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Preface 

This is the Book of Abstracts of the CAHMDA-D workshop "The Terrestrial Water Cy­
cle: Modeling and Data Assimilation Across Catchment Scales", held from October 25th to 
27th, 2004, at Princeton University, Princeton, NJ. The CAHMDA* workshops are organized 
to bring together experts in hydrological modeling to discuss new modeling strategies, and 
the potential of using advanced data assimilation methods to improve parameterization and 
predictability of distributed and semi-distributed catchment-scale hydrological models use­
ful for water cycle research. CAHMDA-I was held from September 3rd to 5th 2001, at De 
Wageningse Berg conference center in Wageningen, the Netherlands. 

The motivation behind CAHMDA-II is to assess the state-of-the-art in observing, explaining and 
modeling the terrestrial water cycle and to identify research needs to make progress in these areas. 
Progress is urgently needed in order to be able to quantify climate-induced changes in the large-
scale hydrological cycle. A potential consequence of climate change is the acceleration of the 
terrestrial hydrological cycle, which may manifest itself in the form of increased precipitation and 
évapotranspiration. The effects on the environment and society in terms of changes to hydrological 
extremes (floods or droughts) is unknown but potentially large and damaging. 

The workshop opens with a session on the water budget and the acceleration of the hydrological 
cycle (Session 1). Currently, there is a scientific debate and controversy over whether potential 
evaporation rates are increasing or decreasing, and over trends in actual evaporation [Walter et al., 
2004]. The decreasing trend in pan evaporation observed in several countries seems contrary to 
concurrent increasing trend in water budget-derived actual evapotransiration, GCM-based esti­
mates of évapotranspiration, temperature, precipiatation and cloudiness [Hobbins et al, 2004]. 
Several studies indicate that incident shortwave radiation at land surfaces has significantly de­
creased between 1960 and 1990, and land temperature has increased by 0.4°C over the same pe­
riod. From a surface energy balance perspective, this counterintuitive behavior can be resolved 
through a decrease of surface evaporation and associated reduced evaporative surface cooling 
[Wild et al, 2004]. The inferred decrease of evaporation by Wild et al. [2004] implies that the 
observed intensification of the hydrological cycle over extratropical land is more likely due to in­
creased moisture advection from the oceans than due to increased local moisture release through 
evaporation. Several papers in this session shed new light on closing the water and energy budget 
at continental scales and manifestations of global climate change on acceleration of the hydrologi­
cal cycle. The central theme during the discussion is "Are we making progress in addressing large 
scale water cycle problems?" 

The second session of the workshop focusses on methodological approaches in understanding 
scaling of hydrological stores and fluxes in time and space (Session 2). Although the quantita­
tive contribution of soil moisture to the global water budget is negligible, it plays a central role 

'CAHMDA: CAtchmenl-scale Hydrological Modeling and Data Assimilation 
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in the global water cycle by controlling the partitioning of water and energy fluxes at the earth's 
surface, and can control the continental water distribution through land-surface atmosphere feed­
back mechanisms [Koster et al, 2003]. Improved understanding of near-surface soil moisture 
variability is needed for the transformation of point-scale measurements and parameterizations to 
scales required for climate studies, operational weather forecasting, and large scale hydrological 
modeling. Methodological approaches discussed are soil moisture variance budgets derived from 
statistical fluid mechanics and geostatistical methods to investigate scaling behavior of soil mois­
ture fields. The issue whether these and other methodological approaches help in understanding 
scaling behavior of surface soil moisture are further discussed. 

Session 3 is about hydrological modeling across scales. Currently, the role of lateral flow and 
its effect on structured spatial variability is underestimated within land surface schemes [Wood, 
1999]. New modeling strategies that explicitely account for the 3D geomorphological structure of 
landscapes are needed for land surface parameterizations of the climate system. Recent progress in 
our modeling capacities of subsurface flow processes [Troch et al, 2003] enables a parsimonious 
representation of the dominant landscape controls on root zone soil moisture spatio-temporal vari­
ability. For example, Kumar [2004] derived explicit expressions for near-surface layer averaged 
lateral transport contribution (diffusion, gravity, dispersion, and convergence) to soil moisture vari­
ability due to land-surface curvature. These and other issues in dealing with hydrological modeling 
across spatial and temporal scales and distributed modeling approaches are presented. What can 
we learn from distributed modeling regarding water cycle variability and its scaling? 

Data assimilation can improve our ability to predict hydrological extremes such as floods and 
droughts, it can play an important role in increasing the accuracy of water and energy balance 
computations and in assessing the errors related to such computations. Walker and Houser [2004], 
by means of a numerical twin data assimilation study, found that near-surface soil moisture obser­
vations must have an accuracy better than 5% vol. to positively impact soil moisture forecasts, and 
that daily near-surface soil moisture observations achieve the best soil moisture and évapotranspi­
ration forecasts. Observation with spatial resolution finer than the land surface model resolution 
produce the best results, but spatial resolutions coarser than the model resolution yields only a 
slight degradation. They also found that satisfying the spatial resolution and accuracy require­
ments is much more important than repeat time. Session 4 discusses potential of advancement in 
water cycle studies through data assimilation procedures. The discussion focusses on the limita­
tions with current assimilation methods, and on how these limitations can be overcome. 

Session 5 addresses computational approaches for large-scale hydrological problems. Computa­
tional efficient techniques for dealing with large nonlinear hydrologie data assimilation problems 
are presented. A particular interesting recent development is the Land Information System (LIS) of 
NASA Goddard Space Flight Center. LIS is based on the Land Data Assimilation System (LDAS) 
and is capable of global, distributed hydrometeorological modeling at spatial resolutions down to 
1 km. The question of how we expand into larger scale, distributed systems, including multi-flux 
systems, is further discussed. 

The organizing committee would like to express its gratitude to Ms. Shawn Strouss for helping 
them with the organization of the workshop, and to Dennis McLaughlin (H.M. King Bhumibol 
Professor of Water Resources Management, MIT) for his financial contribution. 

Peter A. Troch 
Eric F. Wood 
Adriaan J. Teuling 
Hidde Leijnse 
Justin Sheffield 
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Terrestrial water storage variations using GRACE: Implications for 
water budget closure at multiple scales 

J. Famiglietti1. J. Chen2, S. Holl1, M. Rodell3, K. Seo4, T. Syed1, and C. Wilson4 

1 Department oj'Earth System Science, University of California, Irvine, California, USA 
1 Center for Space Research, University of Texas, Austin, Texas, USA 
^Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 
4Department of 'Geological Sciences, University of Texas, Austin, Texas, USA 

First results from GRACE observations show great promise for monitoring water storage 
changes on land. In this poster we show our latest GRACE-derived water storage change 
estimates, including global fields, global terrestrial time series, and basin scale extractions. 
Uncertainties are quantified, and comparisons to global models and available observations 
are presented. Implications for water cycle closure are discussed, as are new applications 
that the GRACE estimates will enable, at the large basin scale, the global ocean scale, and 
the global water cycle scale. 
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Water balance estimates of seasonal changes in terrestrial water 
storage for major river basins of the northern mid-latitudes 

M. Hirschi1. S.I. Seneviratne2, P. Viterbo3, and C. Schär1 

1Institute for Atmospheric and Climate Science, ETHZürich, Switzerland 
2NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 
3European Centre for Medium-Range Weather Forecasts, Reading, UK 

Terrestrial water storage plays an important role in the hydrological cycle, but is an un­
known in most parts of the world. There are very few measurements of its main components 
(mainly soil moisture, groundwater, and snow), and therefore model results can not be vali­
dated in most regions. In this study, we compute and analyse monthly changes in terrestrial 
water storage for medium- to large-scale river basins derived from water-balance computa­
tions using a combination of observations and reanalysis data. 

Method By combining the terrestrial and atmospheric water balances, the monthly changes in 

terrestrial water storage \-%\ can be expressed as: 

where < V# -Q> is the atmospheric water vapor flux divergence, i äj£ [ is the change in atmo­
spheric water vapor content (both from ERA-40 reanalysis data), and {R} is the measured runoff. 
The overbar denotes the temporal average (i.e., monthly means) and {} the space average over 
the catchment. The approach is applied to many major river basins in Europe, Asia and North 
America (see Figure 1.1). The analysis covers the full 45-year time period (1958-2002) of the 
ERA-40 reanalysis from ECMWF (European Centre for Medium-Range Weather Forecasts) but 
is temporally limited in some river basins depending on the availability of runoff data from the 
Global Runoff Data Center or the U.S. Geological Survey. 

The method has been developed over the Mississippi region [Seneviratne et al., 2004]. Validation 
has shown excellent agreement between diagnosed estimates and observations of terrestrial water 
storage (soil moisture, groundwater, snow) in Illinois (domain size of 2 x 10s km2) for a 10-year 
period 1987-1996, both in terms of the mean seasonal cycle and its interannual variations. 

Validation and Results Some additional validation of the method with soil moisture observations 
from the Global Soil Moisture Data Bank* [Robock et al, 2000] is performed in Asia and Western 
Russia. Despite the fact that only one observational component of the terrestrial water storage is 
available, the correlations between estimated changes and observations are encouraging in some 
basins (see e.g., Figure 1.2 for the Volga basin). The amplitudes of soil moisture observations 
often seem to be smaller than the estimates. Especially in basins of higher latitudes, the seasonal 
changes in snow cover play obviously an important role for the overall terrestrial water storage 
changes and could explain in part the larger amplitudes of the computed estimates. 

The long-term mean of the diagnosed water storage estimates in the different river basins is well 
balanced in Asia and Western Russia, whereas for many basins in Europe and North America a 

*http://climate.envsci.rutgers.edu/soil_moisture/ 
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Figure 1.1: Investigated river basins. 
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Figure 1.2: Computed water-balance estimates vs. soil moisture observations (both in mmd"1) in 
the Volga basin (1,333,747 km2) for the period 1972-1985 (time series and scatter plot 
of monthly data). 

drift is observed (see Figure 1.3). The analysis suggests that the magnitude of the imbalances is 
not only dependent on the size of the river basins (as even small basins in Western Russia and 
Asia appear to have almost no drifts) but also on the geographical region under consideration. The 
complex topography of the European region could have negative effects on the quality of the ERA-
40 reanalysis data. Validation of ERA-40 atmospheric water vapor flux divergence has shown 
smaller values of moisture convergence in Central Europe compared to older studies presented in 
Alestalo [1983], which could explain the observed negative trends in the river basins of this region. 

Diagnosed estimates of terrestrial water storage variations over European catchments are then 
used for comparison with regional climate models involved in the EU-project PRUDENCE (see 
Figure 1.4). Results show that there are substantial differences between models. Several of them 
as well as ERA-40 appear to underestimate the decrease in terrestrial water storage during summer 
compared to the water-balance estimates. Note, however, that the diagnosed estimates might not 
be as accurate for this region, due to the imbalances discussed above. 

Conclusions and Outlook These results suggest that the investigated method has the potential to 
provide reasonable data of terrestrial water storage variations for the validation of regional and 
global climate models in regions with large-scale river basins where observational data is not 
available. Further computations over the last 45 years in other regions of the world could provide 
a global data set of this climate variable. Results show that the ERA-40 water vapor convergence 
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Figure 1.3: Long-term mean of water storage (mm d - 1) vs. basin area (km2) for the European(x), 
the West Russian (D), the Northern and Central Asian (A), and the North American 
(o) domains. 
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Figure 1.4: Comparison of estimates with PRUDENCE model runs and ERA-40 terrestrial water 
storage variations (mmd -1) for the Danube basin (772,220 km2) and the period 1961-
1990. 

data is of sufficient quality to provide useful constraints for land-surface data assimilation in large-
scale catchments. However, the quality of ERA-40 water vapor convergence in some regions and 
its temporal homogeneity are the subject of further analysis and may help to improve the quality 
of the generated data set in Europe. 
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An evaluation of a 52-year land surface model simulation using 
observational forcing 

H. Sharif1. N.L. Miller1, W. Crow2, and E.F. Wood3 

1 Berkeley National Lab, USA 
2USDA-ARS, USA 
3Princeton University, Princeton, New Jersey, USA 

Long-term basin-scale hydrologie response is related to physiographic descriptors and cli­
mate data. Multi-year land surface and subsurface processes are coupled to topography 
as well as large-scale atmospheric processes, soil memory, and vegetation change. The 
Red/Arkansas River basin has been the focus of investigations to study the interaction of 
atmosphere with the land surface, subsurface, and vegetation. For this reason, this basin 
was the first large scale areas studied under the GEWEX Continental Scale International 
Project (GCIP). Portions of the basin were the site of the latest International H20 Project 
(IHOP-2002) and the Department of Energy IOP 2002 experiments. A 52-year simulation 
using the fully distributed version of TOPLATS at 1 km resolution for the Red/Arkansas 
River basin is preformed. Forcing data (precipitation, incoming radiation and surface mete­
orology) interpolated from meteorological and rain gauge observations are used. TOPLATS 
is particularly well suited for such an analysis since it combines a detailed representation 
of surface water and energy balance processes while capturing the topographically induced 
horizontal redistribution of subsurface water. Analysis of mean-monthly, seasonal, and an­
nual changes in soil moisture, latent heat, sensible, as correlated to large-scale patterns was 
performed. The correlation between mean-monthly, seasonal, and annual variations in sur­
face energy fluxes, soil moisture, and stream flow and large-scale atmospheric patterns was 
examined. Results help to clarify the source of long-term hydrologie variability within the 
basin. In addition, the potential of TOPLATS enhancements - like the addition of a dynamic 
vegetation module to improve the model's representation of this variability were explored. 
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Basin-scale water-balance estimates of terrestrial water-storage 
variations: Potential for data assimilation 

Sonia I. Seneviratne1-2. Rolf Reichle1,2, Randal D. Koster2, Sarith P.P. Mahanama12, 
M. Hirschi3, and Christoph Schär3 

lGoddard Earth Sciences and Technology Center, University of Maryland, Baltimore, Maryland, 
USA 
2 Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, Maryland, USA 
^Atmospheric and Climate Science ETH, ETH Zürich, Switzerland 

Terrestrial water storage (mostly encompassing soil moisture, groundwater and snow) is a 
key climatic variable, which is relevant both for short-term and seasonal forecasting, as well 
as for long-term climate modeling. Despite its importance, it is not routinely measured and 
observations of its individual components are scarce. A possible approach for deriving esti­
mates of this quantity is the use of water-balance computations based on the following three 
variables: moisture flux convergence, changes in atmospheric moisture content, and river 
runoff [Seneviratne et al, 2004, hereafter referred to as S04]. This methodology was shown 
to give reliable results for various river basins of the northern mid-latitudes and to compare 
well with available ground observations [S04, Hirschi et al, 2004, hereafter referred to as 
H04]. Here we compare estimates derived with this approach with offline simulations per­
formed with the National Aeronautics and Space Administration (NASA) Catchment Land 
Surface Model (hereafter "Catchment model" or CLSM; Koster et al, 2000; Ducharne étal, 
2000). These results are used to assess the potential gain in using water-balance estimates of 
terrestrial water-storage variations in a data assimilation framework. 

Employed data The present study makes use of estimates of basin-scale terrestrial water-storage 
variations (S04, H04), derived with the following equation [e.g., Peixoto and Oort, 1992]: 

{!} =-{^}-{¥H*} ™ 
where < V# • Q > is the moisture flux divergence, < ^ > is the change in atmospheric moisture 

content in the column above the considered area, and {#} is the measured runoff. All quantities 
are temporal and areal averages for a given time frame (monthly variations) and region. Note that 
the area of the considered domain is a critical factor for the accuracy of such computations and 
should be of the order of 10s to 106 km2 at least [e.g., Rasmusson, 1968; Yeh et al, 1998]. S04 
tested this approach in a 10-year (1987-1996) case study for the Mississippi River basin using 
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 reanalysis data and 
streamflow measurements. The derived estimates were found to be reasonable for all Mississippi 
subbasins and to agree well with available observations of soil moisture, groundwater and snow 
in Illinois. The dataset used here was derived for several river basins of the northern mid-latitudes 
and covers the whole ERA-40 period (1958-2002, see H04). For the present study, we only 
use data from river basins with soil moisture observations (Amur, Dnepr, Don, Lena, Neva, Ob, 
Volga, Yenisei, see Figure 1.5a). The comparisons also include the Illinois domain (Figure 1.5b) 
investigated in S04. 
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Figure 1.5: (a) Basins investigated in Asia and soil moisture stations available (x); (b) Soil mois­
ture (x) and groundwater (o) measurements sites available in Illinois. 

The land surface integrations analyzed here were performed with the Catchment model [Koster 
et al, 2000; Duchame et al, 2000], a recently developed land surface scheme, which uses the 
hydrological catchment (or watershed) as basic computational unit. In each catchment, the vertical 
profile of soil moisture is determined by the equilibrium soil moisture profile from the surface to 
the water table, and the deviations from the equilibrium soil moisture profile in a 1-m root zone 
layer and a 2-cm surface layer. Unlike traditional, layer-based models, the Catchment model 
includes horizontal redistribution of soil water within each hydrological catchment based on the 
statistics of the catchment topography [Koster et al, 2000]. The present simulations, covering a 
15-year period (1979-1993), are forced with a dataset combining ERA-15 reanalysis data with 
observations-based corrections for precipitation, radiation, temperature, and humidity [Berg et al, 
2003]. These integrations were conducted and analyzed by Reichte et al. [2004] in a recent study 
comparing satellite and model soil moisture with ground observations. 

Soil moisture measurements from the Global Soil Moisture Data Bank [Robock et al, 2000] are 
available for various basins in Russia and Asia (Amur, Dnepr, Don, Lena, Neva, Ob, Volga, 
Yenisei; Figure 1.5a) as well as for 19 sites in the state of Illinois (Hollinger and hard, 1994, 
Figure 1.5b). For Illinois, concomitant groundwater (Figure 1.5b) and snow measurements (not 
shown) are also available from the Illinois State Water Survey and the Midwest Climate Center, 
respectively [e.g., Yeh et al, 1998, , S04]. For the present comparisons, areal estimates for the 
investigated domains are obtained through an averaging of the available observations for the re­
spective basins or domains. Note that in some regions this procedure can lead to some biases if 
the observations are not well distributed throughout the considered domain. 

Results First, we compare the respective correlations of the water-balance estimates and the model 
integrations with the ground observations. Figure 1.6 displays the coefficients of correlation (r2) 
of the two datasets in each investigated domain for the years with available observations witin the 
time period 1979-1993, both for the absolute values (top) and the anomalies (bottom). Note that 
in the case of the Catchment model, we use the total terrestrial water storage of the model (i.e., 
including soil water down to the water table, as well as snow and interception) for consistency with 
the water-balance estimates. One should keep in mind that the observations, with the exception of 
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Figure 1.6: Histograms of r2 values between the ground observations and the water-balance esti­
mates (black), respectively the Catchment model (white): (top) Absolute values; (bot­
tom) anomalies. 
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Figure 1.7: Histogram of r2 values between ground observations and individual components of 
water-balance estimates: sum of components (black), moisture flux divergence (dark 
gray), changes in atmospheric moisture content (medium gray), and runoff (light gray): 
Anomalies. 
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Illinois, correspond for their part to variations in soil moisture only. 

The agreement between the two datasets and the observations varies from region to region, but the 
two approaches perform worst in the same domains (Yenisei, Neva). Note that this might be due in 
part to poor representability (Neva) or uneven distribution (Yenisei) of the available observations 
in these two basins. In the other domains, the water-balance estimates and the land surface model 
appear similarly skillful on average, though significant differences are found in some domains 
(Illinois, Dnepr, Volga, Amur). In Illinois, the Catchment model is closer to the observations, 
possibly due to a high quality of the forcing data in this region. In the Amur basin, on the contrary, 
the model performs comparatively poorly, either due to poorer forcing or to model biases in this 
region. Note that rain gauge density is known to be a critical factor for the accurate forcing of 
a land surface model [Oki et al, 1999], and is likely to be only sufficient in North America and 
Europe [Koster et al, 2004; Reichte et al., 2004]. 

Interestingly, the water-balance estimates appear comparatively skillful at capturing the interan-
nual variability of the observations (Figure 1.6, bottom plot). This can be mostly linked to the 
contribution of the moisture flux convergence, as this component correlates best with the anoma­
lies of the observed variations in terrestrial water storage and soil moisture (Figure 1.7). 

Conclusions Preliminary results suggest that both the water-balance estimates and the land surface 
model driven with optimized forcing are similarly skillful on average, but that their performances 
can significantly differ in some regions, possibly dependant on the quality of the precipitation 
forcing used to drive the land surface model. Their skill appears in part complementary: They 
perform best in different regions (Illinois for the land surface model and Northern Russia for the 
water-balance estimates), and also capture different features from the observations, the water-
balance estimates being more skillful at capturing the interannual variability of the observations. 
This suggests that quantities such as atmospheric moisture convergence or runoff could possibly 
be used with success in a data assimilation framework aiming at the creation of a terrestrial water-
storage dataset. The potential of such an approach is expected to be highest in regions with poor 
forcing data. 
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Closing the terrestrial water balance using a combination of 
modeling, remote sensing and data assimilation 

Venkat Lakshmi1 

1 Department of Geological Sciences, University of South Carolina, Columbia, South Carolina, 
USA 

Numerous satellite missions have been launched and continue to be approved and progress 
that measure various parameters of the hydrologkal cycle. These include, atmospheric water 
vapor, cloud height and fraction, surface and air temperature, vegetation, soil moisture, 
precipitation and surface humidity. It will be the purpose of this presentation to (1) outline 
the outstanding problems in hydrology with respect to water budgets and (2) list and describe 
the satellite sensors capable of hydrological studies and lastly, (3) present initial results on 
use of satellite data for hydrological modeling and data assimilation. 
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Simulation of water sources for GEWEX CSEs: MAGS, GCIP and LBA 

Michael G. Bosilovich1 and Jiundar Chem1 

^ASA/GSFC, USA 

In the discussion of water cycle intensity, regional variations can be significantly different 
from the global background [e.g., Bosilovich et al, 2004], Better understand die regional 
water cycle, we have run a 50-year AGCM simulation, including diagnostics for the geo­
graphical sources of water vapor and precipitation recycling. In this paper, we focus on the 
water sources and precipitation recycling for the GEWEX Continental-scale Experiments 
(CSEs) in the Americas (Figure 1.8). The numerical simulation contains variables of all the 
sources of water for many of the GEWEX CSEs and for all seasons. Here, we will focus 
on what drives precipitation recycling during the maximum recycling season for each of die 
Americas CSEs. 

Model The primary atmospheric numerical model used in this study is the Finite Volume Gen­
eral Circulation Model [fVGCM; Lin, 2003]. The finite-volume dynamical core uses a terrain-
following Lagrangian control-volume vertical coordinate system [Lin, 2003; Collins et al, 2003]. 
The FVGCM dynamical core formulation includes a conservative Flux-Form Semi-Lagrangian 
(FFSL) transport algorithm with Gibbs oscillation-free monotonicity constraint on sub-grid distri­
bution. The FFSL has consistent and conservative transport of air mass and absolute voracity [Lin 
and Rood, 1997]. This feature of the system makes the FFSL particularly useful for water vapor 
and passive tracer simulations. 

The physical parameterizations of the fvGCM are based on NCAR Community Climate Model 
version 3.0 (CCM3) physics. The NCAR CCM3 parameterizations are a collection of physical 
processes with a long history of development and documentation [Kiehl et al., 1998]. The moist 
physics package includes the Zhang and McFarlane [1995] deep convective scheme, which han­
dles updrafts and downdrafts and operates in conjunction with the Hack [1994] mid- and shallow 
convection scheme. This version of the fvGCM uses the Common Land Model [versions 2, de­
scribed by Dai et al, 2003]. The validation of regional aspects of the simulated hydrological cycle 
are discussed by Bosilovich et al [2003]. 

Recycling Methodology The model also includes water vapor tracers (WVT) to quantify the ge­
ographical source of water for global precipitation [Bosilovich and Schubert, 2002; Bosilovich, 
2002; Bosilovich et al, 2003]. In this configuration, the source of water for a tracer is the evap­
oration from a prescribed region. This humidity is then predicted as a passive tracer (separate 
and distinct from the model's specific humidity prognostic variable) including tracer transport and 
precipitation and turbulent tendencies, using 

• 3 - = -V3 • {qrV) + -r- + - r - (1.3) 
at at turb Ot Prec 

where qj is the three-dimensional water vapor tracer, V is the three-dimensional wind, turb de­
notes the turbulent tendency not including surface evaporation (vertically integrates to zero) and 
Prec denotes the sum of all tracer precipitation tendencies (including condensation, rain evap­
oration, and convective vertical movement; vertically integrates to Pr). The tracer precipitation 
tendencies are computed proportional to the total precipitation tendency, where the proportionality 
is based on the ratio of tracer water to total water [Bosilovich and Schubert, 2002]. 
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Figure 1.8: Geographical source regions that play a major role in the water cycle for MAGS, MRB 
and LBA CSEs. 

The WVT methodology requires an investment in developing the code and also computing addi­
tional atmospheric prognostic variables. Precipitation recycling (but not specific external sources) 
can also be determined by simpler bulk diagnostic methods [e.g., Brubaker et al, 1993]. The bulk 
diagnostic methods use monthly data and solve a simplified water budget. This can be compared 
to the value determined from the WVT method (but will evaluated in the near future). 

Global climate The atmospheric general circulation model (AGCM) simulation runs at 2° x 2.5° 
resolution for 50 years (1948-1997). The SST is prescribed following Hadley Centre data product 
[see Bosilovich et al, 2004, for details]. Since there is a trend in the SST forcing there is also a 
trend in the response of the AGCM. The response of the global precipitation depends on land/sea 
regions and also latitude (Figure 1.9). 

Figure 1.9 suggests opposed trends over land and ocean, it is not an absolute delineation. Land, 
especially tropical land, shows a decreasing trend of precipitation (somewhat comparable to the 
GHCN observed data base), while oceans generally have increasing trends of precipitation. This 
relationship is also apparent in other AGCM simulations [Bosilovich et al., 2004]. Global, con­
tinental and oceanic trends are summarized in Table 1.1. While continental temperatures are in­
creasing, evaporation is decreasing. This is leading to continental total precipitable water (TPW) 
that has no statistically significant trend (but relative humidity may be then decreasing). 

In this paper, we are investigating the processes of precipitation recycling in the GEWEX CSEs 
in the Americas (MAGS, MRB and LBA). Initially, we may neglect the trends in the background 
climate. This may be acceptable for MAGS and MRB, but analysis of LBA will certainly required 
better understanding of the trends. 

CSE Water budgets In our analysis of the CSE water budgets, we first analyze the mean annual 
cycle to identify the major sources of water, and the time of maximum precipitation recycling 
(figure not shown). The time of maximum recycling is June and July for MAGS and MRB, and 
October and November for LBA. Figure 1.10 shows the mean water budgets during the time of 
maximum precipitation recycling. The MAGS basin is dominated by zonal moisture transport 
While recycling is a significant contribution, Pacific ocean provides the primary source, and ex­
ternal continental sources are also very important (including Asia). The Mississippi River Basin 
relies on the "conveyor belt" of water vapor, where the easterly flow across the tropics turns north­
ward toward the central US, then exits the eastern boundary. The tropical Atlantic Ocean sources 
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Table 1.1: FVGCM trends for global, continental and oceanic variables. Bold indicates statistical 
significance at 1%, while normal is not significant at 10% (only Land TPW). 

Unit per 50 year Global Land Ocean GHCN 

P(mmd_1y) 

TPW (mm) 

T(K) 

E(mmd_1y) 

0.024 

0.631 

0.311 

0.024 

-0.127 

0.085 

0.265 

-0.038 

0.081 

0.837 

0.331 

0.047 

-0.076 

Table 1.2: Correlations between different water vapor variable area averaged time series of the 
maximum recycling season for each basin. 

MAGS P P-E TQ MAGS NPO Asia QV_W QVJE QV_S 

E 0.50 1.00 

P -E 0.81 -0.10 1.00 

TQ 0.46 0.45 0.22 1.00 

MAGS 0.53 0.31 0.40 0.29 1.00 

NPO -0.55 -0.18 -0.50 -0.34 -0.58 1.00 

Asia -0.69 -0.33 -0.57 -0.32 -0.63 0.41 1.00 

QV_W -0.51 -0.04 -0.56 -0.42 -0.67 0.61 0.65 1.00 

QV_E 0.59 0.01 0.67 0.49 0.61 -0.52 -0.60 -0.83 1.00 

QV_S 0.01 0.34 -0.21 0.07 -0.03 -0.01 0.07 0.04 -0.25 1.00 

QV_N -0.17 -0.27 -0.01 -0.31 -0.02 -0.04 -0.04 -0.10 -0.26 -0.48 

MRB P-E TQ MRB NPO TropAtlQV_W QV_E QV_S 

E 0.96 1.00 

P -E 0.83 0.64 1.00 

TQ 0.57 0.55 0.46 1.00 

MRB 0.87 0.88 0.61 0.41 1.00 

NPO -0.54 - 0 3 4 -0.41 -0.43 - 0 3 8 1.00 

Trop AU -0.36 -0.36 -0.27 0.25 -0.48 -0.03 1.00 

QV_W 0.31 0.31 0.22 -0.13 0.19 0.32 -0.41 1.00 

QV_E -0.17 -0.12 -0.21 -0.03 0.04 -0.29 -0.01 -0.69 1.00 

QV_S 0.40 0.32 0.45 0.64 0.05 -0.19 0.40 0.09 - 0 3 4 1.00 

QV_N -0.16 -0.21 -0.03 - 0 3 4 -0.04 0.35 -0.34 0.39 - 0 3 1 -0.35 
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Precipi tat ion Trend (1948-1997) 

Precipitation Trend (GHCN) 
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Figure 1.9: Trends of annual Precipitation anomalies from the FVGCM 50-year simulation (colors 
are statistically significant at 5%) and the GHCN precipitation observation data set 
(Crosshatch indicates statistically significant at 5%). Units are mm d_1 per 50 years. 

dominate the water budget, but the relatively small area of the Gulf of Mexico, is still an important 
contributor. 

The LBA budget has a similarity to the northern basins, in that there is a significant oceanic source 
of water (South Atlantic, instead of Pacific). However, there is a clear difference in monthly 
moisture convergence. LBA Precipitation nearly doubles the evaporation, so that there must be 
outside sources of water. Nonetheless, 27% of the precipitation has a local source. However, 
considering the evaporation, 52% of evaporation stays within the basin, compared to 18% and 
23% of evaporation for MAGS and MRB respectively. Note here that the precipitation recycling 
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Figure 1.10: Moisture budgets and primary precipitation sources (percent of total precipitation) 
for each of the CSEs, MAGS (top), MRB (middle) and LBA (bottom). Budget units 
aremmd - 1 
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Figure 1.11: Differences between the five highest and lowest recycling ratio season. Statistically 
significant differences are indicated by the solid contour intervals (at 5 and 10% lev­
els). The units are m, m s~ \ g kg - 1 , mmd - 1 , and K. 
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is a function of area, and the intercomparison of different basins should be qualitative. 

Precipitation Recycling Composites The purpose of this paper is to better define the conditions 
that lead to precipitation recycling on basin scales. With SO years of simulation data, we can 
identify the highest and lowest recycling seasons, and define the large-scale conditions associated 
with each. In general, the five highest and lowest recycling seasons (as determined by the recycling 
ratio) in each basin was outside of ±1 standard deviation of the mean. Therefore, we define the 
high recycling as the mean of the five highest seasons, and low recycling as the five lowest seasons. 

Figure 1.11 shows the difference between the high and low recycling seasons for the Mississippi 
River Basin. There are significant large-scale features associated with the precipitation recycling. 
Low 500 mb thickness anomalies with higher recycling likely reduce the intensity of the Great 
Plains low-level jet. Also, temperatures are colder concurrent with increased evaporation. This 
is also related to a concurrent increase in total precipitation (not shown). There may be some 
teleconnections with the tropical easter Pacific SSTs, but this needs further investigation. It makes 
sense that the high recycling is associated with increased evaporation. However this is not the case 
for MAGS. There is a much weaker correlation between precipitation and evaporation in MAGS 
than MRB, along with weaker correlation between the local source and evaporation. MAGS recy­
cling appears related to whether the large-scale moisture transport intensity (weak transport leads 
to more recycling). 

LBA Recycling and Transport 

( I I I I I I I I I I I I I I M 

1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 

Figure 1.12: Time series of the maximum recycling season averaged LBA recycling ratio and east­
erly moisture transport into LBA. 

In LBA, high recycling is also related more to the weaker zonal flow (from the Atlantic) than 
variations in evaporation. The high recycling is related to cold temperatures in the tropical eastern 
Pacific Ocean (figures not shown). The trend in SST forcing also leads to trends in both the 
moisture transport into LBA and the LBA recycling (Figure 1.12). It is important to note that 
deforestation is not included in this numerical simulation 

In the near term, we will investigate the potential teleconnections between MRB and the tropical 
SSTs, continue analyzing the trends in LBA, and evaluate bulk recycling methods. 
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Collateral damage - the unpleasant side-effects of ignoring 
observation errors in water balance calculations 

E.E. van Loon1. J. Brown1, and W. Bouten2 

1 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The 
Netherlands 

Weil-defined observation uncertainty is a prerequisite to successfully apply parameter or 
state estimation. However, in most hydrologkal studies the particular structure of this un­
certainty is neglected. We show the type and magnitude of errors that arise from this neglect 
in ID (vertical column) as well as in 2D (a field of columns, with lateral routing) water bal­
ance calculations. In our system, we deal with observations of rainfall, evapo-transpiration 
(indirectly via nteteo-observations), soil moisture in the unsaturated zone, depth to the sat­
urated zone, recharge and discharge via ground and surface water. Typical observations 
errors for each of these variables are specified and the effects are evaluated. We generate 
our data rather than relying on field observations, in order to control both model and obser­
vation errors. However.the properties of our system are chosen such that these resemble real 
systems as dose as possible. 

The results show that, in both ID and 2D systems, the errors generally do not average out, but 
rather enforce each other. In addition, we show that with a correct system description and (partial) 
incorrect observation uncertainty, it is not possible to identify the correct source of error on the 
basis of full input and state-observations using classical system identification tools. The incor­
rect representation of system behaviour would be diagnosed as either a wrong model structure, 
parameter set, observation uncertainty or a combination of these. 

If there is redundancy in the observations, there are different ways to identify observation un­
certainty: (1) independent of a model; (2) by hierarchical modeling, and (3) by resampling. If 
there are enough data, any identification of observation error can be done independent of a dy­
namic model. This is the simplest and also the most robust one, as it prevents model structural 
errors to be incorrectly labelled as observation errors. Hierarchical modeling is a technique where 
coarse scale models and observations constrain fine-scale equivalents and vice versa. This tech­
nique is applicable if for instance radar rainfall and discharge data is available at a coarse scale, 
and meteo-observations together with in-situ soil moisture observations at a fine scale. Resam­
pling techniques esimate model error structures by evaluating the impact of omitting observations 
on nearby predictions, while correcting for spatial and temporal correlations in the observations. 
Low impacts imply in this context a large observation error. All three methods rely on indepen­
dence of the observation errors between the redundant data. In addition, hierarchical modeling and 
space-time resampling assume an approximately correct model structure. The degree to which the 
methods are able to withstand violations of these assumptions is illustrated in our study. 
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Global mapping of water sources using water vapor tracer 
diagnostics 

Jiundar Chern1 and Michael G. Bosilovich1 

lNASA/GSFC, USA 

Recently, we have implemented the water vapor tracer (WVT) diagnostics in the NASA finite 
volume General Circulation Model (fvGCM). In the WVT approach, atmospheric water 
is "tagged" at its surface source as a constituent tracer and followed through atmospheric 
processes until it precipitated from the atmosphere. This technique permits quantitative 
study of the local and remote sources of precipitation at any point or area within the model's 
simulation. The most detailed diagnostic could be attained by using one WVT for each 
model grid point Since each WVT is treated as a three-dimensional prognostic variable in 
the model, the number of WVTs in one simulation is limited due to the computing resource. 

In this study, the global water sources are divided into 4° x 5° boxes from 60°S to 70°N. To differ­
entiate the contributions from land and ocean near the costal region, two WVTs are used in each 
4° x 5°box based on the model's land sea mask. The total number of WVTs is about 2500. Eleven 
simulations have been performed, each with more than 200 tracers, at 2.0° x 2.5° resolution for 
the period 1948-1997. The first 20-year (1948-1967) runs has been done, we will present the 
detailed mean atmospheric water cycle (surface evaporation source, WVT moisture transport, and 
WVT precipitation) for some major cities and river basins in the world. The temporal and spatial 
climate variabilities of the regional and local water budgets will be evaluated using the principle 
analysis of the WVT diagnostics. In addition,the global map of local precipitation recycling based 
on 4° x 5° grid box will be examined. 
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Use of small reservoirs in West Africa as remotely-sensed cumulative 
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2Biological and Environmental Engineering, Cornell University, USA 
3International Water Management Institute, Ghana 
^Technical University, Delft, The Netherlands 

Throughout the semi-arid to sub-humid tropics, people have built thousands of small reser­
voirs to overcome dry periods. The social value of water in such regions as West and South­
ern Africa, South and South-East Asia, and central Brazil, is very high. Small reservoirs, 
with volumes from 104 to 107 m3, provide the rural population of these areas with water for 
households, cattle, fisheries, and small-scale irrigation. Besides positive socio-economic im­
pacts, small reservoirs may also have negative impacts on human health and aquatic ecology. 
The general thinking is that construction of reservoirs at village level has less negative impact 
than the construction of large dams. As such, many governmental and non-governmental de­
velopment programs promote further construction of small reservoirs. 

One obvious question with respect to this development is if an optimal density exists, beyond 
which further construction of reservoirs shows diminishing returns due to limited total water avail­
ability, market saturation, or negative health and environmental impacts. Within the CGIAR's 
Challenge Program on Water for Food, the Small Reservoirs Project* addresses these research 
questions concerning the overall behavior of reservoir ensembles in the Volta, Limpopo, and Sao 
Francisco basins. The work presented here also builds on field work done within the framework 
of the GLOWA Volta Project*. 

Hydrologica] knowledge of the semi-arid and sub-humid tropics is very limited and the observa­
tion network in these parts of the world has been declining rapidly since the hydrological decade. 
Remote sensing still holds great promise to fill gaps in ground-based observation networks but sci­
entific progress has been slower than anticipated. One added problem is that the regions considered 
here are under almost permanent cloud cover during the rainy season. This makes microwave-
based (radar) remote sensing the main source of data with respect to the hydrological state of the 
land surface, whereby, unfortunately, the luscious vegetation tends to obscure any soil moisture 
signal during the wet season. There is, however, one well-established application of radar satellite 
imagery and that is the mapping of open water. Clearly, (changes in) volumes stored in the thou­
sands of small reservoirs contain imperfect but hydrologically relevant information. The question 
now is to what extent we can use reservoir states, as derived from radar images, to calibrate and 
validate hydrological models. 

In the remainder, we first briefly sketch the different components of the water balance of the reser­
voirs, and how different parts of the balance can be observed or modeled. This sketch includes a 
simple accounting scheme that allows keeping track of remotely-sensed runoff estimates, consist­
ing of most likely runoff, and, under specific conditions, minimum and maximum discharges that 
constrain possible model output. Finally, the limitations and potential of using remote sensing of 

''http: //www. smallreservoirs .org 
*http://www.glowa-volta.de 
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reservoirs for model calibration is demonstrated by a simulation, showing the effects of model and 
measurement errors and of the use of constraints. 

Reservoir Water Balance The basic reason why we want to examine the usefulness of satellite-
observed reservoirs for runoff estimation and model calibration is that a survey showed a very 
good correlation between surface area and storage volume in the Upper East Region of Ghana. 
According to a bathymétrie survey of sixty reservoirs, 97.5% of the observed variability in volume 
could be explained on the basis of surface area. This was especially remarkable because the basic 
shapes of the reservoir surfaces were extremely diverse. The relation found, and used here, was 
Vol = 8.52 • Area1'437 (10~3 m3). The surface area of reservoirs that are larger than one hectare 
can be observed with good accuracy with ERS-PRI images, as shown in Figure 1.13. 

Figure 1.13: Two small reservoirs in the Upper East Region of Ghana as observed by ESA's 
ERS2. The classification was based on density slicing of the mean band from the 
co-occurrence measure analysis. 

On the basis of satellite images, we can calculate surfaces and thus volumes. ERS2 covers the area 
of interest on a monthly basis. By subtracting the volumes from two subsequent overpasses, we 
obtain a measure of how much water has run off into the reservoir during that particular month. 
The accuracy of this volume estimate is about 95%. One still needs to account for losses through 
evaporation, seepage through dam and bottom, and water use for irrigation and other purposes. 
All these elements of the water balance are subject of an on-going intensive field measurement 
campaign. It is expected that evaporation can eventually be modeled with standard meteorological 
observations with an error of 10% on a monthly time scale. Seepage and water use will be much 
more error prone and can probably not be modeled within less than a 30% error. 

In addition to errors in the water balance, one also has to deal with the facts that reservoirs may 
spill unknown amounts during months with large runoff, and that such spills may cascade into a 
reservoir below. Cascades with a length of up to five reservoirs are known to occur in neighboring 
Burkina Faso. To keep track of possible spills, a matrix-based accounting scheme was developed 
that keeps track of the connectivity under spilling conditions. When a reservoir is close to being 
full during an ERS2 overpass, this reservoir is marked as such and no runoff estimate will be 
available for that month. When a reservoir is observed to be almost full, a constraint is used 
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instead that simply states that the actual runoff must exceed the runoff based on the observed area 
differences. When such a reservoir cascades into a downstream reservoir, this information can 
be taken into account. In the remainder of this extended abstract, it is, for the sake of simplicity, 
assumed that no cascading takes place. 

Calibration of hydrological model In order to assess how useful satellite observed reservoir 
areas can be, we developed a simple hydrological model that was first run in forward mode to 
predict observable reservoir areas. Subsequently, model parameters were fitted on the basis of 
the information that would be available from satellite images. The fitting was repeated for four 
error levels, 0%, 10%, 20%, 30%. For each level, a uniformly distributed random error within the 
range of plus/minus the given percentage of the error-free observation was imposed. Runoff into 
each reservoir was derived from the difference in storage in two successive months, plus modeled 
evaporation and water-use. When observable reservoir areas were close to maximum capacity, no 
discharge estimate for that month was used. For those months, only minimum runoff could be 
used to constrain the model. 

The hydrological model used is simple but covers the main hydrological processes at work in small 
watersheds in West Africa, as observed through detailed field work over the past decade. The 
model consists of a Thornthwaithe-Mather (TM) module, which simulates regional recharge, and 
a watershed-specific runoff coefficient (RO). The TM module uses only one regional parameter, 
Smax, which represents the maximum storage in the soil that needs to be filled before recharge takes 
place. All recharge is assumed to runoff via the groundwater. In addition, direct runoff occurs 
from built-up, degraded, and saturated areas. RO represents the fraction, varying between 0.5% 
and 3%, of each watershed that is covered by such runoff generating areas. The forward model 
is run on a daily time step. Runoff then accumulates in the reservoirs from which evaporation 
and water-use are extracted. The predicted areas are, after addition of errors, used as input for 
inverse runoff calculation and parameter fitting. It is recognized that such simulated observations 
are somewhat removed from the often unforeseeably more complicated reality, but this is the only 
way in which effects of error in otherwise non-observable variables can be assessed. In this case 
we are particularly interested in three aspects: 

• To what extent does the fact that only cumulative monthly observations are available limit 
the fitting accuracy? 

• For months in which reservoirs may have spilled, only constraints on the minimum discharge 
can be used. How does this affect the fitting? 

• What is the effect of the large errors in, especially, the modeled water-use? 

The setting is that of the Upper East Region of Ghana, where 154 reservoirs have been identified 
on the basis of remote sensing and for which monthly ERS coverage is available since October 
2003. For the purpose of this extended abstract, the built-in solver of Excel was used to estimate 
model parameters through (constrained) error minimization. With the given model complexity, 
only up to eleven parameters (Smax and ten individual RO's) could be calibrated reliably with this 
solver. The intention is to do a more advanced optimization for all 154 reservoirs for the final 
article and presentation. The results are shown in Table 1.3, which compares original and fitted 
parameter values for different input error levels. 

Two things become clear from the table with fitted model parameters. First, even with relatively 
high errors in estimated water-use, the fitted parameters are close to the original model values. 
This close fit bodes well for using small reservoirs as runoff gauges as observed by satellites. 
Clearly, the proper processes still need to be captured in the models, so hydrological field work in 
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Table 1.3: Effect of input errors (0%, 10%, 20%, 30%) and those of the use of constraints on the 
ability to retrieve the original model values using the observable changes in storage and 
modeled evaporation and water-use. 

