
Contents

Preface
Reference program
Chapter 1 Subprograms

1.1 Function-subroutine
1 .2 Use of CSPM history functions in

function-subroutines
1 .3 Subroutines

I ,;

1
2
2

7

9

Chapter 2 Communication between mainprogram and 14
subprograms

2. 1 List of arguments 14
2.2 Blanc COMMON 15
2.3 Variables that automatically occur in 17

CSMP-III COMMON
2.4 Labelled COMMON 17
2.5 To transfer data from CSMP-COMMON :to 18

labelled COMMON
2.6 Use of dummy's in labeled COMMON' 23

Chapter 3 FORTRAN statements in CSMP main program 24
3. 1 Use of REAL and INTEGER labels in main program 24

Chapter 4 26
4.1 To force output at prdel 26
4.2 Use of more than 25 fixed variables 27

References 29

Appendix: Modifications necessary to execute examples on 30
IBM PC-AT machines

Example contents

no title

Reference CSMP program
1a Function-subroutine with LINFUN
1b Function-subroutine with FAFGEN
2 Function-subroutine with history function
3 Subroutine cylinder geometry
4a Subroutine CSMP way of calling a subroutine
4b Subroutine FORTRAN way of calling a subroutine

in a PROCEDURE
4c Subroutine FORTRAN way of calling a subroutine

in a NOSORT section
5 Application of blanc COMMON
6 Application of labelled COMMON, cylinder geometry

as in example 3

8

~AILllliJ~~t i 0 l'L~QJ'~~~la"Q~11~qj~QM1YIQR, me O_r:tV ~ !:~J Qn~~~() f
array integral values in double array values
for calculation~ similar in.structure and
the reverse~": ·' : _ .-, :.,.>,,://1'.:,~· · ', ·
To for·ce . ou'-bJ?ut at PR):Y~:p;:;:·.ifh;~~f{-no- ,CSMP PRINT or
OUTPUT is used 'and wri tihg simulation timings
tp the TTY screen during simulation
Us~ of more than 25 variables·un-FIXED label

page

1
4
6
8
11
13
13

13

16
19

22

26

28

Preface

The members of the department of Theoretical Production
Ecology, in their August 1985 meeting, have decided to develop a
(sub-) program library for common use.
Subprograms to be included should describe processes and algorithms
which are frequently needed by a number of people, who now all
develop their own program versions for these processes.

To develop, read and update subprograms, however, one has to
have a thorough working knowledge of CSMP-III, FORTRAN and
particularly of the combined use of these computer languages.
This (first) report aims to summarize some knowledge on the
combined use of these computer languages by giving examples of
applications in the form of small computer programs.

It is hoped that the examples will give inspiration to develop
more structured programs possibly containing less errors, both with
respect to conceptual errors and programming errors. The main
consequence of such well written programs should be that less time
is wasted to understand the modeling concepts of fellow workers.

Though it was tryed to develop general CSMP-FORTRAN examples,
sometimes specific VAX commands are needed to execute the programs.

In the appendix of this report, a description is given of the
modifications necessary to execute the examples on IBM PC-AT
machines.

I welcome comments and worked out suggestions from readers.

P.A. Leffelaar
March 1986.

Reference program

The following CSMP-simulation program calculates exponential
growth with a temperature dependent relative growth rate.
Some examples to clarify the use of subroutines and
function-subroutines are derived from this program. (See
Simulation of ecological processes by C.T. de Wit and J.
Goudriaan, 1978, page 15).

TITLE Reference CSMP program (RELGROW.CSM).
TITLE Expon. growth with temp. dependent rel. growth rate
INITIAL
PARAM AVTMP
FUNCTION RGRTB

20., AMPTMP = 10.
(o.o,o.oo),(1o.,o.o8),(2o.,o.16), •••
(30. ,0.21) '(40. ,0.24) '(50. ,0.25)
48., OUTDEL = 1. TIMER

METHOD
OUTPUT
PI
DYNAMIC
A
GR
RGR
TEMP
END
STOP
END JOB

FINTIM
RKS
A, RGR, GR

4.*ATAN(1 .)

INTGRL(1 .,GR)
RGR*A
AFGEN(RGRTB,TEMP)
AVTMP + AMPTMP*SIN(2.*PI*TIME/24.)

CHAPTER 1

Subprograms

By using Subprograms it is possible to make larger programs
than CSMP allows. Subprograms are written according to the
standard FORTRAN rules.

1.1 Function-subroutine

The Function-subroutine is used to develop
functional-blocks, which have a single output-variable.

- Output takes place through NAME of function-subroutine or
possibly through (labelled) COMMON (see par. 2.2 ~2.4)
Type-declaration of NAME in calling subprogram and in
definition of function-subroutine necessary.

- At least one argument between brackets should follow NAME of
function-subroutine or only brackets, e.g. ()
In CSMP the function-subroutine's NAME is automatically
declared real, also when starting with an I, J, K, 1, M, or
N.
CSMP-statements excluded from use in function-subroutines
are:

INTGRL, IMPL, MODINT, REALPL, CMPXPL, LEDLAG, PIPE,
TRANSF, and any user defined macro.

2

- Lay out of a program with function-subroutine:

TITLE .••••....
I
I
I
I

A= NAME(IN1 ,IN2) + NAME(IN3,IN4)
I
I

END
STOP

REAL FUNCTION NAME(INA,INB)
IMPLICIT REAL (A-Z)
DIMENSION

I
I
I
I

RESULT
NAME
RETURN
END

RESULT

END JOB

Note: 1. NAME= RESULT is recommended to be the last
statement in function-definition for clarity.

2. Variable dimensioning is only possible for
variables mentioned in the list of arguments.

- type declaration of NAME on a "/ REAL"-statement must
not be given in CSMP program (see par. 3, 3.1).

- IMPLICIT REAL (A-Z) is used to have similar variable type
declaration as in CSMP (namely all variables automatically
real, and integer exceptions on FIXED-label). Exceptions in
subprogram declared on INTEGER-label.

- All subprograms are placed between labels STOP and ENDJOB.
- ENDJOB should always be typed in first six columns.
- The CSMP translator places the function-subroutine-statement

in UPDATE without conversion or expansion, except when a
history-function is used (see par. 1.2).

EXAMPLES:

program with function-subroutine (FUNC.CSM) Example 1a.

Example 1a and also the following example (1b)
contains a function-subroutine which interpolates
linearly between two points, Figure 1.

