
 
 

 

 
Abstract—Feedback controllers for non-linear systems are 

often based on a linearized dynamic model. Such a linearized 
model may be temporarily uncontrollable and/or 
unreconstructable. This paper introduces the so-called 
differential Kalman decomposition of time-varying linear 
systems. It is based on differential controllability and 
differential reconstructability in conjunction with a linear 
time-varying continuous-time system description that allows 
the system structure and dimensions to change at certain time-
instants. We show how these together enable the detection of 
what will be called temporal system structure. This structure 
among other things reveals the temporal loss of controllability 
and/or reconstructability. Moreover this paper shows how 
time-varying state-dimensions enable a satisfactory realization 
theory for time-varying linear systems and how our Kalman 
decomposition is linked to the conventional ones. 

 

I. INTRODUCTION 

general approach to control non-linear systems is to 
compute an optimal control and state trajectory off-

line using a non-linear systems model. To accommodate for 
disturbances the linearised dynamic model about these 
trajectories is used to design e.g. a linear quadratic 
perturbation feedback controller that operates on-line [1]. 
This approach depends critically on the controllability and 
reconstructability of the linearised dynamic model that is 
generally time-varying. If the systems model or the optimal 
control is not sufficiently smooth, e.g. if the control is bang-
bang, partly singular or digital, the time-varying linearised 
dynamic model may be temporarily uncontrollable and/or 
unreconstructable [2]. This implies that over the associated 
time-intervals the feedback controller is partly ineffective 
and the system may become unstable. Therefore the 
detection of temporal uncontrollability and 
unreconstructability is highly important to control 
engineers. 

Most of linear systems theory and control system design 
is concerned only with the properties controllability, 
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reachability, reconstructability and observability. These 
properties can be detected from Kalman decompositions of 
the linear system. As demonstrated in this paper these 
decompositions do not detect the temporal loss of such 
properties that is associated with temporal changes in the 
system structure. In this paper continuous-time systems with 
variable structure and dimensions are introduced along with 
the so-called differential Kalman decomposition. Together 
these enable the detection of what is called temporal system 
structure. Among other things this structure reveals 
immediately the temporal loss of familiar system properties. 

II.  ILLUSTRATIVE EXAMPLE 

Example 1 

Consider the following time-varying linear system, 
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If time in (1) would be restricted to ( )0.25,0.5  the 

system would be unreachable as well as uncontrollable. 
Similarly if time in (1) would be restricted to ( )0.5,0.75 the 
system would be unobservable and unreconstructable. If 
according to (1) [ ]0,1t ∈  then we might call the system 
temporarily uncontrollable/unreachable over ( )0.25,0.5  
because the second state variable is not influenced by the 
input. Similarly we might call the system temporarily 
unreconstructable/unobservable over ( )0.5,0.75  because 
the second state variable does not influence the output. 
Since moreover the second state variable is unstable it 
cannot be stabilized by a controller over these time 
intervals. If we apply a similarity transformation at every 
time [ ]0,1t ∈  to the system description (1)-(2) then the 
facts stated above are unchanged but no longer obvious 
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from the system description. In this paper we will 
demonstrate that these facts will not become obvious either 
after application of any of the four conventional Kalman 
decompositions [3]. However they do become obvious 
after application of our differential Kalman decomposition 
that retrieves a system description similar to (1)-(2). 

III.  CONTINUOUS-TIME SYSTEMS WITH VARIABLE 

STRUCTURE AND DIMENSIONS 

Quoting Kalman from [4]: “The only possibility of 
getting a reasonably well-rounded realization theory is to 
generalize the notion of a dynamical system in such a way 
that the dimension of the state-space is allowed to vary with 
time”. Remarkably, except for [5], continuous-time systems 
with variable dimensions seem to have been ignored. A 
reason for this might be that a general description of time-
varying dimensions and system structure requires the 
following system description that is uncommon, 
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In equation (3) x  denotes the state, u  the input that is 

assumed to be bounded and y  the output. Over every 

separate open interval ( )1,i it t +  equation (3) equals a 

conventional linear system description since ( )A t , ( )B t  and 

( )C t  have constant dimensions. Moreover the 

controllability and reconstructability matrices are assumed 
to have a constant rank. As we shall see later in this paper 
this implies that the structure of the system is constant. 
Changes of the system structure and dimensions may only 
occur at the time instants , 1,2,.., 1it i N= − .  At these time 

