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1.1 Motivation 

 

This thesis is concerned with the role of the DNA binding protein H-NS (Histone-like 

Nucleoid Structuring protein) in condensing bacterial DNA. The condensation of the bacterial 

genomic DNA and its associated proteins into a structure called the bacterial nucleoid is ill 

understood at present, but it has been suggested that some of the proteins associated with 

DNA play a crucial role. H-NS is a bacterial nucleoid protein that is thought to be crucially 

important as a global regulator of gene expression and as a modulator of nucleoid structure. In 

this thesis, we use approaches from physical chemistry and biochemistry to elucidate the role 

of H-NS in condensing DNA, with excursions into related topics: the influence of H-NS self-

association on its DNA binding properties, and the role of the archaeal nucleoid protein Sso7d 

(from Sulfolubus Solfataricus) in condensing DNA. In this introductory chapter we discuss 

basic concepts underlying the later chapters of this thesis.  

We first briefly review current ideas about the organization of genomic DNA in 

prokaryotes (especially bacteria) and point out some of the gaps in our knowledge about this 

topic. Next, we introduce the behaviour of DNA as a polymer, and models for DNA 

compaction/condensation. A short summary of the literature on H-NS as a nucleoid-

associated protein focuses on its self-association behaviour, its DNA-binding properties and 

its possible role in DNA compaction. This is followed by a brief overview of some other 

abundant bacterial and archaeal nucleoid proteins. Many new insights into the physical 

properties of nucleoid proteins and their binding to DNA have been derived from recent 

single molecules studies. Therefore we briefly introduce some of these techniques and some 

results relating to nucleoid-associated proteins (NAPs). Finally, we introduce light scattering, 

the technique most extensively used in this thesis, and its applications to the characterisation 

of DNA, proteins and DNA-protein complexes.  

 

1.2 Organization of DNA in bacteria 

 

The structure of DNA in bacteria and other prokaryotes is very different from the 

organization of the genome in eukaryote cells: prokaryotes lack a nuclear envelope or 

membrane and histones. Bacterial genomes are also much smaller; they typically contain 

several thousands of genes and range in size from roughly 0.5 to 10×10
6
 base pair (bp) 

(Krawiec and Riley, 1990). The bacterial genome is especially small compared to the human 

genome, which is ~3 Gbp (genome sizes are generally expressed in base pairs) and contains 
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~30,000 genes. If stretched out, the average bacterium’s genomic DNA would be millimetres 

long. This is far longer than a typical bacterium such as E. coli , which is 2 to 4 μm long, 

depending on growth conditions (Aarsman et al., 2005). 

 

 

Figure 1.1: E. coli with ghost and rosette DNA  

This electron micrograph shows the E. coli ghost in the middle, surrounded by its circular chromosome in looped 

random coils. The E. coli ghost is ~2 μm long. Picture credits: Dr. Gopal Murti/Science photo library. 

 

The amount of DNA in the smallest bacterial genome would be far too large to be 

contained inside even the largest bacteria if the DNA polymer was a random coil (Figure 1.1). 

Bacteria, like all organisms, must reduce the volume of their genomic material in order for it 

to fit into the cell. DNA is a stiff polymer, so random coils occupy very large volumes if they 

are not constrained somehow. DNA also has a high negative charge, which causes self-

repulsion. Despite these characteristics, genomic DNA occupies only a part of the bacterial 

cell, forming a body called the nucleoid. The nucleoid is distinct from the rest of the 

intracellular fluid (in this thesis, we will refer to the bacterial cytoplasm not occupied by the 

nucleoid as cytosol), and yet is not separated from the cytosol by a membrane barrier. The 

size of the nucleoid compared to the whole cell varies strongly between species, and even 

between cells of the same species under different growth conditions (Borgnia et al., 2008). In 

some small bacteria the nucleoid is difficult to detect even by phase contrast and fluorescence 

microscopy, and some doubt was raised the universal existence of nucleoid structures in 

prokaryotes, in view of difficulties to detect nucleoids in Caulobacter crescentus (Jensen, 

2006). Nucleoids can also be identified indirectly as a differently textured area without 

ribosomes in electron microscopy (Borgnia et al., 2008; Eltsov and Dubochet, 2005), and 
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these studies have been important in eliminating doubts about the universality of nucleoid 

bodies in prokaryotes. 

In this thesis, we refer to the volume reduction of DNA that is required for nucleoid 

formation as compaction or condensation, and use the terms interchangeably. The bacterial 

DNA coil must be compacted by a factor of 1×10
3
-10

4
 times to fit in the cell. Chromatin 

organization and compaction is one of the rare areas where our knowledge of bacteria is 

inferior to eukaryotes; the way DNA wraps around histones and forms fibres in eukaryotes is 

described in any textbook on biochemistry, but in bacteria there is no consensus model. Most 

literature agrees that supercoiling, macromolecular crowding and architectural proteins (or 

NAPs, sometimes also called histone-like proteins, though there is no homology) all play a 

role in this fascinating, but poorly understood topic: we are still far from understanding the 

relative contributions of each of the factors that has been suggested to contribute to nucleoid 

formation, let alone from a more or less quantitative description. 

Part of the problem in studying bacterial chromatin is the difficulty of detecting the 

nucleoid optically compared to the eukaryote nucleus, due to the absence of membranes that 

provide contrast and the nucleoid’s much smaller size, which is close to the detection limit of 

modern confocal microscopes. However, staining nucleoids is a trivial procedure at present. 

Most current in vivo detection methods use some sort of immunological stain, fused 

fluorescent proteins or a dye, for example the blue-fluorescing DNA-binding dye DAPI used 

in our microscopy studies. This allows us to determine nucleoid size quantitatively (Cunha et 

al., 2001). New optical microscopy techniques are just starting to map structural details within 

bacterial nucleoids (Wang et al., 2011).  

Most bacterial genomes consist of a single circular chromosome. In E. coli the 

nucleoid localizes to the centre of the cell, and has an elongated shape during rapid growth. 

Factors that influence the shape and size of the nucleoid include transcription (causing 

nucleoid expansion (Dworsky and Schaechter, 1973)) and translation (which compacts the 

nucleoid (Woldringh, 2002)), structural maintenance proteins (which make the nucleoid 

diffuse (Niki et al., 1992)) and NAPs, whose effects will be discussed in §1.3.  

Chromatin condensation becomes even more interesting if partial unfolding of DNA 

due to replication and translation is taken into account; even though this does not contribute 

strongly to the coil volume, the genome has to function while strongly compacted. The 

amount of nucleic acids in a nucleoid is also considerably larger than one would expect given 

a cell’s genome size, because the DNA constantly replicates itself under most circumstances. 

There are multiple replication forks in the chromatin during fast growth and cells often 
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contain several different highly copied plasmids, though plasmids are not necessarily 

restricted to the nucleoid. Nucleoids also contain RNA in the process of being transcribed. 

Although this makes the total nucleic acid content of a bacterium hard to predict, a rough 

determination can be made using flow cytometry experiments. In this thesis we focus on in-

vitro experiments to understand the role of nucleoid proteins in condensing DNA. This means 

that dynamic phenomena such as cell division are outside the scope of our approach, even 

though they must have an influence on DNA compaction.  

The bacterial chromosome is organized into regions with special properties called 

domains. The existence of these domains was initially discovered as a heterogeneity in the 

sensitivity to enzymatic degradation and other physical processes between different regions in 

the nucleoid. Domains are thought to be insulated from each other by transient barriers 

(Staczek and Higgins, 1998), which influence the chromosome’s physical properties and its 

behaviour as an information carrier. Domains are often represented as loops, because of the 

rosette-like structure of isolated nucleoids (Figure 1.1, Kavenoff and Bowen, 1976). Possible 

loop formation by NAPs has been investigated, but it was shown to lead to loops smaller than 

~10 kbp in size (Dame et al., 2006, Garcia-Russell et al., 2004). Therefore, the issue whether 

or not large-scale domains are indeed due to NAPs has not been completely resolved yet. 

The organization and compaction of DNA inside a bacterium poses major questions 

for both biologists, chemists and physicists. Physico-chemical models can contribute much to 

our understanding of how DNA behaves as a polymer rather than an information carrier, and 

models for DNA compaction (both experimental and theoretical) are now becoming available 

for circumstances more and more similar to the situation in vivo (de Vries, 2010).  

 

1.2.a Similarities between chromatin organization in archaea and bacteria  

 

Like bacteria, archaea have no nuclear membrane that encloses the DNA, and still 

their DNA forms a nucleoid, segregated from the rest of the cytoplasm. Unlike eukaryotes 

which all use the widely studied and relatively well-understood histones, neither archaea nor 

bacteria have universally conserved nucleoid-associated proteins, though they share the same 

need to compact their chromatin. DNA compaction in prokaryotes has received significant 

interest, but until recently, most attention was focused on bacteria. Those results can also be 

useful in the study of archaea, because genome sizes and cell volumes are similar.  

Here we focus on the Crenarchaeota and the Euryarchaeota, two phyla from the 

archaeal kingdom. The latter phylum possesses histone homologues that form nucleosomes 
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(Pereira et al., 1997), but these histone tetramers wrap less DNA then eukaryote nucleosomes, 

only ~90 bp (Bailey et al., 1999) and are always combined with other NAPs. The best known 

Crenarchaeota are extremophiles, such as Sulfolubus. These phyla share many DNA-binding 

proteins, but they have no truly universal architectural proteins, like the eukaryote histones. 

All Crenarchaea are thought to have DNA bending and DNA bridging proteins, a trait they 

are thought to share with bacteria. Mechanisms for DNA condensation are thought to be 

shared too (Driessen et al., 2011). But unlike bacteria, archaea do modulate their NAPs with 

posttranslational modifications, such as lysine methylation (Edmondson and Shriver, 2001) or 

acetylation (Bell et al., 2002). In this thesis we will consider the role of the small basic DNA-

bending protein Sso7d from Sulfolobus Solfataricus in condensing DNA to compare it to our 

main subject; the role of H-NS in condensing bacterial DNA. 

 

1.3. In vitro studies of DNA condensation  

1.3.a DNA as a semiflexible polyelectrolyte  

 

The physical properties of DNA are important to its function as an information 

carrying molecule: DNA is a polymer, made up from two strands that form an antiparallel 

double helix (Watson and Crick, 1953). Its chemical composition and other properties are 

described in any textbook of biochemistry or molecular biology, so here we focus on relevant 

physicochemical characteristics.  

First of all, the double helix can take several helical configurations. B-DNA is by far 

the most common form in living cells. If B-DNA with a typical base pair composition is 

measured under physiological circumstances, the distance between base pairs is 0.34 nm 

measured along the helix axis, with a rotation of ~34°. This results in a helical repeat of ~10.5 

bp or 3.5 nm. We will use these standard numbers for all calculations in this thesis. More 

details on DNA structure, function and properties as a polymer can be found in various 

reference manuals and textbooks (e.g. Calladine et al., 2004). 

Secondly, DNA is highly soluble in aqueous solutions. When the polymer is dissolved, 

the phosphate groups on the backbone carry a large negative charge. This makes DNA a 

polyelectrolyte. The behaviour of polyelectrolytes in solution depends on the solvent quality, 

the polymer concentration, and the concentration of low molecular weight salts (Khokhlov 

and Khachaturian, 1982) and other counter charges. While monovalent cations typically 

associate rather weakly with the phosphate charges, forming a diffuse electrical double layer, 
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multivalent cations associate much stronger and may lead to DNA neutralization and 

insolubility. 

 

 

 

Figure 1.2: The persistence length of DNA 

DNA is a stiff polymer, with a persistence length (lp) of 46-50 nm (or 140-150 bp). This schematic picture shows 

random DNA coils of different lengths a) 1 lp, b) 2 lp, c) 4 lp and d) 8 lp (1.1 kbp). The grey arrow is 1 lp long. 

 

A third important characteristic is the bending rigidity of DNA. A single strand is 

highly flexible, but the double helix is not. Indeed, double stranded DNA is often used as an 

example of a particularly stiff polymer, and can be considered a rod-like object for lengths of 

a few dozen bp (Figure 1.2). Within the context of the so-called worm-like chain model 

(Yamakawa, 1971) the material property characterizing the stiffness of the polymer chain is 

the so-called persistence length. Strictly speaking, it is a correlation length characterizing the 

decay of orientational correlations between distant points on the chain. A consensus value for 

the persistence length lp of DNA is approximately 140-150 bp or 46-50 nm. Only chains with 

contour length of many times the persistence length coil up due to thermal motion, whereas 

chains of a few persistence lengths or less are rod-like (Figure 1.2). Controversial new 

research has shown that circular pieces of DNA ~100 bp long (Cloutier and Widom, 2004) are 

formed much easier than expected on the basis of the consensus value for the lp of DNA. 

Other effects may play a role here, such as partial unwinding (Travers, 2005). We continue to 

use a value of 50 nm for the lp of unconstrained dsDNA throughout this thesis. 
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Figure 1.3 Confined DNA  

dsDNA is confined in a narrow tube of diameter D. The typical distance between deflections is the so-called 

deflection length d. 

 

For freely coiling DNA (as in Fig 1.2), the typical size of a segment may be identified 

with the persistence length of DNA. This no longer the case when DNA is not freely coiling, 

but confined by surrounding molecules or surfaces. Consider for example the case of a DNA 

molecule confined in a narrow tube of diameter D. This can be used as a model for a highly 

concentrated DNA solution, in which the molecules align, and each DNA molecule is 

surrounded by a “tube” formed by neighbouring polymers. For tube diameters D < lp 

deflections of the DNA chain from the tube wall occur over smaller distances than the 

persistence length: the DNA chain looks rippled (Figure 1.3). The characteristic distance 

between deflections is called the deflection length d, and depends more on the tube diameter 

than by the persistence length (Odijk, 1998): 

 

3/13/2

pd lD         (1.1) 

 

Finally, we present some estimates of DNA coil sizes using simple polymer models. 

Polymer coil sizes in solution are typically determined using scattering techniques (such as 

light- neutron- or X-ray scattering) and for a distribution of coil sizes, this gives an average 

value that is called the gyration radius Rg. For the worm-like chain model of DNA, the 

gyration radius (ignoring any interactions between DNA segments) is given by 

 

3

2
Ll

R
p

g          (1.2) 

 

where L is the contour length. In order to illustrate typical DNA coil sizes, we consider two 

cases: a plasmid which is a few kbp long, and the bacterial chromosome, which measures 

several Mbp. In this thesis, we use the 2686 bp long plasmid pUC18. When linearized, it has a 

contour length of 886 nm, corresponding to about 18-19 times the lp. This results in a gyration 
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radius for the linearized plasmid of Rg ≈ 120 nm according to equation 1.2. In contrast, the 4.6 

Mbp long E. coli genome has over 30,000 persistence-length segments and a contour length 

of 1.5 mm. When linearized, the expected Rg would be 4.8-5 µm, corresponding to a coil 

volume of 470-530 μm
3
. The volume of an intact E. coli cell is ~1.5 μm

3
 during non-

exponential growth, and its nucleoid occupies only ~15% of that volume, or 0.1-0.3 μm
3
 

(Woldringh and Nanninga, 1985). Hence the genomic DNA must be compacted 10
3
-10

4
 times 

in volume compared to the linearized molecule to fit inside the nucleoid. This very rough 

estimate agrees with earlier studies; Cunha and Odijk (2001 and 2004) repeatedly use a 

degree of compaction of 1.6×10
3
 as compared to the cell volume or 7×10

3
 as compared to the 

nucleoid volume. Bloomfield (1997) estimates a volume reduction of at least 1400.  

 

1.3.b The sequence of DNA influences its physicochemical properties  

 

Although this thesis mostly focuses on characteristics that are not very sensitive to the 

DNA sequence (except for Chapter 2), one effect relating DNA physical properties to DNA 

sequence is important, namely sequence directed DNA curvature. The CG pair has three 

hydrogen bridges, which makes its association stronger than the twofold bridge between AT, 

and the bases bind under slightly different angles. Therefore, the properties of a DNA chain 

built from CG pairs only are different from one equally long consisting of only AT pairs. In 

particular, some AT-rich sequences have been shown to lead to a distinct curvature in the axis 

of the double helix (Hagerman, 1986). Both planar and space curves are possible. The total 

angle of curvature depends on the sequence itself and environmental factors. Natural curved 

sequences with length of ~100 bp have been found that lead to angles of curvature of more 

than 90º (Falconi et al., 1998). In bacteria, DNA sequences with high intrinsic curvature 

appear in regulatory sequences upstream of promoters (Bossi and Smith, 1984) Many 

bacterial nucleoid proteins, including H-NS, show preferential binding to intrinsically curved 

DNA sequences such as those in bacterial regulatory sequences. This feature of bacterial 

nucleoid proteins is thought to be intimately related to their role as global regulators of 

bacterial gene expression. Prominent examples are the so-called virulence genes of 

enterobacteria, which are regulated by H-NS. For the particular case of the virF promoter, it 

has been shown that temperature-dependent switching of the virulence genes is controlled by 

H-NS, which strongly binds to the virF promoter at low temperature, when it has a high 

intrinsic curvature, but does not bind at higher temperatures when the intrinsic curvature of 

the virF promoter is lost (Falconi et al., 1998). 



 12 

 

 

 

Figure 1.4: Model of DNA under macromolecular crowding conditions 

DNA can be condensed into toroids comprising large numbers of individual molecules through depletion by a 

macromolecular crowding agent. In this picture, the crowding agents are scaled to resemble PEG 20K vs. a 

toroid of condensed DNA with an outer diameter of 200 nm. Inset: EM picture of collapsed DNA (scale bar 100 

nm, courtesy of Sarkar et al., 2009). 

 

1.3.c Macromolecular crowding-induced DNA condensation 

 

From a physical point of view, DNA is compacted by making the (effective) 

interaction between DNA segments attractive. One way of achieving this is via excluded 

volume interactions of the DNA segments with other, non-binding macromolecules that are 

depleted from the vicinity of the DNA. These non-binding macromolecules induce an 

effective attraction between the DNA segments that is called the depletion attraction (Asakura 

and Oosawa, 1958), and this drives compaction of DNA. 

 The concentrations of macromolecules are generally very high in bacterial cells. They 

cause strong excluded-volume interactions, and this has various consequences. Together, they 

are often referred to as effects of macromolecular crowding. Here, we consider DNA 

condensation induced by macromolecular crowding. Other effects of macromolecular 
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crowding include changes in reaction rates and protein self-assembly equilibria (Zimmerman 

and Minton, 1993) compared to dilute solutions.  

DNA condensation induced by macromolecular crowding has a simplified model in 

the so-called Polymer and Salt Induced, or ψ-condensation of DNA. This abrupt transition in 

DNA configuration can be induced by adding sufficiently large amounts of non-binding 

polymers and monovalent salt (Lerman, 1971). Polymer-induced ψ-condensation depends on 

the amount of polymer, its degree of polymerisation (Bessa Ramos et al., 2005), and the 

concentration of monovalent salt (de Vries, 2001). DNA ψ-condensation of single, long DNA 

molecules has been visualized using fluorescence microscopy (Vasilevskaya et al., 1995, 

Yoshikawa et al., 1996). Electron microscopy has shown that individual long DNA molecules 

often condense into toroids, as illustrated in Fig. 1.4. Consistent with the fact high 

concentrations of non-binding polymers condense DNA, gently isolated bacterial nucleoids 

whose volume expanded multiple times during isolation, may be recompacted by the addition 

of non-binding polymers (Cunha et al., 2001). 

Not much is known about crowding-induced DNA condensation under circumstances 

that resemble the in vivo situation more closely. Non-binding globular proteins have been 

shown to be much less effective in condensing DNA than equivalent concentrations of 

flexible polymers (Castelnovo and Gelbart, 2004; de Vries, 2006; Murphy and Zimmerman, 

1995). Only for very low ionic strengths, when the osmotic pressure of the proteins is high 

enough to drive compaction (de Vries, 2006), mild compaction of dilute linear DNA by 

globular proteins has been observed experimentally (Krotova et al., 2010). The genomic DNA 

in bacteria is neither linear nor dilute. A more realistic model by Odijk (1998) takes into 

account both DNA supercoiling, the finite volume of the bacterial cell, and the large amounts 

of genomic DNA present within this volume. Still neglecting DNA-binding proteins, Odijk 

(1998) finds that typical concentrations of non-binding globular proteins in bacterial cells 

should be enough to drive compaction of the genomic DNA into a nucleoid structure. 

 

1.3.d Charge neutralization causes DNA condensation 

 

Another way of introducing attractive interactions between DNA segments that 

ultimately lead to DNA condensation is shielding the large negative charge of DNA. This can 

be achieved through addition of multivalent cations or polycations (Bloomfield, 1997). 

Common multivalent cations and polycations that have been shown to condense DNA include 

polylysine, spermine and spermidine, but also inorganic multivalent cations such as Mg
2+

. 
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These compounds collapse DNA into toroidal and rod-like condensates (Chattoray et al., 

1978, Arscott et al., 1990). Attractions between DNA two segments induced by multivalent 

cations or polycations typically require that the multivalent cations interact with two DNA 

duplexes at the same time. Many (but not all) prokaryotic nucleoid-associated proteins are 

highly basic and will neutralize the charge of DNA. However, they typically have only one 

DNA-binding surface, and may not induce a direct attraction between DNA segments that 

would drive DNA condensation. In the case of basic nucleoid proteins, the relation between 

DNA condensation and DNA charge neutralization is not so straightforward.  

 

 

 

1.3.e Supercoiling also promotes DNA condensation 

 

DNA supercoiling also contributes to condensation. The circular bacterial 

chromosome is actively twisted by ATP-consuming enzymes. Twisting leads to global 

contortions of circular DNA, called writhe. If DNA is writhed, it winds back upon itself and 

forms a branched plectonemic supercoil, as illustrated in Fig 1.5 (reviewed in Calladine et al., 

2004). Supercoiling alone is not enough to explain the volume reduction of the genomic DNA 

by a factor 10
3
-10

4
. Detailed computations (Cunha, 2001) show that at most, supercoiling 

Figure 1.4: DNA supercoiling and branching 

reduces volume 

A supercoiled, branched DNA polymer has a 

smaller volume than relaxed DNA. The picture 

(courtesy of Conrad Woldringh) shows 

supercoiled and branched DNA helps depletion 

as well. Right inset: EM pictures of a relaxed 

plasmid and a plectonemic supercoiled plasmid. 
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reduces coil volume by one order of magnitude compared to the volume of a linear DNA coil 

with the same length. 

 

1.4 H-NS and other nucleoid-associated proteins  

 

An important class of proteins associated with the bacterial nucleoid are the so-called 

nucleoid-associated proteins (NAPs), or nucleoid proteins. These are DNA-binding proteins 

with high copy numbers. They generally bind DNA independent of sequence, with an affinity 

lower than most sequence specific regulatory proteins. Although they can bind any DNA 

sequence, nucleoid proteins often have preferred sequences or DNA configurations to which 

they bind with increased affinity. Bacterial NAPs are sometimes also called histone-like 

proteins, though they are not at all homologous to eukaryotic histones. Their function in 

bacteria is very similar to that of histones in eukaryotes: they modulate the architecture of 

bacterial chromatin and (thereby) regulate gene expression at a global level. While wrapping 

by histones is the dominant architectural motif in eukaryotes, various types of NAPs induce 

various types of structural deformations in DNA such as bending, bridging, or wrapping in 

bacteria (Luijsterburg et al, 2008).  

