
Simulation Reports CABO-TT

Reference manual of the

FORTRAN utility library TTUTIL

with applications

C. Rappoldt and D.W.G. van Kraalingen

A joint publication of

Centre for Agroblologlcal Research (CABO-DLO)

c
::s
t/)

.....
\....CI:J

Department orTneoretlcaf=proaucnon Ecology -(TPE), -Agricum:rn:n--tJTiiversny-

Wageningen 1990

Simulation Reports CABO a TT

Simulation Reports CABO-IT is a series giving

supplementary information on agricultural simulation

models that have been published elsewhere. Knowledge of

those publications will generally be necessary in order to

be able to study this material.

Simulation Reports CABO-IT describe improvements

of simulation models, new applications or translations of the

programs into other computer languages. Manuscripts or

suggestions should be submitted to:

H. van Keulen (CABO-DLO) or J. Goudriaan (TPE).

Simulation Reports CABO-IT are issued by CABO and

TPE and they are available on request. Announcements of
~~~~~-----ne_w __ -r-ep_o_r-,-ts--w-lTTIF.belssuedregula.fly~Aadfesses--oFffiose 

who are interested in the announcements will be put on a 

mailing list on request. 

Address 

Simulation Reports CABO-IT 

P.O. Box 14 
6700 AA W ageningen 

Nether lands 

Authors affiliation 

C. Rappoldt: 1 

Department of Theoretical Production Ecology 

Agricultural University 

P.O.Box 430 

6700 AK Wageningen, The Netherlands 

D.W.G. van Kraalingen: 

Centre for Agrobiological Research (CABO-DLO) 

P.O. Box 14 

current address: Institute for Soil Fertility Research (I B-OLO) 

P.O.Box 30003, 9750 RA Haren, The Netherlands. 





Preface 

There are some ever recurring problems associated with the use of FORTRAN programs. 

Reading data from files is often done using specific formats. That tends to make programs and 

data files difficult to adapt and to maintain. Furthermore, there are always problems 

programming output in a convenient form. 

Over the last years we developed solutions for our own problems with respect to input, 

output, character strings and file handling. Each time we paid a little more attention than strictly 

necessary for the problem at hand. That has resulted in a slowly growing set of subroutines 

and functions that proved to be useful in almost any program. Most of these routines have 

gone through a number of revisions. We now use identical sources on VAX, IBM PC and 

Apple Macintosh. The set of 57 routines became our utility library TTUTIL. In addition to "pure 

utilities" the library also contains a number of routines that resulted from our work with 

simulation models.The source code of all routines is free. We hope that others will find the 

library a useful! foolin improvingtheHrprograms: 

This report contains all comment headers and parameter lists and may serve as a reference 

manual in using the library. The introductory chapters contain some background explanation 

and examples. In a separate chapter we made remarks on the use of FORTRAN in simulations 

models. 

We thank Jan Goudriaan and Herman van Keulen for their comments on a draft of this report, 

and Willem Stol for his continuous help and his enthusiasm, 

Wageningen, December "i990, 

Kees Rappoldt 

Daniel van Kraalingen 





Contents 

1. Introduction 

1.1. Why FORTRAN?. 

1.2. Working on different machines 

2. The structure of the library TTUTIL 

2.1 . The ENT routines 

2.2. The RD routines . 

2.3. Making reruns with the RD routines 

2.4. The OUT routines. 

2.5. Handling of fatal errors 

3. Simulation in FORTRAN 

3.1. Euler integration of difference equations 

3. 1 . 1 . Example of a model subroutine 

3.1.2. A driver for Euler integration 

3.1.3. Coupling different models 

3.2 Runge-Kutta integration of differential equations 

3.2.1. A model subroutine for Runge-Kutta integration 

3.2.2. The main program 

3.2.3. Results of the example model 

3.2.4. Coupling different models. 

3.2.5. The variable KEEP 

3.3. Euler integration of differential equations 

3.4. Concluding remark 

4. Headers of the library routines 

5. Examples 

5.1. Testing a subroutine 

5.2. Data file transformation 

5.3. A scatter plot made with a random number generator 

5.4. Checking a crop data file . 

5.5. The influence of AMAX on crop assimilation 

Appendix A: Non-standard statements and machine-dependencies 

Appendix B: The common blocks in TTUTIL 

Appendix C: A note on AFGEN tables 

Appendix D: A simple driver for Euler integration 

Appendix F: The use of object libraries 

Appendix G: List of NETLIB program libraries 

References 

1 

1 

2 

3 

3 

5 

7 

9 

11 

13 

15 

15 

16 

18 

19 

21 

23 

24 

26 

26 

27 

27 

29 

95 

95 

96 

98 

100 
103 

105 

106 
107 

109 

112 

114 

122 





- 1 -

1. Introduction 

This report describes a number of FORTRAN subroutines and functions that make up a utility 

library. Many routines are utilities in the sense that they do not make use of any mathematical 

or numerical method, do not contain measured data and do not depend on assumptions 

concerning some described system. Utilities simply perform their task with respect to input, 

output, string handling, file handling etc. They are tools for writing reliable and readable 

FORTRAN programs. That is also the reason why you will not find complete listings in this 

report. Only headers of all routines are given containing a description of their function. 

Two groups of routines have a numerical character. These are the random number generators 

and the routines solving an initial value problem by means of the Runge-Kutta or Euler 

method. Further, a few utilities deal with often recurring calculations in numerical simulation 

models. 

Chapter 2 describes the classification of the subroutines in more detail. This classification 

enabies-youto-Hncfyolir-wayThroughflie-liorary:ltlslOIIOwea····oy-explanatiorisori-lheUseof 

three specific groups, the routines for interactive input, for reading data from file and for 

output to file. Chapter 4 is the manual part of the report. It consists of the comment headers of 

all library routines. Each header contains a list of arguments on which calls can be based. To 