instants the additional system matrices , 1,2,.., 1iA i N= −  

describe the state transitions from it
−  to it

+  where the 

superscripts ,− +  denote respectively the right and left time 

limit.  In equation (3) ( )0x t+  should be identified as the 

initial state. Similarly ( )Nx t−  should be identified as the 

terminal state. According to [6] we may call the system (3) 
a piecewise constant rank system (PCR system). The class 
of piecewise constant rank systems is very broad and 
contains among others piecewise time-invariant and 
piecewise analytic systems [6]. A PCR system differs from 
the switched linear systems in [7], [8] because the time-
instants it , 1,2,.., 1i N= −  are a-priori fixed and the linear 

system over each time-interval ( )1,i it t +  is time-varying. The 

time domain of a PCR system is denoted by T given by, 
 

 ( )1T , , 0,1,.., 1i it t i N+= = −∪  (4) 
 

Three types of PCR systems will be considered with 
different time domains. We consider PCR systems with 

0t = −∞ , Nt = +∞ , with 0 0t = , Nt = +∞  and with, 0 0t = , 

Nt < +∞ . These are denoted by -+, 0+ and 0N PCR systems 

respectively. In all the definitions in this paper concerning -
+, 0+ and 0N PCR systems time should always be 
considered restricted to the associated time domain of the 
PCR system.  

In practice we often start from a continuous-time system 
description with constant dimensions defined over [ ]0, Nt t  

such as example 1. Example 1 is almost everywhere 
equivalent to (3) if we select 0 0t = , 1 0.25t = , 2 0.5t = , 

3 0.75t = , 4 1Nt t= = , 1 2 3A A A I= = = , where I  denotes the 

identity matrix. In general we should select it , 

1,2,.., 1i N= −  as the times where the system description 

changes from one constant rank system to another and 

iA I= , 1,2,.., 1i N= − . To do this we need to be able to 

detect these changes.  

Let ( )1,j js t t +∈ , ( )1,k kt t t +∈ , t s> , 0 j k N≤ ≤ ≤ . Then the 

state transition matrix ( ),t sΦ of a PCR system satisfies, 
 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
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2 1 1 1

, , , ,
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, , ... , , ,
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+ −
+ + +

+ − + −
+ + + +

′Φ = Φ =

′ ′Φ = Φ Φ = +

′ ′ ′Φ = Φ Φ Φ

> +

 (5) 

 
In equation (5) the state transition matrices ′Φ  on the 

right are conventional state transition matrices for 
continuous-time linear systems with constant dimensions. 
The Kalman decomposition computes and uses similarity 
transformations to decompose the system at any time. For a 
PCR system these are described by, 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
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1
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×
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−
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′ = +
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( ) ( )1 , 1,2,.., 1.i i i iA T t AT t i N+ − −′ = = −  
 

In equation (6) the prime denotes quantities associated 
with the system obtained after the similarity transformation 

( )T t , ( )1,i it t t +∈ , 0,1,.., 1i N= − . 
 

Definition 1 

Two PCR systems are called equivalent if one system can 
be obtained from the other through a similarity 
transformation ( )T t , Tt ∈ . Over each interval ( )1,i it t + , 

0,1,.., 1i N= − , ( )T t  may be non-smooth at a finite number 

of isolated times. Every time non-smoothness occurs the 
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interval ( )1,i it t +  is split up  
 

Definition 2 

The input-output map 
0 0 0, , ,:

N N Nt t t t t tG U Y֏  of a PCR 

system maps any input sequence ( ){ }
0 , 0,

Nt t NU u t t t t= < <  to 

the associated output sequence ( ){ }
0 , 0,

Nt t NY y t t t t= < <  as 

determined by equation (3) and in addition the initial state 

( )0x t +  if the system is of the type 0+ or 0N. Two PCR 

systems are called input-output equivalent if they have 
identical input-output maps almost everywhere on ( )0, Nt t . 
 

Definition 3 

A PCR system with dimensions ( )n t  is called minimal if 

no PCR system with dimensions ( )n t′  has the same input-

output map almost everywhere on ( )0, Nt t  and the property 

that ( ) ( )n t n t′ ≤  almost everywhere on ( )0, Nt t  and 

( ) ( )n t n t′ <  over some open interval inside ( )0, Nt t . If a PCR 

system is minimal it is called a minimal realization of its 
associated input-output map and of any other PCR system 
with the same input-output map almost everywhere on 
( )0, Nt t . 
 