Here we will introduce the nucleoid protein H-NS, and briefly compare it with other 

major bacterial NAPs: HU, IHF, FIS, Dps and LRP. Finally, some archaeal NAPs are 

introduced that are relevant for the present thesis, in particular the small basic nucleoid 

protein Sso7d from the hyperthermophilic archaeon Sulfolobus Solfataricus. 

 

1.4.a H-NS and its oligomerization 

 

H-NS stands for histone-like (or heat-stable) nucleoid structuring protein. H-NS has a 

many homologues such as StpA, Ler, SPB, and XrvA. The gene was first mapped by Pon et 

al. (1988). H-NS was shown to be localized in the nucleoid by electron microscopy and 

immunostaining (Dürrenberger et al., 1991). Super-resolution fluorescence microscopy of 

fusions of H-NS with fluorescent proteins also shows H-NS localizes in the nucleoid, with 

especially high concentrations in to two compact clusters on the chromosome that account for 

60±25% of the total fluorescence (Wang et al., 2011), though this cluster formation has not 

been confirmed independently. Like many other NAPs, H-NS has an increased affinity for 

DNA sequences known to exhibit intrinsic curvature (Yamada et al., 1990). Overproduction 
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of H-NS is lethal to E. coli, and causes nucleoids to condense (Spurio et al., 1992). Deletion 

of H-NS does not impair the cell severely, though deletion mutants have low ploidy and short 

replication times (Atlung and Hansen, 2002). The small changes in deletion mutants may be 

due to the presence of many other types of nucleoid proteins, including a range of H-NS 

homologues that may be (partially) redundant with H-NS (Free et al., 2001). H-NS is present 

at high levels during exponential (~ 20,000 copies/cell) and early stationary (~ 15,000 

copies/cell) phase, but decreases in late stationary phase to <10,000 copies/cell (Azam et al., 

1999a). The hns gene is subject to autorepression (Falconi et al., 1993).  

 

Figure 1.6: The structure of H-NS: the C- and N-domain 

A simplified model of H-NS (left) and NMR structures of the domains without the linker (right). The NMR 

structure of the E. coli N-domain (a.a.1-46, blue) is derived from Bloch et al. (2002), the NMR structure of the 

Salmonella C-domain (a.a. 91-137, red) is from Gordon et al. (2011). The black linker is unstructured, but may 

still play a role in protein function. 

 

In solution, at low concentrations, H-NS exists predominantly as a very stable dimer 

(Falconi et al., 1988). This dimeric structure is thought to be necessary for recognition of and 

preferential binding to, curved DNA (Spurio et al., 1997). The dimer has two DNA binding 

domains, so it could bind either to two different DNA duplexes (bridging mode), or bind to 

two neighbouring sites on the same DNA duplex (non-bridging mode). In the bridging mode, 

H-NS could form a loop between by binding to two more distant sites on the same DNA 
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duplex. In fact, this is assumed to be the mechanism by which H-NS preferentially binds in 

the vicinity of intrinsically curved sequences: these adopt looped configurations more easily 

(Dame et al., 2001: de Vries, 2011). At higher concentrations H-NS dimers self-assemble into 

large oligomers in solution (Ceschini et al., 2000, Stella et al., 2005, Smyth et al., 2000). 

Mellies et al. (2011) even reports oligomers of between ~800 and ~3000 kDa, corresponding 

to ~25-100 dimers, depending on protein concentration and buffer composition. 

Various groups have investigated the affinity of H-NS for DNA: Friedrich et al. 

(1988) found low association constants for nonspecific DNA of KA ≈ 10
4 

M
-1

 bp
-1

, using 

polyA/T and polyG/C DNA monitored by Trp fluorescence, and a maximum binding of 1 

dimer per 12 bp by nitrocellulose filtration. This is quite close to one per helical turn, which is 

ideal for bridging, though it would be possible for more C-domains to fit on DNA. Dame et 

al. (2006) also measured a maximum DNA occupancy of ~1 dimer per helical turn and found 

koff to be 1.5 ± 0.2 s-1 pulling two H-NS-bridged strands of DNA apart with optical tweezers. 

Using an estimated kon of 1.0×10
5
 M

-1
 s

-1
 (Eckel et al., 2005) they arrive at a KD of 1.5×10

-5
 

M. The rather low affinity of H-NS binding to DNA is generally agreed upon, even though 

the numbers differ somewhat depending on experimental conditions. But, H-NS binds 

stronger than most non-specific E. coli NAPs (Azam et al., 1999b). As mentioned, H-NS 

preferentially binds to DNA sequences that exhibit intrinsic curvature. More specifically, H-

NS preferentially binds to sequences that have a narrow minor groove (Rimsky et al., 2001), 

and/or are enriched in A/T (Navarre et al., 2006). It also has an increased affinity for a rather 

well defined consensus sequence (Lang et al., 2007, Sette et al., 2009). Like many nucleoid 

proteins, H-NS constrains DNA supercoils (Tupper et al., 1994); if circular DNA coated with 

H-NS is incubated with enzymes that nick and close DNA, and subsequently is stripped of the 

H-NS, the resulting DNA remains supercoiled. H-NS is much less effective in constraining 

supercoils than another prominent bacterial nucleoid protein, HU (Higgins et al., 2010).  

At high temperatures, both footprinting and gel shift shows that DNA binding is 

weaker and less cooperative (Bouffartigues et al., 2007, Ono et al., 2005). Many temperature-

dependent bacterial genes are regulated by H-NS (Maurelli et al., 1988): various genes that 

are repressed by H-NS at 30°C are not repressed at 37°C. A well-studied example is the virF 

gene, involved in bacterial virulence (Prosseda et al., 1998). For this case, temperature 

switching has been shown to be a consequence of the temperature-dependent intrinsic 

curvature of the virF promoter, and not due to an intrinsic temperature dependence of the 

DNA-binding properties of H-NS (Falconi et al., 1998).  
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The H-NS protein consists of a DNA-binding C-domain and a dimerizing N-domain, 

connected by a flexible, apparently unstructured linker (Figure 1.6). In truncated mutants, the 

N-domain also trimerizes, and forms oligomers if the linker is also present. Deletion of the C-

domain does not abolish oligomerization (Smyth et al., 2000) but certain mutations in the C-

domain can influence oligomerization (Spurio et al., 1997). Mutants lacking part of the C-

domain also show enhanced oligomerization (Ueguchi et al., 1996). Deletion of the linker 

completely abolishes oligomerization (Stella et al., 2005), yet a 1-77 truncated mutant does 

show oligomerization (Leonard et al., 2009). Similar wt oligomerization behaviour was also 

found in the presence of DNA (Badout et al., 2002).  

 

Figure 1.7: The H-NS oligomerization model: parallel and antiparallel modes 

Crystal structures of the N-domain in parallel and antiparallel mode. The antiparallel mode above is associated 

with dimerization at high temperature (Bloch et al., 2003). The parallel dimerization shown below is associated 

with dimerization and higher order oligomerization at temperatures below 30°C (Esposito et al., 2003). To the 

right are simplified models of parallel and antiparallel N-domains. 

 

While crystallization of the whole protein has proven difficult due to the (supposedly) 

unstructured linker, there are NMR structures of the C-domain (Shindo et al., 1995), showing 

the DNA binding surface (Shindo et al., 1999), and the N-domain (Renzoni et al., 2001). The 

N-domain can dimerize in two ways (see Fig. 1.7): either parallel (Esposito et al., 2002) or 

anti-parallel (Bloch et al., 2003). A recent structure of the N-domain that includes the linker 
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shows an antiparallel dimer structure with an extended alpha-helical structure (Arold et al., 

2010), though older studies argue that the linker is unstructured. It has been hypothesized that 

H-NS switches between parallel and anti-parallel dimer orientations in a temperature-

dependent manner (Ono et al., 2005), but so far, this has not been shown in the presence of 

DNA, and it remains unclear what determines the relative orientation of the N-domains in the 

H-NS dimer. As shown in AFM pictures (Dame et al., 2001) H-NS may connect neighbouring 

DNA strands by self-assembling stretches of H-NS bridges, forming a zipper-like structure 

(Figure 1.8 and 9).  

 

 

 

1.4.b StpA is a homologue of H-NS  

 

StpA (suppression of td
-
 phenotype A) is a 133 a.a. DNA-binding protein that is 

thought to be able compensate for H-NS function in Δhns strains (Zhang and Belfort, 1992). 

StpA is highly homologous to H-NS (58% in E. coli, Dorman et al., 1999). It constrains 

supercoils and represses transcription (Zhang et al., 1996), especially inhibiting its own and 

its paralogue’s promoter. The homologues have similar domain structure (Cusick and Belfort, 

1998) and domain functions (Williams et al., 1996). StpA bridges DNA similar to H-NS in 

AFM studies (Dame et al., 2005a). However, the expression patterns of the homologues and 

some other functions are different. H-NS is always present in large numbers, but StpA is 

transcribed in short bursts. At its maximal presence, StpA has ~20,000 copies/cell (Azam et 

al., 1999a), though other studies find this homologue always has less copies then H-NS, even 

Figure 1.8: H-NS on DNA  

H-NS bridges on λ DNA are visualized by 

AFM. The bridges consist of many H-NS 

dimers, which may be oligomers. The 

DNA used has a contour length of 16.1 

μm. Copied with permission from Dame et 

al. (2005a). 
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in H-NS knockouts where stpa is derepressed (Sonnenfield et al., 2001). StpA can suppress 

various H-NS-dependent genes in H-NS knockouts, but has no effect on those genes in a wt 

background (Free et al., 1998). The physiological function of StpA remains unclear, apart 

from its redundancy with H-NS. 

Like H-NS, StpA forms dimers and higher order multimers. StpA dimers are more 

stable than H-NS dimers and the two proteins form heterodimers that are even more heat-

stable (Leonard et al., 2009).  

 

 

Figure 1.9: H-NS oligomerization/bridging on DNA  

This is a hypothetical model for the two modes of H-NS binding to DNA; left the N-domains are parallel, which 

is thought to be the low temperature dimerization regime, binding the DNA more strongly; right antiparallel N-

domains, binding the DNA with less strength at higher temperature, possibly due to loss of cooperative DNA 

binding. Picture credited to Dame et al., 2006.  

 

1.4.c Other relevant NAPs 

 

FIS 

Factor for Inversion Stimulation (FIS) is a 22 kDa homodimer that bends DNA 50 to 

90 º by fitting its DNA-binding helices into two adjacent major grooves (Pan et al., 1996). It 

binds DNA on a degenerate palindromic sequence rich in A/T (Pan et al., 1994), but also 

binds sequence independently, at high concentration. FIS is highly abundant during 

exponential growth (~60,000 copies/cell), with a much lower concentration in other growth 

phases (Ball et al., 1992; Azam et al., 1999a). Its most important physiological function is 
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thought to be the activation of stable RNA transcription, but FIS is also implicated in 

spatiotemporal regulation of supercoiling and global gene regulation. FIS binds the hns 

promoter and indirectly counteracts H-NS autorepresssion (Falconi et al., 1996). FIS 

regulation is often antagonistic to H-NS, for example in the regulation of virF (Falconi et al., 

2001). In addition to its indirect architectural functions by the alteration of global superhelical 

density, FIS contributes to the stabilization of loops and the distribution of topological domain 

barriers (Hardy and Cozzarelli, 2005, Schneider et al., 1997), and increases supercoil 

branching (Schneider et al., 2001). FIS is present at ~60,000 copies/cell during exponential 

phase in E. coli, but not in the other phases (Azam et al., 1999a).  

 

HU 

HU (histone-like DNA-binding protein or heat unstable protein) is a 20 kDa basic 

homodimer in most bacteria, though the protein can also form heterodimers with several 

closely related proteins. In E coli, it is always present as a heterodimer. The HU protein bends 

DNA (over an angle of up to ~140º, Koh et al., 2008) and strongly constrains DNA supercoils 

(Higgins et al., 2010): the two kinks induced by HU in the DNA result in 3º underwinding/bp 

(Swinger et al., 2003). HU is homologous to IHF, and also binds the minor groove, but it does 

so in a sequence-independent way. It is present at >50,000 copies/cell in exponential phase E. 

coli (Azam et al., 1999a).  

 

IHF  

 Integration Host Factor is involved in recombination, replication and translation 

regulation (Dos Santos and Rodrigues, 2005). This highly abundant heterodimer consists of 

homologous α and β subunits that are ~10 kDa each (Weisberg et al., 1996). IHF is less 

widespread among bacterial genera than HU. IHF bends DNA the strongest, inducing a very 

sharp bend of 160-180° in the DNA over approximately 30 bp (Rice et al., 1996). It binds in 

the minor groove, inducing two kinks in the DNA to nearly make a U-turn. This minor groove 

binder has a highly unusual sequence-specificity. IHF peak concentrations are ~50,000 

copies/cell during early stationary phase E. coli (Azam et al., 1999a).  

 

Dps 

Dps (DNA protection during starvation) is mainly known as one of the protein classes 

that detoxify ROS (reactive oxygen species) and thus protect DNA. It does not appear to be 

involved in global regulation of bacterial gene expression. The 19 kDa protein forms 
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dodecamers that results in very stable DNA-bound complexes, consisting of highly ordered 

crystal-like lattices (Wolf et al.,1999), both in vivo during starvation and in vitro. Its mode of 

DNA binding cannot be classified clearly, though DNA-binding is known to be mediated by a 

lysine-rich tail (Ceci et al., 2004). Dps is highly abundant during late stationary phase E. coli, 

in which it reaches concentrations ~ 180,000 copies/cell (Azam et al., 1999a). This nucleoid 

protein has unambiguously shown it can dramatically compact DNA, a property that is of 

course intimately connected to its function, as suggest by its name, Dps. 

 

LRP  

Leucine responsive regulatory protein (LRP) is a transcriptional regulator, in particular 

of amino acid metabolism. It binds DNA cooperatively and sequence specifically, though the 

recognition sequence is degenerate. LRP affects the transcription efficiency of the genes it 

regulates by direct interaction with RNA polymerase. LRP forms homomultimers (dimers, 

octomers and hexadecamers). Together with its homologues, it has been reported to cause 

DNA bending, looping, as well as bridging (Tapias et al., 2000). Some multimeric LRP 

homologues apparently even wrap DNA analogous to eukaryotic histones (Beloin et al., 

2003). LRP affects ~10% of all genes, making it an important regulatory protein. LRP co-

regulates various genes together with H-NS. Compared to other NAPs, copy numbers of LRP 

in E. coli are rather low (Azam et al., 1999a).  

 

1.4.d Archaeal NAPs 

 

While this thesis mainly focuses on the role of the nucleoid protein H-NS in 

compacting bacterial DNA, it also features research (Chapter 5) on the role of the small 

archaeal protein Sso7d from the hyperthermophilic Sulfolobus Solfataricus, in compacting 

plasmid DNA in-vitro. Whereas most studies on prokaryotic nucleoid-associated proteins 

have used bacteria, there is also a reasonable number of studies on archaeal nucleoid proteins. 

We here introduce two archaeal nucleoid proteins that have been particularly well studied: 

Alba, and Sso7d. 

 

Alba 

Alba is a widespread archaeal NAP, occurring in Euryarchaeota and Crenarchaeota, 

and is also known as Sac10b and Sso10b. Like bacterial NAPs, it is small, basic and highly 

abundant, present at ~1 dimer per 5 bp, or up to 4% of cellular protein content. Alba binds 
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DNA strongly and non-specific, with complete decoration at high concentration. At low and 

intermediate concentration, Alba functions as a DNA bridging protein, which results in DNA 

compaction (Lurz et al., 1986), especially in the case of heterodimers (Jelinska et al., 2005).  

 

Sso7d 

This archaeal protein is also very abundant (~5% of cell protein), and is even smaller 

than Alba. Highly conserved among Sulfolubus, it is also known as Sul7d and Sac7d, and may 

be part of a crenarchaeal family of sequence divergent proteins that are still structurally 

related, which are called Cren7 (Guo et al., 2008). It binds DNA non-cooperatively and non-

specific with a Kd of 1-5 μM, covering ~4 bp (McAfee et al., 1996), inducing a sharp kink 

(Gao et al., 1998) of up to 66°. It also introduces negative supercoiling, and increases DNA 

thermal stability (Krueger et al., 1999).  

 

1.5. Nucleoid proteins and single molecule techniques  

 

In this thesis we mainly use bulk physico-chemical techniques such as light scattering 

to characterize H-NS oligomerization, and the influence of nucleoid-associated proteins on 

the large-scale solution structure of (plasmid) DNA. Whereas classic bulk techniques allow 

for the measurement of physical properties averaged over large numbers of molecules, some 

current techniques allow us to measure physical properties of single molecules, and to 

determine distributions for physical properties of ensembles of molecules. Both approaches 

have advantages and disadvantages that will not be discussed any further here, but single 

molecule techniques have been very important in studying the interactions between nucleoid-

associated proteins and DNA. Here we briefly review some of these techniques and the 

particular results obtained for nucleoid proteins (especially H-NS) interacting with DNA. 

 For imaging complexes of single DNA molecules with various nucleoid proteins, 

Atomic Force Microscopy (AFM) seems to be the preferred method in the more recent 

literature, presumably because of the ease and accessibility of the method, as compared with 

Electron Microscopy. AFM has been used for decades on complexes that are adsorbed on a 

flat solid substrate and dried before imaging (Amrein et al., 1988), which allows for very high 

resolution, but it can also be used on dissolved macromolecules, under conditions more 

similar to in vivo circumstances. AFM pictures of dried H-NS DNA complexes adsorbed on a 

surface show stretches of H-NS forming bridges two neighbouring DNA duplexes (Figure 
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1.8, Dame et al., 2000). AFM has also been used to measure bending angles induced in DNA 

due to the binding of nucleoid proteins (Dame et al., 2005b).  

Force-spectroscopy studies on DNA attached to beads and surfaces are another 

popular method for single-molecule measurements, where the beads are manipulated with 

optical or magnetic tweezers. Force extension curves of DNA with and without H-NS were 

first measured by Amit et al. (2003), who concluded that under the conditions of their 

experiment, H-NS stiffens DNA, but does not form bridges. Using four optical traps to 

capture two strands of dsDNA, Dame et al. (2006) created an assay especially suitable for 

investigating protein-induced DNA bridging at the single-molecule level. The technique was 

applied to H-NS, using a different solution than the experiments of Amit et al. (2003). In 

particular, the buffer contained 10 mM Mg
2+

. Under these conditions, the single molecule 

assay unequivocally showed bridging, by measuring the forces needed to pull apart two 

duplexes that had been “zipped” together by H-NS bridges. Later magnetic tweezers studies 

(Liu et al., 2011) suggest that the mode of H-NS binding (bridging or non-bridging mode) 

sensitively depends on solution conditions, in particular on the concentration of Mg
2+

.  

 

1.6 Light scattering of DNA and proteins 

 

In this paragraph, we introduce the physicochemical technique of light scattering (LS) 

that is used in this thesis for characterising H-NS oligomerization, and for characterising the 

influence of nucleoid proteins on the large-scale solution structure of DNA.  

 

 1.5.a Basic theory of Light Scattering 

 

 For sufficiently dilute solutions of sufficiently small particles or molecules, the 

absolute intensity of light scattering (the so-called Rayleigh ratio R , which has the 

dimension of m
-1

) is given by the Rayleigh equation  

 CMKR R ,        (1.3) 

where C is the weight concentration of particles or molecules, M is their molar mass, and KR 

is an optical constant called the Rayleigh constant: 
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Where 0 is the wavelength of the incident light, nm is the refractive index of the solvent, NAv 

is Avogadro’s number, and (dn/dC) is the so-called refractive index increment, which is the 

slope of the refractive index versus concentration curve (n versus C), that determines the 

contrast of the particles or molecules in light scattering. In practice, count rates I for the 

sample (subscript s), the solvent (subscript 0) and a reference (usually toluene, subscript t) as 

determined using the light scattering instrument are converted to the absolute scattering, or 

Rayleigh ratio, using 
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where nt is the refractive index and Rt is the absolute scattering of the toluene standard (a 

tabulated quantity). In this thesis, we assume that our (known) sample concentrations C are 

low enough, and particle sizes are small enough for the Rayleigh equation to hold, so that we 

can use the scattering intensity as a measure for the solution molar mass M of the particles.  

 

 

Figure 1.9: DLS graphics 

A highly schematic impression of Dynamic light scattering; light falls on particles, and part of it is scattered (Is). 

The amount of scattered light changes as particles move in and out of the measurement volume. 

 

 But what are the conditions for the Rayleigh equation to hold? The precise formulation 

of the condition that the molecules or particles are small enough is given in terms of the so-

called wavevector (or scattering vector): 
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in which  is the scattering angle between detector and the transmitted light beam. For the 

Rayleigh equation to hold, qRg must be << 1, where Rg is the gyration radius of the particles 

or molecules. Corrections to the Rayleigh equation at higher concentrations can be formulated 

in terms of the second virial coefficient B2, a measure for the interactions between the 

particles. For small enough particles (qRg << 1), but at somewhat higher concentrations:  

../21 2 


MCB

CMK
R R

      (1.7) 

Hence, small enough concentrations for the Rayleigh equation to hold, means that we should 

have B2C/M << 1.  

The way the light scattering intensity fluctuates in time also contains information  

about the particles. For a small scattering volume, there will be significant fluctuations in the 

scattered intensity as a consequence of the Brownian or thermal motion of the particles or 

molecules. The frequency of the fluctuations is related to the speed of motion, or diffusion, of 

the particles or molecules. The fluctuating scattered intensity I(t) is typically analysed in 

terms of an autocorrelation function, called the intensity autocorrelation function g2(t) 

 
   

  22





I

tItI
tg


       (1.8) 

The brackets denote an average over the time  of the experiment. Diffusivity is related to the 

autocorrelation function g1(t) of the electric field rather than to the autocorrelation function 

g2(t) of the light scattering intensity. The two functions are related by the so-called Siegert 

relation: 

     212 1  gAg  ,       (1.9) 

where A=0...1 is a constant that depends on the optical set-up. If the dynamic light scattering 

experiments is performed at a wave vector q, diffusion is probed at length scales q
-1

. For 

monodisperse, small particles/molecules (qRg << 1) the field autocorrelation function decays 

exponentially with a rate  

 
 

tDq

eqg

2

1 ,



  
,        (1.10) 

where Dt is the translational diffusion constant of the particles or molecules. For spherical 

particles, hydrodynamic radius may be inferred from the translational diffusion constant, via 

the Stokes-Einstein relation:  
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in which η is the solvent viscosity.  

 In the absence of detailed information on the actual shape and size of the particles, it is 

common practice to convert the translational diffusion constant obtained from DLS into an 

effective hydrodynamic radius RH,eff  using the Stokes-Einstein equation. When using this 

hydrodynamic radius, the assumption that the particle is spherical should be kept in mind. For 

pure translational diffusion the decay rate  should scale as  ~ q
2
. Deviations from this 

behaviour may indicate that other dynamic modes contribute to the dynamic scattering. For 

example, when considering dynamic scattering at higher values of the wavevector from large 

polymers such as DNA, rotation and bending modes may contribute to the dynamic scattering. 