^max 

ROi 

R02 

R03 

RO4 

RO5 

R06 

RO7 

ROg 

RO9 

RO10 

Avg 

Original 

350.0 

2.40 

1.40 

1.70 

1.30 

2.00 

0.50 

1.20 

1.80 

0.70 

0.50 

Error 

0% 

347.9 

2.42 

1.40 

1.69 

1.30 

1.99 

0.51 

1.20 

1.80 

0.67 

0.48 

0.01 

Constraints used 

10% 

347.4 

2.51 

1.47 

1.60 

1.27 

2.01 

0.53 

1.25 

1.86 

0.69 

0.45 

0.05 

20% 

347.8 

2.85 

1.33 

1.95 

1.12 

2.03 

0.29 

1.46 

1.80 

0.87 

0.80 

0.19 

30% 

342.7 

3.06 

1.60 

2.09 

1.72 

2.01 

0.55 

1.33 

2.19 

0.75 

0.56 

0.24 

0% 

360.5 

2.42 

1.41 

1.69 

1.30 

1.99 

0.51 

1.20 

1.80 

0.67 

0.48 

0.01 

No use 

10% 

360.6 

2.51 

1.47 

1.60 

1.27 

2.01 

0.53 

1.25 

1.86 

0.69 

0.45 

0.05 

of constraints 

20% 

360.4 

2.31 

1.47 

1.86 

1.37 

2.03 

0.51 

1.46 

1.83 

0.76 

0.55 

0.08 

30% 

360.9 

3.06 

1.60 

2.09 

1.72 

2.01 

0.55 

1.33 

2.19 

0.75 

0.56 

0.24 

the region of interest remains very important. Second, using reservoirs that spilled as constraints 
on the minimum flow amount only improved the fit of the regional variable, Smax- The reason for 
this is simply that reservoirs spilled during months with high flows when the rainfall to be stored 
in the soils exceeded Smax. By using the minimum flow constraint, the model was "forced" to spill 
at the right time by adjusting Smax. 

In general, the proposed method of runoff observation and model calibration is promising. Ob­
serving water stored in small dams with radar satellites can contribute to the on-going hydrological 
research on Prediction in Ungauged Basins (PUB), especially in parts of the world where the value 
of water is high and hydrological observations scarce. 
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A bold, innovative future for measuring the dynamics of global 
surface fresh waters 

Doua Alsdorf1 
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River discharge as well as lake and wetland storage of water are critical elements of land 
surface hydrology, yet they are poorly observed globally and the prospects for improvement 
from in-situ networks are bleak. Considering this, a NASA Surface Water working group5 

is focused on answering the following science and applications questions: (1) What are the 
observational and data assimilation requirements for measuring natural and manmade sur­
face storage and river discharge that will allow us to (a) understand the land surface branch 
of the global hydrologie cycle, (b) predict the consequences of global change, and (c) make 
assessments for water resources management? (2) What are the roles of wetlands, lakes, 
and rivers (a) as regulators of biogeochemical and constituent cycles (e.g., carbon, nutrients, 
and sediments) and (b) in creating or ameliorating water-related hazards of relevance to 
society? Global models of weather and climate could be constrained spatially and tempo­
rally by stream discharge and surface storage measurements. Yet this constraint is rarely 
applied, despite weather and climate modeling results showing that predicted precipitation 
is often inconsistent with observed discharge. Thus, as satellite missions are developed for 
global observations of critical hydrologie parameters such as soil moisture (i.e., HYDROS) 
and precipitation (i.e., GPM), the lack of concomitant measurements of runoff and surface 
water storage at compatible spatial and temporal scales may well result in inconsistent pa-
rameterizations of global hydrologie, weather, and climate models. Fortunately, several 
spaceborne methods have provided potential avenues toward answering these hydrologie 
questions. Among the most promising are active radar and lidar methods that measure in­
undation area, water heights, and changes. For example, radar altimetry is well known for 
its ability to measure ocean surface topography and such methods should be easily adaptable 
to inland waters. The global observations possible from such platforms will have important 
implications for global water cycle research. 

*http : / /www. swa. com/hydrawg 
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Manifestations of global climate change on accelerating the 
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The issue of how the hydrological cycle will change as the climate changes is complicated con­
siderably by somewhat independent changes in pollution (aerosol), whereby increases typi­
cally act to short-circuit the hydrological cycle. However with warming, the main prospect 
is for increased water holding capacity and associated increased water vapor in the atmos­
phere. The rate of increase of 7% K_1 is much greater than projected rates of increase 
in overall evaporation and precipitation, which are more like 1-2% K_1 and are governed 
by the surface heat budget. Hence the prospects are for increases in precipitation intensity 
but decreases in duration or frequency of precipitation. In addition increased rain at ex­
pense of snowfall is likely, with major impacts on snow pack (storage) and soil moisture. 
The changes directly impact partitioning into soil moisture and runoff, and make prospects 
of both droughts and floods more likely. On top of these general tendencies are changes in 
storm tracks and large regional changes associated with teleconnections, such as from El 
Nino. More attention is needed to hourly precipitation in both the real world and models to 
determine how the precipitation characteristics are changing in both. Water management 
will be a major issue in the future. 

How should precipitation change as the climate changes? This is a key question that could have 
a substantial impact on society and the natural environment, as it can directly affect availability 
of fresh water, the quality of potable water, drought and floods. Usually the only measure of 
precipitation cited is amount. Yet most of the time it does not rain or snow. So just a little thought 
makes us realize that we need to be concerned also with how often it rains: the frequency; and 
how hard it rains when it does rain: the intensity or rainfall rate, as well as the amounts. We also 
need to be concerned about whether the precipitation switches from snow to rain or vice versa. 
Also, it turns out that making these distinctions allows us to make more sensible statements about 
the likely changes and how to best examine the data on precipitation. 

The term "global warming" is often taken to refer to global increases in temperature accompanying 
the increases in greenhouse gases in the atmosphere. In fact it should refer to the additional global 
heating (sometimes referred to as radiative forcing) arising from the increased concentrations of 
greenhouse gases, such as carbon dioxide, in the atmosphere. Increases in greenhouse gases in 
the atmosphere produce global warming through an increase in downward infrared radiation. This 
increase in surface heating can indeed increase surface temperatures but it also increases evapora­
tion. In fact it is more likely to do the latter as long as adequate moisture is around and over the 
oceans, which encompass 71 % of the globe, water is everywhere. For example, after a rain storm, 
when the sun comes out, the first thing that happens is that the puddles dry up and the surface of 
the ground dries before the sun's heat goes into raising temperature. 

When the temperature increases, so does the water-holding capacity of the atmosphere. This is 
why we tend to use relative humidity as a measure of moisture as it signifies the percentage of 
moisture the atmosphere can hold rather than the absolute amount. At very cold temperatures, 
the atmosphere can hardly hold any moisture, in effect it gets "freeze dried", and so liquid water 
amounts from snow at temperatures below freezing are quite small. 
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Of course, enhanced evaporation depends upon the availability of sufficient surface moisture and, 
over land, this depends on the existing climate. In fact surface moisture comes directly from 
evaporation as well as through transpiration in plants, together called évapotranspiration. However, 
it follows that naturally occurring droughts are likely to be exacerbated by enhanced potential 
évapotranspiration (drying). 

Thus if the water carrying capacity of the atmosphere increases and there is enhanced evaporation, 
the actual atmospheric moisture should increase, as is observed to be happening in many places. 
Over the United States and Gulf of Mexico, for example, moisture amounts in the lowest 20,000 
feet of the atmosphere increased about 10% from 1973-1994. 

Further, globally there must be an increase in precipitation to balance the enhanced evaporation but 
the processes by which precipitation is altered locally are not well understood. Precipitating sys­
tems of all kinds (rain clouds, thunderstorms, extratropical cyclones, hurricanes, etc) feed mostly 
on the moisture already in the atmosphere at the time the system develops, and precipitation oc­
curs through convergence of available moisture on the scale of the system. Hence, the atmospheric 
moisture content directly affects rainfall and snowfall rates, but not so clearly the total precipita­
tion, at least locally. Thus, it is argued that global warming leads to increased moisture content 
of the atmosphere, which in turn favors stronger rainfall events. In other words, when it rains it 
should rain harder than it used to under similar circumstances. This is exactly what is observed 
to be happening in many parts of the world, thus increasing risk of flooding. It is further argued 
that one reason why increases in rainfall should be spotty is because of mismatches in the rates of 
rainfall versus evaporation. Evaporation occurs typically at about 3 mm per day but moderate or 
heavy rain can easily be 25 mm or more per day. Thus rain dries out the bulk atmosphere unless 
the winds bring in more moisture from remote areas, and the weather system runs out of moisture. 
Moreover, heavier rains are apt to runoff at the expense of soil moisture, increasing risk of drought 
unless compensated for by precipitation increases. 

Because of constraints in the surface energy budget, there are also implications for the frequency 
and/or efficiency of precipitation. The global increase in evaporation is determined by the increase 
in surface heating and this controls the global increase in precipitation. Moisture amounts are not 
limited by this but instead are limited by the moisture carrying capacity, and so precipitation 
rates that depend on the latter are apt to increase more rapidly than amounts, implying that the 
frequency of precipitation or duration of events must decrease, raising the likelihood of fewer but 
more intense events. 

There are many potential complications. An increase in atmospheric moisture may lead to in­
creases in relative humidity and increased clouds, which could cut down on solar radiation and 
reduce the energy available at the surface for evaporation. Those feedbacks are included in the 
climate models and alter the magnitude of the surface heat available for evaporation in different 
models but not its sign. The accumulations depend greatly on the frequency, size and duration of 
individual storms, as well as the rate, and these depend on atmospheric static stability (vertical 
structure) and other factors as well. In particular, the need to vertically transport heat absorbed 
at the surface is a factor in convection and extratropical weather systems, both of which act to 
stabilize the atmosphere. Increased greenhouse gases also stabilize the atmosphere. Those are ad­
ditional considerations in interpreting model responses to increased greenhouse gas simulations. 

Other major complications occur through changes in aerosols, which have multiple effects. A di­
rect influence is to reflect solar radiation, as occurs with the milky white sulfate particles. However 
carbonaceous aerosols, such as soot, absorb solar radiation. Both lead to cooling at the surface, 
but the second also heats the region where the aerosol is located. Hence this short circuits the 
hydrological cycle which otherwise would take the surface heat as evaporation and release it in the 
lower atmosphere as latent heat during precipitation. Other indirect influences also occur on cloud. 
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Typically aerosol increases the number of cloud droplets, making the cloud brighter for the same 
cloud liquid water, and the droplets are smaller and hence less likely to fall, leading to longer-lived 
clouds. But absorption in clouds heats the region and can help burn off the cloud. Cloud in turn 
leads to cooling at the surface, less evaporation and thus less cloud. The net effect depends on the 
climate regime, the type of aerosols, and is poorly known and poorly done in models. 

It is argued that increased moisture content of the atmosphere favors stronger rainfall and snowfall 
events, thus increasing risk of flooding. Although there is a pattern of heavier rainfalls observed in 
many parts of the world where the analysis has been done, another factor is increasing settlement of 
flood plains, which changes vulnerability to flooding. Flooding records are confounded by changes 
in land use, construction of culverts and dams, and other means designed to control flooding. 

With higher average temperatures expected, more precipitation is likely to fall in the form of rain 
rather than snow, especially in the spring and autumn, which will increase run off. In addition, 
faster snow melt is likely to aggravate springtime flooding. A major consequence is decreased 
snow pack as the spring occurs, leading to diminished water storage and soil moisture in the 
summer. This also means less recycling of moisture, whereby local evaporation helps feed clouds 
and local rains, that is more important in summer compared with winter, and enhances risk of 
summertime drought. This mechanism is especially likely in mountain regions and mid to high 
latitude continents. 

The above arguments suggest that there is not such a clear expectation on how local total pre­
cipitation amounts should change, except as an overall global average. Complicated patterns of 
precipitation change should occur where storm tracks shift; where the storms previously tracked 
gets drier and where they shift to becomes wetter. Beyond this, it is suggested that examining 
moisture content, rates and frequency of precipitation, and phase (rain or snow), and how they 
change with climate change may be more important and fruitful than just examining precipitation 
amounts in understanding what is happening, both in the real world and in climate models. But 
many data analyses are not done to illuminate these aspects. To be compatible with life times of 
significant rain events, yet still deal with whole storms rather than individual rain cells, exami­
nation of hourly precipitation data is recommended. Such data are also retrievable from climate 
models, but such data are seldom archived. It is strongly recommended that a new focus should 
occur on hourly precipitation amounts. 

For further reading see Dai et al. [submitted], Trenberth [1998], Trenberth [1999] and Trenberth 
et al. [2003]. 
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One of the goals of the Global Energy and Water-Cycle (GEWEX) Continental Scale Exper­
iments (CSEs) is to accurately estimate or "close" the water budget on continental scales. 
The GEWEX Hydrometeorology Panel (GHP) coordinates the CSEs and affiliated exper­
iments, which now include eight representative world climate regions. The CSE regions 
over the Americas include the Mackenzie (MAGS), Amazon (LBA) and La Plata (LPB) river 
basins as well as the coterminous US (GAPP). In Europe, there is the Baltic river and sea 
basin (BALTEX) and in Asia (GAME) there are 4 sites over the Lena river basin as well as 
other Asian regions (HUBEX, Tibet, GAME tropics). In Australia, there is a site over die 
Murray Darling Basin (MDB). An affiliated experiment has begun over western equatorial 
Africa (AMMA). Most of the CSEs include major river basins and one has an inland sea 
(BALTEX). In general all include large continental scale regions. This talk will provide an 
overview of past, present and future GHP efforts to develop an atmospheric and surface 
water and energy budget global and regional synthesis over the individual CSEs. 
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Latent heat flux (LE) is the key variable that provides a link between energy and water bud­
gets at the land surface. The conventional methods to estimate LE are based on point mea­
surements of energy balance components and are representative only for very local scales. 
Recently a new class of techniques based on remotely sensed (RS) information has been 
developed to compute LE at scales from a point to a continent. Despite their potential, es­
pecially for regional and global hydrological applications, "satellite-derived" LEsa, usually 
does not compare well with "in-situ measured" LEis. Both proxies of LE, however, contain 
the information about the true value of this quantity. The difficulty in inferring this informa­
tion from data is due to different sources of uncertainty involved (e.g., measurement errors, 
scale problems, inadequacies in physical models that transform satellite observations into LE 
estimates). In this work we seek to investigate the use of non-parametric Gaussian mixture 
density models (GMDM's) to describe the conditional uncertainty of LEsat given LEIS. This 
approach does not require any a priori assumptions on the form of the conditional density 
i.e. the algorithms we use in this study are completely data driven. An extra benefit from 
having the conditionals described by GMDM's is that they can further be applied to identify 
the recently developed non-linear Kalman filter for ensemble data assimilation [see Anderson 
and Anderson, 1999; Torfs et al, 2002]. This is the long run objective of this research. 

Data and methods LE^ estimates used in this study come from seven Energy Balance Bowen Ra­
tio (EBBR) ARM/CART stations (E15, E4, E9, E20, E7, E25, E8) distributed across the Southern 
Great Planes (SGP) region of the United States. These estimates are based on 30-min averaged 
observations. The LEsa, estimates were obtained using SEBS (Surface Energy Balance System) 
developed by Su [2002] and are based on instantaneous observations. The both types of LE proxies 
were obtained at 1 hourly resolution in the period of 1 July 2001-30 September 2001. 

To describe the conditional uncertainty of LEis given LEsat a joint probability density function 
(pdf) ƒ needs first to be fitted to bivariate sample {LE,

Mf>t;LEjjifc}JLj. In this work the focus is on 
the use of GMDM's [see e.g. McLachlan and Peel, 2000] which are defined as linear combinations 
of Gaussian densities (see Figure 1.14), called components: 

f(x) = X wn«(m„,c„)(x) (1.4) 

where x is a vector of variables, Nc the number of components, g ^ c ) stands for the Gaussian 
density with mean m„ and covariance C„. Here x = [LEsa,LE^]7. The w„'s are the component 
weights and satisfy wn > 0 and Xw„ = 1. Note that the conditional density f(LEiS\LEsat) that is 
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'component 3 

Figure 1.14: ID and 2D example of GMDM (in both cases as a linear combination of 3 compo­
nents). 

calculated from (1.4) is also a GMDM. To fit (1.4) to the data the procedure of Figueiredo and 
Jain [2002] was applied. 

First attempt To apply the above described methodology we derived the estimates of LEsat by 
forcing SEBS with the following instantaneous RS inputs: short wave radiation derived from a 50 
km GOES product and 1/8 degree GOES surface temperature. The rest of the input variables that 
were needed to run SEBS [see Su, 2002] was either measured or taken from LDAS database. Next 
we grouped LEsat and LEis data according to landuse. Our hypothesis here is that at regional scale 
the bivariate dependency structure should be invariant within a particular landuse class. Moreover, 
this step is intended to tackle the dimensionality reduction issue in non-linear ensemble Kalman 
filters as described by Anderson and Anderson [1999] and Torfs et al. [2002]. Figure 1.15 shows 
the result of this operation. It can be seen in the figure that the dependency pattern between LEjs 
and LE sa, is not really visible. Thus, the data in Figure 1.15 would be of little use for data as­
similation purpose. The blurring effect might be due to undersampling which stems from the fact 
that data availability of GOES temperature is greatly affected by the cloud cover and the algorithm 
that is used to retrieve the surface temperature. Moreover, there is a spatial and temporal scaling 
problem involved (we compare point values with 1/8 decimal degree values), there is a measure­
ment error in L£« values and there is an error in LEm values. The latter might be a combination 
of errors in RS inputs to SEBS and limitations of SEBS itself to reflect the complicated physical 
situation in the near-surface layer of air. In what follows we address this issue by performing 
Monte-Carlo sensitivity analysis of SEBS to two RS inputs that in our view greatly influence the 
quality oiLEsal estimates: net radiation and surface temperature. 
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Figure 1.15: Bivariate 1-hourly LE data grouped according to landuse for the period 1 July 2001-
30 September 2001. LEscu estimates are derived from GOES products. 
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Figure 1.16: Bivariate 1-hourly LE data grouped according to landuse for the period 1 July 2001-
30 September 2001. Upper panel: control run. Lower panel: surrogates. 

Control run and surrogate RS data Accordingly, SEBS was forced with net radiation calculated 
from measured radiation components. Surface temperature was derived from outgoing long wave 
radiation. The rest of the inputs remained the same as mentioned in the previous section. In this 
way we obtained somewhat idealized LEsm data (read: no RS error involved) which is reffered to 
as the control run (see upper panel of Figure 1.16). Note the transparent non-Gaussian dependency 
structure of bivariate LE data. Next, surrogate L£J<a data was created by perturbing the control run 
with percentual error in the net radiation (by comparing RS derived net radiation with measured 
net radiation we estimated this error as 15%). Technically, each net radiation measurement in the 
control run was treated as a mode of log-normal distribution and the 15% error as its coefficient of 
variation. From each distribution 30 points were drawn at random and propagated through SEBS 
to obtain LEsa, surrogates. Those are shown in lower panel of Figure 1.16. 

Then, bivariate GMDM's were fitted to both control run and surrogate data from Figure 1.16 
(for an example of fitted pdf's see upper panel of Figure 1.17). To determine to which extent 
the bivariate structure in control run was deteriorated due to sattelite error in net radiation we 
compared the fitted pdf 's in terms of probabilistic similarity measure introduced by Scott and 
Szewczyk [2001]: 

sim(fi\f2) -
JMx)f2(x)dx 

(fMx)idxff2(xydx)î 
(1.5) 

This measure is 0 if two pdf's show no similarity and 1 if two pdf's are just the same. For cropland, 
open shrubland and grassland sim(fi;f2) was 0.96, 0.96 and 0.98 respectively. This implies that 
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E7_E25_E20 (open shrubland) 

Figure 1.17: An example of MDGM's fitted to open shrubland LE data. Upper panel: joint pdf's 
f{LEis,LEsm) for control run and surrogates respectively (the similarity between the 
two pdf's is 0.96). Lower panel: conditional pdf 's ƒ (LEiS\LEsat) for control run and 
surrogates. The solid line in X-Y plane represents conditional expectation and dashed 
lines represent standard deviation bands. 

the error in net radiation has negligible effect on probability structure in control run data. 

Continuation The same analysis will be performed for the surface temperature. The results will 
be shown during the poster session. In parallel we work on an uncertainty analysis of LE mea­
surements from EBBR ARM/CART stations. 
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Evaluation of satellite soil moisture retrieval algorithms using 
AMSR-E data 

Ruud Hurkmans1. Bob Su2, and Thomas J. Jackson3 

^Hydrology and Quantitative Water Management Group, Department of Environmental Sciences, 
Wageningen University and Research Center, Wageningen, the Netherlands 
2 Centre for Geo-Information, Alterra, Wageningen University and Research Center, Wageningen, 
the Netherlands 
^Hydrology and Remote Sensing Laboratory, Agricultural Research Service, US Department of 
Agriculture, Beltsville, Maryland, USA 

Since soil moisture is a key variable in interactions between land surface and atmosphere it 
is important to create large-scale, long-term soil moisture datasets. Microwave remote sens­
ing can be an important tool to do this. In this study, three soil moisture retrieval algorithms 
designed to retrieve soil moisture from AMSR-E are evaluated using two validation datasets. 
Two of these algorithms only use AMSR-E brightness temperature as input, the third one 
uses an additional vegetation dataset The amount of parameters needed for validation dif­
fered strongly between the algorithms. Results indicated that all algorithms yielded reason­
able results, but the use of extra vegetation data proved to be an essential advantage and 
significantly improved the overall estimations. However, additional datasets and validation 
parameters make it hard to apply an algorithm at large scales. 

Introduction Soil moisture is a key variable in the interaction of land surface and atmosphere. 
Therefore, to monitor environmental changes like climate change, soil moisture needs to be mon­
itored over extensive areas and periods of time. Spacebome passive microwave remote sensing 
can be a powerful tool to achieve this and therefore various sensors of this type and algorithms to 
retrieve soil moisture from them have been proposed [Njoku et al., 2003; Koike et al, 2000]. In 
this work three retrieval algorithms using brightness temperature data of the Advanced Microwave 
Scanning Radiometer (AMSR) [Kawanishi et al, 2003] are evaluated and tested on two different 
validation datasets. 

Microwave remote sensing and soil moisture Microwave remote sensing is suitable for large-
scale soil moisture remote sensing because it is independent of cloud cover and solar illumination. 
Due to the higher sensitivity to soil moisture and larger penetration depth, sensors operating at low 
frequencies are the most suitable for soil moisture remote sensing. Also, there is less influence 
of atmosphere and vegetation. Soil moisture retrieval is based on the Radiative Transfer Equation 
[Jackson, 1993]: 

r« = r-«r-rs+(i -»)7c(i - D + (i -*r)(i -»)rc(i - r )r (i.6) 

where TB is the brightness temperature, Ts and Tc are temperatures of soil and canopy respectively 
(all in K), © is the single scattering albedo [-], er is the surface emissivity [-] and T is the canopy 
transmissivity [-] that can be described by: 

' = eXP(^)) 
(1.7) 
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where T is the optical depth of the vegetation and 6 is the viewing angle of the satellite. <o is 
very small at microwave wavelenghts and can be neglected. eT depends on surface roughness and 
soil moisture content. The first is corrected for by means of the approach of [Choudhurry et al., 
1979] and soil moisture can be derived from the corrected emissivity by the Fresnel equation and 
a dielectric mixing model such as Wang and Schmugge [1980]. Three retrieval algorithms are 
evaluated in this work: 

• the Jackson algorithm [Jackson, 1993] solves the inverted version of (1.6) and needs extra 
vegetation information (e.g. a vegetation index) to estimate T. Temperatures of surface and 
canopy are assumed equal and derived empirically from a high frequency AMSR-E channel 
[de Jeu, 2003]. 

• the de Jeu algorithm [de Jeu, 2003] solves (1.6) iteratively using two 7g channels for vegeta­
tion optical depth and surface emissivity simultaneously. Temperatures are derived similar 
to the Jackson algorithm. 

• the Wen algorithm [Wen et al., 2003] also solves (1.6) iteratively, however the solved quan­
tities in this case are surface temperature and surface emissivity. 

Validation datasets The first validation dataset that was used was the Mongolia Match-up dataset 
[Kaihatsu, 2003]. The dataset covered an 2.5° x 2.5° area in central Mongolia and ran from 1 July 
2002 to 21 September 2002. Ground observations were available on a daily base at 12 locations at 
a depth of 3 cm and for the Jackson algorithm vegetation information was derived from MODIS 
EVI*. 

The second dataset, from SMEX02 [HRSL, 2002], took place in a study area around Ames, Iowa, 
USA between 25 June 2002 and 12 July 2002. In this case daily groundobservations at 47 locations 
for the upper 6 cm of the soil profile were available. For the Jackson algorithm observations of the 
Vegetation Water Content were used to derive the transmissivity. Since Iowa is relatively densely 
populated the C-band of AMSR-E interfered with radio traffic [Li et al, 2004]. Therefore for this 
dataset the X-band channel of AMSR-E was used. 

Results As far as the Mongolian dataset is concerned, from Table 1.4 it appears that observations 
were mostly overestimated. As can be seen in Figure 1.18, this was mainly due to peaks in the 
estimations that corresponded to rainfall events. The reaction to these events was different; the 
effects of rainfall were longer visible in the observations than in the estimations. A possible 
explanation for this is the fact that observations took place at a depth of 3 cm, while the observing 
depth at C-band is only in the order of ± 1 cm. The rainfall peaks also explain the low errors of the 
Wen algorithm: the values at the peaks were lower than for the other algorithms. To the end of the 
simulation the estimations of the de Jeu and Wen algorithms increased compared to the Jackson 
algorithm and the observations: this is due to a decrease in TB values. However, also the vegetation 
density dropped steeply. This explains the lower values of the Jackson algorithm which reacted 
also to changes in vegetation, while the other algorithms merely responded to TB input. 

For the SMEX02 dataset, there was a large difference in performance between daytime and night­
time (Table 1.4). Especially the de Jeu and Wen algorithms performed better at night, which is 
surprising because observations took place at daytime. However, from Figure 1.19 it appears that 
most of the error in the daytime overpasses came from days at the end of the period. Again, this 
was due to the high vegetation density; the Jackson algorithm used vegetation information, there­
fore its bias and SEE were lower. The fact that the algorithms performed better at night can be 

*http://tbrs.arizona.edu/project/MODIS/evi.php 
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Figure 1.18: Observed and estimated soil moisture content for the Mongolian data. The upper 
plot shows daytime (ascending) overpasses, the lower plot nighttime (descending) 
overpasses. 
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Figure 1.19: Observed and estimated soil moisture content for the SMEX02 data. The upper plot 
shows daytime (ascending) overpasses, the lower plot nighttime (descending) over­
passes. 

48 



CAHMDA-II workshop Session 1 Hurkmans 

Table 1.4: Standard Error of Estimation (SEE) and Bias of estimated soil moisture content (es­
timation minus observation) for the three algorithms, for both daytime and nighttime 
observations and both datasets. 

Mongolia 

Jackson 

de Jeu 

Wen 

SMEX02 

Jackson 

de Jeu 

Wen 

Bias 

-0.9144 

1.6498 

0.3803 

Bias 

-0.9989 

-6.5661 

-4.9727 

Daytime 

Daytime 

overpasses 

SEE 

3.2350 

4.1958 

2.9482 

overpasses 

SEE 

5.4405 

9.1403 

8.4073 

Bias 

0.3605 

0.8072 

0.8995 

Bias 

-0.4636 

-2.2169 

0.3156 

Nighttime overpasses 

SEE 

3.3799 

4.1643 

2.8369 

Nighttime overpasses 

SEE 

5.0948 

5.1203 

4.5683 

explained by the shallow viewing depth at the frequency used to determine the surface temperature 
(Ka-band): considering the dense vegetation the canopy temperature was measured rather than the 
surface temperature. In daytime the surface temperature was higher than the canopy temperature, 
at night the difference was smaller and the estimates were therefore more accurate. 

Conclusions Overall it can be concluded that all algorithms gave reasonable results after validation 
to each dataset, but the additional vegetation infomation appeared to be an essential input to a 
retrieval algorithm. The Jackson algorithm yielded better overall results (considering both datasets 
at day- and nighttime) because of this advantage. The amount of validation to obtain good results 
differed strongly per algorithm, especially the Wen algorithm required many frequency and area 
specific parameters, while the de Jeu algorithm required hardly any validation at all. Also the 
Jackson algorithm made use of several parameters in addition to the vegetation data. This makes 
the de Jeu algorithm the most applicable for large-scale (global) applications. Finally, the datasets 
that were used were not ideal for soil moisture retrieval, but they were very different in terms of 
vegetation density which made them suitable testcases. 
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Detectability of changes in the global terrestrial water cycle 

Justin Sheffield1 and Eric F. Wood1 

lDept. Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA 

A potential consequence of climate change is the intensification of the global and continen­
tal scale water cycle. This intensification may manifest itself in the form of, for example, 
increased precipitation and faster evaporation, with consequences for human activities in 
terms of changes to the availability or absence of water, e.g. flooding or drought. Detection 
of change in the terrestrial water cycle requires monitoring for long periods of time so as 
to determine whether significant trends can be identified against the background of natural 
variability. Quantifying the uncertainty in detecting change in the terrestrial water cycle 
using current observational data and monitoring networks is central to our ability to detect 
change. By identifying the characteristics of the detection process that limit and constrain 
our ability to detect climate change, we can identify the best strategies for detection. In tins 
study we estimate the time required to detect significant trends in the components of the 
terrestrial water cycle and use this as a base to explore the characteristics of detectability. 

Using estimates of natural variability from land surface modeling and GCM predicted trends in 
water cycle components, statistical methods are applied to estimate the length of records required 
to detect significant trends. The results indicate that decades to centuries of monitoring are re­
quired, when given the ideal situation of error-free, long-term datasets of water cycle components 
over large scales. However, there is considerable uncertainty in the current level of variability of 
the water cycle at any spatial or temporal scale and the spread of future predictions of change by 
climate models is large and regionally dependent. 

Detectability depends on a variety of factors that include the statistical methodology, the charac­
teristics of the data sets (e.g. its variability, trend magnitude, correlation, etc.), confidence limits 
used in the statistical tests, and so forth. This study explores some of these issues as a step to­
wards characterizing detectability and quantifying our ability to detect changes in the large scale 
terrestrial water cycle. We do this through assessments of sensitivity of detection to the above 
factors, as well as investigations of the most appropriate data attributes, such as temporal scale 
and measurement error, that result in rapid detection times. 
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Detection of hydrological effect on local gravity anomalies 

Shaakeel Hasan1. P.A. Troch1, J. Boll2, and C. Kroner3 

^Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, 

The Netherlands 
2 Department of Biological and Agricultural Engineering, University of Idaho, USA 
3'Institute of GeoSciences, Friedrich-Schiller-University, Jena, Germany 

Detecting change in water storage from related temporal variation in gravity has become 
an important issue for many studies and research related to the Earth and environmental 
science, oceanography and climatology, and in particular hydrology and geophysics. Find­
ing the relation between water storage and gravity change is promising for hydrologiste, in 
closing the water balance, as well as for geophysicists, in detecting the real long-term gravity 
change. The Global Geodynamics Project (GGP) began in 1997 with the purpose to record 
the Earth's gravity field with high accuracy at a number of worldwide stations using su­
perconducting gravimeters (SG). The Gravity Recovery and Climate Experiment (GRACE), 
jointly implemented by NASA and DLR, is a dedicated twin satellite mission (launched in 
March 2002) whose objective is to map the Earth's gravity field to high accuracy at monthly 
intervals. Both GGP and GRACE recognise that tracking the movement of water on and be­
neath the earth surface is one of the main goals, and thus promise a significant development 
in hydrological studies. This paper examines the local hydrological effect on gravity at the 
Geodynamic Observatory Moxa, Germany, by means of time series analysis and distributed 
hydrological modeling. 

Data The data used are from Moxa Geodynamic Observatory (Figure 1.20a). The hydro-meteorological 
data are collected in the vicinity of the observatory and include hourly precipitation, groundwater, 
air pressure, temperature, wind speed, humidity, and illuminance and daily surfacewater levels at 
a V-notch installed in the Silberleite, the small creek in which drainage area the observatory is lo­
cated. The hourly gravity residuals, hereafter refered to as observed gravity residuals, are obtained 
after corrections for the Earth tides, polar motion, barometric pressure, and instrumental drift. 

Time series analysis From visualization it is clear (Figure 1.20b) that precipitation has a direct and 
short term effect on gravity, while the effect of long term groundwater change is not always very 
clear. By means of time series analysis we construct transfer function models [Box and Jenkins, 
1976] that allow to convert the precipitation and/or groundwater signal to gravity changes. For 
building the model, we considered two situations: short term response of gravity due to rainfall 
impulses and long term response of gravity due to slow groundwater changes. The first accounts 
for high-frequency components, while the latter accounts for low-frequency components in the 
dynamic behaviour of the total gravity signal. 

Distributed hydrological model We used the Soil Moisture Routing (SMR) model to track tem­
poral changes in water storage in the catchment around the gravimeter (Figure 1.20a). The SMR 
model, originally developed at Cornell University, USA, provides distributed prediction of surface 
runoff and soil moisture [Brooks and Boll, 2004]. The model tracks the flow in and out of grid 
cells using a basic mass balance: 

Dl^=P-ET, + 2iQiU-'ZQemj-L,-Ri (1.8) 
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Moxa Geodynamic Observatory Qravlty residual, precipitation, and groundwater 
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Figure 1.20: (a) Surrounding topography of Moxa Geodynamic Observatory [lighter and broken 
lines are contour lines in m+MSL, thick line shows the catchment boundary, the dot 
indicates the gravimeter location], (b) Exploring gravity residuals as function of pre­
cipitation and groundwater [thick line in the middle is for gravity residuals, lower line 
for groundwater and upper bars for precipitation]. 
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Figure 1.21: Schematic illustrating relevant hydrological processes in the Soil Moisture Routing 
(SMR) model. 
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Figure 1.22: Short term gravity response to rainfall impulses [Model calibration showing se­
lected precipitation events (vertical bars) along with observed (gray line) and mod­
eled (dashed line) changes in gravity residuals (top), Model structure characterization 
(middle-left; a and b represent number of parameters in autoregressive and moving 
average polynomials of the transfer function (1.10)), Optimized unit impulse response 
function (middle-right), Model validation showing selected precipitation events (ver­
tical bars) along with observed (gray line) and modeled (dashed line) changes in 
gravity residuals (bottom)]. Zeros in the calibration and validation plots indicate the 
starting of the events. 

where, i is cell address, />,- is depth to restrictive layer of the cell (cm), 6,- is average moisture 
content of the cell (m3 m - 3) , P is precipitation (rain and snow) (cm), ETi is actual évapotranspira­
tion (cm), Qi„.i is lateral inflow from neighbouring upslope cells (cm), Qout.i is lateral outflow to 
neighbouring downslope cells (cm), L,- is downward leakage to bedrock (percolation) (cm), and Rj 
is surface runoff (cm). Note that all the volumetric quantities are presented per area of a grid cell. 

Figure 1.21 illustrates the processes in SMR. Calculation of the water balance is facilitated by a 
GIS, which keeps track of catchment characteristics such as elevation, soil properties, slope, land 
use and flow direction as well as the moisture stored in each cell at each time step. In this study, the 
time step was one hour. A detailed description of the model is available in Boll et al. [1998] and 
Frankenberger et al. [1999]. Modifications to the SMR model include the addition of a canopy 
layer to simulate interception, and calculation of gravity residuals based on moisture storage in the 
canopy, snow and soil. 

Based on Newton's law of gravitation in a local cartesian coordinate system, the vertical compo­
nent of gravitation (gravity anomaly) is given by: 

w-'fj/mt** (1.9) 
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with the density difference Ap of the disturbing mass relative to its surrounding, and the volume 
element dv = d>!dy'di [Torge, 1989]. 

Closed-form solutions of (1.9) are available for a multitude of simple bodies with constant density 
[Torge, 1989]. We used rectangular prisms with horizontal limits defined by the pixel size in the 
DEM and vertical limits of soil depth for soil moisture, snow depth for the snow layer, and canopy 
interception storage depth for the canopy layer. 

Results Considering precipitation events isolated by dry spells, impulse response functions were 
computed for both gravity and groundwater changes to precipitation. We used a Bayesian Infor­
mation Criterion (BIC) [Priestley, 1981] to optimize the number of parameters in the response 
functions. We present here the results for gravity response to precipitation impulse (Figure 1.22). 
During calibration, our impulse response function explains 64% of the variation of the observed 
gravity change and during validation the explained variance is 61%. If U(j and V(z) denote the 
input (precipitation in mm) and output (gravity changes in nm s~2), the transfer function in the 
z-transform domain can be represented as: 

-0.32 -0.40z"1 + 0.03z~2 +0.08z~3 

y^ = 1.00+0.66Z-1 "V ( U 0 ) 

Unlike precipitation effect on gravity, effect of groundwater change is not that straightforward. 
Gravity, being an integrated signal, contains information related to all kinds of simultaneous mass 
(re-)distributions. In order to build a transfer function model for long term response of gravity due 
to slow groundwater changes, we looked at windowed cross correlation between groundwater and 
gravity for different windows of varying length of 1 day to 1 month at 0 to S hours lag. Looking at 
the histograms of cross correlation coefficient, we find both positive and negative high correlation, 
as well as no correlation (Figure 1.23). However, from 4 years of data, we find that in more than 
50% cases there exists a high negative correlation, while for the rest there is either no correlation 
or no data or positive high correlation. More investigation is required before we build transfer 
function models. 

The SMR model for the Silberleite catchment was setup using available data sets (DEM, land use, 
and soil depths). Proper model calibration was hampered because of lack of good quality runoff 
data. We checked the SMR model results for consistency in computed water balance components 
and estimated monthly runoff. In general, the model water balance (see Figure 1.24a) is in agree­
ment, for example, with estimates of evaporation/precipitation ratio of ~ 50% [Peixoto and Oort, 
1992]. Monthly runoff was estimated from available surface water level data and compared to 
modeled monthly runoff (see Figure 1.24b). While judging this verification, we have to keep in 
mind that no data were collected during high discharge and the fact that our model does not have 
a deep groundwater component, therefore, regional base flow contribution to total runoff at the 
weir is not simulated. However, the simulated runoff pattern is more or less in agreement with the 
observed flow pattern. 

Figure 1.25-top compares the observed gravity residuals for a 4-year period (2000-2003) with the 
modeled gravity changes based on spatio-temporal simulations of the water balance components 
in the catchment and using (1.9). In general, we can reproduce the observed patterns quite well, 
although the dynamic range of modeled gravity is about 50% of observed gravity. At this moment, 
it is not clear what causes this. One possible reason could be that the modeled influence zone of 
mass distribution around the gravimeter underestimates the true influence zone, due to the fact 
that deep groundwater dynamics are poorly represented in the hydrologica) model. The effect 
of horizontal domain size around the gravimeter is shown in Figure 1.25-bottom to illustrate this 
point. 
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Figure 1.23: Windowed correlation between groundwater and gravity for windows of different 
time length at lag-0. 
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Figure 1.24: (a) SMR model water balance [gray lines are for input (throughfall-solid 
and snowmelt-dashed) and black lines are for output (evapotranspiration-solid, 
percolation-dashed, and runoff-dotted)], (b) Model verification: estimated and mod­
eled discharge through V-Notch. 
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Figure 1.25: Gravity residual: observed (gray) and modeled (black). Modeled residuals containing 
all storage changes for the entire catchment (top). Effects of different domains in a 
small time window (bottom). 

55 



Hasan Session 1 CAHMDA-II workshop 

Conclusion In this paper, both time series analysis and distributed hydrological modeling tech­
niques are explored to explain local gravity anomalies as observed by a superconducting gravime-
ter at Moxa Geodynamics Observatory, Germany. Both approaches yield encouraging results, and 
serve complementary objectives. lime series modeling provides us with a simple yet effective 
technique to correct for precipitation effects on short term gravity residuals. Distributed water 
balance modeling explains much of the long term behaviour of the gravity signal. From a hydro-
logical persective, in-situ gravity measurements of the kind used in our study offer an intriguing 
new look at hydrological processes. 

56 



CAHMDA-II workshop Session 1 Leijnse 

Estimation of path-averaged rainfall and évapotranspiration using a 
single instrument 

H. Leiinse1. R. Uijlenhoet1, and J.N.M. Strieker1 

lHydrology and Quantitative Water Management Group, Wageningen University, Wageningen, 
The Netherlands 

The water flux at the land-atmosphere interface is extremely important in both hydrology 
and meteorology, and many instruments have been developed to measure either precipitation 
or évapotranspiration at a point in space. It would be useful if a single instrument could be 
used to measure both fluxes in a path averaged fashion. A microwave link could potentially 
be used for this purpose. 

A microwave link consists of a transmitter and a receiver, between which an electromagnetic wave 
(k ~ 1 cm) propagates through the atmosphere. In the case of rainfall, this propagation is hampered 
by raindrops in the signal path. The attenuation of the microwave signal (dB km -1) is nearly 
proportional to the rainfall intensity (mm h~' ). In the case of évapotranspiration the propagation 
is affected by turbulence in the atmospheric boundary layer, from which the évapotranspiration 
can be estimated. 

A microwave link signal was analyzed for several rainfall events and dry periods, and compared to 
measurements made by other instruments. Several rain gauges were used to measure the rainfall, 
and the évapotranspiration was estimated using an energy balance method. The results are opti­
mistic, but more research and testing is needed before the instrument can be used operationally to 
measure both components of the water flux. 
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Temporal dynamics of soil moisture variability: from theoretical basis 
to modeling implications 

John P. Albertson1 

1 Department of Civil and Environmental Engineering, Duke University, USA 

The combination of inadequately resolved soil moisture fields and nonlinear relationships 
between fluxes and soil moisture leads to errors in both diagnostic and predictive estimates 
of large scale mass and energy fluxes. Efforts to empirically define the dynamics of sub-grid 
spatial variance of soil moisture have led to contradictory results. Moreover, most reports of 
soil moisture variability range from qualitative to descriptively quantitative. In this paper we 
present a dynamic conservation equation for the spatial variance of sub-grid root-zone soil 
moisture, based on first principles of statistical fluid mechanics. We arrive at a variance bud­
get in which explicit covariances between moisture fields and land surface flux fields act to 
produce or destroy sub-grid moisture variance through time (according to the sign of the cor­
relation between the flux and state fields). A series of examples are reviewed to explore how 
simple forms of variability in soil, vegetation, precipitation, topography, and initial moisture 
content lead to evolving covariances between spatial fields of soil moisture and particular 
land surface fluxes, and how these covariances relate to the temporal trajectory of the spatial 
variance of soil moisture. We isolate one set of processes and conditions that demonstrates 
variance production through time and another set that demonstrates variance destruction. Of 
particular interest is the tendency for transpiration and infiltration-runoff processes to ei­
ther produce or destroy variance, depending on the background wetness regime. Field data 
are also presented and shown to demonstrate a temporal behavior of the spatial variance 
that is predictable through the proposed approach. Finally, a closure model is presented for 
the variance budget and its use is shown to lead to improved land surface flux estimates over 
coarse grids. 

60 



CAHMDA-II workshop Session 2 Salvucci 

Exploiting equilibrium tendencies of soil moisture dynamics for 
parameter estimation 

Guido D. Salvucci1 and Marisa Gioiso1 

1 Boston University, USA 

Two aspects of soil moisture dynamics that can be exploited to parameterize the relation 
between hydrologie fluxes and soil moisture (?) at both the point-scale and large-scale are 
explored. They are: (1) the expectation of soil moisture change ( j ) conditioned on mois­
ture level is equal to zero. Applying this principle to the water balance equations allows 
direct, empirical estimation of the relation between soil moisture and total water loss (the 
sum of drainage d, évapotranspiration et, and runoff ro) from precipitation measurements 
conditionally averaged according to soil moisture level; and (2) the variance of the sum of 
model-estimated soil moisture changes (i.e., var Y.(p — et(s) — d(s) — ro(s))) will contain a 
term that saturates to the actual soil moisture variance and a term that grows with time. 
The first term saturates because of the strong negative correlation between increments: i.e., 
days with positive perturbations in accumulation physically cause days with negative pertur­
bations to occur in the future. The second term grows as a consequence of summing errors 
due (in part) to poor parameter specification. Thus by minimizing the total variance, we can 
estimate model parameters, and thereby partition the total water loss term estimated from 
principle (1) into the évapotranspiration and drainage/runoff components. Most critically, 
this methodology requires only intermittently sampled forcing data (e.g., p and s), no cali­
bration data (e.g., continuous measurements et, d, or gp, and no computationally expensive 
simulations. The requirements are more parsimonious than alternative methods because the 
objective function that we minimize is not a measure of actual prediction error, but rather 
a measure of how nonstationary (and thus error prone) the associated modeled soil mois­
ture process would be for a given set of parameters and forcings. Furthermore, the depen­
dence of the fluxes on soil moisture are expressed using piece-wise continuous polynomials 
in such a way that the minimization of the objective function can be done with quadratic 
programming techniques (i.e., the parameters of the model appear in the objective function 
as quadratic terms). Tests of the method using benchmark numerical simulations, Ameriflux 
data sets, and remote sensing estimates of soil moisture will be discussed. 
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Quantitative measures for the local similarity of hydrological spatial 
patterns 

Stephen R. Wealands1'2. Rodger B. Grayson2, Jeffrey P. Walker1, and Günter 
Blöschl3 

1 Department of Civil and Environmental Engineering, The University of Melbourne, Victoria, Aus­
tralia 
^•Cooperative Research Centre for Catchment Hydrology, Australia 
3 Institute of Hydraulics, Hydrology and Water Resources Management, Vienna University of Tech­
nology, Vienna, Austria 

The task of assessing similarity between data sets is common in hydrological modelling. 
While this has been widely researched for temporal data sets, the similarity between spa­
tial patterns has been largely ignored. This has been due to a lack of spatial pattern data. 
Today mere is widespread use of distributed hydrological models and increasing availability 
of observed spatial patterns. These observed spatial patterns are useful for model calibration 
and optimisation, though at present there is limited use of the spatial information contained 
in them. This is mostly due to a lack of understanding in how to make optimal use of this 
information rich data. The work in this paper investigates some quantitative measures for 
judging the similarity between observed and simulated spatial patterns, with a particular 
emphasis on local similarity techniques. The different measures allow the user to assess dif­
ferent aspects of similarity, which can then be used together for automated model calibration 
and/or evaluation. 