Definition 4 

A PCR system is called reachable at time t  if there 
exists an s t<  such that any state ( )x s  can be transferred to 

any state ( )x t  through an appropriate choice of the input 

,s tU . A PCR system is called differentially reachable (d-

reachable) at time t  if s  can be selected arbitrarily close 
to t . A PCR system (3) is called controllable from time s  
if there exists a t s>  such that any state ( )x s  can be 

transferred to any state ( )x t  through an appropriate choice 

of the input. A PCR system (3) is called differentially 
controllable (d-controllable) from time s  if t  can be 
selected arbitrarily close to s . 
 

Definition 5 

A PCR system (3) is called observable at time s  if there 
exists a t s>  such that the state ( )x s  can be determined 

from the output ,s tY . A PCR system is called d-observable 

at time s  if t  can be selected arbitrarily close to s . A PCR 
system is called reconstructable from time t  if there exists 
an s t<  such that ( )x s  can be determined from the output 

,s tY . A PCR system is called d-reconstructable from time t  

if s  can be selected arbitrarily close to t . 
 

Definition 6 

The reachability/controllability grammian ,s tW , t s> , of 

the PCR system is given by, 
 
 ( ) ( ) ( ) ( ),

, , , , T, ,s t T T
s t s t

dW
A t W W A t B t B t t s t s

dt
= + + ∈ >  (7) 

,, ,
, 1,2,.., 1, T, , 0.

i i

T
i i i s ss t s t

W AW A i N s s t W+ −
−= = − ∈ < =  (8) 

 
The transition rule (8) of ,s tW  from it t −=  to it t+=  equals 

the discrete-time rule without an input. This follows from 
the last line of equation (3). The observability/ 
reconstructability grammian ,s tM , t s> , of the PCR system 

is given by, 
 

,
, ,( ) ( ) ( ) ( ), , T, ,s t T T

s t s t

dM
A s M M A s C s C s t s t s

ds
− = + + ∈ >  (9) 

,, ,
, 1,2,.., 1, T, , 0.

i i

T
i i i t tt t t t

M A M A i N t t t M− +
+= = − ∈ > =  (10) 

Lemma 1 

For a PCR system and , T,s t t s∈ >  the following 

equivalence holds: any state ( )x s  can be transferred to any 

state ( )x t  through an appropriate choice of the input ,s tU  

⇔  , 0s tW > . For a PCR system and , T,s t t s∈ >  the 

following equivalence holds: the state ( )x s  can be 

recovered from the output ,s tY  ⇔  , 0s tM > . 
 

Proof 
For continuous-time linear systems with constant 

dimensions the above lemma is well known. The discrete 
time transition rules at the times it , 1,2,.., 1i N= − , do not 

change this because lemma 1 also holds in discrete-time, 
even if the dimensions of the discrete-time system are 
variable [7] □  

 
According to definition 4 and lemma 1, , 0s tW >  implies 

that the system is reachable at time t  as well as controllable 
from time s . Therefore ,s tW  is called the 

reachability/controllability grammian in definition 6 and 
dually ,s tM is called the observability/reconstructability 

grammian. 
 

Lemma 2 

Over each time-interval ( )1,i it t + , 0,1,.., 1i N= − , a PCR 

system is either d-reachable from/d-controllable at any time 
( )1,i it t t +∈  or at no time ( )1,i it t t +∈ . A dual result applies to 

d-observability/d-reconstructability.  
 

Proof 
Over each time-interval ( )1,i it t + , 0,1,.., 1i N= − , the 

situation is comparable to the one for conventional constant 
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rank systems. Then the result follows from [6] □  
 

IV.  THE DIFFERENTIAL KALMAN DECOMPOSITION 

Kalman decomposition are introduced and applied in this 
section to decompose PCR systems and detect global and 
local system structure. 

Given the modifications and definitions presented in the 
previous section, procedures to compute the Kalman 
decomposition now also apply to PCR systems. These 
procedures use two grammians as an input [10], [11]. Then 
from [3] observe that four different conventional  Kalman 
decompositions may be computed from either: 
 
 1) 

0 ,t tW , , Nt tM , 2) 
0 ,t tW , 

0 ,t tM , 3) , Nt tW , , Nt tM , 4) , Nt tW , 
0 ,t tM  

 
Procedure 1) decomposes the system at time Tt ∈  into 

states that are a) reachable at time t  and unobservable at 
time t  b) reachable at time t  and observable at time t  c) 
unreachable at time t  and unobservable at time t  d) 
unreachable at time t  and observable at time t . Procedure 
2) does the same as 1) with “observable at” replaced by 
“reconstructable from”. Procedure 3) does the same as 1) 
with “reachable at” replaced by “controllable from”. 
Procedure 4) does the same as 1) with “reachable at” 
replaced by “controllable from” and “observable at” by 
“reconstructable from”. In each case the system structure is 
of the following form, 
 