An excellent, more detailed, discussion of DLS can be found in Berne and Pecora (1976). 

 

 1.5.b Light scattering as a method to study proteins and their oligomers  

 

 Modern small-volume DLS equipment is very suitable for routine measurements of 

the average diffusion constants of proteins in solution. A practical point of concern is always 

that the solution should be free of large aggregates, since the scattering of just a few large 

aggregates easily overwhelms the scattering of many small proteins. Apart from this, the 

measurements are very fast and completely non-invasive. This means that it is a very 

straightforward method to study e.g. how the oligomerization of some protein depends on 

solution conditions. For polydisperse samples, that includes monomers and various oligomers, 

in principle it is possible to invert the field autocorrelation function g1(t) to arrive at the 

(scattering weighted) distribution of particle sizes, but in practice this is quite complicated and 

not always reliable (see the review of Gun’ko et al., 2003). Therefore, we only use DLS to 

obtain average hydrodynamic sizes (or translational diffusion constants) of protein oligomers 

in this thesis.  

 

 1.5.c Light scattering as a method to study DNA  

 

 DLS has been a popular method for studying DNA in solution for a long time, 

especially because it can measure the large-scale structure and dynamics of DNA in solution 

non-invasively. While early studies used calf thymus DNA (Schmitz and Schurr, 1973), later 



 28 

studies often used better defined plasmid DNA. In our studies we also use plasmid DNA, in 

particular the commonly available pUC18 plasmid, which is 2686 bp long. Whereas at low 

scattering angles, the dynamical scattering of DNA is determined by the translational motion, 

at higher scattering angles, or higher values of the wavevector q, internal modes such as 

rotation and bending begin to contribute (Langowski et al., 1992). Both the diffusion constant 

and the internal dynamics of DNA are affected by DNA supercoiling, and this dependence 

was also investigated using DLS (Langowski et al., 1992; Langowski et al., 1994). 

Electrostatic repulsion between DNA double helices has a strong effect on the solution 

structure of plasmid DNA, and this has also been investigated by considering the salt-

dependence of light scattering from plasmid DNA (Langowski et al., 1999; Hammermann et 

al., 1997).  

 

 1.5.d Light scattering can be used to study protein-DNA complexes  

 

 Light scattering is not a common method to study protein-DNA complexes. The large 

volumes required for scattering angle-dependent studies (about 1ml) when using goniometer-

based research light scattering equipment may be the cause of this. But modern commercial 

light scattering equipment often allows for scattering on tiny sample volumes, albeit only for 

one, or a few scattering angles. In this thesis we mostly use the Malvern Nanosizer SZ, when 

measuring nucleoid-associated proteins. It has two scattering angles: 173° and 12.8°. The high 

angle is suitable to study the translational diffusion of proteins and protein oligomers, whereas 

the low angle is required for studying the translational diffusion of plasmid DNA and 

complexes of DNA and nucleoid proteins. As we will show, the light scattering experiments 

straightforwardly give information of both the total molar mass of protein-DNA complexes, 

and on their solution (hydrodynamic) size. 

 Previous light scattering studies of protein-DNA complexes include studies on the 

binding of the E coli single strand binding protein to (supercoiled) DNA (Langowski et al., 

1985). Ramreddy et al. (2003) used DLS to measure the increase in flexibility of RecA-

nucleoprotein-DNA complexes upon adding ATP. DLS has also been used for the study of 

RNA-binding proteins from HIV in complex with RNA. It was demonstrated that NCp7 

causes the ordered growth of monodisperse large particles that cover polyA RNA (Stoylov et 

al., 1997), and the growth kinetics can also be determined by DLS (Stoylov et al., 1999). 

Recently, there is some use of dsDNA-proteins complexes in DLS. A study by Huffman et al. 
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(2001) showed that dsDNA binds homodimers and -tetramers of ARNT. Arioso et al. (2002) 

demonstrated that only one Ku protein binds a short piece of dsDNA.  

  

1.7. Thesis outline 

 

 The core topic of this thesis is the role of the nucleoid-associated protein H-NS in 

condensing or compacting DNA. As we will show, for the solution conditions we have used 

(no Mg
2+

), H-NS can only condense or compact DNA strongly in combination with 

macromolecular crowding. As a crowding agent we use a simple model system: uncharged 

flexible polymers. Besides these main topics, we make some excursions to related topics. A 

first study is concerned with the role of H-NS oligomerization in determining its DNA 

binding properties. The last study of the thesis concerns the combined role of crowding and 

nucleoid proteins in condensing DNA for the archaeal nucleoid protein Sso7d. This study 

shows that the phenomena that we find for H-NS, can also be found for completely different 

nucleoid proteins, and hence may be more general. 

 In chapter 2, we study the H-NS self-assembly (or oligomerization) so we may 

determine its role in DNA binding. We do so by considering the DNA-binding properties for 

an H-NS mutant (GA-H-NS D68V D71V) that exhibits strongly enhanced self-assembly in 

solution, and comparing those to wt H-NS. 

 Chapter 3 and 4 form the core of the thesis, and are concerned with the role of H-NS 

in DNA compaction. In Chapter 2, we investigate the ability of H-NS to compact both 

linearized and supercoiled plasmid DNA with and without the presence of a macromolecular 

crowding agent. We do so by determining DNA coil sizes using DLS, and using a simple 

centrifugal condensation assay for H-NS DNA complexes in the presence of the uncharged 

flexible polymer PEG. Chapter 4 addresses the effect of H-NS on isolated E coli nucleoids: 

can H-NS compact these nucleoids by itself, or is a combination with macromolecular 

crowding required, as was found for plasmid DNA in Chapter 3? Finally, in Chapter 5, we 

study the archaeal protein Sso7d, that strongly bends DNA, and determine its capacity to 

compact purified DNA both with and without macromolecular crowding, and find very 

similar effects as we have found for H-NS. 

 In the general discussion we review our results on the extent of compaction of DNA 

by NAPs. This review highlights the limited effects of NAPs on DNA compaction and 
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underscores the importance of additional effects such as the macromolecular crowding that 

we study in this thesis. 
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Chapter 2 

Probing the relation between protein-protein 

interactions and DNA binding properties of the bacterial 

nucleoid protein H-NS* 

 
*To be submitted 

 

 

Abstract 

We investigate the relation between oligomerization in solution and DNA binding properties for 

the bacterial nucleoid protein H-NS by studying oligomerization and DNA binding properties of a 

D68V-D71V H-NS mutant. By replacing two aspartic acid residues with valines, the H-NS linker 

region that connects the N-terminal dimerization domain and the C-terminal DNA binding domain 

is made significantly more hydrophobic. This drives stronger oligomerization in solution and may 

lead to altered DNA binding properties. Dynamic Light Scattering is used to probe protein 

oligomerization. Electrophoretic mobility shift assays and DNA footprinting were used to probe 

the binding of both H-NS and D68V-D71V H-NS to an hns promoter fragment.  

Using Dynamic Light Scattering we confirm the concentration-dependent oligomerization of H-

NS in solution. The oligomerization has a weak and gradual temperature-dependence. 

Remarkably, the temperature-dependence of H-NS oligomerization was found to be abolished by 

the addition of two small residues (GA) on the N-terminal side of the protein, a change that has no 

influence on its DNA-binding properties. The double linker mutation D68V-D71V leads to a 

dramatically enhanced and strongly temperature-dependent H-NS oligomerization in solution. The 

DNA binding affinity of D68V-D71V is lower and has stronger temperature dependence than that 

of H-NS. DNAse I footprinting shows that at high concentrations, regions protected by D68V-

D71V H-NS are even larger than for H-NS.  

The comparison of H-NS and GA-H-NS demonstrates that the temperature-dependence of H-NS 

oligomerization need not be related to the temperature-dependence of its DNA binding properties, 

as has been suggested previously. Results for D68V-D71V demonstrate that even dramatic 

changes in the oligomerization of H-NS in solution only lead to moderate changes of its DNA 

binding properties. Both results suggest that it is difficult to draw conclusion about the DNA 

binding properties of H-NS, from its oligomerization behaviour in solution.  
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2.1 Introduction  

 

H-NS (Histone-like Nucleoid Structuring protein) is a small 16 kDa protein [1,2] that 

localizes to the bacterial nucleoid [3,4], where it plays an important role as a global regulator 

of bacterial gene expression [5]. Control of expression by H-NS is sensitive to environmental 

conditions, in particular to temperature [6]. The protein consists of a C-terminal domain [7] 

that binds to DNA, and an N-terminal domain that forms stable dimers, either parallel [8] or 

antiparallel [9,10]. The two domains are connected by a linker, which is thought to be either 

unstructured or mainly alpha-helical [10].  

H-NS binding to DNA is relatively sequence aspecific, but a consensus sequence has been 

identified to which H-NS binds with a somewhat increased affinity [11,12]. In addition, H-NS 

preferentially binds to intrinsically curved DNA, presumably by bridging sites flanking the 

curved region [13,14]. Electron microscopy [15-17] and AFM images of H-NS/DNA 

complexes [18-21] show that the protein binds in stretches. Multimerization of H-NS on DNA 

is also consistent with the observed binding cooperativity and nearly complete protection 

against DNAse attack observed for promoter sequences such as those of the proU [15] and 

hns [13] genes.  

At higher concentrations, H-NS dimers in solution (in the absence of DNA) self-assemble into 

various higher order oligomers [6,9,22-24]. Both the dimerization and the higher order 

oligomerization are thought to have a crucial influence on the DNA binding properties of H-

NS [22,26,27]. It has even been suggested [6] that thermoregulation by H-NS could be 

mediated by the temperature dependence of H-NS oligomerization [6,24], although there is 

also strong evidence that the temperature-dependence of DNA intrinsic curvature plays a 

crucial role [28]. While there may indeed be a direct link between the higher order 

oligomerization in solution and multimerization on DNA, this need not be the case. Putative 

protein-protein interactions that drive multimerization on DNA may or may not operate 

between H-NS molecules in solution. Furthermore, clustering of bound H-NS molecules may 

also be induced by the DNA template [29,30] rather than by protein-protein interactions.  

Here we probe the relation between H-NS oligomerization and DNA binding by studying H-

NS with a D68V-D71V double mutation. By replacing two aspartic acid residues D68 and 

D71 by valines, the H-NS linker region that connects the N-terminal dimerization domain and 

the C-terminal DNA binding domain is made significantly more hydrophobic, which we 

expect will drive stronger oligomerization in solution, without affecting H-NS dimerization 
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by the N-terminal domain or DNA binding by the H-NS C-terminal domain. The expectation 

of stronger higher order oligomerization is based on the fact that the linker region of H-NS is 

known to be involved in higher order oligomerization: deletion mutants containing the N-

terminal domain plus the linker are capable of higher order oligomerization, but not the N-

terminal domain by itself [8]. Other linker mutations have already been shown to lead to 

certain functional defects: both an E53GT55P double mutation [31], and a R54C mutation 

[32] have been found to result in proteins that are defective in repressing the H-NS controlled 

proU operon, but these studies did not investigate the relation between oligomerization and 

DNA binding properties in much detail.  

We here perform a more extensive characterization of the solution oligomerization behaviour, 

both of the wild type H-NS, and the D68V-D71V H-NS. Varying both concentration and 

temperature, we use Dynamic Light Scattering (DLS), to non-invasively characterize the 

oligomerization of both full-length proteins. Very little data is available on how the 

oligomerization of full-length H-NS depends on environmental conditions. For low 

concentrations, a detailed study was performed by Ceschini et al. [25]. We extend this work 

by also considering higher protein concentrations, for which the higher order oligomerization 

becomes very strong.  

DNA binding properties are investigated for the hns promoter sequence, for which H-NS 

binding has been studied in detail in earlier work [13]. The interaction of both wild type H-NS 

and H-NS D68V-D71V with hns promoter DNA are studied using electrophoretic mobility 

shift assays, DNAse I footprinting, and an in-vitro transcription assay.  

 

2.1 Material and methods  

 
Strains  

Overexpression of wt H-NS was performed as described previously [12]. The linker mutant H-NS D68V-D71V 

was produced as a fusion with a Tobacco Etch Virus (TEV) protease cleavage site and a (His)6 tag. Cleavage 

with TEV protease removes the His tag, but this leaves two additional residues (GA). The final mutant protein is 

therefore denoted as GA H-NS D68V-D71V. In a similar way we have also produced GA H-NS. Both were 

overexpressed in E. coli UT5600 carrying the plasmids pcI857 and pPLc2833.  

 

Isolation of wt H-NS and mutants  

Isolation of wt H-NS was done as described before [12]. The GA H-NS and GA H-NS D68V-D71V producing 

strains were grown, induced and collected as the wt H-NS producing strain [12]. Pellets were resuspended in a 

minimal volume of buffer F (50 mM Na2HPO4/NaH2PO4 pH 8.0, 100 mM NaCl, 5% glycerol, 0.025% Nonidet 

P40 detergent) and frozen at -80 ºC. Cells were disrupted and centrifuged as described before [12]. Salt was 

added to a final concentration of 1 M NaCl, and β-mercaptoethanol to a final concentration of 5 mM. The 

supernatant after centrifugation was loaded on a NiNTA column, and eluted with a linear imidazole gradient (10 

– 250 mM) in Buffer F + 1 M NaCl. Fractions containing the H-NS mutants were dialyzed against Buffer F + 5 

mM β-mercaptoethanol and digested by TEV protease (concentration of 30-50:1) overnight at 20 ºC, with 20% 
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extra TEV protease added for an additional 3-4 h. The reaction mixture was again loaded on the NiNTA column 

and eluted identical to the previous gradient. Proteins were concentrated and stored identical to wt .  

 

Preparation of protein solutions for Dynamic Light Scattering  

Frozen protein stock solutions (wt H-NS, GA H-NS and GA H-NS D68V-D71V) were slowly thawed on ice. 

Storage buffer was exchanged for filtered 10 mM Na2HPO4/NaH2PO4 100 mM NaCl pH 7.0 using Zeba Desalt 

Spin columns (0.5 ml, Pierce), pre-rinsed with appropriate buffer in a Biofuge Fresco rotor at 14,000 rpm at 4°C. 

Proteins solutions were concentrated using 0.5 ml Microcon YM-3 3 kDa NMWL centrifugal filters (Millipore 

Corp.) at room temperature. Concentrations were determined spectrophotometrically, using an absorption 

coefficient of 0.86 L g-1 cm-1 at λ=280 nm [2]. Next, protein solutions were diluted to the concentrations required 

in the experiments, and filtered with 0.5 ml Microcon YM-3 150 kDa NMWL centrifugal filter devices. Finally, 

concentrations were checked once more using UV spectrometry.  

 

Dynamic Light Scattering  

Dynamic Light Scattering experiments were taken with a Malvern Zetasizer Nano ZEN 1600 with a 4 mW He- 

Ne laser operating at wavelength of λ = 633nm, at a fixed scattering angle of  =173°. DLS measurements were 

performed in Hellma precision cells type 105.251.005-QS (pathlength 3 mm). Cells were cleaned with 1 M HCl, 

filtered H2O, and buffer before being filled with sample. Protein solutions prepared as described above were 

centrifuged for 1 h at 10,000 g and the cleaned cells were filled with 20-25 μl of protein solution. Samples were 

left to equilibrate for 30 min. at room temperature prior to the measurements.  

Absolute scattering intensities R (Rayleigh ratio) are calculated from  
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where n0=1.333 is the solvent refractive index and nt = 1.496 is the refractive index of the toluene reference. 

Furthermore, Is, I0 and It are, respectively, the scattering intensities of the sample, buffer, and toluene reference, 

and Rt = 1.35x10
−2

 m
−1

 is the absolute scattering intensity of the toluene reference. Effective hydrodynamic radii 

RH,eff of protein oligomers reported are taken from a distribution fit of the intensity autocorrelation function. The 

reported value is the dominant peak reported by the Malvern DTS software, version 5.03.  

 

Electrophoretic mobility shift assay and DNAse I footprinting  

Electrophoretic mobility shift assays (EMSA) were performed on –350-0 hns promoter labelled with 32P. 10 ng 

of this DNA was incubated for 10 min at the indicated temperatures with increasing amounts of protein in 15 μl 

of 10 mM Tris-HCl pH 7.5, 0.5 mM DTT, 10 mM MgCl2, 1 mM Spermidine, 10 mM KCl, 5 % Glycerol and 

100 mM NaCl. 1 μl sample buffer (98% glycerol, bromophenol blue and xylene cyanol) was added and samples 

were loaded on 7% native acrylamide gel and run at the indicated temperatures in TAE buffer (Tris-Acetate-

EDTA) pH 7.4. The gel was transferred to 3MM paper, and the bands quantified by a Molecular Imager FX 

(Bio-Rad) and QuantityOne software. DNAse I footprinting was performed as described previously[12].  

 

In-vitro transcription assay  

The in vitro transcription was carried out with [ 
32

P]-UTP as described in Giangrossi et al. [34], using as DNA 

template a 480 bp hns fragment. This fragment was amplified by PCR using the oligonucleotides Forward 5’-

AGTCCATGCTCTTATTGCGAC and Reverse 5'-TTCTTCTTCGCGACGTTCAGGAACGACAACTTC TAA 

and plasmid pKK400 as template [35]. The transcription products were loaded on 7% PAGE-UREA gel; the in 

vitro transcribed RNA molecules were detected and quantified by Molecular Imager (Bio-Rad, model FX). 

 



 43 

2.3 Results  

 
H-NS linker mutant  

The domain structure of H-NS is illustrated in Figure 2.1, as well as the locations of the 

mutations that are studied here. A plot of the hydropathy index [33] of the H-NS linker is 

shown in Figure 2.2. The wt linker is not very hydrophilic or very hydrophobic. Changing two 

of the hydrophilic aspartic acid residues at positions 68 and 71 into hydrophobic valines 

makes the N-terminal side of the linker significantly more hydrophobic. This may drive 

stronger higher order oligomerization of H-NS dimers, which in turn, may or may not 

influence DNA binding. H-NS D68V-D71V is produced as a fusion with a His-tag with a 

TEV protease site. Cleavage leaves two residues (GA), producing a final protein denoted GA 

H-NS D68V-D71V (Figure 2.1). Possible effects of the addition are checked by comparing 

the GA H-NS mutant with wt H-NS as well.  

 
 

Figure 2.1: Schematic illustration of domain organization in H-NS, and positions of the mutations in GA H-NS 

and GA H-NS D68V-D71V, which are 138 a.a. long. The N-terminal domain is marked “oligomerization”, the 

C-terminal domain “DNA-binding”.  

 

Oligomerization of wt H-NS, GA H-NS and GA H-NS D68V-D71V in the absence of DNA  

The concentration-dependence of the effective hydrodynamic radius of oligomers of wt H-NS 

(at room temperature) is shown in Figure 2.3. The oligomers have an effective hydrodynamic 

radius RH,eff of 6 nm at 0.1 g/L, increasing to about 9 nm at 0.5 g/L. For a hypothetical 

compact globular protein of 32 kDa (the weight of one H-NS dimer) we expect a radius of 2.6 

nm, based on a typical specific density of proteins. This indicates extensive oligomerization of 

full length H-NS at the rather high protein concentrations considered here. Values for RH,eff of 

6 - 9 nm roughly correspond to masses of 200-600 kDa, again assuming globular complexes. 

The actual shape of the H-NS dimer and its oligomers probably is not compact and spherical; 
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hence the real molar mass of the oligomers in solution could be lower. In principle the weight-

averaged molar mass of the H-NS oligomers in solution can be determined from the static  

 

Figure 2.2: Hydropathy index (Kyte and Doolittle scale) of the H-NS linker for the wt protein (solid line, lower 

sequence) and the D68V-D71V mutant (dotted line, upper sequence). The top lines indicate the sequences, with 

the D→V mutations highlighted in grey.  

 

scattering intensities. Unfortunately this measurement was not possible in the present case due 

to significant contributions to the scattering intensity of a small fraction of very large 

contaminants, probably protein aggregates or dust.  
 

 

Figure 2.3: Concentration dependence of RH,eff for wt H-NS. The dashed line is a guide to the eye.  

 

Results for the temperature-dependence of wt H-NS self-assembly are shown in Figure 2.4, 

for both low (0.064 g/l) and high protein concentration (0.309 g/l). At low concentrations of 

H-NS, the effective hydrodynamic radius of the oligomers is RH,eff ≈ 6 nm, which is roughly 

temperature-independent. At higher H-NS concentration the size of the oligomers becomes  



 45 

 

Figure 2.4: Temperature dependence of RH,eff of wt H-NS at two concentrations as determined using dynamic 

light scattering: 0.064 g/l (filled triangles) and 0.309 g/l (filled circles). Lines are guides to the eye.  

 

much larger, and exhibits much stronger temperature dependence. At 0.31 g/l the effective 

hydrodynamic radius of the H-NS oligomers decreases from 14 nm at 16 °C to about 7 nm at 

40 °C. 

 

Figure 2.5: Comparison of temperature dependence of RH,eff of wt H-NS (0.309 g/L, squares) and GA H-NS 

(0.488 g/L, circles). Lines are guides to the eye.  
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Since the method of producing the linker mutation leaves two additional GA residues at the 

N-terminal side of the protein, it was important to check whether this has any effect on either 

oligomerization or DNA binding. The results for the effective hydrodynamic radii of 

oligomers of GA H-NS as a function of temperature are in Figure 2.5. Scattering intensities  

were found to be of the same order of magnitude as for wt H-NS (data not shown) and the 

effective hydrodynamic radii of oligomers of GA H-NS were also found to be of the same 

order of magnitude as those for wt H-NS. Surprisingly, the temperature dependence of the 

effective hydrodynamic size of the oligomers that was observed at high concentrations of wt 

H-NS is completely absent for GA H-NS (Fig. 2.5).  
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Figure 2.6: Concentration dependence of light scattering intensity of solutions of wt H-NS (triangles, straight 

line), GA H-NS (circles, dashed line) and GA H-NS D68V-D71V (squares, dotted line) at 20°C. Lines are a 

guide to the eye.  

 

Oligomerization of the linker mutant GA H-NS D68V-D71V without DNA template is very 

different from that of wt H-NS and GA H-NS. As shown in Figure 2.6, scattering intensities 

for GA H-NS D68V-D71V are orders of magnitude higher than those for wt H-NS and GA H-

NS. This indicates a much larger molar mass of the corresponding oligomers. Effective 

hydrodynamic radii of the GA H-NS D68V-D71V oligomers versus temperature are shown in 

Figure 2.7, for two protein concentrations. Radii of oligomers of the linker mutant are only 

weakly dependent on concentration, and are nearly an order of magnitude larger than those 
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observed for wt and GA H-NS. The temperature dependence of the radii is much stronger: 

RH,eff decreases from around 35 nm at 20°C, to about 20 nm at 40°C.  

 

0

5

10

15

20

25

30

35

40

285 289 293 297 301 305 309 313 317

T  (K)

R
H

,e
ff
 (

n
m

)

 

Figure 2.7: The temperature dependence of RH,eff is compared for oligomers of wt H-NS (triangles, 0.31 g/L), 

GA H-NS (circles, 0.49 g/L) and GA H-NS D68V-D71V (open squares, 0.16 g/L and filled squares, 0.78 g/L). 