prevent any ambiguity with respect to parameter types, also the declarations of the formal 

parameters have been included. In Chapter 5 you can find simple example programs that 

make use of various routines of the library. 

Chapter 3 describes a method for writing simulation models in FORTRAN. The examples 

given are full-fledged programs for Euler integration and Runge-Kutta integration. The "user 

parts" of these programs contain little more than the difference or differential equations 

describing the simulated system. The "overhead" that is usually present in FORTRAN-based 

models is almost completely transferred to the TTUTIL library routines. 

1.1. Why FORTRAN ? 

There are good arguments for the use of FORTRAN in scientific computation. In the first place 

the language is standardized and compilers are available for most types of computers. There 

is no valid reason for writing unreadable FORTRAN programs. Wagener (1980), for instance, 

presents an excellent introduction into programming in FORTRAN. 

Secondly, an overwhelming number of well-tested subroutines is available designed to 

--------~----------~---~--~------- ----~·sapporrsc1Ernmt~--c-e>mpomttorr.-we1t-Rnowrr··exar r 1ples areltTe-iMSt~fibrary-tAnonymous~T-t---------------------------------

containing routines for special functions, matrix calculations, differential equations and many 

more. More· reeenHy ·the elegant andweH-doeumentedroutines from- "Numerical-Recipes" 

(Press et al., 1986) became available to anyone who buys the book. In addition, more than 50 



- 2 -

libraries of FORTRAN sources are available from NETLIB, a file server reachable via bitnet as 

NETLIB@ORNL.GOV. Among these are the famous libraries EISPACK and UNPACK on 

which many IMSL routines are based. In Appendix G the index of the NETLIB system is given. 

1.2. Working on different machines 

Programming languages enable the writing of machine-independent and readable programs. 

Large FORTRAN programs therefore need to be written according to the FORTRAN-77 

standard. We regard as bad practice the use of, for instance, VAX-FORTRAN language 

extensions in simulation models. Furthermore, experience learns that compilers running on 

micro computers are not always as "clever" as the VAX-FORTRAN compiler. "Difficult" 

constructions like function calls and string concatenation within subroutine calls sometimes 

lead to problems. Moreover, the different compilers all have their own deficiencies. A few 

examples: 

- On IBM PC an existing file is not overwritten if it is opened with status "NEW", 

- The use of the STOP statement on the Apple Macintosh leads to the disappearance of the 

--output.wanaow.-Tharimptie-s1h-attataterrormessagemnnotbe-.writtenin:-the=formr~. ----------1 

STOP 'message'. 

In the 57 subroutines and functions presently available in TTUTIL we use a conservative 

programming style. Nested constructions in single statements are omitted (they are not very 

clear anyway) and we "programmed around" the compiler deficiencies we met. All subroutines 

and functions run on an Atari ST computer with the Prospera compiler, on an IBM PC with the 

Microsoft compiler, on an Apple Macintosh with the Absoft compiler and on the VAX using the 

VAX-FORTRAN compiler (see Appendix A, however, for a few changes to be made before 

using the library on an Atari ST). 



- 3 -

2. The structure of the library TTUTIL 

Table 1 gives a classification of the TTUTIL routines. The first eight groups list generally 

applicable subroutines and functions. The next four groups are related to simulation models, 

to a smaller or larger extent. The last group consists of two simple routines for manipulating a 

VT100 screen. Closely related routines have names beginning with the same acronym. For 

instance, the "DEC" routines DECCHK, DECINT, DECREA and DECREC are used for 

decoding character strings into real or integer values. 

Table 1 can be used for an efficient search through the library if you are looking for a routine 

that solves a specific programming problem. The routine headers, given in Chapter 4, provide 

further information on the individual subroutines and functions. In general, there will be no 

need for any further documentation. A few groups, however, require a more detailed 

introduction. These are the ENT routines for interactive variable entry, the RD routines for 

reading data files with a convenient format and the OUT routines for easy output 

2.1. The ENT routines 

The usual way to obtain interactive input from the user is to write a question to the screen and 

to read the answer from the screen. Exactly that is the function of the simple routines 

ENTCHA, ENTINT and ENTREA. They can be used to ask for a character string, an 

integer value and a real value, respectively. For instance, the statement 

CALL ENTREA ('Size of square',SIZE) 

writes the question "Size of square" to the screen and the number returned is assigned to the 

real variable SIZE. Several such calls together form a relatively short program section for 

interactive input. Successive questions are written neatly below each other and the cursor is 

always in column 53 of the screen, independent of question length. 

Somewhat less trivial are the subroutines ENTDCH, ENTDIN and ENTDRE. Again, the 

three routines are meant for entering a character string, an integer value or a real value, 

respectively. As an additional input argument, however, they accept a default value. The 

default value is returned to the calling program when the user does not type in a new value 

and presses the <Enter> key only. The three ENTD routines write the default value between 

square brackets following the question. For instance, the statement 

CALL ENTDRE ('Size of square',2.300,SIZE) 

causes the following line being written to the screen: 

The user either supplies a new value or just presses <Return> to accept the default. Note that 

the secondar9Ument (theuefauU vatue)mayatsobe a variabte;The variable SIZEceutd be 

used, for instance, as the second and third argument of ENTDRE. Than the (current) value 



- 4 -