Introduction In hydrological modelling, assessing the similarity between data sets is an everyday 
task, regardless of whether the data is temporal or spatial. Many methods exist for doing this, but 
most were not developed specifically for hydrological data sets. As such, it is necessary to un­
derstand the methods and what their resulting measures actually represent. Legates and McCabe 
[1999] evaluate many methods used for assessing similarity between temporal data sets. Some 
methods are sensitive to matching extreme values, while others provide a test of fit but ignore ab­
solute differences. It is concluded that relative, absolute, local and global measures should all be 
stated when assessing the similarity between data sets. Additionally, the use of specialised meth­
ods for particular types of hydrological data can provide more informative similarity measures. 
Boyle et al. [2000] present a method in which the hydrograph is divided into "process-related" 
components. Each component is then compared, providing a measure of similarity that can be 
directly related to the process. This requires prior knowledge about the phenomenon being com­
pared and is more difficult for spatial data sets (herein referred to as spatial patterns). 

There are many methods available for assessing similarity between spatial patterns. Together, 
these global and local methods can describe the similarity between the values in the spatial pat­
terns. But as with most temporal measures, they mostly ignore the specific arrangement of the 
values (especially the global methods). As a result of this, most hydrologists rely on visual com­
parison for assessing similarity [Grayson et al., 2002]. 'Visual comparison can be thought of as a 
specialised method, as it incorporates knowledge about the hydrological phenomenon and other 
ancillary information. However, its weaknesses are that it is neither automated, objective, repeat-
able nor quantitative - all things that are important when assessing similarity between many data 
sets. This research aims to address some of these weaknesses by emulating parts of the visual com-
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parison process computationally. There is no expectation that a computer algorithm will be able to 
emulate what the human brain does. However, the steps undertaken during visual comparison sug­
gest many new avenues to pursue for developing specialised methods for assessing similarity. This 
paper discusses the background to similarity assessment and describes three different methods for 
assessing local similarity, including an example of their use. 

Background A review of the literature on computer vision, image processing and pattern recog­
nition has identified the major processes undertaken during visual comparison and methods that 
try to emulate them [Wealands et al, 2004]. A visual comparison involves both global and local 
similarity assessment [Hagen, 2003; Hay et ah, 2003]. During local comparison, the image is 
viewed as a set of homogeneous regions, rather than individual pixels [Hay et al., 2003]. The 
visual comparison also focuses on particular features or parts of the spatial pattern, rather than 
treating every location equally [Tompa et al., 2000]. During this process, observations such as the 
similarity of shape, location and intensity are noted. Finally, the observed similarities and differ­
ences observed are explained and/or interpreted using extensive background knowledge [Grayson 
et al, 2002]. Thus, the procedure used during visual comparison can be described as "global sim­
ilarity assessment, followed by local similarity assessment of regions in the spatial pattern using 
various measures, with a tolerance for minor differences and additional focus on more important 
parts of the spatial pattern". 

Global methods for assessing similarity of spatial patterns are plentiful [see Scheibe, 1993]. Ba­
sic statistics, geostatistics and landscape indices can all characterise certain features of the spatial 
pattern. These numerical summaries can then be compared to measure the similarity between 
spatial patterns. For local similarity, the most common method used is root mean squared error 
(RMSE), which provides a summary of the squared residuals. Local similarity methods are far 
more sensitive to differences between the spatial patterns than global methods, as they evaluate 
every location and use the spatial data in its complete form. At each location, a measure is cal­
culated (e.g., the squared residual) to represent the similarity and this is stored in an intermediate 
spatial pattern. The intermediate spatial pattern is useful for closer inspection of the differences 
and is summarised to produce the resultant local similarity measure. 

More specialized methods involve additional processing both before and during the calculation of 
similarity measures. For example, preprocessing can involve smoothing or aggregation to change 
the scale of the spatial patterns. These adjusted spatial patterns are then used for computing the 
similarity measure. Alternatively, each location can be compared against neighbouring locations 
in the other spatial pattern, with the most similar measure from the whole neighbourhood used to 
represent the similarity for that location. Both these examples illustrate how a minor modification 
can alter a standard method, thus making it more specialised. 

Local comparison methods The aim of local comparison methods is to emulate the major features 
of detailed visual comparison, so that these can be quantified and automated. Three methods used 
to produce local similarity measures are (1) fuzzy comparison, (2) importance maps and (3) image 
segmentation. 

Fuzzy comparison is a method used for tolerating shifts and differences during the calculation 
of the similarity measure. This allows the user to specify weights for locational matching (i.e., 
what amount of displacement is acceptable) and value matching (i.e., what amount of error is 
considered acceptable). The method processes each location in the spatial pattern, computing 
a similarity value between the respective location and its neighbouring locations in the second 
spatial pattern [more details in Hagen, 2003; Wealands et al, 2004]. From the nine similarity 
values (range of 0 to 1) computed, the highest level of similarity is retained. Figure 2.1i) shows 
two different sets of residual and location weights that have been used to calculate the fuzzy 
similarity between observed and simulated soil moisture data. The more tolerant residual weights 
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Figure 2.1: Example illustrating three specialized methods for assessing local similarity. The 
methods aim to emulate some aspects of visual comparison, including i) tolerance 
for differences in values and locations; ii) focus on certain parts of the spatial pattern 
more than others; and iii) comparison of regions rather than pixels. 

(b) produce a higher overall similarity value than the more limiting weights (a). When multiple 
sets of observed and simulated spatial patterns are compared, this method can help reveal similar 
spatial patterns that are not detected by standard local similarity methods due to shifts or minor 
differences. 

Weighting spatial patterns before computing similarity measures is a way of focusing on the "im­
portant areas". Visual comparison does this automatically as a result of both visual cues (e.g., 
bright spots) and background knowledge (e.g., focusing only on areas the user knows are gullies). 
While there is literature on what draws visual attention in an image, these findings are often re­
lated to the type of image. However, it has been recognised that features occurring infrequently 
in images (e.g., extreme values) are of high perceptual importance [Tompa et al., 2000]. This 
can be used to produce perceptually weighted spatial patterns, in which the infrequent values are 
given higher weights than those that are common. Due to the weightings, calculation of the stan­
dard RMSE measure will lead to a larger residual where the infrequent values do not match [see 
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Wealands et al, 2004, for examples]. Weighting can also be applied to limit the areas in which 
the similarity measure is computed. If the user is only interested in the similarity of certain areas 
(e.g., north facing slopes), then a weighting that either enhances or separates these areas will focus 
the meaning of the similarity measure accordingly. Figure 2.1ii) shows the differences between 
standard RMSE calculations when using different slope weights to focus the comparison. By us­
ing the weights to limit the influence of slopes greater than 10 degrees (a), the similarity measure 
is focused more on similarity in flatter areas. If the weights exclude the steeper areas entirely (b), 
then a measure that is only related to flat areas is produced. 

Segmentation is the process of breaking up an image into regions using a set of rules. The sim­
plest approach to segmentation is thresholding, where a value is chosen to separate an image into 
two regions. During visual comparison, spatial patterns are viewed as regions rather than pixels 
[Hay et al, 2003], with the regions detected at varying scales. Emulating this computationally 
is a difficult task. Using a multiresolution segmentation technique from image processing [Baatz 
and Schäpe, 2000], the spatial patterns of soil moisture have been segmented into homogeneous 
regions in Figure 2.1iii). Using the mean values for each region, an RMSE measure has been 
calculated between the segmented spatial patterns. This value is less than the RMSE calculated 
between the original spatial patterns due to the removal of "noise" via averaging within regions. 
This method seeks to emulate the region detection process that is done visually, by simplifying the 
spatial pattern prior to comparison. It may be particularly useful for detecting similarity between 
noisy data sets, in which the noise precludes the use of standard methods like RMSE. 

Discussion This research has investigated multiple methods for assessing different aspects of local 
similarity between spatial patterns. Methods have been sourced from other disciplines and adapted 
to work with spatial patterns common in hydrology. These methods focus on emulating aspects 
of visual comparison. It is widely recognised that no single method for assessing similarity can 
capture everything, but by using multiple methods together a strong test of spatial pattern similarity 
can be made. Further work with the methods described above will identify their particular benefit 
for assessing similarity in different contexts. 
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Geostatistical aspects of scaling behavior observed in regional scale 
surface soil moisture fields 

Donarveol Rvu1 and James S. Famiglietti1 

1 Department oj: Earth System Science, University of California, Irvine, California, USA 

Spatial correlation patterns of surface soil moisture contents in regional scale fields are influ­
enced by the combined effects of atmospheric forcing and land surface features. While small 
scale spatial variations of land surface features dominate soil moisture fields during dry peri­
ods, large scale variations from the atmospheric forcing become more significant during wet 
period, which has been shown using 2D spectra or semivariograms. Here, the effects of the 
changes in the spatial correlation on the scaling behavior of surface soil moisture are studied 
using Monte Carlo simulations. Spatial statistics from recent soil moisture experiments were 
used to reproduce scaling in the second order statistical moments of soil moisture observed 
in die SGF97 and SGP99 data. The effects of various semivariogram models, nugget, scale, 
and relative dominance of small or large scale spatial patterns were assessed through the 
simulations. Our results imply that, under specific conditions, e.g., in very dry soil moisture 
fields, using a power-law decay of statistical moments with respect to spatial scale for the sta­
tistical downscaling of soil moisture can result in erroneous downscaled prediction of surface 
energy and water fluxes. 
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Downscaling of low resolution passive microwave soil moisture 
observations 
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This paper addresses the validation and subsequent downscaling of low resolution (25 km 
x 25 km) passive microwave near-surface soil moisture data from the Advanced Microwave 
Scanning Radiometer for the Earth observing system (AMSR-E) on board the Aqua satel­
lite. The paper first reports on large-scale validation experiments which have been under­
taken in south eastern Australia, under a range of sou moisture conditions and in different 
seasons. On each occasion approximately 220 sites were monitored for soil and vegetation 
properties and soil moisture across a 40 km x 50 km area, with a range of vegetation, soil 
and topographic attributes. Second, the paper reports on downscaling of the low resolution 
AMSR-E near-surface soil moisture product to 1 km using two recent surface wetness index 
approaches which employ thermal and visible AVHRR and MODIS imagery. 

Introduction Knowledge of spatial and temporal distribution of soil moisture is required for a 
variety of environmental studies. The Scaling and Assimilation of Soil Moisture And Stream-
flow (SASMAS) project aims to develop new methodologies for meaningful estimation of spatial 
distribution and temporal variations of soil moisture content through a combination of model­
ing, observations and data assimilation [see Rüdiger et al., 2003]. The recent development in 
microwave remote sensing techniques for near surface soil moisture monitoring [e.g., Schmugge, 
1998; Western et al, 2002] has been one of the triggers for the formation of the SASMAS project. 

This paper addresses two SASMAS research objectives: (1) field validation of the Advanced Mi­
crowave Scanning Radiometer for the Earth observing systems (AMSR-E) soil moisture product; 
and (2) development of new methods for disaggregation of large area soil moisture estimates. 
Its broad aim is to assist in assessing the calibration reliability of AMSR-E and to increase its 
hydrological applicability by disaggregating the low resolution (25 km x 25 km) AMSR-E soil 
moisture data into moderate resolution (1 km x 1 km) soil moisture values. The paper describes 
preliminary results from recent intensive field validation campaigns and presents a soil moisture 
disaggregation methodology for AMSR-E footprints based on AVHRR and MODIS satellite data. 

Theory Measurements in the microwave region of the electromagnetic spectrum can provide all-
weather quantitative estimates of near-surface soil moisture under low-to-moderate vegetation 
cover. AMSR-E is a passive microwave sensor with a 6.9 GHz (C band) channel and footprint 
size of more than 25 km. Based on published results and supporting theory, AMSR-E holds great 
promise for estimating soil water content in the top 1 cm layer of soil for relatively low vegetation 
cover [Choudhury and Golus, 1988; Ahmed, 1995; Njoku and Li, 1999; Schmugge et al, 2002]. 

Over the last two decades, substantial research has been dedicated to the development of new 
methods of using visible and thermal infrared observations for evaluating land surface wetness 
conditions [Carlson et al, 1994; Gillies et al, 1997; Czajkowski et al, 2002; Goward et al, 2002; 
Weidong et al, 2002]. These studies have shown that surface temperature and the Normalised 
Difference Vegetation Index (NDVI) can together provide information on vegetation and surface 
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moisture conditions. Furthermore, these studies have introduced a range of moisture indices to 
better understand the regional distribution of soil moisture [e.g., Moron et al, 1994; Sandholt 
et al., 2002; Wan et al., 2004]. 

Soil moisture (or wetness) index methods generally provide only a poor indication of absolute 
soil moisture content because they are based on measurements of the reflected shortwave and 
emitted thermal radiation, which are influenced by a wide range of other factors including or­
ganic matter, soil texture, surface roughness, angle of incidence, plant cover and colour. However, 
despite these limitations, such methods are potentially capable of providing an indication of rel­
ative variations of land surface wetness conditions. They can therefore provide a methodology 
to downscale 25 km x 25 km scale near surface soil moisture measurements based on the rela­
tive variations within the larger AMSR-E footprint. In this study such downscaling approaches 
are evaluated with ground based soil moisture measurements obtained during intensive AMSR-E 
validation campaigns. 

The first disaggregation method used here employs the Water Deficit Index (WDI) proposed by 
Moran et al. [1996] with AVHRR and MODIS data. This index is based on the relationship 
between land surface-air temperature difference (7^ — Ta) and the soil adjusted vegetation index 
(SAVI). The hypothetical trapezoidal shape that results from plotting these data allows the wet 
and dry edges for each biome class to be defined. Once the boundary values are known, WDI 
may be computed as the ratio between difference of maximum and observed temperatures and the 
range of temperature for the particular SAVI class. Theoretically, this temperature ratio is equal 
to the ratio of actual to potential évapotranspiration and should be valid for partially-vegetated 
surfaces. The computed WDI values are then used as weighing factors to downscale the AMSR-E 
pixel value to 1 km resolution. 

The second downscaling method used is based on the Vegetation Temperature Condition Index 
(VTCI) proposed by Wan et al. [2004]. The VTCI uses a relationship between land surface tem­
perature (LST) and NDVI. The scatter plot shape between these data is normally triangular at 
a regional scale if the study area is large enough to provide a wide range of NDVI and surface 
moisture conditions. The VTCI gives an indication of LST changes of pixels with specific NDVI 
values and it can be physically explained as the ratio of temperature differences among pixels. 
The higher values of VTCI are associated with wetter areas and lower values are associated with 
dryer areas, thus giving weighing parameters for downscaling of large area near surface moisture 
measurements. 

Data The SASMAS project area is located in the 7000 km2 Goulburn River catchment in SE Aus­
tralia. The northern part of the catchment is dominated by an undulating landscape with average 
elevation of approximately 400 m, and is mainly cleared for cropping and grazing purposes, mak­
ing it an appropriate region for remote sensing studies. For the field validation of an AMSR-E 
footprint, a sampling area of 40 km x 50 km was selected to ensure that a full 25 km x 25 km 
satellite footprint lay within the sampling area. Due to the large footprint size, available resources, 
travel times and access issues, complete coverage was not possible within a single day. Therefore, 
the validation area was divided into four quarters and one quarter assigned to each of four groups. 
Each quarter was further subdivided into nine cells, three of which were sampled per day over the 
three-day campaign period. A three-day field campaign was justified on the basis that soil moisture 
content would not vary greatly during the course of a few days under typical drying conditions. 
This was confirmed by the actual field data. The campaigns were undertaken on 7-9 November 
2003, 1-3 May 2004 and 7-9 July 2004. These capture seasonal variations in soil moisture and 
vegetation conditions, and were scheduled to coincide with AMSR-E overpasses so that there was 
at least 1 overpass each day with 2 overpasses (am and pm) on the central day. 

Each campaign was aimed at collecting soil moisture measurements at approximately 220 GPS 
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Table 2.1: Comparison of AMSR-E 

Campaign 

Number (dates) Sample size 

1(7-9 Nov, 2003) 230 

2 (1-3 May, 2004) 216 

Session 2 Hemakumara 

near surface soil water content and field measurements. 

Surface soil water content (cm3 cm -3) 

AMSR-E 0-6 cm 0-1 cm 

15.0 14.1 10.9 

17.0 16.6 18.9 

located sites spread across the validation area. It was expected that this number of point mea­
surements and their coverage should provide a sufficient basis for the validation of the satellite 
soil moisture product and for the development of a procedure for downscaling large area-average 
moisture measurements. Five 0-1 cm soil moisture samples were obtained at each site with a steel 
sampling ring of 82 mm diameter and 10 mm thickness. The five samples were combined and 
used to obtain volumetric soil moisture contents. In addition, five observations were made at each 
site with a Theta® probe which yielded volumetric soil moisture content values integrated over a 
0-6 cm layer. Apart from soil moisture, soil and air temperatures, soil type, and surface conditions 
were also recorded, and vegetation samples collected for determining vegetation water content and 
dry biomass. 

In addition to AMSR-E data, NOAA and MODIS satellite images were also obtained. In order to 
use the best images for analysis, all available day and night images from NOAA 15, 16 and 17 
were obtained and after careful consideration final images selected for the derivation of moisture 
index values. 

Results Results from the first two validation campaigns are shown in Table 2.1 where AMSR-
E near surface soil moisture values are compared with footprint averages of the volumetric soil 
moisture content in the top 1 cm and top 6 cm. The table indicates that AMSR-E is capable of 
providing reasonable estimates of near soil moisture content when compared with point observa­
tion averages. It should be noted that on theoretical grounds the 6.9 Hz channel of AMSR-E is 
expected to yield integrated soil moisture values for the top 1 cm. The AMSR-E values have been 
obtained with the old algorithm and will be modified once the new algorithm is implemented by 
the NASA DAAC. 

An important task in the validation was to determine the minimum number of sampling sites rea­
sonably required to obtain a representative areal average for the 25 km x 25 km AMSR-E foot­
print area. Figure 2.2 shows the effect of the number of sampling sites on the computed area 
average soil moisture content for 0-1 and 0-6 cm as compared with the averages based on all 
available sites (i.e., 230 sites during campaign 1 and 216 sites during campaign 2). It is shown that 
for the 0-1 cm observations the regional average stabilizes at about 100 sites, whilst for the 0-6 
cm observations at least 150 sites are required. 

Figure 2.3a shows a map of volumetric soil moisture content for the top 6 cm layer for the second 
campaign. The grid cells in this map is 1.21 km2 in area and has been chosen to enable com­
parisons with wetness index distribution patterns obtained from AVHRR data as discussed below. 
Reasonably coherent patterns emerge, with strong similarities between the maps particularly for 
the 6 cm observation depth. It is also noticeable that the southern half of the study area appears 
to be drier than the northern half. This is partly due to differences between the clayey soils in the 
north and the sandy soils in the south. 

The WDI and VTCI methods have been used with AVHRR and MODIS data for the first two 
campaigns. In order to ensure that a significant range of vegetation and surface soil moisture 
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Figure 2.2: Spatial variation in field measured soil moisture for a) top 1 cm and b) top 6 cm soil 
layer in the first two intensive field campaigns (%). 

> - 1 -

ï» v$Vi -SS/Pi**-'1 

(a) P) 

Figure 2.3: (a) Top 6 cm volumetric soil water content (cm3 cm -3) distribution within the valida­
tion area for Campaign-2 (b) Disaggregated near surface water content (cm -3 cm - 3) 
for the validation area on 2 May 2004. 

conditions were included in the computations, the entire Goulbum catchment (104 km x 124 km) 
was used in both methods. 

A range of algorithms has been explored for using the index data in downscaling the AMSR-E 
near-surface soil moisture product and further work is continuing in this area. Preliminary results 
of one such downscaling approach using the WDI method with AVHRR data are shown for the 2 
May 2004 campaign in Figure 2.3b. This downscaling approach involved calculating a weighting 
factor for each grid cell as the ratio between the index value for that cell and the sum of all 
index values across the AMSR-E footprint. Multiplying the AMSR-E value with this weighting 
factor yielded soil moisture content values across the study region. Reasonable agreement may be 
observed between the computed and observed near-surface soil moisture values. Particularly good 
agreement was found for areas with low to moderate vegetation. 

Conclusions This paper has presented encouraging preliminary results for the validation and sub­
sequent downscaling of low resolution AMSR-E passive microwave near-surface soil moisture 
data using soil moisture observations obtained in several large-scale field campaigns in south east­
ern Australia, and thermal and visible remote sensing imagery obtained with NOAA-AVHRR and 
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MODIS. The approach described here is part of an ongoing research project, which addresses 
various practical issues associated with the use of remote sensing for operational measurement of 
soil moisture. These include the role of vegetation and the relationship between near-surface soil 
moisture and total profile soil moisture. The soil moisture observations obtained in the field cam­
paigns described here, as well as soil moisture data obtained at 26 monitoring sites with continuous 
soil moisture profile measurements, will also be analysed in greater detail to identify relationships 
with topography, soil properties and vegetation [e.g., Western et al, 2002]. This involves the use 
of régionalisation techniques such as those outlined by Sulebak et al. [2000]. 
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Inferring spatiotemporal soil moisture anisotropy at the catchment 
scale 
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The Tarrawarra (southeast Australia) dataset contains twenty time series of soil moisture 
data observed at spatially distributed locations within a 10 ha catchment. 'With every series 
containing fifty-three temporally distributed neutron moisture meter (NMM) measurements, 
the NMM data may be visualised as a set of spatially distributed series that progress simul­
taneously in time. The NMM data are complemented with thirteen spatially high-resolved 
time domain reflectory (TDR) surfaces distributed along the time-axis. Since these surfaces 
cover the complete catchment, they include the NMM sites and may be regarded as com­
plete spatial realisations of the scenarios repeatedly sampled with NMM technique. In order 
to infer complete soil moisture surfaces at every NMM occasion, and to utilise the combined 
NMM/TDR dataset in such an inference, Kriging with external drift is methodologically sug­
gested. This method offers quite robust estimates of the error associated with soil moisture 
inference at the Tarrawarra catchment, but requires a covariate that continuously compen­
sates for spatiotemporally varying soil moisture anisotropy. 

The resulting time series of Kriged (pixel-wise) soil moisture surfaces may again be considered as 
simultaneously progressing, spatially distributed (pixel-wise) time series. These series are anal­
ysed with ARMAX technique in order to identify the auto- and cross-covariance structures that 
define spatiotemporal soil moisture anisotropy at the catchment scale. Since the anisotropy in­
formation is required when Kriging parameters are estimated, ARMAX-conditioned Kriging is 
methodologically implied. The resulting inferential loop is implemented via the Kriging-ARMAX 
analogy, where respective residual statistics are compatible and, in fact, analogous. 

As a result of the analysis performed, typically topography-dependent anisotropy structures are 
assessed at the landscape scale, together with auto- and cross-correlative characteristics of generic 
soil moisture. Based on this information, a distinction can be made between physically introduced 
observational effects and effects introduced by random processes. Such distinction is a necessary 
prerequisite for determining the location of Catchment Characteristic Soil Moisture Monitoring 
(CASMM) sites, i.e., non-redundant monitoring sites that together capture the characteristics of 
generic soil moisture variation at the catchment scale. 
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Scale dependent SVAT-model development towards assimilation of 
remotely sensed information using data-based methods 
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2Enironmental Science Department, Lancaster University, Lancaster, UK 

Recent studies have clearly demonstrated a miss-match can arise between the information 
content of SVAT calibration data and the information requirements of many components of 
current generation SVAT descriptions [Franks and Beven, 1997; Franks et al, 1997; Schulz 
and Beven, 2003; Schub et al, 2001; Wang et al, 2001]. As a result, much of the model 
functionality can remain unconstrained by the calibration process rendering any subsequent 
predictions from these schemes somewhat uncertain. One strategy for avoiding some of 
the difficulties associated with specifying SVAT models is to develop descriptions specifically 
at the scale of interest from the available observations at this scale in a top-down fashion 
[Littlewood et a i , 2003; Schulz and Beven, 2003; Young, 2003]. Such approaches rely not only 
on the availability of suitable data, but also on methodologies for identifying the dominant 
behavior being expressed in those data. In what follows we develop a model for the sum 
daily latent heat flux, XE, by including robust mechanistic information into environmental 
time series analysis to a degree that is supported by the available data. In particular we 
apply the Dynamic Linear Regression (DLR) estimation methodologies of Young [Young, 
1999,2000; McKenna and Bruun, 2001] to estimate the seasonal variations in Evaporative 
Fraction (EF) expressed within annual time series of eddy covariance measurements of latent 
heat fluxes above two forest sites each exhibiting significant seasonality. It will be shown that 
the time and state varying estimates of EF derived from DLR capture the seasonal variations 
in canopy behavior and can be related to vegetation characteristics (such as leaf area index, 
LAI) that might easily be detected by remote sensing thus allowing the prediction of surface 
fluxes to be extrapolated to the regional (GCM) scale. 

Data and Site Description Two different FLUXNET [Baldocchi et al, 2001] deciduous for­
est sites have been chosen for the illustration of the model development: Harvard Forest, Mas­
sachusetts (HF, 1998-1999, Wofsy and Munger, 2003) and University of Michigan Biological 
Station, Michigan (UMBS, 1999-2001, Curtis, 2003; Curtis et al, 2002; Schmid et al, 2004). 
The two sites differ especially in the mean annual precipitation (1066 mm at HF and 750 mm at 
UMBS) and the mean annual temperature (7.8°C at HF and 6.2°C at UMBS). The different cli­
matic conditions are mirrored in the vegetation type. While HF is a temperate deciduous forest 
site, the vegetation at UMBS is characterised by an intermediate mix of temperate deciduous and 
boreal forest. Both forests are of similar age and stage of maturity (70 years at HF, 90 years at 
UMBS). 

Half-hourly data sets comprising standard meteorological parameters as well as eddy flux mea­
surements for latent heat and LAI measurements were available for periods from 1998-1999 for 
HF and from 1999-2001 for UMBS. As our research interest here lies in the prediction of cu­
mulative latent heat fluxes as a water balance component, there is a need for gap free data sets. 
Therefore, gaps in the flux and micrometeorological time series data have been filled following 
the methodology described by Jarvis et al [2004]. These data were then summed to give daily 
values on which the analysis is based. 
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XE Model idenfication Here, we define EF as the proportion of incoming solar radiation, So, 
expressed as the daily latent heat, XE. Therefore, the E F models applied in this study assume the 
following form: 

XE^EFSo (2.1) 

The seasonal variations in E F expressed within the daily eddy covariance measurements are esti­
mated using (2.1) within the DLR framework. The advantage of estimating E F as non-stationary 
parameters within a regression framework is that, unlike the estimates derived by simply inverting 
(2.1) which act to amplify noise effects, the DLR estimates minimized the effects of noise whilst 
at the same time retaining the systematic variations being expressed in the data. This greatly aids 
the identification of the sources of variation that need to be accounted for in any subsequent model 
description because the parameters are much more clearly defined. 

DLR is based on recursive parameter estimation algorithms developed by Young and co-workers 
[see e.g., Young, 1999,2000,2001] which exploit Kalman filtering to estimate any parameter non-
stationarity in linear models such as (2.1) directly from time series of data. The dynamic variations 
in EF are estimated by assuming they follow a random walk process driven by a zero mean, 
white noise sequence, r|(r), [Young, 2000]. This ensures that the recursive parameter estimation 
at the sample instant only depends on a window of data in the vicinity of this sample with the 
bandwidth of this window being characterized by the ratio of the variances of T|(f) to £,(t), known 
as the Noise Variance Ratio {NVR) [Young, 1999]. An NVR of zero results in all the observations 
contributing equally to the DLR parameter estimate and hence stationary parameters across the 
entire observation interval, whereas an NVR greater than zero implies an exponential decay in 
the weighting of data in the DLR estimation as one moves away from the f'th sample instant 
Hence, the magnitude of the NVR determines the rate of decay of this weighting and is an implicit 
property of the recursive DLR estimation procedure that arises from optimizing the one step ahead 
predictions of (2.1) [for further details see Young, 1999]. 

The seasonal variations in DLR estimates for EF, derived from the data are presented in Figure 2.4 
as an illustration. This reveals a strong seasonality of EF with low values in the winter and 
high values in the summer. EF like most simple parameterizations must be viewed as complex 
aggregates of multiple factors. Indeed, it is the perception of this complexity that provides the 
motivation for attempting to describe their various components explicitly in the form of more 
complex SVAT models. However, the motivation here is to attempt to account for the seasonal 
variations in as simple a way as possible. 

It can be seen from Figure 2.4 that the temporal development of EF is closely related with the 
corresponding values for the leaf area index (LAI) at both sites. A statistical analysis reveals a 
cross-correlation between both parameters of 0.86 for HF and 0.91 for the UMBS site indicating 
a strong linear dependency. This suggests to express EF as a linear function of LAI: 

EF = a + bLAI (2.2) 

where a and £> are the offset and gain of the assumed relationship. Combining (2.1) and (2.2) leads 
to a relatively simple expression for the calculation of XE: 

XE = (a+b-LAI)-S0 (2.3) 

that will be analyzed further in the following sections. 
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Figure 2.4: Temporal development of the evaporative fraction (EF) as derived from DLR analysis 
and associated leaf area index (LAI) measurements for both sites, HF and UMBS. 

XE model calibration and evaluation Having identified a potential parametric model structure 
using the DLR parameter estimates, (2.3) can now be optimized using standard nonlinear least 
squares methods (Levenberg-Marquardt). The optimized parameter values as well as standard 
deviations for the estimates are given in Table 2.2. The goodness of fit is evaluated using two dif­
ferent measures: the standard deviation of the model residuals (RMSE) and the efficiency criteria 
(EC) [Nash and Sutcliffe, 1970], denned as EC = 1 - o ^ / o ^ , where c%s is the variance of the 
model residuals and G^bs is the variance of the observed latent heat fluxes. 

The results in Table 2.2 demonstrate that the derived model structure is able to explain much of 
the observed variations in XE (EC of 0.83 and 0.87 for HF and UMBS, respectively), whilst using 
relatively few (two) well defined parameters a and b. 

While the model residuals for both data sets were found to be approximately zero mean they 
show some seasonality in the variance with higher values in the summer period and some auto­
correlation suggesting that not all the system dynamic has yet been captured by the actual model 
structure. Statistical analysis however demonstrated no significant cross-correlation with either 
solar radiation, temperature, or evaporative demand indicating that these driving forces are well 
covered by the effective parameterizations. However, there was some significant cross-correlation 
with the cumulative differences between daily rainfall and actual évapotranspiration rates (max. 
cross-correlation coefficient of 0.21 and 0.26 at lags <30) highlighting some systematic impact of 
the local availability of water. 

Discussion Despite its simplicity, (2.3) appears to capture the seasonal variations in the daily latent 
heat fluxes whilst also returning well defined parameter estimates. This is of particular importance 
when we are interested in comparing parameter values with site characteristics in order to infer 
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Table 2.2: Calibrated model parameters for the two sites, HF 1998-1999 and UMBS 1999-2001. 
Values in brackets represent standard deviation of the estimates. The goodness of fit is 
evaluated using the standard deviation of the model residuals (RMSE) and the efficiency 
criteria (EC). 

Parameters Units HF 1998-1999 UMBS 1999-2001 

-2.07 • HT2 (2.7- KT3) -0.10 (3.1 • 10~3) 

b - 9.03 KT2 (9.2 KT3) 0.15 (8.6-10~3) 

RMSE M J m ^ d - 1 1.26 1.34 

EC MJm- 2d- ' 0.83 0.87 

a 

more general rules which may allow for extrapolation to other locations and boundary conditions 
[see Schulz and Beven, 2003]. Especially the dependency on leaf area makes E F-type approaches 
as presented here very attractive in conjunction with the use of satellite imagery. This has so far 
been used to derive spatial distributed CCh-fluxes [Sellers et al., 1997] or to indirectly derive land 
surface characteristics (roughness lengths) in order to parameterize or drive more complex SVAT-
schemes [e.g., Braun et al, 2001; Olioso et al, 1999] but has to our knowledge not been applied 
to derive areal information on EF and thus latent heat fluxes. 

To what extent this approach can be successfully applied under different vegetation and climate 
conditions remains to be further investigated. Results presented here also demonstrate the need to 
explore the dependence (2.3) on the surface and sub-surface storage of water in more detail. 
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Links between river flow statistics and catchment characteristics: 
implications for land surface schemes 

E. Blvth1 and V. Bell1 

1 Center of Ecology and Hydrology, Wallingford, UK 

The statistics of river flow depends, among other things, on the soil type in the catchment: 
permeable soils produce a more even spread of discharge through the year as the river is 
fed from groundwater, but the annual river flow is less. In addition, landscape character­
istics (topography) that influence runoff generation also have an effect on the partitioning 
of runoff into surface and sub-surface flow. Finally, the river topology affects the attenua­
tion of within-river flow. Each of these landscape characteristics affects a different aspect 
or statistic of the river flow. Using a standard land surface scheme with a runoff generation 
module and a grid-to-grid routing model, it is possible to quantify these links between the 
statistics of the river flow and the landscape, thus opening up the possibility of using river 
flow to calibrate the land surface scheme. 

Introduction Land surface schemes in atmospheric models have been designed to reproduce the 
diurnal variation in fluxes of heat and water vapor to the atmosphere, to represent the meteoro­
logical forcing from the surface. Many land surface schemes have multi-layered soil models [see 
Garratt, 1993, for a review] which give good results in terms of the hourly fluctuations of surface 
conditions. However, as the atmospheric models aim at longer-term forecasts and at predicting 
future climates, land surface schemes now also need to model the longer timescale evolution of 
soil moisture [Beljaars et al., 1996]. Soil moisture has a direct effect on the atmosphere via the 
soil evaporation and an indirect effect via plant water stress on the transpiration. In addition to 
the need for long term estimates of evaporation, more realistic representations of the surface water 
balance are needed to meet the goal of including runoff in atmospheric models. 

However, it has been demonstrated that the water balance is still very inaccurate in atmospheric 
models [Shao and Henderson-Sellers, 1996]. Improvements to models have been made since 
this analysis, including the addition of runoff-generation schemes [Blyth, 2002; Gedney and Cox, 
2003] and routing models [Old and Sud, 1998]. However, the water balance is highly dependent 
on soil characteristics [Blyth, 2001] as well as the runoff generation and routing modules. The 
usual method of obtaining soil parameters for a meteorological land surface scheme (optimize the 
parameters against measured evaporation data, or to use the parameters given by a soil survey) 
are problematic on three accounts: Firstly, the soil parameters which control the long-term wa­
ter balance are not sensitive to the traditional calibration exercise based on hourly surface flux 
data [Harding et al, 2000]. Secondly, because soil is very heterogeneous, point evaporation mea­
surements and soil samples may be unrepresentative of the area average soil type. Thirdly, the 
point where measurements were made may be unrepresentative of the area average in terms of 
hydrology e.g., groundwater level and drainage. 

Atmospheric land surface schemes aim to reproduce mean fluxes over an area of 5 km x 5 km to 
100 km x 100 km depending on the application and so require effective model parameters. The 
easiest way to obtain effective parameters is to calibrate them on area average data at the scale 
of interest. For the water balance this is readily available in the form of river flow data which 
aggregates the runoff from the catchment upstream of the gauging station. Using runoff is a very 
attractive prospect for the atmospheric land surface modeler the data is extensive - river flow data 
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Figure 2.5: Observed monthly river flow for the Ock and Pang catchments in the Thames basin 
southern England. 

are available in most parts of the world and because runoff represents an integrated response to a 
whole catchment it is appropriate to the problem. 

It is the aim of this paper to show how river flow data can be used to calibrate a typical land surface 
scheme, to explore some of the pitfalls and to identify potential pathways to exploit this valuable 
data source. In this paper we will use the land surface scheme of the Unified Model of the UK 
Meteorological Office (referred to as MOSES, or Met Office Surface Energy Scheme) as described 
by Cox et al [1998] with the PDM added to calculate runoff-generation [Moore, 1986] linked to a 
routing model developed for use with MOSES in Europe and the UK [Bell and Moore, 2004]. 

Observed relationship between riverflow and soil type In the UK the winter rainfall is high and 
the potential evaporation is low while in the summer the opposite is true. Some rivers reflect this 
seasonal pattern with high flows in winter compared to the summer. The soils in the catchment 
affect the seasonality of river flow as follows: Impermeable soils store the rainwater close to the 
surface and any excess water is routed quickly to the rivers so the seasonality of the river flow 
is closely linked to the seasonality of the rainfall. On the other hand, permeable soils allow the 
rainfall to drain into the deeper groundwater system. The river is then fed by the discharge of 
groundwater, thus smoothing out the river's response to the short term atmospheric forcing. 

Examples of the two types of catchment response can be seen in the Ock (234 km2) and the Pang 
(171 km2). These two catchments are very similar in size and, being close together in the Up­
per Thames region, they experience similar rainfall and potential evaporation forcing. Both have 
similar land uses (rural, mainly grassland) and topography (they have the same altitude difference 
from the watershed to river gauge of the catchment over the same distance). However they have 
distinctly different soils; the Ock is 50% tertiary clays (non-permeable) and 50% chalk (perme­
able), while the Pang is principally permeable (chalk) and only 15% is non-permeable (Reading 
Beds, London Clay and Alluvium). 
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In Figure 2.5 the monthly river flow for the two catchments is plotted for 1995 to 1997. The data, 
measured by the UK Environment Agency, are held in the UK National River Row Archive at the 
Institute of Hydrology. Firstly it can be seen that the total runoff as measured in the Ock river is 
greater than that measured in the Pang. Secondly, the link between the seasonality of the river flow 
and soil type is evident, with the Ock river flow, showing a more direct link to the forcing than the 
Pang river flow. 

Effect of soil type on model water balance Driving the land surface model using locally observed 
driving data demonstrates the influence of soil type on the water balance. Table 2.3 shows the 
partition of rainfall into evaporation, surface runoff and drainage over the three years for the three 
soil types (coarse, medium and fine). Table 2.3 also shows that the fraction of rainfall that converts 
to evaporation is greater for coarse and medium soils than it is for fine soils. Evaporation accounts 
for 75% of the rainfall for coarse soils and the rest goes into the groundwater via drainage. For 
the fine soils, the evaporation accounts for about 50% of the rainfall, with the rest going to surface 
runoff. The medium soils convert about 70% of the rain to evaporation, and most of the rest is 
partitioned to surface runoff. 

Table 2.3: Partition of rainfall into evaporation, surface runoff and drainage over the three years 
for the three soil types. 

Process Coarse Medium Fine Ock Pang 

Evaporation 

Surface runoff 

Drainage 

75 

5 

23 

70 

27 

4 

48 

53 

0 

65 

35 

-

78 

22 

-

Table 2.3 confirms that the theory agrees with the observation: the Pang catchment contains 
coarser, more freely draining soils than the Ock. 

Effect of runoff-generation and routing on river statistics An extended analysis will be carried 
over several more sub-catchments in the Thames basin. In this case, the catchments will be mod­
eled with a 5 km gridded version of MOSES+PDM and the runoff routed grid-to-grid with the new 
routing model. The outputs will be compared to observed river flow. As an example of the model 
performance, Figure 2.6 shows initial results for some of the catchments. In this instance, a single 
value of the PDM parameter and no calibration of the routing parameters were used. 

By analyzing how the model output changes the river-flow statistics as the soil, runoff and river 
flow parameters vary it will be possible to identify which parameters can be optimized by which 
river-flow statistic. Further analysis will be done to identify the uncertainty of such optimization. 
Case studies of contrasting catchments within the Thames region will be used. 

Conclusions It is well established that catchments containing different soil types generate differ­
ent monthly and annual river flow; catchments containing permeable soils generate a more even 
distribution of river flow but a lower annual total than catchments containing impermeable soils. 
This paper explores the potential of harnessing this information to calibrate land surface schemes 
for atmospheric models. 

By driving the model with observed meteorological data from a point, it can be demonstrated that 
the representation of vertical soil water processes can significantly affect the water balance. The 
partition of rainfall into evaporation, surface runoff and drainage is strongly affected by the soil 
type chosen: fine soils have less evaporation than coarse soils and they have no drainage, while 
coarse soils have no surface runoff. 
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Figure 2.6: Observed and modeled river flow for several catchments (Mole, Lambourn and 
Thames) in the Thames Basin. The dotted lines are modeled flow. 

This partitioning (evaporation/runoff and surface/subsurface runoff) affects different aspects of the 
water balance: The monthly river flow represents the runoff aspect of the model and the annual 
river flow represents the evaporation aspect. The routing of the model affects the flow at finer 
timescales - expressing the delay between runoff generation and catchment outlet. The actual 
timescale depends on the size of the catchment. 

Finer scale modeling and accurate routing models allow for distinctions to be made between these 
various aspects of the model. Some statistical analysis will be used to unravel the signal of the 
landscape in the river flow. 
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Simulating soil moisture variability dynamics 

Adriaan J. Teulinq1 and Peter A. Troch' 

^Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, 
The Netherlands 

During previous field experiments, different trends of soil moisture variability with mean 
moisture content have been reported. Here we explain these trends for three different data 
sets by showing how the different controls interact to either create or destroy spatial vari­
ance. Improved understanding of these processes is needed for the transformation of point-
scale measurements and parameterizations to scales required for climate studies, operational 
weather forecasting, and large scale hydrological modeling. 

Introduction Although the quantitative contribution of soil moisture to the global water budget 
is negligible, it plays a central role in the global water cycle by controlling the partitioning of 
water and energy fluxes at the earth's surface, and may control the continental water distribution 
through land-surface atmosphere feedback mechanisms [Koster et al., 2003]. The ability of cou­
pled models to reproduce these processes will strongly depend on the parameterization of soil 
moisture state-flux relationships at the regional scale. The lack of accurate observations of land 
surface states and fluxes at the regional scale, combined with the variability of soil moisture and 
the high non-linearity of land-surface processes at the small scale, requires aggregation of small 
scale processes to larger scales in order to prevent systematic biases in modeled water- and energy 
fluxes [Crow and Wood, 2002]. For successful aggregation, knowledge on soil moisture variability 
controls is indispensible. 

Several scientists have reported soil moisture variability to increase with decreasing mean moisture 
content [e.g. Famiglietti et al, 1999; Hupet and Vanclooster, 2002]. Other scientists reported 
opposite trends [e.g. Western and Grayson, 1998; Famiglietti et al, 1998], were unable to detect 
a trend [e.g. Hawley et al, 1983; Charpentier and Groffman, 1992], or found the trend to depend 
on the mean soil moisture state [e.g. Owe et al, 1982; Albertson and Montaldo, 2003]. Although 
many scientists have speculated about the origin of soil moisture variability, only few have tried to 
quantitatively explain the apparent contradictions in observed soil moisture variability trends by 
looking at how the different controls interact. 

Here we develop a simple model that is able to reproduce observed soil moisture variability trends 
for the three different data sets studied, and analyse the model results with an extension of the 
theoretical framework recently developed by Albertson and Montaldo [2003] to quantify soil, 
vegetation, and landscape controls on soil moisture variability. The results might lead to improved 
understanding of soil moisture variability observations and the aggregation problem. 

Data Three datasets are used in this study, each with a different trend of variability with changing 
mean moisture content (Figure 2.7, upper panels). 