Lines are guides to the eye.  

 

Binding of GA H-NS and GA H-NS D68V-D71V to hns promoter DNA  

The DNA binding properties of GA H-NS and GA H-NS D68V-D71V were studied for hns 

promoter DNA. Expression of H-NS is autoregulated and the binding of wt H-NS to the hns 

promoter is well characterized [13]. Figure 2.8 shows the shifts in electrophoretic mobility of 

hns promoter DNA caused by binding of GA H-NS and GA H-NS D68V-D71V, at 25°C and 

37°C. Results for GA H-NS are nearly indistinguishable from published results for wt H-NS. 

Retardation due to binding of GA H-NS D68V-D71V is distinctly different: the linker mutant 

shows a significantly weaker binding affinity for hns promoter DNA, but with larger 

temperature dependence. DNA footprinting results for GA H-NS and GA H-NS D68V-D71V 

on hns promoter DNA are shown in Figure 2.9, both at 25°C and at 37°C. The pattern of 

protected sites for GA H-NS at 25°C is similar to that previously described for wt H-NS [13]. 

In fact GA H-NS protects at least three sites localized upstream the hns promoter region, and 

displays a higher binding affinity for two of these sites compared to those located in the -35 

and -10 region. For GA H-NS D68V-D71V mutant, higher concentrations of protein are 

needed to achieve the highest level of protection; however, under these conditions the 
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protected sites are much more extended than those obtained with GA H-NS, covering more 

than half of the hns promoter DNA sequence, and the DNAse hypersensitivity sites are no 

longer exposed. This evidence suggests that also the linker mutant binds hns gene  

 

Figure 2.8: Electrophoretic mobility shift assay for GA HNS (left blots) and GA H-NS D68V-D71V (right blots) 

binding to hns promoter. a) EMSA at 25°C. b) EMSA at 37°C. c) Bound DNA (%) against protein concentration 

at 25°C (left) and 37°C (right) for GA HNS (triangles) and GA H-NS D68V-D71V (squares).  
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cooperatively because the protection is observed only when a critical concentration of protein 

(0.64 µM) is provided. At 37°C we observe a very weak protection, only at high 

concentrations of GA H-NS, in the region that extends from -60 to -200, while the -35 and -10  

 

Figure 2.9: DNA footprint assay for GA H-NS (left side of blots) and GA H-NS D68V-D71V (right side of 

blots) protecting the hns promoter from degradation. a) Footprinting at 25°C. b) Footprinting at 37°C.  
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DNA sequences are no longer protected. A similar result (i.e. absence of protection in the -35 

and -10 region) is obtained with the mutant GA H-NS D68V-D71V that gives rise, at 37°C, to 

a weak and widespread protection starting at the concentration of 0.32 µM. To verify that the 

observed DNA binding reflects a correct functional activity, an in vitro transcription assay 

was carried out with both proteins. The inhibition of the activity of RNA polymerase at 30°C 

is shown in Fig. 2.10, where the mutant GA H-NS D68V-D71V displays a stronger 

transcriptional repression, probably due to the extensive interaction with the DNA promoter 

as observed in the footprinting experiment.  

 

Figure 2.10: In vitro transcription carried out at 30°C on hns promoter  

 
2.4 Discussion  

 
The addition of two small inert residues (GA) on the N-terminus of H-NS leads to a 

measurable change in the temperature-dependence of H-NS oligomerization in the absence of 

DNA. At the same time, DNA binding properties (at least for binding to the hns promoter) are 

essentially unaffected. Previous work has already shown that higher order oligomerization 

involves the first few residues of the N-terminal region [8], so it should not be surprising that 

changes to the N-terminal region affect self-assembly. These small, N-terminal changes in 

protein-protein interactions have a larger effect on H-NS oligomerization in solution than its 

DNA-binding properties. This discovery highlights that one should be extremely careful in 

relating H-NS oligomerization in the absence of DNA to its DNA binding properties.  
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H-NS is thought to be a crucial global regulator of thermosensitive genes, and it has been 

suggested that the H-NS protein itself is the thermosensor. Specifically, Ono et al. [6] have 

suggested that thermosensing could occur via a switch of the structure of the H-NS dimer 

from a parallel orientation at low temperature, to an antiparallel orientation at high 

temperature. Such a drastic change of quaternary structure may be expected to give rise to 

some rather abrupt changes in the oligomerization behaviour as a function of temperature. 

Instead, only for some concentrations, we find only a gradual temperature dependence, which 

is abolished by the addition of GA at the N-terminus of the protein. Therefore we conclude 

that our dynamic light scattering studies on the self-assembly of GA-H-NS and wt H-NS offer 

no support for the hypothesis that the thermosensor is the H-NS molecule itself under the 

solution conditions that we have studied.  

A further comparison between GA-H-NS and the GA D68V-D71V H-NS linker mutant points 

in the same direction. Binding of GA H-NS (and wt H-NS) to the hns promoter sequence is 

only weakly temperature dependent, especially if it is compared to the very strong 

temperature dependence when binding to the promoters of certain virulence genes such as 

virF [28]. When introducing the hydrophobic modifications to the linker sequence, H-NS self-

assembly in solution is found to be enhanced very strongly, and also becomes strongly 

temperature dependent. This probably causes the binding of GA D68V-D71V H-NS to the 

hns promoter to also become strongly temperature-dependent. In this case, oligomerization 

does not compete with binding, but reinforces binding to DNA.  

Other studies have also compared oligomerization and DNA binding properties of wild type 

H-NS with those of H-NS mutants. These studies showed that if H-NS is unable to dimerize 

[22] or unable to assemble in higher order oligomers [26], its biological function as a 

transcriptional repressor is compromised. For GA D68V-D71V H-NS, instead of a lack of 

dimerization or higher-order oligomerization, we find enhanced higher-order oligomerization. 

The consequences of this enhancement for the proteins’ DNA-binding properties indicate to 

what extent H-NS oligomerization influences the H-NS DNA binding properties.  

We tentatively conclude that oligomerizing protein-protein interactions should be rather 

strong to affect the DNA binding properties of H-NS: modifications that change the self-

assembly behaviour in solution mildly (the addition of GA at the N-terminus) have no 

observable consequences for DNA binding, but modifications that lead to large changes in the 

protein-protein interactions (the D68V-D71V mutation) and completely different self-

assembly in solution, do have a moderate influence on DNA binding.  
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DNA footprinting and in-vitro transcription results confirm the general idea that H-NS 

cooperative binding is related to H-NS protein-protein interactions: the D68V-D71V mutant, 

with its increased self-association, leads to significantly larger stretches of protected sites at 

high protein concentrations. This effect can only be seen if changes to the H-NS self-

interactions are made which dramatically affect the proteins’ oligomerization in the absence 

of DNA.  
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Abstract 

Using Dynamic Light Scattering we have investigated the influence of the bacterial nucleoid 

protein H-NS on coil sizes in solution, for both supercoiled and linear pUC18 DNA. Whereas 

an increase in the intensity of scattered light upon the addition of H-NS unambiguously 

indicated that the protein was bound to the DNA, the change in the effective hydrodynamic 

radius of the coils turned out to be minimal. At the highest concentrations of H-NS, the 

dynamic scattering data for linear DNA indicated the presence of two populations of 

complexes; the larger complexes presumably consisting of a number of plasmid DNA 

molecules linked together by H-NS. It was also found that H-NS has a synergetic effect on 

polymer-induced condensation of DNA. Facile sedimentation of H-NS/DNA complexes is 

taken as an indication of condensation of H-NS/DNA complexes in solutions of polyethylene 

glycol. In the absence of H-NS the critical concentration of polyethylene glycol needed to 

condense DNA is approximately 15%, whereas the critical concentration is remarkably lower, 

about 3.5%, at near saturation concentrations of H-NS.  
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3.1 Introduction  

 

While the role of nucleoid proteins in the global regulation of bacterial gene expression is 

now firmly established,
1
 their contribution to DNA condensation and the formation of the 

bacterial nucleoid is much less clear. A case in point is H-NS (Histone-like Nucleoid 

Structuring protein), a small 16 kDa protein
0,3

 that localizes to the bacterial nucleoid
4
. 

Overproduction of H-NS decreases cell viability and leads to compact spherical nucleoids, as 

observed by electron microscopy
5
. H-NS binding to DNA is relatively non-specific, which is 

expected for an architectural protein, although H-NS binds with mildly increased affinity to a 

recently identified consensus sequence
6,7

. Whereas the role of H-NS as a global 

transcriptional regulator has been well documented
8,9

, its influence on the large-scale solution 

conformations of DNA, or nucleoid architecture, is poorly understood. 

Complexes of H-NS with DNA have recently been studied by single molecule 

techniques such as optical
10

 and magnetic
11,12 

tweezers. H-NS forms stable dimers in solution, 

and the two DNA-binding domains of the H-NS dimer can either bind to the same DNA 

duplex, or form a DNA-protein-DNA bridge. Single molecule studies and AFM imaging on 

H-NS/DNA complexes have provided evidence for both coating of single DNA duplexes
11,12 

and bridging between strands
10,12,13

, depending on solution conditions. The concentration of 

divalent cations appears to play a significant role.
12 

In the single molecule and AFM studies, the H-NS/DNA complexes may be perturbed 

significantly, either by the forces applied, or by adsorption and subsequent drying. As a 

consequence, one cannot reliably deduce the impact of H-NS binding on the size of the 

complexes. Here, we use the non-invasive technique of dynamic light scattering to determine 

the coil sizes of both linear and supercoiled plasmid DNA, in the absence and presence of 

bound H-NS, in bulk solutions. 

Previously, we have shown
14

 that binding of a different, archaeal nucleoid protein, the 

small and basic Sso7d, has only a minor influence on DNA dimensions in solution (Chapter 

5). However, this protein dramatically reduces the critical concentration of PEG (polyethylene 

glycol, an inert flexible polymer) needed to condense linear DNA even at protein 

concentrations far below full coverage. DNA condensation by nonbinding polymers (or -

condensation; stands for polymer- and salt-induced) is thought to affect the phenomenon of 

genomic DNA compaction under the influence of “macromolecular crowding” in bacterial 

cells.
15,16

: namely, the strong excluded volume interactions between DNA and other 
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nonbinding large molecules, mainly consisting of globular proteins and RNA. Because the 

bacterial DNA is supercoiled, the nucleoid is not condensed though it is subject to 

compaction. In addition to studying the direct effect of H-NS on the DNA dimensions, we 

will also investigate synergetic effects, particularly the possible cooperation between the H-

NS binding and polymer depletion in reducing DNA volume even further.  

The pUC18 DNA that we use (either supercoiled or linearized) is 2686 bp long, which 

corresponds to a contour length of L ≈ 900 nm. Assuming a traditional value of 50 nm for the 

DNA persistence length lp, the molecule measures about 20 persistence lengths, or about N = 

10 Kuhn segments (each of Kuhn length lK =2 lp=100 nm). Hence, the estimated gyration 

radius of the linear molecule is 

nmlNR Kg 130
6

1 2/1          (3.1) 

In this study we start with the case of isolated DNA coils, as the interpretation of their 

dynamic light scattering is reasonably straightforward. This requires that the DNA 

concentration is much lower than the overlap concentration: 

mlmgRNMC gA /4.1/ 3*          (3.2) 

where NA is Avogadro's number and M = 1.8 MDa is the pUC18 molar mass. Our light 

scattering experiments were carried out at a concentration of 50 µg/ml, sufficient to get an 

acceptable light scattering signal for bare DNA, yet well below the estimated overlap 

concentration. 

Association constants of nucleoid proteins for non-specific DNA are lower than those 

of sequence-dependent DNA binding proteins. For H-NS, the association constant for non-

specific DNA is estimated
17

 to be Ka ≈ 10
4
 M

-1
 calculated per DNA basepair. At low DNA 

coverage, the ratio of bound to free H-NS approximately equals DNA(bp)][aK , or about 0.75 

at a DNA concentration of 50 µg/ml. Hence, for the conditions we impose, most of the H-NS 

molecules will be bound rather than free, even at low coverage, despite the low DNA 

concentration. The estimated size of the binding site is about 12bp per H-NS dimer.
17

 By 

varying the concentration from 0 to 1 H-NS per 3 bp of DNA, we study the entire range from 

low coverage to complete saturation.  

Implications of our results for the role of H-NS and other nucleoid proteins in the 

formation of a nucleoid structures in bacteria and archaea will be discussed at the end of the 

paper. 
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3.2 Experimental and methods 

 

Isolation and purification of DNA  

E. coli strain LMC899 containing pUC18 plasmid was grown overnight in 100 ml TY medium supplemented 

with 50 µg/ml ampicillin (Sigma Aldrich). Plasmid DNA was isolated using High Pure Plasmid Isolation Kit 

(Roche Applied Science) according to the instructions of the manufacturer. Linearized pUC18 DNA was 

obtained by digestion with XbaI (Fermentas) for 2 hours at 37ºC. Following digestion, DNA was ethanol 

precipitated and resuspended in 10 mM NaH2PO4/Na2HPO4 100 mM NaCl (for DLS) or 150 mM NaCl (for 

sedimentation assays). DNA concentrations were determined spectrophotometrically. 

 

Isolation and purification of H-NS 

Overexpression of H-NS in E. coli and purification were essentially as described previously.
7
 After the last 

purification step, H-NS was dialysed against a buffer consisting of 20 mM Tris-HCl, 0.1 mM EDTA, 10% 

Glycerol, 200 mM NH4Cl, 0.5 mM DTT, pH7.7, and aliquots were stored frozen at -80C.  

 

Buffer exchange and concentration protocol  

Directly before use an appropriate amount of H-NS was taken from the -80°C freezer. Samples were thawed on 

ice, and the storage buffer was exchanged for a 10 mM NaH2PO4/Na2HPO4 buffer with 100 mM NaCl (light 

scattering experiments) or 150 mM NaCl (sedimentation assay) using 0.5ml Zeba Desalt Spin columns (Pierce). 

H-NS was concentrated using 0.5 ml Microcon YM-3 3 kDa NMWL centrifugal filter devices. H-NS 

concentrations were measured by UV absorption, using an absorption coefficient
3
 of 0.86 L g

-1
 cm

-1
 at 280 nm.  

 

Angle-dependent dynamic light scattering on supercoiled pUC18 plasmid DNA 

Dynamic light scattering measurements were performed on an ALV light scattering instrument equipped with an 

ALV-5000/60X0 external digital correlator and a 300 mW solid state laser (Cobolt Samba-300 DPSS laser) 

operating at a wavelength of 532 nm. A refractive index matching bath of filtered cis-decalin surrounded the 

cylindrical quartz scattering cell, filled with approximately1 ml of sample. Temperature was controlled at 20 ± 

0.1°C using a Haake F8-C35 thermostat. The scattering angle was varied between 30° and 90°, in steps of 10°. 

For each scattering angle, 5-10 measurements of 60-250s were performed. These were averaged to give a single 

intensity autocorrelation function g2(t). Distributions of relaxation rates  were extracted from the intensity 

autocorrelation functions g2(t) using a CONTIN analysis.
18

 For all angles between 30° and 90° there was a clear 

dominant peak at some relaxation rate peak (q) Effective diffusion constants were calculated from Deff(q) 

=q
2
peak(q). 

 

Fixed angle light scattering on H-NS / DNA complexes 

All measurements were done using Hellma precision cells type 105.251.005-QS. Cells were cleaned with 1 M 

HCL, rinsed with MilliQ H2O and 96% ethanol, followed by drying with N2 and pre-rinsing with the appropriate 

buffer. Samples were centrifuged at 10,000g for 20 minutes to reduce scattering by dust, and the cells were filled 

with typically 20l of sample. Light scattering experiments on DNA H-NS complexes were done using a 

Malvern Zetasizer Nano ZEN 1600 with a 4mW He-Ne laser operating at wavelength of  = 633nm, at a fixed 

scattering angle of  =12.8°. This gives a fixed scattering wavevector of q = 4n0sin( = 3.0∙10
6
 m

-1
, where 

n0=1.333 is the solvent refractive index. Absolute scattering intensities R (Rayleigh ratio) are calculated from 

t

tt

s R
n

n

I

II
R

2

2

00
          (3.3) 

where Is, I0 and It are, respectively, the scattering intensities of the sample, buffer, and toluene reference, and Rt = 

1.35x10
−2

 m
−1

 is the absolute scattering intensity of the toluene reference. For each sample, 50 measurements of 

2 minutes were performed. A small number of these showed a scattering intensity that was much higher than the 

average, and these were discarded. The remaining measurements were averaged to give the final values for the 

scattering intensity, and the scattering intensity autocorrelation function g2(t). Distributions of relaxation rates  

of the autocorrelation functions were determined using a CONTIN analysis.
18

 From the peak positions peak 



 59 

effective diffusion constants Deff were calculated from Deff =q
2
peak. Effective hydrodynamic radii RH,eff were 

calculated from Deff using the Stokes-Einstein relation. 

 

Condensation assay 

Poly(ethylene glycol), or PEG, with a molar mass of 20 kg/mol (Sigma Aldrich) was dissolved in 10 mM 

NaH2PO4/Na2HPO4 buffer with 150 mM NaCl. H-NS/DNA complexes were prepared in the same buffer, and 

equilibrated for at least 30 minutes. Next, 50 μl of H-NS/DNA complexes and 50 μl of PEG solution were mixed 

to give a final DNA concentration of 12 ng/μl. Samples mixed thoroughly, incubated for 1h at room temperature, 

and centrifuged at 10,000 g for 1 h at 20ºC. After centrifugation, 5 μl of the supernatant was electrophoresed on a 

1% agarose gel, using ethidium bromide to stain the DNA. 

 

3.3 Results 

 

First, we compare the results of dynamic light scattering of one solution at small volumes and 

fixed scattering angle (12.8°), with that obtained with the help of a traditional goniometer 

based set-up in which the scattering angle was varied continuously, namely, for a 50 µg/ml 

solution of bare supercoiled pUC18. We used the fixed angle scattering instrument because 

the amounts of available H-NS necessitated small sample volumes. 

 

Figure 3.1: Effective diffusion constants Deff (μm
2
 s

-1
) of 50 g/ml supercoiled pUC18 as a function of the 

squared wavevector q
2
 (m

-2
), in the low wavevectors regime. The square symbol indicates the fixed angle 

instrument (scattering angle  = 12.8°). Diamonds indicate a traditional large cell set up with goniometer. The 

dashed line at q→0 is the value D = 5.0 μm
2
 s

-1
 reported by Langowski et al.

19 

 

 At the low scattering angles considered here, we found the decay of the time 

correlation functions to be nearly monoexponential. Effective diffusion constants Deff (q) 
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depending on the magnitude q of the wavevector were obtained from the dominant peaks in a 

CONTIN analysis of the autocorrelation functions g2(t), and are shown in Figure 3.1. The 

diffusion constant at q=0 extrapolated from the angle-dependent measurements is equal to that 

determined by the fixed angle apparatus. Thus, we were able to get a convenient estimate of 

true diffusion constants with the latter instrument despite the small sample volumes used. 

Both measurements for the diffusion constant at q = 0 also agree with the value of D = 5 m
2
 

s
-1

 for bare supercoiled pUC18 reported by Langowski et al.
19

. 

 

Figure 3.2: Intensities of scattered light (in terms of the Rayleigh ratio Rθ in m
-1

) for supercoiled (triangles) and 

XbaI linearised (squares) pUC18 (50 g/ml) with increasing amounts of H-NS.  

 

Upon the addition of H-NS, the intensity of light scattered at 12.8° increases for both 

the supercoiled and the linearized plasmid DNA (Fig. 3.2). However, as shown in Fig. 3.3, the 

corresponding changes in the effective hydrodynamic radius RH,eff  of the complexes are 

insignificant, remaining almost within the margin of error. At all H-NS concentrations, the 

effective hydrodynamic radius of the linearized plasmid is larger than that of the supercoiled 

plasmid. The observed increase in scattering is a factor of 7 for the linearized plasmid DNA, 

and 10 times for the supercoiled plasmid at the highest H-NS concentrations (see Fig. 3.2). 
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Figure 3.3: Effective hydrodynamic radii of supercoiled (triangles) and XbaI linearized (squares) pUC18 DNA 

(50 g/ml) with increasing amounts of H-NS. Effective hydrodynamic radii are derived from the relaxation rates 

corresponding to the dominant peak in a CONTIN analysis of the dynamic light scattering autocorrelation 

functions. For linearized DNA at the highest concentration of H-NS, a second peak at a slower relaxation rate is 

found, which is not included in this figure. 

 

Figure 3.4: Distribution of relaxation rates from a CONTIN analysis of the correlation function for complexes of 

linearized pUC18 (50g/mL) with H-NS in a molar ratio of 1 H-NS per 3 bp. The first peak at Γ ≈ 5 μs
-1

 has a 

relative area of 0.44 and corresponds to an effective hydrodynamic radius of RH,eff = 384 nm. The second peak, at 

Γ ≈ 27 μs
-1

 has a relative area of 0.37 and corresponds to an effective hydrodynamic radius of RH,eff = 68 nm. The 

size shown in Fig. 3 is the size corresponding to this second peak. 
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Effective hydrodynamic radii RH,eff  in Fig. 3.3 were calculated from the dominant peak 

of a CONTIN fit of the autocorrelation data. In most cases we found the decay of the 

correlation curves was indeed nearly single exponential. A notable exception to this general 

scenario was the measurement at the ratio of 1 H-NS per 3 bp of linear pUC18. In this case, 

we show the full CONTIN fit (amplitude versus relaxation rate  ) in Fig 3.4. One peak 

corresponds to an effective hydrodynamic radius of 68 nm, and a second peak to a much 

larger effective hydrodynamic radius of 384 nm.  

 

 

Figure 3.5: Agarose gel electrophoresis of complexes consisting of linearized pUC18 and H-NS. Lane 1: Mw 

ladder, lane 2: control = linear pUC18, lanes 3-8: linear pUC18 plus increasing concentrations of H-NS, [H-

NS]/[DNA(bp)] = 0, 1/300, 1/100, 1/30, 1/10 and 1/3. 

 

Having established that H-NS does not significantly compact DNA coils by itself 

under our the solution conditions, we next investigated the combined effect of nonbinding 

flexible polymers (PEG20K; polyethylene glycol with molar mass 20,000 g/mol) and H-NS 

on DNA condensation. First, an electrophoretic mobility shift assay was used to assess the 

binding of H-NS to DNA under the conditions of the sedimentation assay. As can be seen in 

Fig. 3.5, retardation starts to be significant at 1 H-NS per 10 bp DNA whereas at 1 H-NS per 

3bp of DNA, retardation becomes very strong.  

The sedimentation assay is based on the increased susceptibility of DNA condensates 

induced by flexible polymers and H-NS to sedimentation, so they can be spun down in a 

centrifuge. The DNA present in the supernatant is analysed by agarose gel electrophoresis. If 

sedimentable DNA condensates are formed, the corresponding DNA bands on the gel should 

vanish. Results for condensation in the absence of H-NS are shown in Figure 3.6. The DNA 

band starts to fade at 14% and has completely disappeared at 16% of PEG, such that we 

estimate a critical concentration of 15±2%, consistent with previously reported data.
20
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Figure 3.6: Agarose gel electrophoresis of the supernatant resulting from centrifugation of mixtures of linearized 

pUC18 with different concentrations of PEG20K at 0.15M NaCl. Lane 1: Mw ladder, lane 2: control = linear 

pUC18, lanes 3-8: linear pUC18 plus increasing concentrations (%w/w) of PEG20K: 10, 12, 14, 16, 18 and 20.  

