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A Kalman decomposition to detect temporal
linear system stucture

L.G. Van Willigenburg, W.L. De Konirg

reachability, reconstructability and observabilitfhese
properties can be detected from Kalman decompasitid
the linear system. As demonstrated in this papeseth
decompositions do not detect thamporal loss of such
properties that is associated with temporal chamgeke
system structure. In this paper continuous-timéesys with
variable structure and dimensions are introducedgalvith

Abstract—Feedback controllers for non-linear systems are
often based on a linearized dynamic model. Such aéarized
model may be temporarily uncontrollable and/or
unreconstructable. This paper introduces the so-call
differential Kalman decomposition of time-varying linear
systems. It is based ondifferential controllability and
differential reconstructability in conjunction with a linear

time-varying continuous-time system description tha allows
the systemstructure and dimensions to change at certain time-
instants. We show how these together enable thietection of
what will be called temporal system structure. This structure

the so-called differential Kalman decompositiongé&ther
these enable the detection of what is called teadfsystem
structure. Among other things this structure
immediately the temporal loss of familiar systerogarties.

reveal

among other things reveals the temporal loss of ctollability
and/or reconstructability. Moreover this paper shows how
time-varying state-dimensions enable a satisfactorgealization
theory for time-varying linear systems and how ourKalman
decomposition is linked to the conventional ones.

Il. ILLUSTRATIVE EXAMPLE

Example 1

Consider the following time-varying linear system,
x(t) = A(t) x(t) +B(t)u(t)
y(t)=c(t)x(t). tofo.g

|I. INTRODUCTION

(1)

Ageneral approach to control non-linear systemois t
compute an optimal control and state trajectory off
line using a non-linear systems model. To accommeofibet
disturbances thdinearised dynamic model about these 1 7 1 35
trajectories is used to design e.g. a linear quedra A(t) :{ ]tD[0,0.ZE] At ){ } m( 0,25,0_]5
perturbation feedback controller that operatesima-[1]. 11 01
This approach depends critically on the controligband
reconstructability of the linearised dynamic motleht is
generallytime-varying. If the systems model or the optimal .
control is not sufficiently smooth, e.g. if the eamtisbang- B =[1 0 .Cct)=[1 dtO[0}
bang, partly singular or digital, the time-varying linearised . _ _
dynamic model may b&mporarily uncontrollable and/or If ime in (1) would be restricted t¢0.25,0.9 the
unreconstructable [2]. This implies that over tisecgiated SYSEM would be unreachable as well as unconttellab
time-intervals the feedback controller is parthefiective Similarly if ime in (1) would be restricted 9.5,0.7§ the
and the system may become unstable. Therefore tﬁ)éstem_ would be unobservable an_d unreconstructéible.
detection of  temporal uncontrollability ~ and accordmg to (1)t0[0,] then we might call the system
unreconstructability is highly important to controltémporarily uncontrollable/unreachable ovef0.25,0.9
engineers. because the second state variable is not influebgeatie
Most of linear systems theory and control systesigie Input. Similarly we might call the systertemporarily

is concerned only with the properties controllapli unreconstructable/unobservable ov§8.5,0.79 because
the second state variable does not influence thpubu

Since moreover the second state variable is umstibl
cannot be stabilized by a controller over theseetim
intervals. If we apply a similarity transformatiah every
time t0[0,] to the system description (1)-(2) then the
facts stated above are unchanged but no longenodvi

where

A(t):E ﬂ,tD(O.S,O.7$ AL FE ﬂ t0( 0.75]1(2)
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from the system description. In this paper we will Three types of PCR systems will be considered with
demonstrate that these facts will not become olsvigther  different time domains. We consider PCR systemd wit
after application of any of the four conventionadlitan  t,=-, t,=+c, With t;=0, t, =+ and with, t,=0
decompositions [3]. However they do become obvioust, <+ . These are denoted by -+, 0+ and ON PCR systems

after application of oudifferential Kalman decomposition respectively. In all the definitions in this pagencerning -
that retrieves a system description similar to(@))- +, 0+ and ON PCR systems time should always be
consideredrestricted to the associated time domain of the
PCR system.