Table 1. Classification of the TTUTIL library routines. In the underlined routines 
COMMON blocks are used. The names of these blocks are /OUTCUT/ and 
/INFO/ (cf. Appendix B). 

Interactive input 
ENTREA, ENTINT, ENTCHA 

ENTDRE, ENTDIN, ENTDCH 

Input from file 
RDAREA, RDDATA, RDFROM, RDINDX, RDINIT, RDSETS, RDSINT, 

RDSREA, 
GETCH, GETREC, MOFILP, COPFIL 

Output to file 
OUTCOM, OUTDAT, OUTPLT, OUTARR, 

PLTFUN, PLTHIS, COPFIL 

DECCHK, EXTENS, IFINDC, ILEN, ISTART, REMOVE~STRIP, 

UPPERC, WORDS 

Decoding of character strings to values 
DECCHK, DECINT, DECREA, DECREC 

Files 
EXTENS, FOPEN, FOPENG, COPFIL 

Error handling 
ERROR 

AFGEN tables (lists of X, Y pairs) 
AFINVS, LINT, PLTFUN, PLTHIS 

Random numbers 
BOXMUL, GAMMA, UNIFL 

Euler method in (crop) simulation integration in model routine 
CHKTSK, INTGRL, TIMER 

Euler and Runge-Kutta method (general, using STATE array) 
EUDRIV, RKDRIV, RKQCA, RK4A 

Emulation of some CSMP functions 

VT100 screen 
CLS, POS 



- 5 -

of SIZE is used as the default answer. In section 5.1 the use of that trick to simplify testing of 

newly written subroutines is illustrated. 

In order to keep the cursor behind the question, the ENT routines make use of a"$" in the 

output format string. This is not allowed in standard FORTRAN and it forms the only exception 

to the use of standard FORTRAN in the entire library. There seems to be no standard way, 

however, to keep the cursor after writing to the screen. An additional advantage of using the 

ENT routines is that interactive input sections can be kept free of a non-standard dollar. 

2.2. ___ Tb!t RD routines 

The ordinary method for reading data from a file consists of a number of READ statements, 

each reading data from a record of the file. That method clearly requires that the sequence of 

READ statements is consistent with the contents of the file. Moreover, array lengths have to 

be known in the program or have to be read as separate data items. Formatted reading, 

------mor:e_o_ver-de~t.tims~aeet.H:al~J30S:it-iefliAfJ~~ftlej;J_gJ-r.tit~m~f1iJ~f1efa.kffuJ~::t1.1ll~§jf:lY~~<~Hf1--------;J 

debugging such "simple" input sections. 

The solution suggested sometimes in text books on FORTRAN is to read data as character 

strings and to perform the decoding in the program. That requires a considerable 

programming effort and a need was felt for generally applicable input routines based on that 

principle. The RD routines enable the construction of clear, short and robust input sections 

consisting of CALL's only. The idea is that the input file contains both the variable name .aru;t 
the associated value(s). Then, the RD routines are able to find the value(s) to be assigned to a 

certain input variable. The syntax rules for the data files are the following: 

1) The file consists of variable names and numerical values, separated by an '=' sign. So: 

PLMX=20.4 is a valid specification. 

2) Variable names have a maximum length of six characters. 

3) More than one value may appear on the right-hand side of the equal sign, separated by 

commas. This indicates that the variable is an array. In case of continuation on a 

following line the comma should be on the preceding line. 

4) Values may be repeated. For instance, 100 times 1.0 can be written as 1 00*1.0 

5) Variables may appear in any order in the file. 

6) Comment lines start with "*" in the first column, or"!" in any column (rest of line is 

ignored). 

7) Different name-value combinations on the same line should be separated by a 

semi-colon";". 

the first 80 characters of each line of the data file are decoded. 

9) The decimal point in a real value like 20. may be omitted. 

1 0) No TAB's may occur. 



- 6-

The following example file contains all these: 

<Start of file INPUT.DAT> 
* example data file 
N 10 
BB 0, 2, 4, 6 
CCC 10., 20., 

30.' 40. 
DD 100*10. 
EE 10.; FF = 20.; G 
<end of file> 

single value 
array of four elements 
array continued on next line 

array of 100 elements 
30. more than one variable on a single line 

It1~1<:>11()'1Ji_!lg_~l'l_put section reads the values of CCC, BB, EE, FF and N respectively from the 

above listed data file INPUT.DAT. In the declarations section the parameters ILBMAXand 

ILCMAX specify the declared lengths of the arrays BB and CCC: 

* declarations 
INTEGER N,ILBMAX,ILB,ILCMAX,ILC 
PARAMETER (ILBMAX=100,ILCMAX=100) 

----------------~~~A~LLDB~B~CC,EE,FF 
15-:fMEN~fto.N BB( ILBMAX), CCC( ILCMAX) 

* example of input section 
CALL RDINIT (30,40, 'INPUT.DAT') 
CALL RDSREA ( 'EE' , EE) 
CALL RDSREA ( 'FF' , FF) 
CALL RDAREA ('CCC',CCC,ILCMAX,ILC) 
CALL RDAREA ('BB' ,BB ,ILBMAX,ILB) 
CALL RDSINT ( 'N' ,N ) 
CLOSE (30,STATUS='DELETE') 

The actual input section begins with a call to RDINIT. During execution of this call the data file 

is opened as unit 31 (=30+ 1) and is completely read and checked on syntax errors. The 

values occurring in the file are stored in a temporary file called INPUT.TMP (in this case), which 

is opened as unit 30. Finally, the actual data file is closed. During this operation, error 

messages are written to the screen and to unit 40, which preferably is a logfile. 

After initialization with RDINIT, the values of two real variables are read by means of two calls 

to RDSREA (the last part of this name stands for .s.ingle mal). The first argument of this 

subroutine is the name of the variable, written as a character constant. Using that name, the 

routine RDSREA identifies the value to be assigned to the variable. So the character string 

in the CALL should correspond to the variable name in the data file. 

Routine RDAREA reads arrays of real values. In the above example it is called two times for 

reading the arrays CCC and BB from file. Note that the declared length (=maximum length) is 
---------~-----------~~ ---- ------~-~~an ___ inpuT-ar9umenf01~Fio-AREA·an-a··rfieacruararray~re~n9In~rs·arroTITpUTargumenr-cteanv;m~----· ------------------~-------

number of values in the file should not exceed the declared length. That leads to a fatal error 

message. Finally, the value of fhEf slrlgle integer variable N is read uslrlg RDStNT. Note that it 