3

TITLE Example 1a function-subroutine (FUNC.CSM)
TITLE Exponential growth with temp. dependent rel. growth rate
INITIAL
FIXED N
STORAGE RGRT(10), TMPT(10)
PARAM AVTMP = 20., AMPTMP = 10., N = 6
TABLE TMPT(1-6) = 0., 10. ,20. ,30. ,40. ,50.
TABLE RGRT(1-6) = 0.,0.08,0.16,0.21 ,0.24,0.25
TIMER FINTIM = 48., OUTDEL = 1.
METHOD RKS
OUTPUT A,RGR,GR
PI = 4.*ATAN(1 .)
DYNAMIC
A = INTGRL(1 .,GR)
GR = RGR*A
RGR = LINFUN(RGRT,TMPT,TEMP,N)
TEMP= AVTMP + AMPTMP*SIN(2.*PI*TIME/24.)
END
STOP

REAL FUNCTION LINFUN (RGRT,TMPT,TEMP,N)
IMPLICIT REAL (A-Z)
INTEGER I,N
DIMENSION RGRT(N), TMPT(N)
IF (TEMP.GE.TMPT(1).AND.TEMP.LE.TMPT(N)) GO TO 20

TYPE 10
10 FORMAT(' Temp out of range')

CALL EXIT
RETURN

20 IF(TEMP.GT.TMPT(1)) GO TO 30
LINFUN = RGRT(1)
RETURN

30 DO 40 I=2,N
IF (TEMP.GT.TMPT(I)) GO TO 40

HULP = RGRT(I-1) + (TEMP-TMPT(I-1))*(RGRT(I)-RGRT(I-1))/
$ (TMPT(I)-TMPT(I-1))

LINFUN = HULP
RETURN

40 CONTINUE

END JOB

RETURN
END

4

note: 1 In example FUNC.CSM variable dimensioning is used.
Dimension of array in subprogram must always . be
smaller or equal to size of corresponding array in
main program.
When (n x m)-matrices are used, the first dimension
(n) must equal the corresponding number in the
calling program, whereas the second dimension (m)
must be smaller or equal to the number in the
calling program. It is recommended to use fixed
dimensioning when using matrices.

note: 2 CALL EXIT subroutine causes program termination,
closes all files, and returns control to the
operating system.

note: 3 In example 1a an error-message is printed directly
on screen, if TEMP is out of range of table TMPT.
In FORTRAN this is also accomplished with
WRITE(6,10), since number 6 is standard assigned to
terminal-screen. In CSMP, however, WRITE(6,10)
refers to file FOR06.DAT, therefore TYPE 10 is used
in example 1a to send a message directly to screen.
The same result is accomplished with WRITE(20,10) in
example 1b. Normally, this statement would create a
FOR020.DAT file, but if ASSIGN SYS$0UTPUT FOR020 is
typed before running this program, the message is
send directly to screen.

note: 4 Example 1a and also the following example (1b)
contains a function-subroutine which interpolates
linearly between two points, Figure 1.

In the following example TABLE RGRTMP(1-12) contains both
coordinates for relative growth rate and temperature. The
sequence is RGRTMP(1) rel. growth rate, RGRTMP(2)
temp., RGRTMP(3) = rel. growth rate, etc.

Figure Coordinates used in examples 1a and 1b.

RGR t
0.30

0.25

Tll6LE.(1+1.) RGRT(I)--
0.20

TABLE(I-l.) RGRTC(tH
It-1~

0.10

0.05

~ : TMPT(I)~TMPT(I-1)

l -r--r-- TEMP-TMPT(I-1)
I I I
I . I
I eJ I
I t1 I

I

. ~-~~--~· ~~lD~~~~-J.--~~~~-- 40 50
TMPT(I-1) T~PT(I)

TABLE(!-2.) TABLE(I)

EXAMPLE:

~==~)
TEMP

program with function-subroutine (FUNSUB.CSM). Example 1b.

5

TITLE Example 1b function-subroutine (FUNSUB.CSM)
TITLE Exponential growth with temp. dependent rel. growth rate
INITIAL
FIXED N
STORAGE RGRTMP(12)
PARAM AVTMP = 20., AMPTMP = 10., N = 12
TABLE RGRTMP(1-12)= 0.0,0.00, 10. ,0.08, 20. ,0.16, 30. ,0.21, ••.

40.,0.24, 50.,0.25
TIMER FINTIM = 48., OUTDEL = 1.
METHOD RKS
OUTPUT A,RGR,GR
PI = 4.*ATAN(1 .)
DYNAMIC
A = INTGRL(1 .,GR)
GR = RGR*A
RGR = FAFGEN(RGRTMP,TEMP,N)
TEMP= AVTMP + AMPTMP*SIN(2.*PI*TIME/24.)
END
STOP

REAL FUNCTION FAFGEN(TABLE,X,N)
IMPLICIT REAL (A-Z)
INTEGER I,N
DIMENSION TABLE(N)
IF (X .GE. TABLE(1) .AND. X .LE. TABLE(N-1)) GO TO 20

WRITE (20, 1 0)
10 FORMAT(' X out of range')

CALL EXIT
RETURN

20 DO 30 I=1 ,N-1 ,2
IF (TABLE(I) .GE. X) THEN

IF (TABLE(I) .EQ. X) THEN
Y =TABLE(I+1)

ELSE
SLOPE=(TABLE(I+1)-TABLE(I-1)) I (TABLE(I)-TABLE(I-2))
BETA =TABLE(I+1)-SLOPE * TABLE(I)
Y =SLOPE * X+BETA

END IF
FAFGEN =Y
RETURN
END IF

30 CONTINUE

END JOB

RETURN
END

6

note: -FUNCTION RGRTB and TABLE RGRTMP(1-12) (reference
CSMP-program, and example 1b) both contain the
tabulated function of RGR depending on TEMP.
FUNCTION is used in combination with
function-generators, like AFGEN.

- In combination with TABLE, STORAGE has to be used to
reserve memory space.

- The TABLE-statement has the advantage that all
individual measuring-points are available for other
calculations (for instance slope).

- Examples 1a and 1b will usually not be needed by the
CSMP user, because AFGEN is available. Examples are
given for illustrative purposes, however, because
the proces of linear interpolation is simple and
attention can be focussed on programming aspects.

1.2 Use of CSMP history-functions in function-subroutine

- Some history-functions and their number of memory-locations
are (see for more information CSMP III Program Reference
Manual (IBM), 1975, page 99)

function memory locations

AFGEN
FUNGEN
NLFGEN
SAMPLE
TWOVAR

5
10
10
3
12

- Lay-out of program with function-subroutine containing two
CSMP history-functions

TITLE •.•••..•..
HISTORY NAME(10)

I
I
I
I

A= NAME(IN1,IN2,IN3,IN4)
I
I

END
STOP

REAL FUNCTION NAME(NLOC,IN1,IN2,IN3,IN4)
IMPLICIT REAL (A-Z)

END JOB

INTEGER NLOC, ..•..
I
I

A AFGEN(NLOC,IN1,IN2)

B
I
I

RESULT
NAME
RETURN
END

AFGEN(NLOC+5,IN3,IN4)

A+B
RESULT

7

Place HISTORY-label at
INITIAL-segment (if used).

beginning of main program

Name on HISTORY-label is name
which history-function appears.

- Number between brackets
storage-locations
function-subroutine.

needed

of function-subroutine

specifies number
for CSMP-function(s)

in

in

of
in

- Integer variable NLOC (Number of LOCations) takes value
assigned by CSMP-compiler.
In the UPDATE.FOR line RGR = NAME(RGRTB,TEMP) in following
example reads: RGR = NAME(1 ,RGRTB,TEMP).
Note that number of arguments in call of function-subroutine
in CSMP mainprogram is one argument shorter than in
definition. The conversion of the statement by the
CSMP-compiler with additional information on HISTORY-label
gives a similar number of arguments.

