the development of the first release of APES
by taking advantage of work that had already been carried out for a different purpose. The
design traits summarized in this paragraph have been adopted, with small differences, in the
components described in 2.2.

The general requirement meant to be realized via the design choices made was to produce
intrinsically reusable components, that is not targeted specifically to a given modelling
framework. To be truly reusable a component must have limited dependencies, be fully
documented, and require a modest effort to be re-used. More capabilities could have been
obtained, say by making a large use of inheritance; instead, the design chosen makes use of
interfaces which specify what a class or the component must do, not how. This increases
flexibility which in turn favors replaceability. Also, components are “light-weight”: they do
not carry dependencies to whole frameworks to be used. The specific design choices made
are briefly discussed in the following paragraphs.

2.1.3.1 Model granularity
A model can be defined as a conceptualization of a process. This is one possible definition of
a model, relevant to the work of developing components for biophysical simulation. A model
can be implemented in a class, providing the estimation/generation of a variable (or a set of
interrelated variables), obtaining a fine level of granularity. There might be more than one
way to estimate/generate a variable. If two different models estimate variable A, those two
models are alternatives to estimate variable A even if they have different input requirements
and different parameters. As a consequence, the two models must be available as separate
units, and their input, parameters and output must be defined. Such units are here called
“strategies”, from the related design pattern introduced below.

A way to have available in a component all models, via the same call, including alternate
approaches, is the implementation of the design pattern Strategy (Mesketer, 2004). The
design pattern Strategy offers the user of the component different algorithms by
encapsulating them in a class called Context. Different algorithms, which are alternative
options to do the same thing, are called, as introduced above, strategies. When building a
biophysical model component this allows in principle to offer alternate options to estimate a
variable or, more in general, to model a process. This often needed feature in the
implementation of biophysical models, if implemented using the design pattern Strategy,
comes with two very welcomed benefits from the software side: 1) it allows an easier
maintenance of the component, by facilitating adding other algorithms, 2) it allows to add
easily further algorithms from the client side, without the need for recompiling the

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 18 of 47

component, but keeping the same interface and the same call. The basic point here is that a
strategy (a model class) encapsulates a model, the ontology of its parameters, and the test of
its pre/post conditions (see 2.1.3.3). It can be used either directly as a strategy (in this case we
call it “simple strategy”, where simple indicates that is does not use other strategies as part of
its implementation), or it can be used as a unit of composition, as described below.

A composite strategy differs from a simple strategy because it needs other (simple) strategies
to provide its output(s). A sequence of calls might be implemented inside a composite class.
The list of inputs is given but includes all the inputs of all classes involved (except those
which are matched internally). The list of outputs includes all outputs produced by each
strategy and the ones specific of the composite class (if any). The list of parameters needed
includes the ones of the classes associated and the ones (if any) defined in the composite
class; when the value of a parameter is set, if the parameter belongs to an associated class, it
is set on that class. The test of pre/post conditions makes use of the methods available in each
simple strategy class associated, plus the new tests specified in the composite class. If a
violation of pre/post condition occurs in one of the associated classes, the message informs
not only about the violation occurred, but also in what class occurred. Composite strategies
do not differ in their use compared to simple strategies. An example of simple and composite
strategies is given by Villa et al. (2006). Composite strategies too can be added to the
components without requiring a re-compilation of their code, thus providing a way to extend
component models in full autonomy by third parties. Composite strategies are solutions to
modelling problems at a coarser granularity (in principle) with respect to simple strategies.
As an example, a composite strategy may be built to simulate “crop potential production” and
be developed composing simple strategies such as “light interception”, “crop development”,
“leaf area expansion”, etc. In other terms, a composite strategy is a “closed” solution which
makes use of selected models of finer granularity as units of composition (simple strategies,
see previous paragraph). Such a closed solution is not meant to be proposed as the unique
solution for a specific modelling problem. Making reference to the example above about
“crop potential production” two composite strategies may use different simple strategies to
simulate “light interception” if they target the simulation of either homogeneous canopies or
wide-row spacing crops. Whether such diversity in light interception models might not cause
noticeable differences in outputs when simulating potential yield, it may lead to sharp
differences when simulating water-limited production in arid environments. Further, two
alternate approaches to model light interception say for “homogeneous canopies” could be
implemented in two composite strategies, and this would allow for comparison of modelling
approaches at fine granularity. This kind of composite models will provide a sound
foundation to select modeling approaches to be used at operational level.

The formalization of models in basic units of composition (simple strategies) and in
aggregated units (composite strategies), providing the same interface, and decoupling
interfaces and data from modelling equation as discussed in the next paragraph, provides the
design infrastructure to link and populate a knowledge base. The use of semantically rich
interfaces fosters safe reusability of components as discussed in the introduction. Finally,
simple and composite strategies are discrete units of code which can be directly used either to
build components, or even “full” simulation models to be used stand alone, in the latter case
still preserving the benefits of a modular system as described in the introduction.

2.1.3.2 Decoupling implementation of interfaces and data from model
equations

Targeting model component design to match a specific interface requested by a modelling
framework decreases its reusability. This can partly explain why modeling frameworks,

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 19 of 47

although in theory a great advance with respect to traditional model code development, are
rarely adopted by groups other than the ones developing them.

A possible way to overcome this problem is to adopt a component design which targets
intrinsic reusability and interchangeability of model components (e.g. Donatelli et al., 2004;
Donatelli et al., 2005). This may lead, in the worst cases, to the need for a wrapper class
(specific to a modeling framework) as proposed by the Adapter pattern (Gamma et al. 1994)
that makes possible the migration to other modelling frameworks.

A key design criterion, which enhances reusability and interchangeability, and which allows
concurrent development of both components and clients, is separating the model equation
component interface and its implementations, in different software units (D’Souza and Wills,
1999; Cheeseman and Daniels, 2000; Löwy, 2003). Self-standing interfaces decouple clients
and providers. This is known as the Bridge pattern (Gamma et al., 1994; Mesketer, 2004) and
it allows defining units of reusability (model component implementations and model
component interfaces) and units of interchangeability (model component implementations
alone).

In practical terms related to component development in APES, specifying data-structures
(domain classes) for different domains via a shared ontology allows concurrent development
of the components which will use their own domain classes and other from other components
as parameters in their interface. Once the specific software units with data structures and
interfaces are implemented, linking and replacing components can be much simpler (Rizzoli
et al., 2005). Such separation is implemented in the AgroManagement, AgrochemicalsFate,
SoilWater, and SoilErosionRunoff components (see section 2.2). When the SoilWater2
component (see section 2.3) is available, it will be possible to replace SoilWater with
SoilWater2 without requiring any change in other components.

2.1.3.3 Common features of model components
Model components share a set of features to minimize the effort needed to learn how to use
them, and to take advantage of common features. For instance, the application Model
Component Explorer (see 2.1.4) allows discovering interfaces, domain classes, inputs etc.
because of the above mentioned common features.