 

 

Figure 3.7:Agarose gel electrophoresis of the supernatant resulting from the centrifugation of complexes of 

linearized pUC18 with H-NS at a molar ratio of 1/30 bp, and various concentrations of PEG20K at 0.15 M NaCl. 

Lane 1: Mw ladder. Lanes 2-7: increasing concentrations of PEG 20K: 5, 6, 7, 8, 9 and 10 %w/w. 

  

 

Figure 3.8: Agarose gel electrophoresis of the supernatant resulting from centrifugation of complexes of 

linearized pUC18 with H-NS at a molar ratio of 1:10 and various concentrations of PEG20K at 0.15M NaCl. 

Lane 1: Mw ladder. Lanes 2-5: increasing concentrations of PEG 20K: 2, 3, 4 and 5 %w/w. 

 

Results for the polymer-induced condensation of H-NS/DNA complexes are shown in 

Figures 3.7 and 3.8 for [H-NS]/[DNA] molar ratios of 1 H-NS per 30bp and 1 H-NS per 10bp, 

respectively. At the lower concentration, the critical polymer concentration decreases to 8.5±1 
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% w/w (Figure 3.7). At the higher concentration of 1 H-NS per 10 bp, the transition occurs at 

3.5±1 % (w/w) of polymer (Figure 3.8). 

 

3.4 Discussion 

  

First, we discuss the results for the increase in the static intensity on the addition of H-

NS to the DNA solutions, as shown in Fig. 3.2. The observed increase in scattering is a 

substantial factor of 7 for the linearized DNA, and increases to 10 times for the supercoiled 

DNA at the highest H-NS concentrations. If we assume the simplification that the scattering 

contrast for DNA and H-NS are roughly equal, the scattering intensity should be proportional 

to the mass of the complexes when the scattering angle and the concentration are zero (the 

scattering contrast is given in terms of the refractive index increment, but this is hard to 

determine at present). However, we know that the mass of DNA fully saturated by H-NS is 

about 6 times that of bare DNA
17

. Our estimates may overestimate the actual value somewhat, 

but they cannot be significantly improved until the refractive index increment of H-NS is 

established.  

Although the static scattering convincingly demonstrates that there is significant 

binding of H-NS to DNA, it comes as a surprise that the corresponding changes in the 

effective hydrodynamic radii RH,eff  are minimal (see Fig. 3.3). If H-NS were to bind to DNA 

mainly in a bridging mode, one would have expected at least some degree of compaction, 

especially for linear chains. The fact that no compaction is observed strongly indicates that 

under the conditions of our experiments, bridging cannot be extensive. It is well to note that 

according to Liu et al.
12

, H-NS only binds in a bridging mode above a certain concentration of 

divalent ions. Below this concentration, H-NS is thought merely to coat single DNA duplexes. 

Our measurements have been indeed been carried out in the absence of any divalent ions. On 

the other hand, the CONTIN analysis for linear DNA at the highest concentration of added H-

NS (Fig. 4) suggests that complexes could be formed consisting of multiple DNA duplexes. 

This may imply a small degree of intermolecular bridging, but it is difficult to assess this in a 

quantitative fashion. 

Conditions in bacterial cells are quite different from those in our in-vitro experiments. 

Hence we cannot conclude that H-NS does not directly cause DNA compaction in-vivo. Our 

results do suggest that H-NS may contribute to DNA condensation via a synergetic effect. 

High concentrations of nonbinding macromolecules such as RNA and globular proteins may 
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drive DNA compaction via depletion interactions
15,16

, an effect that we here mimic using 

polymer. The dramatic effect of H-NS binding on DNA condensation by polymer depletion 

that we find here is in agreement with our previous conclusion
14

 and the earlier work of 

Murphy and Zimmerman.
25

 Protein binding leads to more efficient DNA condensation by 

polymers, and hence may also enhance crowding induced DNA condensation by cytosolic 

macromolecules such as nonbinding proteins and RNA. 

As we have argued before
14

 (Chapter 5 of this thesis), two effects of NAP binding are 

the most likely contributors to enhanced condensation: charge neutralization of the DNA by 

the typically basic nucleoid proteins, and an increased effective diameter of the DNA. On a 

more speculative note, DNA-bridging proteins such as H-NS may have an additional effect. It 

has already been argued that a switch to the bridging mode of DNA binding for H-NS is 

triggered by multivalent cations
12

. We would like to add that the local concentration of DNA 

segments should also play an important role. Since crowding-induced condensation leads to a 

dramatic enhancement of the local concentration of DNA segments, this should also strongly 

enhance the probability of bridging. Hence, DNA condensation and the DNA-binding mode 

(bridging or non-bridging) may be coupled for H-NS. 

 Finally, we would like to remark on the wavevector dependence of the effective 

diffusion constant Deff(q) of bare supercoiled pUC18 (Fig. 3.1). This is very similar to that 

obtained previously by other workers for pUC18
19

 and other plasmids.
21

 A general theory for 

the initial decay rate of the correlation function of dilute polymer solutions was derived by 

Akcasu and Gurol
22

. This theory was elaborated by Stockmayer and co-workers in addressing 

the effects of chain architecture and stiffness on the dynamic scattering of polymers.
23,24 

This 

approach does not seem to have been applied to supercoiled DNA. The initial decay rate of 

the electric field autocorrelation function g1(t) determined by dynamic light scattering 

experiment is  

0

1 )(ln




t

dt

tgd
           (5) 

At the low scattering angles that we have used, the decay of the correlation function was 

found to be dominated by a single relaxation peak in the CONTIN analysis of g1(t). To a good 

approximation, this peak therefore corresponds to the initial relaxation rate , which is related 

to the effective diffusion constant by )(2 qDq eff (see Fig. 1). The general form of  for a 

dilute polymer solution in the limit of low q is: 

....)1()( 222  gRCqDqq          (6) 
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where C is a convenient dimensionless constant that depends on the chain architecture and 

flexibility
23,24,

 and Rg is the radius of gyration. Radii of gyration for supercoiled plasmids of 

various lengths have been compiled by Fishmann and Patterson
21

. From their data, the 

expected radius of gyration for our 2.7 kb supercoiled plasmid is Rg ≈ 73 nm, which gives C = 

0.16±0.02 from the slope in Fig. 1. A similar value of C = 0.13 can be deduced via the data of 

Fishman and Patterson for a somewhat longer 3.7 kb plasmid.  

For semiflexible chains, the C parameter depends on the contour length L scaled by 

the Kuhn length lK , and on the chain topology. Theoretical predictions are available for 

linear
23

 and untwisted circular semiflexible chains
24

, but not for semiflexible chains that are 

supercoiled (i.e. twisted and circular). A qualitative interpretation of the parameter C is that it 

is a measure of the relative strength of low frequency internal modes (rotation, bending), as 

compared to those due to translation. Supercoiling may be expected to reduce the extent of 

internal motion as compared to that of linear chains, and circular untwisted chains; 

supercoiling should thus lead to a lower value of C. At L/lK ≈ 10, predicted values are C = 

0.18 for untwisted circular chains
24

, and C = 0.23 for linear chains
23

. We conclude that our 

low value of C is consistent with supercoiling restraining the chain dynamics.  

 

3.5 Concluding Remarks 

 

The dramatic enhancement of  condensation of DNA by bound nucleoid proteins has now 

been demonstrated for three completely different nucleoid proteins: bacterial HU
25

, archaeal 

Sso7d
14

, and, in this work, for bacterial H-NS. We emphasize that these proteins by 

themselves do not condense DNA. In fact, we have shown here that the global dimensions of 

DNA are essentially not perturbed at all by H-NS. 

 The work of Sarkar et al.
26

 addresses another interesting aspect of this interplay: 

whereas polymer-induced condensates have a predominantly toroidal shape when DNA is 

bare, complexes of DNA with HU condense into shapes that are distinctly different, such as 

cylindrical. 

The theoretical arguments that we have put forward suggest that the enhancement of 

DNA condensation could be generic, and should also occur for other types of nonbinding 

depletive macromolecules that have large excluded-volume interactions with DNA. In 

bacterial cells, these would be nonbinding globular proteins, and also RNA. Indeed, Murphy 

and Zimmerman have shown
25

 that serum albumin at weight concentrations of up to 25% did 
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not condense bare linear DNA, whereas concentrations much lower than this did condense 

HU/DNA complexes. In other words, effects observed for inert PEG of the appropriate size 

may also be expected for biologically relevant crowding agents such as globular proteins and 

RNA, at least qualitatively. 

Nevertheless, quantitative differences could show up. One example is that linear bare 

DNA requires high salt to be condensed by inert flexible polymer
20

, but low salt to be 

condensed by nonbinding globular proteins.
27

 In the former, the salt dependence is due to the 

screening of electrostatic repulsion between DNA needed to condense the DNA more 

readily.
28

 In the latter case, the salt dependence stems from the electrostatic protein-protein 

repulsion.
29

 Condensation requires high protein osmotic pressures, and hence a low ionic 

strength. 

We have here referred to the DNA complexes induced by PEG and H-NS as 

condensates. The term DNA condensation has been in use for a very long time
30,31

: it 

connotes a state of close packing with an attendant high probability that a phase transition has 

taken place (even though the DNA is of finite size). Often DNA condensates that have been 

studied in the pas stringently fall in this category. Without an in-depth study of the DNA 

configuration within our "condensates", we do not know at present how strict the terminology 

is. 

Compaction of DNA has to be distinguished from condensation, even though DNA 

may sometimes also condense when it is compacted by external forces. For instance, the 

isolated E. coli nucleoid may be gradually compressed by increasing the PEG concentration in 

the surrounding buffer.
32,33 

The DNA is then compacted as a continuous process in the 

absence of any transition. The DNA in the compressed state is, furthermore, of a low volume 

fraction so the term "condensation" would make little sense. Such a type of compaction was 

predicted some time ago.
15

 Of course, DNA condensation may still be related to DNA 

compaction. In this respect, the experiments outlined here have been carried out 

simultaneously by us on E. coli nucleoids. These experiments are described in Chapter 4.  
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Chapter 4  

The effect of DNA binding protein H-NS on nucleoid 

compaction*. 

 

*To be submitted 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

Escherichia coli nucleoids were isolated with a new osmotic shock method using ampicillin to 

disrupt the peptidoglycan layer. The DAPI-stained isolated nucleoids were photographed using 

confocal microscopy. The addition of a low concentration of the nucleoid-associated protein H-

NS enhanced the compaction originally due to macromolecular crowding induced by PEG. 

Remarkably, in the absence of PEG, H-NS did not affect the compaction of the nucleoids even at 

high concentrations. Our results confirm a general synergetic enhancement of macromolecular 

crowding by the cytoplasm together with the binding of protein to the nucleoid DNA. 
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4.1 Introduction 

 

The chromosomal DNA of Escherichia coli is compacted into a tiny, separate structure called 

the nucleoid (Mason & Powelson, 1956). The compaction of the nucleoid is believed to be 

maintained by three effects: supercoiling of the DNA, macromolecular crowding owing to the 

cytoplasm and binding of multivalent ions and certain proteins to the DNA (Zimmerman, 

2006). It is noteworthy that none of these factors by themselves can collapse the chromosome 

to the degree observed in vivo. Gyrase is responsible for supercoiling the DNA (Gellert et al., 

1976) but its inhibition merely leads to slightly larger nucleoids in vivo (Stuger et al., 2002). 

Supercoiling by itself of the chromosomal DNA in vitro cannot account for the size of the 

nucleoid in vivo (Boles et al., 1996; Cunha et al., 2001b). However, it is generally thought 

that a synergy of all these effects could achieve the desired compaction (de Vries, 2010). 

The E. coli cytoplasm contains a high concentration of protein and RNA molecules (up to 340 

mg/ml). It has been known for some time that the cytoplasm induces macromolecular 

crowding (Zimmerman and Trach, 1991). Polyethylene glycol (PEG) with a molar mass of 20 

kg/mol consists of linear polymer coils whose size is of the order of magnitude of the typical 

dimensions of cytoplasmic proteins. It is a reasonably inert agent and its crowding properties 

are thought to mimic those of cytoplasm. In a previous study, the volumes of isolated E. coli 

nucleoids were measured as a function of increasing concentrations of PEG, resulting in a 

continuous decrease in volume up to 70 times (Cunha et al., 2001b). Here we take this 

investigation one step further and study the synergetic effect of the H-NS protein with 

crowding. 

In view of the very small size of the bacterial nucleoid in vivo, it is very difficult to 

quantitatively visualize by light microscopy. Many attempts have been made to visualize its 

detailed structure by electron microscopy (Robinow and Kellenberger, 1994). Fixation 

procedures are required in that case but that is a drastic and suspect procedure. It causes a 

marked change of the solution properties of the biopolymers involved (Woldringh and Odijk, 

1999). On the other hand, it is reasonable to assume that the topological properties of the 

nucleoid are not altered after a mild liberation from a cell, so it then makes sense to study its 

properties in vitro by light microscopy. Therefore, a variety of isolation protocols were 

developed over several decades (Sloot et al., 1983; Worcel and Burgi, 1972; Murphy and 

Zimmerman, 1997, Cunha et al., 2001b, Wegner et al., submitted for publication). All of them 

involve a step where the cell wall is first disrupted before lysis. In all our experiments we use 
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a new gentle method of isolating the nucleoid by osmotic shock, which is described in detail 

in Wegner et al. (2012). The nucleoids are stained by using DAPI, a very selective DNA dye. 

They are then directly visualized using fluorescence microscopy. 

There are studies that already indicate that the binding of proteins to DNA combined with the 

crowding interaction by PEG results in a relatively more severe compaction of plasmid or 

linear DNA (Murphy and Zimmerman, 1993; Ramos et al., 2007). Here we focus on the 

nucleoid-associated protein H-NS. This protein is involved in the regulation of a broad range 

of genes as well as in the perturbation of the DNA structure (Atlung and Igmer, 1997, Dame 

et al., 2006). In Chapter 3, we described a set of experiments concerning the synergetic 

compaction of plasmid DNA. Here, we carried out complementary experiments on isolated 

nucleoids which come much closer to mimicking the compaction of the highly branched E. 

coli chromosome in vivo. Our results suggest that incubation of isolated nucleoids with a high 

concentration of H-NS does not change their volume. By contrast, combining H-NS binding 

with PEG-induced crowding leads to a dramatic compaction of the chromosomal DNA.  

 

4.2 Materials and methods 

 

Strain and growth conditions 

E. coli wild type strain LMC500 (K-12 MC4100 LysA) was grown for several days in glucose minimal medium 

(6.33 g K2HPO4×3H2O, 2.95 g KH2PO4, 1.05 g (NH4)2SO4, 0.10 g MgSO4×7H2O, 0.28 mg FeSO4×7H2O, 7.1 mg 

Ca(NO3)2×4H2O, 4 g glucose, 50 mg lysine, 4 mg vitamin B1 per 1 liter) at 28°C. Overnight culture of 5 ml of 

well-grown cells was centrifuged at 2500 rpm at room temperature. The pellet was resuspended in 20 ml of 

glucose minimal medium supplemented with 0.25 % of TY (20 g/l bacto-tryptone, 5 g/l yeast extract, 5.9 g/l 

MgSO4*7 H2O, 0.58 g/l NaCl) and 20 % sucrose. The culture was grown for a few hours until OD450=0.4.  

 

Nucleoid isolation 

Nucleoids were isolated according to the ampicillin-method (Wegner et al., 2012). A 5 ml LMC500 culture was 

grown in glucose minimal medium with 0.25% TY and 20% sucrose supplemented with 400 µl of 100 mg/ml 

ampicillin (final concentration 2 mg/ml). At this juncture it is important to mix the culture while shaking the 

cuvette at the same time to avoid cell lysis. After the addition of ampicillin, the culture was grown for an 

additional 2 hours at 30°C. Subsequently, the culture was divided into 1.5 ml aliquots and spun down at 5000 

rpm for 15 min at room temperature. The pellets were resuspended in 250 µl of sucrose buffer (0.58 M sucrose, 

10 mM NaPi pH 7.0, 10 mM EDTA and 100 mM NaCl). 

 

Cover slip coating 

Cover slips were cleaned and coated with BSA protein (Sigma) prior to microscopy experiments in order to 

prevent attachment of the sedimenting nucleoids to the glass surface. First, the coverslips were dipped into 37 % 

HCl, washed in 3 successive 500 ml beakers filled with demi water and blow-dried. A drop of 200 µl of 200 

mg/ml BSA solution was placed on a parafilm. An acid-cleaned cover slip put on a metal holder and 

immobilized with stickers was placed on the drop. After 30 minutes of incubation at room temperature, the cover 

slip was rinsed with demi water and blow-dried. 
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Incubation with wt H-NS 

wt H-NS was purified, stored and buffer exchanged as described in Chapter 1 of this thesis. To check for 

consistent binding to DNA, we regularly performed electrophoretic mobility shift assays using pUC18 as a non-

specific H-NS binding template. Ampicillin-isolated nucleoids (1.16 µl) were mixed with 4 µl of wt H-NS (final 

concentration of 100 µg/ml) in 10 mM phosphate buffer at pH=7 with 150 mM NaCl and incubated for 30 min at 

room temperature (in this thesis, this means around 22ºC). As a control, 4 µl of 10 mM phosphate buffer at 150 

mM NaCl was used.  

 

Polymer-mediated compaction 

Polyethylene glycol (PEG, 20 kg/mol (Sigma)) was dissolved overnight at 65°C in 10 mM phosphate buffer at 

pH=7 with 150 mM NaCl to a concentration of 25 % (w/v). First, 6 µl of a suspension of isolated nucleoids was 

incubated with wild type H-NS (final concentrations 0, 12 and 24 µg/ml) for 30 min at room temperature. Then 

it was gently mixed by pipetting with 30 µl of a solution containing PEG (final conc. 0-5 % w/v), DAPI (final 

concentration of 500 ng/ml) and NaCl (150 mM) and incubated for another 30 minutes. 10 µl of the solution was 

applied to an acid-cleaned, BSA treated cover slip placed on a metal holder. Another cover slip was placed on 

top to protect the sample from evaporation while photos were being taken.  

 

Microscopy and image analysis 

All images were acquired using the A1 confocal laser scanning microscope (Nikon) with a 100x lens at room 

temperature (about 22°C). DAPI-stained nucleoids were illuminated at 405 nm wavelength with a scanning 

speed of 1 frame/sec. The detector was equipped with an emission longpass filter. The confocal pinhole was 

open during the experiments. Only free-floating nucleoids were photographed. Image analysis was performed 

using the public domain software ObjectImage (Visscher et al. 1994). Volume distributions were estimated by 

analyzing a large number of nucleoids. Typically we measured at least 80 nucleoids per sample and repeated this 

three times, per solution condition. 

 

4.3 Results 

 

Representative images for nucleoids in the absence of PEG and H-NS are shown in Fig. 4.1A. 

Representative images of nucleoids after adding H-NS at a concentration of 100 µg/ml H-NS 

are shown in Fig. 4.1B. A visual inspection immediately indicates that H-NS has little to no 

effect on nucleoid volume.  

 

A    

B    

Figure 4.1. Fluorescent images of representative isolated nucleoids without (A) and with the addition of 100 

µg/ml H-NS (B). 
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Volume distributions obtained by analyzing a large number of images of nucleoids are shown 

in Fig 4.2A. The nucleoid volume distributions are broad, spanning values between 20 and 

100 µm
3
. This is caused, at least in part, by the variation in DNA content of individual 

bacteria, which can vary by a factor of at least 2 depending on the cell cycle. The nucleoid 

volume distribution after adding H-NS at a concentration of 100 µg/ml H-NS is shown in Fig. 

4.2B. Remarkably, the images and the resulting nucleoid volume distributions are very similar 

for nucleoids incubated with or without 100 µg/ml H-NS. The average nucleoid volumes Vn 

calculated from the distributions are Vn = 43±14m
3
 without H-NS, and Vn =44±17m

3
 after 

incubation with 100 µg/ml H-NS, a difference much smaller than the margin of error. 

 

 

Figure 4.2. Volume distributions of isolated nucleoids incubated without (A) and with 100 µg/ml wt H-NS (B). 

The x-axis indicates the nucleoid volume measured in µm
3
 and the y-axis denotes the frequency. The total 

number of observations was n =183 for the nucleoids without and n = 191 for the nucleoids with H-NS. 

 

0  1  2  3  4 5   % PEG 

A        

B       

C       

Figure 4.3. Fluorescent images of representative isolated nucleoids without (A) and with addition of 12 µg/ml 

(B) and 24 µg/ml H-NS (C) as a function of increasing concentrations of PEG. 
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In Figure 4.3, we show representative pictures of isolated E. coli nucleoids at various 

concentrations of PEG at 0, 12, and 24 g/ml H-NS . They clearly show enhanced compaction 

with increasing PEG concentration. The average volume of a population consisting of 

typically 50 to 60 nucleoids is represented by each entry in Table 4.1. The addition of 24 

µg/ml H-NS causes a drastic reduction in the concentration of PEG necessary for appreciable 

compaction to 1 % (Fig. 3 C). A three-dimensional plot (Fig. 4.4) summarizes the entries from 

Table 4.1.  

 

 

% PEG  

Control 12 µg/ml H-NS 24 µg/ml H-NS 

Volume 

[µm
3
] 

St. dev. 
Volume 

[µm
3
] 

St. dev. 
Volume 

[µm
3
] 

St. dev. 

0 39.73 19.51 59.15 27.71 39.55 19.8 

1 32.22 19.48 27.07 15.35 5.86 7.36 

2 19.23 11.47 22.02 11.67 1.38 1.26 

3 11.38 6.06 17.29 7.41 1.03 1.11 

4 13.81 7.68 6.24 7.87 0.79 0.65 

5 8.06 4.25 1.55 2.43 0.65 0.52 

 

Table 4.1. Average index volumes of isolated nucleoids incubated at various concentrations of H-NS. 

 

 

Figure 4.4. Average index volumes of isolated nucleoids as a function of both the weight fraction of PEG and 

the concentration of H-NS.  
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Because it was often difficult to distinguish via imaging between a compact nucleoid and a 

remnant spheroplast (“ghost cell”), we always determined by visual inspection, whether the 

DAPI-stained object was one of the two prior to scanning. One characteristic property of a 

ghost cell is its obvious round shape (Fig. 4.5B), whereas compact nucleoids adopt a more 

irregular structure (Fig. 4.5A). 

A     B 

  

Figure 4.5. Images showing the difference between a compact nucleoid after incubation with 24 µg/ml H-NS 

(A) and a spheroplast (B), both in solutions containing 5 % PEG. 