EXAMPLE:

Function-subroutine with nested history-function
(FUNCHIS.CSM) example 2

TITLE Example 2 function-subroutine
TITLE Exponential growth with temp.

with history function (FUNCHIS.CSM)
dependent rel. growth rate

INITIAL
HISTORY
PARAM

NAME(5)
AVTMP=20.,AMPTMP=10.

FUNCTION RGRTB=(0.0,0.00),(10.,0.08),(20.,0.16),(30.,0.21), ••.
(40. '0. 24) ' (50. '0. 25)

TIMER FINTIM=48.,0UTDEL=1.
METHOD RKS
OUTPUT A,RGR,GR
PI = 4.*ATAN(1 .)
DYNAMIC
A INTGRL(1 .,GR)
GR RGR*A
RGR NAME(RGRTB,TEMP)
TEMP= AVTMP + AMPTMP*SIN(2.*PI*TIME/24.)
END
STOP

REAL FUNCTION NAME(NLOC,RGRTB,TEMP)
IMPLICIT REAL (A-Z)
INTEGER NLOC
RESULT NESTED(NLOC,RGRTB,TEMP)
NAME RESULT
RETURN
END

REAL FUNCTION NESTED(NLOC,RGRTB,TEMP)
IMPLICIT REAL (A-Z)
INTEGER NLOC
RESULT = AFGEN(NLOC,RGRTB,TEMP)

~··~~~.~-N~ESTEn~~:::~~RE0TltT-~·~·~~~~·~··~~ ~~-~~~~ --~~~~~~-~~-~ ~~~~~~~~ ~~ ·~·~·~·-·~~·-~

RETURN
END

END JOB 8

1 . 3 Subroutines

If multiple output is desired the SUBROUTINE form of
subprogram must be used.

- Output via list of arguments or possibly through (labelled)
COMMON.

- CSMP-statements excluded from use in subroutines are:

INTGRL, IMPL, MODINT, REALPL, CMPXPL, LEDLAG, PIPE,
TRANSF, and any user defined macro.

Different call's to a subroutine from a CSMP-program:

- CSMP-call for a subroutine, sortable by the CSMP-compiler
is: A,B = NAME(C,D)

- The CSMP-compiler converts this call to following statement
in UPDATE.FOR: CALL NAME(C,D,A,B).
Output variables (A,B) are thus placed after input variables
(C,D) in their original sequence.

- The CSMP-call for a subroutine is only correctly interpreted
by the CSMP-compiler if there are two or more variables at
the left-hand side of the equal-sign. If a subroutine-call
is defined as A= NAME(C,D), the compiler interprets this as
a call for a function-subroutine. Generally, if there is
only one output-variable, use the function-subroutine.

- Otherwise there are two possibilities which lead to correct
interpretation of a subroutine if there is just one
output-variable:

* by introducing a dummy-variable:

A,DUMVAR = NAME(C,D)

* or by using the FORTRAN-call:

CALL NAME(C,D,A)

The FORTRAN call-statement must be placed either in a
NOSORT-section,

NO SORT
I
I

I
I

SORT

CALL NAME(C,D,A)

or in a PROCEDURAL-block

PROCEDURE A =PRONAM(C~D~)~· ~· ··~~~~ .. ~.~~ .. ~· ~~~~~~·~·~~~~·~ · ·~~~~~·~~~~~·~~~.~~~~~.~~~
I
I

CALL NAME(C,D,A)
I
I

ENDPROCEDURE

9

- Lay-out of program
output-variables

TITLE •......•......
INITIAL

I
I
I
I

DYNAMIC
I I
I I

A,B = NAME(C,D) or <
I I
I I
I
I

END
STOP

with subroutine having

PROCEDURE A,B=PRONAM(C,D)
CALL NAME(C,D,A,B)

ENDPROCEDURE

SUBROUTINE NAME(C,D,A,B)
IMPLICIT REAL (A-Z)
INTEGER

END JOB

I
I
I
I

RETURN
END

two

note: all subroutines and function-subroutines placed after
STOP-label are not processed by the CSMP-compiler.
Therefore the list of arguments must agree with
interpretation of CSMP call-statement in mainprogram
(see above).

EXAMPLES:

program with subroutine (GEOM.CSM). Example 3.

programs with different subroutine calls (SUBDUM.CSM, SUBPRO.CSM,

and SUBSOR.CSM). Examples 4a-4c.

I O.

TITLE Example 3 subroutine (GEOM.CSM)
TITLE Cylinder geometry
INITIAL
NO SORT
FIXED N
I REAL DIST, DEPTH, RAD, AREA, VOL
I DIMENSION DIST(20), DEPTH(20), RAD(21)
I DIMENSION AREA(20), VOL(20)
STORAGE TCOM(20)
PARAM DIAM = 10.E-2, HEIGHT = 2.5E-2, N = 10
TABLE TCOM(1-10) = 10*.5E-2
TIMER FINTIM = 5., PRDEL = 1.
PRINT A
METHOD RKS
PI = 4.*ATAN(1 .)

***** Calculation cylinder geometry

***** *****
CALL GEOMET(N,DIAM,HEIGHT,PI,TCOM,DIST,DEPTH,RAD,AREA,VOL)

***** *****
DYNAMIC
A= INTGRL(1 .,0.1*A)
TERMINAL

***** Print uitvoer

END
STOP

CALL WRIT(N,DIST,DEPTH,RAD,AREA,VOL)

SUBROUTINE GEOMET(N,DIAM,HEIGHT,PI,TCOM,DIST,
$ DEPTH,RAD,AREA,VOL)

IMPLICIT REAL (A-Z)
INTEGER I,N
DIMENSION DIST(N), DEPTH(N), RAD(N+1)
DIMENSION AREA(N), VOL(N), TCOM(N)

C*** Cylinder geometry
DIST(1) = TCOM(1)12.
DEPTH(1) = TCOM(1)12.
RAD(1) = DIAMI2.
DO 10 I=2, N

DIST(I) = (TCOM(I-1)+TCOM(I))/2.
DEPTH(I) = DEPTH(I-1)+DIST(I)

10 CONTINUE
DO 20 I=1 , N

RAD(I+1) = RAD(I)-TCOM(I)
AREA(I) = 2.*PI*RAD(I)*HEIGHT
VOL(I) = PI*(RAD(I)**2-RAD(I+1)**2)*HEIGHT

20 CONTINUE
RETURN
END

SUBROUTINE WRIT(N,DIST,DEPTH,RAD,AREA,VOL)
IMPLICIT REAL (A-Z)
INTEGER I,N
DIMENSION DIST(N), DEPTH(N), RAD(N+1)
DIMENSION AREA(N), VOL(N)

WRITE(20,10)
10 FORMAT (6X, 'DIST' ,10X, 'DEPTH' ,10X, 'RAD' ,11X, 'AREA' ,11X, 'VOL')

DO 30 I=1 ,N
WRITE(20,20) DIST(I), DEPTH(I), RAD(I), AREA(I), VOL(I)

20 FORMAT (E12.4,3X,E12.4,3X,E12.4,3X,E12.4,3X,E12.4)
~~~·~~·~·~3{)~~ ~~e0NTLNUE~~ -~ 

RETURN 
END 

END JOB 

11 



note: - Cylinder geometry, see figure 2. 
- Variables not in CSMP-COMMON are: DIST, DEPTH, 

RAD, AREA, VOL. Thus not available for "PRINT" or 

"OUTPUT"· Therefore, WRITE-routine in FORTRAN necessary. 

(SUBROUTINE WRIT.) type 
Before running this 
ASSIGN SYS$0UTPUT FOR020 

program 

PIAM 

~~~~-b~~~~~~.~Qlli~~~~~~~~~i~n~ex~amples 3 and 6. 