Pre and post conditions tests

Implementing the test of pre- and post-conditions is the central idea of the Design-by-
Contract approach (DBC). In DBC software, entities have obligations to other entities based
upon formalized rules between them. A functional specification, or 'contract', is created for
each module. Program execution is then viewed as the interaction between the various
modules as bound by these contracts. In general, routines have explicit preconditions that the
caller must satisfy before calling the routine, and explicit post-conditions that describe the
conditions that the routine will guarantee to be true after the routine finishes. When
implementing biophysical models, the implementation of the DBC approach not only ensures
the correct functionality of the software, but it also specifies what are the limits of use of our
model, which is knowledge about the model itself. Also, it allows data of uncertain quality to
be used: if an input (either an exogenous variable or the output of another component) is out
of the range expected, an exception can be fired, both informing the user of the problem and
allowing for exception handling. The DBC approach is implemented via a utility component
developed for the purpose, called Preconditions (see 2.2.6).

Unit tests

In computer programming, a unit test is a procedure used to verify a particular module of
source code is working properly. The idea about unit tests is to write test cases for all

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 20 of 47

functions and methods so that whenever a change causes a regression, it can be quickly
identified and fixed. The goal of unit testing is to isolate each part of the program and show
that the individual parts are correct. Unit testing provides a strict, written contract that the
piece of code must satisfy. Beyond the general benefits which derive from unit tests,
implementation in software development, implementing unit tests to test model
implementation and making available the relevant input-outputs in the documentation allows
the user of the components to have sample application results for the specific model.

Models and software design & use documentation

Each component has a HTML-style help which contains detailed documentation about the
models implemented, and information about the design and use of the component. The
documentation provided allows re-implementation of all the models of the component,
although the characteristics of reusability of the component make it much easier to use, rather
than to duplicate it. Another HTML-style file made available for each component is the code
documentation, following the standard of the MSDN - .NET documentation.

Exception handling

Exception handling is a programming language construct designed to handle runtime errors
or other problems (exceptions) which occur during the execution of a computer program.
Handling exceptions is of crucial importance in a component based system as it prevents the
system from crashing and it allows users (the applications / subsystems using the
components) to know precisely the source of the error. Components handle exceptions and
provide a custom message informing users which component and class are the source of the
error.

Maximize API ease of use

One of the key elements for component adoption by third parties is the simplicity of default
usage cases via the application public interface (API). The usage model for component-
oriented design follows a pattern of instantiating a type (a class) with a default or relatively
simple constructor, setting some instance properties, and finally, calling some simple
instance method. This is called the Create-Set-Call pattern (Cwalina and Abrams, 2006), and
it has been implemented in the components. Source code examples for components use
provided show example of such usage.

2.1.4 Discovering component and model interfaces

The Model Component Explorer (MCE http://craisci.icamodelling.it/mce/) is a Windows
application to inspect model components to discover interfaces, domain classes, VarInfo
values, simple and composite strategies, and their parameters, inputs and outputs.

Taking as an example the assembly CRA.clima.et.interfaces.dll in Fig. 2, ETData is a
Domain Class and ETDataVarInfo is the relevant VarInfo class. All model strategies are
available in the component CRA.clima.et.dll. Currently, not all components can be explored
using the MCE).

The interface and the domain classes are discovered by selecting an assembly via the button
Discover Interfaces. The screen image of Fig. 2 shows also the content of the Domain Class.
Note that by clicking on a property in the list, the VarInfo attributes are shown.

By selecting a model component via the button Discover Strategy, all the strategies are
shown, and all outputs produced by the component are also listed. Selecting a strategy causes
the display of the relevant parameters, inputs, and outputs. If an output is selected on the list
right to the list of the strategies, in the list box below all the strategies (one or more) which
produce that output are shown (Fig. 3).

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 21 of 47

If a composite strategy is selected (a composite strategy is associated with other strategies),
the associated strategies are shown. If the list box associated strategies is empty, that means
that the strategy being inspected is a simple strategy. If a parameter is selected, its VarInfo
values are shown

Fig. 2 Inspecting domain classes and VarInfo values of a component via the Model
Component Explorer.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 22 of 47

Fig. 3 Discovering strategies in a model component via the Model Component Explorer.
DREFAO56 is a composite strategy which is built using the simple strategies listed in the box
“strategies associated” (see 2.1.3.1 for details).

2.2 Components available

Components available for download include dynamic link libraries, help and code
documentation, and source code examples for their use. They are all available for free
download via web as specified in appendix B.

All model components implement a dependency to the “impact” data structures of the
component AgroManagement (see the following paragraph) to be able to recognize published
agro-management events, thus being able to implement the relevant impact.

The following paragraphs contain summaries of the models implemented in the components.
Full documentation is available in the PDF version of the help files provided, and it includes
the relevant references which are not reported in following summaries to avoid duplication.

2.2.1 AgroManagement

The AgroManagement component is designed to implement production management actions
within the system. An agricultural activity is defined, in this context, as a production
enterprise (e.g. a crop rotation, an orchard) associated with a production technique (e.g.
irrigated, high nitrogen fertilization, minimum tillage). Such an integrated system must be
implemented in a way that imitates as closely as possible farmers’ behaviour. Limiting the
drivers of the decision making process to the biophysical system implies that each action
must be triggered at run time via a set of rules, which can be based on the state of the system,
on constraints of resources availability, or on the physical characteristics of the system.
However, simulating management in a component-based system poses challenges in defining
a framework which must be reusable and able to account for a variety of agricultural

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 23 of 47

management technologies applied to different enterprises. Finally, the implementation of
management must allow using different approaches to model its impact on different model
components.

The AgroManagement component formalizes the decision making process via models called
rules, and it formalizes the drivers of the implementation of the impact on the biophysical
system via set of parameters encapsulated in data-types called impacts. Each operation must
have a rule to be applied at run time; when the rule is satisfied, a set of parameters is made
available to model components for the implementation of the impact. The component is
easily extendable for both rules (which have the structure of strategies, hence rules
encapsulate the attributes for each parameter, allow for testing of pre-conditions, and use the
same interface implemented to allow the extensibility of the component) and impacts, so that
the use of the AgroManagement component allows different modelling approaches to be
used. Furthermore, the information on the biophysical system is passed via a data-type called
states, which can also be extended. This is important as the current data-type includes the
information needed by the rules currently implemented; newly implemented rules might
require further variables which can then be added. The output (in terms of management
actions to be applied as resulting from rules evaluated at run-time) drivers, to provide a
simulation output (e.g. to output to a text file, to an XML file, and to a database, all currently
available) can be fully customized by the user as well by adding new ones without
recompiling the component.

The rule-based model is characterized by 3 main sections:

• Inputs: states and time

• Parameters (values are compared to rules via the rule model)

• A model which returns a true/false output

Rules can be based on relative date or based on a set of state variables and are implemented
as a class encapsulating its parameters declaration and test of pre-conditions (this also allows
management configuration files to be validated via pre-condition tests).

Parameters are needed by model components to implement the impact of management. There
are few parameters which are common to a generic management event (e.g. management
type) and to a specific management event (e.g. water amount for irrigation, tillage depth for
tillage). Other parameters (are needed by specific management approaches (e.g. implement
type can be needed by a specific approach to model tillage, as opposed to other approaches to
model tillage which do not need such information) and generally at least partially differ even
within specific management event types. An example of graphical representation of a
management configuration, for a two- years rotation, is shown in the figure below.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 24 of 47

Fig. 4 Graphical representation of agro-management scheduled actions in a two years
rotation. For simulations longer than 3 years the sequence is repeated. Red bars are actions
scheduled at a relative (to year) date; red rectangles are actions scheduled in a time
window, if other conditions are met; white to red gradient rectangles are actions scheduled
with an ending date but associated to a phenological event (the width of gradient boxes is
arbitrarily fixed as 30 days in the graphical representation).This type of graphical
representation of agro-management configuration files will be available via a specific utility
being currently tested.