Soil moisture (0-20 cm) variability was measured at an agricultural field in Louvain-la-Neuve 
(Belgium) at 60 days between 30 May 1999 and 13 September 1999 as part of a campaign with 
the objective to investigate the within-field spatial variability of transpiration [Hupet and Van­
clooster, 2002]. The soils in the field are classified as well-drained silty-loam and there is little 
topography. During the campaign the field was cropped with maize. The climate is moderate 
humid. Meteorological observations are available from 1 January 1999 till 31 December 1999. 
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From 24 June 1998 to 26 Januari 1999, soil moisture (0-30 cm) was measured with 36 TOR 
sensors (spacing 1 m) at a gently sloping field transect at the Virginia Coastal Reserve Long Term 
Ecological Research (VCR-LTER) site on the eastern shore ofVirginia [Albertson and Montaldo, 
2003]. The soils were classified as sandy loam, with a vegetation of Johnson grass. Meteorological 
observations are available for the period 30 June 1998 till 27 September 1998. 

The Australian Tarrawarra dataset results from an experiment that aimed at investigating the spatial 
pattern of soil moisture at the small catchment scale. Between 27 September 1995 and 29 Novem­
ber 19% a total of 13 soil moisture (0-30 cm) patterns were measured [Western and Grayson, 
1998]. Additional measurements are summarized in Western et al. [2004]. The soils in the catch­
ment are silty-loam to clay, and the landscape is undulating with a maximum relief of 27 m. The 
climate is temperate. Land use is perennial pastures used for grazing. Meteorological observations 
are available for the period 10 August 1995 till 25 October 1997. 

Modeling soil moisture variability Under most conditions, lateral flow in the upper part of the 
soil can be neglected, and the vertically integrated soil moisture balance over a depth L can be 
written as: 

! = I ( r - * - , - S ) (2.4) 

where 6 is the depth-averaged soil moisture content, T the throughfall, R the saturation excess 
runoff, q is the drainage at depth L, and S the root water uptake. Here, L = 0.5 m and dr = 1 d. 
Throughfall is the rainfall P that is not intercepted by vegetation, and the size of the interception 
reservoir is taken proportional to LAI. We assume bare soil evaporation to be small in comparison 
to the root uptake over the entire profile. Drainage is calculated using Darcy's law with the unit-
gradient assumption, and applying the k(&) parameterization proposed by Campbell [1974]. The 
vertically integrated root water uptake 5 is a function of the root fraction, a soil moisture stress 
function, LAI [following Al-Kaisi et al., 1989], and potential évapotranspiration. For Louvain-la-
Neuve, the positive relation between LAI and S was confirmed by Hupet and Vanclooster [2004]. 
LAI is modeled with a spatial and temporal component. The applied model sufficienty captures the 
non-linearities and dynamics of the soil moisture loss processes, and similar models have proven 
succesful in reproducing point scale soil moisture dynamics [e.g. Albertson andKiely, 2001; Laio 
et al, 2001]. 

We reproduce the first and second order spatial moments of 0 (8 and ojj,) by running a large ensem­
ble of the model with variable parameters. Initial conditions of 6 are set by taking q = 1 mm d_1. 
We assume both the logarithm of the saturated hydraulic conductivity ks and LAI to follow a 
normal distribution. Local soil parameters are related to ks by linear regression with )a(ks), fit­
ted to the data provided by Clapp and Hornberger [1978]. Due to the positive effect of high ks 

on canopy growth through better aeration, soil temperature and water transport to roots, we as­
sume p(la(ks),LAIma) = 1. Atmospheric forcing was calculated from available observations and 
assumed to be constant in space. 

In order to account for spatial differences in the water balance caused by differences in exposure 
due to sloping of the landscape, we follow Svetlitchnyi et al. [2003] and write the effect of to­
pography on the available moisture content 8* = 9 — 8W in the top 0.5 m of the soil in terms of a 
wetness coefficient r\: 

e ;=r i -e* (2.5) 

where 8* is the "corrected" value of 6*. r) depends on slope profile shape, slope aspect, distance 
from the divide, and slope gradient, and can be derived from a digital elevation model. As a 
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Figure 2.7: Observed (a0) and simulated (as) soil moisture standard deviation as function of mean 
soil moisture content (0). 

first order approach, we add the variance caused by (2.5) to o^, assuming rj = 1. To allow direct 
comparison with observations, we also account for apparent variability due to a measurement error 
e (ë = 0). The total simulated soil moisture variance a? can now be written as: 

o? = o i + o?-6*2 + e2 (2.6) 

Figure 2.7 shows that both the range of 8 as well as the magnitude, trend, and hysteresis effects of 
GS compare well to the observations. 

Analysis In order to distinguish the contribution of different controls on the time evolution of GS, 
we first follow Albertson and Montaldo [2003]. Substracting the spatial average equivalent of 
(2.4) from (2.4) yields an expression for the time evolution of a local soil moisture anomaly: 

«-{v-t-1-g) (2.7) 

where ' denotes a deviation from the spatial average. Multiplying (2.7) by 29', performing a chain 
rule operation to the left hand side, and averaging the result yields: 

dO72 do?, 2 , , -— = —^ = - (¥r - &R' - e v - WW) 
df at Lv ' 

(2.8) 

which is an expression for the time evolution of the spatial soil moisture variance. Since the right-
hand side of (2.8) consists of covariance terms, their contribution depends on both the magnitude 
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Figure 2.8: Monthly average vegetation, soil, and landscape contributions to daj/dt, as in (2.9). 

of soil moisture and flux anomalies as well as their mutual correlation. The sign of the correlation 
controls whether the different processes act to create or destroy spatial soil moisture variance [see 
Albertson and Montaldo, 2003, for synthetic examples]. Combining (2.8) with the time derivative 
of (2.6) yields: 

dG*2 de? 2 , , 2 . . , m -p. = - Œrr-ïïs1) —- ((W+ëv) +o?—-
df Lv ' LK ' ^ dt 

(2.9) 

Vegetation Sou Landscape 

Rather than evaluating all terms seperately, we group the correlated terms as (local) vegetation 
and soil controls, and non-local landscape control. Figure 2.8 explains the different trends in 
Figure 2.7 by evaluating the contribution of the different groups in (2.9). For clarity the terms 
have been converted to monthly averages. 

In the Louvain-la-Neuve dataset, soil moisture variability increases during the growing season. 
During winter and spring (December-April), precipitation surplus causes soil moisture to retain 
near field capacity, and the variance is fully adjusted to the soil footprint (Figure 2.8A). Untill July, 
increases in variance due to heterogeneous transpiration are effectively (although not entirely) 
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cancelled out by drainage. When drainage becomes neglectible (August-September), vegetation 
controls start to create additional variance. This increase is only destroyed during the first rainfall 
events in the late growing season (October-November), when the variance is "reset" to the soil 
footprint (Wq1 > 0). It should be noted that also during summer 6 > 6C so that root water uptake 
is under atmospheric control, and (O'S' < 0). 

For the VCR-LTER data, this behavior is almost opposite (Figure 2.8B). The coarse soils in combi­
nation with high Ep limit root water uptake early during a drying cycle. The (small) initial increase 
in as during July (Figure 2.7, not visible in monthly average value in Figure 2.8), is due to het­
erogeneous but unstressed transpiration (O'S' < 0). During the second half of July this changes 
rapidly, and stressed transpiration causes a sharp decrease in variance (0'S' > 0). Similar to the 
Louvain-la-Neuve case, rainfall events in September force o s to readjust to the soil footprint, only 
hereeV<0. 

Tarrawarra shows a more complex pattern (Figure 2.8C). In spring, vegetation controls act to cre­
ate variance (WS' < 0), but this variance is initially destroyed by drainage of rainfall. In this 
period, drying of the soil (d0* /dt < 0) causes a transition from non-local to local controls on as 

[Grayson et al, 1997]. This can be seen by the negative landscape contributions. Later during 
summer (December-February), soil and landscape controls become effectively zero due to ad­
vanced drying. The strong soil controlled root water uptake (0 < 6C) causes a transition of the sign 
of the correlation between S and 0 (WS' > 0) resulting in a strong decrease in oj . The readjustment 
to the winter soil moisture state is accompanied by an increase in <rs caused by soil and (non-local) 
landscape controls. 

Discussion Our simulations show that both soil and vegetation controls can act to either create 
or destroy spatial variance. The main discriminating factor between both behaviors is wether or 
not the soil dries below 0C. This depends on the soil texture as well as on the depth of the drying 
phase. The fact that much of the observed soil moisture variability is actually created by vege­
tation anomalies (and thus p(0,^) ^ 0) calls for new approaches to the soil moisture aggregation 
problem. This suggests that future field campaigns can further contribute to our understanding of 
the soil-vegetation-atmosphere system not only by looking at soil moisture variability, but also at 
how this variability is related to anomalies in soil and vegetation characteristics. 

Acknowledgments François Hupet and John Albertson are greatly acknowledged for providing 
access to their data sets. 
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Similarity analysis of subsurface flow response of hillslopes with 
complex geometry 

A. Berne1, R. Uijlenhoet1, and P.A. Troch1 

^Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, 
The Netherlands 

Recently, Troch et aL [2003] introduced the hillslope-storage Boussinesq (hsB) equation to 
describe subsurface flow and saturation along complex hillslopes. The hsB equation can be 
linearized and further reduced to a diffusion-advection equation for hillslopes with constant 
bedrock slopes and exponential width functions. This paper presents a dimensional analysis 
of the latter equation in order to study the pure drainage flow response, which, once normal­
ized by the flow volume, is denned as the characteristic response time distribution (CRTD). 
In the Laplace domain, an analytical expression for the discharge is obtained and used as 
moment generating function to derive the analytical expressions for the CRTD moments. 
These moments, in a dimensionless form, can be expressed as function of a subsurface flow 
similarity parameter, hereafter called the hillslope Peclet number, and a group of dimen­
sionless numbers accounting for the initial condition effects. The analysis of their respective 
influences on the first four CRTD central moments shows that the first studied type of ini­
tial condition (uniform water table depth) has a strong impact on the dimensionless mean 
response time of the CRTD but negligible effect on the higher order moments, while the sec­
ond studied type of initial condition (steady state water table profile) has a limited effect on 
all first four CRTD moments and hence, in this case, the hillslope Peclet number completely 
defines the subsurface flow similarity between hillslopes. 
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The relative effect of heterogeneities in rainfall and soil properties on 
soil moisture on a regional scale 

H. Leiinse1. A.J. Teuling1, R. Uijlenhoet1 and P.A. Troch1 

lHydrology and Quantitative Water Management Group, Wageningen University, Wageningen, 
The Netherlands 

Accurate knowledge of spatial soil moisture fields is vital to correct modelling of land atmos­
phere interactions at different scales. It has been argued that soil moisture variability, when 
going to regional scales, increases to the extent that soil moisture-flux relationships are effe-
cively linearized. This increase in variability should be due to variability in rainfall, since all 
sources of variability act on much smaller (soils, vegetation, topography, etc) or much larger 
(radiation, climate, etc.) spatial scales. We investigate the effect of spatial heterogeneities in 
forcing and in model parameters on modelled soil moisture on scales ranging from ~ 1 km 
to ~ 103 km. 

We use a point-scale soil moisture model (see contribution by Teuling and Troch, Page 81) with 
daily rainfall products as input. The 240 km x 240 km rainfall field is given on a 4 km x 4 km 
grid around the Little Washita SCAN site, and is a composite of several WSR-88D radars and 
with a raingauge network. This rainfall data, and soil moisture measured at Little Washita were 
collected as part of the SMEX03 campaign that took place between 20 May 2003 and 31 July 
2003. 

The effect of spatially aggregating rainfall and soil/vegetation properties on modelled soil mois­
ture are investigated by means of a Monte Carlo simulation using soil and vegetation properties 
(saturated hydraulic conductivity and leaf area index) drawn from distributions that are represen­
tative of the area around Litte Washita. The model is compared to the measured soil moisture at 
the Little Washita SCAN site. The results of this study could be useful in determining the relative 
effect of heterogeneities in rainfall and soil/vegetation properties on soil moisture on a regional 
scale. 
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From catchment to continental scale: Issues in dealing with 
hydrological modeling across spatial and temporal scales 

Dennis P. Lettenmaier1 

1 Department of Civil and Environmental Engineering, University of Washington, Seattle, Wash­
ington, USA 

The traditional challenge charge to watershed hydrologie modelers has been to predict river 
discharge, given precipitation and other near-surface atmospheric variables that control 
evaporative demand. With the advent of the digital computer in the 1950s came spatially 
lumped hydrological models like the Stanford Watershed Model, and various more recent 
derivatives. These models attempted to represent runoff production using effective or spa­
tially lumped parameters. These parameters represented the storage of water in the subsur­
face, and the rates of exchange among the storage compartments, including infiltration and 
surface runoff production, and subsurface drainage or baseflow. Evapotranspiration was 
typically represented as a fixed (seasonally varying) potential, with actual évapotranspira­
tion determined by the potential modulated by resistance controlled by the relative storage 
in subsurface zones. These models represented a considerable advance over pre-computer 
methods that typically were event-based, rather than temporally continuous. The move to 
time-continuous modeling avoided the difficulty of specifying initial conditions (primarily 
moisture storage) at the onset of a storm, which has always plagued event models in hydrol­
ogy. 

Time-continuous spatially lumped catchment models remain widely used in practice. For instance, 
the Sacramento soil moisture accounting model is still at the heart of the National Weather Service 
River Forecast System, and the NWS Advanced Hydrologie Prediction System, which is intended 
to be the basis for hydrologie forecasts for purposes ranging from flood forecasting to seasonal 
water management. The issue of scale dependencies of model parameters in spatially lumped 
models is sidestepped by calibrating model parameters to match observed discharge at a specified 
set of locations. On the other hand, the need to calibrate has been a practical problem which has 
impeded the application of spatially lumped models, especially over large areas, notwithstanding 
some success in development of automated parameter estimation methods, 

More recently, the evolution of surface hydrological modeling has been affected by two major de­
velopments. The first is the availability of spatially distributed land surface data sets from remote 
sensing and other sources, and GIS software that can easily manipulate these data. Of particular 
interest for hydrologie modeling and prediction are three general categories of land surface data: 
digital topography (including channel networks), soil characteristics, and vegetation. With the 
availability of such data has come demands for hydrologie prediction methods that not only pro­
vide information about hydrologie processes (runoff production, évapotranspiration, soil moisture) 
at spatial scales commensurate with the land surface data, but also that have the capability to reflect 
changes in land surface conditions, especially land cover. Interests in hydrologie consequences of 
land cover change ranges from effects on flooding of urbanization, logging, and fires, to the effects 
on groundwater recharge and water supply availability of urbanization. Spatially lumped models, 
parameters for which are estimated via calibration, are inherently unsuitable for such applications, 
since the calibrated parameters are specific to the land cover conditions that pertained over the 
historic period on which the calibration was based. However, the spatially distributed hydrologie 
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Figure 3.1: Simulated annual runoff for grid cells within the Ob River basin (left) and Lena River 
basin (right) by Variable Infiltration Capacity model, using full energy balance (purple) 
and water balance (green). Differences in sensitivity are apparently due primarily to 
differences in extent of permafrost in the two basins. Results courtesy of Fengge Su. 

models that use spatial data explicitly must deal with the complications of spatial scale. As just 
one example, Zhang and Montgomery [1994] show how the topographic index at the heart of 
the widely used Topmodel [Beven and Kirkby, 1979], and in turn estimates of saturated area and 
runoff production, vary with the spatial resolution of the digital topographic data. 

The second major development that has affected the development of surface hydrological models 
has been the demands for large scale representation of land surface processes, which has grown 
largely from the demands for better land surface representations in coupled land-atmosphere mod­
els used for numerical weather climate prediction. Whereas hydrological modelers typically had 
not gone much beyond watersheds very roughly in the 104 km2 range, coupled land-atmosphere 
models must function at scales from subcontinental (for regional models) to global. Furthermore, 
the land surface representations used in these models must close both the surface water and energy 
budgets. While hydrologie models by construct close the surface water balance, most have not 
closed the surface energy balance, and instead either use prescribed potential évapotranspiration, 
thus avoiding representation of energy fluxes altogether, or explicitly or implicitly assume that the 
effective surface temperature is equal to the air temperature. Soil-Vegetation-Atmosphere Trans­
fer Schemes (SVATS) used in coupled land-atmosphere models, on the other hand, iterate to solve 
for one or more effective surface temperatures such that the radiative, turbulent, and ground heat 
fluxes balance. 

This discrepancy between traditional catchment models and land surface schemes leads to cer­
tain complications in the implementation of hydrological models at large scale. Figure 3.1, for 
instance, shows hydrographs for two large Arctic rivers simulated with the Variable Infiltration 
Capacity (VIC) model in water balance (surface air temperature assumed equal to effective sur­
face temperature) and energy balance (effective surface temperature iterated to close the energy 
balance). As in more traditional spatially lumped models, macroscale models like VIC require 
some calibration to reproduce observed moisture and energy fluxes properly. Because water bal­
ance simulations are considerably less computationally intensive (by a factor of 10 or so), an 
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Figure 3.2: Simulated mean runoff, évapotranspiration, canopy evaporation, and transpiration 
from Variable Infiltration Capacity model over a transect from 80°W to 105°W at 
latitude 37°N. "Corrected" results are based on a scheme that adjusts the canopy inter­
ception capacity and minimum stomatal resistance to account for time step differences/ 
Preliminary results courtesy of Ingjerd Haddeland. 

appealing approach is to estimate parameters in water balance mode, and transfer them to energy 
balance. As Figure 3.1 shows, however, this approach is complicated by the fact that the simulated 
fluxes can differ substantially in the two modes. 

Another complication in the implementation of macroscale models is the role of temporal scale 
as it affects model parameters. Surface hydrological models typically are applied at scales dic­
tated more by the time frequency of the data available for model calibration than by catchment 
dynamics. As a practical matter, this temporal scale often has been daily - in the U.S. because 
the U.S. Geological Survey archives of daily data are more readily obtainable, especially for long 
historical periods, than are the so-called unit values from which shorter time step data are derived. 
In the context of coupled modeling though, land surface models are applied at temporal scales that 
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are dictated by computational considerations, and are usually much shorter (e.g. fractions of an 
hour) than those used in off-line simulations. Figure 3.2 shows results of simulations performed 
for an east-west transect across the continental U.S. for a range of model time steps. Clearly, the 
results are quite sensitive to the model time step. The primary mechanism leading to this temporal 
dependence is the manner in which interception storage, and canopy evaporation, are computed in 
VIC (and most other land surface schemes). This sensitivity may be resolvable by an alternative 
formulation of the canopy evaporation process which is less scale dependent, important issues re­
main that are related to the temporal scale of the precipitation data, which in off-line simulations 
is, like streamflow, dictated by observational constraints. 

Other issues related to spatial scale dependencies exist for macroscale models, as for spatially 
distributed models as discussed above. Haddeland et al. [2002] investigated some of these issues 
in an implementation of the VIC model for spatial scales ranging from 1/8 to 2 degrees over 
two large continental river basins (Arkansas-Red and Columbia). They found that for the VIC 
model, model predictions were relatively scale invariant, although others [e.g. Koren et al, 1999] 
have found otherwise, suggesting that spatial scale model dependency is itself strongly model 
dependent. 
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Determining land use from satellite images using plant cover indices 

Dilkushi De Alwis1. Pierre Gérard Merchant1, William D. Philpot2, and Tammo S. 
Steenhuis1 

1 Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 
USA 
2Department of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA 

Since the introduction of advanced and fast computers during the last 25 years, water cy­
cle research has greatly benefited from the introduction of distributed and semi-distributed 
catchment-scale hydrological models. The parameterization of these distributed models is 
difficult and model predictability would greatly be enhanced by more advanced data assimi­
lation methods. In this paper we will discuss a new data assimilation method for delineating 
land cover and use in a watershed. 

Introduction The current methods used to observe changes in land cover over time are Spectral 
Mixture Analysis (SMA), Tasseled Cap Transformation (TCT) and Vegetation Indices. The de­
tection of change over time of land cover from spectral signatures, despite its wide use, is affected 
to various degrees by the following factors: temporal changes in shading due to topography and 
sun angle, distortion caused by differences in viewing angles in temporal images, differences in 
plant cover during various times of the year, inaccuracies in georeferencing, and atmospheric scat­
tering and absorption of light. Atmospheric correction of the radiation received at the satellite is 
by far the most difficult correction to make. Electromagnetic radiation collected by satellites is 
modified by scattering and absorption by gasses, water vapor, and particulate aerosols. A number 
of radiative transfer models based on ray tracing algorithms have been developed for correcting 
the atmospheric effects. Studies have shown that these models can accurately correct for the 
atmosphere. However, these corrections require accurate measurements of atmospheric optical 
properties. These measurements are often not available or are not exactly in the study area or co­
incident with the overpass. Since more light scatters at shorter wavelengths, the blue band is more 
sensitive to atmospheric effects than the red and infrared bands commonly used for vegetation 
indices. Thus, unless one uses data that have been atmospherically corrected, use of the blue band 
(cf., the SMA, TCT) is less desirable than methods that use only the red and infrared bands as is 
the case for the standard vegetation indices. 

There are a number of vegetation indexes that have been developed over the years primarily for 
the purpose of ecological assessment not directly for determining land use. The NDVI is the most 
commonly used index for ecological assessment [Elmore et al, 2000]. NDVI has been shown to 
have a "reasonable correlation" [Elmore et al., 2000] with vegetation abundance and other impor­
tant ecological parameters such as leaf area index and the fraction of absorbed photosynthetically 
active radiation, CO2 uptake, productivity rates, leaf biomass, leaf density and process rates (such 
as photosynthesis and transpiration). 

The purpose of this paper is to employ a vegetation index in an unsupervised manner to delineate 
land cover types that are significantly different in terms of growth characteristics over time. The 
above can then be used directly in distributed models. Moreover, since growth characteristics are 
used for delineation, the method has hydrological significance. Our hypothesis is that by looking 
at the development of the vegetation in the watershed throughout the year, we can describe specific 
and unique patterns for the different land covers and uses 

94 



CAHMDA-n workshop Session 3 De Alwis 

35 

3 

25 

2 

15 

1 

05 

x10° 
S Jan 

- # - Apr 
- * - May 
- * - Jun 
-t- Jul 
A Sep 

- • - Ort 

' 

• 

NDVI distribution for each month 

. i -

' • i 

i . ' i 

9 ' '. ' 
' ' A 

! • i r 
' ' i.' 

/ * \ 
1 'M , A 

j 

Jt 

• 

A|A 
:W i t 
.-r] 11 
# ' 1 

A ' 
** :. 1 1 ' '1 

A 
'• ' i 
' M 
': 1 • 1 

: 1 

'; 
À 

• 

h 
0. 8 0. 6 0. 4 0. 2 

Figure 3.3: Distribution of NDVI values for the Town Brook watershed for different months. 

For this study we will use the Town Book watershed which is located in the Catskill region of New 
York State. Town Brook is a 37 km2 rural watershed with farms and forest. Summer homes are 
being built. It is chosen because Townbrook is one of the watersheds selected by the USDA and 
the New York City Department of Environmental Protection (NYCDEP) for detailed studies on 
watershed hydrology and NPS control. We have also developed a distributed watershed model for 
this area and in a subsequent paper we will test how satellite-derived landuse and the real landuse 
affect the hydrology 

Material and Methods Seven cloud free, multi-spectral, Landsat ETM+ images that contained the 
Town Brook watershed were obtained for processing. The data were collected on 29 January 2000, 
and on 5 April, 7 May, 8 June, 10 July, 12 September and 30 October 2001. The Landsat ETM+ 
sensor data have 30 m resolution in six spectral bands ranging from Blue to Middle Infrared, an 
additional sensor that records data in a wide bandwidth (encompassing bands 2, 3, and 4) in a 
panchromatic mode (black and white) and a 120 m resolution in one Thermal Infrared band. Only 
the six 30 m bands were used for this study. 

The NDVI was calculated by first correcting each of the images for atmospheric effects with Dark 
Object Subtraction (DOS). The red and infrared bands are generally corrected using dense vegeta­
tion. Since images are compared throughout the year, not all the images had dense vegetation and 
clear, deep water bodies were used as dark objects. After the correction, the NDVI was calculated 
as {Rir—Rred){Rir+Rred) where R refers to the reflectance of the target with the subscript defin­
ing the spectral region, red for the red band and ir for the infrared band. The NDVI, like any of 
the vegetation indices based on ratios, helps to compensate for many of the complicating factors, 
e.g., illumination effects, atmospheric effects. The NDVI has the additional advantage that the 
maximum value is 1. 

The NDVI landuse images were compared with the 2001 land cover/use map produced by NY­
CDEP, is the agency in charge of the water supply. This map was generated using automated land 
cover classification based on Landsat ETM+ imagery, and enhanced it with impervious surface 
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Figure 3.5: The NDVI landcover map (left) and the NYCDEP landcover map for Town Brook 
watershed. 
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feature extraction derived from 0.3 meter and 1 foot, color infrared digital ortho-imagery, with tax 
parcel and other inventory data employed to provide land use information where applicable. 

Results and Discussion The distribution of the NDVI values for the 30 m x 30 m pixels for the 
seven Landsat ETM+ images are given in Figure 3.3. Most of the January and April NDVI values 
are negative due to the red colored soil which is brighter in the red than in the IR. In May, there 
is a wide distribution of NVDI values signaling a broad range in plant development stages. The 
highest NDVI values are found for June and July and the distributions of the two months are almost 
equal. The distribution of September NDVI values are almost the same as for the summer months 
with the exception of the deciduous forest that started to color and resulted in some pixel changing 
from a high NDVI to a much lower value. October NDVI values after several frosts have decreased 
from September. The grass and the conifers are the only green land cover in the landscape and 
have the highest NDVI values. 

In order to derive land cover, we track the change of NDVI over the year for each pixel. Each 
land cover has a unique signature. The following land covers are distinguished: (1) Non vege­
tative surfaces consisting primarily of farms with barn yard, wide roads and lakes; (2) Forests -
evergreens and deciduous trees are distinguished because they impact the hydrological balance 
differently; (3) Abandoned agricultural land consisting mostly of shrub and (4) Agriculture. Other 
agricultural land uses can be distinguished but that is beyond the scope of this abstract. 

The best time to distinguish between the land covers is early in the growing season and late in 
the growing season. In the early growing season (May in Upstate New York) grasses and conifer 
forests are green and absorb the red energy (chlorophyll absorption). Deciduous trees do not have 
leaves and will not absorb in the red. During the growing season all plants are green. Forests grow 
more vigorously than grasses and, therefore, absorb more red light than shrub or grass. In the late 
growing season the trees have lost their leaves and grass and evergreens are absorbing the highest 
amounts of energy in the red band. In the abandoned farm land the grasses are not cut and are less 
vigorous throughout the growing season. The conifers are the only plants that will absorb some of 
the red light during the winter and the non growing season image can be used to differentiate them 
from other land uses. In addition lakes and non vegetative surfaces are distinguished by pixels that 
have NDVI values smaller than zero throughout the year. 

To find the relative ranking of the "greenness" in the pixel, we divide the pixel NVDI values 
into four bins: High. Medium, Low and Negative. The boundaries between the bins are found 
by assuming that the high and low NDVI values can be represented by two normal distributions 
around their respective mean values. This is shown in Figure 3.4 where the plowed land pixels 
(NVDI values in May smaller than zero) and non vegetative surface pixels have been removed. 
Pixels with NDVI values greater than the highest mean are in the "high" bin for that particular 
image. Pixels with NDVI values lower than the lower mean but greater than zero are in the "low" 
bin. The remaining pixels with positive NDVI values are in the "medium" bin. Using this ranking 
system and the vegetative characteristics of each of the land covers discussed above, a scheme for 
identifying land covers shown in Table 3.1 were derived. 

Based on the rules in Table 3.1, the NDVI based land cover for Town Brook watershed was made 
and shown on the left column of Figure 3.5. The NYCDEP 2001 landuse/landcover map (also 
derived from ETM+ data) is shown in the right column. The NYCDEP map had 16 land use 
categories that were lumped into 5 categories. Since the definition of abandoned agricultural 
land with shrub and forest is not obvious, we showed them together in the same map. The land 
cover maps are in general agreement with some differences in agricultural field boundaries. The 
NYCDEP map was corrected with tax parcel information while we did not use that information. 
The NYCDEP map had more forest than ours and this could have been caused by choosing the 
boundary between the high and medium bin that was too high in the NDVI method. Another 
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Table 3.1: Land cover NDVI signatures, 
cover type. 

The bold-printed entries are used for deciding the land 

Winter Early growing Growing season Late growing sea-
[January-April] season [May] [June-July] son [October] 

NDVI<0 

High 

Low or medium 

Low or medium Low or medium 

Non-vegetative 

Forest (Evergreen) 

Forest (Deciduous) 

Abandoned 
agricultural land 

Agriculture 

NDVI<0 

High 

NDVI<0 

NDVI<0 

NDVI 

High 

Low 

Low 

< 0 NDVI<( 

High 

High 

Low or • 

Remaining pixels 

difference is the prediction of the area in conifers. The NYCDEP map showed that 10% of area 
was covered with conifers, while our NDVI map only indicated an area in the order of 1%. By 
using band 7 of the Landsat April image, which is particularly sensitive to leaf water content 
in dry weather, to estimate the areas with conifers, it appeared that the NDVI derived estimate 
was correct Independent of what interpretation method is correct, the NDVI method is directly 
linked to plant growth characteristics (and evaporation rates) and is therefore desirable over the 
NYCDEP method for use in distributed hydrological models. In these models the ability to extract 
water from the ground is more important than the exact landuse. 
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Remotely sensed estimates of canopy stomatal conductance for 
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Terrestrial vegetation plays a central role in the response of the energy balance and composi­
tion of the atmospheric boundary layer to forcing, through évapotranspiration and controls 
on carbon sources/sinks. Plants, through the leaf stomata, regulate the rate of exchange of 
carbon and water between the land surface and the atmosphere. Canopy stomatal conduc­
tance, a measure of the rate of this gas exchange, is one of the most important variables 
needing to be simulated by land surface models, as it responds dynamically to the integrated 
effects of multiple stressors, forcing, and the local and regional consequences of global envi­
ronmental change. Accurate representation of these dynamics and their prediction over sea­
sonal, inter-annual, and decadal timescales at regional to global scales requires an ability to 
estimate canopy conductance over a large spatial extent at relatively short timescales (daily 
or more frequently). In this paper we develop a simple scheme for estimating canopy aver­
age stomatal conductance using remotely sensed land surface temperature to estimate vapor 
pressure deficit (£>) over a regional extent, and flux tower data to estimate reference canopy 
conductance (Gsmf) derived from flux tower data. Slowly varying land use and land cover 
changes, climate changes, and environmental variables such as light, are associated with 
measurable adjustments to Gsref, which will be updated using water flux data or MODIS 
land surface temperature (LST) data from a tower sites. A second timescale is associated 
with the periodic update (sub daily to daily) of MODIS land surface temperatures (LST) 
at a given tower site. A logic based on the complimentary relationship between potential 
and actual evaporation will be used to derive D at daily, and potentially down to 3-houriy 
timescales. The slowly varying Gsref and rapidly varying D are then combined in a linear 
relationship based on plant hydraulic theory to obtain a mechanistic estimate of G$. This 
assimilation logic will be evaluated using data from the WLEF AmeriFlux tower in northern 
Wisconsin, USA. 

Theory It has been shown empirically [Oren et al, 1999], explained mechanistically [Ewers et ai, 
2000], and demonstrated in modeling studies [Mackay et al., 2003a; Kami et al., 2003] that plants 
that regulate leaf water potential to just prevent runaway cavitation obey the following relation: 

Gs = Gsref-m\nD (3.1) 

where Gsref is reference canopy stomatal conductance at vapor pressure deficit, D=\ kPa and 
m = dGs/d\nD ss 0.6Gsnf is the sensitivity of stomatal conductance to increasing D. 

Vegetation indices are widely used to model regional and global vegetation dynamics. Similar 
remote sensing tools have yet to be developed for physiological parameters, such as canopy stom­
atal conductance. However, numerous studies have made strides towards this by relating foliage 
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temperature to transpiration [Idso et al, 1978; Nemani and Running, 1989; Carlson et al, 1995; 
Norman et al, 2000]. Mackay et al. [2003b] showed that thermal remote sensing can detect veg­
etation responses that follow (3.1). Hashimoto et al. [2003] extended Granger's [1989] feedback 
link logic and demonstrated the feasibility of estimating daily average D by relating saturation 
vapor pressure determined at the surface temperature (SVP(Ts)) derived from MODIS or AQUA 
LST to ground-based estimates of D: 

D = 0.32 -SVP(TS) (3.2) 

(3.1) and (3.2) are combined to estimate daily Gs- We first derived a set of optimized reference 
conductance parameters [Mackay et al, 2003a] for a number of species using sapflux data from 
year 2000 as a basis for model evaluation. We then test the combined model using LST from 
MODIS during 2001 by evaluating the relationships between MODIS estimated Gs and sapflux 
estimated transpiration from 2001. 

Methods The study was conducted in northern Wisconsin, near Park Falls (45.94°N, 90.27°W). 
The study area is a 12 km2 region centered on a 447 m tall communications tower (WLEF tower). 
Sap flux was measured continuously in seven primary species [Ewers et al, 2002]. These species 
represent over 85% of land surface area [Mackay et al, 2002] around the WLEF tower. Four of 
the species, red pine, sugar maple, trembling aspen, and basswood, were selected for the present 
study to capture the full range of measured stomatal conductance at the site. We used the Ter­
restrial Regional Ecosystem Exchange Simulator (TREES; Mackay et al. [2003a]) and Adaptive 
Parameter Restriction and Selection (APRèS; Samanta and Mackay [2003]) to estimate reference 
conductance, GsKf, for our tree species. 

We acquired MODIS LST data for several days during 2001, as well as micrometeorological mea­
surements of surface temperature and humidity from approximately 2.5 m above ground. MODIS 
data was acquired in a 5 km x 5 km window centered on the WLEF tower. For each date we 
screened for cloud cover in each of the 25 pixels within the window. Cloud pixels were removed. 
The cloud-free pixels were averaged to obtain LST estimates for the region. We determined 
SVP(Ts) from MODIS LST and compared these estimates to the ground-based estimates of D. 
We then applied our site-specific relationship to estimate Gs. 

Results The relation between measured D and SVP(TS) for WLEF (2001) was 

D = 0.30 -SVP(TS) (3.3) 

Within the uncertainy of the data the slope of relationship 3.3 (0.30) is not significantly different 
from the slope (0.32) suggested by Hashimoto et al [2003]. Furthermore, it is equivalent to results 
obtained at some of the AmeriFlux tower sites. We compared estimates of daily average canopy 
stomatal conductance from MODIS LST to sap flux estimates of transpiration for the four species. 
If the species are conforming to theory, and their stomata are regulating leaf water potential to just 
prevent runaway cavitation, then we should expect a decline in canopy stomatal conductance as the 
rate of transpiration increases. The results are shown in Figure 3.6. For each of the species there 
is a clear negative relationship between Gs and transpiration rate. We note that five data points per 
species is not sufficient to quantify the significance of the differences in slopes among the species, 
but it is sufficient to demonstrate the feasibility of deriving canopy stomatal conductance. 

Conclusions A remote sensing logic for estimating daily canopy average stomatal conductance 
was presented. The logic combines MODIS land surface temperatures to obtain a daily estimate 
of vapor pressure deficit, and a simple model of canopy stomatal conductance that relies on a 
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Figure 3.6: Canopy average stomatal conductance (Gs) versus daily transpiration measured with 
sap flux instrumentation. 

single measurable parameter, reference stomatal conductance, and vapor pressure deficit. Based 
on the limited data used in this study we can conclude that MODIS-based estimates of canopy 
conductance can be consistent with hydraulic limitations that require stomata to regulate leaf wa­
ter potential in response to increased rates of transpiration. This suggests that regional to global 
estimates of physiologically constrained canopy stomatal conductance on daily timescales is fore­
seeable. It is not clear based on the current data if MODIS can be used to resolve inter-species 
differences in the regulation of leaf water potential. A more extensive database is needed to ad­
dress the question of how well we can identify species level responses, which would allow for 
estimates of transpiration and photosynthesis across species gradients without making extensive 
ground-based measurements. 

Acknowledgements Support from NASA (NAG5-8554) and NSF (EAR-0405306) are gratefully 
acknowledged. 
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GEOjop: a distributed model of the hydrological cycle in the remote 
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The study of the hydrologie cycle is physically focused on the analysis of the interactions 
between the soil surface (and specifically the soil water content, linked with precipitation) 
and the lower atmosphere, which occur mainly through the mediation of the soil itself, the 
vegetation, and the turbulent and radiative energy transfers which take place at the Earth's 
surface. In recent years, hydrologie research has evolved towards a comprehensive theory 
describing the exchanges of mass, energy and momentum between the land surface and the 
atmosphere over a range of spatial and temporal scales. The practical aims of this effort 
are: (1) to improve mid- and long-term hydrologie forecasts; (2) to increase our capability of 
describing the impacts resulting from changes in the soil use and climate on the hydrologie 
cycle and on the Earth's ecosystems. 

In the last thirty years, several distributed hydrological models and, mostly independently, soil-
atmosphere interaction models (also called land surface models, LSMs) have been developed. 
Event rainfall-runoff models, if data are available for calibration, are successful in modeling flood, 
but they are generally unable to simulate the baseflow afterwards and, obviously, to estimate évap­
otranspiration. Vice versa, LSMs represent soil-atmosphere interactions with different degrees of 
complexity and accuracy, but they are not endowed with a detailed representation of runoff and 
lateral fluxes, as they have been developed mainly to provide a land-surface interface in support 
atmospheric global circulation models (GCMs). 

A new distributed hydrological model, GEO-iop, which aims at estimating in an integrated way 
the runoff and energy fluxes in small basins is presented here. It can be seen both as a continuous-
time rainfall and snowmelt-runoff model capable of simulating the hydrological cycle and as an 
attempt to incorporate in LSMs an adequate treatment of hydrological variability at small scales 
(in particular the effects due to different land uses, complex topography, and the structure of the 
channel network). The model, like a rainfall-runoff model, calculates the discharge of a watershed; 
moreover, it estimates the surface and subsurface water fluxes, the water table depth, and the value 
of the matric potential in both the saturated and the unsaturated soil. Like an LSM, it estimates 
the local values and the spatial distribution of numerous hydro-meteorological variables like soil 
moisture, surface temperature, radiative fluxes and heat fluxes into the soil. Furthermore, it com­
putes the evolution of the snow cover distribution and the surface snow temperature following the 
methodology of Tarboton and Luce [1996]. 

GEOTOP is a terrain-based model, i.e., it is based on the employment of Digital elevation models 
(DEMs); it is a distributed model, since all the simulated variables are returned for each grid 
cell in the basin; it is a model of the full hydrological cycle, in the sense that it simulates not 
only the mass balance but also the energy balance: in fact the two balance equations are coupled 
by the évapotranspiration terms and by the soil temperature, which controls the soil hydraulic 
conductivity and the evolution of the snow cover. 

In modeling the soil-atmosphere interaction, GEOTOP follows the treatment initially developed by 
Deardorff [1978], and then implemented, with numerous changes, in LSMs either at the global 
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Figure 3.7: Left: Scheme of the water flows in the GEOTOP model. For every cell precipitation 
(P) is partitioned in evapotraspiration (ET), sub-surface runoff (Qsub) and overland 
flow (Qsup). Both the saturated and unsaturated part contribute to the lateral flow. The 
dynamic balance between lateral and vertical flows determines the water table depth. 
Right: energy balance scheme in GEOTOP (compare equations 3.4 and 3.5). t// is the 
i-thlayer's specific energy, Rn the net radiation, Qi the latent heat flux, Qs the sensible 
heat flux, Qp the precipitation heat influx, G«,,_,,+i the heat flux exchanged between 
soil layers, that includes also the snow melt heat flux Qm (if snow is present). 

scale - like BATS [Dickinson et al, 1986] and NCAR-LSM [Bonan, 1996] - or at regional scale 
- like VIC [Liang et al, 1994] or at basin scale - like DHSVM [Wgmosta et al, 2002], to cite a 
few. However, GEOTOP differs from most of these models because it integrates the whole energy 
balance equation and it is able to give directly in its output those optical features such as brightness 
temperatue, that are measured from remote sensors. 

The model calculates the energy balance as a function of the soil (or snow layer) specific energy. 
The heat flux in the soil (or snow) is calculated through the integration of the heat conduction 
equation, with an implicit scheme on an arbitrary number of layers. The snowpack (if present) 
is represented by the first two layers, of which the upper one has infinitesimal thickness and is 
used only to calculate the snow surface temperature. For the generic i-th layer the energy balance 
equation is: 

AUj _ 
~T~ — Ge,i'-l-n' — Ge,i->i+l > (3.4) 

where / is time as independent variable, £/,• the internal energy of the i-th layer, Gej,_i_„- and 
G^-.j+i are respectively the heat fluxes exchanged between the i-lth and the ith layer (positive 
according to the arrow) and between the ith and the i+lth layer. The fluxes Ge include the heat 
flux exchanged by thermal conduction (due to temperature gradients) and the heat flux adverted 
by mass transport (for example if snow on the surface is present, also the heat coming from snow 
melting Qm is included). If i is equal to 1, Ge,o^i is the heat flux from the atmosphere to the 
surface soil (or snow) layer, which is calculated solving the surface energy balance: 

Gefl^i=Rn-Qs-Q, + Qp (3.5) 
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where Rn is the net radiation, Qs is the sensible heat flux and Qi the latent heat flux (both positive 
towards the atmosphere) and Qp is the heat flux adverted by precipitation. All terms (except Qp) 
are function of the soil surface temperature, which is unknown and is calculated solving the surface 
energy balance with an iterative scheme. 

Radiation is separated into its long- and short-wave components, each of which have diffuse, 
direct and reflected sub-components, both emitted by land and shielded by cloud cover. Effects 
on radiation due to topography are also taken into account: shadowing, reduction of the sky view 
factor, and variation in net radiation as result of aspect and slope. 

The vegetation is represented by a one-layer canopy model [Garrat, 1992]. The root fraction 
of each soil layer ns calculated decreasing linearly from the surface to a maximum root depth, 
depending on the cover type. The canopy resistance rc depends on solar radiation, vapor pressure 
deficit, temperature as in Best [1998] and on water content in the root zone as in Wigmosta et al. 
[1994]. 

The flow of water in the unsaturated zone in GEOTOP is computed solving numerically the Richards' 
equation, which makes it possible to describe also the transients of flow and infiltration generated 
by the dynamics of the suction potential gradient, not just the flow generated by the topographic 
gradient. The use of Richards' equation also does not make any assumption of stationary condi­
tions in subsurface flows (as is assumed, for example, in Beven and Kirkby [1979]). 

The numerical schematization of the model inherits the knowledge acquired starting from Freeze's 
studies [1978] and it is in some aspects similar to that implemented in the SHE model [Abbott 
et al, 1986] and in the SHETRAN [Ewen et al, 2000]. The basin surface is divided into cells that 
can be vertically divided in an arbitrary number of levels. As a boundary condition at the bottom, 
it is possible to impose a known value of the potential, a known gradient or an impermeable 
surface. All the basin properties can be defined in a completely distributed way; in particular, 
soils can be chosen to differ in profiles and depth in every cell. To calculate the soil hydraulic 
properties the Van Genuchten [1980] model is used, whose parameters can be derived from the soil 
texture by means of the pedotransfer functions proposed by Vereecken et al [1989]. The hydraulic 
conductivity is expressed as a function of the water content as in Mualem [1976]. 

The vertical infiltration is described taking in account the surface fraction actually covered in 
water, supposing the presence of micro-relief in the terrain, parameterized by a surface roughness. 
The water redistribution is determined on the basis of the total head gradient according to the 
Darcy law. All the basin's cells are designated as either channel or hillslope cells. The surface 
runoff in the hillslope cells is described as a series of uniform motions following a kinematic 
scheme, according to the relation: 

vsup = Cmhyfi-5, (3.6) 

where Cm is a resistance coefficient, RH is the surface water thickness, i the local slope and y is 
variable also as a function of the runoff phenomena geometry. The connectivity among the cells 
is described by a scheme with eight drainage directions, and water that runs off one cell and onto 
another, can it then infiltrate. The motion in the channels is described by the convolution of the 
incoming discharge with the solution of the de Saint-Venant parabolic equation found by Rinaldo 
etal [1991]. 

The model has been applied and tested in various basins of Trento Province in Italy and in some 
experimental basins in USA [Bertoldi et al, 2002; Bertoldi, 2004]. The models code is fully 
documented in Bertoldi and Rigon [2004], and it will be realesed as Open Source project by the 
end of 2004. 
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Soil carbon has considerable temporal and spatial impacts on the ecohydrological state of all 
catchments. Total organic carbon, land use, climate, and soil physical and chemical prop­
erties are being monitored at 26 sites within a 7000 km2 temperate agricultural catchment 
in south eastern Australia, to investigate total organic carbon dynamics. Preliminary results 
from multi-variable statistical analyses of data obtained during the first 6 months of an 18 
month study are presented. The primary research goal is to understand and quantify point 
and catchment carbon stocks using relationships between remote sensing and other readily 
available data. This paper includes discussion of preliminary attempts to upscale point and 
hill slope data to the catchment scale. 