12

H ft6HT

Dummy in subroutine-call (SUBDUM.CSM). Example 4a.

TITLE Example 4a subroutine with dummy in call (SUBDUILCS!>!)
TI'rLB E!xponantial growth with temp. dependent rel. growth rate
INITIAL
HISTORY
PAR AM
FUNCTION

TIMER
ME'l'HOD

NAME(5)
AVTMP = 20., AMPTMP • 10.
RGRTB ~(o.o,o.oo),(10.,o.oe),(2o.,o.16),(3o.,o.21), •••

(40. ,o. 24), (50. ,0. 25)
FINTIM• 48., OUTDEL • 1.
RKS

OUTPUT A,RGR,GR
PI :4,*ATAN(1.)
DYNAMIC
A • INTGRL(1.,GR)
GR • RGR*A
RGR,DUMMY • NAME(RGRTB,TEMP)
TEMP a AVTMP + AMPTMP*SIN(2.*PI*TIME/24.)
END
STOP

SUBROUTINE NAME(NLOC, RGRTB, TEMP, RGR, DUMMY)
IMPLICIT REAL (A-Z)
INTEGER NLOC
RGR~AFGI!lN(NLO;;,RGRTB,TEMP)
RETURN
END

END JOB

FORTRAN-call in PROCEDURAL-block (SUBPRO.CSM),
Example 4b.

TITLE Example 4-b subroutine with a PROCEDURE-block (SUBPRO. CSM)
TITLE Exponential growth witA temp. dependent rel. growth rate
INITIAL
HISTORY
PARMI
FUNCTION

TIMER
METHOD
OUTPUT
PI
DYNAMIC

NAME(5)
AVTMP • 20., AMPTMP • 10.
RGRTB • (0. 0' 0. 00) ' (1 0. I 0. 08) ' (20. '0. 1 6) ' (30. I 0. 21) ' ...

(40.10.24)1(50.,0.25)
FINTIM• 48., OUTDEL • 1.
RKS
A,RGR,GR

• 4.*ATAN(1,)

A • INTGRL(1. 1GR)
GR • RGR*A
PROCEDURE RGR • BLOCK(TEMP,RGRTB)

. CALL NAME (RGRTB, TEMP 1 RGR)
ENDPROC EDURE
TEMP • AVTMP + AMPTMP*SIN(2.*PI*TIME/24.)
END
STOP

END JOB

SUBROUTINE NAME(NLOC,RGRTB,TEMP,RGR)
IMPLICIT REAL (A-Z)
INTEGER NLOC
RGR• AFGEN(NLOC,RGRTB 1TEMP)
RETURN
END

FORTRAN-call in NOSORT-aection
Example 4c

(SUBSOR.CSM),

TITLE Example 4c subroutine with use of a SORT-section (SUBSOR.CSM)
TITLE Exponential growth with temp. dependent rel. growth rate

NAME(5)
AVTMP • 20., AMPTMP • 10.

INITIAL
HISTORY
PARAM
FUNCTION RGRTB ~ (0.010.00),(10.,0,08),(20.,0.16),(30.,0.21), ...

(40.,0.24),(50.,0.25)
TIMER
METHOD
OUTPUT
PI
DYNAMIC
NO SORT
A

FINTIM• 48., OUTDEL • 1.
RKS
A1RGR,GR
4.*ATAN(1.)

~ INTGRL(1.,GR)
TEMP ~ AVTMP + AMPTMP*SIN(2,*PI*TIME/24.)

CALL NA!tlE(RGRTB,TEMP1RGR)
GR • RGR*A

SUBROUTINE NAME(NLOC,RGRTB,TEMP,RGR)
IMPLICIT REAL (A-Z)
INTEGER NLOC
RGR• AFGEN(NLOC,RGRTB,TEMP)
RETURN
END

END JOB

13

CHAPTER 2

Communication between mainprogram and subprograms.

Communication between mainprogram and subprogram or between
two subprograms is established by:

- Lists of arguments
- Blanc COMMON
- Labelled COMMON

or a combination of these possibilities.

2.1 List of arguments

List of arguments or variables is given in call of a
function-subroutine or subroutine and corresponds to the
definition between labels STOP and ENDJOB. For example:

- Function-subroutine:
A= NAME(C,D)
with
REAL FUNCTION NAME(C,D)

list of arguments: (C,D

- Subroutine:
A,B= NAME(C,D)
or
CALL NAME(C,D,A,B)
with
SUBROUTINE NAME(C,D,A,B)

list of arguments: (C,D,A,B)

Continuation of list of arguments in CSMP-program (before
labels END, STOP) by three dots(' ••• ') at the end of line
to be continued.

- Continuation of list of arguments in subroutine definition
(after label STOP) by placing a '$ '-sign in sixth column of
the line following the line which is to be continued.
Continuation of lines with lists of arguments is allowed

14

upto 8 lines_in CSMP-FORTRAN combination.
Sequence of variables mentioned in call- and subroutine
statements must correspond.

NOTE: Communication with lists of arguments is recommended
for novice.

See examples 1a, 1b, 2, 3, 4a, 4b, and 4c.

2.2 Blanc Common

Including blanc COMMON in a subprogram means that all
variables in previously established CSMP III COMMON are
available in that subprogram.

- Lay-out of subroutine with use of blanc COMMON:

SUBROUTINE NAME(••••••.
REAL
INTEGER •••••••

COMMON
I
I
1
I

RETURN
END

note: If blanc COMMON is included the IMPLICIT REAL label
can not be used, because all variables which are also
used in the mainprogram are already declared real or
integer in CSMP-COMMON (e.g. N in example 5). New
variables in the subroutine (e.g. I in example 5) must
be declared on the appropriate labels.

Use of blanc COMMON is not recommended
because the programmer has to have
knowledge of how CSMP III is processed.

for novice
considerable

EXAMPLE:

(For more information on this
LH Theoretische Teeltkunde, Inleidende
practicumopgaven, 1986, page 88 and 89)

example
teksten

Application of blanc COMMON (BLACOM.CSM). Example 5.