The following table shows the VarInfo attributes of inputs in the use of the component in the
release APES v 0.3; rule and impacts parameters are detailed in the documentation and
provided via an XML file. Not all dates of phenological events are used in the current version
of APES, but the current structure allows for synchronizing management to detail
phenological models.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 25 of 47

Table 1 AgroManagement inputs (implementation in APES v 0.3).

2.2.2 AgroChemicalsFate

The AgroChemicalsFate component predicts the fate of agrochemicals in the environment.
The model considers 5 compartments where pesticide is stored: canopy surface, plant,
available fraction of the soil, aged fraction of the soil and bound fraction of the soil, even
though it is possible by strategies to exclude the bound and aged fractions. The available
fraction is partitioned in 3 phases: gas, liquid, and solid.

Models are implemented in four composite strategies:

• Air

• Crop

• Canopy

• Soil

The “air” models consider the processes that occur before the pesticide reaches the soil, and
they simulate the processes of drift and plant interception.
The differentiation between the virtual compartments “crop” and “canopy” is related to the
different processes simulated: on “canopy” the agrochemicals are subject to transformation
and can mobilize, whereas “crop” is a sink of agrochemicals. Neither toxicity of accumulated
chemicals on the plant, nor the impact on plant products quality, is estimated.
From the surface, the chemical may enter the soil system, transported by infiltrating water
and is partitioned among the gas, liquid and solid phases of the soil. The soil compartment is
divided in two parts, the first represents the process over the soil surface, the second describes
the soil profile. Chemicals are degraded in the soil profile by chemical, photochemical and
microbial processes and might be taken up by plant roots.

The component has to be linked to other components to run and to describe the behaviour of
pesticides in the modelled system. It is well known that the main determinant of pesticide
flow through the soil profile is advection. It is necessary, therefore, that the component reads
information about water content and water fluxes from the soil water component. Soil has to
provide also temperature because several processes are affected by it. The crop strategy

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 26 of 47

requires information about the crop, in particular about ground cover to estimate crop
interception of pesticides during application.

The following tables show the VarInfo attributes of inputs and outputs in the use of the
component in the release APES v 0.3.

Table 2 AgrochemicalFate inputs (implementation in APES v 0.3)

Table 3 AgrochemicalFate outputs (implementation in APES v 0.3)

2.2.3 SoilWater and SoilErosionRunoff

The SoilWater component describes the infiltration and redistribution of water among soil
layers, the changes of water content, fluxes among layers, the effective plant transpiration and
soil evaporation, and the drainage if pipe drains are present. Two algorithms have been
selected to simulate the water dynamics, a cascading algorithm and a cascading with travel
time among layers. The cascading method simulates the soil as a sequence of tanks that have
a maximum and a minimum level of water, fixed respectively at the field capacity (FC) and
wilting point (WP). Water in excess of the water content at FC for a given layer is routed into
the lower layer, and if all the profile has reached FC, the water in excess is removed from the
soil as percolation. The main advantage of this approach is the simplicity and the calculation
speed. The main difficulties are that the model has not a strong physical background, because
the concept of field capacity is a practical approximation and represents a simplification of
soil water holding features, and because the time needed to water to move between layers is
not considered. Other relevant difficulties of this approach is the impossibility to have soil

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 27 of 47

water contents greater than FC and lower than WP (the latter with exception of the
evaporative layer), and the possibility to have allowed movement of water only downwards.
This approach is not suitable where there are layers of different texture or a water table, even
if it is possible to use some approximation to simulate the capillary rise. The cascading
method with travel time is an extension of the simple cascading method, taking into account
the time needed to percolate the layer. Tillage simulation is done following the approach of
the models Wepp and SWAT, where each type of equipment used on the soil has specific
parameters and a coefficient for the intensity of tillage (mixing among layers), for surface
roughness after tillage, ridge high and distance This allows for the simulation of the evolution
of bulk density in time, because a simple model of soil settling after tillage was also
developed. Currently, all the variables are simulated with a daily time step, but the algorithms
and software structure are ready to work with an hourly or shorter time step.

The SoilErosionRunoff component simulates dynamically water runoff and soil erosion. In
detail, it represents the runoff volume, the amount of soil eroded, the interception by
vegetation, and the water available for infiltration. This component has been structured in a
hierarchical way with the above-described Water component, but has its own data-type and
related interfaces. As for the Water component, all the variables are simulated using a daily
time step, but the algorithms and software structure are already designed to work with an
hourly or shorter time step.

The following tables show the VarInfo attributes of inputs and outputs in the use of the
component in the release APES v 0.3.

Table 4 SoilWater/ErosionRunoff inputs (implementation in APES v 0.3)

Table 5 SoilWater/ErosionRunoff outputs (implementation in APES v 0.3)

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 28 of 47

2.2.4 Weather

Weather components implement several strategies, from peer reviewed sources, to estimate
variables subdivided in five domains. Emphasis is placed in sharing and making available for
operational use modelling knowledge produced by research. Weather components can be
considered as a realization of a part of “Numerical recipes in agro-ecology” as proposed by
Leffelaar et al. (2003), implemented using an updated technology. The reason for the
subdivision in components is to make it easier to re-use and maintain the models. The
reference to the peer reviewed sources of the models is available in the documentation.

2.2.4.1 AirTemperaure
The generation of daily maximum (Tmax, °C) and minimum (Tmin, °C) air temperatures is
considered to be a continuous stochastic process with daily means and standard deviations,
possibly conditioned by the precipitation status of the day (wet or dry). Three alternative
methods are implemented for generating daily values of Tmax and Tmin, all based on the
assumption that air temperature generation is a weakly stationary process. The multi-stage
generation system is conditioned on the precipitation status with two approaches. Residuals
for Tmax and Tmin are computed first, than daily values are generated - independently
(Richardson-type) or with dependence of Tmax on Tmin (Danuso-type). A third stage, that
adds an annual trend calculated from the Fourier series, is included in Danuso-type
generation. Another approach even accounts for air temperature-global solar radiation
correlation. A third approach generates Tmax and Tmin independently in two stages (daily
mean air temperature generation first, Tmax and Tmin next), making use of an auto-
regressive process from mean air temperatures and solar radiation parameters. Daily values of
Tmax and Tmin are used to generate hourly air temperature values, according to alternative
methods. Sinusoidal functions are largely used to represent the daily pattern of air
temperature. Six approaches, are used to generate hourly values from daily maximum and
minimum temperatures. A further approach derives hourly air temperatures from the daily
solar radiation cycle. Mean daily values of dew point are estimated via empirical
relationships with Tmax and Tmin and other variables. A diurnal pattern (hourly time step) of
dew point is also modelled via two alternative methods.