 

4.4 Discussion 

 

It is qualitatively obvious from Table 4.1 and Fig. 4.4 that H-NS has a dramatic effect on the 

PEG-induced compaction of the E. coli nucleoid. We attempt to interpret the synergetic effect 

of H-NS and PEG within the framework of the thermodynamic coexistence equations 

introduced previously (Cunha 2001b). We first need to assess the degree of binding of the H-

NS protein to the chromosomal DNA. 

We estimate the DNA concentration in the lysate which is the end product of our ampicillin 

protocol (Wegner et al., 2012). From the optical density of the cell culture, the fact that 

typically 80% of the cells are actually lysed and a nucleoid consists of 1.58 chromosomal 

equivalents, we know that the concentration of DNA in the ultimate lysate must be about 

5×10
-8

 M bp DNA. At these low concentrations, we may express the binding of H-NS to 

double-stranded DNA to a first approximation as (Friedrich et al., 1988) 

 
14101.1  MK

DNAC

C
a

F

B         (4.1) 
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where CB is the effective concentration of bound H-NS, CF is the concentration of free H-NS 

and the molarity M is given in terms of bp DNA. For instance, in Fig. 1B the concentration of 

H-NS is 6.4×10
-6

 M so that we have 2107]/[ DNACB  i.e. the DNA is halfway covered by 

H-NS dimers. We suppose one dimer binds about 12bp of DNA (Friedrich et al., 1988). 

Nevertheless, there is clearly a certain degree of uncertainty in these numbers. 

 

w0 (g/ml) wi (g/ml) Vn (m
3
) G 

0.01 0.0099056 27.1 799 

0.02 0.0198106 22.0 1846 

0.03 0.02967158 17.3 4507 

0.04 0.038895 6.24 18604 

0.05 0.045027 1.55 92980 

Table 4.II. Measure of the free energy G of the isolated nucleoids at 12g/ml H-NS and at various PEG 

concentrations w0 in the bulk. 

 

The DNA helix forms complexes with H-NS dimers in a rather complicated fashion 

(Shindo et al., 1995; Bloch et al., 2003; Arold et al., 2010). In previous work we argued that 

the depletion interaction between PEG chains and the DNA helix (de Vries, 2001) is the 

primary cause of the compaction of the E. coli nucleoid immersed in a PEG reservoir (Cunha 

et al., 2001). In the H-NS experiments at hand, the major effect of H-NS appears to be an 

increase in the thickness of the nucleoidal DNA, which in turn enhances the depletion 

interaction (i.e. the H-NS/DNA complex repels the PEG coils by entropic depletion). 

Moreover, we know from in vitro studies that bound H-NS at not too high concentrations does 

not influence the configurational statistics of the DNA chains (this thesis, Chapter 3). Here, 

we tentatively introduce an enhancement h of the DNA radius a of 1 nm and 2nm, as a result 

of H-NS associated at 12 g/ml and 24 g/ml concentrations, respectively (a = 1 nm). 

 

w0 (g/ml) wi (g/ml) Vn (m
3
) G 

0.01 0.0094181 5.9 6675 

0.02 0.0159543 1.38 60348 

0.03 0.0225864 1.03 141098 

0.04 0.0281827 0.79 269213 

0.05 0.033317 0.65 440862 

 

Table 4.III. Measure of the free energy G of the isolated nucleoids at 24g/ml H-NS and at various PEG 

concentrations w0 in the bulk. 
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We next compute the size of a nucleoid as a function of PEG weight fraction in the manner 

outlined by Cunha et al. (2001b). The PEG-(H-NS/DNA) interaction per nm of the DNA 

helical contour is given by   

4/9
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3/1
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a

h
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Tk

f

B

dep

















       (4.2) 

Here, the previous expression valid for pure PEG is amended by geometric factors on the 

basis of the theory developed by de Vries (2001) (kB is Boltzmann’s constant, T is the 

temperature, the constants E1 = 4 and E2 = 50, and fdep is expressed in units kBT/nm when w is 

in g/ml). A PEG coil which has a radius of gyration of merely 6.9 nm is easily able to enter 

the nucleoid and may even wrap itself around the H-NS/DNA complex locally. The depletion 

interaction causes a difference in the concentration of PEG coils inside and outside the 

globular chromosome; thermodynamic equilibrium demands equality of the respective PEG 

chemical potentials as well as the osmotic pressure. We let the nucleoid have a free energy Fn 

of compression balancing the depletion interaction; the quantity ultimately obtained is 

n

n

B

n

V

F

Tk

V
G




          (4.3) 

in terms of the nucleoid volume Vn from Table 4.1. We have summarized the numerical 

outcome of the coexistence equations in Tables 4.II and 4.III; wi is the weight fraction of PEG 

inside nucleoids. As in the work of Cunha (2001b), we have plotted G versus lnVn in Fig. 4.6. 

The data points may be fitted to linear least-squares plots within the experimental margin of 

error (we have not plotted the data at zero H-NS. This baseline conflicts with the data of 

Cunha (2001b) and is obviously wrong. Unfortunately, the entire experiment could not be 

repeated for logistic reasons. This is one of the reasons the present results must be viewed as 

only preliminary). Eq. (4.3) then yields the free energies of the respective nucleoids 

NS-H g/ml12at      58.2

56.1

0 











n

n
V

V
F       (4.4) 

NS-H g/ml24at         92

86.1

0 











n

n
V

V
F       (4.5) 

Where V0 is the volume of the nucleoid at zero PEG (See Table 4.I).  

On the one hand it is gratifying that the procedure adopted for nucleoids in pure PEG can be 

translated to the case with H-NS. Indeed, Fig. 4.6 proves that scaling relations of the free 

energy versus the nucleoid volume remain viable. On the other hand, the two expressions 
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given by Eqs. 4.4 and 4.5 are in effect indistinguishable given the margin of error so it is not 

possible at present to draw any more significant conclusions. We hope more accurate work by 

us in the near future will lead to a higher accuracy. 

 

Figure 4.6. Relation between G and the index volume Vn for isolated nucleoids immersed in various PEG 

solutions at two H-NS concentrations. The data in Tables II and III are plotted in a double-logarithmic format. 

Linear least-squares fits yield lnG = 12.4(±0.5)-1.56(±0.20)lnVn at 12 g/ml and lnG = 12.0(±0.13)-

1.86(±0.15)lnVn at 24 g/ml H-NS. 
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Abstract 

Many prokaryotic nucleoid proteins bend DNA and form extended helical protein-DNA fibers 

rather than condensed structures. On the other hand it is known that such proteins (such as 

bacterial HU) strongly promote DNA condensation by macromolecular crowding. Using 

theoretical arguments, we show that this synergy is a simple consequence of the larger diameter 

and lower net charge density of the protein-DNA filaments as compared to naked DNA, and 

hence, should be quite general. To illustrate this generality, we use light-scattering to show that 

the 7kDa basic archaeal nucleoid protein Sso7d from Sulfolobus Solfataricus (known to sharply 

bend DNA) likewise does not significantly condense DNA by itself. However, the resulting 

protein-DNA fibers are again highly susceptible to crowding-induced condensation. Clearly, if 

DNA-bending nucleoid proteins fail to condense DNA in dilute solution, this does not mean that 

they do not contribute to DNA condensation in the context of the crowded living cell.
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5.1 Introduction 

 

The effect of nucleoid proteins on the global gene expression in prokaryotic cells is 

now well established (Dorman and Deighan, 2003) but their role in nucleoid compaction is 

less clear. For example, many of the most abundant prokaryotic nucleoid proteins introduce 

bends in DNA. When complexed with DNA at appreciable coverage, helical protein-DNA 

filaments are formed that are typically extended rather than condensed. This has been shown, 

for example, for bacterial HU from E coli using AFM and single-molecule force 

measurements (Dame and Goosen, 2002; van Noort et al., 2004)
 
and for archaeal Sac7d from 

Sulfolobus acidolaricus using small angle X-ray scattering (Krueger et al., 1999). On the 

other hand Murphy and Zimmerman (1995) find that E. coli HU strongly promotes crowding 

induced DNA condensation (induced by adding flexible polymers or non-binding proteins 

such as serum albumin or bacterial cytoplasmic proteins). This effect is especially strong at 

the high HU concentrations for which it has been suggested (Dame and Goosen, 2002; van 

Noort et al., 2004) that HU should counteract DNA compaction. 

Why are extended helical HU-DNA filaments so much more susceptible to crowding 

induced condensation? Here we wish to explain the molecular basis for this somewhat 

unexpected synergy in terms of a simple theory that we previously developed for polymer-

induced condensation of semiflexible polyelectrolytes (de Vries, 2001). We also briefly 

comment on the relation between this phenomenon and the formation and stability of 

prokaryotic nucleoids.  

To complement the previous results on E. coli HU, and to illustrate the generality of 

the phenomenon, we also study crowding-induced condensation of extended protein-DNA 

filaments for another well characterized DNA bending nucleoid protein: archaeal Sso7d from 

Sulfolobus solfataricus. This protein, and the nearly identical Sac7d from Sulfolobus 

acidolaricus have been shown to non-specifically introduce sharp bends into double stranded 

DNA. At higher concentrations, they fully cover DNA at about one protein per 4bp, and form 

extended helical filaments (Krueger et al., 1999). 

 

5.2 Materials and Methods 

 

Protein expression and purification 

The protein Sso7d was overexpressed in E. coli (DE3)pLysS, harboring the plasmid pET-3b/sso7d, described 

before (McAfee et al., 1995). Pelleted cells from 1.5 l culture were suspended in 15ml of suspension buffer: 30 

mM Na2HPO4-HCl, 500 mM NaCl, pH 6.5. Cells were lysed using a French press (3 times at 1000 psi) and 
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centrifuged for 50 min at 12,000 g, 4 °C. To remove the majority of E. coli proteins, the supernatant was heated 

to 80°C for 40 min, centrifuged for 2 hours at 45,000 g at 4° C, and filtered using a 0.45 µm pore size syringe 

filter. After a concentration step, we exchanged buffer using disposable PD10 columns, to buffer A: 30 mM 

Na2HPO4-HCl, pH 6.5. The suspension was loaded onto a MonoS column, equilibrated with buffer A, and eluted 

with a linear NaCl gradient (0 to 0.6 M). Sso7d eluted at around 0.35 M. No other bands were detected on SDS-

PAGE for fractions in the peak center, but some minor contaminations of around 15 kDa were detected for the 

fractions further away from the peak center. These fractions were pooled and concentrated, applied to a 

Superdex 75 column, and eluted with buffer A, after which SDS-PAGE showed only a single band 

corresponding to Sso7d. Purified protein was exchanged to storage buffer (20 mM Tris-HCl pH 7.7, 1 mM 

EDTA, 20% glycerol, 200 mM NH4Cl, 200 ppm NaN3, 200 ppm β-mercaptoethanol) by PD10 columns, 

concentrated to about 3 mg/ml and stored at -4°C. Protein concentrations were determined by UV 

spectrophotometry using (Krueger et al., 1999) λ278 = 1.1 ml/(mg•cm). 

 

DNA purification 

Plasmid pUC18 (2686 bp) was isolated from E. coli using Qiagen Kits according to the instructions of the 

manufacturer, and linearized using EcoRI. 

 

Light scattering 

Light-scattering was measured at 25°C using a Malvern NanoS, operating at a wavelength of 633 nm and a 

scattering angle of 173°. The effective hydrodynamic radius reported is the peak position of the monomodal 

distribution fit as reported by the Malvern DTS software, version 5.0. Absolute scattering intensities were 

calculated using toluene as a standard. For all of the experiments, concentrated stock DNA was diluted in 10 mM 

Tris-HCl buffer, pH 7.0, 150 mM NaCl. The final DNA concentration in the experiments was 12 µg/ml, as 

determined by UV spectrophotometry. Protein concentrations ranged from 0 to 1 protein per basepair. 

 

Condensation assay 

The condensation assay that was used is similar to that of Murphy and Zimmerman (1995). Protein-DNA 

complexes are equilibrated with flexible polymer solutions (final DNA concentration and buffer conditions as in 

the light-scattering experiment), centrifuged at 13000 g for 1 h and the supernatant is analyzed using agarose gel-

electrophoresis. Condensation is observed as a decreased, and ultimately vanishing intensity for the DNA bands 

in the agarose gels. 

 

5.3 Results and discussion 

 

To demonstrate that Sso7d indeed does not condense DNA in free solution at 

physiological ionic strength, as was shown previously for the nearly identical Sac7d using 

small angle X-ray scattering, we have performed static and dynamic light-scattering 

measurements on complexes with 2686 bp long pUC18 DNA, linearized with EcoRI. The 

effective hydrodynamic radius and scattered intensity as a function of protein/DNA molar 

ratio are shown in Figure 5.1. The static scattering closely follows the extent of binding since 

free proteins hardly contribute to the scattering. It clearly shows the expected saturation above 

1 protein per 4 bp. The reported effective hydrodynamic radius should only be considered as a 

rough estimate of the size of the complexes, but it clearly shows the same trends as observed 

in the single molecule force measurements for HU: a substantial but not drastic compaction at 

low protein concentrations followed by a slight expansion for over-saturated protein-DNA 
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fibers (Dame and Goosen, 2002). The main conclusion however, is that the protein clearly 

does not condense linear DNA fragments from dilute solutions. 

 

Figure 5.1: Light Scattering  

Effective hydrodynamic radius (left y-axis, top curve) and scattered intensity or Rayleigh ratio Rθ (right axis, 

bottom curve) of complexes of EcoRI linearized pUC18 DNA with Sso7d, as a function of protein/DNA molar 

ratio, at a fixed DNA concentration of 12 µg/ml, in a 30mM Tris-HCl buffer, pH 7, 150 mM NaCl. 

 

Next consider crowding-induced condensation of Sso7d-DNA fibers. To connect with 

previous experimental and theoretical work we have used poly(ethylene oxide) with a molar 

mass of 20 kg/mol as a crowding agent. DNA-Sso7d complexes were equilibrated in buffers 

containing increasing amounts of PEO and centrifuged. Crowding induced condensates are 

centrifuged down, and the supernatant is analyzed for the amount of complex remaining in 

solution using agarose gel-electrophoresis. Figure 5.2 shows a typical gel for the condensation 

assay. At a first critical concentration of PEO, the concentration of DNA-Sso7d complexes in 

the supernatant (after centrifugation) starts decreasing, after a second critical concentration of 

PEO, no more DNA-Sso7d complexes are detected anymore.  

 

Figure 5.2: Agarose gel electrophoresis as used in the condensation assay  

Lane 1: DNA (pUC18 linearized with EcoRI). All other lanes are at a fixed concentration of Sso7d of 1 protein 

per 12bp, and increasing concentrations of PEO: Lane 2: 0 w%, Lane 3 : 1 w%, Lane 4: 2 w%, Lane 5: 3 w%, 

Lane 6: 4 w% and Lane 7: 5 w%.  
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Figure 5.3 shows our estimates for the two critical PEO concentrations as a function of the 

protein/DNA ratio. Condensation of EcoRI linearized pUC18 without Sso7d occurs in a rather 

narrow window around 8% (w/v) of PEO. Increasing the Sso7d/DNA ratio, the amount of 

PEO needed for condensation decreases rapidly. At low protein concentrations, the transition 

regime is rather broad, but beyond saturation the transition becomes very sharp again and 

occurs at around 3% of PEO. 

 

Figure 5.3: Condensation assay  

Estimated concentration of polymer (PEG 20 kg/mol) at which DNA concentration in the supernatant (after 

centrifuging for 1 h at 13,000 g) starts decreasing (open squares), resp. concentration of polymer beyond which 

no DNA is detected anymore in the supernatant (closed squares) using agarose gel electrophoresis. 

 

Previously, we have developed simple analytical estimates for the (ionic strength-

dependent) amount of flexible polymer needed to condense semiflexible polyelectrolytes such 

as DNA and F-actin filaments (de Vries, 2001). These estimates, which assume all polymer is 

excluded from the condensates, can also be applied to the protein-DNA filaments that we 

study here. The idea is to compare the free energies (or chemical potentials) of inserting 

semiflexible polyelectrolytes in solutions of flexible polymers in resp. the free and condensed 

form. Insertion of free (i.e uncondensed or extended) semiflexible polyelectrolytes can be 

dealt with using polymer scaling theory. Per unit length of semiflexible polymer: 

4/9

21, wwf freeins  
      (eq. 5.1) 

where w is the polymer weight concentration (%w/v), and 1 and µ2 are numerical prefactors 

that depend on the radius a of the semiflexible polyelectrolyte. When inserting a condensate, 
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one has to first push away the flexible polymers (osmotic work) to create space for the 

condensate and then to assemble the condensate inside this space (packing energy): 

 packosmcondins fff ,       (eq. 5.2) 

The packing energy is dominated by the electrostatic repulsion between neighbouring 

semiflexible polyelectrolytes in liquid-crystalline condensates, and possibly enhanced by 

thermal undulations (Odijk, 1993; Strey et al., 1999). It can be estimated using theoretical 

equations of state for liquid crystalline semiflexible polyelectrolytes (Odijk, 1993; Strey et al., 

1999), or computed from experimentally determined osmotic pressures of polyelectrolyte 

liquid crystals (Strey et al., 1999). To estimate the amount of polymer need to condense 

semiflexible polyelectrolytes we use the fact that the chemical potentials, or insertion free 

energies, should be equal at the transition point: 

 condinsfreeins ff ,, 
       (eq. 5.3)  

To change the critical concentration of depletion agent needed for condensation (without 

changing the depletion agent itself) requires changing either the insertion energy for free 

semiflexible polyelectrolytes, or the insertion free energy of condensed semiflexible 

polyelectrolytes. The former is especially sensitive to the radius a of the semiflexible 

polyelectrolyte, the latter especially to the polyelectrolyte linear charge density v. 

 

Polyelectrolyte a (nm) v (e/nm) wc (%) 

DNA 1.0 (Krueger et al., 1999) 0.17 8 

Sso7d-coated DNA 2.5 (Krueger et al., 1999)  3 

F-actin (Tang et al., 1997) 4.0 0.25 3 

 

Table 5.1: Critical polymer concentrations needed to condense semiflexible polyelectrolytes at ns = 0.15M 

 

This is illustrated in Table 5.1 where we compare typical condensation thresholds for 

resp. naked DNA, Sso7d-coated DNA (saturated filaments), and F-actin filaments. The Sso7d 

protein is basic with an estimated charge at pH 7 of +4…+6 (extrapolated from Tang et al., 

1997). This means that the net electrostatic repulsion between saturated Sso7d-DNA filaments 

will certainly be less than that between naked DNA, but it is not clear by exactly how much. 

Comparing this to naked DNA and F-actin it is clear that the increased effective 

polyelectrolyte radius induced by protein binding cannot fully explain the decrease of the 

condensation threshold. Therefore, it is very likely that in the present case the decreased 
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effective charge of the protein-DNA filaments also plays a significant role in reducing the 

condensation threshold.  

Although we here assume flexible polymers as the depletion agent, the conclusions 

may be expected to hold more generally: thick protein-DNA filaments with a low net charge 

density are much more susceptible to depletion condensation, be it by flexible polymers, or by 

cytoplasmic, non-DNA binding proteins. 

What is the role of this synergy in the formation and stabilization of nucleoids in 

prokaryotic cells? Odijk (1998) has convincingly shown that for the supercoiled genomic 

DNA of bacteria, confined by the bacterial cell wall, depletion interactions of the DNA with 

non-binding proteins are sufficiently strong to drive a phase separation into a nucleoid phase 

rich in DNA (but not as concentrated as DNA condensates obtained from dilute solutions) and 

a cytoplasm phase rich in non-binding globular proteins. Our results suggest that the effect of 

nucleoid proteins could be included in such a theory (to lowest order) by allowing for a 

somewhat larger thickness and a lower charge density of the DNA. 

In any case, it is clear that if some particular nucleoid protein-DNA filament is extended 

and/or rigid in dilute solution, this clearly does not mean that the protein does not contribute 

to DNA compaction in the crowded environment of the living cell 
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Chapter 6 

General Discussion:  

the extent of DNA compaction by nucleoid proteins 
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6.1 Introduction 

 

The main topic of this thesis is the interplay between H-NS and macromolecular 

crowding in compacting DNA. Our broader motivation for this study is to better understand 

the formation of nucleoid structures in prokaryotes. More generally, DNA condensation or 

compaction in vivo is thought to occur by at least four mechanisms: the association of 

nucleoid proteins with DNA, macromolecular crowding, neutralization of the charges on 

DNA and DNA supercoiling. Whether these mechanisms can be considered the main driving 

force for the formation of the prokaryotic nucleoid is a matter of on-going debate. An 

important problem is that many questions on DNA compaction in bacteria are asked on a 

qualitative (yes or no) level. As explained in the introduction, compared to a freely coiling, 

linear DNA with the length of the bacterial genome, the required degree of (volume) 

compaction is 10
3
-10

4
, or 3 to 4 orders of magnitude. Another way of specifying the required 

degree of compaction is in terms of the DNA weight concentration in the bacterial nucleoid. 

For the 4.7 Mbp long E coli genomic DNA, in a nucleoid with a typical volume of 0.1-0.3 

m
3
 (Woldringh and Nanninga, 1985), this weight concentration is around 100 g/L 

(Bohrmann et al., 1993).  

 To make progress, it is crucial to establish the quantitative contribution of the various 

mechanisms to the overall degree of DNA compaction. As an example, the direct contribution 

of supercoiling to the compaction of the genomic bacterial DNA has been shown to be only 

about 1 order of magnitude by detailed numerical estimates (Cuhna et al., 2001). Many papers 

on NAPs state that nucleoid proteins are very important for compacting DNA without much 

proof. In this discussion we critically analyse the existing data on DNA compaction by 

nucleoid proteins by reviewing the methods used, and the results obtained by previous studies 

to underpin the importance additional mechanisms such as macromolecular crowding. The 

degree of volume reduction of DNA coils by nucleoid proteins is the crucial quantity that we 

wanted to extract from aforementioned papers. We can conclude that nucleoid proteins 

typically reduce the volume of large DNA coils by one order of magnitude or less, with a few 

notable exceptions (Dps in particular). Hence, the extent of the NAPs’ direct contribution to 

compaction is similar to that of supercoiling, but even the combined effect of supercoiling and 

nucleoid proteins (about 2 orders of magnitude in volume reduction) is not sufficient. Other 

mechanisms such as macromolecular crowding must contribute too. 
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6.2 Nucleoid-associated proteins and DNA compaction  

 

Nucleoid-associated proteins or NAPs bind to - and often deform - DNA. They are 

present in high copy numbers compared to other DNA binding proteins, like DNA replication 

proteins and transcription factors. NAPs have an established role in the regulation of bacterial 

gene expression. These same proteins are also thought to play a major role in establishing the 

architecture of the nucleoid. In this discussion we ask the question: do NAPs also contribute 

to compaction into a dense nucleoid structure? Many previous studies have answered this 

question affirmatively, but did not check the actual degree of DNA volume reduction caused 

by nucleoid proteins compared to the typical degree of compaction required for nucleoid 

formation (the volume of a freely coiling linear DNA molecule with the length of the genomic 

DNA must be reduced by 3 or 4 orders of magnitude). We first briefly review the techniques 

commonly used to assess DNA compaction by nucleoid proteins, and discuss their relative 

strengths and limitations. Next, we review results that have been obtained for a range of 

bacterial nucleoid proteins. 