( ) ( ) ( ) ( ) ( ) ,
TT T T T

a b c dx t x t x t x t x t′ ′ ′ ′ ′ =    

( ) ( ) ( ) ( ), , , ,a b c dn n n n
a b c dx t R x t R x t R x t R′ ′ ′ ′∈ ∈ ∈ ∈

 

( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

0 0
,

0 0

0 0 0

aa ab ac ad

bb bd

cc cd

dd

A t A t A t A t

A t A t
A t

A t A t

A t

′ ′ ′ ′ 
 ′ ′ ′ =
 ′ ′
 ′    (11) 

( ) ( ) ( ) 0 0 ,
TT T

a bB t B t B t′ ′ ′ =     

( ) ( ) ( ) ( )10 0 , , ,

0,1,.., 1.

b d i iC t C t C t t t t

i N

+′ ′ ′= ∈  

= −
 

 

Theorem 1 

1) Using our definition of PCR systems (3) the system 
decompositions (11) may be interpreted as decompositions 
into four PCR sub-systems defined over T  having time-
varying dimensions in general. Over each time interval 
( )1,i it t + , 0,1,.., 1i N= − , the number of states in , an , bn , 

cn , dn  of the PCR system and sub-systems are constant. 

2) The input-output map of a PCR system is solemnly 
determined by PCR sub-system b) generated by Kalman 
decomposition 1). This sub-system is a minimal realization 

of the PCR system if ( )0 0x t+ = . If ( )0 0x t + ≠  the reachability 

grammian 
0 ,t t

W +  should be replaced by the so-called weak 

reachability grammian 
0 ,t t

W +′  that is also described by 

equations (7),  (8) except for the initial condition 

( ) ( )
0 0

0 0,

T

t t
W x t x t+ +

+ +′ = . 
 

Proof 
1) Conventional constant rank systems have constant 

dimensions, grammians with boundary conditions equal to 
zero and the property that the four Kalman decompositions 
produce sub-systems having equal and constant dimensions 
[6]. For PCR systems the boundary conditions of the 
grammians over each time interval ( )1,i it t + , 1,2,.., 2i N= − , 

are non-zero in general. They affect the dimensions of the 
sub-systems obtained from the four Kalman 
decompositions, which therefore can no longer be 
guaranteed equal. But they do not change the fact that these 
sub-systems have constant dimensions. 

2) This follows from definitions 2 and 3 and application 
of the results in [6] over each separate interval ( )1,i it t + , 

0,1,.., 1i N= − . For ( )0 0x t + ≠  the result follows from [12]□  
  

Now, to introduce the differential Kalman decomposition 
and its importance, reconsider example 1. Observe that, 
according to definitions 4 and 5, the system is reachable at 
any time t , controllable from any time t , observable at any 
time t  and reconstructable from any time t . After applying 
a similarity transformation therefore, the four Kalman 
decompositions will generally not reproduce the system 
structure of example 1 for ( )0.25,0.75t ∈ . The following 

lemma that follows immediately from definitions 4, 5 and 
lemma 2 applies to the time-intervals ( )0.25,0.5  and 

( )0.5,0.75  of example 1 respectively. 
 

Lemma 3 

A PCR system being d-unreachable over ( )1,i it t +  is 

equivalent with the PCR system being d-uncontrollable 
over ( )1,i it t +  for some 0 1i N≤ ≤ − . A dual result applies to 

d-unobservability and d-unreconstructability. 
 

So what has been termed temporal unreachability/ 
uncontrollability in section II is now formalized as being d-
uncontrollable/d-unreachable over ( )1,i it t +  for some 

0 1i N≤ ≤ − . A dual result applies with respect to d-
unobservability/d-unreconstructability. So now the question 
is: can we device a Kalman decomposition based on d-
reachability/d-controllability and d-observability/d-
reconstructability? This type of Kalman decomposition has 
actually already been presented in [6]. In this paper we call 
it the differential Kalman decomposition. In [6] this 
decomposition is defined only for conventional constant 
rank systems. According to lemma 2 these systems are 
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either d-controllable everywhere on their time domain or 
nowhere [6]. Therefore they cannot be temporarily 
uncontrollable/unreachable. This reveals that the 
description and detection of temporal uncontrollability 
requires PCR systems! 
 