In practice we often start from a continuous-tirgstam

Quoting Kalman from [4]: “The only possibility of description with constant dimensions defined o, ]
getting a reasonably well-rounded realization thesrto

generalize the notion of a dynamical system in suehay - -
uivalent to (3) if we select,=0, t,=0.25, t,=0.5,

that thedimension of the state-space is allowed to vary W|th 4 3) ' 2

time”. Remarkably, except for [5], continuous-tisystems & =075t =ty =1, A=A =A=1, where | denotes the

with variable dimensions seem to have been ignofed. identity matrix. In general we should select,

I1l.  CONTINUOUSTIME SYSTEMS WITH VARIABLE
STRUCTURE AND DIMENSIONS

such as example 1. Example 1 amost everywhere

reason for this might be that a general descriptibtime- j=1,2.N-1 as the times where the system description
varying dimensions and system structure requires thhanges from one constant rank system to another and
following system description that is uncommon, A=1,i=12.N-1 To do this we need to be able to

X(t) = A(t)x(t) + B(t)u(t), y(t)=C(t)x(t), detect these changes.

Xt ORY, ut)OR™, yt)OR' Let sO(t;.t;,,), tO(t.t.,), t>s, 0< j<k<N. Thenthe

to(t,t,,), i=01..N-1, ) state transition matrix @(t,s) of a PCR system satisfies,

X)) =Axt"), AOR™W" i=12N-1. :

()= AXE), A o(ts)=d'(t,s) k= j,

In equation (3)x denotes the statey the input that is qn(t,s)
assumed to be bounded and the output. Over every

separate open intervalt.t,,) equation (3) equals a

(e

I’ 1 +1 “1+1| ]+1' ’k: . 1
@

(66 A (8 ) A2 (t8)

d(t,s

. . .. . > |+
conventional linear system description sinag) , B(t) and k>j+1.

C(t) have constant dimensions. Moreover the In equation (5) the state transition matrices on the
controllability and reconstructability matrices aassumed right are conventional state transition matricesr fo
to have a constant rank. As we shall see latehigngaper continuous-time linear systems with constant dirmerss
this implies that the structure of the system imstant. The Kalman decomposition computes and wseBlarity
Changes of the system structure and dimensions may ontyansformations to decompose the system at any time. For a
occur at the time instants, i =1,2,..N— 1 At these time PCR system these are described by,

instants the additional system matricds i =1,2,..N-1 ( ) ( ) ( ) T(t)DR”x“ rank(T (t)) -n

describe the state transitions froth to t* where the A (1) =T (€) AT @) +T (1) T (1)
superscripts-,+ denote respectively the right and left time ’
B'(t) =T (t)B(t). C'(t) =C(t)T™(1), tO(t .t.)

=T(t)AT*(t7),i=12,.N- 1.
initial state. Similarly x(t;) should be identified as the A=T(E)AT (),

terminal state. According to [6] we may call the system (3) In equation (6) the prime denotes quantities assedi
a piecewise constant rank system (PCR system). The class With the system obtainedfter the similarity transformation
of piecewise constant rank systems is very broad a(t), tO(t.t,),i=01.N-1

contains among others piecewise time-invariant and

piecewise analytic systems [6]. A PCR system diffieom Definition 1

the switched linear systems in [7], [8] because tiimee-

instantst,, i=1,2,.N-1 area-priori fixed and the linear

system over each time-intervg.t,,) is time-varying. The

(6)

limit. In equation (3)x(t;) should be identified as the

Two PCR systems are callequivalent if one system can
be obtained from the other through a similarity

transformation T(t), tOT. Over each interval(t.t,,),
time domain of a PCR system is denotedThgiven by, i=01,..N-1, T(t) may be non-smooth at a finite number