is not necessary to read every variable from the data file. By means of the CLOSE statement 



- 7 -

the temporary file INPUT.TMP is deleted. 

The subroutines RDINIT, RDSREA, RDAREA and RDSINT are just user interfaces to a 

lower level subroutine RDDATA which is called by these four. Sometimes the name 

RDDATA occurs in error messages, for instance when a variable name is not present in the 

file or in case of an array length error. In such error messages also the variable name is given. 

The suspect RD call is then easily identified. 

Using the RD routines, one should be aware of a few limitations. All values that occur in a data 

file are stored in an unformatted temporary file as single precision REAL numbers (4 byte 

REl\L's):Thafimplies tnarthe number of significant digits is about~s. To obtain an integer 

number, routine RDSINT simply performs a nearest integer operation on the stored value 

(using the intrinsic NINT function). In case of integer values larger than about 1,000,000 the 

result may differ from the contents of the data file. Further, only numeric input is allowed. Thus 

no character strings and logical variables can be read from a file. In future versions a distinction 

will be made between the different variable types while reading the data file. As soon as a 

routine RDSCHA appeals in.the library (forreadinga~singlecharacterstring)~thelimitations 

with respect to integer values and character variables will have been removed. Future 

versions may require the use of a decimal point in real numbers. Hence, you may save 

yourself some (future) error messages by using these in all real numbers in your files. Double 

precision numbers will probably not be supported. Instructions will be added, however, for 

adapting the whole set of RD routines for reading double precision numbers. 

2.3. Making reruns with the RD routines 

The use of the RD routines for input has the additional advantage of a built in "rerun facility". 

Calculations often need to be carried out for different values of input variables. Suppose that 

something is calculated using the input variables 88, EE and FF from the above file 

INPUT. OAT. The calculations have to be repeated for different combinations of 88 and EE. 

Then a so called rerun file can be created by the user, containing the desired combinations of 

88 and EE. For example: 

<Start of rerun file RERUNS.DAT> 
* example rerun file 
BB 1, 3, 5, 7. EE 10. set 1 
BB 2, 4 EE 10. set 2 (with a short array) 
BB 0, 2, 4, 6 EE 30. set 3 
BB 1, 3, 5, 7, set 4 (with a long array) 

8, 9, 8, 9 EE 30. 
BB 2, 4, 5, 7 EE 30. set 5 

A rerun file consists of sets of variables. The order of the variables should be identical in all 

sets. The syntaxra1es ·are identfcat to those of an ordinary data fife. Actual array tengths may 

differ between sets (see the example above). The following program structure takes care of all 

uj 

I 



- 8 -

input: 

* open logfile and read rerun file 
CALL FOPEN (40, 'RERUNS.LOG', 'NEW', 'DEL') 
CALL RDSETS (20,40, 'RERUNS.DAT',INSETS) 

* runs 
DO 10 ISET = O,INSETS 

* select rerun set 
CALL RDFROM (ISET, .TRUE.) 

* an ordinary input section: 
CALL RDINIT (30,40, 'INPUT.DAT') 
CALL RDAREA ('BB' ,BB ,ILBMAX,ILB) 
CALL RDSREA ( 'EE ' , EE) 
CALL RDSREA ('FF' ,FF) 
CLOSE (30,STATUS='DELETE') 

* calculations 

10 CONTINUE 
CLOSE (20,STATUS='DELETE') 

This requires some further explanation: With a call to FOPEN a log file is opened, which is 

used for writing a report on rerun file usage. In the call to RDSETS the rerun file is analysed 

and a short report is written to the log file (unit 40). When the rerun file is not present or empty 

the output variable INSETS is set to zero. Otherwise the number of variable sets is returned 

(in the above example there are 5 rerun sets). By means of the call to RDFROM in the 

DO-loop, a certain set is selected. Selection of set zero means that the contents of the 

original data file INPUT.DAT will be used. The input section for reading the values of BB, EE 

and FF is just an ordinary input section for reading variables from a data file. The RD routines, 

however, internally check whether reruns are being made and whether a non-zero set was 

selected. In that case, for variables occurring in the rerun file, the data file contents are 

replaced by the contents of the rerun file. Since this is a rather hidden activity, ~ 

replacement is reported to the log file. Again, the CLOSE statements remove the temporary 

files created by the RD routines. 

The file "RERUNS.DAT" may be absent or present. If the file is absent, the above program 

section will carry out only one run using the contents of the data file. 

Within a program, replacement of data can be switched off by selecting set 0 with RDFROM 

or by calling RDSETS with a space as filename (CALL RDSETS ( o, o, ' ',I)). The rerun 

facility has a global character, i.e. variables stored in different data files may occur in a single 

rerun file. Within the above DO-loop, for instance, the variables BB and EE could be read 

from different files writing two separate input sections (each containing a call to 

RDINIT). As a consequence, the use of identical variable names in rt•tt.ara:nt 

to problems when reruns are made for that variable. Then the value of both variables will be 

replaced by the contents of the rerun file. Both replacements will be reported to the produced 

log file. 



- 9 -

2.4. The OUT routines 

The OUT routines are used to generate neat output tables with a minimum of programming 

effort. During calculations the name and value of a variable can be sent to routine OUTDAT 

which behaves as a temporary output box. It stores the received output in a temporary file. 

After completion of the calculations a table can be constructed by means of a special call to 

OUTDAT. The table can be used as the final result or can be imported into a spreadsheet or 

a statistical program. 

The use of OUTDAT is illustrated in the example program TEST below. A table and a 

printplot are created of the sine and cosine of x between 0 and 1t. 

01 PROGRAM TEST 
02 IMPLICIT REAL (A-Z) 
03 INTEGER IX 
04 PARAMETER (PI=3.141597) 