Definition 7 

The d-reachability/d-controllability grammian tW  of a 

PCR system at every time Tt ∈  is given by, 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 1

0 1

, .. ,

, ,

0,1,.., 1,

T
t j j j j

i i i

W C t C t C t P t P t P t

P t B t P t A t P t P t

i j
+

 = =  

= = − +
= −

ɺ  (12) 

 
with j  the smallest value for which ( )( )1jrank C t+ =  

( )( )jrank C t .Dually the d-observability/d-reconstructability 

grammian tM  of the PCR system at time t  is given by,  
 

( ) ( ) ( ) ( ) ( )0 1, ..
TT T T T

t k k k kM O t O t O S t S t S t = =   , 

( ) ( ) ( ) ( ) ( ) ( )0 1, i i iO t C t O t O t A t O t+= = + ɺ , (13) 

0,1,.., 1,i k= −  
 
with k  the smallest value such that ( )( )1krank O t+ =  

( )( )krank O t . 
   

Definition 8 

The differential Kalman decomposition at very time t  
uses as an input the d-reachability/d-controllability 
grammian tW  and the d-observability/d-reconstructability 

grammian tM  of the PCR system. 
 

Theorem 2 

1) The differential Kalman decomposition at every time 
Tt ∈  decomposes a PCR system according to (11) into 

states that are a) d-reachable/d-controllable and d- 
unobservable/d-unreconstructable at time t  b) d-reachable 
/d-controllable and d-observable/d-reconstructable at time 
t  c) d-unreachable/d-uncontrollable and d-unobservable/  
d-unreconstructable at time t  d) d-unreachable/d-
uncontroll. and d-observable/d-reconstructable at time t .  

2) Over each time interval ( )1,i it t + , 0,1,.., 1i N= − , the 

number of states an , bn , cn , dn  generated by the differential 

Kalman decomposition is constant. So a) b) c) and d) may 
be regarded as PCR sub-systems of the PCR system. Like 
the original PCR system they have constant dimensions 
over ( )1,i it t + , 0,1,.., 1i N= − . 
 

Proof 
Identical to the proof of lemma 2  □  

 

From theorem 2 the differential Kalman decomposition 
does reproduce the system structure of example 1 after a 
similarity transformation has been applied. So the 
differential Kalman decomposition is able to detect d- 
unreachability/d-uncontrollability over a time-interval as 
well as d-unobservability/d-unreconstructability. 
 

Theorem 3 

The d-reachability/d-controllability grammian tW  of a 

PCR system at every time ( )1,i it t t +∈  may be interchanged 

with the controllability/reachability grammian 
,it t

W +  with 

“initial condition” 
,

0
i it t

W + + =  or “terminal condition” 

1 1,
0

i it t
W − −

+ +
=  to obtain Kalman decompositions with identical 

dimensions an , bn , cn , dn . A dual result holds for the d-

observability/d-reconstructability grammian tM . 
 

Proof 
From the proof of lemma 2 conventional constant rank 

systems have the property that they are either d- 
reachable/d-controllable at any time or at no time [6]. But 
this implies that conventional constant rank systems are 
either “reachable at” as well as “controllable from” any 
time or no time. So for conventional constant rank systems 
interchanging the grammians does not affect the dimensions 

an , bn , cn , dn . Over each time-interval ( )1,i it t + , 

0,1,.., 1i N= − , a PCR system is comparable to a 

conventional constant rank system except for the possibly 
non-zero initial and terminal values of the grammians (see 
the proof of theorem 1). Therefore these initial and terminal 
values should be taken equal to zero □  

 

Corollary 1 

For a PCR system five different Kalman decompositions 
may be computed using the differential equations (7), (9). 
These five Kalman decompositions only differ with respect 
to their boundary conditions at it

+  and 1it
−
+ . The four 

conventional Kalman decompositions [3] have the 
following generally non-zero boundary conditions 
respectively 1) 

0,it t
W + + , 

1 ,i Nt t
M − −

+
2) 

0,it t
W + + , 

0,it t
M + + , 3) 

1 ,i Nt t
W − −

+
, 

1 ,i Nt t
M − −

+
, 4) 

1 ,i Nt t
W − −

+
, 

0,it t
M + + . These boundary conditions satisfy 

the transition rules (8), (10). They transfer global 
reachability, controllability, observability and 
reconstructability properties from one open time-interval 
( )1,i it t +  to the next. Over ( )1,i it t +  the dimensions 

an , bn , cn , dn  are constant but may be different for each of 

the four conventional Kalman decompositions.  
The differential Kalman computes local d-reachability/d-

controllability and d-observability/d-reconstructability 
properties. Knowing it , 1,2.., 1i N= − , it may be computed 

in the same manner from zero boundary conditions. Then 
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the four decompositions become effectively one since they 
do produce identical values an , bn , cn , dn  over every 

interval ( )1,i it t + , 0,1,.., 1i N= − .  