A very simple assay for DNA condensation is based on sedimentation (Figure 6.1a). 

The method relies on highly condensed DNA sedimenting at increased gravitational fields. 

The assay measures the fraction of condensed DNA, deduced from the DNA concentration in 

the supernatant, as a function of the buffer composition (which may include crowding agents, 

NAPs, etc.). It cannot determine the actual degree of compaction. An example of this 

approach is the work of Murphy and Zimmerman (1995). We have used this simple assay for 

both H-NS and Sso7d, in Chapters 3 and 5 of this thesis.  

Next, static and dynamic light scattering are classical physical techniques for 

determining solution sizes that can be applied to a very wide range of systems. As mentioned 

in the introduction, many light scattering studies have been performed on linear and 

supercoiled DNA, but very few studies have extended this approach to the effect of NAPs on 

DNA coil sizes in solution, as we do here. However, for the cases that we have studied (the 

bacterial nucleoid protein H-NS from E. coli, and the archaeal nucleoid protein Sso7d from 

Sulfolobus Solfataricus) we found that the binding of the nucleoid proteins hardly influenced 

the solution coil size of plasmid DNA.  

For very large DNA coils, coil sizes can be determined directly by fluorescence 

microscopy (Yoshikawa et al., 1995). The method requires DNA labelling, which can 

influence DNA behaviour, but carefully chosen dyes and dye concentrations resolve that 
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problem. Coil sizes should be larger than a micron to be able to give accurate volume 

estimates. Therefore, the method is best at measuring moderate degrees of compaction, and 

cannot (quantitatively) determine compaction factors as large as 10
3
 to 10

4
. Those 

condensates have sizes below the optical resolution. For example, if we were to compact 48.5 

kDa DNA (commonly used in these studies) to a final (internal) concentration of around 

100 g/L, comparable to the DNA concentration in the nucleoid, this would correspond to a 

radius of the compacted coil of around 60 nm.  

 

  

    

 

Figure 6.1: Representations of techniques commonly used in DNA compaction assays 

a) Schematic representation of a sedimentation or precipitation assay. The most dense particles sediment first, 

and addition of NAPs and depletion increase the density of DNA coils. c) Beads tethered to a surface by a 

polymer can be microscopically followed to find changes in diffusion and end-to-end distance. d) In DNA 

pulling experiments an optical or magnetic trap is used to move a bead bound to DNA, and force/extension 

curves can be measured with and without protein. e) AFM detects the surfaces by means of a cantilever.  

 

Another single-molecule technique to assess DNA compaction is the tethered particle 

motion experiment (Figure 6.1b). Beads are bound to single DNA molecules tethered to a 

a 

 

b 

 

c 
d 
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surface. Positions of many beads are tracked and analysed to give highly accurate 

distributions for the centre-of-mass position of the beads. These can be analysed in terms of 

the configurational properties of the DNA chains (reviewed by Nelson, 2007). While in 

tethered-particle motion assays, the DNA under observation is not under the influence of 

external forces, in other experiments tethered DNA is stretched and rotated by exerting forces 

on the beads, either using laser traps or magnetic fields (Figure 6.1c).. Typically these 

experiments are done to investigate phenomena that occur at various levels of force rather 

than determining DNA coil sizes in the absence of external forces. Analysis of bead positions 

is typically done by optical microscopy, which is adequate to determine typical extensions on 

the order of a m or more. The DNA coils preferentially used in these experiments, such as 

48.5 kDa DNA, have a size well below optical resolution if they are compacted to the same 

final DNA concentration as in the bacterial nucleoid, which means that only moderate degrees 

of compaction can be quantified. 

Quite some work on the effect of nucleoid proteins on DNA configurations has also 

been done using Atomic Force Microscopy or AFM (Figure 6.1d). AFM observes DNA 

immobilized on a surface, rather than free in solution. Often, samples are dried before 

measurement. Both the surface attachment and drying steps may influence the DNA 

configurations, which makes the deduction of changes in DNA coil volume induced by NAPs 

in solution problematic. On the other hand, more local effects can be analysed successfully, 

such as angles of DNA bending induced by NAP binding and NAP-induced DNA stiffening. 

All of the methods described above have been used on nucleoid proteins, as we discuss below. 

Yet none has been specifically designed to quantify the extreme degrees of compaction of 

DNA that occur when the bacterial chromosomal DNA is compacted into the tiny volume of 

the bacterial nucleoid. Nevertheless, here we summarize the information on compaction that 

we extracted from these measurements. Before we do so, we must note that at physiological 

ionic strength, electrostatic interactions of DNA are screened to a large extent. Some authors 

have also studied the effects of NAPs on DNA configurations at low ionic strengths. This is 

problematic because non-specific electrostatic interactions become very important at low 

ionic strengths and the basic NAPs start to form dense, non-specific condensates as any 

polycation would do. Therefore, we will mainly compare results that have been obtained at 

higher ionic strengths.
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Study DNA Protein  Buffer Force End-to-end distance 

Type Species C   pulling No protein Max. protein 

  nM  pN µm µm 

van Noort et al. 

2004 

modified pSFV1  HU 40 60 mM KCl  

20 mM Hepes 

pH7.9 

1 2.7 1.8 

10 kbp E. coli  0.5 2.4 1.5 

3.2 µm long   0.09 1.7 0.8 

1.82×10
-2

 µm
3
 

coil 

  0.05 1.0 0.3 

   0.009 0.5 0.2 

Xiao et al. 

2011 

-DNA HU 500 PBS buffer 0.8 14.1 12.8 

48,5 kbp E. coli   0.3 12.8 10.7 

15.5 µm long    0.1 8.7 4.1 

0.19 µm3 coil     0.05 6.4 2.7 

Ali et al. 

2001 

-DNA IHF 1250 10 mM TrisHCl 0.2M KCl  

5% DMSO 0.1 mM EDTA 

0.2 g/l casein pH 8.0 

1 14.2 13.8 

Idem Xiao et al. E. coli  0.1 9.2 7.4 

   0.015 2.5 1.5 

Skoko et al. 

2006 

-DNA FIS 20 20 mM HEPES  1 14.1 12.1 

Idem Xiao et al. E. coli  0.1 M KGlu  0.45 12.5 9.4 

   500 nG BSA 0.2 9.6 6.1 

   5% glycerol pH 7.6 0.03 6.7 3.2 

   13000  0.6 14.5 <0.5 

   6000  0.3 12.9 <0.5 

   1000  0.2 11.5 <0.5 

   500  0.1 8.2 4.8 

   200  0.06 6.2 4.4 

Amit et al. 

2003 

-DNA H-NS 250 Idem Ali et al. 1 14.6 14.9 

Idem Xiao et al. E. coli   0.5 13.0 13.6 

    0.1 8.5 9.4 

    0.05 5.6 6.6 

    0.02 2.4 3.0 

  4000  1 14.6 15.8 

    0.5 13.0 15.5 

    0.1 8.5 12 

    0.05 5.6 10.1 

    0.02 2.4 6.4 

Liu et al. 

2010 

X174 DNA  H-NS 600 5 mM KCl 1 14.2 15.0 

5,386 bp E. coli   0.5 12.8 14.7 

1.7 µm long    0.1 8.2 12.5 

7.2×10
-3

 µm
3
 coil    0.06 5.7 11.3 

   600 mM KCl 1 14.2 14.2 

    0.5 12.8 12.8 

    0.1 8.2 8.2 

    0.06 5.7 5.7 

   50 mM KCl 0.8 13.7 14.3 

    0.4 12.7 13.7 

    0.1 8.4 11.0 

    0.05 5.7 8.9 

   50 mM KCl 5 mM MgCl 0.8 13.7 14.0 

    0.4 12.7 13.1 

    0.1 8.4 <4 

     0.05 5.7 <4 

Table 6.1: An overview of DNA compaction in single molecule force extension experiments for the NAPs HU, 

IHF, FIS and H-NS. 

 

Dps 

We will start our overview on DNA compaction by NAPs with a nucleoid protein that 

undoubtedly induces dramatic DNA compaction: the nucleoid protein Dps. It is thought to 
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protect the genomic DNA under conditions that are adverse for bacterial growth. The Dps 

protein interacts with DNA through a tail of basic lysine residues (Ceci et al., 2004), without 

inducing significant deformations in the DNA. Dps is present at low levels during early 

growth, and increases dramatically to about 180,000 copies per cell during late stationary 

phase in E. coli (Azam et al., 1999). These high concentrations of Dps induce protective 

biocrystallization of DNA (Wolf et al., 1999), which is physiologically relevant if organisms 

are exposed to a severe environment. DNA-Dps assemblies have been shown to be crystal-

like objects with sizes >100 nm diameter in EM pictures. The crystals are thought to contain 

most genomic DNA in vivo (Wolf et al., 1999). Dps also compacts DNA into a crystalline 

phase in vitro. The ordered packaging is thought to thread DNA between Dps dodecamers 

(Minsky, 2004) and appears to reduce DNA coil volume by orders of magnitude, but the 

available data does not allow us to make a more quantitative estimate.  

HU 

Many nucleoid proteins induce DNA bending, and some of the studies include 

experiments that give quantative information about the extent of NAP-induced DNA 

compaction. Among the major bacterial nucleoid proteins, HU is especially well studied. 

Using magnetic tweezers force-extension experiments and AFM imaging, van Noort et al. 

(2004) find that 40 nM of HU induces moderate compaction of 10 kbp DNA. At this 

concentration, the end-to-end distance decreases by a factor of about three under low forces, 

implying the coil volume is compacted by about one order of magnitude. At higher 

concentrations (500 to 1000 nM), AFM imaging shows that HU fully coats linear DNA and 

forms a helical filament that is significantly stiffer than naked DNA according to the force 

extension measurements. Similar experiments have been performed with longer λ DNA (table 

6.1) (Xiao et al., 2011). Using a somewhat different buffer these authors find that the 

moderate compaction persist up to HU concentrations of 500nM.  

Homologous nucleoid proteins do not necessarily behave the same with respect to 

DNA compaction: HUBst from thermophylic Bacillus stearothermophilus (~60% homology 

with E. coli HU, Drlica and Rouviere-Yaniv, 1987) has been reported to compact DNA to a 

significantly greater extent than E. coli HU. A fluorescence microscopy study showed (Endo 

et al., 2002) that HUBst compacts 166 kbp linear T2 DNA gradually. The median longest axis 

length decreases from ~2.6 to ~0.8 μm when HUBst concentration increases from 0 to 930 

nM, implying a compaction factor of ~30 in terms of the coil volume (table 6.2). Another 

recent study on HUBst by Nir et al. (2011) used a tethered bead assays in PBS buffer, and a 
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2.7 kbp fragment of -DNA. These authors find that the median bead height decreased from 

150 nm for 0 nM HU to ~90 nm for 500 nM HU (table 6.2). It increases again at higher 

HUBst concentration, confirming the stiffening effect also found for E. coli HU, but in 

apparent disagreement with the fluorescence microscopy study by Endo et al. (2002), which 

may have been caused by lack of a buffering agent.  

 Yet another HU homologue, TmHU from Thermogata maritima (61.1% homology 

with HUBst, Christodoulou and Vorgias, 2002), has been studied using force-extension 

experiments by Wagner et al. (2011). For 4 kbp plasmid DNA, the extension was found to 

decrease from 1.36 μm to ~0.4 μm at a force of 2 pN and a very high TmHU concentration of 

10.5 μM. This corresponds to a compaction of the coil volume of one order of magnitude. The 

ionic strength of the buffer used by these authors was rather low, such that the observed 

effects might also be due to non-specific electrostatics. 

 In summary: HU is typically found to decrease coil volumes by approximately one 

order of magnitude at intermediate concentrations of HU, followed by stiffening and coil 

expansion at higher concentrations.  

 
Study DNA Protein  Buffer Radius of DNA coil 

type Species  C  No protein Max. protein 

  nm  µm µm 

Endo et al., 2002 T2 DNA HU  930 200 mM NaCl 2.6 0.8 

Fluorescence  

microscopy 

166 kbp Bacillus  

stearothermophil. 

   

53.12 µm long    

Nir et al., 2011 -DNA fragment HU  500 50 mM NaPhosphate  

50 mM NaCl 10 mM EDTA 

0.02% Tween pH 7.5 

0.15 0.09 

Tethered particle  

motion 

2.7 kbp Bacillus     

0.86 µm long stearothermophil.    

Ali et al., 2001 IHF-site fragment IHF 500 As described in Table 6.1 x x 

Tethered particle  

motion 

1288 bp 

0.41 µm long 

E. coli    

    

Table 6.2: Volume reduction by HU and IHF in fluorescence microscopy and tethered particle motion experiments. 

 

IHF and FIS 

The other DNA-bending nucleoid proteins have been the subject of fewer studies, but 

some experiments have been performed for IHF and FIS. Magnetic tweezers experiments on 

IHF binding to λ-DNA (Ali et al., 2001) show that at a high concentration of 1250 mM IHF, 

the DNA extension decreases by ~4 times at a low force of at ~0.015 pN, corresponding to a 

compaction of the DNA coil volume by less than an order of magnitude (Table 6.1). In 

tethered bead experiments, the decrease in DNA extension levels off at ~500 nM of IHF, and 

again the final compaction factors of the DNA coil volume are less than an order of 
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magnitude (Table 6.2). FIS, another major DNA bending nucleoid protein, has also been 

subjected to various single molecule studies. In DNA stretching experiments, FIS collapses λ-

DNA in 100 mM KGlu at low forces and protein concentrations of >1 μM (Skoko et al., 

2005). In a follow-up paper Skoko et al. (2006) report that at a low force of ~0.03 pN, FIS 

decreases the extension of -DNA from 6.7 μm to 3.2 μm at 20nM of FIS and to 4.4 μm at 

200nM of FIS and double force. Both cases correspond to compaction factors of the coil 

volume of at most one order of magnitude. In the same paper, Skoko et al. also quantify the 

collapse initially described in the first paper (Table 6.1) and find that at least 1 μM of FIS is 

required to abruptly reduce the end-to-end distance of DNA to <0.5 μm, which is the 

resolution of the experiment. This means that "collapse" should be taken to mean that the 

DNA concentration inside the condensed -DNA coil is higher than about 1 g/L (assuming a 

spherical coil with a 250 nm radius). Hence the optical resolution is still very far away from 

the level of compaction inside bacterial nucleoids, which corresponds to DNA concentrations 

of around 100 g/L. Hence, while it is very interesting that an apparent "collapse transition" is 

observed, at this stage it is still uncertain what degree of compaction is achieved for this case. 

 

H-NS 

H-NS is the most important NAP in the context of this thesis. In the introduction we 

discussed a number of AFM studies of H-NS, where it seems to compact plasmid DNA by 

introducing DNA-DNA bridges (for example Dame et al., 2001). The existence of these 

bridges was proven conclusively by single molecule experiments with two strands of 

stretched DNA (Dame et al., 2006), but that set-up does not determine compaction by H-NS. 

Here we review the results of a number of force-extension measurements of DNA in the 

presence of H-NS focussing in particular on the extent of compaction. 

Although initial microscopy data (AFM and EM) indicated that the H-NS dimer 

mainly binds in a bridging mode, the DNA force-extension curves in the presence of H-NS by 

Amit et al. (2003) suggest that there are also conditions in which DNA does not form bridges. 

These authors find that H-NS binding increases the end-to-end distance of DNA coils, 

presumably by stiffening the DNA. Maximal stiffening at high (4 μM) concentrations of H-

NS corresponds to a volume increase of the DNA coils by a factor of order 10. Recently, it 

was argued by Liu et al. (2011) that the mode of H-NS DNA binding may depend on solution 

conditions, with a particularly prominent role for the concentration of divalent ions. From 

DNA force extension curves in the presence of H-NS, Liu et al. also find that H-NS increases 
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the end-to-end distance of DNA coils, but only in absence of Mg
2+

, and especially at lower 

salt concentrations. At higher salt (200 mM KCl) but still in the absence of divalent cations, 

no apparent DNA stiffening is observed from the force-extension curves, at least not up to a 

concentration of 600 nM H-NS (Table 6.1). When Mg
2+

 is added at high H-NS 

concentrations, the end-to-end distance of the DNA coils drops below the value of naked 

DNA. AFM imaging also confirms that the binding mode of H-NS depends on solution 

conditions, and that both bridging and non-bridging binding modes occur. 

Dramatic compaction or collapse to end-to-end distances below the (optical) resolution 

of the instrument occurs at critical Mg
2+

 concentrations that depend on the force: 10mM Mg
2+

 

at a force of 0.2pN and 5mM Mg
2+

 at a force of 0.1pN. Again, compaction to coil sizes below 

the optical resolution may still be very far from extreme degree of compaction that occurs in 

the E. coli nucleoid, and which corresponds to DNA concentrations of around 100g/L.  

All studies mentioned so far have focused on one single NAP. It is widely believed 

that at least in regulation gene expression, NAPs work together. A similar cooperative effect 

of multiple types of NAPs may also be important in determining the organization of DNA in 

the bacterial nucleoid. Maurer et al. (2009) have combined H-NS, HU and IHF with λ and 1 

kbp DNA and studied its local effects on DNA by AFM. While this approach does not tell 

much about extreme compaction of very large DNA, it is useful for determining the local 

structure of mixed NAP/DNA complexes. For combinations of two NAPs and λ DNA, 

irregular NAP/DNA fibres were observed, but when all three NAPs bind DNA 

simultaneously, regularly folded stretches were found of up to 700 nm long (Maurer et al., 

2009).  

 

Archaeal NAPs 

The nucleoids of archaea are not contained by membranes, much like bacteria, and 

also have a range of different nucleoid associated proteins. But, much less is known about 

archaeal nucleoid proteins, as compared to their bacterial counterparts. Here we only mention 

two nucleoid proteins from the Archaea that have received some attention in the biophysical 

literature. The first one is the 7 kDa basic protein Sso7d from S. Solfataricus (and its 

homologues from related genera). This protein has also been studied in this thesis, in Chapter 

5. The second protein is the 10kDa basic protein called Alba or Sac10b that is more 

widespread in the Archaea. The Sso7d protein, and its homologues, introduces a sharp bend 

into double stranded DNA via the insertion of hydrophic residues into the major groove 
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(Baumann et al., 1994). Small angle X-ray studies (Krueger et al., 1999) have shown that full 

coating of dsDNA with Sso7d does not lead to the compaction of large DNA coils. In chapter 

5, we arrive at a similar conclusion based on light scattering studies of complexes of 

linearized plasmid DNA with Sso7d. The protein Alba interacts with DNA in more 

complicated way: EM images show both coating of single dsDNA and bridging of two 

dsDNA, depending on protein concentration (Lurz et al., 1986; Jelinska et al. 2005). Hence, 

at least under some conditions, Alba is a DNA bridging protein, and may lead to compaction 

of large DNA coils, as has been observed for H-NS in the presence of Mg
2+ 

(Liu et al., 2011). 

 Presently, the influence of these and other archaeal nucleoid proteins are also being 

investigated using single molecule DNA force-extension measurements (Remus Dame, 

personal communication) and such experiments may give more quantitative information on 

stiffening and compaction of DNA induced by them. 

 

6.4 Conclusion 

 

In summary, from the available data it is not at all clear that nucleoid proteins are the 

dominant driving force for DNA compaction in prokaryotes. Instead, single molecule DNA 

force extension measurements indicate that many nucleoid proteins simply coat and stiffen 

DNA, or induce compaction of around one order of magnitude (in terms of the coil volume), 

which is only a small contribution towards the final degree of DNA compaction that is 

achieved in the bacterial nucleoid, and which corresponds to DNA concentrations of around 

100 g/L. In a few cases, the single molecule experiments (both fluorescence microscopy and 

force-extension measurements) find DNA collapse down to coil sizes below the resolution of 

the experiments: H-NS at higher concentrations of Mg
2+

, and FIS. Since the local DNA 

concentration in a coil of e.g. -DNA that has been collapsed into a sphere with a radius of 

around 250 nm is still only about 1 g/L, the actual degree of compaction may still be orders of 

magnitude away from the actual degree of DNA in bacterial nucleoids.  

 For determining actual degrees of compaction, one approach would be to use 

fluorescence microscopy on isolated bacterial nucleoids, as we have done in Chapter 4. The 

size of the bacterial nucleoid is just on the boundary of the resolution of fluorescence 

microscopy, so degrees of compaction comparable to those in the bacterial nucleoid can be 

determined at least semi-quantitatively for this case. In this thesis, we have only applied the 

method for H-NS in the absence of Mg
2+ 

or other multivalent cations, for which no collapse 
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occurs in the absence of macromolecular crowding, but it would be very interesting to extend 

these measurements to conditions and nucleoid proteins for which collapse reported, in 

particular FIS, and H-NS in the presence of multivalent cations.  
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7.1 Summary 

 

In this dissertation we discuss H-NS and its connection to nucleoid compaction and 

organization. Nucleoid formation involves a dramatic reduction in coil volume of the genomic 

DNA. Four factors are thought to influence coil volume: supercoiling, DNA charge 

neutralization, macromolecular crowding and DNA deformation by NAPs. This study focuses 

mainly on the latter two factors, and on their interplay. We investigate both direct and indirect 

changes in DNA coil volume as a result of H-NS binding to DNA. H-NS / DNA binding is 

thought to be influenced by the self-association of H-NS, hence DNA self-association (both in 

bulk and on DNA) has also been investigated. 

Chapter 2 focuses on the known cooperative character of H-NS-DNA binding. The 

molecular origin of the cooperativity is poorly understood. High concentrations of H-NS are 

known to oligomerize extensively in the absence of DNA. Some models propose that 

cooperativity is caused by the same protein-protein interactions that cause oligomerization in 

solution, whereas others propose cooperativity may be induced by the DNA substrate. We 

have mutated some parts of H-NS we believed to be important in oligomerization to 

investigate the role of H-NS protein-protein interactions in cooperative DNA binding, and 

studied the oligomerization and DNA-binding properties of these mutants. The D68VD71V 

mutant has two aspartic acids in the linker region replaced by valines, making the linker 

significantly more hydrophobic. The double linker mutation D68VD71V dramatically 

enhances H-NS oligomerization in solution, and its temperature-dependence is changed as 

well in vitro. Yet there is only a moderate effect on DNA binding properties, which does point 

in the direction of enhanced cooperativity, as expected. This suggests that protein-protein 

interactions have a much larger effect on H-NS self-association in solution than on the DNA 

binding properties. 

Chapter 3 discusses the influence of the bacterial nucleoid protein H-NS on DNA coil 

sizes in solution, using Light Scattering, for both supercoiled and linear pUC18 DNA. We 

clearly find H-NS binding: the intensity of light scattered by the DNA coils increased upon 

the addition of H-NS. But, H-NS did not have a significant effect on the effective 

hydrodynamic radius of the coils. Our results suggest that under the conditions of our 

experiment (in particular the buffer conditions: 10mM Sodium Phosphate buffer, pH 7, 

100mM NaCl), the H-NS proteins most likely did not cause extensive bridging of dsDNA, 



 107 

since this most certainly would have led to a significant effect on the DNA coil sizes. This 

absence of bridging in the absence of multivalent cations is consistent with single molecule 

DNA force measurements performed for similar buffer conditions by other authors. We also 

find that, although H-NS alone does not have a dramatic effect on DNA coil sizes in solution 

(for our solution conditions), it does have an interesting synergetic effect on polymer-induced 

condensation of DNA. Condensation of H-NS/DNA complexes was measured by their 

sedimentability in solutions of polyethylene glycol (PEG). In the absence of H-NS the critical 

concentration of PEG needed to condense DNA is approximately 15%, whereas the critical 

concentration is remarkably lower, about 3.5%, at near saturation concentrations of H-NS.  