2.2.4.2 Evapotranspiration
Evapotranspiration for a reference crop (ET0) is calculated from alternative sets of inputs and
for different canopies, conditions and time steps, using one-dimensional equations based on
aerodynamic theory and energy balance. A standardized form of the Penman-Monteith
equation is used to estimate daily or hourly ET0 for two reference surfaces. According to
FAO Irrigation and Drainage Paper n. 56, the reference surface is a 0.12-m height (short
crop), cool-season extensive grass such as perennial ryegrass or tall fescue . A second
reference surface, recommended by the American Society of Civil Engineers, is given by a
crop with an approximate height of 0.50 m (tall crop), similar to alfalfa. The Priestley-Taylor
equation is useful for the calculation of daily ET0 for conditions where weather inputs for the
aerodynamic term (relative humidity, wind speed) are unavailable. The aerodynamic term of
the Penman-Monteith equation is replaced by a dimensionless empirical multiplier. As an
alternative when solar radiation data are missing, daily ET0 can be estimated using the
Hargreaves equation. An adjusted version of this equation, according to Allen et al. is given.
Stanghellini revised the Penman-Monteith model to represent conditions in greenhouse,
where air velocities are typically low (<1.0 m s-1). A multi-layer canopy is considered to
estimate hourly ET0, using a well-developed tomato crop, grown in a single glass, Venlo-
type greenhouse with hot-water pipe heating. The Stanghellini model includes calculations of
the solar radiation heat flux derived from the empirical characteristics of short wave and long

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 29 of 47

wave radiation absorption in a multi-layer canopy. A leaf area index is used to account for
energy exchange from multiple layers of leaves on greenhouse plants. The constituent
equations of the Stanghellini model are in accordance with the standards of the American
Society of Agricultural Engineers.

2.2.4.3 Rain
The occurrence of wet or dry days is considered to be a stochastic process, represented by a
first-order Markov chain as described by Nicks et al. The transition from one state (dry or
wet) to the other (dry or wet) is governed by transition probabilities, as characterized monthly
by analyzing historic long-term daily precipitation data for the site. According to the multi-
transition model of Srikanthan and Chiew, the daily precipitation amounts are divided into up
to seven states - dry or wet from 1 (lowest rainfall) to 6 (highest rainfall). On days when
precipitation is determined to occur the precipitation amount is generated by sampling from
alternative probability distribution functions. Most approaches are based on the two-state
transition model for dry/wet days. The Gamma distribution is used to model precipitation
amounts for the last state (highest level of rainfall) in the multi-state transition probability
matrix of Srikanthan and Chiew, while a linear distribution is applied for the other states. The
pattern of Gamma plus linear distribution across various occurrence states exhibits a
combined J shaped function.

Short-time rainfall data are generated by disaggregating daily rainfall into a number of
discrete events, then deriving the characteristics (amount, duration and starting time) for each
event. Four approaches have been implemented to disaggregate daily rainfall into six hour or
shorter periods (as small as 10 minutes). The method described by Arnold and Williams uses
a 0.5-hour time resolution and assumes that daily rainfall falls in only one event. The peak
location is generated first according to a broken linear distribution. The other 0.5-hourly
amounts are generated from an exponential distribution and relocated on both sides of the
peak. The other methods are more flexible and able to capture bursts of storm occurring
discontinuously over the day. In the approach by Meteoset an autoregressive process and a
Gaussian daily profile model are combined to simulate the possibility of precipitation at any
hour. Two options are available to generate sub-daily precipitation events for varying time
steps. The cascade-based disaggregation method of Olsson breaks each time interval into two
equally sized sub-intervals. The total amount is redistributed into two quantities according to
two multiplicative weights from a uniform distribution: 24-hour rain into two 12-hour
amounts, 12-hour amount into 6-hour amounts, and so on until 1.5-hour resolution is
achieved. The approach by Connolly et al. allows disaggregation of daily rainfall into
multiple events on a day, and the simulation of time-varying intensity within each event: (1)
distinct storms are assumed independent random variables from a Poisson distribution, (2) the
storm origins arrive according to a beta distribution, (3) storms terminate after a time that is
simulated by a simplified gamma distribution, (4) each storm intensity is a random value
exponentially distributed, (5) time from the beginning of the event to peak intensity is given
by an exponential function, (6) peak storm intensity for each event is also determined from an
exponential function, (7) internal storm intensities are represented by a double exponential
function.

2.2.4.4 SolarRadiation
Solar radiation outside the earth’s atmosphere is calculated at any hour using routines derived
from the solar geometry. Daily values are an integration of hourly values from sunrise to
sunset. The upper bound for the transmission of global radiation through the earth’s
atmosphere (i.e., under conditions of cloudless sky), can be set to a site-specific constant or
estimated daily by diverse methods.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 30 of 47

Broadband global solar radiation (about 0.3-3.0 μm wave-band) striking daily horizontal
earth’s surfaces is estimated from alternative sets of weather inputs according to strategies
based on either physical relationships or stochastic procedures. A sine-curve is used to
deduce the hourly distribution of solar radiation from its daily value, assuming changes with
solar elevation angle. The most simplified models relate diurnal temperature range to solar
energy transmission through the earth’s atmosphere. Since one of the most important
phenomena limiting solar radiation at the earth’s surface is cloudiness, a cloud cover measure
is incorporated in the model from Supit and van Kappel to estimate transmissivity. The
radiation model from Winslow et al. uses saturation vapour pressures at minimum and
maximum air temperature as a measure of the atmospheric transmission of incident solar
radiation. The Ǻngström and Prescott model is the most common choice to estimate global
solar radiation when sunshine measurements are available. As an alternative, an
implementation of the model of Johnson et al. and Woodward et al. is given. Stochastic
generation is based on the dependence structure of daily maximum and minimum
temperature, and solar radiation. Such variables are reduced to time series of normally
distributed residual elements with mean zero and variance of one. An autoregressive, weakly
stationary multivariate process is used to generate the residuals. Daily values of global solar
radiation are generated for dry and wet days as daily deviations above and below the monthly
average value. An implementation by Garcia y Garcia and Hoogenboom is given as well.

The flux density on a horizontal plane at the earth's surface is comprised of a fraction of
direct beam, coming directly from the direction of the sun, and diffuse radiation coming from
many directions simultaneously. The irradiance on a tilted surface includes the fraction
reflected from the ground calculated from a slope-dependent factor. The current
implementation for a tilted surface derives from the general approach from Liu and Jordan.
The estimation of diffuse radiation on a horizontal surface depends on the extra-terrestrial
irradiance and a transmission function. Hourly transmission relies on the assumption of
anisotropy for estimation on inclined surfaces and is further divided into the isotropic,
circumsolar and horizontal ribbon sub-fractions. These sub-fractions are calculated separately
and then summed to provide the diffuse irradiance. The direct fraction of solar radiation is the
complement to diffuse solar radiation. The visible band (0.38-0.71 μm wavelength) is
estimated daily by the diffuse/direct radiation ratio, and hourly by the solar elevation course.
PAR amount can be also disaggregated into direct and diffuse fractions. Slope is the angle the
surface makes with the horizontal plane, and aspect is the clockwise orientation to south. One
or both are required to compute geometric factors that convert radiation estimates from
horizontal to non-horizontal surfaces. An ESRI-based approach is implemented to derive
slope and aspect from digital elevation data grids.

2.2.4.5 Wind
Daily mean values of windspeed, are generated by sampling from alternative probability
distribution functions. Following generation of daily mean wind speed, alternative
approaches are available to estimate the maximum and minimum wind speeds for the day.
Like most climatic variables, windspeed tends to be both random and cyclic as time varies.
Probability distribution functions are used to randomly distribute daily mean wind speed
within the day. Alternatively, wave functions are used to describe average diurnal wind speed
variations using reference values of both maximum and minimum wind speeds for the day as
inputs.