T=U(t.t.,),i=01.N-1 (4)  of isolated times. Every time non-smoothness octhbes
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interval (t,,t.,,) is split up Definition 6

Thereachability/controllability grammian W, , t>s, of

the PCR system is given by,
~Y,, Of a PCR d

Definition 2

The input-output map G , :U . W
: == AW, W, AT (1) +B(1)BT (1), t,s0T,t>s,  (7)
system maps any input sequerigg, ={u(t).t,<t<t,} to dt T

— T & — - —
W, =AW AT, i=12, N-1s0 Ts<t” W, = 0(8)

the associated output sequenwe, ={y(t)t, <t<t,} as
determined by equation (3) and in addition theidhistate

( The transition rule (8) ofV,, from t=t~ to t=t" equals
X(ty

) if the system is of the type O+ or ON. Two PCFihe discrete-time rule without an input. This fel® from
systems are callednput-output equivalent if they have the last line of equation (3). Theobservability/
identical input-output maps almost everywhere(gn, ) . reconstructability grammian M., , t>s, of the PCR system

is given by,

dm,,
A PCR system with dimensions(t) is calledminimal if g

no PCR system with dimension#(t) has the same input- M = AM. A, i1=12, . N-10 Tt>t" M, = 0(10)
output map almost everywhere ¢n,t,) and the property

Definition 3

= AT ()M, +M_ A(s) +CT()C(s),t,s0T,t>s, (9)

Lemma 1
that n'(t)<n(t) almost everywhere on(t,t,) and _
For a PCR system andtOT,t>s the following

n'(t)<n(t) over some open interval insidg.t, ). If a PCR _
(t) <n(t) P da.t) equivalence holds: any staigs) can be transferred to any

system is minimal it is called minimal realization of its
associated input-output map and of any other PGReBy
with the same input-output map almost everywhere or- W, >0. For a PCR system andtOT,t>s the

state x(t) through an appropriate choice of the infiif,

(tort) following equivalence holds: the state(s) can be

o recovered from the outpot, - M, >0.
Definition 4 '

Proof
For continuous-time linear systems with constant

: . _ dimensions the above lemma is well known. The discr
any statex(t) through an appropriate choice of the inputime transition rules at the times, i =1,2,..N - 1, do not

U,,. A PCR system is calledifferentially reachable (d- change this because lemma 1 also holds in distine¢e-

reachable) at time t if s can be selected arbitrarily close®ven if the dimensions of the discrete-time syswre
to t. A PCR system (3) is callembntrollable fromtime s Variable [7] =
if there exists at>s such that any state(s) can be

A PCR system is calledeachable at time t if there
exists ans<t such that any state(s) can be transferred to

) i According to definition 4 and lemma Y, >0 implies
transferred to any state(t) through an appropriate choice ’

of the input. A PCR system (3) is callafifferentially
controllable (d-controllable) from time s if t can be
selected arbitrarily close ts.

that the system is reachable at timas well as controllable
from time s. Therefore W, is called the

reachability/controllability grammian in definitio® and
dually M, is called the observability/reconstructability

Definition 5 grammian.

A PCR system (3) is callembservable at time s if there

. . Lemma 2
exists at>s such that the state(s) can be determined

Over each time-interva(t,t.,), i=0,1..N-1, a PCR

from the outputY,, . A PCR system is called-observable o b .
' system is either d-reachable from/d-controllablargttime

attime s if t can be selected arbitrarily close4o0 A PCR . .
S y to(t,t,,) or atno time tO(t,t,,) . A dual result applies to

system is calledeconstructable from time t if there exists
an s<t such thatx(s) can be determined from the outputd-

Y,.- A PCR system is calledtreconstructable fromtime t Proof
Over each time-interval(t,t,,), i=01..N-1 the

(R

observability/d-reconstructability.

if s can be selected arbitrarily closetto
situation is comparable to the one for conventiaeaistant
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rank systems. Then the result follows from [6] o grammianW, —should be replaced by the so-callwebk
reachability grammianvvl"m that is also described by