05 

----------~~6~~*~--~initialize out~~X~i=s-===~====~----------------------------------~1 
07 cA.ttoU'i'bAT{r, ZO, 'X'; - 1 

08 
09 DO 10 IX = 0,20 
10 X= FLOAT(IX) * PI/20.0 
11 SINX = SIN (X) 
12 COSX = COS (X) 

* repeated output calls 
CALL OUTDAT (2, 0, 'X' , X 
CALL OUTDAT (2, o, 'SINX', SINX) 
CALL OUTDAT (2, o, 'COSX', COSX) 

10 CONTINUE 

* table construction 

13 
14 
15 
16 
17 
18 
19 
20 
21 

CALL OUTDAT ( 4, 0, 'sine + cosine', 

22 * 
23 
24 
25 
26 
27 * 
28 

printplot contruction 
CALL OUTPLT ( 1, 'SINX') 
CALL OUTPLT ( 1, 'COSX') 
CALL OUTPLT ( 7, 'sine + cosine') 

delete temporary 
CALL OUTDAT (99, 0, ' ' 0.0) 

29 STOP 
30 END 

0. 0) 

Table 2 shows the output produced by this example program. The first parameter of the 

routines OUTDAT and OUTPLT is a task parameter. The first CALL to OUTDAT in line 7 of 

the above program (with IT ASK=1) specifies that X will be the independent variable and that 

-~~~~-~p----~p-----~~~-- -~---~~----illli~~be--t~Sedw-t~~tput filer-Subsequent . .caUsJnJines~.-arui1.a.withJI.AS.K::::.2_ WP·-----~----------------~--~--~~ 

instruct OUTDAT to store the incoming names and values in a temporary file (with unit=21 ). 

The number of values that can be stored is only dependent on free disk space and not on 

RAM memory. The terminal call to OUTDAT in line 20 (with ITASK=4) instructs the routine to 



- 10 -

Table 2. Output produced by example program TEST in the text. 

*----------------------------------------------------------------------------
*Run no.: 1, (Table output) 
* sine + cosine 

X 

.00000 

.15708 

.31416 

.47124 

.62832 

.78540 
~· .-94248 

1. 0996 
1.2566 
1.4137 
1. 5708 
1. 7279 
1. 8850 
2.0420 
2.1991 

2:sr~~3 

2.6704 
2.8274 
2.9845 
3.1416 

X 

.00000 

.15708 

.31416 

.47124 

.62832 

.78540 

.94248 
1.0996 
1.2566 
1. 4137 
1. 5708 
1. 7279 
1. 8850 
2.0420 
2.1991 
2.3562 
2.5133 

2.8274 
2.9845 
3.1416 

SINX cosx 

.00000 1. 0000 

.15643 .98769 

.30902 .95106 

.45399 .89101 

.58779 .80902 

.70711 .70711 

.80902 .. .58778 

.89101 .45399 

.95106 .30902 
,98769 .15643 
1. 0000 -0.19809E-05 
. 987 69 -.15644 
.95106 -.30902 

-.45399 
-.58779 
-.70711 
..::.;80902 

.45399 -.89101 

.30901 -.95106 

.15643 -.98769 
-0.45280E-05 -1.0000 

sine + cosine 

Variable Marker Minimum value Maximum value 

SINX 
cosx 

1 
2 

Scaling: Common 

-0.4528E-05 
-1.000 

-1.000 

1. 000 
1.000 

1. 000 

I-------------------------------1-------------------------------2 
I I I 1 I 2 

I 
I 
I 
I 
I 
I 

I 
I 

I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 

1 

2 

2 

I 
1I 

I 1 
I 
I 2 

2I 
I 
I 

2 I 
2 I 

2 I 
* I 

1 I 
1 I 

1 I 
1 

I-------------------------------2-------------------------------1 
I I 2 I I 1 
I I 2 I I 1I 

I 
I 

I 

I 2 
2 

I2 
2 I 

I 

I 

I 
I 
I 
I 

I 
I 

I 
I 1 

I 2 I I 1 I 

1 I 
1 I 

1 I 
I 
I 

2 I I 1 I I 
2-------------------------------1-------------------------------I 



- 11 -

create an output table using the information stored in the temporary file. Dependent on the 

value of the task variable, different output formats are chosen. Tab-delimited format (for a 

spreadsheet) can be generated with IT ASK=5, two column format with ITASK=6. The string 

between quotes is written above the output table. 

The calls to OUTPL T in line 22 and 23 (with ITASK=1) instruct the routine to put "SINX" and 

"COSX" in a graph (up to 25 variables can be printed per plot). The subsequent call with 

ITASK=7 causes OUTPL T to create the plot. Two different widths of the printplot are 

possible, 80 and 132 columns, and two different types of scaling, a common scale and 

individual scales (see Table 3). The process can be repeated to create several print plots 

based on-the same output data. The final call to OUTDAT (in line 28 with ·ITASK=99) deletes 

the temporary file. 

Table 3. The task variable that should be supplied to 
OUTPL T to generate the different print plot types. 

132 80 

Individual 4 6 
Scaling 

Common 5 7 

2.5. Handling of fatal errors 

Fatal errors are dealt with by calling the subroutine ERROR that writes a message to the 

screen, requires a <Return> from the keyboard and then terminates program execution. That 

procedure leads to identical results on all machines tested. A STOP statement with a 

message does not work on an Apple Macintosh as explained in section 1 .2. Users of TIUTIL 

can use subroutine ERROR also for their own fatal errors (see the header of ERROR). 



- 12 -



- 13 -

3. Simulation in FORTRAN 

Simulation is used here as a synonym for solving an initial value problem. A system is 

described by a number of state variables. For each state variable there is an equation 

describing its rate of change as function of time, of the state variables and of model 

parameters. Starting from the initial state, the future behavior of the system can be simulated 

by integrating the rates of change over time. 

Simulation programs, written in a general programming language like FORTRAN, are 

especially useful when they are accessible by other programs. Then different models can be 
~-~~ 

combined, a simulation model can be si16jecled~toarYalgorithm forpa-rameteroptimization~; it 

can be made part of an educational program, etc. In all these cases the simulation model has 

to have a clear structure that is accessible at different levels. 

At the lowest level rates of change are calculated or new values of the state variables are 

calculated (integration). In principle, simulation consists of a sequence of such steps. This 

process should not be "free running'', however. When tinfeprogress is conttollea by a higher 

level routine (a model driver) different models can be coupled much more easily. The model 

driver contains a loop for time control, a so called dynamic loop, from which the actual model 

subroutines are called. Time progress is controlled by the driver. Then the different 

subprocesses are simulated simultaneously and interactions can be taken into account 

without needing to combine the two models into a newly written program. The model driver 

performs a complete simulation run and in turn, the driver may be called by a program 