2.2.4.6 ClimReader
Crop, cropping system and hydrological models at field level often require meteorological
data at daily or hourly time resolution. Such data may include a range of variables (e.g.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 31 of 47

maximum and minimum daily air temperature, daily rainfall, daily evapotranspiration).
Meteorological data also require site-specific data (e.g. latitude, clear sky transmissivity).
CRA.ClimReader.dll is a component which allows loading location and provides
meteorological data at run-time. It also loads the soil data, which also need to be loaded at the
start of the run. The component allows loading of data in different formats (txt, XML, and
from MS Access), and different sets of data, allowing for flexibility of data sources. Missing
data are often a feature of meteorological records. The component allows estimation of some
meteorological variables if missing in the input file: reference evapotranspiration, vapour
pressure deficit, day length, global solar radiation. Reference evapotranspiration can be
estimated using the Hargreaves, Priestley-Taylor, and Penman-Monteith method according to
data availability. The component uses ET, AirT, Wind, Rain, and GSRad components.

Table 6 ClimReader outputs (implementation in APES v 0.3)

2.2.5 Preconditions

Preconditions is a utility used by all the model components described above. This component
facilitates the testing of pre- and post-conditions, and contains the definition of the VarInfo
type. The component Preconditions is currently used in the components AgroManagement,
SoilWater, SoilErosionRunoff, AgrochemicalsFate, AirTemperature, Evapotranpiration,
Rain, SolarRadiation, and Wind. This component also contains the definition of other
interfaces which are used in all components. Several pre- and post conditions can be tested at
each call. Pre-conditions which can be tested as variables values are:

• variable values within a range (VarInfo maxValue e minValue),

• one value lower than another,

• at least one value of a matrix different from zero,

• if one value has a value different from zero another value cannot be zero,

• if a value is in a range, another value must be in a given range.

Using the range test, at least two types of custom specifications can be made in a class:

1) the range of a variable of the domain class can be narrowed to match the ones of
the model being implemented: a VarInfo variable is defined, then the new
minValue and maxValue are set, and finally the current value of the domain class
variable is assigned as current value, on which the test is made

2) custom tests for composite variables can be made by defining a range in class
(e.g. a VarInfo variable is defined say as siltPlusSand, then the minValue and
maxValue are set), then the current value to be tested at each time step is set as
the sum of sand + silt values, thus defining a composite value.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 32 of 47

Pre- and post-condition tests can have a output to the screen, to a text file, or to a XML file,
and using custom format which can be developed implementing an interface of the
component. The output format is a strategy, and a strategy implemented by a client does not
require the recompilation of Preconditions, as described for model components.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 33 of 47

2.3 Components under development

Model components already implemented in version .0.3 of APES, but still under development
include Crops (2.3.1) and SoilCarbon-Nitrogen (2.3.4). Such model components are available
as Modcom classes and are not available as independent software units. Other components,
not included via APES in the first SEAMLESS-IF prototype are under development, i.e.
those for Grasses, Vineyards and Orchards, SoilWater2 and Agroforestry.

2.3.1 Crops

The LINTUL model has been implemented in the current framework to simulate biomass
production as a function of intercepted radiation and its conversion efficiency. The crop
growth is limited by two factors, the water stress and the nitrogen limitation. Water stress is
modelled via the ratio between actual and potential transpiration; when a water stress event
occurs, the simulated crop allocates more biomass to the roots and less to the shoot which
increases the potential access to soil water. The simulation of nitrogen stress follows the
growth dilution concept as implemented in the crop model CropSyst. Radiation use efficiency
is reduced by a fraction when the available percentage of nitrogen is between the minimum
nitrogen requirement and the critical nitrogen requirement.

The crop model is linked to nitrogen turnover assuming that roots take up the required
nitrogen over the whole soil profile implying that only one dynamic soil layer needs to be
considered. The Soil Carbon-Nitrogen component, uses the layering of soil horizons done by
the Soil Water component into a number of discrete fixed layers. Therefore, given a certain
depth of the roots, a demand of attainable nitrogen uptake is passed to the Soil Carbon-
Nitrogen component, receiving, before integration, the actual uptake.

The model reacts also to the irrigation and fertilization regime, including soil nitrogen
mineralization, which depends on soil temperature. Since the susceptibility of crops to water
and nitrogen availability depends on crop development stage, the impact of different
management strategies could be investigated by the model.

The current model assumes that pests, diseases, weeds and pollutants are non-limiting so that
the crop does not suffer any adverse impact. Phenology depends on temperature, the crop will
reach full maturity and ready to be harvested at a certain temperature sum, but the harvest
itself will usually take place somewhat later. Possible losses between these dates are not
accounted for in the current model. At harvest either the whole of the crop or only crop
compartments may be taken from the field. The parts of the crop that remain on the field after
harvest will be used as an input to the soil organic matter module.

The LINTUL model was written in the simulation language FST, Fortran Simulation
Translator. The Fortran code containing the rate equations, which is generated by FST, is
encapsulated in a Fortran dynamic link library. The version used in APES, version 0.3, was
written using C# as a Modcom class, which accesses crop parameter values from an XML
file.

Future development of the crop component will aim at decoupling the different model
processes to implement models using a finer granularity, thus allowing the user to create,
combine and assess different modelling approaches.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 34 of 47

Table 7 Crop inputs (implementation in APES v 0.3)

Table 8 Crop outputs (implementation in APES v 0.3)

2.3.2 Grasses

The grassland model needs to simulate biomass accumulation for a wide range of grasses
species and react dynamically to management practices, such as defoliation and fertilization.
Thus, we chose as a basis the biophysical sub-model of SEPATOU developed by Cros et al.,
which simulates herbage growth under a range of different management strategies.

This model was extended to a large range of grass species by including the concept of plant
functional type, based on a typology developed within INRA, Toulouse. These plant
functional types are defined according to grassland utilisation (grazing, cutting) and sward
nutrient status (defined through fertilization and plant available nitrogen, given by the soil
component). Therefore, such definition of criteria allows (1) predicting herbage accumulation
rate under different management practices and (2) evaluating the impact of these practices on
biomass production. Plant functional types group species according to their common
responses to the environment (response trait) and/or common effects on ecosystem processes
(effect trait). Therefore, inclusion of this concept into the grass model by defining specific
parameters applicable to multi-species grassland made the model generic and therefore
applicable at the European level.

The model includes simulation of: light interception, biomass growth via radiation use
efficiency, senescence and remobilization, biomass partitioning, water and nitrogen uptake.

The grass model was developed to simulate permanent grasslands. However, it can be
extended to temporary grasslands by considering them as Plant Functional Type A or B,
depending on their attributes, especially for phenology. These plant functional types are
defined according to grassland utilisation (grazing, cutting) and sward nutrient status
(defining through fertilization and plant available nitrogen, given by the soil component).
Therefore, such definition of criteria allows (1) predicting herbage accumulation rate under
different management practices and (2) evaluating the impact of these practices on biomass
production. However, the approach does not consider (1) extensive rangelands, (2) summer
pasturing (in mountainous regions) and (3) fallows. Furthermore, the model was developed

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 35 of 47

from the perspective of simulating grassland production from North to South of Europe with
a good sensitivity to management practices and climatic differences within a specific zone.