15

see
en

TITLE Example 5 application of blanc COMMON (BLACOM.CSM)
TITLE Flow of heat in a homogenous soil column.
INITIAL
NOSORT

N
FLOW(26),TEMP(25)

FIXED
STORAGE
PARAM
PARAM
TIMER
METHOD
OUTPUT
PAGE
PRINT
PI

TCOM=0.02,COND=0.42,VHCAP=1 .05E6,ITMP=20.,TAV=20.,TAMPL=10.
N = 25
FINTIM=345600.,0UTDEL=3600.,PRDEL=3600.
RKS
TEMP(1),TEMP(5),TEMP(15),TEMP(25)
GROUP,NTAB=O,WIDTH=80
TEMP(1),TEMP(5),TEMP(15),TEMP(25)

4 • *AT AN (1 .)
CALL INITMP

DYNAMIC
NO SORT
VHTC = INTGRL(IVHTC,NFLOW,25)

CALL TEMPER(TMPS)

END
STOP

CALL TMPFLW(TMPS)
CALL NETFLW

C***

COMMON

SUBROUTINE INITMP
INTEGER I

DO 10 I=1 ,N
IVHTC(I)=ITMP*TCOM*VHCAP

10 CONTINUE
RETURN
END

C***

COMMON

SUBROUTINE TEMPER(TMPS)
INTEGER I

TMPS =TAV+TAMPL*SIN(2.*PI*TIME/86400.)
D010I=1,N

TEMP(I)=VHTC(I)/(TCOM*VHCAP)
10 CONTINUE

RETURN
END

C***

COMMON

SUBROUTINE TMPFLW(TMPS)
INTEGER I

FLOW(1) =(TMPS-TEMP(1))*COND/(0.5*TCOM)
DO 10 I=2,N

FLOW(I) =(TEMP(I-1)-TEMP(I))*COND/TCOM
10 CONTINUE

FLOW(26)=0.0
RETURN
END

C***

···~~~~~·~·~·~·~~- ~SlJBROUII'~~NE~NE'n.F-1W~~~·~ ···~·~-~·~-~---·~

INTEGER I
COMMON

DO 10 I=1 ,N
NFLOW(I)=FLOW(I)-FLOW(I+1)

10 CONTINUE

END JOB

RETURN
END

I 6

note: In this example no CSMP-call (see par. 1 .3) can be
used, because blanc COMMON is used and thus no
arguments are listed by which CSMP could sort and
interpret the statement. This means that CSMP can not
sort the routines, so the user has to enter all
routines in the correct sequence in a NOSORT-section.

2.3 Variables that automatically occur in CSMP III COMMON

- all variables at left-hand side of equal-sign.
- all variables on a TABLE-statement.
- all variables on a FUNCTION-statement.
- all variables on a STORAGE-statement.
- all variables on PARAM, INCON-, and CONSTANT-statements.
- all variables on a INTGRL-statement.
- all variables on a TIMER-label.

2.4Labelled COMMON

Labelled COMMON allows communication between subprograms or
mainprogram and subprogram by means of COMMON memory-space.

- Lay-out of subroutine with labelled COMMON:

SUBROUTINE NAME(..•••••••...
IMPLICIT REAL (A-Z)
INTEGER
COMMON /COMNAM/ A(10), B(50,4), C, ••••

I

I
I

RETURN
END

SUBROUTINE COMTO(•••••••••..
IMPLICIT REAL (A-Z)
INTEGER
COMMON /COMNAM/ A(10), B(50,4), C, ••••

I
I
I
I

RETURN
END

note: name of COMMON block is placed between slashes(/).
It is not necessary to add the labelled COMMON-block
in program parts where the variables are not needed.

-"~~~--~·~~fn~e<Yn-t-rad-ie-t4en~te-~label-1ea~GGMMGN-,~b±a:r±G~CQMMQ'N~has~~~

no list of variables.
- Use always the same variable-names for corresponding

variables in COMMON-blocks.

17

2.5 To transfer data from CSMP-COMMON to labelled COMMON

- Application 1 :

* Copy only data you need out of CSMP COMMON into subprogram
so you don't have to transfer the whole CSMP COMMON into
your subprogram.

- General lay out of copy part of program:

TITLE •....•.
I
I

PARAM A=... B= •.. , C= ..•
PARAM D=... E= ...
NO SORT

I
I

CALL TRANSF(A,B,C)
I
I

END
STOP

SUBROUTINE TRANSF(A,B,C)
I
I

COMMON /COPY/ AA, BB, CC
AA=A
BB=B
CC=C

I
I

RETURN
END

ENDJOB

EXAMPLE:

Geometry of a cylinder (FILLCO.CSM). Example 6

18

TITLE Example 6 application of labelled COMMON (FILLCO.CSM)
TITLE Cylinder geometry
INITIAL
NOSOR~

FIXED N
STORAGE TCOM(20)
PARAM DIAM = 10.E-2, HEIGHT= 2.5E-2, N = 10
TABLE TCOM(1-10) = 10*.5E-2
TIMER FINTIM = 5., PRDEL = 1 ., DELT = .01
PRINT A
METHOD RKS
PI = 4.*ATAN(1 .)
***** Copy data from CSMP-COMMON to labelled COMMON *****
***** *****

CALL FILLCO(N,TCOM)

Calculation cylinder geometry

CALL GEOMET(N,DIAM,HEIGHT,PI)

DYNAMIC
A= INTGRL(1 .,0.1*A)
TERMINAL
***** Print uitvoer

END
STOP

CALL WRIT(N)

SUBROUTINE FILLCO(N,TCOM)
IMPLICIT REAL (A-Z)
INTEGER I,N
DIMENSION TCOM(20)
COMMON /GEOM/ TTCOM(20)
DO 10 I=1, N

TTCOM(I) = TCOM(I)
10 CONTINUE

RETURN
END

SUBROUTINE GEOMET(N,DIAM,HEIGHT,PI)
IMPLICIT REAL (A-Z)
INTEGER I,N
COMMON /GEOM/ TCOM(20)

COMMON /OUTVAL/ DIST(20), DEPTH(20), RAD(21),
$ AREA(20), VOL(20)

C*** Cylindrical geometry
DIST(1) = TCOM(1)/2.
DEPTH(1) = TCOM(1)/2.
RAD(1) = DIAM/2.
DO 10 I=2, N

DIST(I) = (TCOM(I-1)+TCOM(I))/2.
DEPTH(I) = DEPTH(I-1)+DIST(I)

10 CONTINUE
DO 20 I=1 , N

RAD(I+1) = RAD(I)-TCOM(I)
AREA(I) = 2.*PI*RAD(I)*HEIGHT
VOL(I) = PI*(RAD(I)**2-RAD(I+1)**2)*HEIGHT

20 CONTINUE
RETURN
END

SUBROUTINE WRIT(N)
IMPLICIT REAL (A-Z)
INTEGER I,N
COMMON /OUTVAL/ DIST(20), DEPTH(20), RAD(21),

$ AREA(20), VOL(20)
WRITE(20,10)

10 FORMAT (6X, 'DIST' ,10X, 'DEPTH' ,10X, 'RAD',
"-"~~~~~·~·~·~·~·~~~··~·~ -"·~·~~~~~~t-~AREA~,Jj_~~y~~~L~~

DO 30 I=1 ,N
WRITE(20,20) DIST(I), DEPTH(I), RAD(I),

$ AREA(I), VOL(I)
20 FORMAT (E12.4,3X,E12.4,3X,E12.4,3X,E12.4,3X,E12.4)
30 CONTINUE

END JOB

RETURN
END

note: Observe that no variable dimensioning can be used in
COMMON-blocks.