Chapter 4 is concerned with the effect of binding of H-NS and macromolecular 

crowding on nucleoid compaction. An osmotic shock method using ampicillin was used to 

isolate the Escherichia coli nucleoids intact, disrupting the peptidoglycan layer. These 

nucleoids were stained with DAPI and photographed using confocal microscopy. This showed 

a decrease in the volume of the isolated nucleoids when polyethylene glycol (PEG) 

concentrations became higher. The addition of small amounts of H-NS appeared to enhance 

the compaction due to macromolecular crowding induced by PEG. Remarkably, in the 

absence of PEG, H-NS did not affect the compaction of the nucleoids even at higher 

concentrations. The results are consistent with previous experiments done on DNA-binding 

proteins HU and Sso7d by other research groups. Therefore, our results confirm a general 

enhancement of macromolecular crowding effect of cytoplasm by nucleoid-associated 

proteins binding. 

In Chapter 5 we focus on an archaeal NAP. Like bacteria, archaea have NAPs that 

bend DNA and form extended helical protein-DNA fibers. These do not condense the 

genomic DNA directly, but some NAPS strongly promote DNA condensation by 

macromolecular crowding, such as the bacterial HU. Using theoretical arguments, we show 

that this synergy can be explained by the larger diameter and lower net charge density of 

protein-covered DNA filaments compared to naked DNA. Therefore the effect should be 

nearly universal in prokaryotes. We illustrate this general effect by demonstrating that Sso7d, 

a 7 kDa basic DNA-bending protein from the archaeon Sulfolobus Solfataricus, does not 

significantly condense DNA by itself, using light-scattering to determine coil volumes. 

However, the Sso7d-coated DNA fibres are much more susceptible to macromolecular 

crowding-induced condensation. Clearly, if DNA-bending nucleoid proteins fail to condense 

DNA in dilute solution, this does not mean that they do not contribute to DNA condensation 

in the context of the crowded living cell. 
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7.2 Samenvatting  

 

Deze samenvatting bestaat uit een introductie voor leken, en een samenvatting van wat 

ik zelf heb gedaan. In de lekenintroductie leg ik alle begrippen die ik in mijn onderzoek 

gebruik uit. Dit gedeelte is bedoeld voor mensen zonder specialistische kennis van 

scheikunde, biologie en natuurkunde. Het tweede gedeelte is een korte uitleg van wat ikzelf 

heb gedaan.  

 

7.2.a Lekenintroductie 

 

In levende cellen is DNA het grootste molecuul. Het is een polymeer, dat wil zeggen 

dat het is opgebouwd uit bouwstenen die samen lange ketens vormen, in het geval van DNA 

altijd onvertakt. De bouwstenen van DNA zijn nucleïnezuren. De hoofdketen of ruggengraat 

bestaat uit een negatief geladen fosfaatgroep en een goed oplosbare suiker, met daaraan een 

hydrofobere base adenine (A), thymine (T), cytosine (C) of guanine (G). Die basen gaan 

graag waterstofbindingen aan met tegenoverliggende basen, zodat een antiparalelle dubbele 

keten ontstaat; A vormt twee waterstofbindingen met T en C drie met G. Individueel zijn 

waterstofbindingen niet zo sterk, maar het effect accumuleert snel omdat elke base een 

binding aangaat ofwel een basepaar vormt. Dit is energetisch zo gunstig dat DNA in de natuur 

(dat wil zeggen in een waterige oplossing) bijna altijd voorkomt als een verbinding van twee 

antiparallelle ketens, die een dubbele helix vormen. Één wenteling van de helix bestaat uit 

~10.5 bp (basepaar) en is 3.4 nm lang. Helixvorming heeft ook gevolgen voor het gedrag van 

het molecuul. Een enkele opgeloste DNA keten is heel flexibel, de dubbele helix juist niet. 

Als je een enkele keten zou vergelijken met bindtouw, dat je kunt knopen en opproppen, dan 

is een dubbele helix als een tuinslang, stijf en moeilijk op te rollen. Vanwege die stijfheid 

neemt DNA enorm veel ruimte in als willekeurige kluwen. De grote lengte van DNA-ketens 

draagt daar ook aan bij; het erfelijk materiaal ofwel genoom van de meeste bacteriën bestaat 

uit één cirkelvormig chromosoom van een paar miljard baseparen, dat uitgerekt in de orde van 

één millimeter meet, terwijl het menselijk genoom uitgestrekt meer dan een meter lang is.  

Opgeloste ketens zoals DNA ordenen zich niet spontaan, en hun driedimensionale 

structuur verandert ook gemakkelijk. We noemen de structuren die een driedimensionale, 

willekeurige kluwen kan aannemen de conformatie. DNA is het grootste molecuul in de cel, 

maar het is klein genoeg om beïnvloed te worden door Brownse- of warmtebeweging (de 
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willekeurige beweging van deeltjes in een vloeistof of gas). Daarom beschouwen we de 

gemiddelde conformatie van een keten. Dat betekent dat er een gemiddeld kluwenvolume is. 

Aangezien de gemiddelde kluwen naar een bolvorm neigt, wordt het formaat meestal 

aangegeven in de vorm van een straal. Polymeerkluwens in een goed oplosmiddel zijn ijl; een 

groot gedeelte van het volume van het kluwen wordt in feite ingenomen door oplosmiddel. 

Hoe stijver een polymeer, hoe meer oplosmiddel in het kluwen zit. Als de stijfheid en de 

lengte van een molecuul bekend zijn, kunnen we de gemiddelde straal en het volume van een 

vrije kluwen berekenen, mits het oplosmiddel goed is. In het geval van DNA moet ook 

rekening worden gehouden met de grote negatieve lading van de fosfaatgroepen in de keten, 

die elkaar afstoten. Die lading draagt sterk bij aan het grote volume van DNA kluwens, tenzij 

die oplossing veel ionen bevat. De positieve ionen worden aangetrokken door de negatieve 

fosfaatgroepen op het DNA, en schermen zo de lading van het DNA zelf af.  

 

 

Figuur 7.1: Een elektronenmicroscopisch beeld van een intacte E. coli cel. De nucleoïde neemt slechts ~15% 

van het celvolume in beslag. Dit preparaat is gekleurd om de DNA ketens zichtbaar te maken en het cytoplasma 

donker te kleuren. Schaalaanduiding 0.5 m. 

 

Toch is het DNA in een levende cel geordend. Cellen zijn klein vergeleken met het 

volume van een DNA kluwen ter grootte van een genoom, maar het erfelijk materiaal neemt 

slechts een deel van een cel in beslag. In eukaryote cellen zoals de onze is de situatie relatief 

goed bekend; al het DNA bevindt zich in de celkern of nucleus omringd door membranen, en 

het is opgerold rond eiwitten genaamd histonen, die zich weer verder ordenen. Prokaryote 

cellen zoals bacteriën hebben kleinere genomen dan eukaryoten. Toch past een 

ongeorganiseerde DNA kluwen er niet in, omdat prokaryote cellen ook veel kleiner zijn, 

meestal een paar micrometer lang (Figuur 7.1). In prokaryoten is het DNA ook niet door de 
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hele cel verspreid. Al het genomische DNA bevindt zich in nucleoïde. In de modelbacterie 

Escherichia coli (E. coli) neemt de nucleoïde ongeveer 15% van het celvolume in. De 

nucleoïde is niet omringd door een membraan, en heeft een onregelmatige vorm. Het volume 

van een even lange vrije DNA kluwen is minstens 100 maal groter dan een bacteriële cel. Het 

volume van DNA in een nucleoïde kan 1000 tot 10.0000 maal verminderen. We noemen de 

volumereductie van DNA compactie of, in extreme gevallen, condensatie. In tabel 7.1 staan 

enkele voorbeelden van DNA compactie. Figuur 1.1 van de introductie laat een E. coli cel 

zien met het DNA rondom uitgespreid. Het bacteriële DNA is zichtbaar georganiseerd in 

domeinen die een rozet vormen.  

 

Soort DNA Lengte DNA Vrije kluwen DNA Volume nucleus/ 

nucleoïde 

Volume 

voorbeeldcel baseparen contour Straal Volume 

 aantal Nm nm nm
3
 nm

3
 nm

3
 

E. coli plasmide 

(lineair) 

2686 886 121.5 7.5 ×10
6
 / / 

1.0 ×10
4
 3300 234.5 5.4 ×10

7
 / / 

E. coli genoom 4.6 ×10
6
 1.5 ×10

6
 5.0 ×10

3
 5.0 ×10

11
 2.0 ×10

8
 1.5 ×10

9
 

Humaan genoom 3.0 ×10
9
 1.0 ×10

9
 1.3 ×10

5
 9.0 ×10

15
 6.9 ×10

11
 4.0 ×10

14
 

 

Tabel 7.1: Een vergelijking van ideale volumes van DNA kluwens met experimenteel bepaalde volumes van 

celkernen of nucleoïden. De waarden zijn benaderingen, afhankelijk van oplosmiddel voor ideale kluwens, en 

afhankelijk van celtype en groeicondities voor celvolumes. 

 

In fysische termen kan men de vorming van een nucleoïde zien als een voorbeeld van 

fasescheiding. De meest bekende vorm van fasescheiding is scheiding van waterige en 

olieachtige vloeistoffen, maar ook polymeren kunnen in twee fasen scheiden als ze in hoge 

concentratie aanwezig zijn. Zonder invloed van buitenaf streven systemen naar vermindering 

van orde, ofwel verhoging van entropie (de energie die niet beschikbaar is voor arbeid). 

Fasescheiding lijkt in strijd met toename van entropie, maar over het hele systeem gerekend 

kan het de vrijheid van moleculen verhogen. Het blijkt dat polymeren die voldoende in vorm 

verschillend, elkaar zodanig in de weg zitten dat hun totale entropie verhoogd wordt door 

fasescheiding in een fase rijk aan het éne polymeer en een fase rijk aan het andere polymeer. 

In dit proefschrift dragen we bewijs aan voor de veronderstelling dat de vorming van het 

bacteriële nucleoïde ook gezien kan worden als een soort van fasescheiding waarbij de 

belangrijkste polymeren verschillen in vorm zijn: aan de ene kant, de vele min of meer 

bolvormige eiwitten, die niet binden aan DNA, en aan de andere kant, het DNA (bedekt met 

DNA-bindende eiwitten). De concentraties van macromoleculen, of polymeren, in levende 
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cellen zijn inderdaad zeer hoog, zodat het niet gek is om fasescheiding te verwachten. 

Gemiddeld is elk macromolecuul (eiwit, RNA, DNA, etc.) maar door een paar laagjes 

watermoleculen gescheiden van het volgende macromolecuul, zodat in de cel met recht 

gesproken kan worden van “macromoleculaire drukte”, of, in de terminologie van de 

engelstalige vakliteratuur, van “macromolecular crowding”. Deze macromoleculaire drukte, 

die dus een drijvende kracht is voor fasescheiding, is aanwezig zolang de bacteriële cel intact 

is. Een breuk in het celmembraan veroorzaakt daarom onmiddellijke expansie van het DNA 

Ondanks de afstoting tussen de negatief geladen ketens en de stijfheid van DNA kan 

het molecuul gemakkelijk compact worden. In de cel worden kleine biopolymeren zoals 

eiwitten, RNA’s en suikers uit de DNA-rijke fase ofwel de nucleoïde verwijderd door 

macromoleculaire drukte. We concentreren ons hier op eiwitten, die in groten getale aanwezig 

zijn in de celvloeistof. De stroperige celvloeistof is geen goed oplosmiddel voor DNA. In 

slechte oplosmiddelen, onder hoge zoutconcentraties en bij hoge depletie vormt DNA zelfs 

vloeibare kristallen. Die drie factoren moeten zorgen voor de 1000-10.000-voudige 

volumereductie van het DNA, samen met DNA-bindende eiwitten. Deze factoren 

functioneren zolang de bacteriële cel intact is, maar een breuk in het celmembraan 

veroorzaakt onmiddellijke expansie van het DNA.  

Nucleoïden bevatten niet alleen DNA, maar ook eiwitten die DNA binden en het 

genoom reguleren. De transcriptie-, translatie- en reparatie-eiwitten hebben weinig effect op 

het volume van de nucleoïde. De klasse van gyrase-eiwitten heeft wel een belangrijk effect op 

DNA; gyrases winden het DNA op, zodat het in elkaar gedraaide plectonemen gaat vormen 

(zie figuur 1.4). Dit verkleint het volume van de kluwen. Een vierde klasse DNA-bindende 

eiwitten staat centraal in de andere hoofdstukken; de nucleoïde-associërende eiwitten (NAPs). 

Zij reguleren de expressie van genen en hebben een rol in de organisatie van DNA. Bacteriële 

NAPs vervormen het DNA, meestal door DNA te buigen of bruggen te vormen tussen 

strengen DNA.  

In dit werk staat het nucleoïde-associërende eiwit H-NS centraal. H-NS staat voor 

histonachtig nucleoïde-structurerend eiwit. Het is een belangrijk eiwit; het is met maximaal 

20.000 kopieën aanwezig, maar giftig als de concentratie verhoogd wordt. H-NS reguleert de 

expressie van groepen genen door hun promotoren te binden of los te laten, maar het heeft 

geen sterke voorkeur voor één specifieke DNA sequentie. Een aantal van de H-NS 

gecontroleerde genen zijn betrokken bij de virulentie van pathogene bacteriën zoals 

Salmonella, bekend als veroorzaker van voedselvergiftiging. Buiten een gastheer zijn deze 

pathogenen niet virulent; ze produceren geen toxines en blijven niet kleven. De omgeving 



 112 

moet veranderen, zoals verhoging van de temperatuur of osmotische druk. De binding van   

H-NS aan promotoren van virulentiegenen verandert bij een toename van de temperatuur naar 

lichaamstemperatuur en reguleert daarmee de eerste stap in de virulentie cascade van 

Salmonella. Wij zijn geïnteresseerd in deze temperatuurschakelaar. 

H-NS bevindt zich in de nucleoïde. Het bindt DNA zwak, maar H-NS bedekt veel 

DNA omdat er zo veel kopieën van zijn. H-NS heeft twee domeinen; het ene domein heeft 

dimerizering oftewel semi-permanente binding van een ander H-NS eiwit als voornaamste 

functie, terwijl het andere domein DNA bindt (zie figuur 1.5). Deze domeinen worden 

verbonden door een niet gevouwen streng aminozuren die we de schakel noemen. Met twee 

DNA-bindingsplekken in het kunnen bruggen tussen DNA strengen worden gevormd, maar 

door de zwakke DNA-binding kunnen die ook weer makkelijk loslaten. Als een dimeer een 

ander dimeer bindt, versterkt dat de DNA-binding van beide. Vorming van grotere deeltjes 

noemen we multimerizering of oligomerizering. H-NS kan oligomeren van tientallen dimeren 

vormen, die lange stukken DNA bedekken (zie figuur 1.7). Dit veroorzaakt condensatie van 

kleine stukjes DNA, maar details over het effect van brugvorming door H-NS op grote schaal 

is weinig bekend. Dit is het belangrijkste onderwerp van deze dissertatie.  

In deze dissertatie willen we meten hoe groot H-NS oligomeren en kluwens DNA zijn. 

We gebruiken daarvoor een aantal technieken, waarvan dynamische lichtverstrooiing (DLS) 

de belangrijkste is. De techniek meet de beweging ofwel diffusie van deeltjes in oplossing, 

door het meten van veranderingen in de lichtverstrooiing door deeltjes. De diffusie is 

gerelateerd aan een straal (ervan uitgaande dat de deeltjes ongeveer bolvormig zijn). De 

techniek kan ook de grootte van deeltjes in mengsels meten, zolang verschillen in volume vrij 

groot zijn en er maar een paar groepen deeltjes zijn.  

 

7.2.b Samenvatting van deze dissertatie 

 

Dit onderzoek is begonnen met de studie van H-NS oligomerizering in oplossing, en 

we willen dit fenomeen verbinden aan de coöperatieve binding van DNA door H-NS. Wij zijn 

geïnteresseerd in de rol van eiwit-eiwit interacties versus eiwit-DNA interacties in 

oligomerizering. Daarom hebben we een mutant gemaakt waarvan het schakeldomein veel 

hydrofober is dan normaal H-NS. We hebben de hydrofiele zwakke asparaginezuren op 

aminozuur positie 68 en 71 vervangen door valines, die hydrofoob zijn. Omdat die posities 

omringd zijn door nog meer hydrofobe aminozuren geeft de mutatie een hydrofoob cluster dat 

het hele schakeldomein minder goed oplosbaar maakt, zodat het sterk gaat plakken aan andere 
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hydrofobe domeinen. De mutant is bijna functioneel, want overproductie is bijna even toxisch 

voor de cel als ongemuteerd (wild type of wt) H-NS.  

Wij zijn de eersten die DLS gebruikten om oligomerizering van wt H-NS te meten in 

hoofdstuk 2. We hebben bevestigd dat wt H-NS oligomeren vormt waarvan het merendeel een 

geschatte omvang van 5 tot 20 dimeren heeft, afhankelijk van de H-NS concentratie. We 

vonden ook veel grotere deeltjes, maar het is niet duidelijk of die fysiologisch relevant zijn. 

De omvang van de oligomeren is zwak temperatuurafhankelijk, maar het verband is grofweg 

lineair. De omvang halveert tussen 16˚C en 40˚C, in plaats van een scherpe daling rond de 

30˚C. Deze temperatuursafhankelijkheid verandert door kleine modificaties aan de N-

terminus van H-NS. De toevoeging van twee kleine aminozuren GA onderdrukt de 

temperatuursafhankelijkheid van de oligomeeromvang. Diezelfde toevoeging heeft echter 

geen invloed op DNA-binding in vitro, of op giftigheid. Dit betekent dat H-NS eiwit-eiwit 

interacties geen belangrijke rol in de thermoregulatie van het bacteriële genoom door H-NS 

spelen. De hydrofobere schakelmutant creëert veel grotere oligomeren met stralen tot 35 nm. 

Hun omvang hangt minder af van de eiwitconcentratie. De straal van deze hydrofobere 

oligomeren is wel temperatuurafhankelijk, maar dat verband is niet linear. Het effect van de 

schakelmutatie op DNA binding is klein. Al met al kan de temperatuurafhankelijke regulatie 

door H-NS niet afhangen van interacties tussen verschillende dimeren. Ook is het duidelijk 

dat het gedrag van H-NS zonder DNA niet direct gerelateerd kan worden aan het gedrag in 

aanwezigheid van DNA.  

Hoofdstuk 3 van deze dissertatie richt zich op interacties van H-NS met DNA, en 

vooral het effect van H-NS op DNA condensatie onder "macromoleculaire drukte". Als 

vereenvoudigd model voor het lange genomische DNA gebruiken we de plasmide pUC18 

(2686 bp) in lineaire en in elkaar gewonden vorm. In DLS experimenten zien we dat H-NS 

aan DNA bindt door de hogere intensiteit van het verstrooide licht, maar binding van H-NS 

verkleint het volume van DNA kluwens weinig. We zien wel dat H-NS soms intermoleculaire 

bruggen vormt tussen kluwens DNA. Dit lijkt geen direct effect op DNA condensatie te 

hebben maar het kan belangrijk zijn voor genregulatie en mogelijk ook voor de vorming van 

domeinen of lussen (introductie figuur 1.1). H-NS heeft wel een sterk condenserend effect op 

DNA dat al bloot staat aan "macromoleculaire drukte". We simuleren dat met het inerte 

polymeer PEG. PEG condenseert DNA kluwens sterk door depletie, maar die condensatie 

neemt toe als H-NS ook aanwezig is. Dit effect is synergistisch en verlaagt de hoeveelheid 

polymeer nodig voor sedimentatie van 15% naar 3.5%. Kortom, H-NS kan een belangrijke 

bijdrage aan de compactievan DNA leveren door de negatief geladen keten te binden. Het is 
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nog steeds onduidelijk of DNA-deformatie door brugvorming ook een rol speelt in 

condensatie en vorming van de nucleoïde.  

Hoofdstuk 3 gaat over het effect van macromoleculaire drukte en H-NS op de 

compactie van nucleoïden. Wij hebben de nucleoïde van Escherichia coli intact geïsoleerd 

door gebruik van osmotische schok en disruptie van de peptidoglycanenlaag door ampicilline. 

Deze intacte nucleoïden werden gekleurd met DAPI en gefotografeerd met een confocale 

microscoop. Het volume van de geïsoleerde nucleoïden verminderde bij verhoging van de 

concentratie polyethylene glycol (PEG). Toevoeging van kleine hoeveelheden H-NS 

versterkte deze compactie door macromoleculaire drukte. H-NS alleen heeft echter vrijwel 

geen effect op het volume van nucleoïden, zelfs in hogere concentraties. Dit is consistent met 

de resultaten van andere NAPs, zoals HU. Deze resultaten bevestigen dat binding van DNA 

door NAPs het volumeverkleinende effect van macromoleculaire drukte (zoals aanwezig in 

het cytosol) versterkt. In hoofdstuk 5 hebben we gekeken we naar een ander nucleoïde-

associërend eiwit, Sso7d. Dit eiwit is niet afkomstig uit bacteriën maar uit een archaeon. 

Archaea zijn prokaryoten. Ze zijn klein, net als bacteriën, maar hun metabolisme lijkt meer op 

dat van eukaryoten. De DNA-bindende eiwitten van archaea hebben eigenschappen uit beide 

rijken; sommige archaea hebben eiwitten die nauw verwant zijn met eukaryote histonen, maar 

andere hebben een homoloog van het bacteriële DNA-buigende eiwit HU, en sommige 

eiwitten komen exclusief voor in een familie van archaea. Sso7d en homologen komen voor 

onder verschillende Archaea. Het eiwit buigt DNA, maar draagt maar beperkt toe aan DNA 

condensatie in oplossing. Toevoeging van polymeren zodat macromoleculaire drukte ontstaat 

leidt echter tot dramatisch versterkte DNA condensatie. Het is duidelijk dat ook dit eiwit kan 

bijdragen aan condensatie in de stroperige, volle celvloeistof.  

Deze dissertatie focust op het condenserend effect van nucleoïde-associërende eiwitten 

en macromoleculaire drukte op nucleoïden. Wij stellen voor dat synergie tussen 

macromoleculaire drukte en nucleoïde-associërende eiwitten een algemeen mechanisme voor 

condensatie is, dat ook geldig is voor andere nucleoïde-associërend eiwitten zowel in 

bacteriën als archaea. In de literatuur zijn aanwijzingen te vinden dat dit geldt voor de 

bacteriële eiwitten HU en FIS, en dat combinaties van buigende en bruggen vormende 

eiwitten een sterk effect hebben op condensatie. Dit geeft een algemeen model voor de 

vorming van nucleoïden in bacteriën en mogelijk ook in archaea. 
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