To determine thermal time within the model and consequently phenological variables such as
leaf life span, average daily temperatures outside the range from 0 to 18°C were set to these
limit values. As climatic conditions deviate more from those considered when the model was
created, e.g. in the Baltic or Mediterranean regions, there may be a need for some
recalibration of the model. Threshold values may need to be re-evaluated for more extreme
conditions, usually leading to the presence of other graminea or dicotyledons from the ones
considered within the typology of Cruz et al.

Finally, the primary goal of the implemented model within the grassland component was to
establish impact of management on grassland production for specific regions. Although up-
scaling the model to the European level may lead to some discrepancies in taking into
account weather variability (as mentioned previously), it should still be effective for
considering the impact of management practices.

The grassland model is implemented as a "one-model per class" (one strategy) and directly
inherits methods from ModCom, hence using C# as development language.

2.3.3 Vineyards and Orchards

Modelling orchards are very specifics to one species and even if theoretically, formalisms can
be extended to every woody perennial crop. It will require an additional work of calibration
to adopt a common way of modelling grapevine and apple tree growth for instance. For the
time being, we dispose of two different versions of the component, one for modelling
grapevine and another for apple tree. The grapevine component version dated from month 15
and has not been changed since this date whereas the Apple component is most recent (month
18) and differs in some points. At this stage of development we adopted and validated in
priority modelling approaches described in the literature and validated. However, even if tests
are being performed on different parts of the model, the whole component has not been
validated yet with field data.

The components are able to simulate:

• yield, average sugar and water content of the product, and the time-course of biomass
production in leaves, branches and fruits [general outputs] + Biomass of roots and
trunk, Mean single fruit fresh weight [Apple outputs];

• the harvest and winter cane pruning [main management events] (only stand-alone
version);

• the biomass of senesced leaves and pruned stems [outputs for soil components];

• potential transpiration, potential soil evaporation and root length distribution
throughout the profile. [outputs for soil components].

Climate data and information about the layout of the plot are required to compute the
potential production of the annual aboveground biomass. A computation of a water and
nitrogen stress index is in progress to allow the linkage with the soil components.

To reach the first objective, namely to provide a prototype version of the fruit tree component
running under the Modcom environment, several assumptions/simplifications were made:

• only mature trees (i.e. with a standard architecture) are simulated;

• the soil surface is considered as bare and only one species is growing on the plot;

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 36 of 47

• only the annual aboveground organ production is taken into account; that is to say
leaves, stems and fruits [Grapevine];

• the biomass is allocated to the different organs of the crop using look-up tables;

• the inter-annual impact of carbon storage is neglected;

• the product quality is described by the water content and the sugar content of fruits +
Mean fruit fresh weight [Apple];

• root length growth is driven by soil temperature and is disconnected from the
biomass production [Grapevine].

The model calculates the annual growth of grapevine aboveground biomass (fruits, leaves,
stems); some quality variables such as fruit sugar content and fresh weight are also estimated.
To allow the future linking with soil components, the root length growth and its distribution
throughout the soil profile is also calculated as well as the potential transpiration and
evaporation.

Even if for many points orchards and vineyards can be simulated the same way, discrepancies
between them exist due to the specificity of orchard management or to physiological
behaviours of fruit trees closer to forest trees. Because apple production is the most important
fruit production in Europe, the Apple tree has been chosen as the species to be simulated in
the APES orchard component. Modelling apple tree orchards required some predictable
adjustments and the actual version contains three innovations compare to the vineyard
version. The growth concerns the annual and the perennial part of the tree that allows the
coupling between the root growth procedure and the computation of the root distribution in
the soil. The calculation of the mean weight of a single fruit has also been added, this variable
is closely related to the fruit grade that determines the price of the product. The procedure of
calculation makes use of an external input, the fruit load, that has to be defined by the user.
As shown in numerous studies the fruit load affects greatly the global production of biomass
and the allocation of carbon in the different organs. Theses two major effects are also
simulated by the model.

At present, the model does not cope with an environment with a limiting supply of water and
nutrients. Impacts of water and nitrogen shortage on growth will be integrated in the
forthcoming version. For the second prototype, once the software structure will be
satisfactory enough, more efforts will be put in testing and improving the concepts to reach
the objective of modeling the growth of two species (grapevine or fruit tree, and intercrop)
concurrently on a single plot.

Most recent developments have dealt with the development of a wrapper and domain classes
to achieve the functionalities provided by the modular design of APES. Such modifications
aimed at improving re-use, interchangeability and extensibility of the software unit.

The component has been developed in C# to facilitate its integration into the Modcom
environment. In parallel a stand-alone model has been written in FST (Fortran Simulation
Translator) to test different algorithms.

2.3.4 Soil Carbon-Nitrogen

The nitrogen and carbon dynamics are described in the routines of the Soil Carbon-Nitrogen
component, of which the SUNDIAL model forms the basis. This model simulates all of the
major processes of C and N turnover in the soil/plant system using only simple input data.
This feature makes this model an ideal choice to be implemented as base for the C and N
modelling in the current framework. In SUNDIAL, the microbial processes of carbon and

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 37 of 47

nitrogen turnover are described together with mineralization and immobilisation occurring
during decomposition of soil organic matter. Furthermore, the bypass flow following addition
of fertiliser, the nitrification of ammonium to nitrate, and the nitrogen losses by
denitrification are also represented in detail. In synthesis, therefore, the model should:

• simulate microbial and physical processes influencing the C and N content of the
soil, greenhouse gas emissions and leaching losses from the soil;

• allow addition of C and N to the soil as crop residues, organic manures, fertilisers and
atmospheric deposition using information supplied by other components;

• use input information about the soil water and temperature provided by other
components to simulate the microbial and physical processes of C and N turnover
and loss;

• output the distribution of mineral N down the soil profile, so that other components
can determine the availability of N to a plant root at a given depth;

• output the nature of losses of C and N from the system so that pollution events can be
investigated.

The SUNDIAL soil C and N routines have been modularised so that they are separated from
crop, water and cultivation routines. The initialisation, addition, microbial and physical
processes are distinct in the new code. A C# version of the code has been completed as a
Modcom class and included in release 0.3 of APES.

2.3.5 Soil Water 2

Soil Water 2 represents in detail the water dynamics within the soil profile. It differs from
SoilWater (see 2.2.1) mostly in that it accounts for preferential water flow in the soil profile.
The soil structure is a matrix of solid phase holding water and air on several smaller scales.
The module simulates dynamics of both soil structure and soil-water interacting together.

The profile consists of a surface layer and 4 underlying horizons. The surface layer can
reproduce the impact of technical practices as tillage or effect of a crust on water infiltration
and evaporation where surface hydraulic conductivity, layer thickness and maximum surface
storage are the three principal modified factors. Each horizon is a pedostructure, a
homogeneous zone in term of structure and organisation. The soil is discretized into 10
layers. To preserve a modelling logic between layers and horizons, the depth of each layer is
determined by the model using the depth of the horizons provided by the user. The equation
used allows the uniformity of the layer’s depth in each horizon and differences between
horizons. The initial water content of each horizon has to be provided by the user.

A model version in C# has been completed and verification of the code is on going.