IV. THE DIFFERENTIALKALMAN DECOMPOSITION equations (7), (8) except for the initial conditio

" + +\T
Kalman decomposition are introduced and appliethi;y ~ W; ; = X(to)x(to) .
section to decompose PCR systems and degtebal and

local system structure. Proof .
Given the modifications and definitions presentedhie 1) Conventional constant rank systems have constant

previous section, procedures to compute the Kalm&imensions, grammians with boundary conditions btua
decomposition now also apply to PCR systems. The§&™ and the property tha_t the four Kalman decompos
procedures use two grammians as an input [10], [T12n produce sub-systems having equal and constgnt dioren
from [3] observe thatour different conventional Kalman [6]. qu PCR systems. th? boundary gond|t|ons of the
decompositions may be computed from either: grammians over each time interv@alt.,), i=12,.N - 2,

are non-zero in general. They affect the dimensafnthe
't sub-systems obtained from the four Kalman

Procedure 1) decomposes the system at time into decompositions, which therefore can no longer be
states that are a) reachable at timand unobservable at 9uaranteed equal. But they dot change the fact that these

time t b) reachable at time and observable at time ¢) ~SuUP-systems have constant dimensions. )
unreachable at time and unobservable at time d) 2) This follows from definitions 2 and 3 and apption
unreachable at time and observable at time. Procedure of the results in [6] over each separate interfiat,.,),
2) does the same as 1) with “observable at” repldme i=0,1,..N-1 For x(tg);to the result follows from [12}

“reconstructable from”. Procedure 3) does the sasd) _ . . o
with “reachable at’ replaced by “controllable from” Now, to introduce the differential Kalman decompiosi

Procedure 4) does the same as 1) with “reachable &nd its importance, reconsider example 1. Obsenag t
replaced by “controllable from” and “observable dty according to definitions 4 and 5, the system ishehle at
“reconstructable from”. In each case the systemctire is any time t, controllable fromany time t , observable aany

1) VVI MI,IN ’ 2) Vvto,t ' Mtc,,t’ 3) VVI MmN ’ 4) Vvt.tN » M

0.t ? Ay ?

of the following form, time t and reconstructable froemy time t . After applying
a similarity transformation therefore, the four ain
1 1T 1T 1T 1T T . .
X (t) =[x () t) x'(t) 1], decompositions will generallyot reproduce the system
X () OR™, () ORY, X () ORY, X, (1) DR, structure of example 1 fot((0.25,0.7§. The following
. , ) . lemma that follows immediately from definitions %,and
Aa(t) Au(t) Ac(t) As(t) lemma 2 applies to the time-intervalf0.25,0.5 and
A(t)= 0 Ault) ,O Ajd (t) , (0.5,0.79 of example 1 respectively.
0 0 A(t) At
0 0 0 A (t) (11) Lemma 3
r T T T . .
B('E)=[Ba (t) B'(t) O 0] ; A PCR system being d-unreachable owgrt.,) is
c'(t)=[0 Cl;(t) 0 C, (t)],tD(ti :tm), equivalent with the PCR system being d-uncontrollable
201 N-1 over (t,t,,) for some0<i<N-1. A dual result applies to
o d-unobservability and d-unreconstructability.
Theorem 1 So what has been termetbmporal unreachability/

1) Using our definition of PCR systems (3) the egst uncontrollability in section Il is now formalized #eing d-
decompositions (11) may be interpreted as decoripasi Uncontrollable/d-unreachable over(t.t,,) for some
into four PCR sub-systems defined overT having time- 0<i<N-1. A dual result applies with respect to d-
varying dimensions in general. Over each time V@er unobservability/d-unreconstructability. So now theestion
(t.t.), i=0,1,.N-1, the number of states,, n,, n,, is: can we device a Kalman decomposition based -on d
n,,n, of the PCR system and sub-systems are constant. réachability/d-controllability ~ and  d-observabilidy/

2) The input-output map of a PCR system is solemnh constructability? This type of K_alman decpmpouthas
determined by PCR sub-system b) generated by Kalm ﬁtually glready been presented in [6.]2 In thisepape C".:‘"
decomposition 1). This sub-system isiaimal realization It the differential Kalman decomposition. In [6] this

e . .. decomposition is defined only for conventional dans
of the PCR system 'k(tO)_o' I X(tO)io the reachability rank systems. According to lemma 2 these systeras ar
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either d-controllablesverywhere on their time domain or

nowhere [6].
uncontrollable/unreachable.