Suppose we start from a system description over [ ]0, Nt t  

such as example 1 not knowing it , 1,2,.., 1i N= −  while 

these are required to arrive at the PCR system description 
(3). Then the differential Kalman decomposition computed 
at every time ( )0, Nt t t∈  from the d-reachability/d-

controllability and d-observability/d-reconstructability 
grammians is the only Kalman decomposition capable of 
detecting it , 1,2,.., 1i N= −  as those isolated times where the 

structure changes, i.e. one or several of 
( )an t , ( )bn t , ( )cn t , ( )dn t . The grammians require the d-

controllability and d-reconstructability matrices ( )jC t , 

( )kO t  in equations (12), (13). They in turn require 

knowledge of a sufficient number of derivatives of ( )A t , 

( )B t  and ( )C t . Now it , 1,2,.., 1i N= − , are also precisely 

those isolated times where formally the differential Kalman 
decomposition does not exist because some of these 
derivatives do not exist.  

 

Example 2: Minimal realizations 

Consider example 1 converted to fit the PCR system 
description (3), i.e. with 1 0.25t = , 2 0.5t = , 3 0.75t = , 1A =  

2 3A A I= = . One easily sees and computes ( )
0 ,

2
t t

rank W + = , 

( ),
2

Nt t
rank M − = , ( )0,1t ∈ . Therefore the system is minimal 

despite the temporal uncontrollability / unreachability and 
unreconstructability/unobservability. The associated states 
may not be dropped because e.g. over ( )0.25,0.5  the second 

d-uncontrollable/d-unreachable state is non-zero in general 
because at 0.25t +=  it is non-zero in general. This 
information is transferred by 

0 ,0.25
W + +  that satisfies 

( )0 ,0.25
2rank W + + = .  

Consider example 1 but with the system descriptions on 
the intervals [ ]0,0.25 , ( ]0.25,0.5  swapped as well as those 

on the intervals ( ]0.5,0.75 , ( ]0.75,1 . One then easily 

computes ( )
0 ,

1
t t

rank W + = , ( )0,0.25t ∈ , ( )
0 ,

2
t t

rank W + = , 

( )0.25,1t ∈ , ( ),
2

Nt t
rank M − = , ( )0,0.75t ∈ , ( ),

1
Nt t

rank M − = , 

( )0.75,1t ∈  and the associated minimal realization, 
 

( ) 1, ( ) 1, ( ) 1, (0,0.25),A t B t C t t= = = ∈  

1 2 1 1
( ) , ( ) , ( ) , (0.25,0.5),

1 1 0 0

T

A t B t C t t
     

= = = ∈     
      

 

1 1 1 1
( ) , ( ) , ( ) , (0.5,0.75),

2 1 0 0

T

A t B t C t t
     

= = = ∈     
     

 

( ) 1, ( ) 1, ( ) 1, (0.75,1),A t B t C t t= = = ∈  

[ ] [ ]1 2 31 0 , , 1 0 .
T

A A I A= = =  (14) 
 

Note that the minimal realization (14) has time-varying 
state-dimensions since over ( )0,0.25  the second state is un-

reachable and over (0.75,1)the second state is unobservable.  

V. CONCLUSIONS 

The introduction of  PCR systems together with the 
differential Kalman decomposition enables the description 
and detection of  local, temporal system structure of time-
varying linear systems. This structure is associated with d-
reachability/d-controllability and d-observability/d-
reconstructability. It reveals the temporal loss of the 
associated global system properties reachability, 
controllability, observability and reconstructability. This is 
highly relevant to control engineers. Moreover this paper 
reveals that the differences between reachability versus 
controllability and observability versus reconstructability 
are entirely due to changes of the local system structure. 
Finally the time-varying PCR system dimensions enable the 
well rounded realization theory suggested by Kalman [4].  
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