2.3.6 Agroforestry

The agroforestry component needs to be able to predict both the productivity of agroforestry
systems, and some of their environmental impacts. However, agroforestry systems are very
diverse as they combine numerous tree species with most major crops of Europe. The
simultaneous presence of trees and crops represents the major challenge in simulating
agroforestry systems, given also the 1D simplification of other APES components.

Modelling agroforestry implies a need to model competition between trees (usually individual
trees) and crop components (usually a population of plants). Competition occurs for all the

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 38 of 47

resources needed by plants: light, space, water, nitrogen, mineral nutrients. Availability of a
below-ground water table plays a key role in such competition.

The tree growth module in APES will dynamically model the tree growth over decades. This
module will be generic and could be used for any perennial crop with a canopy (vineyards,
orchards, large trees). This dynamic tree component will interact with the crop component
competing on resources use. The tree component will be described by an average tree (tree to
tree variability will not be described by the model). The tree will have access to an areaof
land whose size depends from the tree density in the stand. Modelling perennial plants
implies that carbohydrate and nitrogen reserve pools need to be modelled, which make the
growth model trickier. These pools are essential for modelling correctly the rapid increase of
leaf area after budburst, fruit production, and the reaction of the plant after pruning.

The APES tree module will also include a fruit pool, but the prediction of the fruit yield is
considered not attainable with the simple structure of APES. It is therefore suggested that the
number of fruits should be introduced as a forcing variable in the APES tree module. The
number of fruits that will be forced should take into account any farmer action of fruit
number reduction (mechanically or chemically). The tree module will then predict the fate of
this pool of fruits, taking into consideration the competition between the various tree sinks for
carbon.

C allocation will be governed by two types of rules

• Teleonomic (or goal driven) allocation rules based on allometric equations defining
the relative sizes of above-ground sub-compartments and below-ground sub-
compartments;

• An optimal allocation assumption (‘functional equilibrium’) between above ground
and below ground mediated through stress indices.

Six structural tree parts are considered

• Stem;

• Branches (distinction between stem and branches is necessary because of alteration
of the branch / stem allometry following pruning);

• Foliage;

• Coarse (structural) roots;

• Fine roots (feeder roots);

• Fruits.

Light interception by spaced trees (or rows of vineyards) is a matter of geometry. However,
our intention is to maintain a 1D model in APES. A possibility for modelling the light
interception by the tree is to take into account the structure of the tree stand (spacing of the
trees, shape of the canopies) and calculate the true amount of direct and diffuse radiation that
reaches the crop. This means that some aspects of 2D or 3D modelling are introduced in the
model, but that these effects are incorporated in parameters of a 1D model. A geometric
description of the tree canopies must be done via an appropriate algorithm. This could be the
module of the Hi-sAFe model (Dupraz et al, 2004).

Conventional algorithms based on volumetric soil water content or water potential are not
able to simulate correctly water competition between different species. This is another case in
which the 1D simplification requires strong assumptions. An algorithm that meets the
required criteria, and is based on the matrix flux potential can be used simplifying the
algorithm in 1D. Water uptake by mono-specific stands at seasonal scale tends to be

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 39 of 47

dominated by the net supply to the soil (rainfall minus soil evaporation) and evaporative
demand (determined by the energy balance), rather than by details of root distribution. This is
no longer true in mixed stands.

The implementation of the first prototype of the agroforestry component is on going.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 41 of 47

References

SEAMLESS papers (references about models are included in the documentation of each
component, see appendix A)

Athanasiadis, I. N., A. E. Rizzoli, M. Donatelli, L. Carlini Enriching software model
interfaces using ontology-based tools iEMSs congress, Vermont, July 2006 (accepted)

Carlini, L., G. Bellocchi, M. Donatelli, 2006. Rain, a software component to generate
synthetic precipitation data. Agronomy Journal (in press)

Donatelli, M., F.K. van Evert, A. Di Guardo, M. Adam, K. Kansou, 2006. A component to
simulate agricultural management. iEMSs congress, Vermont, July 2006 (accepted)

Donatelli, M., G. Bellocchi, and L.Carlini, 2006. A software component for estimating solar
radiation. Envrironmental Modelling and Software. Vol. 21, 3:411-416

Donatelli M., G. Bellocchi, L. Carlini, . 2006. Sharing knowledge via software components:
models on reference evapotranspiration. European Journal of Agronomy ,Vol. 24, 2:186-192

Donatelli, M., L. Carlini, G. Bellocchi, M. Colauzzi, 2005. CLIMA: a component based
weather generator. In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International
Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and
New Zealand, December 2005 ISBN: 0-9758400-2-9, p. 627-633

Martin P., R.H. Mohtar, P. Clouvel, E. Braudeau Modeling Soil-Water Dynamics for Diverse
Environmental Needs. iEMSs congress, Vermont, July 2006 (accepted)

Rizzoli A.E, M. Donatelli, I. Athanasiadis, F. Villa, R. Muetzelfeldt, D. Huber, 2005.
Semantic links in integrated modelling frameworks. In Zerger, A. and Argent, R.M. (eds)
MODSIM 2005 International Congress on Modelling and Simulation. Modelling and
Simulation Society of Australia and New Zealand, December 2005 ISBN: 0-9758400-2-9 p.
704-710

Villa, F., M. Donatelli, A. Rizzoli, P. Krause, S. Kralisch, F. K. van Evert Declarative
modelling for architecture independence and data/model integration: a case study iEMSs
congress, Vermont, July 2006 (accepted)

References cited in the text (references about models are included in the documentation of
each component, see appendix A)

Argent, R.M., 2004 An overview of model integration for environmental applications –
components, frameworks and semantics. Environmental Modelling and Software 19, 219-
234.

Argent, R.M. and A.E. Rizzoli, 2004 Development of multi-framework model components.
In: Pahl-Wostl C., Schmidt S., Rizzoli A.E., Jakeman A.J. (Eds.), Trans. of the 2nd biennial
meeting of the International Environmental Modelling and Software Society, Osnabrück,
Germany, vol. 1, p. 365-370.

Cheeseman, J., and J. Daniels, 2000. UML Components: A simple process for specifying
component based software. Component Based Series, Addison-Wesley, Harlow, UK.

Cwalina, K., and B. Abrams, 2006. Aggregate components. In Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries. Addison-
Wesley, Courier in Westford, Massachusetts, USA. 235-271.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 42 of 47

David, O., S.L. Markstrom, K.W. Rojas, L.R. Ahuja and W. Schneider, The object modelling
system. In: Ahuja L.R., Ma L., Howell T.A., (Eds.), Agricultural system models in field
research and technology transfer. Lewis Publishers, Boca Raton, FL, USA, p. 317-344, 2002.

Donatelli, M., J. Bolte, F. van Evert and W. Wang, 2003 Which software designs for
evolution. In: van Ittersum M.K., Donatelli M. (Eds.), Modelling cropping systems: science,
software and applications. European Journal of Agronomy 18, 193-195.

Donatelli, M., A. Omicini, G. Fila and C. Monti, 2004 Targeting reusability and
replaceability of simulation models for agricultural systems. In: Jacobsen S.E., Jensen C.R.,
Porter J.R. (Eds.), Proc. of the 8th European Society for Agronomy Congress, 11-15 July,
Copenhagen, Denmark, 237-238.

D’Souza, D. F., and A.C. Wills, 1999. Objects, components, and Frameworks- The Catalysis
approach. Addison-Wesley, Reading, Massachusetts, USA.