specifying reruns of the model. This general idea has been worked out earlier ~or Euler 

integration in Van Kraalingen and Rappoldt (1989) and Van Kraalingen (1991). 

Considering Euler integration, it is useful to make a distinction between differential and 

difference equations. The solution of differential equations requires either a small timestep or 

some type of accuracy control. The solution of difference equations implies the use of a fixed 

timestep that is usually related to some natural timescale of the simulated process. In both 

cases rates of change can be defined as changes of the state variables per unit of time. The 

implementation of Euler integration in a FORTRAN program is very similar for difference and 

differential equations. In case of difference equations the timestep is always kept fixed, also 

when an output time is passed. Differential equations enable the use of a variable timestep. 

At first a driver is discussed for solving difference equations. In models for crop growth, for 

instance, the diurnal cycle of the physiological processes is often not considered explicitly. 

Instead, growth rates are derived from total daily photosynthesis. The system is described by 
WWw#~#~###a#seroramerence# eqoanorr~m-ne~S01vetttor·aiixediim~~e1Jm'1>ne\iaTand'itw1ormafism~~>W#W#W~#,W .. -> .. W ,~,~~#~··w·~~WW# 

Euler integration is the only correct method. It is shown how the use of large common blocks 

can be· avotded, how different models ean be combined and how one can make use ofthe 

input, output and rerun facilities from the library TTUTIL. 





- 15 -

The solution of differential equations often requires more accurate integration methods. 

Extensive literature exists on that topic and only a few references can be given here. In Press 

et al. (1986) subroutines can be found enabling fourth order Runge-Kutta integration. In the 

IMSL library (Anonymous, 1987) and in NETLIB libraries (cf. Appendix G) more powerful 

methods are available. In this chapter is shown that the program structure designed for Euler 

integration can be used in combination with a Runge-Kutta algortithm as well. A complete 

example will be given. The implementation of the Runge-Kutta method makes use of existing 

subroutines from Press et al. ( 1986) that have been adapted to our needs. 

Finally, the driver for Runge-Kutta integration is simplified to a driver for Euler integration of 

differential equations. 

3.1. Euler integration of difference equations 

At first a model subroutine is discussed. Then it is shown how a model driver can be written. 

The full source text of the driver is given in Appendix D. Different sections of it will be 
·~----------~----~~ 

discussed;mWiifi· respect·to some .. mmor potnts-tlTe-driverdiffers-trornihe-progr-ams-dfsetJsseEII-------

in Van Kraalingen (1991). That has been done to reduce the differences with the driver for 

Runge-Kutta integration discussed in section 3.2. 

3.1.1. Example of a model subroutine 

A simulation model always consists of an initial section, a section for the calculation of rates of 

change, an integration procedure and an optional terminal section. In large models the 

transfer of variable values among these four sections is a problem. Often large common 

blocks are used that tend to appear everywhere in the program and finally lead to an unclear 

and inaccessible program structure. The solution proposed by Van Kraalingen & Rappoldt 

(1989) is the use of different sections within a single subroutine. The execution of a particular 

section is controlled by the value of the input parameter IT ASK. In Table 4 a simple example 

subroutine is given. 

In the initial section (lines 24-30, ITASK=1) two model parameters and the initial values of A 

and B are read from file MODEL. OAT. Rates of change are calculated in lines 34 and 35 as two 

functions (here unspecified). The calculated rates belong to the current state. Hence, any 

output (enabled by input parameter OUTPUT having the value .TRUE.) should occur at this 

point. The example model sends the state variables A and B to the output routine (lines 38 

and 39). It could send the rates of change or derived variables as well. In lines 44 and 45 

(ITASK=3), new values for the state variables are calculated. 

""'"'~""'"'"'~~~'~"'""'/"~-·/~~~"',."~"''" "/~sc'lk~-~~V~~ • ~~· ~./ ~ .lf:_ ... l'!lJ...,..,,..,J~ 4h ri.-: •• ,... -1 ·uon,..l ~on••anl""o~ nf 1-I'/\C'I/ 
.. Uul VUliiiC vnn. I ~"1S vQIICU m IIIIC·~~T;~nvrnn:.."T'S·\11e~~ut:ef4~ett·~·+ ·~~····· 

values. Two successive integration calls (ITASK=3), for instance, lead to a fatal error. The 

variable ITOLO (the "previous task''} is initialized at 4 inJine 18.1:ience, the first call to the 

model is equivalent to a call after termination and initialization is allowed. 





- 17 -

The last parameter of the model routine is the logical TERMNL. It is an output parameter and 

may be set .TRUE. by the model if, for some reason, the simulation has to be terminated. The 

model driver then should take care of a final rate call with output enabled (OUTPUT =.TRUE.) 

followed by a terminal call to the model with ITASK=4. The terminal flag TERMNL may be set 

during the rate calculation or in the integration part. 

The dynamic loop in Table 5 meets all these requirements. It makes use of a few auxiliary 

variables. The control variable of the loop is not the terminal flag TERMNL but a separate 

logical HALT. The reason will be clear after the explanation on terminal output below. Clearly, 

HALT should be initialized at .FALSE. before entering the loop (see the complete listing in 

Appendix D). The next output time is TN EXT (initialized as the start time) and IP keeps track of 

the number of intervals PRDEL (initialized at 0). 

Table 5. Dynamic loop of driver for difference equations 

----------*-:___-·Eiy-nami--G--l-GOp-(-emu~-a~R), _______________________ ___j 
10 iF _______ ( :NoT~HALT) _______ THEN 

* output required ? 
OUTPUT= (TNEXT-TIME)/DELT.LT.0.01 .OR. TERMNL 

* write time to output ; rate call 

* 

* 

IF (OUTPUT) CALL OUTDAT (2,0, 'TIME',TIME) 