Introduction Soil organic carbon (SOC; the entire organic fraction including undecomposed and 
decomposed plant and animal organic debris) is a major component of the global carbon store, 
containing nearly three times the carbon stored in the atmosphere and four times the carbon con­
tained in terrestrial vegetation. Human activity has resulted in atmospheric CO2 concentrations 
increasing at approximately 0.5 to 3 ppm annually [Keeling and Whorf, 2001], with increased lev­
els being a known cause of global warming. Therefore management of soil carbon has significant 
potential to slow the build up of atmospheric CO2. The global response to increasing atmospheric 
CO2 concentrations is highlighted by the development of the Kyoto Protocol [UNFCCC (United 
Nations Framework Convention on Climate Change), 1997], and the focus on CO2 sequestration 
opportunities in an effort to mitigate emissions, particularly within the agricultural sector. 

SOC has significant impacts and benefits on the physical, chemical and biological properties of 
soils. First, soil organic matter (SOM) retains up to 20 times its weight in water, and improves 
drainage and permeability [Delgado and Follett, 2002]. A catchment's SOM status therefore has 
significant hydrological impacts by affecting the soil moisture status, surface runoff, and sub­
surface flows; factors rarely (if ever) included in hydrology models. Second, SOM affects soil 
aggregation and the stability of aggregates [Coffin and Herrick, 1999]. It thus plays a critical role 
with regard to the susceptibility of soils to erosion [Phillips et al., 1993], serves as a store for 
nitrogen, phosphorus and sulfur [Delgado and Follett, 2002], and plays a role in the cycling of 
essential nutrients [Delgado and Follett, 2002]. 

Despite current knowledge of the impacts and benefits of SOC, significant gaps remain in our 
knowledge of carbon cycle dynamics. The knowledge gaps most relevant to this study include: (1) 
The lack of a fundamental understanding of SOC dynamics at the molecular, landscape, regional, 
and global scales [Metting et al., 1999; Quideau et al., 2001]; (2) Uncertainty in the magnitude 
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and timing of the response of the soil carbon reservoir to changes in climate, land-use and land 
cover [Wang andHsieh, 2002]; (3) The paucity of data documenting erosional SOC losses and the 
fate of eroded SOC [Jacinthe and Lal, 2001]; (4) Limited information about organic carbon export 
from agricultural catchments [Jacinthe and Lai, 2001]; and (5) The lack of data for specific runoff 
events of SOC losses to enable calibration of empirical models, including a need for more detailed 
analyses of particle size distributions and densities of SOC within nested catchments [Starr et al., 
2000]. 

This paper reports on research concerning total organic carbon (TOC; that fraction of SOC which 
passes through a 2 mm sieve excluding all fine roots) from hydrological and scaling perspectives, 
and addresses the above knowledge gaps to various degrees. The research investigates spatial and 
temporal dynamics of TOC based on an analysis of field based, remotely sensed, and GIS data. 
The aim is to identify relationships that allow quantification of TOC at any point within a catch­
ment, from routinely measured parameters such as soil type (specifically the proportion of clay); 
long term climate (with soil moisture and temperature being driving forces of biomass decomposi­
tion); the position in the landscape (for erosional and depositional effects); vegetation and/or land 
use (biomass for the input of carbon); and anthropogenic site history (including cultivation). Any 
longer-term change in TOC, the dynamical perspective, is expected to be a function of antecedent 
TOC; land use change; and climatic change. Shorter-term changes will be influenced by environ­
mental factors including recent rainfall and perhaps recent tillage operations. Specific research 
objectives include: (1) assessing temporal patterns in measured and predicted TOC at monitoring 
sites; (2) upscaling and integration of these TOC distributions to assess spatial patterns and to 
determine total catchment carbon stocks; and (3) analysis of soil carbon storage for various land 
use and climate change scenarios. Data from an intensive network of monitoring sites are used to 
develop and evaluate predictive relationships for hillslope and subcatchment TOC dynamics in the 
top 300 mm of the soil profile. 

Field Data The 7000 km2 Goulburn River Catchment is a mixed grazing and cropping region 
located 200 km west of Newcastle in south eastern Australia. Figure 3.8 shows the catchment, its 
10 major subcatchments and the 26 permanent monitoring sites used in the present study. 

The mean annual rainfall over the past 100 years was 660 mm ± 200 mm (Bureau of Meteo­
rology data). The maximum and minimum annual rainfalls over the same period were 1318 and 
334 mm respectively. As a result, most rivers and streams in the Goulburn River Catchment are 
ephemeral. The region has encountered severe drought conditions in recent years; a factor that 
will be considered in the evaluation of current TOC distributions. 

From an agricultural perspective, land use in the Goulburn River Catchment becomes marginal 
if years with significantly lower than average rainfall become a regular occurrence, resulting in 
semi-arid conditions across the region. Recent trends towards lower rainfall may be associated 
with natural and/or human induced climate change and variability. 

The catchment is dominated by sandy soils in the south and heavy basalt clay soils in the north. 
The southern half retains large tracts of native eucalypt forest, whereas the majority of the north of 
the Goulburn River Catchment has been extensively cleared of natural vegetation with the lower 
slopes and areas adjacent to riparian zones comprising native or improved pastures interspersed 
with eucalypts. These different soil, vegetation and climate conditions result in a wide range of 
ecophysiological diversity. 

The research utilises the unique data set of the "Scaling and Assimilation of Soil Moisture and 
Streamflow" (SASMAS) project currently being conducted in the Goulburn River Catchment. 
Precipitation, soil and air temperatures, soil moisture, and stream flow are monitored continu-
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Figure 3.8: Major subcatchments and permanent monitoring sites within the Goulbum River 
Catchment. 

Figure 3.9: Schematic of hill slope transect studies. 

ally across the network of monitoring sites*. Land form, land use, soil physical and chemical 
properties, and vegetation data (living and litter) have been obtained from GIS data sets, and are 
supplemented with data from a number of intensive field campaigns. Soil samples 50 mm in di­
ameter and to a depth of 300 mm are collected at 6-weekly intervals over an 18 month period 
from each of the 26 monitoring sites. The sites have unique combinations of soil type, soil depth, 
biomass, soil moisture, soil temperature, and terrain characteristics. Samples are being collected 
each trip from 3 randomly generated vectors within a IS m radius of each monitoring site. This 

*see http://www. c ivenv.unimelb.edu.au/~jwalker/data/sasmas 
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allows investigations into local scale variability as well as assisting in bias removal. Additional 
samples are being collected quarterly from 3-point hill slope transects for 10 of the 26 sites. The 
data are being used for lateral transport studies. The transects are shown genetically in Figure 3.9. 

All samples are being analysed for TOC, nitrogen, pH, conductivity, and soil physical parameters 
(bulk density, field capacity, porosity, hydraulic conductivity). The combined data sets are anal­
ysed using multi-variable statistical techniques to determine and calibrate relationships for TOC 
prediction. 

Results This paper presents preliminary results of the spatial and temporal variability of TOC 
within the Goulburn River Catchment from six temporal samples of TOC for all 26 monitoring 
sites, and two temporal samples of hill slope transect data. Preliminary multivariate statistical and 
graphical analyses of the data sets for each site will be presented including the dominant impacts of 
each of the parameters on TOC levels and distributions. Preliminary results will also be presented 
of biomass assessments based on remote sensing as well as initial erosion risk analyses for the 
selected hill slopes. We will report on the development of relationships between TOC and a range 
of static and dynamic site characteristics, and explore strategies for how these relationships may 
be used with remote sensing and GIS data to predict TOC levels at any point in space and time in 
the Goulburn River Catchment, without needing expensive field and laboratory data. 

One complete set of TOC data for the 26 monitoring sites has been determined. These showed 
that minimum and maximum TOC levels within the Goulburn River Catchment were 0.39% and 
5.7% respectively. The mean for all sites was 2.45% ± 1.42%. These values were within the range 
commonly reported in literature for similar climate and land use systems. Although one data set is 
insufficient for the identification of temporal patterns and trends there was an apparent correlation 
between soil texture and TOC. The sandy sites had lower TOC values and heavy clay sites had 
higher values. This is potentially due to the sandy soils having a lower sequestration capability 
due to a much smaller clay component, and the free draining nature of those soils. This was an 
expected result. 

Acknowledgement This project is funded by ARC Discovery Grant DP 0209724. 
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In both atmospheric and hydrologie model, the behavior of the surface energy budget can 
be critically dependent on the magnitude of the effective grid-scale bulk heat capacity. Yet, 
this parameter is uncertain both in its value and in its conceptual meaning for a model grid 
in heterogeneous conditions. Current methods for estimating the grid-scale heat capacity 
involve the areal/volume weighting of heat capacity (resistance) of various, often ill-defined, 
components. This can lead to errors in model performance in certain parameter spaces. 

A technique suitable for recovering bulk heat capacity using time tendencies in satellite retrieved 
land surface temperature has been developed and tested. It is formulated based on previous studies 
that show that surface temperature is most sensitive to thermal inertia in the early evening hours. 
The retrievals are made within the context of a surface energy budget in a regional scale model 
(MM5). The paper will present results from two uniquely separate applications. The first is within 
the context of an operational model framework with emphasis on a 48 h simulation. The second is 
within the context of a week-long simulation conducted with continuous dynamic nudging in the 
free atmosphere for the purpose of conducting air quality simulations. 
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On the need to preserve hillslope form and processes within 
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The Netherlands 
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Currently the role of lateral flow and structured spatial variability is underestimated within 
land surface schemes [Wood, 1999]. We study the impact of this hillslope scale variability in 
hydrologically relevant landscape parameters on large-scale hy drological behavior. Hillslope 
geometry (mainly slope gradient and soil depth) and soil hydraulic properties (hydraulic con­
ductivity and drainable porosity) can be expected to vary in consistent ways along hillslopes 
(catenas) as the result of topography controlled soil formation and geomorphic processes. 

Based on ongoing field investigations in the Troy (Idaho) catchment, we set up downhill gradients 
of input parameters of a catchment-scale semi-distributed hillslope-storage Boussinesq model, 
which is based on the hydraulic groundwater theory [Troch et al., 2003]. By systematically varying 
the downhill trends in one, some, or all of these input parameters, we determine the effect of 
structured spatial variability on the shape of a characteristic (e.g. unit) hydrograph. 

Although not explicitly modeled, the subsequent effect on land surface-atmosphere energy ex­
change is assessed by making assumptions on the relationship between hydrograph shape and/or 
statistics and the separation of rainfall into stream runoff and évapotranspiration. Other potential 
fields of application are ecology (e.g. soil moisture) and hydrogeology (e.g. aquifer recharge). Our 
presentation is intended to revive the discussion on the importance of hillslope form and subsur­
face lateral flow in large-scale models. 
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Most of the models used to reproduce the runoff at hillslope scale and at small-catchment 
scale are based on the assumption that the sub-surface runoff flows following the bedrock 
topography, often considered impermeable and parallel to the surface. Another common 
hypothesis is that the motion can be described as a function of the only topographic gradient 
rather than of the total hydraulic head gradient. In this contribution, to understand the 
role of bedrock permeability and soil thickness on the saturation overland flow dynamics 
in headwater catchments, the distributed hydrological model GEOTOP [Bertoldi and Rigon, 
2004; Bertoldi, 2004] has been applied to a small catchment (2.3 ha), located in the Mount 
Tamalpais State Park in Marin County, California, USA. 

The basin is constituted by two hollows with deep colluvial sandy and gravelly silt soil (from 
2 to 5.5 m) and by sideslopes with a thin soil thickness (from 0.2 up to 0.7 m). The bedrock 
is constituted by strongly fractured sandstone with some more solid blocks close to the channel 
beginning. The first 2 meters of rock are strongly weathered. The basin has been monitored and 
instrumented with over 100 piezometers, two raingages and a weir in the years 1985-1986 by 
Wilson and Dietrich [1987]. The soil thickness has been measured by means of seismic refraction 
[Dengler and Lehre, 1987]. Hydraulic conductivity has been measured into the piezometers holes, 
both in the soil and in the bedrock. Conductivity decreases with depth, but a clear distinction 
between soil and bedrock conductivity does not emerge. During the precipitation periods, data 
regarding rainfall, pressure, runoff and saturated area have been collected manually every 6 hours. 

During the 1985-1986 wet season, there was an intense storm, on which the present study focuses, 
from 11 February to 21 February. The precipitation observed has been 440 mm in the basin. 
The peak discharge was 40 I s - 1 6 days after the beginning of the precipitation with a 4-hour 
delay with respect to the greatest rainfall intensity. The saturated area expands during the event 
involving both hollows completely. The pressure in the piezometres starts increasing about 1 day 
after the beginning of the event: its peak is after 6 days and corresponds to the greatest superficial 
saturation, with a maximum exfiltration gradient in the hollows of 0.87 m. The study of Wilson 
[1988] has recognized a motion field where the fractured bedrock contribution appears significant. 
In the hollows the water table is close to the surface inside the colluvium also in the periods distant 
in time from precipitation. During most of the storm, local exfiltration gradients occur, associated 
with bedrock heterogeneities. In the hillslopes, on the contrary, the water table is deeper than the 
bedrock and during the precipitation a perched water table does not form at the soil-rock interface, 
but the water filters rapidly into the fractured rock, with a strongly transient response in pressure 
in the bedrock and in the colluvium. 

Simulations with the GEOTOP model have been performed under different conditions, with a uni­
form soil thickness, with a measured soil thickness and with different degrees of bedrock perme-
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ability. A 20 m-deep soil layer, divided in 8 levels, has been used, with Van Genuchten [1980]'s 
parameters for a silty-sandy terrain. The conductivity profile has been chosen on the basis of the 
data measured. The simulations show how the hollows are partly saturated while hillslopes are 
quite dry, at the beginning of the flood. This different behavior lasts during the whole event, when 
the saturated area in the hollows grows, but hillslopes remain unsaturated. The moisture profile in 
the hillslopes in fact shows that there is no formation of a perched water table between rock and 
soil, as supported by observations. In the hillslopes, the strong decrease in conductivity with depth 
allows little interaction between the water table and the surface runoff. 
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Figure 3.10: a) Map of basins elevation h [m], b) Distribution, in the day before the maximum 
saturation, of the of the total gradient W£z', expressed as a fraction, in the first 5 cm 
soil, c) Distribution of the suction potential field \\i [mm], in the first S cm soil, d) 
Distribution of the contribution of the suction potential ^ to the total gradient "£z', 
expressed as a fraction. The basin contour lines are superimposed. Green colors 
indicate negative contributions, which slow down the motion, violet colors indicate 
positive contributions, which accelerate the motion. There is a negative contribution 
along the hollow border (red line) and positive areas in the upper hillslope zone (black 
line). 

If we impose in the model the measured soil thickness, with a permeability value in the bedrock 
far lesser than that of the soil (K = 10~7 m s - 1), it is not possible to simulate the flood wave in 
a correct way. The small soil thickness present in the hillslopes indeed saturates quickly, with 
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the formation of too much surface runoff by saturation. The presence of a permeable bedrock 
then results determinant to obtain the delay observed in the hydrologie response. The degree of 
hillslope-hollow disconnection increases as the bedrock permeability increases. 

The suction potential distribution \|/ is probably the most interesting information provided by the 
model. Its distribution is connected to the water content distribution, with positive values in the 
saturated hollows and negative values in the unsaturated hillslopes, as shown in Figure 3.10c. 
Although the total load gradient along the drainage direction W£z< (Figure 3.10b) is strongly 
linked with the topographic gradient |», the potential gradient contribution ~£ to the total gradient 
is not negligible (Figure 3.10d), with increases and decreases up to 20% out of the total gradient. 
Along the border of the saturated area there is an uphill water contribution, thus contributing to 
the saturated area expansion. Moreover in Figure 3. lOd one can notice that, in the convex zones in 
the upper part of the hillslopes, there is a contribution accelerating the downhill flow. Only once 
this wet band moves across the entire hillslope can the latter contribute to the basin response in 
terms of surface runoff. 

To conclude, the model is able to reproduce the runoff mechanism observed, confirming the im­
portance of considering the flow inside the bedrock in order to reproduce the basin response. The 
assumption of an impermeable bedrock determines an overestimate of the discharge. Hillslopes 
and hollows have a different behavior, with infiltration into the bedrock for the former, and sur­
face water table in the latter. Although the surface runoff by saturation plays an important role in 
providing water to the channel along the hollow, probably this is not the mechanism responsible 
for the flowing of the water from the basin head and the hillslopes to the hollow axis. 

The simulations suggest that the hypothesis that a perched water table forms in the hillslopes, 
with sub-surface runoff at the soil-bedrock interface, is valid only in the case of an actual contrast 
between rock and soil permeability. Lastly, the model shows that a significant contribution to the 
saturated area expansion is given by the potential suction gradient, which forms at the interface 
between unsaturated hillslopes and saturated hollows, and that this can influence the response 
times of small unchannelled basins. 
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Multiscale parameterization strategies for a spatially distributed 
hydrological model 

N. Chahinian1, R. Moussa1. M. Vote1, and P. Andrieux1 
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Agrosystème et Hydrosystème, Montpellier, France 

To predict the effects of land-use change on a heterogeneous catchments, one needs to use 
spatially distributed hydrological models. Although it was once sufficient to model only 
catchment outflow, growing concerns in pollution and water management require outputs 
at various points in a catchment, taking into account both surface and groundwater flow 
as these are the driving mechanisms of solute and sediment transport These processes are 
very sensitive to the hydraulic properties of the soil surface and the channel network. The 
objective of the present study is to formulate and analyse a parameterisation strategy for 
the soil surface hydraulic properties used in infiltration-runoff models across scales on het­
erogeneous catchments. The methodology used herein is based on both experimental and 
modelling approaches at various scales. It consists first on identifying the main local features 
controlling infiltration and runoff at the local scale and suggesting a proper representation 
in the distributed model. The second step consists in the transfer of information from the 
local to the catchment scale through a spatial distribution scheme. The Roujan experimental 
catchment is used to illustrate our methodology. Three different scales are hence studied: the 
local scale of a single ring infiltration experiments (100 cm2) used to identify sou hydrody-
namic properties, the plot scale (1000 m2) which is the management on farmed catchments 
and the small catchment scale (1 km2) which represents the elementary scale of flood genesis. 
First, soil hydrodynamic properties are identified at the local scale of the ring infiltrometer. 
Then these values are used in infiltration-runoff models to simulate hydrographs at the plot 
and the catchment scales. Various physically-based infiltration-runoff models and various 
strategies of spatialization of the soil hydraulic properties are compared. Multiscale cali­
bration and validation approaches are used. Finally, a comparison of the values of the soil 
hydraulic conductivity obtained for the various scales and for the various approaches of 
calibration is undertaken in order to analyse the results function of the scale of use of the 
models. In the following sections, we present the main characteristics of the studied site, the 
hydrological models, the parameterisation procedures and describe the main results. 

The study site The study area is the farmed Roujan catchment (0.91 km2) located in Southern 
France [Andrieux et al., 1993; Voltz et al., 1994]. The catchment is mainly covered by vineyards 
and is divided into 237 plots. The major runoff events are usually caused by high-intensity short-
duration storms, and are well representative of the hydrology in the Mediterranean zone. The main 
hydrological processes are runoff and infiltration at the field scale and the ground- and surface-
water exchange through the ditch network at the catchment scale. The drainage network is formed 
by man-made ditches and generally follows agricultural field limits. Two main runoff control 
features are identified: soil surface crusts that limit infiltration and tillage operations that increase 
infiltration. 

The basic instrumental design of the catchment consists of rain gauges, stream flow recorders, 
piezometers and tensio-neutronic sites. Experiments were undertaken at the local scale of a simple 
ring infiltration in order to identify soil hydrodynamic properties. Then, in an attempt to describe 
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spatial variability of runoff, discharge is measured at three gauging stations at the outlets of the 
catchment (0.91 km2), a crusted plot (1200 m2) and a tilled plot (3240 m2). The sensors are read 
every minute. A network of piezometers has also been installed to measure the spatial variation of 
the water table at 10 minutes intervals. 

The hydroiogical models used across scales At the local ring infiltrometer, the HYDRUS 2D 
two-dimensional vertical infiltration model [Simunek and Van Gewichten, 1996] was used in in­
verse mode to estimate the soil hydrodynamic properties. 

Moving up at the plot scale (the non-tilled and tilled plots), a rainfall-runoff model coupling a 
production function to a unit hydrograph transfer function, was used to simulate overland flow 
hydrographs. Three physically based production function models are compared: Richards-ID 
[Richards, 1931], Morel-Seytoux [Morel-Seytoux, 1978] and Philip [Philip, 1957] model. These 
models differ by their mathematical structure while input hydrologie data and the soil hydraulic 
properties used are the same. 

Finally at the catchment scale, the MHYDAS distributed model [Moussa et al, 2002] was used. 
The model subdivides the basin into "hydroiogical units" taking into account the hydroiogical dis­
continuities of farmed catchments. Over each hydroiogical unit, MHYDAS simulates Hortonian 
mechanisms of overland flow using one of the three production functions studied above. Infil­
trated water is assumed to flow vertically through an unsaturated layer from where it can flow to 
the groundwater. The flow exchange between the ditch network and the groundwater is calculated 
using a simple Darcian model. The unit hydrograph is used to route surface runoff at the scale of 
each hydroiogical unit, and the diffusive wave equation is used for flood routing through the ditch 
network. Evaporation is not represented since the purpose of the model is to simulate individual 
flood events. The model is most sensitive to the following parameters; the hydraulic conductivity 
at natural saturation Ks of the hydroiogical units, the exchange coefficients between the reaches 
and the groundwater, and the average value of the Manning coefficient in the ditch network. 

The parameterisation procedure The calibration process was subdivided in three main steps 
corresponding to each spatial scale. 

First, the soil hydrodynamic properties were identified at the local scale using a simple ring infil­
tration experiments (14 cm 0) . Two separate single ring infiltration experiments were undertaken 
[Chahinian et al, 2004b]. The first was performed on the undisturbed soil whereas the second was 
done after removal of the soil surface crust. HYDRUS 2D was then used, in an inverse modeling 
approach, to estimate first the soil hydraulic properties of the crust and the subsoil, and then the 
effective hydraulic properties of the soil represented as a single uniform layer. The results showed 
that the crust hydraulic conductivity (6 mmh~') is five times lower than that of the subsoil (29 
mmh - 1) thus illustrating the limiting role the crust has on infiltration. 

The second step concerns the plot scales. Two cases were distinguished, the crusted plot charac­
terised by invariable surface features all round the year and the tilled plot characterised by variable 
surface features function of rain occurrence. Fourteen flood events were used for calibration and 
fourteen for validation: 

• On the crusted plot, the use of the Richards-ID production function coupled to a transfer 
function shows that the representation of the soil as a single uniform layer gives similar re­
sults as the representation of the soil in a double layer (crust and the subsoil). The hydraulic 
conductivity at natural saturation (AT,) of the crust and subsoil considered as a homogeneous 
layer is 10 mmh~'. When calibrating Ks for Morel-Seytoux's and Philip's models, results 
show that the values range between 3 and 5 mmh - 1 depending on the calibration criteria 
(runoff volume, peakflow, or Nash and Sutcliffe criteria; Chahinian et al. [2004a]). The 
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calibrated values of Ks are 50 to 70% lower than the values identified at the local infiltrom-
eter scales. Finally, the comparison of the three models (Richards-ID, Morel-Seytoux and 
Philip) performance at the plot scale shows that all three models give accurate results and 
that the calibration of soil hydrodynamic characteristics in Morel-Seytoux's model improves 
the quality of simulations and reduces the time of calculation in comparison to Richards' 
model. 

• On the tilled plot, the transient nature of soil surface properties needs to be taken into ac­
count. The calibration procedure consists first in calibrating the Ks for each flood events, 
then in defining simple mathematical laws describing the evolution of K, in time. Results 
show that the value of Ks decreases from a value of 25 mm h - 1 just after tillage to a threshold 
value around 4 mmh - 1 function of the total rainfall amount after tillage. 

Finally at the catchment scale (1 km2), three strategies for spatializing Ks over the 237 plots were 
compared [Chahinian, 2004]: (1) by calibrating a unique value of Ks for all hydrological units, (2) 
by spatializing Ks using the calibrated values at the plot scale and (3) by using values ofKs obtained 
from rainfall simulations. For each strategy, the other parameters of the model (the exchange 
coefficients between the groundwater and the ditches and the value of the Manning coefficient) 
were calibrated using the measured hydrograph at the outlet of the whole catchment. Results 
show that the spatialized strategies give better results than the global one. The Ks calibration for 
both crusted and tilled plots improves the quality of simulated hydrographs both on the eleven 
calibration events and on the six validation events. The calibrated Ks values at the catchment 
scale are 20% higher than those calibrated at the plot scales. When calibrating each flood event 
individually, the Ks values fluctuate between 0.5 to 12 mmh - 1 on the crusted plot and vary by 
~ 70% on the tilled plot 

Conclusions The aim of this study is to suggest and compare various parameterization strategies 
for runoff-infiltration models across scales on heterogeneous catchments. The studied scales are 
the local ring infiltrometer, the plot and the small catchment scales. The sensitivity analysis shows 
that the rainfall-runoff models, used at both the plot and the catchment scales, are very sensitive 
to the soil surface hydraulic conductivity. At both the local and the plot scale, results show that a 
single layer representation of the soil gives accurate results compared to a double layer. At the plot 
scale, the use of the Morel-Seytoux model gives comparable results to the Richards- ID but reduces 
the time of calculation. These results are similar on both tilled and crusted plots. However, on the 
crusted plot, soil hydrodynamic properties are constant all year round while on the tilled plot they 
vary in time function of rainfall amount and intensity. The calibrated Ks values at the plot scale are 
50% lower than those measured using the single infiltrometer ring and the calibrated values at the 
catchment scale are 20% higher than those calibrated at the plot scale. This multi-scale approach 
is well adapted to heterogeneous catchments characterized by different landuse types and runoff 
control mechanisms. 
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Real time forecasting of water table depth and soil moisture profiles 

Ate Visser1, Roelof Stuurman1, and Marc F.P. Bierkens1'2 

1TNO-Institute ofApplied Geoscience, Utrecht, The Netherlands 
department of Physical Geography, Utrecht University, Utrecht, The Netherlands 

A method is presented for online forecasting of water table depth and soil moisture profiles. 
The method combines a simple form of data assimilation with a moving window calibration 
of a deterministic model describing flow in the unsaturated zone as well as regional drainage. 
Previous work with physically-deterministic models [Knotters and Bierkens, 2000; Knotters 
and De Gooijer, 1999] has focussed on offline calibration and validation. However, availabil­
ity of online measurements makes online forecasting possible. Online forecasting can be used 
for both drought and flood warnings, enabling more timely and accurate operational water 
management. Also, online calibration provides substantially better forecasts than offline 
calibration. 

Materials and methods The groundwater data were obtained from an observation well located on 
the main meteorological field of the Royal Netherlands Meteorological Office at De Bilt. The field 
lies at the edge of an ice-pushed ridge that is a remnant from the glaciers that covered the north of 
the Netherlands during the Saalien ice age. Because of its proximity, the ridge is expected to be a 
source of regional groundwater fluxes, influencing the phreatic surface [Bierkens et al, 1999]. 

Besides a long series (IS years) of daily groundwater measurements, online measurements of 
water table depth and soil moisture (at 25, SO, 75 and 100 cm below surface) were available for 
a period of three months. Each day these measurements were sent to a central server by short 
message service (sms) over the consumer gsm network. From there, the data was retrieved over 
the internet, together with historical weather data and weather forecasts (for which the Royal 
Netherlands Meteorological Institute is acknowledged) to be used for calibration and forecasting. 

The Soil Water Atmosphere Plant model (SWAP) [van Dam, 1997] was used, which applies the 
Richards equation in combination with the Mualem-Van Genuchten soil hydraulic parameters, to 
describe the flow of water in the unsaturated zone. A linear relationship between drainage flux and 
phreatic surface depth was assumed, parameterised by the drainage level of the nearest draining 
agent, h„ and the drainage and infiltration resistance, y. The bottom flux, qt,, was assumed to be 
constant in time here, although it might have a seasonal fluctuating component A mobile fraction, 
fm, was used to compensate for preferential flow of percolating water. In addition, to allow for 
a fast responding system, the saturated conductivity Ks, was calibrated. This left five parameters 
(hs, y, gt, fm and Ks) to be estimated on long series of groundwater data. The additional use of 
soil water content measurements also allowed for calibration of the Van Genuchten parameters a 
and n, strongly improving soil water profile predictions. To account for seasonal fluctuations and 
compensate for model error, a 31-day moving window calibration of the drainage level, hs, was 
used, because this parameter is directly related to the absolute value of the water table depth. 

For short lead-time forecasting with a dynamic model (here a maximum lead time of 5 days was 
used), two criteria are important: (1) adequate parameters and (2) a close approximation of the 
initial conditions. Using predictions from a 31-day moving window calibration often resulted 
in a large error when compared to the last available measurement, introducing an error in the 
initial condition for the forecast To eliminate this error, the objective function (O) for the moving 
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Figure 3.11: Illustration of the advantage of the combined method. Benefiting from the initial 
state from the X = 1 calibration and the parameter value of the X = 0 calibration, the 
combined method starts of well and stays in line with the observed values. 

window calibration was changed and the last measurement of the calibration period was given 
extra weight. 

0 = (l-X)YaR(i) + X-R(n) (3.7) 

with R(i) being the residual to the i-th measurement. This will force the calibration method to 
"work towards" the last measurement. We define X as the measure for the extra weight (i.e., X = 0 
assigns equal weight to all measurements and X = 1 assigns only weight to the last measurement). 
Note that this produces a form of model adaptation that is in between calibration and a form of 
data assimilation, similar to Newtonian Nudging [Houser et al, 1998]. Assigning more weight to 
the last measurement (high X) will reduce the initial error, but introduces a larger parameter error. 
Therefore we also combined the initial condition of X = 1 and the estimated parameter of X = 0, 
to further improve the forecast. 

The forecast method was tested on a 15-year series of historical groundwater data, as well as on 
simulated series for a sensitivity analysis. Finally, the combined method was applied to a short 
period for which both groundwater and soil moisture content measurements were available. 

Results We found an optimum X of 0.25 when considering the overall RMSE of the forecast period 
(5-day lead time). Larger values of X resulted in large errors in the model parameter, whereas 
smaller values of X result in large errors in initial values. This is shown in Figure 3.11 where 
the prediction error is plotted against lead-time for several values for X as well as the combined 
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Figure 3.12: Evolution of prediction error over forecast period with several values for weighing X 
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Figure 3.13: Evolution of the prediction error of the water table depth over the forecast period for 
three sources of error, model error in real data, and measurement error and input error 
from simulated time series. 
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Figure 3.14: Time series of observed and predicted water table depths and soil moisture content of 
the 1st, 3 r f and 5th forecast day. 

method. The combination of X = 0 and X = 1 calibration benefits from both a very small initial 
error and a better parameter value, and gives the best overall forecast in terms of RMSE, better 
than using a X of 0.25. This effect is further illustrated in Figure 3.12. 

Three types of error can be distinguished: model error, measurement error and input error (errors 
in the weather forecast). The difference between historical groundwater data and forecasts using 
observed meteorological data provided an estimate of the combined model error and measurement 
error. Noise added to simulated time series (mimicking measurement error) or input variables 
(mimicking errors in weather forecast) gave insight into the other two sources of error. As shown 
by Figure 3.13, the model error is largest, up to the 4th forecast day, when the error from the 
weather forecast becomes as large. 

Finally we applied the whole scheme for online forecasts of ground water level and soil moisture 
profiles (5 day maximum lead time), using weather forecasts and the combined moving window 
calibration of both groundwater and soil moisture data. Figure 3.14 shows some time series of 
observed and forecasted water table depth and soil moisture content. Differences in error statistics 
of soil water content hereby reflect differences in dynamics; see Figure 3.15. The 25 cm soil 
water content series remains the same in error during the forecast period, reflecting diffusion of 
soil moisture mitigating the error from the weather forecast. The 50 cm soil water content shows 
similar behaviour, whereas the 75 cm soil water content is more influenced by ground water level 
fluctuations and therefore follows the pattern of groundwater error statistics, deteriorating over the 
forecast period. 

Conclusions We introduced a method for on-line forecasting of water table depth and soil moisture 
profiles. The method is based on a combination of a moving window calibration of the determinis-
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Figure 3.15: Evolution of prediction error over forecast period of groundwater level and soil mois­
ture profile. 

tic model of the unsaturated zone SWAP and a simple form of data assimilation. Moving window 
calibration improves the forecast compared to an offline model. Adding a simple form of data 
assimilation improved the forecast further. 

The model error is the largest source of error, except for lead times larger than 4 days, when the 
error resulting from the error in weather forecast becomes as large. Forecasts of groundwater level 
and soil moisture content below the topsoil deteriorate over the forecast period. Diffusion pro­
cesses in the topsoil mitigate the deteriorating prediction forecast, resulting in a constant accuracy 
of the predicted water content over the forecast period. 
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Use of estimation of surface energy fluxes for the calibration of a 
semidistributed rainfall-runoff model 

G. Boni1'4, S. Gabellani12. R. Rudari1 \ and F. Silvestro1 

lCIMA, Università di Genova, Savona, Italy 
2DIAm, Università di Genova, Genova, Italy 
3CNR-GNDCI, Gruppo Nazionaleper la Difesa dalle Catastwfi Idwgeologiche, Italy 
*DIST, Università di Genova, Genova, Italy 

A calibration method of a rainfall-runoff model able to reproduce the hydrological response 
in continuous is proposed. The rainfall runoff model uses a Pristley-Taylor scheme to sim­
ulate the évapotranspiration process. The aim of this method is to calibrate the Pristley-
Taylor parameter using surface energy fluxes obtained from a data assimilation model. An 
appropriate objective function that take count both the errors between evapotraspiration, 
computed with rainfall-runoff model and assimilation model, and between simulated and 
observed discharge is defined. As test cases the model will be applied to a Southern Italian 
basin. 

For further reading see Giannoni et al. [2000] and Boni et al. [2004]. 
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The model GEOJOP-SF to forecast the triggering of slopes and debris 
floy instability: distributed data requirements and remote sensing 
opportunities 

S. Simoni1. C. Tiso1, G. Bertoldi1, and R. Rigon1 

lDept. of Civil and Environmental Engineering - CUDAM, University of Trento, Trento, Italy 

It is used a model of the hydrological cycle, GEOTOP* apt to model the behavior of mountain 
catchments coupled to a module, called SF, which determines the terrain stability. SF uses 
an indefinite slope stability modelling to follow the dynamical evolution of a hillslope during 
a rainfall event If surface runoff is present, tue stability is inferred from the well known 
theory of Takahashi of debris flow triggering, otherwise, if only flow into the soil is present, 
it models sou slips. It is shown an application of the model to the Centa thorrent catchment 
(Trento-Italy) using hydrological and landslides data collected during some recent events. 
We discuss also the possible improvements deriving from the use of remote sensed data of 
cloud cover, soil cover, surface temperature, soil moisture to obtain the final forecasts. 
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Use of different hydrological variables and impacts of atmospheric 
forcing errors on optimization and uncertainty analysis of the 
CHASM surface model at a cold catchment 

YoulonaXia1. Zong-Liang Yang2, Paul L. Stoff a3, and Mrinal K. Sen3 

1 Atmospheric and Oceanic Science Program, Princeton University, Princeton, New Jersey, USA 
^Department of Geological Sciences, The John A. and Katherine G. Jackson School of Geo-
sciences, University of Texas at Austin, Austin, Texas, USA 
3Institute for Geophysics, The John A. and Katherine G. Jackson School of Geosciences, Univer­
sity of Texas at Austin, Austin, Texas, USA 

We used Bayesian stochastic inversion and 18-year forcing and calibration data as well as 
information about uncertainties in forcing variables at Valdai, Russia to study the impacts 
of forcing errors on selection of optimal model parameters and their uncertainty estimates 
when three different hydrological variables were used, respectively for calibration. The re­
sults show that forcing errors had few effects on selection of optimal model parameter sets 
when monthly évapotranspiration and runoff were calibrated. However, forcing errors had 
significant effects on selection of optimal model parameters when daily snow water equiva­
lent was calibrated. Forcing errors also significantly affect uncertainty estimates of the land 
surface model parameters. 

Introduction PILPS experiments (e.g., Schlosser et al. [2000]) have identified and documented 
two key atmospheric variables, precipitation (P) and downwelling longwave radiation (LWR), that 
are critical for accurately determining the snow mass balances, across different scales in cold 
regions. However, almost all these studies concerning the derivation of optimal land surface pa­
rameters assume that the forcing data are accurate and do not contain observational errors [Xia 
et al., 2004]. In fact, significant systematic biases in precipitation measurement, obviously caused 
by wind, existed in all types of precipitation gauges, in particular for snowfalls. Besides precipita­
tion errors, radiation errors also significantly affect simulations of water fluxes and energy fluxes 
both for a catchment simulation. In order to investigate how considering the errors in these forc­
ing data impact the derivation of optimal parameters, and to study how the results depend on the 
calibration variable, we designed 2 experiments for each of three calibration variables. The first 
experiment is to use the fixed forcing data and varying model parameters, and the second experi­
ment is to use both varying forcing data and varying model parameters. Therefore, we conducted a 
total of 6 experiments. For each experiment, Bayesian stochastic inversion selects 60,000-90,000 
parameter sets. Therefore, we have almost 500,000 model runs. For all experiments, we used a 
one-year spin-up period to minimize impact of initial condition on simulations of monthly runoff, 
monthly évapotranspiration and daily snow water equivalent. This spin-up time is appropriate for 
the CHASM land surface model, according to Schlosser et al. [2000]. 

Impacts of atmospheric forcing errors Figure 3.16 shows a cross-validation test for optimal 
model parameters, that is, we pair five optimal model parameters derived with consideration of 
forcing errors, with original forcing data (Figure 3.16c), and pair five optimal model parameter 
derived using fixed forcing with optimal forcing data (Figure 3.16d) into two separate simulations. 
The validation results show that simulated évapotranspiration and runoff are consistent with ob­
servations. This is consistent with our optimal parameter analysis because two forcing data sets 
generate similar optimal model parameters when monthly évapotranspiration and runoff were used 
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Figure 3.16: Observed and simulated (a) monthly évapotranspiration, (b) runoff, (c) cross-
validation of daily snow water equivalent when optimal model parameters derived 
from fixed forcing and optimized forcing was used or when optimal model parameters 
derived from forcing error factors and fixed forcing was used, and (d) cross-validation 
of daily snow water equivalent when optimal model parameters derived from forcing 
errors and fixed forcing were used (dot = observations; dashed = simulations when 
optimal model parameters derived from fixed forcing and optimal forcing were used; 
dotted = simulations when optimal model parameters derived from forcing errors and 
fixed forcing were used). 

as calibrated variables. However, when the optimal model parameters derived using forcing errors 
and fixed forcing were used to simulate snow water equivalent, its bias is changed from —1.7 mm 
to —18.9 mm, RMSE (root mean square error) is increased from 21.9 mm to 35.1 mm, and r (cor­
relation coefficient) is reduced from 0.89 to 0.79. When optimal model parameters derived from 
fixed forcing and optimal forcing were used to simulate snow water equivalent, its bias is changed 
from 6.2 mm to 20.6 mm, RMSE is increased from 18.5 mm to 29.3 mm, and r is reduced from 
0.93 to 0.89. This significant change is a result of different optimal parameter sets, particularly 
different snow albedo (ALBN). Therefore, forcing errors have significant impact on daily snow 
water equivalent simulations. 

Figure 3.17 shows marginal posterior probability density distributions for three most sensitive 
parameters such as ALBN, fractional vegetation cover seasonality (VEGS) and minimum stomatal 
resistance (RCMIN). For évapotranspiration case, forcing errors (solid line) result in wider PPD's 
range which means larger uncertainty when compared to fixed forcing case (dashed line). For 
the runoff case, forcing errors not only influence uncertainty range of ALBN and RCMIN but also 
influence the shape of PPD's distribution for ALBN. The same conclusion can be drawn for ALBN 
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Figure 3.17: Calculated PPD's for three most sensitive model parameters when observed monthly 
évapotranspiration, monthly runoff, and daily snow water equivalent were used as cal­
ibration variables (solid = fixed forcing; dashed-dotted = forcing with errors; EVAPO 
= évapotranspiration; SWE = snow water equivalent). 

£0.2 

Figure 3.18: Calculated PPD's for four forcing error factors (a) SLR, (b) LWR, (c) RAS1, and (d) 
RAS2 when observed monthly évapotranspiration, monthly runoff, and daily snow 
water equivalent were used as calibration variables (solid = evpotranspiration; dashed 
= runoff; dotted = snow water equivalent). 
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for snow water equivalent case. Forcing errors result in quite different PPD's distribution, that is, 
ALBN favors small values for fixed forcing case, and it favors large values for the case of forcing 
with error. Therefore, forcing errors indeed influence width and shape of the PPD's distributions 
for the most important model parameters. This error effect was introduced by model parameters 
and forcing error interdependency (correlation of model parameters and forcing errors). This also 
includes interactions between model parameters and interactions between forcing errors. Large 
correlation coefficients show this interdependency. For example, 0.75 is for LWR and snowfalls 
and 0.65 is for LWR and ALBN when daily snow water equivalent was calibrated. 0.65 is for 
LWR and ALBN when monthly runoff was calibrated. 

Forcing data can be optimized and their uncertainties can be estimated using Bayesian stochastic 
inversion. Figure 3.18 shows marginal posterior probability density (PPD) for downelling short­
wave radiation (SLR), LWR, winter snowfalls (RAS1 for December, January, and February snow­
falls, and RAS2 for November, March and April snowfalls) when different hydrological variables 
(i.e., évapotranspiration, runoff, snow water equivalent) were used to constrain errors between ob­
servations and simulations. The results show that all hydrological variables give good constraints 
for LWR although peaks of PPDs are différent. Most likely values exist within 0.98 and 1.05, 
which is relatively consistent with the value of 1.0 used in PILPS 2d experiment. In addition, opti­
mal values are very close to each other (i.e., 1.02,1.03,1.05) for the three calibrations. Snow water 
equivalent and runoff give strong constraints on winter snowfalls although constraints are much 
stronger on RAS1 than on RAS2. Evapotranspiration gives weak constraint on winter snowfalls. 
All hydrological variables give weak constraints on SLR because their PPD's are almost uniform, 
indicating largest uncertainties. 
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Potentialities of thermal infrared remote sensing for SVAT model 
calibration 

B. Coudert1, B. Boudevillain1, C. Ottlé1, and J. Demarty2 

^Centre d'étude des Environnements Terrestres et Planétaires (CETP/IPSL), Vélizy, France 
2INRA, Unité CSE, Avignon, France 

Previous studies have demonstrated the use of Earth Observation satellite data to improve 
the initialization and the calibration of hydrological models. Indeed, they allow the assess­
ment of several surface properties (surface temperature, soil water content, soil roughness, 
type of soil, dynamics of the vegetation...)« Studies have recently shown that Soil Vegetation 
Atmosphere Transfers (SVAT) models can be corrected thanks to the brightness tempera­
ture estimated by thermal infrared satellite data. However the thermal infrared instruments 
resolution is rather coarse if a good repetitivity is required. Consequently, there is a need to 
explore the potentialities of low spatial resolution captors to inform higher resolution mod­
élisations [Boudevillain et al, 2004]. The purpose of this paper is to show the contribution 
and limits of thermal infrared brightness temperature to calibrate the surface parameters 
and initialization variables of a SVAT model at field scale. 