Duffy, J. 2006 Dynamic Programming. In Professional .NET Framework 2.0. Wiley,
Indianapolis, Indiana, USA, 495-532.

Dupraz, C., G. Vincent, I. Lecomte, F. Bussière, H. Sinoquet, 2004
http://www.montpellier.inra.fr/safe/english/results/annual_report_2/WP4-Deliverable4.1.doc
[verified on July 2006]

Erisman, S. 2005. Fast Dynamic Property/Field Accessors.
http://www.codeproject.com/csharp/DynamicCodeVsReflection.asp [verified July 2006]

Gamma, E., R. Helm, R. Johnson, J. Vlissides. 1994. Design Patterns: elements of reusable
object-oriented software. Addison-Wesley, Boston, Massachusetts, USA

MA.Golding, T. 2005 .NET 2.0 Generics. Wiley, Indianapolis, Indiana, USA

Hillyer, C., J. Bolte, F. van Evert, and A. Lamaker, 2003 The ModCom modular simulation
system. European Journal of Agronomy, 18, 333-343.

Jones et al., 2001.

Leffelaar, P.A., H. Meinke, P. Smith, and D. Wallach, 2003. When is a model adequate? In:
van Ittersum M.K., Donatelli M. (Eds.), Modelling cropping systems: science, software and
applications. European Journal of Agronomy 18, 189-191.

Löwy, J., 2003. Programming .NET components. O’Reilly & Associates, Sebastopol, CA.

Mesketer, S.J., 2004. Design patterns in C#. Addison-Wesley, Boston, MT, USA.

Muetzelfeldt, R., Massheder, J., 2003. The Simile visual modelling environment. European
Journal of Agronomy, 18, 345-358.

Pobar, J. 2005. Reflection: Dodge Common Performance Pitfalls to Craft Speedy
Applications. http://msdn.microsoft.com/msdnmag/issues/05/07/reflection [verified on July
2006]

Richter, J. 2006. CLR via C#. Microsoft Press, Redmond, Wshington, USA

Rizzoli, A.E., M. Donatelli, R. Muetzelfeldt, T. Otjens, M.G.E. Svennson, F. van Evert, F.
Villa, and J. Bolte, 2004. SEAMFRAME, a proposal for an integrated modelling framework
for agricultural systems. In: Jacobsen S.E., Jensen, C.R., Porter, J.R. (Eds.), Proc. of the 8th
European Society for Agronomy Congress, 11-15 July, Copenhagen, Denmark, 331-332.

Szypersky, C., D. Gruntz and S. Murer, 2002 Component software - beyond object-oriented
programming. 2nd Ed. Addison-Wesley, London, United Kingdom, 2002.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 43 of 47

Glossary

Attribute A feature within a class that describes a range of values that
instances of the class may hold.

Class A description of a set of objects that share the same attributes,
operations, methods, relationships, and semantics.

Client-server architecture In a client-server architecture there is an application (client)
which uses a component (server). Client/Server is a scalable
architecture, whereby each computer or process is either a client
or a server. Although developed as a network application
architecture, it is also very effective for component based
systems running on local machines.

Component A (software) component is a discrete, binary (executable or
library - no source code) unit of software. A component is a unit
of composition with contractually specified interfaces and
explicit context dependencies only. A software component can
be deployed independently and is subject by composition by
third parties. A component may implement one or more models.

Design pattern A coding solution to implement a given functionality in the code.

Data-type Set of variables grouped to represent a domain (e.g. “soil water”)
or for a specific use (e.g. parameters to implement the impact on
the system of an agro-management action)

Interface An interface is a class without implementation. It is thus a
specification of behaviour that implementers agree to meet. It is
a contract. By implementing an interface, classes are guaranteed
to support a required behaviour, which allows the system to treat
non-related elements in the same way.

Model Conceptualization of a process. This is one possible definition of
“model”, which is relevant for the work of developing
components for biophysical simulation.

Reflection Capability in C# (and other languages such as Java) to discover
at run time in one assembly (DLL) types (classes), methods,
properties, enumerators, allowing also to access their values.

Regression testing It is any type of software testing which seeks to uncover
regression bugs. Regression bugs occur whenever software
functionality that previously worked as desired stops working or
no longer works in the same way that was previously planned.
Typically regression bugs occur as an unintended consequence
of program changes.

Repository A repository is a place (or discrete software unit) where data
(models) is stored and maintained

Strategy Different algorithms which are alternative options to do the same
thing can be called strategies. “Strategy” refers to the
implementation of an algorithm as a discrete unit of source code

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 44 of 47

(a class), implementing a specific interface in order to be used
via the relevant design pattern.

Unit of composition A unit of source code, namely a class, that can be used to
develop composite strategies, that is model classes which require
other model classes (of the same component) to produce their
output(s). A strategy is a unit of composition.

Unit of interchangeability The model component DLL which can be replaced by a different
one (either a newer version or a new one) if it respects the
contract in the interfaces DLL

Unit of reusability The couple of DLLs interfaces and models.

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 45 of 47

Appendix A - Documentation of components

The documentation of models is quite comprehensive. Models are described in the help files
which are used to document each of the components; the list below shows the correspondence
between components and relevant files. Such files are attached to this report as PDF files, and
are also available as compiled HTML-style help files in the components installation
installation. The list of downloadable components includes utility components.

• AgroManagement CRAAgroManagement.pdf

• AgrochemicalsFate UNICATTAgrochemicalsFate.pdf

• Soil RunOff and Erosion UNIMISoilErosionRunoff.pdf

• Soil Water UNIMISoilWater.pdf

• Weather

o Air temperature CRAclimaAirT.pdf

o Evapotranspiration CRAclimaET.pdf

o Rainfall CRA.climaRain.pdf

o Solar Radiation CRAclimaGsrad.pdf

o Wind CRAclimaWind.pdf

o ClimReader CRAclimaClimaReader.pdf

• Crops WURPPSCrop.pdf (limited to models implemented)

• Preconditions CRAcorePreconditions.pdf

SEAMLESS
No. 010036
Deliverable number: D3.2.18
28 June 2007

 Page 47 of 47

Appendix B – Component availability

Component Owner Download page

SolarRadiation CRA-ISCI http://www.sipeaa.it/ASP/ASP2/GSRad.asp

Rainfall CRA-ISCI http://www.sipeaa.it/ASP/ASP2/Rain.asp

Air temperature CRA-ISCI http://www.sipeaa.it/ASP/ASP2/AirT.asp

Wind CRA-ISCI http://www.sipeaa.it/ASP/ASP2/Wind.asp

Evapotranspiration CRA-ISCI http://www.sipeaa.it/ASP/ASP2/ET.asp

ClimReader CRA-ISCI http://www.sipeaa.it/ASP/ASP2/ClimReader.asp

AgroManagement CRA-ISCI http://www.sipeaa.it/ASP/ASP2/AgroManagement.asp

SOILWater UNIMI http://www.sipeaa.it/ASP/ASP2/SoilWater.asp

SOILErosionRunoff UNIMI http://www.sipeaa.it/ASP/ASP2/SoilErosion.asp

AgrochemicalsFate UNICATT http://www.sipeaa.it/ASP/ASP2/Pesticides.asp

Preconditions CRA-ISCI http://www.sipeaa.it/ASP/ASP2/Preconditions.asp