- Program gives same result as example 3.
- By the action of putting only those variables in a

labelled COMMON which are needed from the blanc
COMMON, it is avoided to include CSMP III COMMON as
a whole in a subroutine. Especially for the novice
this is good practice.

- Application 2:

* Create possibility to integrate a
(see example 7 CONVRT.CSM) by
one-dimensional array.

two dimensional array
transferring it into a

EXAMPLE:

(CONVRT.CSM). Example 7.

A lake is connected with a second and third lake of equal
size. River water which is polluted by phosphate and
nitrate flows into the first lake. The lakes are well mixed
and of constant volume. Thus the polluted water from the
first lake enters the second lake and so on.
Calculations of both pollutions in each lake are similar
structure, but not of course in magnitude.

List of variables:

AANVSN - amount of water flowing in and out first,
second and third lake.

3 -1
m d

3
VOLHN Equal and constant volume of water in the m

three lakes.
-3

CONC1 - concentration of phosphate in riverwater. kg m
-3

CONC2 - concentration of nitrate in riverwater. kg m

HN1(I) - amount of phosphate in lakes. kg

HN2(I) - amount of nitrate in lakes. kg

in

This example is calculating the course of the amounts of the
two pollutions in each lake. The relational diagram of the
problem is given in figure 3.

20

------------- --------------- - --- --------------------- --- ----------------- -------------------

Figure 3. Relation diagr~m of three lakes in series. The
first lake is polluted by phosphate and nitrate
supplied by riverwater. The water flowing out of
lake 1 comes in lake 2 and so on in lake 3.

LAKE 1 LAKE:l L~K£:'3

pO'i HNJ,I H~a,a.. Hij,,'3

L-- L--

I
I

Tc. I --..,- I

---~·--- --~--- --------I
I
I
I
I

Nos HN~,, HN~,~ H»,.,'l

L--

21

I
I __,
I
I

TITLE Example 7 Application of labelled COMMON (CONVRT.CSM)
TITLE Concentration of pollution in three lakes
INITIAL
FIXED
TABLE
TABLE
PARAM
PARAM
TIMER
PRINT
METHODE
DYNAMIC
NOSORT

NI,NL
IHN1(1-3) =3*0.
IHN2(1-3) =3*0.
AANVSN =5.E7 ,VOLHN =90.E7 ,NI =2
CONC1 =0.5 ,CONC2 =0.5 ,NL =3
FINTHl =180. ,PRDEL =10. ,DELT =2.
RHN1(1-3), RHN2(1-3), HN1(1-3), HN2(1-3)
RKSFX

HN1 = INTGRL(IHN1 ,RHN1 ,3)
HN2 = INTGRL(IHN2,RHN2,3)
*** Conversion of one dimensional HN1 , HN2
*** to two dimenRional H(L,1), H(L,2)
CALL CNVRT1 (NL,HN1 ,HN2)
*** Calculation of rates
CALL CALC(NL,NI,AANVSN,CONC1,CONC2,VOLHN)
*** Conversion of two dimensional RH(L,1), RH(L,2)
*** to one dimensional RHN1(L), RHN2(L)
CALL CNVRT2 (NL,RHN1,RHN2)
END
STOP

SUBROUTINE CNVRT1(NL,HN1,HN2)
IMPLICIT REA~ (A-Z)
INTEGER L,NL
COMMON /CONVRT/ H(3,2)
DIMENSION HN1(3),HN2(3)
DO 10 L=1 ,NL
H(L,1) = HN1(L)
H(L,2) = HN2(L)

10 CONTINUE
RETURN
END

SUBROUTINE CALC(NL,NI,AANVSN,CONC1 ,CONC2,VOLHN)
IMPLICIT REAL (A-Z)
INTEGER I,L,NI,NL
COMMON /CONVRT/ H(3,2)
COMMON /TRANSF/ RH(3,2)
DIMENSION FLOWH(4,2)
TC = VOLHN/AANVSN
FLOWH(1 ,1) = AANVSN*CONC1
FLOWH(1 ,2) = AANVSN*CONC2
DO 10 L = 1 ,NL
DO 10 I = 1 ,NI
FLOWH(L+1 ,I) = H(L,I)/TC

10 CONTINUE
DO 20 L = 1,NL
DO 20 I= 1,NI
RH(L,I) = FLOWH(L,I)-FLOWH(L+1 ,I)

20 CONTINUE

END JOB

RETURN
END

SUBROUTINE CNVRT2 (NL,RHN1,RHN2)
IMPLICIT REAL (A-Z)
INTEGER L,NL
COMMON /TRANSF/ RH(3,2)
DIMENSION RHN1(3), RHN2(3)
DO 10 L=1, NL
RHN1(L) = RH(L,1)
RHN2(L) = RH(L,2)

RETURN
END

22

2. 6 Use of dummy's in labelled COMMON

Dummy's are used when one or more arrays defined in a
labelled COMMON are not of interest in a (sub)program where
the labelled COMMON appears.

Use in program:

If a routine includes the following line:

COMMON /GEOMET/ A(5,10), B(500), C(50)

and in another routine only array C is of importance the
following line could be included there.

COMMON /GEOMET/ DGE01(550), C(50)

note: DGE01 is a dummy array. It takes the contents of
arrays A and B (5*10+500=550). Din DGEOM stands for
Dummy, GEO stands for the first three letters of the
common-name and 1 denotes that this is the first
dummy-array in labelled COMMON. By this action it is
immediatly clear that only array C is of importance in
this subroutine.

23

CHAPTER 3

FORTRAN-statements in CSMP main-program

All variables used in a FORTRAN-statement in mainprogram,
but not used in a CSMP-statement according to the rules in
par. 2.3, are not available in CSMP III COMMON. This means
also that these variables are not available for output on
OUTPUT- or PRINT-labels and also type-declarations are not
taken care of. Output through the FORTRAN WRITE-statement
is possible, however.
FORTRAN-labels in mainprogram must be preceded by a
'I '-sign in first column; f.i. I DIMENSION,
I DATA, I REAL, I INTEGER. These labels can be
continued on next line by placing the FORTRAN
continuationmark ('$ ') before the line which is a
continuation of the preceding line.

3.1 Use of REAL- and INTEGER-labels in main-program

Variables that occur in main-program, but don't occur in
CSMP III COMMON apply to normal FORTRAN-rules for
declaration.

- This means: variables starting with I, J, K, L, M, or N are
always integer. All other variables are real.

- To deviate from these rules use INTEGER- and REAL-labels.
It is recommended to use these labels always for variables
that don't occur in CSMP COMMON so as to state explicitly
what type of variables are used.