The Alpilles-ReSeDA database {Baret, 2002; Olioso and co-authors, 2002a, b] has been used 
for this work. The two layers and two sources SVAT model used in this study and developed at 
CETP/IPSL calculates the surface energy and water transfers and include several soil and vegeta­
tion parameters and initialization variables (especially soil water content in the surface and root 
zone). This model was coupled with radiative transfer models in the solar and thermal infrared 
domains in order to simulate both spectral reflectance and brightness temperature of the surface. 
The Multiobjective Generalized Sensitivity Analysis (MOGSA) methodology [Gupta et al, 1998; 
Demarty et al, 2004] has first been used to analyse the sensitivity of the simulated variables (sur­
face fluxes, soil moisture, brightness temperature) to model parameters and initialisation. Then, 
the potentialities of such a methodology have been investigated for model calibration. Different 
numerical experiments have been undertaken in order to show the impact of reduced available in­
formation. The analysis of these experiments permitted us to show the contribution and the limits 
of the use of thermal remote sensing data for SVAT model calibration according to the surface 
conditions (vegetation cover) and to quantify the uncertainty on the simulated variables [Coudert 
et al, 2004]. 
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Land-atmosphere exchanges of water and energy in space and time 
over a heterogeneous land surface 

Z. (Bob) Su1. L. Jia2, X. Jin2, J. Eibers3, A. Gieske1, W. Timmermans1, H. van der 
Kwast4, A. Olioso5, J.A. Sobrino6, J. Moreno6, F. Nerry8, D. Sabol8 

1International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The 
Netherlands 
2Wageningen University, Wageningen, The Netherlands 
^Alterra, Wageningen University and Research Centre, Wageningen, The Netherlands 
A University of Utrecht, Utrecht, The Netherlands 
5INRA, Avignon, France 
6 University of Valencia, Valencia, Spain 
1TRIO/ULP, Strasbourg, France 
8'University of'Washington, Seattle, U.S.A 

In order to advance our understanding of land-atmosphere exchanges of water and energy 
in space and tune over heterogeneous land surfaces, an intensive field campaign was carried 
out at the Barrax agricultural test site in Spain in the period 12-21 July involving multiple 
field, satellite and airborne instruments for characterizing the state of the atmosphere, the 
vegetation and the soil from visible to microwave range of the spectrum. Part of the exper­
imental area is a core site of a 25 km2 area within which numerous crops are grown - on 
both irrigated and dry land - alongside fields of bare soil. This campaign formed part of 
the preparatory study for a proposed ESA Earth Explorer mission called SPECTRA (Sur­
face Processes and Ecosystem Changes Through Response Analysis) of the European Space 
Agency, thus was named as SPARC-2004 (SPECTRA Barrax Campaign-2004) in combina­
tion with the EU 6FP EAGLE Project 

Used for the first time during SPARC-2004 was the new Airborne Hyperspectral System (AHS), 
operated by Spain's Institute Nacional de Técnica Aeroespacial (INTA). The AHS has a total of 
80 spectral channels available in the visible, short wave infrared and thermal infrared. A total of 
16 multiangular acquisition flight lines were obtained over Barrax with spatial resolutions vary­
ing from 2.5 to 6.8 m. Several satellite sensors, including the Compact High Resolution Imaging 
Spectrometer (CHRIS) on the Proba spacecraft, with two days of consecutive multiangular acqui­
sitions over the campaign site, as well as sensors from several other satellites (ENVIS AT, TERRA, 
MSG) were deployed for image data acquisition. 

A large number of ground based instruments were also deployed including lidars and balloon-
based radio sondes to sample atmospheric variables, sun photometers to measure sky radiance and 
sensors mounted on mobile towers to record local vegetation characteristics. Several mobile instru­
ment towers, including four eddy correlation devices and two scintillometers, were deployed in the 
field to monitor the individual components of the energy, water and carbon dioxide flux exchanged 
between land and the atmosphere. In addition to CHRIS data, two ENVISAT overpasses enabled 
acquisitions from that spacecraft's Medium Resolution Imaging Spectrometer (MERIS) and Ad­
vanced Along Track Scanning Radiometer (AATSR), as part of parallel ENVISAT data product 
validation activities. Data from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) 
instrument aboard MSG-1 (Meteosat Second Generation) were acquired during the campaign as 
part of the validation activities for MSG vegetation products, alongside data from Landsat and also 
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the Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spacebome Ther­
mal Emission and Reflection Radiometer (ASTER) on Terra, collected to complete the SPARC 
dataset. 

In the CHRIS configuration available to the SPARC-2004 campaign, 62 spectral bands were avail­
able for five angular acquisitions with 34 m spectral resolution. The higher resolution data, in 
combination with data from other sensors (spatial resolution from 90 m of ASTER, 300 m of 
MERIS, to 1 km of AATSR and MODIS, and to over 3 km of MSG data) provide unprecedented 
opportunity for studying of the scaling behavior of the land-atmosphere exchanges of water and 
energy. 

A total of 80 people from 21 different institutions in five different countries were involved in 
the SPARC-2004 activity, with around 50 people directly participating in the daily field measure­
ments. Participants included Spanish teams from Universities in Valencia, Albacete and Castellon 
along with national research institutes (TNTA, INM, CSIC, CffiMAT, CEDEX, ITAP and CE-
CAF), French teams from LURE-Paris, INRA-Avignon and the University of Strasbourg, Italian 
teams from the University of Naples and the National Research Council and a large team from the 
Netherlands involving Alterra, Wageningen University, ITC and the University of Utrecht, plus 
ESA participants. A team from the University of Washington in Seattle also took part in the cam­
paign, as part of a NASA project related to validation of Terra/ASTER data over the Barrax site. 
The SPARC-2004 activity has been funded by ESA and the European Commission with additional 
contributions from Eumetsat and national projects. 

The in-situ data relevant to land-atmosphere exchanges included the following measurements: 

• Turbulence, H2O, CO2 fluxes and CO2 concentrations using an eddy correlation system 
(Gill 3D sonic + closed path Licor gasanalyser: CO2 and H2O + nitrogen reference gas 
+pneumatic mast + dataloggers); 

• Soil heat flux, soil temperatures (two levels), air temperature and humidity 

• Leaf temperatures (thermal couples); 

• Radiation balance (shortwave and longwave incoming and outgoing radiation, wind, air tem­
perature, radiometric surface temperature) and sensible heat flux (using two scintillometer 
systems); 

• Photosynthesis, conductance and transpiration measurements at leaf level (using a CIRAS 
from PP systems); 

• Radiometric surface temperature measurements using a hand-held radiometer (Everest); 

• Roughness measurements using stereo photogrammetry with the NEar Sensing CAmera 
Field Equipment (NESCAFE); 

• Emissivity measurements with the "two-lid box method"; 

• LAI measurements with hemispherical photographs, which will be processed with Win-
Phot1. 

Digital photos are taken to document the actual field situations. These data and part of the satel­
lite data have undergone preliminary analysis in space and time, the results and findings will be 
presented at the workshop. 

' h t t p : //www. b i o . uu.nl/~herba/Guyana/winphot/wp_index. htm 
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Linked from below: The impact of shallow groundwater dynamics on 
the spatial variability of soil moisture along hillslopes 

P.W. Bogaart1, A.J. Teuling1, and P.A. Troch1 

1Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, 
The Netherlands 

Soil moisture content is the single most important hydrological state variable with respect to 
land-surface-atmosphere interaction. Evapotranspiration and runoff are highly non-linear 
dependent on soil moisture. Because of this nonlinearity, information on large-area average 
soil moisture (as e.g. obtained from remote sensing) is insufficient to estimate large-area av­
erage surface fluxes. If, however, the spatial distribution of sou moisture can be conditioned 
on large-area average soil moisture using terrain features (such as land-surface curvature), 
then more reliable estimates of large-area average surface fluxes can be made. 

Spatial variability of soil moisture stems from three distinct sources. First, spatial variability is 
caused by land use and soil types. This spatial variability is characterised by direct imprinting of 
soil properties and evironmental controls on soil moisture patterns, and will not be considered here. 
The second source of spatial variability of soil moisture is due to small-scale stochastic variability 
of soil and vegetation properties. The third source is due to redistribution of soil moisture. In this 
paper we consider these last two sources of variability. 

The hypothesis is that in soil-mantled, bedrock underlain landscapes, shallow, perched, groundwa­
ter dynamics effectively "couples" soil moisture dynamics at different locations along a hillslope. 
The upper part of a hillslope is the recharge area [Kim et al., 1999]. Any water that leaks from 
the root zone recharges the perched groundwater table, which is relatively deep here. In the lower 
part of the hillslope, the perched groundwater table is more shallow, and is likely to affect the root 
zone above it. In an extreme case this root zone will be saturated because of groundwater tables 
rising to the land surface. Because of this groundwater induced lateral coupling between upslope 
and downslope soils, along-slope differences in soil moisture are to be expected. 

We present a simple model-based approach to test this hypothesis. A field of independent root-
zone soil moisture models (having variable properties) is coupled to a hydraulic groundwater the­
ory based, semi-distributed hillslope hydrological model [Troch et al., 2003]. The advantages of 
this hillslope model is that it accounts in a simple way for hillslope geometric complexity (plan 
form and profile curvature), while preserving the physical behavior of the natural system. Drainage 
from the root-zone models acts as recharge to the groundwater model, and if the groundwater sys­
tem becomes saturated somewhere along the hillslope, then drainage from the root-zone system 
is blocked, and this zone wets up as long as rainfall continues. Because we compare a "coupled" 
and an "uncoupled" case, the contribution of the groundwater system to (the evolution of) total 
soil moisture variability can be estimated. 

Results for an idealized hillslope and synthetic climate series illustrate the concept During the 
wet season, the shallow groundwater table rises to the surface at the lower end of the hillslope and 
root-zone soils here become saturated, in contrast to the soils in a more upslope position. During 
the following dry season, the groundwater table "disconnects" from the root zone, but the along-
slope spatial differences in soil moisture persist. The modeling approach proposed here shows 
potential for large-scale hydrological applications, as it allows to link spatial variability of soil 
moisture fields to readily-available surface features, such as land-surface curvature. 
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Soil moisture assimilation for meteorological purposes: Observation 
synergy and data assimilation needs 

Pedro Viterbo1. Janneke Ettema1, Gisela Seuffert1, and Bart van den Hurk2 

1 European Centre for Medium-Range Weather Forecasts, Reading, UK 
1KNMI, De Bilt, The Netherlands 

Despite the well-documented impact of soil moisture initial conditions for weather forecast 
performance and monthly-to-seasonal prediction, the assimilation methods used so far in 
operational meteorological applications are relatively crude and make scant use of data, 
with no remote sensing information. 

Because of its longer timescale, the relevant state variable to initialize in a model is root-zone soil 
moisture (RSM). There is no current wide coverage observation system of RSM, and there will not 
be one in the foreseeable future. The observations to assimilate will all contain some information 
on RSM, under certain caveats, and they can be broadly grouped in 3 classes: (1) In-situ air 
surface temperature and humidity or early morning rate of change in IR brightness temperature; 
(2) C- or L-band brightness temperatures; (3) The contrast between the visible and near-infrared 
reflectance, often expressed as a vegetation index. The first class will provide information on the 
surface evaporative fraction which, under spring and summer fair-weather conditions depends on 
RSM. The second class provides information on surface soil moisture and a model will be needed 
to transfer that information to deeper layers. Finally, the last class provides information on the 
state of vegetation which depends to a large extent on the water available in the root-zone. 

The wide variety of observations listed above require a flexible assimilation system. Using an 
Extended Kalman Filter data assimilation system, examples will be given of the synergistic use 
of the observations to improve soil moisture and surface fluxes. In the presence of conflicting 
observations, the soil moisture analysis values depend on the application: The values obtained by 
a meteorologically driven system will emphasize the correct evaporative fraction at the surface, 
and might not be ideal for hydrological applications. 

Finally, the emphasis is put on data assimilation as a tool to expose model errors and to focus 
research; improvements to the model physical realism will be necessary in order to have a more 
accurate background field and to effectively extract the information contents of the observations. 
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The Global Land Data Assimilation System (GLDAS) 

P.R. Houser1, M. Rodell1, J. Gottschalck2, C.-J. Meng2, U. Jambor2, K. Mitchell3, and 
CD. Peters-Lidard1 

lHydrological Sciences Branch, NASA Goddard Space Flight Center, USA 
2Goddard Earth Science Technology Center, University of Maryland, Maryland, USA 
^NOAA National Centers for Environmental Prediction, USA 

The development of GLDAS has been motivated by three factors. First, we know that land 
surface states, including surface temperature, soil moisture, and snow, significantly influence 
Earth system processes and predictability at multiple scales. Second, improved knowledge 
of land surface conditions will promote better land resource management, natural hazard 
mitigation, and homeland security. Third, we now have sufficient understanding of land 
physical processes (in the form of sophisticated land surface models (LSMs)), global data 
from advanced satellite observing systems, and economical computing power, enabling us to 
merge understanding and observations using data assimilation strategies within an opera­
tional system. Therefore, the major goal of the GLDAS project is to produce high resolution, 
reliable fields of land surface states and fluxes by parameterizing, forcing, and constraining 
multiple, sophisticated land surface models with data from advanced observing systems, in 
order to improve Earth system prediction and critical applications. 

GLDAS is unique in that it is an uncoupled land surface modeling system that drives multiple mod­
els, integrates a huge quantity of observation based data, runs globally at high resolution (0.25°), 
and produces results in near-real time (typically within 48 hours of the present). GLDAS is also 
a test bed for innovative modeling and assimilation capabilities. A vegetation-based "tiling" ap­
proach is used to simulate sub-grid scale variability, with a 1 km global vegetation dataset as its 
basis. Soil and elevation parameters are based on high resolution global datasets. Observation-
based precipitation and downward radiation and output fields from the best available global cou­
pled atmospheric data assimilation systems are employed as forcing data. The high-quality, global 
land surface fields provided by GLDAS will be used to initialize weather and climate prediction 
models and will promote various hydrometeorological studies and applications. The 2001-forward 
GLDAS archive of modeled and observed, global, surface meteorological data, parameter maps, 
and output is publicly available. 

Several multiyear retrospective simulations at lower spatial resolutions have been executed. Forc­
ing and output images are available for viewing through the GLDAS website*. Data have been 
provided to support research at GSFC and several other institutions, including studies relating to 
the GEWEX Coordinated Enhanced Observing Period (CEOP). In addition, specialized simula­
tions were executed for testing the effects of improved model initialization on seasonal climate 
predictability as part of NASA's Seasonal to Interannual Prédiction Project (NSIPP). Preparations 
are currently being made for short term and seasonal forecast model initialization testing in co­
operation with NOAA's National Centers for Environmental Prediction (NCEP). Recent system 
enhancements include installation of the Noah land surface model, additional forcing options, a 
satellite based leaf area index updating scheme, and a MODIS snow data assimilation scheme. 

*http://Idas.gsfc.nasa.gov 
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A report on the progress in ELDAS 

Bart van den Hurk1 

lKNMl, De Bilt, The Netherlands 

The European Land Data Assimilation Project ELDAS1, has entered its last year of formal 
support by the European Union. In ELDAS a European wide soil moisture data assimilation 
system is built, applied, validated and demonstrated. It is partially inspired on die US NL-
DAS/GLDAS systems, but uses different data assimilation techniques and forcing data. In 
particular, soil moisture corrections are applied as a result of model deviations from observed 
air temperature, air humidity, (synthetic) brightness temperatures and surface heating rates 
observed from a geostationary satellite platform. 

The presentation will give a brief overview of past ELDAS activities (collection of forcing data 
bases, design and application of the data assimilation system, trial runs). In addition, case studies 
exploring the impact of assimilation of synthetic brightness temperatures and surface heating rates 
are described and discussed. 

'http: //www.knmi. nl/samenw/eldas 
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Land data assimilation at NOAA/NCEP/EMC 

P. Lohmann1. Pablo Grunman1, and Kenneth Mitchell1 

1NOAA/NCEP/EMC, Suitland, Maryland, USA 

Improving weather and seasonal climate prediction by dynamical models requires multidis-
ciplinary advances in providing reliable initial states for the atmosphere, land and ocean 
components of the earth system. For two decades, advances in providing atmospheric ini­
tial states via 4-dimensional data assimilation (4DDA) have paved the way for the develop­
ment of counterpart 4DDA systems for the ocean and land. In 4DDA, a geophysical model 
provides temporally and spatially continuous background states into which temporally and 
spatially discontinuous observations are assimilated from various observing platforms (in 
situ, satellite, radar). The backbone then of any atmospheric, ocean or land 4DDA system 
is the geophysical model whose day-to-day execution provides the continuous timeline of 
background states. A land data assimilation system (LDAS) blends sparse land observa­
tions with the background fields of a reliable land surface model (LSM). The accuracy of the 
LSM background field (and the attendant surface and sub-surface water/energy fluxes that 
drive those background fields) is crucial to the viability of an LDAS. We present the progress 
within NOAA/NCEP/EMC to develop such a land surface data assimilation system. This 
progress includes the development of the adjoint model/tangent linear model for the Noah 
LSM [Ek et ah, 2003] and it's incorporation into the North American Land Data Assimilation 
System [Mitchell etaL, 2004], referred to as NLDAS. We demonstrate here the improvement 
achieved in Noah LSM 1-D column-model simulations of soil moisture by means of an "iden­
tical twin" experiment, which assimilates the land surface temperature (LST) produced by 
a Noah LSM control run. Later at the workshop, we will show results of the assimilation of 
hourly satellite-derived LST retrieved from NOAA GOES satellites. 

Influence of soil moisture on LST in the Noah LSM Before embarking on LST assimilation to 
improve the Noah LSM simulation of soil moisture, it is important to quantify the impact of soil 
moisture changes on the LST simulations of the Noah LSM. To assess this impact, we performed 
Monte-Carlo simulations for the year 1998, preceded by one year of spin-up (1997). Herein the 
1-D Noah LSM column model was forced with surface meteorological data observed at 30-minute 
intervals from a Champaign, Illinois flux station (40.01 °N latitude, 88.37°W longitude) operated 
by NOAA/ARL (Tilden Meyers, personal communication). We executed an 8000-member ensem­
ble of Noah LSM simulations, in which each simulation utilized a different random specification 
of model parameter values, wherein we constrained the parameters by our knowledge (belief) in 
reasonable parameter ranges. 

The resulting ensemble-mean of the simulated LST and the LST standard deviation of the ensem­
ble are shown in figures 4.1a and 4.1b. Additionally, the ensemble mean and standard deviation of 
the derivative of LST with respect to soil moisture - d(LST)/d(soil moisture) - in the Noah model 
are shown in figures 4.1c and 4.1d. During the warm season (April-October) this ensemble mean 
derivative is negative with values up to -0.4K per one percent volumetric soil moisture change 
(total column), while the ensemble shows a variance of up to 2K. 

We therefore can expect to successfully assimilate LST into the Noah LSM if we can find param­
eters that yield unbiased estimates in the Noah LSM of LST and other state variables and fluxes, 
assuming that the LST measurements themselves are unbiased. This will be explored further in 
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Figure 4.1 : Results of the Monte Carlo Noah LSM simulations for 1998, showing ensemble mean 
of LST (upper left), standard deviation of the ensemble LST (upper right), ensemble 
mean of the derivative of LST with-respect-to soil moisture (lower left) and standard 
deviation of the latter (lower right). The x-axis is the hour of the day and the y-axis is 
the month of year. 

our workshop presentation in the context of (1) parameter optimization (especially for NLDAS 
regions with limited available measurements) and (2) the assimilation of GOES-derived LST. 

Identical-Twin Experiments To test our basic assimilation approach, we performed a 1-D identical-
twin experiment with the Noah LSM column model. In this experiment, the control run used the 
Noah LSM default parameter values and the one-year spin-up initialization and forcing data of the 
Champaign, IL site as in the previous section. The companion data assimilation run was identical 
to the control run, with two exceptions. First, following the spin-up year (1997), we degraded the 
forcing throughout 1998 by imposing a 30% reduction to all moderate or greater amounts in the 
30-minute precipitation forcing. Second, we assimilated the control-run LST during the 3|-day 
period beginning 0000 UTC on 25 May. 

Figure 4.2 shows the layer-1 and layer-2 soil moisture of the control run ("cntrl", green line) 
and the data assimilation run ("errDA", black line) for a nearly two-month interval (May-June) 
of 1998. The vertical blue lines in Figure 4.2 denote the beginning of the 3^-day assimilation 
period. During this period, the assimilation routine calculates the cost function and the tangent 
linear of the Noah LSM and finds the optimal correction to the soil moisture content for 0000 
UTC on 25 May that minimizes the difference between the "control" and simulated LST over the 
subsequent 3j days. No assimilation was performed after this 3j-day period and therefore the 
two runs drift apart in June. Our presentation will include more examples and give more details of 
the setup. The numerical optimization was performed using a Truncated-Newton scheme, adapted 
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Figure 4.2: Volumetric soil moisture content for model soil layers of 0-10 cm depth (upper panel) 
and 10-40 cm depth (lower panel) for the control run (green) and data assimilation run 
(black). 

from Nash, Stephen G., 1984: SIAM J. Num. Anal.770-788. 

Intended application setting The NOAA operational partners in NLDAS include NCEP/EMC 
and OHD of the NWS and NESDIS/ORA, who have joined with the NLDAS research partners of 
NASA/GSFC, Princeton and Rutgers University, and the Universities of Maryland, Oklahoma and 
Washington. These partners have developed, executed, and evaluated a realtime and retrospective 
uncoupled NLDAS. The NLDAS generates hourly surface forcing (anchored by observation-based 
solar insolation and precipitation fields) and uses this forcing to drive four LSMs running in paral­
lel to produce hourly output on a common j ° grid over a CONUS domain. The paper of Mitchell 
et al. [2004] contains all the references of other papers published within this project that measure 
the quality of the forcing data and assess the model results. 
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Streamflow data assimilation: A study on nested catchments 

C. Rüdiger1. J.P. Walker1, J.D. Kalma2, G.R. Willgoose3, and P.R. Houser4 

1Dept. of Civil and Environmental Engineering, University of Melbourne, Parkville, Australia 

^School of Engineering, University of Newcastle, Callaghan, Australia 
^School of Geography, University of Leeds, Leeds, UK 
4Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, USA 

Soil moisture is an important variable in land surface modelling with a significant impact 
on climate prediction, but the areas shown to have the greatest potential impact are typically 
also the most densely vegetated. While much work has been concentrated on the assimilation 
of remotely sensed surface soil moisture observations to constrain land surface model predic­
tions of soil moisture, the use of these measurements is limited to areas of low-to-moderate 
vegetation. This work proposes to contribute to soil moisture prediction in those densely 
vegetated areas through the assimilation of streamflow observations. The potential for this 
approach is demonstrated for a semiarid catchment in a synthetic twin experiment. 

Introduction Climate model results are strongly dependent on the initial soil moisture conditions 
predicted by a land surface model. Moreover, it has been shown that correct initialisation of soil 
moisture content in areas with dense vegetation cover, such as the Sahel, the Amazon, and south­
east Asia, has the greatest potential for positively influencing the predictability of precipitation 
[Kosteretal, 2000]. 

Previous work has shown that initial conditions on root zone soil moisture content can be accu­
rately predicted when the near-surface soil moisture observations that are available from remote 
sensing are assimilated into a land surface model [e.g., Walker and Houser, 2001]. However, the 
approach is limited to areas with low-to-moderate vegetation cover, as dense vegetation masks 
the remotely sensed soil moisture signal. Thus, we seek to improve soil moisture prediction in 
densely vegetated catchments through the assimilation of observed streamflow. As streamflow is 
an integrated measure of soil moisture content and rainfall events hours, days, or even weeks in 
the past, implementation of an assimilation scheme to account for this time-lag requires careful 
consideration. 

This paper uses a brute-force implementation of the variational assimilation approach in a syn­
thetic study to demonstrate that this approach to soil moisture initial condition retrieval is feasible. 
This study is the first step towards a field-based multi-catchment study. 

Models The assimilation of streamflow data for the retrieval of initial soil moisture content is 
addressed in this paper through a synthetic data assimilation study. First, a land surface model is 
used to generate a "true" data set that provides both the surface soil moisture "observations" and 
the evaluation data. The initial conditions and land surface forcing data are then degraded in two 
individual experiments in order to obtain control results. 

The land surface model used in this study is the Catchment Land Surface Model (CLSM) of 
Koster et al. [2000]. Its framework includes an explicit treatment of sub-catchment soil moisture 
variability and its effect on runoff and evaporation. Consideration of both spatial distribution of the 
water table depth and non-equilibrium conditions in the root zone leads to the definition of three 
bulk moisture prognostic variables (catchment deficit, root zone excess and surface excess) and a 
special treatment of moisture transfer between them. Using these three prognostic variables, the 
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catchment may be divided into regions of stressed, unstressed and saturated soil moisture regimes, 
and the soil moisture profile calculated. 

Model runoff is only produced when the current soil moisture content exceeds field capacity and is 
routed instantaneously to the catchment outlet. To counter this, an inter-catchment routing scheme 
has been introduced into the model to separately route the surface and subsurface runoff generation 
throughout the catchment. Surface and subsurface routing is undertaken using a digital elevation 
model of the catchment and an approximation to the Manning's equation; V = cSf5, where V is 
velocity, S is surface slope and c is a parameter fitted individually for surface, subsurface, and 
streamflow conditions to observed streamflow data for the specific catchment. While this parame­
ter depends on the surface and flow conditions of the individual pixels, we assume a single uniform 
value for the hillslope and streamflow runoff routing components, respectively. Due to their size, 
travel time in most catchments is short, and losses due to evaporation were therefore considered 
negligible. 

The variational data assimilation approach is based on minimising an objective function over an 
assimilation window, rather than sequentially using individual observations. In our application we 
use the Bayesian nonlinear regression suite (NLFTT) of Kuczera [1983], which is based on the 
shuffled complex evolution method of Duan et al. [1992], to perform this optimisation. The opti­
misation is achieved by changing the initial soil moisture state variables until the best fit between 
model predicted and observed streamflow for a given assimilation window is achieved. 

The length of the assimilation window was kept to one month for the results presented in this 
paper, while the input parameters necessary for the calculations within NLFTT (Box-Cox X, Box-
Cox K, autoregressive parameter) were initially estimated and later manually adjusted. The initial 
assumption being that the data were normally distributed. 

Synthetic Experiments To demonstrate the feasibility of the proposed approach, a set of syn­
thetic experiments have been undertaken for a subcatchment of the Goulburn River experimental 
catchment in SE Australia [Rüdiger et al, 2003]. Observed meteorological forcing data from five 
weather stations located within and surrounding the Goulburn River catchment were used as input 
to the model. In this application averages for the five weather stations were applied uniformly 
throughout the catchment for each forcing parameter. The data set used comprised a one-year 
period. Forcing data used by CLSM are temperature, wind speed, precipitation, specific humidity, 
and long and short wave downward solar radiation. While most of these forcing data are observed 
by the weather station, radiation observations were not available and radiation data were therefore 
obtained from the Global Data Acquisition System (GDAS) model. 

Soil and vegetation properties in the subcatchment were assumed to be spatially uniform and 
estimated as the dominant value for each parameter. Vegetation data and greenness index were 
obtained from 0.25° x 0.25° global vegetation maps, while soil type and properties were taken 
from the a digitised version of the Australian Soils Atlas [Northcote et al, 1968]. Topographic 
data are incorporated in the model from compound topographic index calculated from a DEM with 
a resolution of 250 m. 

Using the input data described above, CLSM was spun-up for a one-year period on the afore­
mentioned forcing data, by repeated simulation until convergence of the initial conditions to an 
equilibrium state was achieved. The output from the subsequent simulation with these initial con­
ditions was then assumed to be the "true" data. This was used to provide both the one-hourly 
streamflow observation data and the soil moisture time series evaluation data. The assimilation 
experiments were run for one month of this period during which two significant runoff events took 
place. 
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Figure 4.3: Results for experiment 1 assimilation run showing profile soil moisture content and 
observed streamflow. 
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Figure 4.4: Results for experiment 2 assimilation run showing profile soil moisture content and 
observed streamflow. 
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Streamflow data output form the model is only available for the catchment outlet and is not avail­
able for ungauged tributaries within the catchment. Hence, streamflow output is only a lumped 
value for the whole upstream catchment. Similarly, soil moisture values are catchment averages 
of the surface, root zone and profile soil moisture content. 

Two synthetic experiments were undertaken to demonstrate the assimilation of streamflow data for 
soil moisture retrieval. First, only the initial conditions of the three prognostic soil moisture states 
(catchment deficit, surface excess, and root zone excess) were arbitrarily degraded (experiment 1) 
while the forcing and observation data were perfect; initial conditions were degraded arbitrarily, 
so that an extreme wet condition was created. Second, both the soil moisture initial conditions and 
the forcing data were artificially degraded (experiment 2); the precipitation was increased by 20% 
and the incoming solar radiation was decreased by 33%. In this way we were able to explore the 
effect of erroneous forcing data on the assimilation results. The impact of this was to create an 
artificially wet catchment simulation. 

Figures 4.3 and 4.4 show the catchment average profile soil moisture content for the assimilation 
and no assimilation runs compared to the "true" data and the "observed" streamflow, for experi­
ment 1 and 2 respectively. In experiment 1 there is a good agreement between the retrieved and 
truth soil moisture data, while the results from no assimilation continue to overestimate the true 
soil moisture amount. While there is a small difference between the true and retrieved initial soil 
moisture states, this is quickly corrected when a streamflow runoff event takes place. Although 
these results were anticipated, given that we used a perfect model with perfect observations, it still 
demonstrates that there is a significantly strong relationship between the streamflow prediction 
and profile soil moisture content, even under semi-arid conditions. 

Results from experiment 2 show a similar improvement in soil moisture prediction when stream-
flow observations are assimilated, compared with the no assimilation run. However, due to the 
dramatic increase in precipitation and decrease in radiation compared to the truth, the soil mois­
ture prediction, even with assimilation, tends to predict a soil moisture content which is too wet 
towards the end of the assimilation window. To counter this, the assimilation attempts to make the 
initial conditions as dry as possible, but is constrained by the residual soil moisture content set in 
the model. 

Both experiments showed good results for the retrieval of catchment average soil moisture profiles 
and adequate results for the root zone moisture content. However, retrieval of surface soil moisture 
was problematic for experiment 2. In this case, NLFIT was unable to find an optimum value for 
the initial surface excess prognostic variable. This is due to the small influence of the initial 
surface excess states on the total runoff, and the fact that only minor changes were produced in the 
objective function, even for major changes of the initial prognostic state value. 

Conclusion This study has demonstrated using synthetic experiments that streamflow data as­
similation has the potential to improve model prediction of soil moisture. Using a variational 
data assimilation approach, initial soil moisture states were retrieved by "calibrating" the model 
streamflow prediction to observed streamflow records. As residual soil moisture and porosity set 
upper and lower limits on the initial soil moisture storage, it was not possible to correctly predict 
the soil moisture time series over long time periods in the presence of large water balance errors. It 
is proposed that this problem may be resolved through shorter event based assimilation windows. 
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by the principal author to NASA Goddard Space Flight Center was sponsored by a Postgraduate 
Overseas Research Exchange Scholarship from the University of Melbourne. The invaluable help 
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Sou moisture is a critical hydrosphere state variable that often limits the exchanges of water 
and energy between the atmosphere and land surface, controls the partitioning of rainfall 
among evaporation, infiltration and runoff, and impacts vegetation photosynthetic rate and 
soil microbiologic respiratory activities. Accurate initialization of this variable in water, 
energy and carbon cycle models is thus required for their reliable predictions. With real 
time or near real time global satellite observations of land surface soil moisture becoming 
readily available, how to effectively and efficiently assimilate these observations into weather 
or climate models becomes an urgent science question. This paper uses a Kalman Filter data 
assimilation method to evaluate several different approaches to assimilating the AMSR-E 
observations into the NOAH land surface model that is implemented in National Center 
for Environmental Predictions (NCEP) operational weather forecast models. Among these 
approaches are: (1) directly assimilate AMSR-E brightness temperatures into NOAH model 
using a simple microwave emission; (2) directly assimilate the brightness temperatures into 
NOAH model using a more detailed microwave emission; (3) assimilate surface sou moisture 
retrieved from the brightness temperature observations. The effectiveness and efficiency of 
these approaches are, several questions are evaluated against "true" soil moisture and water 
and energy fluxes observations collected during SMEX02 or SMEX03. Results of these soil 
moisture data assimilation approaches will be presented to the workshop for an in-depth 
discussion on various issues associated with soil moisture data assimilation. 
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The impact of incorrect model error assumptions on the assimilation 
of remotely sensed surface soil moisture 

Wade T. Crow1 and Rajat Bindlish1 
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Recent advances in the development of sequential land data assimilation techniques have 
demonstrated that remote sensing observations of surface soil moisture can improve the dy­
namic representation of root-zone soil moisture and streamflow in hydrologie models. How­
ever, much of the available evidence is based on identical twin experiments using synthet­
ically generated, and artificially perturbed, measurements. These experiments, while ex­
tremely useful diagnostic tools for evaluating filter efficiency, typically simplify or avoid a 
number of key complexities facing operational efforts to assimilate spaceborne observations. 
One typical assumption in synthetic experiment is that the statistical nature of model errors 
is perfectly known. In reality, error in hydrologie model predictions comes from a wide va­
riety of sources and manifests itself within multiple model state variables. Consequently, 
error information required by sequential data assimilation filter is almost never available 
in operational settings. The flexibility of approaches like the Ensemble Kalman filter with 
regards to model error is frequently cited to support its use in hydrologie data assimilation 
[e.g., Crow, 2003]. However, such flexibility cannot be properly exploited if the structure and 
source of model errors cannot be constrained in some way. Generally, little is known about 
the impact of poorly specified model error on the efficiency of assimilating remote observa­
tions into hydrologie models. This analysis describes a set of synthetic experiments where 
by model errors used to generate the Ensemble Kalman filter are statistically different from 
errors used to originally perturb the model. 

The Ensemble Kalman Filter The Ensemble Kalman filter (EnKF) is based on the generation 
of an ensemble of model predictions to estimate the error/covariance information required by 
the standard Kalman filter (KF) for the updating of model predictions with observations [Reichte 
et ai, 2002; Evensen, 1994]. The EnKF can be generalized using a state space representation 
of prediction and observation operators. Take Y(t) to be a vector of land surface state variables 
at time t. The equation describing the evolution of these states, as determined by a potentially 
nonlinear land surface model f, is given by: 

^ = f ( Y , w ) (4.1) 

where w relates errors in model physics, parameterization, and/or forcing data and is taken to be 
mean zero with a covariance C„,. The goal of the filtering problem is to constrain these predictions 
using a set of observations which are related to the model states contained in Y. Let the operator 
M represent the observation process which relates Y to the actual measurements taken at time tk: 

Zt = M(Y(l)t),v*) (4.2) 

where v* represents Gaussian measurement error with covariance Cvk. The EnKF is initialized 
by the introduction of synthetic Gaussian error into initial conditions and generating an ensemble 
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of model predictions using (4.1). At the time of measurement predictions made by the fth model 
replicate are referred to as the state forecast Y*. If f is linear and all errors are additive, independent 
and Gaussian, the optimal updating of V by the measurement Z* is given by: 

Y'+ = V > Ktpfc + v* - MtflOl (4.3) 

and: 

K ^ C y ^ C M + Cv)- 1 ] ,^ (4.4) 

where CM is the error covariance matrix of the measurement forecasts M^(YI ) and CYM is the 
cross-covariance matrix linking the predicted measurements with the state variables contained 
in V . All covariance values are statistically estimated around the ensemble mean. Here Y+ 
signifies the updated or analysis state representation. Of particular interest here are modeling 
errors represented by w and the impact of making inaccurate assumptions concerning w. One 
potential diagnostic tool is the filter innovation (v), defined as 

v = Zk-Mk(Y_). (4.5) 

If w is perfectly represented (in a statistical sense) then the normalized innovations 

a = m-1vr(CAf + Cv)-
1v (4.6) 

should be mean one and temporally uncorrelated [Dee, 1995]. Normalized innovations have value 
as a diagnostic tool since various choices for w used to generate the model ensemble can be 
evaluated based on the observed statistical properties of a. 

TOPLATS modeling framework Land surface modeling will be based on the TOPMODEL-
based Land Atmosphere Transfer Scheme [Famiglietti and Wood, 1994; Peters-Lidard et al., 
1997]. TOPLATS surface zone soil moisture (8) predictions are based on the linear combina­
tion of two dynamic model states variables: the fraction of the land surface saturated from below 
by the water table (ƒ„.) and the surface soil water content in non-saturated portions of the basin: 

6 = Qsalfw + &unsat- (4.7) 

Saturated fraction is, in turn, is calculated by assuming spatial variability in local scale water table 
depth is driven solely by variations in the local soils topographic index (ST I) defined as 

S77 = ln(aT/rtanß) (4.8) 

where a is area drained, T soil transmissivity, and ß local slope. Variations in STI are related to 
variations in local water table depth (z) via 

z = z-rl(STI-STT) (4.9) 

where the overbar represents spatial averaging of quantities within the basin and ƒ the vertical 
decay of saturated hydrologie conductivity. Areas where z <— 0 indicates surface saturation, 
therefore 
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fw = l-F(ïf+STI) (4.10) 

where F is the cumulative density function for STI, typically determined from high-resolution 
soil and topographic maps. Runoff is modeled as a combination of saturation excess runoff (the 
product of rainfall intensity and ƒ„,) and separate parameterizations of infiltration excess runoff and 
baseflow. Soil moisture in unsaturated portions of the basin is calculated using a finite difference 
numerical approximation to the richards equations and predicted infiltration. 

Methodology The experimental methodology is based on designating a single, unperturbed model 
realization as truth. Some statistical representation of model errors, w, is assumed and used to 
generate an open loop simulation that represents the unconstrained impact of model error on hy­
drologie predictions. Errors present in the open loop simulations are then filtered via the imple­
mentation of the EnKF and soil moisture observations (plus some random noise) generated from 
the original truth simulation. The EnKF filtering methodology is based on the a prior specification 
of an estimate model error, w'. Assumed model error may or may not represent w accurately. The 
focus of the analysis will be on the impact of instances in which w ̂  W. As illustrated in (4.7), 
surface soil moisture predictions in TOPLATS are driven by two key state variables: Qunsœ and z 
via its impact on ƒ„,. Model error is represented here by applying adding additive Gaussian noise 
to both states. The impact of incorrect model error assumptions on EnKF results is represented 
via the intentional misspecification of model error magnitude and/or location. 

Results Solid lines in Figure 4.5 demonstrate results for the simplified case where model error is 
assumed to be limited to a single known model state variable (i.e. Qunsat for figures 4.5ab and z for 
figures 4.5cd). 

Normalized error results on the y-axis of figures 4.5ac convey the fraction of 40 cm soil moisture 
root-mean-square (RMS) error calculated in the open loop case that is corrected via the assim­
ilation of surface soil moisture. Variations in assumed levels of model errors can have strong 
consequences for the ability of the EnKF to filter model error. The critical issue is whether opti­
mal levels of assumed model error (i.e., minimums in figures 4.5ac) can be identified from study 
of normalized innovations. According to linear filtering theory, properly tuned normalized inno­
vations (a) should be mean one and temporally uncorrelated. Too large (small) an estimate of 
model error should result in innovations with a mean less (greater) than one. This is the case is 
figures 4.5ab. Tuning of assumed error in QUnsat to produce temporally uncorrelated normalized 
innovations with a mean of one (in Figure 4.5b) leads to efficient filter results (in Figure 4.5a). 
Prospects for tuning are less promising for the case of error in z. A broad range of error values in 
Figure 4.5d (solid line) are associated with a mean slightly greater than one. Consequently, it is 
difficult to identify errors associated with optimal filtering. The problem stems from drift in the 
filter caused by the nonlinear relationship assumed between fw and z in (4.10). This drift produces 
temporally correlated innovations (solid Une in Figure 4.5d) that prevent the filter's normalized 
innovations from falling below mean one - even when model error is overestimated. Difficulties 
are compounded for the case where both the source and magnitude of model errors are unknown. 
Dashed lines in figures 4.5ad describe the impact of representing model error via fluctuations in 
z when, in reality, model error is due to random perturbations in tournai- This misspecification of 
error prevents the assimilation of observed soil moisture from improving model results beyond 
those observed in the uncorrected open loop case (i.e., unity on the y-axis in Figure 4.5a). More 
importantly, tuning of model error to force normalized innovations closer to unity (see dashed line 
in Figure 4.5b) will actually make filter results worse. 

Conclusions Prospects for using innovations to operationally tune sequential data assimilation 
filters appear dependent on the type and location of model error which requires filtering. Fur­
thermore, misspecified model error can lead to circumstances under which the tuning of assumed 
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Figure 4.S: Impact of model error assumptions on the efficiency of filter predictions and the statis­
tical properties of observed filter innovations. 

model error via analysis of filter innovations will actually degrade the performance of the filter. 
Further study is required to determine the impact of poorly known model errors on the devel­
opment of operational data assimilation systems to ingest remote sensing data into hydrologie 
models. 
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Bias correction of satellite soil moisture and assimilation into the 
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2NASA-GSFC, Greenbelt, Maryland, USA 

Surface soil moisture data from different sources (satellite retrievals, ground measurements, 
and land model integrations of observed meteorological forcing data) have been shown to 
contain consistent and useful information in their seasonal cycle and anomaly signals even 
though they typically exhibit very different mean values and variability. At the global scale, 
in particular, it is currently impossible to determine which soil moisture climatology is more 
correct. The biases pose a severe obstacle to exploiting the useful information contained in 
satellite retrievals of soil moisture in a data assimilation algorithm. A simple method of bias 
removal is to match the cumulative distribution functions (cdf) of the satellite and model 
data. Cdf estimation typically requires a long data record. By using spatial averaging with a 
2 degree moving window we can obtain statistics based on a one-year satellite record that are 
a good approximation of the desired local statistics of a long time series. This key property 
opens up the possibility for operational use of current and future soil moisture satellite data. 

Introduction and Approach Accurate knowledge of the state of the land surface is important 
for many applications. For example, there is increasing evidence that accurate land initialization 
contributes to skill in subseasonal climate forecasts of summer mid-latitude precipitation and air 
temperature [Koster et al., 2003,2004]. Our ability to accurately characterize global soil moisture 
fields relies on (1) retrievals of surface soil moisture from satellite, and (2) land surface models 
that integrate meteorological forcing data (such as precipitation and radiation from observations or 
atmospheric data assimilation) and land surface parameters (such as soil hydraulic or vegetation 
properties). It has long been argued that a land data assimilation system that merges these two 
sources of information will improve our knowledge of the state of the land surface. Such a data 
assimilation system must, however, address severe biases that have been identified in surface soil 
moisture. 

Reichle et al. [2004] show that the time series mean and variability of surface soil moisture from 
satellite retrievals and model integrations differ substantially, and neither agrees better with the 
sparse ground measurements that are available. It is in fact impossible at this time to determine a 
"correct" global surface soil moisture climatology towards which satellite and model data could 
be corrected in a data assimilation system. Rather, we are limited to removing biases between 
the satellite retrievals and model soil moisture by ensuring statistical consistency between the two 
data sources. An obvious method for doing so is to match the cumulative distribution functions 
(cdf's) of the satellite retrievals and model soil moisture. Similar cdf matching techniques have 
been used successfully for example to establish reflectivity-rainfall relationships for calibration of 
radar or satellite observations of precipitation {Atlas et al, 1990; Anagnostou et al., 1999]. Cdf 
matching is conceptually straightforward, but the need to estimate the cdf of satellite retrievals of 
soil moisture is difficult in practice because of the limited availability of such data. 

The historic Scanning Multichannel Microwave Radiometer (SMMR) offers a unique record of 
almost nine consecutive years of passive C-band (6.63 GHz) observations. A record of such length 
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permits estimation of the statistics with reasonable accuracy. On the other hand, current and 
planned soil moisture sensors are designed for shorter observing periods of three to six years. 
These include the currently operational C-band Advanced Microwave Scanning Radiometer for 
the Earth Observing System (AMSR-E), and two planned L-band (1.4 GHz) sensors, the Soil 
Moisture and Ocean Salinity (SMOS) mission, and the Hydrosphere State (HYDROS) mission. 
Even more importantly, it is a primary goal of these missions to provide near-real time data for 
operational research applications. But operational applications would be impossible if the satellite 
retrievals became useful only after the lifetime of the satellite. In this paper we use the nine-year 
SMMR record to demonstrate that temporal aggregation of SMMR data can be traded off against 
spatial aggregation. Robust estimation of the statistics for bias removal is accomplished using only 
a one-year satellite record. With our method, current and future satellite retrievals of soil moisture 
can be processed in near-real time using only a one-year climatology. 

Data and Method SMMR satellite retrievals of soil moisture are from October 1978 to August 
1987 [de Jeu, 2003]. The sensor's configuration on a polar-orbiting platform allowed for a max­
imum repeat frequency of about three to four days in mid-latitudes. Despite global coverage of 
the satellite, soil moisture retrievals are not available everywhere. Areas for which surface soil 
moisture cannot be retrieved include areas with frozen soil, mixed pixels that contain a significant 
fraction of surface water, and highly vegetated areas. Our land modeling system uses the state-of-
the-art NASA Catchment land surface model [Duchame et al, 2000] and surface meteorological 
data from [Berg et al, 2003]. The surface meteorological forcing data are based on the European 
Centre for Medium-Range Weather Forecasting 15-year reanalysis (ERA-15) available from 1979 
to 1993 and have been corrected to observed data as much as possible. Precipitation - arguably the 
most critical input for accurate soil moisture modeling - has been corrected primarily with a mer­
ged product of satellite and gauge data from the Global Precipitation Climatology Project (GPCP, 
Version 2) [Huffman et al, 1997]. For further details on the SMMR retrievals and Catchment 
model soil moisture see [Reichte et al, 2004]. 