Therefore theycannot be temporarily
This reveals that

description and detection of temporal uncontroligbi

requires PCR systems!

Definition 7

The d-reachability/d-controllability grammian W, of a
PCR system at every time&lT is given by,
W =C;()C (1).c; (1) =[R(t) R() - R(Y)].
R (1) =B(t).R..(t) ==A(t) R (1) + R (1), (12)

i=0,1,..j- 1,

with j the smallest value for whichank(C,,,(t))=
rank(C; (t)) .Dually the d-observability/d-reconstructability
grammian M, of the PCR system at tinteis given by,

M, =0l ()0, (t), 0, =[S (1) ST () . (],
0,(t)=C(t).0.(t) =0 () A1) +O. 1),

i=0,1,.k-1,

(13)

with k the smallest value such thatnk(Q,,(t))=
rank (O, (t)).

Definition 8

The differential Kalman decomposition at very time
uses as an input thed-reachability/d-controllability
grammian W, and thed-observability/d-reconstructability

grammian M, of the PCR system.

Theorem 2

TuC14.3

From theorem 2 the differential Kalman decompositio
does reproduce the system structure of example 1 after

theimilarity transformation has been applied. So the

differential Kalman decompositioms able to detect d-
unreachability/d-uncontrollability over a time-intal as
well as d-unobservability/d-unreconstructability.

Theorem 3

The d-reachability/d-controllability grammia; of a
PCR system at every timeJ(t,t,,) may beinterchanged
with the controllability/reachability grammiaN\lﬁvt with
“initial  condition” W. . =0 or ‘“terminal condition”
W_ . =0to obtain Kalman decompositions with identical

ot
dimensionsn,,n,,n.,n,. A dual result holds for the d-
observability/d-reconstructability grammiamn, .

Proof

From the proof of lemma 2 conventional constankran
systems have the property that they are either d-
reachable/d-controllable any time or atno time [6]. But
this implies that conventional constant rank systeame
either “reachable at” as well as “controllable ffomny
time orno time. So for conventional constant rank systems
interchanging the grammians does not affect thesdgions
n.n,n.,n,. Over each time-interval (t.t,,),
i=0,1,..N-1, a PCR system is comparable to a
conventional constant rank system except for thesipty
non-zero initial and terminal values of the grammsigsee
the proof of theorem 1). Therefore these initial s&rminal
values should be taken equal to zero o

Corollary 1

For a PCR systerfive different Kalman decompositions
may be computed using the differential equations (@).

1) The differential Kalman decomposition at everget  These five Kalman decompositioosly differ with respect
tOT decomposes a PCR system according to (11) inf§ their boundary conditions at t* and t;,. The four

states that are a) d-reachable/d-controllable and Eionventional
unobservable/d-unreconstructable at timéy) d-reachable following generally non-zero
/d-controllable and d-observable/d-reconstructadildime

t ¢) d-unreachable/d-uncontrollable and d-unobséeyab
d-unreachable/d- Me.

d-unreconstructable at timet d)
uncontroll. and d-observable/d-reconstructabléa t .

2) Over each time interva(t.t,,), i=01..N-1, the
number of states.,n ,n.,n, generated by the differential
Kalman decomposition is constant. So a) b) c) anchaly

Kalman decompositions
boundary

respectively )W, ., M_ _2) W, ., M.,

[3] have the
conditions
3) W

taty !