CALL MODEL (2,IUDAT,IULOG,OUTPUT,TIME,DELT,TERMNL) 

IF (OUTPUT) THEN 
get next output time ; leave dynamic loop ? 
IP = IP + 1 
TNEXT = MIN (STTIME + IP * PRDEL, FINTIM) 
HALT = (FINTIM-TIME)/DELT.LT.0.01 .OR. TERMNL 

END IF 

IF (.NOT. (HALT.OR.TERMNL)) THEN 
integrate time and state variables in model(s) 
TIME = TIME + DELT 
CALL MODEL (3,IUDAT,IULOG, .FALSE.,TIME,DELT,TERMNL) 

END IF 
GOTO 10 
END IF 

The first statement in the loop sets or resets the output flag OUTPUT. When the preset time 

TN EXT has been reached or passed, output is enabled and the current time is sent to routine 

OUTDAT. Following output, a new output time is calculated and the HALT flag is set if FINTIM 

has actually been reached or on request of the model (TERMNL=.TRUE.). Then, as long as 

the simulation continues, time and state variables are integrated. 

----~---------------------------------~---~--fuar~--valtte-~-+N€-XT--saflM~xceed-- that--of$.J~llM.-J:lence,.~llen.TlMELeaehe.a ... ~------

FINTIM, output is generated and the HALT flag is set. With the HALT flag set so that 

integration.ofthe final rates is skipped.The ''termination request~~ flag, TERMNL,can be set 

by the model routine either during rate or integration calls. Setting it during an integration call 



- 18 -

immediately leads to output during the next rate call and termination of model execution. 

When the model requests termination during a rate call, however, the driver's reaction 

depends on the output flag. If output has just been generated, the HALT flag is set, 

integration is skipped and model execution is terminated. If termination is requested without 

output having been generated, integration is skipped (TERMNL=.TRUE.), rate calculation is 

repeated, now with output enabled, after which the HALT flag is set. The two successive rate 

calls lead to a warning from routine CHKTSK called in the model routine. Such warnings may 

be omitted by setting the TERMNL flag in the integration sections of your models only. 

When PRDEL is not a multiple of DELT, the desired output times are not precisely reached. 

The~~model will generate output at the first multiple of DEL T exceeding the desired output 

time. That is the consequence of a fixed time step. Dealing with difference equations, a fixed 

time step is, however, the only correct method. When differential equations are solved the 

time step may be adjusted so as to reach exactly the next output time TN EXT. That should be 

done just before the integration call. The IF-ENDIF block, containing that call may be changed 

into: 

* integrate time and state variables in model(s) 
DELTl = MIN (DELT, TNEXT-TIME) 
TIME = TIME + DELTl 
CALL MODEL (3,IUDAT,IULOG, .FALSE.,TIME,DELTl,TERMNL) 

END IF 

After leaving the dynamic loop the driver performs a terminal call to the model, generates table 

output with TIME in the first column and deletes a temporary file: 

* terminate model ; table output ; delete temporary file 
CALL MODEL (4,IUDAT,IULOG,OUTPUT,TIME,DELT,TERMNL) 
CALL OUTDAT (4,0, 'MODEL',O.O) 
CALL OUTDAT (99,0,' ',0.0) 

3.1.3. Coupling different models 

When different systems have to be simulated simultaneously, the models describing them 

have to be coupled. In the driver discussed above, the calls to the routine MODEL may be 

replaced by blocks of calls to the various models. At first all models are initialized, 

subsequently all rates are calculated, all rates are integrated, etc. Output from all models may 

sent to output to routine OUTDAT as long as the variable names used are different. In the 

final output table the output of the different subroutines is combined. 

Usually, the coupling will be carried out because interactions exist between the simulated 

-~~~~~~~~w~~~~cww~ ~~CWC~Cw#~W~w~~sub~tems~Mg~Lf~#ill21~fl~~gil~~0'1Jbe state variable A of model1' for instance. That can 
=d=»'=>'P>'-=>"-""-='ff'-»>'#??=-?h"'"'-*pp~""'-~p'?"-~-~h&Y-"'=?~'~'"'"'"--~--=P'~#P?~??--»~?P"'"-~-~----"'=~-P'ff>'~~N?PPP'-?=PP'~?"-'?#'P'~=~~-"''~=ppP'=»"-==-~?""P'---p~~='~"-C~~~e'>'-" ~"P??>'?~e/?>'-~P'"?/"'~'~~N"~/??P'~/~?~~// 

be expressed in the program by adding A to the parameter list of both models. Then the rate 

calculation in model 2 can be made dependent on the added interaction variable A. In more 

complicated situations it may be more elegant to use a common block expressing the 

interaction between the two systems. Ideally, the interaction only takes place through to state 



- 19 -

variables. Then all rates of change are calculated on the basis of the same overall system state 

and the order of the rate calls is not important. When also rates of change are part of the 

interaction, one should be more careful. 

3.1.4. Reruns 

When the RD routines are used for reading the timer variables in the driver and for all model 

input, reruns can be made varying the values of all variables. A very simple main program takes 

care of the reruns and calls the model driver: 

PROGRAM EULER 

IMPLICIT REAL (A-Z) 
INTEGER IS, INSETS, IULOG, IURER, IUDAT, IUOUT 
DATA IULOG/20/,IURER/30/,IUDAT/40/,IUOUT/50/ 

* open log file and analyse rerun file 
CALL FOPEN (IULOG, 'MODEL.LOG', 'NEW', 'DEL') 
CALL RDSETS (IURER,IULOG, 'RERUNS.DAT',INSETS) 

----------~~---=m~oae~urun~--------------------------------------------------------------~ 

DO 10 IS= O,INSETS 
CALL RDFROM (IS, .TRUE.) 
CALL DRIVER (IUDAT,IULOG,IUOUT) 

10 CONTINUE 
IF (INSETS.GT.O) CLOSE (IURER,STATUS='DELETE') 
STOP 
END 

Note that the use of the various unit numbers is determined in the main program. The driver 

temporarily uses IUDAT and IUDAT +1 for reading timer variables and the example model uses 

the same units for reading its data file (real models might use more units). Also IURER and 

IUOUT should be the first of two free unit numbers. 

3.2. Runge-Kutta integration of differential equations 

Runge-Kutta integration of differential equations leads to more accurate results than the 

simple Euler method. A very readable introduction to the mathematical backgrounds of the 

method can be found in Press et al. (1986). The Runge-Kutta integration routines RKQCA 

and RK4A in the TTUTIL library are adapted versions of the routines given in that book. 