Approach Our strategy for bias removal is to match the cdf of the satellite retrievals to the cdf of 
the model soil moisture by scaling the satellite retrievals. The scaled satellite retrieval xl is given 
implicitly by the solution to cdfm{xi) = cdfs(x), where cdfs and cdfm denote the cumulative 
distribution functions of the satellite and model soil moisture, respectively, and x is the unsealed 
satellite soil moisture. Note that cdf matching corrects all moments of the distribution function, 
subject to statistical errors that are due to a limited sample size. In practice, we can expect mean­
ingful estimates only for the first few moments of the distribution function, and limit ourselves 
to analyzing the mean, standard deviation, and skewness. The key to successful bias removal via 
cdf matching is to identify the temporal and spatial scales at which the cdf is estimated and cdf 
matching is applied. Since an assimilation systems ingests instantaneous satellite retrievals at the 
local (or catchment) scale, statistics used for bias removal should be computed from and applied 
to local, instantaneous data. In fact, the complex heterogeneity of the land surface is only ap­
proximately described by the retrieval algorithm and the land model, and errors vary strongly in 
space. The ideal estimate of the local cdf for our purpose is thus based on the longest available 
data record and computed without spatial averaging. 

Figure 4.6 shows global maps of the biases in the time series mean and standard deviation between 
model soil moisture and satellite retrievals. Across the globe, SMMR retrievals are typically wetter 
than model soil moisture, except in the eastern half of North America, northern Eurasia, and the 
Sahel. SMMR retrievals exhibit more variability than model soil moisture across North America, 
in northern Eurasia, southern Africa, and southern Australia. Elsewhere, particularly in India, 
SMMR retrievals are less variable in time than model soil moisture. Figure 4.6 demonstrates that 
there are severe biases between satellite retrievals and model soil moisture. Most importantly, 
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these biases are not uniform but spatially distributed in complex patterns and are on the order of 
the dynamic range of the signal. 

Next, we estimated the cdf based on various subsets of the full dataset of SMMR retrievals. In 
order to control statistical noise in the cdf estimate, we spatially aggregate the data: At any given 
location, observations of neighboring catchments that are within a given distance are also used to 
compute the statistics at the given location. In other words, we apply a moving spatial window to 
the computation of the statistics and implicitly assume that some degree of ergodicity is present in 
the data. We then use this approximate estimate of the cdf to solve cdfm(xt) = cdfs(x) and obtain 
scaled SMMR retrievals whose statistics are again compared to those of the model soil moisture. 

Results When the cdf that is used for scaling is estimated from a subset of the SMMR retrievals, 
some locations will inevitably have insufficient data for robust estimation of the statistics. Our 
cutoff criterion for estimating the cdf is that at least 100 measurements must be available. Without 
spatial aggregation, the cdf cannot be estimated from just one year of data anywhere. Coverage 
increases rapidly with increasing spatial aggregation scale, and for spatial aggregation scales of 
2 degrees and larger virtually no extra data are lost. The loss of coverage must be traded off 
against the ergodicity error, that is the error resulting from spatially averaging when estimating 
the cdf. We computed relative bias reduction using various 1 and 2 year subsets of the SMMR 
data in combination with spatial aggregation scales ranging from 0 to S degrees. It is important 
to note that the bias is always computed for the full data set (1979-1987) after scaling all SMMR 
retrievals with a cdf that is based on a subset of the data. 

Clearly, the smallest relative biases in the mean and standard deviation are typically achieved 
when the full SMMR dataset (1979-1987) is used to estimate the scaling cdf. Without spatial 
aggregation (ideal scenario), the bias in the mean (standard deviation; or skewness) is reduced 
to about 2% (10%; or 45%) of the bias before cdf matching. When the full set of data is used 
in combination with spatial aggregation at a scale of 5 degrees, the bias in the mean (standard 
deviation) is about 26% (65%) of the bias before cdf matching, while the bias in the skewness 
after cdf matching is worse than before cdf matching. If only a single year of SMMR retrievals is 
used to estimate the cdf in combination with spatial aggregation, scaling with such an approximate 
cdf does still considerably reduce the biases. We also find that the bias after cdf matching depends 
only weakly on the particular year that has been used for estimating the cdf. This is not surprising, 
given that the biases are much larger than the interannual variability. 

Knowing the loss of spatial coverage and the increase in ergodicity error as a function of the 
spatial aggregation scale enables us to optimize for a particular spatial aggregation scale. Since 
the ergodicity error increases with increasing horizontal aggregation scale, a reasonable approach 
is to use the minimum spatial aggregation scale for which coverage is almost complete. In our case, 
this strategy suggests a spatial aggregation scale of 2 degrees. In other words, the best estimate of 
the cdf of all SMMR retrievals that is based only on 1979 data is obtained for a spatial aggregation 
scale of 2 degrees. We refer to this estimate as the approximate cdf. Finally, Figure 4.6 also shows 
global maps of the remaining biases relative to the model soil moisture after bias removal using 
the approximate cdf for SMMR retrievals. While there is some bias left after cdf matching, bias 
removal with the approximate cdf based on just one year of satellite data clearly removes most of 
the bias in the original data. 

Conclusions We use the nine-year SMMR record to demonstrate that temporal aggregation of 
SMMR soil moisture retrievals can be traded off against spatial aggregation. Robust estimation of 
the statistics for bias removal via cdf matching was accomplished using only a one-year satellite 
record in combination with a spatial aggregation scale of 2 degrees. This approximate scenario 
yields almost the same coverage as the ideal scenario where the statistics are computed from a long 
data record without spatial aggregation. The global average bias is reduced by 98% in the ideal 
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scenario and by 80% in the approximate scenario when compared to the original bias between 
the SMMR retrievals and model soil moisture. For the standard deviation (skewness), the ideal 
scenario allows bias reduction by 90% (55%) and the approximate scenario permits bias reduction 
by 55% (25%). With our method, current and future satellite retrievals of soil moisture can be 
processed in near-real time using only a one-year climatology. 

An obvious assumption of the applicability of our approach to current and future sensors is that 
biases for AMSR-E or HYDROS retrievals relative to model soil moisture are comparable to 
biases encountered with SMMR retrievals. While AMSR-E and future sensors are likely to yield 
improved measurements of brightness temperatures when compared to SMMR, the underlying 
errors in the retrieval algorithm, the land surface model, and the surface meteorological forcing 
data are unlikely to change significantly in the near future because the retrievals used here are 
based on a state-of-the-art algorithm, as is the modeling system. Therefore, our approach presents 
a valuable tool for the imminent operational use of AMSR-E soil moisture retrievals. 
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Multisensor and multiresolution variational assimilation of land 
surface temperature to estimate surface turbulent fluxes 

Franceses Caparrini1, Fabio Castelli1, and Para Entekhabi2 

lDipartimento di Ingegneria Civile, Universita' degli Studi di Firenze, Firenze, Italy 
1Massaehusetts Institute of Technology, Cambridge, Massachusetts, USA 

A variational assimilation system for the estimation of two key parameters of surface turbu­
lent heat flux (the non-dimensional turbulent heat transfer coefficient and the non-dimensio­
nal evaporative fraction) is implemented that uses land surface temperature sensed from a 
constellation of environmental satellites. The data relate to different times of day and apply 
at different and often overlapping resolutions. Thus the assimilation system has to be multi-
scale and capable of constraining the estimation at varying resolutions. It is shown that the 
separation of the surface source term into a bare soil and a vegetation component yields tur­
bulent flux and parameters estimates that are consistent with the regional conditions over 
the study area. The system is applied to a large area within the ILS. Great Plains. Spatial 
patterns of the retrieved parameters and correspond to observed land use maps and show 
consistency with seasonal phenology across the Great Plains. The methodological innova­
tions as well as physical insights gained as a result of the study are outlined. The advantages 
and limitations of the approach are listed. The information contained in sequences of land 
surface temperature from a constellation of satellites is shown to be valuable for the map­
ping of surface turbulent fluxes without reliance on empiricism or heavily-parameterized 
land surface models. Sensors capable of providing estimate of land surface temperature 
date back for decades. Thus multi-year maps of evaporation over land surfaces may now be 
possible. 
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Satellite data assimilation model with precipitation and 
micrometeorological forcing for the estimation of surface energy 
fluxes 

F. Sini1. G. Boni1, and D. Entekhabi2 

1CIMA, Université di Genova e della Basilicata, Savona, Italy 
2Ralph M. Parsons Laboratory, MIT, Cambridge, Massachusetts, USA 

The aim of this research is to estimate energy fluxes at the land surface, using satellite based 
Land Surface Temperature (LST) estimates. Ground based data of latent and sensible heat 
fluxes are available only for limited time periods and over very small areas. Satellite data are 
useful to obtain spatially distributed estimates of these variables. A variational assimilation 
scheme is used here to estimate energy fluxes at land surface over extended area. The model 
is based on surface energy balance, using bulk transfer formulation for sensible and latent 
heat fluxes. The dynamic equation of heat diffusion and Antecedent Precipitation Index 
(API) are used as constraints using the adjoint technique. LST, signature of dynamics energy 
balance, is the assimilated variable. LST, retrieved from sensors with different resolution is 
estimated using a split window algorithm. The model is tested and validated over Southern 
Great Plains 1997 hydrology field experiment data. 

Land data assimilation scheme The starting point of this study is the assimilation scheme de­
veloped by Boni et al. [2001] and Caparrini et al. [2003]. Here no precipitation input or soil 
moisture related parameters were used. Soil moisture is the primary hydrological state variable 
that controls and it is controlled by land surface processes. Assessment of feedback mechanism 
between land surface and the atmosphere must involve soil moisture and thence precipitation. The 
model is modified in order to use precipitation information for a better simulation of soil moisture 
conditions [Saxton and Lenz, 1967]. 

The variational assimilation scheme is based on the definition of a penalty function that incor­
porates, as a physical constraint through Lagrange multipliers, a simple surface energy balance 
model for the "prediction" of the land surface temperature (LST) evolution (see Caparrini et al. 
[2003] for details). The first term of the penalty function is a quadratic measure of the misfit be­
tween model predictions and LST observations. This has to be minimized on the parameter space 
under the model's constraint. The physical constraint on the assimilation scheme is the dynamic 
equation of heat diffusion in the soil, in its simplified force restore approximation: 

^ = 2 v ^ * " ~ H
p "

 Œ - 2iuo(Ts - T*,) (4.11) 

where 7̂  is the LST, a> is the dominant (diurnal) frequency, P is the effective thermal inertia, Rn 

is the net radiation at the surface, H and LE are the turbulent sensible and latent heat fluxes and 
Tdeep is a "restoring" deep-ground temperature. 

For taking into account precipitation input, it was added, as simplified mass balance equation, the 
Antecedent Precipitation Index (API) relation: 

AS 
— = -yS+I (4.12) 
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where y is the decay API parameter and I the intensity of precipitation. The two equations have 
a number of parameters to be estimated: the bulk transfer coefficient CB for heat, a soil moisture 
index a in the bulk transfer equation for latent heat and the API decay parameter y. 

The use of the evaporative fraction EF, defined as the ratio between the latent flux and the sum of 
turbulent fluxes, allows the elimination of the parameter a. The advantage of using EF instead of 
a to calculate latent heat fluxes, is that it can be assumed constant during daytime. The constraint 
equation can be written in terms of E F formulating LE as LE = fr§7?. E F is the link between 
API and force restore equation. An empirical relation between API and EF is found using FIFE 
87 field campaign data. EF is function of the mean daily API and of a parameter K, that takes into 
account physical constraints on EF other than soil moisture: 

, arctan(£s) 
EF=a + b i—'- (4.13) 

re 

K is assumed to be constant during the simulation period (see below), in accordance with vegeta­
tion cover changes time scale. In this way EF holds both daily "moisture" and monthly land use 
dependence. After all, K is the only estimated parameter into the assimilation scheme, whereas 
mean daily S is calculated from hourly precipitation data. The model doesn't require auxiliary 
data on soil texture and vegetation. 

The model was thought and set to assimilate also the decay daily API parameter. After several 
experiment it was seen that its value is not very sensitive to the assimilation procedure. So, because 
of its almost insignificant influence over the final result, it is put constant, with a time decay value 
Y = 0.07 that corresponds to a period of more or less two days. In this way a faster convergence was 
obtained. Also the CB coefficient is put constant, since model runs with all parameters assimilated 
did not show any significant improvement. Air temperature, wind speed at reference height (2 m), 
net radiation are the other forcing meteorological data, measured by ground micrometeorological 
stations. 

Application The assimilation model has been applied on the US Southern Great Plains (SGP) 
site, a field measurement site established by US Department of Energy's Atmospheric Radiation 
Measurement (ARM) Program. The field experiment site, is located in north-eastern Oklahoma 
and its extension is about 16,000 km2. The period of assimilation spans from 18 June to 18 July 
1997 . A grid of 4 km over SGP field was set for the model. 

The scheme is formulated using a multi-scale approach. Estimates of land surface tempera­
ture from AVHRR, SSM/I and GOES Imager sensors (see Caparrini et al. [2002] for details) 
are assimilated over the specified region every 30 minute, where data is available. The gridded 
(4 km x 4 km) precipitation field, created by the Hydrometeorological Analysis Support forecast­
ers at the Arkansas-Red Basin River Forecast Center*, is used as precipitation input This field 
is a combination of WSR-88D Nexrad radar precipitation estimates and raingauge reports. An 
important improvement on final result was obtained using this data instead of gauge data alone, 
interpolated with nearest neighbour method. Other forcing of data assimilation system is taken 
from micrometeorological stations and interpolated on field domain. 

The application on the SGP site has shown consistent estimation of E F and turbulent fluxes with 
field measurement data and agreement with precipitation trend. In the following figure is plotted 
the evaporative fraction for El Reno site. Bars indicate the range of variability of daily EF data 
measured with different ground sensors and black dots are the model estimates of mean daily EF 
at the same place. 

*ht tp : / /www.srh .noaa .gov/abrfc /cgi -bin/arc_search.php 
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Figure 4.7: EL RENO SGP site. Right axis- Dot model estimates of mean daily EF. Bars: range 
of variability of ground different sensors measurements. Left axis- histogram: daily 
cumulated precipitation. 
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Figure 4.8: On the left log(AT) pattern on SGP97 selected domain. On the right NDVI pattern field. 
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The pattern of K parameter was compared with the Normalized Difference Vegetation Index 
(NDVI) field, which is not used in the assimilation but only for posterior considerations. Figure 
4.8 shows the good spatial agreement between the two parameters, with a correlation coefficient 
equal to 0.72. 

The following step is to apply the model to a Southern Italian basin with the aim of using the 
estimated évapotranspiration into a rainfall-runoff model. Usually hydrological models are cali­
brated using just integral measures such as discharge observations. The outputs of the assimilation 
scheme can be used for calibration and validation of hydrological models minimizing an objective 
function that minimizes the differences between observed and estimated discharges and energy 
fluxes. The output of present model could be used to validate the rainfall-runoff model or inte­
grated as input field with Kalman filter technique. In particular the Basento river basin (southern 
Italy) is chosen, where validation measurement of LST and fluxes, and micrometeorological forc­
ing data are available on some ground sites. The land surface temperature from SEVIRI data, 
on board of Meteosat Second Generation, will be used as observations within the assimilation 
scheme. 
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Assimilation of latent and sensible heat flux data into a land surface 
model 

Robert Pipunic1. Jeffrey P. Walker1, Andrew W. Western1, and Cressida Savige1 

1 Department of Civil and Environmental Engineering, University of Melbourne, Parkville, Victo­
ria, Australia 

In the science of numerical weather prediction, land surface models coupled with climate 
and weather forecast models are now commonplace. Sensible and latent heat flux predictions 
from land surface models provide valuable atmospheric feedback for climate and weather 
forecast models to achieve optimal predictions. This research will focus on the assimilation of 
sensible and latent heat flux data into a stand-alone land surface model to test how this might 
improve modelled sensible and latent heat fluxes compared with traditional approaches of 
assimilating soil moisture and/or screen level temperature and relative humidity data. Since 
soil moisture and screen level temperature and humidity states are weakly related to heat 
fluxes, this research is motivated by the assumption that assimilating sensible and latent 
heat flux data may yield better predictions. The investigation will be carried out using both 
synthetically generated sensible and latent heat flux and soil moisture data, in addition to 
measured sensible and latent heat flux and soil moisture data from three study sites in south 
eastern Australia. Of the measured data, ground based point measurements will be used, in 
addition to measurements from airborne sensors and derived from remotely sensed satellite 
estimates. 

Introduction It has long been established that weather and climate forecast accuracy is improved 
when a coupled land surface model accurately represents the latent and sensible heat flux feed­
back to the atmosphere [Pathmathevan et al, 2003; Pitman, 2003; Entekhabi et al., 1996]. In this 
context, data assimilation research has focussed on improving land surface prediction of latent 
and sensible heat fluxes by improving soil moisture prediction through the assimilation of re­
motely sensed near surface soil moisture [e.g., Walker and Houser, 2001] or screen level humidity 
and temperature observations [e.g., Margulis and Entekhabi, 2003; Seuffert et al, 2003; Bouttier 
et al, 1993; Mahfouf, 1991]. However, screen level humidity and temperature are indirectly and 
sometimes weakly related to évapotranspiration [Qu et al, 1998]. Moreover, most land surface 
models coupled to atmospheric models use soil moisture primarily as a tuning variable to achieve 
the correct latent and sensible heat flux prediction. Thus, there is no guarantee that assimilation of 
these variables (particularly a physical soil moisture content observation) into these models will 
improve the model prediction of latent and sensible heat flux [Richter et al, 2004]. Therefore, this 
research aims to assimilate observed sensible and latent heat flux data into a land surface model, 
to correct the model's prediction of latent and sensible heat flux by modifying the model's pre­
diction of soil moisture and temperature. The impact of assimilation on these states can then be 
compared with observations. This is an approach that has received little attention to date, with 
Schuurmans et al [2003] representing one of the few published examples of this approach. In the 
study presented by Schuurmans et al [2003], only remotely sensed latent heat flux estimates were 
used as observed data. These data were treated as truth and used to evaluate the values output 
from the land surface model. The latent heat flux data derived from remotely sensed data were 
assimilated into the land surface model to improve modelled latent heat flux values. However, no 
ground based validation of the remotely sensed fluxes was presented, or validation of the model 
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Figure 4.9: Map of Australia with close up showing approximate locations of study sites at 
Kyeamba Creek, Kyabram and the 25 km x 25 km study region near Rochester. 

predictions after assimilation using ground based latent heat flux or soil moisture data in between 
assimilation time steps. 

Method The assimilation will be performed using both synthetic and real datasets. The synthetic 
data assimilation approach will be similar to that of Walker and Houser (2001) for soil moisture 
assimilation. First, a one-dimensional soil column model will be spun-up for a fixed time period 
using forcing data that represents realistic meteorological conditions. Using the spin-up initial 
condition the model will be used to generate "true" land surface observation and evaluation data. 
Second, degraded simulations will be made representing the same period; one by setting the initial 
soil moisture variables to extreme wet values, and another by setting the soil moisture to extreme 
dry values. Typical errors in forcing data and model parameters will also be applied. Finally, 
simulations will be made whereby the "true" latent and sensible heat flux values from the original 
model simulation will be treated as observations and assimilated into each of the degraded simu­
lations. The aim is to develop the assimilation algorithm and test the ability of the assimilation to 
improve the latent and sensible heat flux prediction from the degraded simulations as compared to 
the "true" values from the original simulation. At the same time, we aim to positively impact on 
the soil moisture and temperature profile predictions. 

To test the performance of the assimilation approaches developed under real conditions, two one 
dimensional field sites will be investigated, each using latent and sensible heat flux data recorded 
via eddy correlation systems, along with soil moisture and temperature profiles. For these sites, 
the land surface model will be forced using measured meteorological and radiation data collected 
at the sites. The measured latent and sensible heat fluxes will be assimilated into the model. 
Measured values of soil temperature, soil moisture and latent and sensible heat flux between as­
similation time steps will be used to test the assimilation performance. A 25 km x 25 km study 
region will also be investigated using spatial latent and sensible heat flux data from an airborne 
eddy correlation system, satellite remotely sensed data and ground based point measurements of 
soil moisture and of latent and sensible heat flux from eddy correlation systems. Forcing data for 
modelling in this region will be sourced from available point meteorological and radiation mea­
surements, and from the nearest Australian Bureau of Meteorology station. A spatial study will 
first involve the assimilation of airborne eddy correlation data, using ground based point latent 
and sensible heat flux measurements, and soil moisture data to validate the modelled results. Then 
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Figure 4.10: False colour (near infra red) Landsat image covering the 25 km x 25 km study region 
in "Victoria. Blue dots represent soil moisture monitoring sites. 

» if*. 
-- , i f 

Figure 4.11: Remotely sensed thermal intra red image of the 25 km x 25 km study region shown 
above. Darker shades represent a higher thermal signature. 
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Figure 4.12: Image of latent heat flux values for the 25 km x 25 km study region, derived from 
satellite imagery shown above using the SEBAL algorithm. 

using satellite remotely sensed data, assimilations will be made both with observed surface tem­
perature data and with latent and sensible heat flux values derived using the SEBAL algorithm 
[Bastiaanssen et al, 1998]. The performance of these two remote sensing based approaches will 
be compared, again with ground based latent and sensible heat flux and soil moisture measure­
ments used as testing data sets. 

Models A Kalman filtering approach will be used to assimilate the observed latent and sensi­
ble heat flux data into the European Center for Medium range Weather Forecasting land surface 
scheme used by the Australian Bureau of Meteorology. This land surface model was developed 
by Viterbo and Beljaars [1995], and is referred to herein as VB95. It consists of four prognostic 
layers for soil moisture and soil temperature, including a skin temperature and surface interception 
reservoir. The thickness of the four layers are 7 cm, 21 cm, 72 cm and 189 cm, from top to bottom 
respectively, with the penetration of roots from vegetation allowed in the three top layers. Vertical 
movement of water between the layers is governed by the diffusion form of Richard's equation, 
and vertical energy fluxes are governed by a soil heat diffusion equation. The lower boundary 
condition is characterised by a free drainage condition and zero heat flux. Net heat flux, computed 
from a surface energy balance calculation, and net water infiltration, which is the difference be­
tween incoming precipitation and a combination of interception, bare soil evaporation and surface 
runoff from the incoming precipitation, represent the upper boundary condition. Evapotranspira­
tion in VB95 can occur from the interception reservoir, bare soil in the top soil layer and through 
transpiration from vegetation having roots in the top three soil layers (the root zone). Latent and 
sensible heat flux data and/or skin temperature data will be assimilated into the VB95 model using 
the Ensemble Kalman Filter, which is discussed in detail by Evensen [2003]. 

Data Sets The field data will be from three study sites in south eastern Australia (Figure 4.9). 
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These data consist of (1) two one dimensional sites measuring eddy correlation, soil temperature 
and soil moisture data in different landscapes, and (2) a 25 km x 25 km region with sixteen soil 
moisture monitoring sites, and remotely sensed (airborne and satellite) latent and sensible heat 
flux data. 

At the one dimensional sites, continuous measurements of soil and atmospheric data are made 
over a 12 month period. One of the one dimensional sites is situated at Kyeamba Creek within the 
Murrumbidgee catchment, approximately 30km south east of the city of Wagga Wagga in New 
South Wales, and is located in a flat area of non irrigated grass pasture. The other is located near 
the town of Kyabram in Victoria on irrigated grass pasture land. The 25 km x 25 km monitoring 
region is located in northern Victoria near the town of Rochester and has one week of aircraft 
(January 2003) and nine months of satellite remote sensing measurements during periods from 
2002 to 2004 that are being analysed for latent and sensible heat flux. Figure 4.10 is a false colour 
(near infra red) Landsat satellite image of the area which was used for analysis, with Figure 4.11 
showing the thermal infra red image of the same area. Figure 4.12 illustrates latent heat flux cover­
age in the area that was derived from the Landsat data using the SEBAL algorithm [Bastiaanssen 
et al. y 1998]. In addition there are 16 ground point measurements of neutron probe soil moisture 
data collected at 4 depths (15 cm, 45 cm, 75 cm and 105 cm), these were collected fortnightly 
to coincide with the satellite overpass for the summer months of 2003 and 2004. The blue dots 
in figures 4.10 through 4.12 show their spatial distribution throughout the area. Also from the 
area are point measurements of atmospheric, radiation and latent and sensible heat flux data from 
ID eddy correlation and Bowen ratio systems for the beginning of the irrigation season (October 
2002) until January 2003. Continuous 3D eddy correlation, atmospheric and radiation data from 
the opening of the 2003 irrigation season (October 2003) until January 2004 are also available. 

Summary This project aims to analyse the improvements in predictions of latent and sensible 
heat flux, together with soil moisture and temperature by a land surface model resulting from 
assimilating estimates of some or all of latent and sensible heat fluxes and surface temperature. 
Further, it aims to determine the best approaches to this assimilation problem. An assumption is 
made that assimilating latent and sensible heat flux into a land surface model, as opposed to soil 
moisture data, may lead to better model estimates of the surface energy balance as the process 
will bypass the dependency on soil parameterisation errors inherent in land surface models. These 
errors can lead to poor heat flux predictions when assimilating soil moisture. 
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Gravity has the potential to become a new source of important remote sensing data for 
catchment-scale hydrological modelling. Monitoring of changes in the earths gravity field 
through time is expected to yield information on the change in terrestrial water storage (soil 
moisture, groundwater, etc) over that time period. However, the usefulness of this data has 
not yet been demonstrated. Specifically, the ability to accurately disaggregate the vertical 
(and spatial) distribution of terrestrial water storage change information contained in grav­
ity measurements has not been explored. Through a series of synthetic twin studies, we seek 
to demonstrate the potential for gravity data to constrain a land surface model through data 
assimilation, and thus yield more accurate predictions of soil moisture profile distribution 
and groundwater storage. This pilot study uses a simple sou column model to describe the 
temporal variation of soil moisture and groundwater for a point in the landscape; we do not 
address the spatial disaggregation problem in this paper, which presents a methodology but 
no results. 

Introduction Soil moisture is important for a number of applications, including global climate 
modelling, numerical weather prediction, rainfall-runoff modelling, and agriculture [Western et al., 
2002]. For meteorological applications it influences the energy balance by determining the par­
titioning of available energy at the land surface between latent and sensible heat fluxes. For hy­
drological applications it influences the water balance by partitioning precipitation between infil­
tration and runoff. For agriculture the amount and distribution of soil moisture heavily influences 
crop yield. However, the distribution of soil moisture is not well understood as it is highly vari­
able in both space and time and there is a poor history of systematic monitoring. Hence there is a 
demonstrated need for improved prediction and monitoring of soil moisture. One potential way to 
improve predictions is from remotely sensed data assimilation. 

With the recent launch of GRACE satellites in 2002, routinely collected gravity data has become 
a potential new source of remote sensing information for catchment-scale hydrological modelling. 
Monitoring changes in the earth's gravity field through time is expected to give information on the 
change in terrestrial water storage, which includes changes in soil moisture, groundwater, snow, 
lake and reservoir storage, etc, over that time period [Wahr et al., 1998; Rodell and Famiglietti, 
1999, 2001]. However, temporal gravity observations provide only a lumped measure of total 
terrestrial water storage change over large areas. For these data to be useful, methods need to be 
developed to (1) relate changes in terrestrial water storage to actual storage levels, (2) vertically 
disaggregate the terrestrial water storage signal into at least surface, root zone and groundwater 
components, and (3) spatially downscale from large basin averages to small sub-catchments. 

We seek to demonstrate through a series of synthetic twin studies the potential to use gravity data 
to improve hydrologie prediction of the surface, root zone and groundwater stores; we do not 
address the spatial downscaling in the context of this paper. Our approach uses the gravity data 
to constrain a land surface model through data assimilation. This pilot study uses a simple soil 
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column model that describes the temporal variation of soil moisture (in three layers: near-surface, 
root zone and vadose zone) and groundwater. We present the methodology in this paper, but no 
results. 

Model A simple column bucket model is used to predict the one-dimensional profile water storage 
in four different moisture stores. The first storage represents a shallow near-surface layer of 1 cm 
thickness (equivalent to the depth measured by passive microwave remote sensing satellites such 
as AMSR-E). The second storage represents the root zone, which we take to be approximately the 
top 1 m of soil. This is followed by vadose zone storage to approximately 4 m depth. Finally there 
is groundwater storage with an impermeable boundary assumed at 10 m depth. 

The physics of the model are summarised as follows. Precipitation recharges the near-surface stor­
age only. Bare soil evaporation (assumed to be 10% of the potential évapotranspiration multiplied 
by a moisture index for the near-surface store; the moisture index is the storage amount divided by 
storage capacity) is taken from the near-surface storage, and transpiration (assumed to be 90% of 
the potential évapotranspiration multiplied by the moisture index for the root zone store) is taken 
from the root zone storage. Water percolates down through the soil column to the underlying 
layer under gravity drainage. The gravity drainage is approximated as the saturated hydraulic con­
ductivity multiplied by the moisture index of the origin store, constrained by the capacity of the 
receiving store. There is no possibility for water to move upward through the soil column or to be 
redistributed horizontally. Water is released from the groundwater store as baseflow, estimated as 
saturated hydraulic conductivity multiplied by the moisture index for the groundwater store. The 
model is run on a daily time step. 

Data The observation and evaluation data to be used for this investigation are synthetically gener­
ated from the column bucket model described above. The only input data required by the model 
are saturated hydraulic conductivity (assumed as 5 mmh - 1), soil porosity (assumed as 50% v/v), 
initial moisture storage levels, precipitation, and potential évapotranspiration. Precipitation and 
évapotranspiration data are taken from 2-years of the Nerrigundah catchment data set [Walker 
et al, 2001]. The catchment is located in temperate south eastern Australia. 

Initial conditions for the moisture stores are obtained through repeated simulation of the model for 
10 years using a single year of forcing data. The model is then run for the two years of forcing data 
to provide the "truth" evaluation data for vertical distribution of soil moisture and groundwater. 
The monthly synthetic gravity data "observations" are generated from the model output of soil 
moisture and groundwater at the start of each month. 

Data Assimilation Two assimilation approaches are explored for the retrieval of soil moisture and 
groundwater from the monthly observations of gravity. These are the Kalman filter and variational 
approaches. 

The Kalman filter is used to sequentially assimilate gravity observations as they become available 
[Kalman, I960]. As temporal gravity data is only useful in terms of the change in gravity from 
one observation time to the next, rather than the absolute amount (the absolute gravity signal 
contains information on mass of the earth etc which is not part of a typical land surface model), 
the assimilation scheme either needs to include an additional state (change in total terrestrial water 
storage) or be used to estimate an additional parameter (the time invariant component of the gravity 
signal). In this way either changes in observed gravity, or the absolute gravity observation itself, 
may be sequentially assimilated. We have chosen the latter approach, with an added assumption 
that we actually know the time invariant component of the gravity signal. Further refinements to 
the algorithm will explore ways to determine this through the assimilation procedure. 

The variational approach is used to assimilate the gravity data by considering the match between 
model predictions and observations over some time window. In this way the models predictions 
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of change in gravity (by difference between the two observation times) are optimised against the 
observed changes in gravity directly, by "calibrating" the model initial conditions. As such this is 
a conceptually more simple approach. Rather than derive an adjoint to perform the optimisation, 
we use a "brute-force" approach with standard optimisation software. We explore assimilation 
window lengths ranging from 1 month to 2 years. 

Gravity Observations The Bouger slab approximation is obtained by calculating the gravitational 
attraction of a subterranean right vertical cylinder, and extending the radius of the cylinder to in­
finity [Telford et al., 1990]. In this way the density of the slab multiplied by its thickness is directly 
proportional to the gravity. However, there is a change in gravity if the density is held constant 
but there is a change in height (useful for representing water table fluctuations), or if the height of 
the slab is maintained and its density is varied (useful for modelling gravity changes due to vol­
umetric soil moisture variation). It should be noted however that the Bouger slab approximation 
is independent of depth to the source, so that large magnitude hydrological changes result in large 
magnitude modelled gravity even if the changes take place far underground (e.g., deep water table 
fluctuations). 

Discussion Starting from poor initial conditions a number of simulations will be made for the 2 
year time period. Both assimilation and non-assimilation predictions of soil moisture, ground­
water and gravity will be compared with the truth and observation data. It is expected that the 
largest magnitude changes will be most accurately retrieved (usually groundwater table fluctua­
tions) and that the assimilation will be ineffective for the smallest magnitude changes (near-surface 
soil moisture). This is particularly so if the Bouger slab model is used as it assumes independence 
of depth to source, contrary to the inverse distance square law of gravity. It is also hypothesised 
that maximum sensitivity will be obtained by having the water storages in terms of dimensionless 
volumetric water content rather than storage amounts. The longer assimilation windows are ex­
pected to give best results in the case of perfect model, forcing and observation data, but shorter 
assimilation windows are expected to give best results in the case of significant model and/or forc­
ing error. This is because the initial conditions can be changed more often to account for mass 
imbalances. Finally, assimilation of daily near-surface soil moisture data (as available from the 
AMSR-E satellite) together with the monthly gravity data is expected to yield the greatest soil 
moisture retrieval accuracy. The accuracy requirements of temporal gravity will also be explored 
through the addition of white noise to gravity observations. 

Acknowledgements This study is funded by Australian Research Council Discovery Project DP0343778 
and a Faculty of Engineering Scholarship from the University of Melbourne. 
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The GRACE (Gravity Recovery and Climate Experiment) mission of NASA and the German 
Aerospace Centre will provide global data sets of changes in earth's gravity field at unprece­
dented accuracy over the next several years. Hydrological processes occurring throughout 
the earth's surface lead to temporal changes in the distribution of mass which subsequently 
cause subtle changes in the earth's gravity field. Thus GRACE observations have the unique 
potential to provide the first-ever measurements of basin-scale changes in terrestrial water 
storage for monthly to annual time periods. Such observations show great promise in im­
proving our understanding and simulation of the global hydrological cycle with dear impli­
cations for climate change prediction. This paper examines die potential utility of GRACE 
by assessing the improvement in catchment-scale hydrological model prediction from as­
similation of basin-scale terrestrial water storage change observations. Using a conceptual 
rainfall-runoff model for the major catchments that comprise the Murray-Darling Basin 
(MDB) in Australia, synthetic twin studies are undertaken to explore the spatial disaggre­
gation of GRACE-type observations. A variational data assimilation scheme enables us to 
downscale monthly synthetic GRACE observations to the catchment scale. Application of 
GRACE to specific hydrological basins depends on the size of the basin and the magnitude 
of the storage change signal. In the MDB, measurements from a ground-based monitoring 
network in one major catchment have an annual amplitude of total water storage change 
of approximately 80 mm, with average monthly changes of 13 mm. The estimated uncer­
tainty in GRACE observations for the MDB is approximately 5 mm for monthly to annual 
water storage changes, suggesting that GRACE can improve catchment-scale modelling in 
the MDB through data assimilation. 
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Data assimilation of remotely sensed snow observations using an 
ensemble Kalman filter 
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Snow is a major component of the hydrologie cycle and can play an important role in water 
resources management, especially in mountainous areas like the western United States. Cur­
rent model-based approaches to hydrologie forecasting are limited by model biases and input 
data uncertainties, while ground based measurements have limited coverage and are unable 
to capture the spatial and temporal variability of snow properties. Remote sensing offers an 
opportunity for observation of snow properties, like area! extent and water equivalent, over 
large areas. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) on board the EOS Terra satel­
lite has been operational since early 2000, and provides snow cover information at 500 m spatial 
resolution which is appropriate for regional applications. However, visible wavelength sensors 
like MODIS are inhibited by cloud cover which causes temporal discontinuities. Furthermore, 
MODIS provides no information about snow water content Data assimilation offers a framework 
for optimally merging information from remotely sensed observations and hydrologie model pre­
dictions, and ideally overcoming limitations of both. A promising data assimilation technique that 
has found many applications in hydrology is the ensemble Kalman filter (enKF). The latter is a 
Monte Carlo variation of the traditional Kalman filter. Its most important advantage is the implicit 
propagation of error information through an ensemble of model states. This work describes the 
assimilation of MODIS snow areal extent data into a macroscale hydrologie model over the Snake 
River basin, where runoff is mainly snowmelt driven. The approach is built around the Variable 
Infiltration Capacity (VIC) macroscale hydrology model, which balances water and energy over 
each model grid cell at each timestep. The VIC model represents the effects of subgrid variability 
in soil moisture, vegetation, topography and precipitation. Model simulations were performed at a 
spatial resolution of 3° with a daily timestep. The state variables included snow water equivalent 
at each model elevation band. A snow depletion curve parameterization was used as the nonlinear 
observation operator of the enKF. Results showed that the enKF is an effective and operationally 
feasible solution for the assimilation of remotely sensed observations. The filter successfully up­
dated snow cover predictions by the model. Ground observation comparisons using SNOTEL and 
NCDC Cooperative Observer snow water equivalent and snow depth data, respectively, indicate 
that the filter estimates are an improvement over the "open-loop" VIC simulations. Additionally, 
the effect of the assimilation on streamflow and the potential of bias correction using data as­
similation are investigated. Finally, specific limitations regarding filter sub-optimality and model 
simplifications are discussed. 
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The state of the land surface plays a critical role in the land-atmosphere interactions, through 
the dynamic evolution of moisture and energy fluxes at the land surface. The current crop of 
Land Surface Models (LSMs) estimating these fluxes, however sophistically parameterized 
they might be, are still constrained by the underlying approximate model physics. With the 
advent of a variety of land surface remote sensing (LSRS) data products, better estimations 
of the dynamic state can be obtained by integrating these LSRS products into the predictive 
models. However, some major challenges to such data integration lie in the discrepancies 
associated with the spatial and temporal scales of the LSRS products and those of model 
predictions and the unknown, yet dynamic, errors associated with them. We consider two 
approaches for LSRS data assimilation. In the first approach, we treat soil moisture state as 
the prognostic variable, enabling us to set up an assimilation framework to update the soil 
moisture profile and thus the associated energy fluxes, using remotely sensed near-surface 
soil moisture. While in the second approach, we use several LSRS products as surrogate 
data to provide an index to the energy fluxes, which is then used to update the soil moisture 
profile. 

Numerous assimilation techniques of various levels of sophistication have been developed to as­
similate remotely sense near-surface soil moisture to predict the soil moisture profile through 
deeper layers. But some of the major issues to address while using LSRS and their derived prod­
ucts for assimilation are related to the propagation of errors in these products into the estimates of 
the fluxes at the model's scales, especially when both the scales are different. We have developed 
a multi-scale system [Kumar, 1999; Chintalapati and Kumar, 2004; Kumar and Chintalapati, 
2004] for assimilation of ESTAR-derived (Electronically Scanned Thinned Array Radiometer) 
near-surface soil moisture footprints into a land surface model at various spatial scales, run over 
a rectangular domain in the sub-humid environment of Southern Great Plains (SGP), Oklahoma. 
This system has a two step approach. In the first step, we use a multi-scale Kalman filter (MKF) 
to estimate near surface soil moisture and associated errors at a range of spatial scales (1 km to 
32 km) using remotely sensed near surface soil moisture footprints at 1 km scale, obtained from 
SGP97 hydrology experiment conducted from 16 June to 17 July 1997 [Jackson et al, 1999]. 
Figure 4.13 compares the ESTAR footprint soil-moisture and the multiscale estimates for the res­
olutions 1,2,4,8,16 and 32 km, represented with scale indices 7 to 2 (7 being the finest), obtained 
using the above procedure, for 20 June 1997. Since the multiscale Kalman filter is a least squares 
estimation procedure, the estimated fields are smoother than the original. However, they capture 
the spatial variability of the soil-moisture in the domain, although the representation within the 
footprint region is significantly better across scales. 

In the second step, these estimates are assimilated into a land surface model using extended Kal­
man filter (EKF) algorithm to provide predictions of the entire soil moisture profile and energy 
fluxes at several scales. The simulation at each scale is run independently. Figure 4.14 shows 
the time series of daily average volumetric soil moisture of layers 1,2 and 3 (of LSM), to a total 
depth of 70 cm, at different spatial scales for a single station in the study domain referred to as 
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Figure 4.13: Soil Moisture estimates using multiscale Kalman filter with fractal model on 20th 
June (Julian day 171) at scale 7(1 km) to scale 2 (32 km) for the whole study domain. 
Also shown at the left end is the ESTAR soil moisture footprint image covering nearly 
one-third of the domain. The legend shows percentage soil moisture. 

ER05 (35.784°N latitude and 98.088°W longitude, grass and weeds over a rolling terrain). The 
in situ measurements at the station on two days (6 July and 15 July) are also shown. The 6 July 
(Julian day 187) measurement falls in a period with no assimilation for 2 days prior, while the 
15 July (Julian day 196) measurement is preceeded by assimilation for 4 consecutive days. Fig­
ure 4.14(a) compares the daily average predictions of the first layer at different scales. The EKF 
predictions at most of the scales agree well with the validation measurements on 15 July, while 
showing deviations from the validation data on 6 July. The predictions at the finest scale show 
deviation from both the validation data and predictions at other scales during the period of Julian 
days 182-185 and Julian days 193-197. These periods are characterized by a preceeding rainfall 
event in an assimilation period. Similar trends can be noticed in Figure 4.14(b), which compares 
the EKF predictions at different scales for the soil moisture in the second layer (10 cm to 30 cm). 
The EKF predictions agree with the validation data on 15 July in the presence of assimilation at 
most of the scales. For the third layer (30 cm to 70 cm) in Figure 4.15, the EKF predictions do 
not show the consistency observed across scales in the first two layers during the early periods, 
but the consistency improves during the later part of the study period, especially during the last 
week. Although these validation results are a little disconcerting in that the predictions do not 
match the observations closely, they are an indicator of the inherent challenge in the prediction of 
soil moisture profile. 

Though lot of research is being done to obtain remotely sensed near surface soil moisture as a 
reliable data product, the current coverage and spatial and temporal scales of the same have lim­
ited applications in land surface modeling. However, several other LSRS products are available 
as reliable global coverage data at desired spatial and temporal scales, which can be incorpo­
rated either directly or indirectly into LSMs to obtain reliable estimates of moisture and energy 
fluxes. As a second approach, we use LSRS products derived from radiation measurements by 
MODIS (MODerate-resolution Imaging Spectrometer) instrument flying on Terra and Aqua satel­
lite platforms. These LSRS products are: Land Surface Temperature (LST), Vegetation Indices 
(NDVI/EVI), Fractional Vegetation Cover and Leaf Area Index (LAI). These data products, along 
with various Atmospheric Boundary Layer (ABL) variables (such as layer depth, pressure, humid­
ity, wind speed, potential temperature, LW and SW radiation) obtained either as an output from an 

170 



CAHMDA-II workshop Session 4 Chintalapati 

(a) Layer 1 

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

1 I J ^ \ Jy ^ • Jt 
J i • ik Ï7 *WJB A 

* / ^ ƒ \ // i ^ 
l \ I w i 1 If 1 1 A 

\ / \ * > 

—•—1 km 

2km 

- - - 4 km 

- * - - 8 k m 

- -A- 16km 

- e — 3 2 km 

• Valid. Measr. 

- i » » » • i 11 

169 172 175 178 181 184 187 190 193 196 

Julian Day 

(b) Layer 2 

169 172 175 178 181 184 187 

Julian Day 
190 193 196 

Figure 4.14: The time series of volumetric soil moisture at station ER05 shown at different scales, 
(a) 1st layer and (b) 2nd layer. Also shown are validaiton measurement values at 2 
time points with their standard deviations. The days on which the assimilation is 
performed are marked as dots on the time axis. 
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Figure 4.15: The time series of volumetric soil moisture at station ER05 shown at different scales, 
(c) 3rd layer. Also shown are validaiton measurement values at 2 time points with their 
standard deviations. The days on which the assimilation is performed are marked as 
dots on the time axis. 

atmospheric model or measured, are used in the Surface Energy Balance System (SEBS) frame­
work [Su, 2002; Li et al., 2002] to obtain estimates of energy fluxes. These fluxes will then be 
assimilated into LSM at relevant spatial and temporal scales to update the soil moisture profile and 
associated fluxes at various spatial scales. The SEBS framework will be used in conjunction with 
LSM, so as to take advantage of more accurate parameterization from SEBS and the underlying 
physics representation in LSM, thus developing a blended system. 
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Flooding is the result of complex interactions between the components of water cycle. Fore­
casting of a such catastrophic events requires a completely integrated approach (models and 
data) for the hydro-meteorological prediction chain. Actually, model components only lead 
to an approximation of the geophysical reality because models formulation, computational 
approach, inputs are all sources of uncertainty. Flash flood events are usually generated by 
heavy convective precipitations over a relatively small area but catchment hydrology plays 
a major in their occurrence. Thus, the transformation of rainfall into runoff is one of the 
most critical components for flash flood analysis. Recently, distributed hydrological models 
became an attractive alternative for the modelling of watershed hydrology but limited knowl­
edge of all model inputs, initial conditions and observation of the hydrological response make 
the underlying problems of calibration, sensitivity analysis and uncertainty analysis very 
challenging. Variational methods provide a framework to carry out both sensitivity analysis 
and data assimilation. Sensitivity analysis is a key issue for providing physical insight into 
the model dynamics, ranking the sources of uncertainty and variational data assimilation is 
a good alternative to solve the key estimation problems. The potential of this technique will 
be discussed and illustrated for a flash flood model. Perspectives will be raised on the poten­
tial of a "continuous" monitoring and forecasting of land surface and atmospheric variables 
at larger scales. 