- Lay-out of main-program using INTEGER- and REAL-labels:

TITLE •••.•..•
INITIAL
FIXED

END
STOP
END JOB

REAL

24

note: a slash('/') is placed at beginning of line. to
indicate to the compiler that this is a
FORTRAN-statement. This part of the program is not
translated by the CSMP-compiler, rather, these lines
are directly placed in UPDATE.FOR. Therefore, the R
from REAL must start in the 7th column.

- Put all FORTRAN-statements beginning with a slash
at the beginning the program.

- List on FIXED-statement only variables occuring in
COMMON, otherwise use FORTRAN-statement INTEGER.
par. 2.3 "Variables that automatically occur in
COMMON").

EXAMPLE: (See example 3 GEOM.CSM)

25

together

CSMP III
(See also
CSMP III

CHAPTER 4

4.-I To force output at PRDEL.

Using CSMP PRINT-statements to print output of results of a
variable time-step integration algorithm will cause that
output is printed on desired PRDEL's. When output of
results is generated by FORTRAN write routines PRDEL and
OUTPUT-statements are not used. Then usually output-timings
do not match with integration-steps.
Then a dummy PRINT-statement can be used to force OUTPUT at
PRDEL.

EXAMPLE:

note:-Before running this program on the VAX type
ASSIGN SYS$0UTPUT FOR020. (For alternative see
Paragraph 1.1 .)

-The subroutine in Example 8 can be used to get simulation
timings on the terminal screen during the running of
the program. Also other information, from which it
can be concluded that further program execution is
justified, may be send to the screen (here "amount of
organisms").

to force output on PRDEL's (FORCOUT.CSM). Example 8.

TITLE Example 8 to force output at PRDEL (FORCOUT.CSM)
INITIAL
HISTORY WRIT(3)
FIXED KEEP
PARAM STIME 0.
TIMER FINTIM 150., PRDEL = 10.
METHOD RKS
***Dummy PRINT statement to force OUTPUT at PRDEL's ***

PRINT TIME

**
DYNAMIC
NOSORT
A =INTGRL(1 .0,0.1*A)

END
STOP

10
$

END JOB

CALL WRIT(KEEP,STIME,FINTIM,PRDEL,TIME,A)

SUBROUTINE WRIT(NLOC,KEEP,STIME,FINTIM,PRDEL,TIME,A)
Display of simulation time on TTY-screen ***
IMPLICIT REAL (A-Z)
INTEGER NLOC,KEEP
S = SAMPLE(NLOC,STIME,FINTIM,PRDEL)
IF (S*KEEP.LT.0.5) RETURN

' ' FORMAT(' Simulation time= ',F12.3,

RETURN
END

' Amount of organisms = ',F12.3)

26

4.2 Use of more than 25 FIXED variables

- FIXED is used in mainprogram to declare variables integer.
Variables, used in mainprogram and not listed on
FIXED-statement are automatically real.

- Upto to 25 variables (or arrays) may be specified on
FIXED-label, multiple FIXED-statements are allowed.

- It is possible to specify more then 25 single variables
FIXED by using arrays. The array name is declared FIXED and
need be filled with data in e.g. a subroutine. How to do
this is shown in the following example:

EXAMPLE:

Use of more then 25 FIXED variables (FIXED.CSM). Example g.

TITLE Example 9 Use of more then 25 fixed variables (FIXED.CSM)
INITIAL
NOSORT
STORAGE IA(26)
FIXED IA
I INTEGER NR1 ,NR2 ,NR3 ,NR4 ,NR5 ,NR6 ,NR7 ,NR8 ,NR9
I INTEGER NR10,NR11 ,NR12,NR13,NR14,NR15,NR16,NR17,NR18
I INTEGER NR19,NR20,NR21 ,NR22,NR23,NR24,NR25,NR26
TABLE IA(1-26) = 101, 102, 103, 104, 105, 106, 107, 108,

1 09 , 11 0 , 111 , 11 2 , 11 3 , 11 4 , 11 5 , 11 6 , 11 7 , •••
118, 119, 120, 121, 122, 123, 124, 125, 126

CALL INTFIL(IA,NR1 ,NR2,NR3,NR4,NR5,NR6,NR7,NR8,NR9,NR10, •.•
NR11 ,NR12,NR13,NR14,NR15,NR16,NR17,NR18,NR19, .•.

TIMER
METHOD
OUTPUT
DYNAMIC

NR20,NR21 ,NR22,NR23,NR24,NR25,NR26)
FINTIM = 48., OUTDEL = 1.
RKS
A

A= INTGRL(1 .,0.1*A)
TERMINAL

END
STOP

CALL WRIT(NR1,NR5,NR10,NR15,NR20,NR25)

SUBROUTINE INTFIL(IA,NR1,NR2,NR3,NR4,NR5,NR6,NR7,NR8,NR9,NR10,
$ NR11 ,NR12,NR13,NR14,NR15,NR16,NR17,NR18,NR19,
$ NR20,NR21 ,NR22,NR23,NR24,NR25,NR26)

IMPLICIT INTEGER (A-Z)
DIMENSION . IA(26)
NR1 = IA(1)
NR2 = IA(2)
NR3 = IA(3)
NR4 = IA(4)
NR5 = IA(5)
NR6 = IA(6)
NR7 = IA(7)
NR8 = IA(8)
NR9 = IA(9)
NR10 = IA(10)
NR11 = IA(11)
NR12 IA(12)
NR13 IA(13)
NR14 IA(14)
NR15 IA(15)
NR16 = IA(16)
NR17 IA(17)
NR18 IA(18)
NR19 = IA(19)
NR20 = IA(20)
NR21 = IA(21)
NR22 = IA(22)
NR23 = IA(23)
NR24 = IA(24)
NR25 = IA(25)
NR26 = IA(26)
RETURN
END

SUBROUTINE WRIT(NR1,NR5,NR10,NR15,NR20,NR25)
IMPLICIT INTEGER (A-Z)
WRITE(20,20) NR1,NR5,NR10,NR15,NR20,NR25

20 FORMAT (6I6)

END

END JOB

28

References

IBM corporation, 1975. Continuous System Modeling Program III
(CSMP III). Program Reference Manual, SH 19-7001-3. Data
Processing Division, 1133 Westchester Avenue, White Plains,
New York.

Leffelaar, P.A., 1986. Inleidende teksten en practicumopgaven
behorende bij het college Simulatie en systeemanalyse in de
Theoretische Teeltkunde, centraal magazijn nummer 06 36 8310.

de Wit, C.T., and Goudriaan, J., 1978. Simulation
processes. PUDOC, Wageningen, the
ISBN 90-220-0652-2

29

of ecological
Netherlands.

APPENDIX

Modifications necessary to execute examples on IBM PC-AT
machines.

- All programs described above have been tested on an IBM
PC-AT under DOS 3.0.

- The compiler used for testing was: IBM FORTRAN 2.0 (a
subset of the standard FORTRAN 77)
the CSMP version was named PCSMP.

The testing resulted in some modifications, mainly with
respect to I/O and VAX DCL commands. One modification had
to be made due to a difference in the CSMP specification.

RELGROW.CSM
- No modifications neccesary.

FUNC.CSM
- The statement TYPE is not supported by the compiler.