,4) W oo My These boundary conditions satisfy

the transition rules (8), (10). They transfeyiobal
reachability, controllability, observability and
reconstructability properties from one open timeiival
(t.t,,) to the next. Over (t.,t,) the dimensions

be regarded as PC&b-systems of the PCR system. Like ™. n.,N, are constant but may tifferent for each of
the original PCR system they have constant dimessiothe four conventional Kalman decompositions.

over (t,t,,), i=0,1,..N-1

Proof
Identical to the proof of lemma 2 o

The differential Kalman computekocal d-reachability/d-
controllability and  d-observability/d-reconstruciléip
properties.Knowing t,, i =1,2..N -1, it may be computed

in the same manner fromero boundary conditions. Then
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the four decompositions become effectively oneesithey
do produce identical valuesn,,n,,n ,n, over every

interval (t,t,,), i=0,1,.N- 1
Suppose we start from a system description duet, |
such as example hot knowing t, i=1,2,.N-1 while

TuC14.3

At—llBt—lCt—thD05075
()_|:2 1i|1 ()_|:0i|1 ()_|:0i| ’ ( Iy M )a
At)=1,B(t)=1C¢)=1t0 (0.75,1),

A=[1 o . A=1,A=[1 (. (14)

these areaequired to arrive at the PCR system description Note that the minimal realization (14) htse-varying
(3). Then thedifferential Kalman decomposition computed state-dimensions since over(0,0.25 the second state is un-

at every time tO(t,t,)

controllability and  d-observability/d-reconstruciéip

grammians is thenly Kalman decomposition capable of
detecting t;, i =1,2,..N - 1as those isolated times where theé The introduction of

structure  changes, i.e. several
n(£) vy (1) e (£) g (1) -

controllability and d-reconstructability matrices, (t),

one or

O,(t) in equations (12), (13). They in turn require,

knowledge of a sufficient number of derivatives Aft) ,

B(t) and C(t). Now t,, i=1,2,.N- 1, are also precisely

those isolated times where formally the differdritialman

from the d-reachability/d- reachable and ovep.75,1)the second state is unobservable.

V. CONCLUSIONS
PCR systems together with the

ofdifferential Kalman decomposition enables thescription
The grammians require the d-anddetection of local, temporal system structure of time-
varying linear systems. This structure is associated ddth

reachability/d-controllability and d-observability/
reconstructability. It reveals théemporal loss of the
associated global system properties reachability,
controllability, observability and reconstructatyili This is
highly relevant to control engineers. Moreover thaper

reveals that the differences between reachabildysus

decomposition does not exist because some of theéc?ntrollability and observability versus reconstalmlity

derivatives do not exist.

Example 2: Minimal realizations

are entirely due tehanges of the local system structure.
Finally the time-varying PCR system dimensions énétie

well rounded realization theory suggested by Kalfddn

Consider example 1 converted to fit the PCR system

description (3), i.e. witht, =0.25, t,=0.5, t,=0.75, A =
A =A,=1. One easily sees and compuhmk(vvm):z,

rank(Mm)=2, t0(0,1) . Therefore the system is minimal 2]

despite the temporal uncontrollability / unreachigband
unreconstructability/unobservability. The assodastates

may not be dropped because e.g. oyer5,0. the second

d-uncontrollable/d-unreachable state is non-zergeneral

because att=0.25 it is non-zero in general. This [
that satisfies

information is transferred by W,

,0.25

rank(V\IO,vo_ZS, ) =2.

Consider example 1 but with the system descriptmms (g
the intervals[0,0.24, (0.25,0.3 swapped as well as those

on the intervals (0.5,0.7§, (0.753. One then easily

computes rank(vv‘g’l)=l, t0(0,0.29, rank(vvtg’l)zz,
t0(0.259, rank(m,)=2, t0(0,0.79, rank(m,_)=1,

t0(0.75,) and the associated minimal realization,

A(t) =1,B(t)=1C ¢)= 1tO (0,0.25),

A(t){i ﬂ,B(t):[(j,C(tFH 10 (0.25,0.5),
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