Forward and Adjoint Models The underlying physics is of the model (MARINE) developed by 
Estupina-Borrell et al. [2000] is adapted to events for which infiltration excess dominates the gen­
eration of the flood. Therefore, for the temporal and spatial scales of interest rainfall abstractions 
by infiltration are evaluated by the Green Ampt model and the resulting surface runoff (hillslope 
flow) is distributed using the kinematic wave approximation. Lastly, river flow is routed with 
the full Saint-Venant equations, ID or 2D depending on the valley configuration. The river hy­
draulics component will not be discussed in this paper. Event and physically based models like 
MARINE focus only on the physical processes of interest for the transformation of rainfall into 
runoff. Therefore, they are easier to set up, have lower computational cost and require less pa­
rameters to be calibrated. However, they have short term memory (antecedent conditions should 
be provided) and the prescription of consistent parameters associated with the model formulation 
is a challenging task. An adjoint model developed using automatic differentiation techniques is 
a flexible tool for sensitivity analysis and parameter estimation trough data assimilation. For the 
theoretical point of vue, the homogenous part of the adjoint model does not depend on the chosen 
objective function, from the algorithmic point of vue, only the part of the adjoint code gradient 
of the model response should be updated. MARINE adjoint model was developed using TAPE-
NADE, a tool developed by Hascoët et al. [2003]. Then, extensive verification and validation were 
carried out, sensitivity and data assimilation experiments were carried out in order to illustrate the 
potential of this technique for catchment scale hydrology. They will be detailled in the following 
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sections of the paper. 

Adjoint sensitivity analysis Catchment scale models sensitivity to spatial and temporal variations 
in precipitations received significant attention but the effect of runoff controlling factors (slope, 
soil infiltration capacity and land use) spatial variability is often completely underestimated. The 
rainfall-runoff relation is the typical case where dimension of the system response to be analysed 
is small compare the number of input parameters to be prescribed. In this case, the adjoint model 
is a very efficient alternative to compute the gradient of a response w.r.t the all parameters [see 
Cacuci, 2003, for a recent theoretical basis]. Appropriate measures of the model response were 
chosen and the adjoint model yields to the sensitivity of the model to input parameters. Spatial 
and temporal patterns of sensitivities can be obtained and a normalisation of the sensitivity fields 
allows analysis of the relative parameters contribution to the hydrologica] response. However, 
adjoint sensitivity analysis study the behavior of the system locally around a chosen point (local 
sensitivity analysis) given by a set of input parameters and forcing conditions. The influence of 
the chosen point on the analysis will be demonstrated and perspectives will be raised on global 
sensitivity analysis. 

Variational data assimilation After extensive understanding and ranking of the sources of un­
certainty for the given model structure, model calibration and/or updating which is very difficult 
problem for distributed catchment scale models is studied. Following the original idea suggested 
by Le Dimet and Talagrand [1986] for meteorology, the adjoint model is used in the variational 
data assimilation framework to compute the gradient of a misfit cost function between model 
results and observations. This gradient is used in an optimization algorithm to find the control 
vector (parameters to be estimated) leading to the lower value for the cost function. However, the 
parameter estimation issue for the rainfall-runoff transformation seem to be a pathological case of 
inverse problems. In fact, the component driving the partition of rainfall into infiltration and runoff 
is below the ground surface and observations of the catchment response to rainfall forcing is often 
only available at the basin outlet. In order to validate the algorithm synthetic observations were 
used for illustrative examples of the estimation problem for which the control space was arbitrarily 
simplified. A discussion on the possible methods to reduce the control space (parameterization) 
using identified spatial trends and correlations in the fields to be estimated using remote sensing 
data will conclude this part. 

Conclusions and perspectives Sensitivity analysis and improvement of flash flood prediction by 
the assimilation of remote and in situ measurements and its relation to other components of the hy­
drologie cycle will be discussed for an event based flash flood model. During inter storms periods, 
understanding of the hydrological processes should be improved using more complex hydrological 
models which can benefit from the increasing sources of information at larger scales. The adjoint 
technique with the advent of powerful automatic differentiation tools for its practical implemen­
tation seem to be a very interesting alternative to solve numerous problems related to catchment 
scale modelling and data assimilation (sensitivity and uncertainty analysis, data assimilation, error 
propagation, error control, model coupling ...). In the future, the prediction of flash flood events 
will require interactive meteorological, hydrological and hydraulics models to be used in combi­
nation and include the use of all available data sources for the forecasting of the time and space 
distribution of both the rainfall and the resultant flooding. 
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Assimilation of observed discharge records into a lumped 
land-surface scheme using an extended Kalman smoother 

Valentiin R.N. Pauwels1 and Niko E.C. Verhoest1 

1 Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium 

The study of the relationship between precipitation and catchment discharge has always 
been one of the major interests in hydrology. The study of the processes which describe 
the partitioning of the incoming solar and atmospheric radiation into latent, sensible, and 
ground heat fluxes, and the partitioning of the precipitation into surface runoff, infiltration, 
and évapotranspiration, has lead to the development of Soil-Vegetation-Atmosphere Trans­
fer Schemes (SVATS). It is well known that results from SVATS are prone to errors due to 
a variety of reasons, which can be errors or oversimplifications in the formulations of the 
model physics, and errors in the meteorological forcing data. Other reasons are the lack of 
soil, vegetation, and topographic data at a sufficiently high resolution and/or errors in these 
datasets. If observations of the model state variables or fluxes are available, these observa­
tions can be combined with the model results to reduce the errors in the model results. The 
updating of the model state with externally measured variables is commonly referred to as 
data assimilation. A wide variety of studies have put data assimilation in practice. These 
studies usually focus on the assimilation of observations of the surface soil moisture content 
and/or temperature. Due to the large spatial scales at which these models frequently need to 
be applied, one has to rely on remote sensing data for the observation of these variables. Al­
though it has been proven that the assimilation of remotely sensed data can lead to an overall 
increase in model performance, remote sensing data usually have a larger uncertainty than 
in-situ observations, and are usually available at a coarse spatial and temporal resolution 
(e.g., weekly or monthly products). Because of these drawbacks, an alternative to using re­
mote sensing observations is the use of catchment discharge observations in order to update 
the modeled soil moisture state. Although the assimilation of discharge observations into em­
pirical models for the purpose of flood forecasting has been studied for three decades [Wood, 
1980], the possibility to improve results of physically-based models through the assimilation 
of discharge observations has up to this data remained unexamined. The objective of this 
presentation is the demonstration of the possibility to improve SVATS results (in this case 
modeled latent heat fluxes and soil moisture content) through the continuous assimilation of 
discharge observations. 

Test site and Data used The study is conducted entirely in the Zwalm catchment in Belgium. 
Figure 4.16 shows the location of the Zwalm catchment. The total drainage area of the catchment 
is 114 km2 and the total length of the perennial channels is 177 km. The maximal elevation differ­
ence is 150 m. The average year temperature is 10°C, with January the coldest month (mean tem­
perature 3°C) and July the warmest month (mean temperature 18°C). The average yearly rainfall 
is 775 mm and is distributed evenly throughout the year. The annual evaporation is approximately 
450 mm. For a further description of the Zwalm catchment, we refer to Trochet al. [1993]. 

Meteorological forcing data with an hourly resolution from 1994 through 1998 are used in this 
study. These data were prepared based on daily observations of air temperature and humidity, solar 
radiation, wind speed, and precipitation, from the climatological station located in Kruishoutem, 
approximately 5 km outside the catchment. Except for precipitation, the daily data were resam-
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Figure 4.16: The location of the Zwalm catchment 

pled into hourly time-steps using the average diurnal cycle from discontinuous observations of 
these variables inside the catchment from 1991 through 1993. The daily precipitation was resam-
pled into hourly time steps by reseating hourly observations from the weather station of Uccle 
(located approximately 10 km outside Brussels) to the weekly totals of the Kruishoutem weather 
station. Pauwels et al. [2002] give a detailed description of this rescaling algorithm. Discharge 
observations at the outlet of the catchment are available at an hourly time step. Finally, a Digital 
Elevation Model (DEM), a digital soil texture map from the Belgian National Geographic Insti­
tute, and a SPOT-derived land cover classification map from 3 August 1998, are available at a 
30 m resolution. 

Model description The model used in the study is the TOPMODEL [Beven and Kirkby, 1979] 
based Land-Atmosphere Transfer Scheme (TOPLATS). The model was originally developed to 
simulate the surface water and energy balance for warm seasons [Famiglietti and Wood, 1994; 
Peters-Lidard et al, 1997]. The hydrologie dynamics of the model has as its foundation the con­
cept that shallow groundwater gradients set up spatial patterns of soil moisture that influence 
infiltration and runoff during storm events and evaporation and drainage between storm events. 
The assumption is made that these gradients can be estimated from local topography (through a 
soil-topographic index, Sivapalan et al, 1987). From this foundation, the model was expanded 
to include infiltration and resistance-based evaporation processes, a surface vegetation layer and 
a surface energy balance equation with an improved ground heat flux parameterization, and the 
effect of atmospheric stability on energy fluxes [Famiglietti and Wood, 1994; Peters-Lidard et al., 
1997]. More recently, winter processes (frozen ground and a snow pack), an improved water 
and energy balance scheme for open water bodies, and a two-layer vegetation parameterization 
were added [Pauwels and Wood, 1999a]. Application to the Zwalm catchment [Pauwels et al, 
2001, 2002] and to field experiments such as FTFE [Peters-Lidard et al, 1997] and BOREAS 
[Pauwels and Wood, 1999b, 2000] have proven that the model can adequately simulate surface 
energy fluxes, soil temperatures, and soil moisture. For a detailed description of the model, we 
refer to Famiglietti and Wood [1994], Peters-Lidard et al [1997], and Pauwels and Wood [1999a]. 
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The lumped version of TOPLATS is used in this study. 

Methodology Model simulations are performed at an hourly time step, using a six-interval distru-
bution of topographic indexes, and seven land cover classes. The assimilation algorithm used in 
this study is based on the Fixed-Lag Extended Kalman Smoother (EKS), which is a extension to 
the Fixed-Lag Kalman Smoother (for linear systems) from Cohn et al. [1994]. The state vector 
consists of the modeled soil moisture for every interval in the land cover and topographic index 
distributions, for both the current time step, and the previous time steps, up to the concentration 
time (ncAt) of the catchment: 

Xk = \ 5*A» j*A» s(k-l)ùi |(*-1)A» _ j(k-ne)ùa g.k-nc)At 1 

S = [OuO,] (4.14) 

^ = [ 8i,i ... 61,^, 62,1 ... 62^, ... 6„,,i ... 6„(>nv J 

with 6 the soil moisture content, the subscript u referring to the upper soil layer, the subscript I re­
ferring to the lower soil layer, nv the number of land cover classes, n, the number of intervals in the 
distribution of the topographic index, nc the number of time steps at which surface runoff gener­
ated at the furthers point in the catchment reaches the outlet, z the catchment averaged water table 
depth (m), T the transpose operator, and At the time step (s). The vector with the observations 
consists of the observed discharge at time step kAt: 

Zk = [Qk\ (4.15) 

with Qi the observed discharge at time step iAt. The fundamental difference between the EKS and 
the traditional Extended Kalman Filter (EKF) is that in the latter the observations are a function 
of the current state only, while in the EKS the observations are a function of the model state at the 
current time step through the current time step minus the concentration time of the catchment: 

Zk = * ( * , xk-i, ..., **_„, ) (4.16) 

The modeled discharge at each time step is routed to the outlet of the basin using the unit hydro-
graph approach of Troch et al. [1994]. Using this approach, the catchment wetness conditions are 
updated for all time steps prior to the current time step which have an influence on the modeled 
discharge at the current time step. 

A baseline run will first be established in order to check the model performance without data 
assimilation. The routed modeled discharge data will then be used as observed discharge values 
in a twin experiment The model initial conditions and meteorological forcings will be disturbed 
to varying degrees, and the improvement in the model results caused by the assimilation of the 
observed discharge data will be quantified. The discharge observations will also be disturbed in 
order to assess the required accuracy of the discharge data for the purpose of data assimilation. 
Finally, the in-situ observed discharge data at the Zwalm catchment will be assimilated in the 
model run using the non-disturbed observed meteorological forcings, and the change in the model 
results will be quantified. 

Anticipated results The expected results trom this study are an understanding of the possibility 
to improve model results through the assimilation of observed discharge data, and the required 
accuracy and temporal resolution of these data in order to be useful for data assimilation. 

Acknowledgement The lead author was, during the course of this work, funded by the Foundation 
for Scientific Research of the Flemish Community (FWO-Vlaanderen). 
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Snow data assimilation via ensemble Kalman methods 

A.G. Slater1 and M.P. Clark1 

1 CIRES, University of Colorado, Boulder, Colorado, USA 

A snow data assimilation study was undertaken in which real data was used to update a 
conceptual snow model, SNOW-17 [Slater and Clark, 2004]. 

Within this model we implemented the Ensemble Kalman Filter (EnKF) and direct insertion as­
similation methods. The research is based on the philosophy that calibration of the model allows 
it to capture the mean characteristics (or low frequency) of the system, while the assimilation pro­
cess aids in capturing the high frequency events, thus model parameters remain constant across 
the ensemble. The study is based on use of individual stations in which ensembles of model 
forcing (temperature and precipitation) were stochastically generated by modeling the errors of 
regression based interpolation equations {Clark and Slater, 2004]. In each case, data from sur­
rounding stations was used to produce the estimate at a given station, while measurements taken 
at the particular station were excluded from the procedure and provide an observed truth. Gen­
erating appropriate forcing data for use in the EnKF is an important step as it should encompass 
the forcing uncertainty. Figure 4.17a shows the results of the precipitation estimation at a sample 
point, indicating a large spread. The data to be assimilated into the models, that is, our interpolated 
estimates of snow water equivalent, were generated in the same fashion as the forcing data using 
the surrounding SNOTEL stations and error estimates are gained via cross validation. SNOTEL 
stations provide point measurements whereas the model operates over an area, thus as part of the 
assimilation process we transformed our observations into model (i.e., areal) space. 

Figure 4.17b shows control simulation results by SNOW-17 in which the models were simply 
forced with all the different ensembles. Of note is that sometimes the true observations don't fall 
within the model results. This suggests that we are not accounting for all uncertainty within the 
system through just the forcing ensemble. The model structure and parameter choices also con­
tribute to the total uncertainty of any one simulation. Results from a 20-day assimilation cycle 
using the EnKF and simple direct insertion are shown in Figures 4.17c and 4.17d respectively. 
These results indicate that different assimilation methods can present both advantages and disad­
vantages for any particular situation, hence it is desirable to examine various methods. The spread 
of the ensemble is clearly reduced in both cases but the zero error dependence of observations 
under direct insertion can lead to spurious situations such as in February 1990. The error of such 
a situation could be further amplified if a forecast was to be projected from these estimated initial 
conditions. An additional advantage of the EnKF is the simultaneous updating and information 
propagation to other state variables of the model; a matter that becomes more important as com­
plexity increases in the model. 

Future work includes coupling the current model to a soil moisture and streamflow model as well 
as a rigorous assessment of assimilation against observed gauge flows. 
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Figure 4.17: Results for Willow Park, Colorado (40.43°N, -105.73°E, 3261 m) f or the water year 
1989/1990. Ensemble results are given in light gray, while truth is plotted in the black, 
showing: a) the ensemble of cumulative precipitation forcing; b) control simulations 
performed by SNOW-17; c) results from using an Ensemble Kalman Filter where 
mid-gray boxes are our estimated observations, complete with error estimates; and 
d) results using direct insertion where the mid-gray boxes are the same estimated 
observations as in (c). 
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Soil moisture initialization for climate prediction: Assimilating SMMR 
into a land surface model 
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Current climate models for seasonal prediction or water resource management are limited 
due to poor initialization of land surface soil moisture states. Passive microwave remote sens­
ing provides quantitative information on soil moisture in a very thin near-surface soil layer 
at large scale. This information can be assimilated into a land surface model to retrieve 
better estimates of the soil moisture states. A Kalman filter-based data assimilation strat­
egy has been implemented in the catchment-based land surface model (CLSM) used by the 
NASA Seasonal-to-Interannual Prediction Project (NSIPP). In our previous study, we have 
characterized the model error and the remote sensing measurement error. In this study we 
assimilated Scanning Multifrequency Microwave Radiometer (SMMR) data for the period 
of 1979-1987 and compared the resulting soil moisture with in-situ measurements collected 
in Russia, Mongolia and China. Two data assimilation methods are used, one is to adjust the 
data assimilation parameters so that the model error and measurement error is consistent 
with the true values from our previous study, the other is to use one consistent data assimila­
tion parameters. Our comparison results indicate that the first approach improves our soil 
moisture estimation over either by model or remote sensing alone and the second approach 
improves at least the rootzone soil moisture estimation. We discuss the possible reasons for 
the above results and investigate an operational approach to apply the ensemble Kalman 
filter to initialize soil moisture content for seasonal climate prediction. 
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Computational approaches for large-scale hydrologie problems 
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Many of the data assimilation challenges encountered in hydrology are similar to those in 
other earth sciences. Particularly important are (1) nonlinearity, (2) high dimensionality, 
and (3) measurement and model uncertainty. The practical implications for hydrologie ap­
plications depend significantly on the distinctive aspects of land surface systems. These sys­
tems are quite heterogeneous, exhibiting significant spatial variations in topography, soil 
properties, and vegetation over a wide range of scales. Meteorological inputs to land surface 
systems (e.g., precipitation, air temperature, wind speed, etc.) vary over both time and space, 
also over a wide range of scales. A number of land surface states are constrained by thresh­
olds (e.g., potential évapotranspiration) which themselves depend on the states. Finally, the 
relationships between land surface states and measurements can be nonlinear and are often 
influenced by state-dependent errors. All of these effects combine to create complex behav­
ior that can be difficult to capture with traditional data assimilation methods. Alternatives 
to traditional methods are conceptually attractive but also tend to be more computation­
ally demanding. This paper considers some computationally efficient techniques for dealing 
with large nonlinear hydrologie data assimilation problems. The methods of interest are de­
veloped from a Bayesian perspective that relies on ensemble statistics. Particular emphasis 
is given to multi-scale extensions of ensemble Kalman filtering. These techniques exploit 
changing space-time correlations in land surface states by introducing continually changing 
low-dimensional approximations for the update step of the filter. Other potentially promis­
ing methods for dealing with large nonlinear problems are also considered, with an emphasis 
on the tradeoffs implied whenever approximations are introduced to improve efficiency. 
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Data assimilation for estimating regional water balance using 
constrained ensemble Kalman filtering 
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The assimilation of observational data into a regional water balance model often results in 
non-closure of the balance equation. This non-closure can be avoided through the imple­
mentation of the Constrained Kalman Filter in which the balance equation is preserved. 
When the balance equation is parameterized through a non-linear land surface scheme, an 
ensemble data assimilation approach allows for a computationally efficient approach. The 
presentation develops the assimilation approach underlying the constrained ensemble Kal­
man filter (CEnKF) and applies the approach to estimating the regional water balance. 

The constrained ensemble Kalman filter (CEnKF) approach for regional water budget estimation 
has the following advantages, which are: (1) allows the state dynamics to be represented by a 
complex, non-linear terrestrial land surface model; (2) assimilates various sources of observations 
and measurements, like streamflow, mean areal precipitation, tower estimates of évapotranspira­
tion, etc.; (3) provides optimal updated terrestrial states and fluxes given the uncertainties in the 
modeled and observed values; and (4) obtain closure of the water budget with the updated states 
and fluxes. 

The constrained ensemble Kalman filter is applied to estimate the water budget over the Southern 
Great Plain region of the U.S. using data collected from a variety of station and gauge data are 
available. 
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Ensemble land surface modeling using satellite-based precipitation 
forcing 

Steven A. Maraulis1. Dara Entekhabi2, and Dennis McLaughlin2 
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Precipitation is the key forcing variable for land surface hydrologie processes and is largely 
responsible for variability in soil moisture and surface flux fields. The measurement of pre­
cipitation over large scales is difficult due to its inherent spatial and temporal intermittency 
and the lack of sufficiently dense ground-based monitoring networks in many regions of the 
globe. Methods for remotely sensing precipitation are now generally available, but provide 
estimates that are spatially coarse (e.g., tens to hundreds of kilometers), aggregated in time 
(daily to monthly), and have complex error structures (positive non-detection probability, 
non-zero false alarm rate, large uncertainty, etc). Due to the nonlinearity of surface hydro-
logic processes, these products cannot be directly used in modeling studies. Furthermore, for 
accurate hydrologie state and flux predictions it is crucial that uncertainty in these estimates 
must be properly incorporated into modeling frameworks. In this paper we present a uni­
fied ensemble data assimilation framework that contains a spatio-temporal disaggregation 
scheme for remotely sensed Global Precipitation Climatology Project-1 degree daily (GPCP-
1DD) precipitation product. A detailed study of the error characteristics of the GPCP 1DD 
precipitation forcing is undertaken and then incorporated in the framework. The spatio-
temporal disaggregation scheme takes advantage of the ensemble nature of the Ensemble 
Kalman Filter (EnKF) by introducing precipitation realizations that are conditioned on the 
remote sensing data. The ability to use coarse precipitation observations is tested in exper­
iments using data from the SGP97 field experiment. This approach not only captures the 
large scale spatial variability in precipitation contained in the remote sensing observations, 
but introduces a more realistic error structure in the precipitation forcing that accounts 
for errors in storm magnitudes, arrivals, and spatial structure. Results from tests using 
the remotely sensed precipitation show improvement in both soil moisture and land surface 
flux estimates over those using sparse ground-based precipitation. Furthermore the gen­
eral ensemble framework is easily adapted to assimilate other observations (e.g., microwave 
radiobrightness). 
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Using ensemble smoothing techniques to obtain dynamically 
consistent soil moisture and surface energy fluxes from radiative 
brightness temperatures 
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A reanalysis data assimilation framework in which remote sensing measurements are mer­
ged with a conventional land surface model to estimate soil moisture (surface and profile) 
and associated surface fluxes is presented. Land data assimilation using filters, such as ex­
tended or ensemble Kalman filters, ingests the data sequentially as they become available. 
The filtering approach is ideally suited to forecasting problems where the observations up 
to the current time are used to update the initial conditions for forecasts into the future. In 
land data assimilation, the problem is often reanalysis rather than forecasting: the objec­
tive is to obtain estimates of soil moisture or some state from data which has been collected 
using remote-sensing or in-situ techniques. The reanalysis data assimilation framework pre­
sented here uses smoothing rather than filtering, combining data from prior to and after 
an estimation time to form an estimate. Through use of additional information on how 
the system evolves, the smoothing approach yields improved estimates of the state at the 
present time. This is especially relevant for estimating profile soil moisture below the pene­
tration depth of observations. The correct estimation of the profile will significantly impact 
the surface evaporation estimates where vegetation is present. Traditional smoothers such 
as the Rauch-Tung-Striebel (RTS) smoothers are optimal batch estimators, just as Kalman 
filters are optimal sequential estimators. In their traditional form both are limited to lin­
ear systems. Linearization of the system equation in either the Kalman filter or the RTS 
smoother is seriously prone to unstable growth of the covariance matrices. Artificial lim­
its on the propagation of the covariance matrix can result in suboptimal filters and poor 
estimation. Ensemble techniques offer an alternative which avoids linearizing or having to 
find the adjoint of the model. This is particularly valuable in land data assimilation as it 
allows us to use a mainstream land surface model such as the NOAH LSM. Furthermore, 
ensemble techniques allow great flexibility in the specification of model and observation er­
ror. The framework presented here builds an ensemble smoother from a successful ensemble 
Kalman filter. Following initial testing using a linear model, the reanalysis framework was 
applied to the land data assimilation problem. Results will be presented which demonstrate 
the improvement in soil moisture estimates at the surface and at depth. 

A smoothing approach to soil moisture estimation Various filtering techniques have been used 
to estimate soil moisture. The extended Kalman filter was used by Entekhabi et al. [1994], Galan-
towicz et al. [1999], Walker and Houser [2001], and Crosson et al. [2002]. Using this approach 
requires that the forward model be differentiable so that it may be linearized. There is also po­
tential for divergence or bias in estimates in non-linear systems. The ensemble Kalman filter has 
been used in soil moisture estimation by Reichte et al. [2002], Margulis et al. [2002], and Crow 
and Wood [2003]. In both the extended Kalman filter and the ensemble Kalman filter, the filter 
proceeds sequentially through the study interval, updating the state estimate when an observation 
becomes available. Filtering is most suited to control-type or forecasting problems, where obser-
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varions are available in real-time. Smoothing, on the other hand, involves using all measurements 
in an interval T = [0,7], to estimate the state of the system at some time t where 0 < t < T. 
Therefore, the state estimate at a given time is determined by including information from subse­
quent observations. Smoothing is ideal for analyzing historic data or data which is not available in 
real-time, as is the case with data from field experiments (e.g., SGP97, SMEX02) and exploratory 
missions such as HYDROS and SMOS. As observations beyond the estimation time are avail­
able, using a smoothing approach rather than filtering includes additional information, thereby 
improving the estimate. 

Ensemble techniques Variational schemes such as 4DVAR use all observations in a given window 
to yield the best estimate of the state. However the variational approach requires that the tangent 
linear model and adjoint of the forward model be obtained. This limits the choice of land surface 
model that can be used. In an ensemble approach, an ensemble of states are propagated forward in 
time using the non-linear forward model. There is no need for a tangent linear model or adjoint, 
facilitating the use of conventional land surface models such as the NOAH LSM or NCAR LSM. 
At any time, the statistics of the ensemble can be calculated which provides a useful measure 
of certainty in the estimate. Through the use of a conventional land surface model, other states 
such as soil temperature and latent heat flux are produced along with soil moisture. In fact, other 
quantities such as latent heat flux could be estimated directly by including them in the state vector. 
Model error is not limited to additive gaussian noise. Noise may be included as appropriate, for 
example if uncertainty arises due to uncertain parameters the value of the parameter can be made 
random. Noise may be multiplicative and non-gaussian. 

Ensemble smoother algorithm This research focuses on the so-called batch estimation approach, 
in which all available observations are used together at one time. An augmented state vector is 
constructed by gathering the states of interest at each estimation time in some smoother window. 
All observations in the same smoother window are gathered into the augmented measurement 
vector. The augmented state vector is updated using the equations from the ensemble Kalman 
filter. The covariance matrices relate the soil moisture in each of six soil layers at any estimation 
time to all of the observations in the same smoother window. The length of the smoother window 
should be long enough to include all observations which are related to the current state without 
incurring excessive computational expense. 

Data assimilation framework The NOAH land surface model [Chen et al., 1996] was used as the 
forward model to propagate the states forward through the smoother window. It is a 1-D model 
of the soil column which outputs the soil moisture and temperature profiles as well as the surface 
water and energy fluxes. It was used in Margulis et al. [2002] with the ensemble Kalman filter, and 
is used in the NASA Land Data Assimilation System [Lohmann et al., 2004]. The model is forced 
with hourly data from the Oklahoma Mesonet. Temperature, humidity, wind, relative humidity and 
radiation data was available beyond the duration of SGP97 so it was used to generate a synthetic 
experiment from 1 May to 1 September 1997. The radiative transfer model used in Margulis 
et al. [2002] was used here to generate synthetic L-band microwave measurements every 3 days 
for the experiment duration, and to transform the states into the observation space for the update. 
Additive Gaussian observation error with standard deviation of 3 K was included. Model error 
was included by allowing four key parameters to vary within an expected range. Uncertainty 
was imposed on the porosity, saturated hydraulic conductivity, minimum canopy resistance and 
wilting point. Uncertainty was also included in the initial soil moisture profile, and in the amount 
and timing of precipitation forcing. 

Results Figure S.l demonstrates that the ensemble moving batch smoother, on average, yields 
an improved estimate over the ensemble Kalman filter, which in turn improves on the ensemble 
open loop. The greatest improvement due to smoothing is when the soil column is drying down 
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Surface Soil Molsture at El Reno 

Figure 5.1: Ensemble mean volumetric soil moisture in the top 5 cm of the soil column at El Reno 
is compared to the truth. The results are the first 30 days of a 4 month experiment. 
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Figure 5.2: Estimation Error Standard Deviation in the estimate of surface (0-5 cm) volumetric 
soil moisture at El Reno. Results demonstrate reduction in uncertainty after smoothing 
compared to filtering and the ensemble open loop. 
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following a precipitation event. The smoother can result in an estimate worse than the filtered 
estimate if information from beyond a subsequent precipitation event is propagated back in time. 
Figure 5.2 shows the Estimation Error Standard Deviation (EESD) in surface soil moisture at El 
Reno. The standard deviation across the ensemble is a measure of the uncertainty in the estimate. 
Clearly, the ensemble open loop is the least certain as it does not include any information from 
the observations. The filtered estimate is more certain than the open loop as observations are 
available every three days. Certainty is greatest in the smoothed estimate as the state estimate 
includes information from subsequent as well as prior observations. The filtered EESD reflects 
the error growth as the state is propagated between observations. The more symmetric pattern in 
the smoother EESD reflects the fact that information is travelling back in time through the interval, 
so subsequent observations are improving the estimate of the current state. 

Improvement in the soil moisture estimate and the improved confidence in the estimate was found 
in the surface soil moisture as well as the soil moisture at depth. In particular, the smoother was 
more effective than the filter in correcting for spurious initial conditions at depth. 
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The GSFC Land Information System as a multiscale ensemble 
hydrological modeling testbed 

CD. Peters-Lidard1, S.V. Kumar2, Y. Han2, J. Geiger3, RR. Houser1, J. Sheffield4, 
E.F. Wood4, K. Mitchell5, and P. Dirmeyer6 

XNASA, Goddard Space Flight Center, Hydrological Sciences Branch, Greenbelt, Maryland, USA 
2UMBC/GEST, NASA, Goddard Space Flight Center, Hydrological Sciences Branch, Greenbelt, 
Maryland, USA 
^NASA, Goddard Space Flight Center, Information Systems Division, Greenbelt, Maryland, USA 
4Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jer­
sey, USA 
5NCEP Environmental Modeling Center, NOAA/NWS, Camp Springs, Maryland, USA 
6Centerfor Ocean-Land-Atmosphere Studies, Calverton, Maryland, USA 

NASA Goddard Space Flight Center has developed a Land Information System (LIS*) based 
on the Land Data Assimilation Systems (LDASf) capable of global, distributed hydrometeo-
rological modeling at spatial resolutions down to 1 km. The LIS framework is resolution 
independent, and is also being tested for catchment-scale applications on grids CKlOm). LIS 
consists of an ensemble of land surface models (e.g., CLM, Noah, VIC, Mosaic) run offline 
using satellite-based precipitation, radiation and surface parameters, in addition to model-
derived surface meteorology. Satellite-based surface parameters include AVHRR-based or 
MODIS-based land cover and Leaf Area Index (LAI), and MODIS-based albedo and emis-
sivity. The high spatial resolution of LIS-enabled by the use of high performance computing 
and communications technologies-in addition to the extensible and interoperable design of 
LIS, make it ideal as a multiscale hydrological ensemble modeling testbed. We will present 
results demonstrating LIS applied globally at \ , S km and 1 km resolutions, as well as on a 
40 m grid for the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. Sev­
eral validation case studies conducted with LIS, including the Southern Great Plains, and the 
Coordinated Enhanced Observing Period (CEOP) reference sites, and the WGEW demon­
strate the impacts of appropriately downscaling meteorological data, and the value of the 
ensemble approach to hydrological modeling. 

*http : / / lis. gsf c. nasa. gov 
'http ://Idas.gsfc.nasa.gov 
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A Bayesian data assimilation approach to update states, parameters 
and structure of environmental models 

Hoshin Gupta1 and Thorsten Waaener1 

lSAHRA, University of Arizona, Tucson, Arizona, USA 

The use of data assimilation techniques to update model states is becoming increasingly pop­
ular. The short term bias in the model predictions can be largely reduced if adequate data is 
available. However, the temporal persistence of this bias reduction can be radier short and 
it is less helpful if long term predictions are required. It is likely that updating model pa­
rameters and maybe even model structural elements has a smaller effect on bias reduction, 
but that the temporal persistence will be much higher. A combination of both, the updating 
of states, and model parameters and structure is therefore highly desirable. 

A new Bayesian approach that allows for the assimilation of data into model states, parameter and 
even model structure will be presented. This approach enables the merging of data and models 
with few constraints stemming from underlying assumptions. 
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Sequential data assimilation framework for hydrologie 
state-parameter estimation and ensemble forecasting 

Hamid Moradkhani1. Soroosh Sorooshian1, Hoshin V. Gupta2, Paul R. Houser3, 
Kuo-lin Hsu1 

1 Civil and environmental Engineering Department, University of California, Irvine, California, 
USA 
2Hydrology and Water Resources Department, University of Arizona, Tucson, Arizona, USA 
^Hydrological Sciences Branch, NASA-GSFC, Greenbelt, Maryland, USA 

One of the primary purposes of hydrologie models is to perform prediction using physical 
relationships bounded by parameters and state variables. Much of the efforts in simulation-
based hydrologic-systems analysis have been primarily focused on (1) improved parameter 
estimation methods that do not include state variables or (2) improved time-varying state 
estimation with predetermined parameters. Although the parameters of a hydrologie model 
can be estimated in a batch-processing scheme, there is no guarantee that model behavior 
does not change over time; therefore model adjustment over time may be required. Addi­
tionally, due to the multiplicative nature of errors in forcing data and observation, it is pru­
dent to assemble the parameter adaption in the state evolution and forecasting system. The 
need for the real time state-parameter estimation of hydrological models has been reported 
in several studies [Todini et aL, 1976; Kitanidis and Bras, 1980; Bras and Rodriguez-Iturbe, 
1985; Young, 2002; Moradkhani et aL, 2004]. In this paper we extend the applicability of 
ensemble Kalman filter (EnKF), a recursive Data Assimilation (DA) technique, with Monte 
Carlo parameter smoothing to sequentially estimate model parameters and state variables. 
The applicability and usefulness of the current algorithm is demonstrated for the streamflow 
forecasting in Leaf River Watershed located north of Colins, Mississippi, using a conceptual 
hydrologie model, HyMOD [Boyle, 2000]. This methodology offers two additional features: 
(1) the various sources of uncertainties can be properly addressed, including input, output 
and parameter uncertainties, (2) unlike the batch calibration procedures; the algorithm is 
recursive and therefore does not require storage of all past information. 

Rcursive state-parameter estimation using EnKF Data assimilation techniques have garnered 
hydrologist's attention with the potential to use real time observations to produce more accurate 
hydrological forecasts. The basic objective of data assimilation is to characterize the system state 
at some future time given initial state knowledge. EnKF, a Monte Carlo approach of Kalman fil­
ter proposed by Evensen [1994] and later clarified by Burgers et al. [1998], is a DA algorithm 
suitable for nonlinear dynamic systems which uses a forecast model to integrate an ensemble of 
model states from one update time to the next and employs ensemble-based covariances in the up­
date step to address the uncertainty in state estimation. To extend the applicability of the EnKF to 
simultaneous state-parameter estimation, we need to treat the parameters similar to state variables. 
Combined estimation can be provided by joint estimation where state and parameter vectors are 
concatenated into a single joint state vector (state augmentation). An alternative approach to joint 
estimation is dual estimation; designed as two interactive filters motivated either by the need to 
estimate state from the model (parameters) or by the need to estimate the model from state [Morad­
khani et al, 2004]. In combined estimation, parameter evolution needs to be set up artificially, i.e., 
it is assumed that the parameters follow a random walk. The drawback of such parameter sampling 
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is the loss of information between time points resulting in posterior distribution of parameters that 
are too diffuse comparing to the posteriors of fixed parameters [Liu, 2000]. One remedy to this 
problem is to use the Kernel smoothing of parameter samples introduced by West [1993] wherein 
the conditional evolution density of parameters is written as follows: 

p(e,+1 |e,) ~ N (ej;1|ae;++(i -a)tf
+, h2v,) (s.i) 

Where, 0{+ and 0|~j are respectively the updated and forecasted parameter vectors of ïh kernel at 
time / and t +1, a is a factor ranging in 0.95 ~ 0.99, V, is the variance of normal kernels, and h is 
the smoothing parameter. 

The generic discrete-time nonlinear stochastic dynamic system and predictions in the EnKF frame­
work can be respectively expressed in the form of 

^ i = / ( ^ + > " J . e ; ; 1 ) (5.2) 

Ä+i = * (* f r i .e! ; i ) (5-3) 

Where JCJ+ and jcj~ j are updated and forecasted state ensemble members at time t and t +1 respec­
tively. «| is the perturbed forcing data according to \it = ut + Ç{, Q ~ N (0, £"). 

In the updating step, observation y,+\ needs to be perturbed in the amount of T|J+1, therefore 
parameters are updated as follows: 

e£îi = o£+i+«?+i Ov+i+nî+i - Ä + i ) . n l + i - * (o,<+1) (5.4) 

Where, Kf+l is the Kalman gain associated with the parameters [Moradkhani et al., 2004]. Now 
using the updated parameters, we regenerate the model state and prediction trajectories as follows: 

*fri=/(4M.e£i) (5.5) 

5*+i = * ( £ ! , < £ , ) (5.6) 

Model states ensemble is similarly updated as follows: 

Where AT*+1 is the Kalman gain associated with the state variables. The flowchart of dual state-
parameter estimation using EnKF with kernel smoothing of parameters is demonstrated in Fig­
ure 5.3. 

Results and Discussion The applicability and usefulness of the dual EnKF on state-parameter 
estimation of the conceptual Hydrologie MODel (HyMOD) described by Boyle [2000] was inves­
tigated (Figure 5.4). State variables in this system are S: storage in the nonlinear tank representing 
the watershed soil moisture content, x\, X2 and xy. the quick-flow tank storages representing the 
temporary (short-time) detentions, e.g., depression storages, and x* as the slow-flow tank stor­
age (subsurface storage). Correspondingly parameters of this model are Cm«, as the maximum 
storage capacity within the watershed, bap the degree of spatial variability of the soil moisture 
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Figure 5.3: Dual state-parameter estimation flowchart using ensemble Kalman filter and kernel 
smoothing of parameters. 
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Figure 5.4: Hydrologie MODel (HyMOD) conceptualization. 
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Figure 5.5: Time evolution of HyMOD model parameters for 3 years of dual ensemble filtering 
in Leaf River Watershed. Shaded areas correspond to 95, 75, 66 and 10 percentile 
confidence intervals. 
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Figure 5.6: Results of the dual EnKF by application to the HyMOD, [a] Precipitation (forcing 
data); [b] streamflow forecasting with 95% uncertainty range; [c] Soil moisture storage-
variation (storage in the nonlinear tank of the HyMOD model). The solid line denotes 
the mean ensemble prediction. 
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capacity within the watershed, a, a factor for partitioning the flow between two series of tanks, 
Rq and Rs as the residence time parameters of quick-flow and slow-flow tanks respectively. The 
system is initialized by defining the prior uncertainty range associated with the parameters and 
state variables. Figure 5.5 displays the time evolution of HyMOD model parameters after dual 
filtering for the water years of 1950-1953. As seen, quick flow tank parameter Rq is the most 
identifiable parameter by showing the fastest convergence with minimum degree of uncertainty 
comparing to the others. In contrast, the maximum storage capacity of the watershed displayed 
by Cmwc, is less identifiable than the others and shows the slowest convergence. Ensemble time 
variation of the key state variable, S, representing the watershed soil moisture content, along with 
streamflow forecasting as predictive variable in the system are demonstrated in Figure 5.6. The 
streamflow forecasting result is very consistent with the observation; as a result state estimation as 
non-observable quantity shown in Figure 5.6 could be a reliable estimate. 

In summary, the current algorithm introduces a number of novel features against the traditional 
calibration schemes: (1) both model states and parameters can be estimated simultaneously, (2) 
the algorithm is recursive and therefore does not require storage of all past information, as is the 
case in the batch calibration procedures, (3) the various sources of uncertainties can be properly 
addressed, including input, output and parameter uncertainties. 
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Study on parameter auto-calibration for large and complex 
distributed hydrologie model 

Shuaong Wang1 and Xin Li1 

1Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of 
Sciences, Lanzhou Gansu, China 

Sponsored by C AREERI, large and complex distributed hydrologie models are playing more 
and more important roles in the systematic research on the interaction of hydrology, soil, at­
mosphere and ecology in Heihe river basin, which is a very typical inland river basin in 
Northwest China. Several successful distributed and semi-distributed hydrologie models, 
such as TOPMODEL, Variable Infiltration Capacity Model (VIC) and Distributed Hydrol­
ogy Soil Vegetation Model (DHSVM) have been or will be used in this region. In comparison 
with conceptual model, distributed hydrologie model has much more parameters to be cali­
brated before application. Because of the large study area, lots of parameters can't be identi­
fied through field experiment or manual calibration. The high nonlinearity and discontinuity 
of distributed hydrologie model hinder the practical operation of traditional gradient based 
optimization approaches. Heuristics optimization algorithms, such as genetic algorithm and 
simulated annealing, without depending on the derivative of model, have been introduced to 
the calibration of distributed hydrologie model. 

Aimed at the parameter calibration of TOPMODEL and VIC, a set of genetic algorithms and 
simulated annealing algorithms have been designed. Nash-Sutcliffe coefficient has been as the 
objective function in these algorithms. Numeric experiments in serial computing environment 
show those two series of algorithms all have good capability in model parameter calibration, and 
genetic algorithms have better performance. Different coding scheme of genetic algorithm and 
the selection of annealing schedule and state generating function of simulated annealing algorithm 
impact the performance and computing time in varying degrees. 

As mentioned in many literatures, heuristic optimization algorithms spend much computing time 
and in some case, the computing time can not be stand. In order to shorten the computing time and 
improve the calibration performance, a MPI based master-slave parallel program for genetic algo­
rithm has been designed. MPI is shortage of Message-Passing interface, which is the industrial 
standard about parallel computing and is supported by Windows, UNIX and Linux operating sys­
tem. In the program, the master process controls the selection operation, crossover operation and 
mutation operation; the slave process only performs the fitness calculation. Numeric experiments 
on parallel computing environment (Dawning 1700 cluster server with four XRON 2.4GHz CPUs 
at each node) show that the parallel genetic algorithms are more capable in performance than the 
serial ones. 

Automatic calibration approaches provide a big opportunity to use large and complex distributed 
hydrologie model in river basins without good data availability. But like other inverse problem, 
there are still some uncertainties about the parameters identified through automatic calibration. In 
most cases, there are always several sets of parameters that they can maximize the Nash-Sutcliffe 
coefficient. Because of poor data availability, lots of parameters can't be verified by observed data. 
To determine which set is the best and most proper to distributed hydrologie model is our work in 
following steps. 
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Improved treatment of uncertainty in hydrologie modeling 

Jasper A. Vruort'. Cees G.H. Diks2, Hoshin V. Gupta3, Willem Bouten1, and Jacobus 
M. Verstraten1 

1 Universiteit van Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Department of 
Physical Geography, Faculty of Science, Amsterdam, The Netherlands 
2 Universiteit van Amsterdam, CenDEF, Department of Quantitative Finance, Faculty of Eco­
nomics and Econometrics, Amsterdam, The Netherlands 
* Department ofHydrology and Water Resources, University of Arizona, Tucson, Arizona, USA 

Hydrologie models use relatively simple mathematical equations to conceptualize and aggre­
gate the complex, spatially distributed and highly interrelated water, energy, and vegetation 
processes in a watershed. A consequence of process aggregation is that the model param­
eters often do not represent directly measurable entities, and must therefore be estimated 
using measurements of the system inputs and outputs. During this process, known as model 
calibration, the parameters are adjusted so that the behavior of the model approximates, as 
closely and consistently as possible, the observed response of the hydrologie system over some 
historical period of time. In practice, however, because of errors in the model structure and 
the input (forcing) and output data, this has proven to be difficult, leading to considerable 
uncertainty in the model predictions. This paper surveys the limitations of current model 
calibration methodologies, which treat the uncertainty in the input - output relationship as 
being primarily attributable to uncertainty in the parameters, and presents a Simultaneous 
Optimization and particle filter Data Assimilation method, entitled SODA, which improves 
the treatment of uncertainty in hydrologie modeling. The usefulness and applicability of 
SODA is demonstrated by means of a pilot study using data from the Leaf River Watershed 
in Mississippi and a simple hydrologie model with typical conceptual components. 
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