TYPE as used in FUNC.CSM normally directs the output to the
default output (in most cases the screen).
It should be replaced with either WRITE (*,10) or

WRITE (0, 10).
* and 0 in these statements both represent the DOS Standard
Input or Standard Output; these statements thus act like
TYPE.

FUNSUB.CSM
- This program runs on IBM PC-AT, but reacts differently

during runtime.

1. Without modification, program execution will result in
a prompt:

Filename missing or blank. Please enter name
UNIT 20?

This prompt is caused by the statement WRITE (20,10).
In this statement, 20 represents an unit number which
has to be attached to a file or output device.

When the prompt is answered with eg. FOR020.DAT, all
data will be directed to the file FOR020.DAT.

when the prompt is answered with eg.
will be directed to the screen.

CON, all data

The VAX-VMS command ASSIGN SYS$0UTPUT FOR020 (page 5,
note 3) is now actually performed during runtime.

"""~,~,~~~To''' perf() rm "~-t:ne~v-:trX=VM~'"~~"Lmmnra:nd~~~be-ToTe~~n+ime,~ene
should use the file UPDATE.EXE, produced by the
linking process of PCSMP.
Giving the command: UPDATE CON
results in sending the output of unit 20 to the
screen, whereas
giving the command: UPDATE FOR020.DAT

3Q

results in sending the output of unit 20 to the file
FOR020.DAT.

2. With modification of the program, one fixes the output
to a particular destination. This can be done as
follows:
put the statement
OPEN (20,FILE='FOR020.DAT' ,STATUS='NEW')
before the first WRITE (20, •.••) statement.
The OPEN statement will create a file FOR020.DAT to
which the output of unit 20 is directed.

To close the FOR020.DAT file, insert after the last
WRITE (20, •.•.) statement, the statement CLOSE (20).

FUNCHIS.CSM
- No modifications neccesary.

GEOM.CSM
-Declaration of array RAD (statement: DIMENSION RAD(N+1)) in

SUBROUTINE GEOMET is not allowed. The compiler does not
permit an arithmetic expression to define the size of an
array.

Several modifications to solve this problem are possible. A
structured modification is the following:

transfer an extra parameter N1 (of type integer) to
the subroutine GEOMET, with N1 denoting the size of
the array RAD.

For subroutine WRIT a similar modification might be made,
but in this particular case it is possible to declare the
array RAD with size N (DIMENSION RAD(N)), since the
algorithm of WRIT does not refer to array element RAD(N+1).

(see modified listing of example 3, GEOM.CSM)

The problems arising with the statements WRITE(20,10) and
WRITE(20,20) may be handled as discussed for FUNSUB.CSM.

31

SUBDUM.CSM
The translator of PCSMP requires that subroutine names match
the syntax of type REAL.
Therefore, the identifier NAME, which matches the syntax of
type INTEGER, should be modified in eg. XNAME.

This rule does not apply for subroutines without a list of
arguments (see also example BLACOM.CSM).

(see modified listing of example 4a, SUBDUM.CSM)

TITLE Modified example 4a subroutine with dummy in call (PCSUBDUM.CSM)
TITLE Exponential growth with temp. dependent rel. growth rate
* <<<< modified for IBM FORTRAN 2.0 >>>>>
INITIAL
* <<<< modification for IBM FORTRAN 2.0 >>>>>
*HISTORY NAME(5)
* <<<< is modified to
HISTORY XNAME(5)
* <<<< end modification
PARAM AVTMP = 20., AMPTMP = 10.

>>>>>

>>>>>

FUNCTION RGRTB =(0.0,0.00),(10.,0.08),(20.,0.16),(30.,0.21), •••

TIMER
METHOD
OUTPUT
PI
DYNAMIC
A
GR

(40. '0. 24) ' (50. '0. 25)
FINTIM= 48., OUTDEL = 1.
RKS
A,RGR,GR

4.*ATAN(1 .)

= INTGRL(1 .,GR)
= RGR*A

* <<<< modification for IBM FORTRAN 2.0 >>>>>
*RGR,DUMMY = NAME(RGRTB,TEMP)
* <<<< is modified to >>>>>
RGR,DUMMY = XNAME(RGRTB,TEMP)
* <<<< end modification >>>>>
TEMP = AVTMP + AMPTMP*SIN(2.*PI*TIME/24.)
END
STOP

C <<<< modification for IBM FORTRAN 2.0 >>>>>
C SUBROUTINE NAME(NLOC,RGRTB,TEMP,RGR,DUMMY)
C <<<< is modified to >>>>>

SUBROUTINE XNAME(NLOC,RGRTB,TEMP,RGR,DUMMY)
C <<<< end modification >>>>>

END JOB

IMPLICIT REAL (A-Z)
INTEGER NLOC
RGR=AFGEN(NLOC,RGRTB,TEMP)
RETURN
END

SUBPRO.CSM
- Modifications as for SUBDUM.CSM.

SUBSOR.CSM
- Modifications as for SUBDUM.CSM.

BLACOM.CSM
- No modifications necessary.
- Note that first and last subroutine match syntax type

INTEGER. However, they can be used, since no list of
arguments is present (see also SUBDUM.CSM).

FILLCO.CSM
- Modifications as for FUNSUB.CSM.

CONVRT.CSM
- No modifications necessary.

FORCOUT.CSM
- Modifications as for FUNSUB.CSM.

FIXED.CSM
- Modifications as for SUBDUM.CSM, and FUNSUB.CSM.

SIMULATION REPORTS CABO-TT

Reports published in this series

1. UNGAR, Eo & H. van KEULEN:

FORTRAN version of the simulation model ARID CROP. 1982, 39 pp.

2. CORDOVA, J., F .l'J' •. 'l'. PE.NNIN_G de VRIES & H.H. van LAAR:

Modeling of ~ropproduct~on: evaluation of an international post graduate

course held at IDEA, November 1982. 1983, 23 pp.

Modelos matematics de produccion de cultiyos: evaluacion del curso

internacional realizado en IDEA, en Noviembre de 1982. 1983, 27 pp.

3. MARLETTO., ,Y. & H_ .. van KEULEN:

Winter wheat experiments in The Netherlands and Italy analysed by the

SUCROS model. 1984, 61 pp.

4. GENG, S., F.W.T. PENNING de VRIES & I. SUPIT:

Analysis and simulation of weather variables - part I:

rain and wind in Wageningen. 1985, 55 pp.

5. GENG, S., F.W.T. PENNING de VRIES & I. SUPIT:

Analysis and simulation of weather variables - part II:

temperature and solar radiation. 1985, 74 pp.

6. BENSCHOP, M.:

TUCROS, een simulatiemodel voor de tulpecultivar "Apeldoorn".

1985, 83 pp.

7. SUP IT, I.:

Manual for generation of daily weather data. 1985, 21 pp.

8. VEN~ G.W.J~ van de:

··-··~-~~-~mu1::at±on~a~l~-rt>d~~~i:o~~~he-Rofib-wes~~Tn~e-a1;~Eal~oa~~~~~··~~~·~~···

of Egypt. 1986, 71 pp.