When using these subroutines you are strongly advised to study the relevant pages in Press 

et al. ( 1986) and you should refer to that book in any publication. 

Applying a model-driving routine, Runge-Kutta integration is as easy to implement as Euler 

integration. The TTUTIL library contains a model driver RKDRIV that uses Runge-Kutta 
u~uuu···················M····· .•..•. w. ~~~~~g~;tlo·~··;ith.stepsiie .. controT~~The structu.reofRKDRfVls v·e~,y··sTmtrar·lo.thaf·orfne .. Ei1Ter .................... ······· ·················· 

driver discussed above. The main difference is in the integration section. The Euler driver 

calls the model with IIASK=3, requesting the model rolJUiie to integrate tts state variables. 

The Runge-Kutta driver on the other hand, calls a separate integration routine that simulates 



- 20 -

the system over a selected time step. The integration section of RKDRIV reads: 

* one step with accuracy control using RKQCA 
IF (.NOT.HALT .AND .. NOT.TERMNL) THEN 

* limit time step 

* 

$ 

* 

$ 

DELNXT = MIN (DELNXT,DELMAX) 

IF (TIME+DELNXT .LT. TNEXT) THEN 
accept advised step 
DELT = DELNXT 
CALL RKQCA (STATE,RATE,NDEC,NEQ,TIME,DELT,EPS, 

SCALE,DELDID,DELNXT,MODEL) 
ELSE 

reduce time step; do not overwrite previous advise 
DELT = TNEXT-TIME 
CALL RKQCA (STATE,RATE,NDEC,NEQ,TIME,DELT,EPS, 

SCALE,DELDID,DUMMY,MODEL) 
END IF 

END IF 

The dependence of the integration on HALT and TERMNL is the same as in the Euler driver 

previously discussed. Following the first IF statement the time step-DELNXT is limited to 

DELMAX, a variable read by the driver from the file TIMER.DAT. Then, if TIME plus the time 

step does not surpass the next output time TN EXT, DEL T is set equal to DELNXT and the 

integration routine RKQCA is called. That routine executes the model using the step DEL T. 

That is accomplished by means of 11 rate calls to the model routine. When the result does not 

satisfy the accuracy criterion, a smaller step is taken. In addition to to the state variables of the 

model also TIME will have a new value when returning from RKQCA. The integration routine 

further returns a new value of DELNXT, the advised size for the next step. 

When the value of TIME plus DELNXT exceeds that of the next output time TN EXT, DEL T is 

reduced to TNEXT-TIME before calling RKQCA. Returning from RKQCA, the new advice 

for DELNXT may be a too small number (as a result of the step reduction). Therefore, that 

advice is ignored by means of the variable DUMMY and the current value of DELNXT will be 

used again. 

The accuracy of the integration is controlled by the user supplied value of EPS in the file 

TIMER.DAT. That file also contains the value of the first time step TRY1 to begin with after 

initialization of the model. Hence, instead of the fixed time step DEL T used in the Euler driver, 

TIMER.DAT should contain values for the maximum step DELMAX, the accuracy parameter 

EPS and the first step TRY1. 

The integration routine RKQCA can only perform rate calls to the model when it "knows" the 

-~~--~~~Urepararrrete~~~~outine-~-

has been made independent of the problem at hand. Instead of meaningful names for state 

variabies one has to use a duH array STATE with elements STATE{1), STATE{2), 

STATE(3), ... etc. Table 6 shows a listing of a model subroutine that can be combined with the 



- 21 -

Runge-Kutta driver RKDRIV. It is discussed below in more detail. 

3.2.1. A model subroutine for Runge-Kutta Integration 

The predator-prey model in Table 6 consists of an initial section, a rate calculating section and 

a terminal section. It does not contain an integration section, since integration is performed by 

the integration routine RKQCA. As a consequence, the state and rate variables of the model 

must be formal parameters and the parameter list has to be standardized. Table 6 shows that 

arrays have been defined with state variables and calculated rates. These arrays have a 

declared length NDEC and an actual length NEQ (number of .eguations). Evidently, the use of 

names like STATE(.) and RATE(.) in the model routine would easily lead to unreadable 

programs~and~errors~ Therefore, before any operation begins, the array elements are copied 

into local variables with more appropriate names (see lines 74 and 75). Similarly, calculated 

rates are copied into the RATE array before leaving the model routine (lines 89 and 90). 

The function of the common block /INFO/ is to transfer some variable values between the 

driver and the model. The variables in /INFO/ cannot be included in the parameter list of the 

model routine since the model is alsoucalled from Rl{-a-CAdancrRK~he model needs a 

log file unit number IULOG. And the integer IUMOD is the first of a series of free unit numbers. 

In the example routine, IUMOD itself is used for output and IUMOD+2 for input (see lines 

41,42,45,58 and 64). The logical TERMNL has the same function as in the "Euler model" 

discussed above. When it is set .TRUE., the driver RKDRIV will terminate the simulation. The 

function of KEEP will be explained in section 3.2.5. 

The initial section of the model routine starts with setting local unitnumbers. Then the initial 

state (line 47-48), the model parameters (lines 50-55) and the SCALE (line 57) array are read 

from file. The array SCALE contains the order of magnitude of the values of the state 

variables. It is used in the evaluation of the accuracy criterion by routine RKQCA. For the i-th 

state variable the tolerated error is equal to EPS (from TIMER. OAT) multiplied by SCALE(i). 

(see Press et al. (1986) for a discussion of this method). 

In the initial section also the output routine OUTDAT is initialized. Contrary to the situation 

with Euler integration, this initialization is not done by the driver and, consequently, the model 

routine has to do it itself. That leaves the user completely free in choosing the independent 

variable or writing alternativeoutput sections instead of using OUTDAT. The driver never has 

to be changed and has been made part of the library TTUTIL. 

The rate-calculating section starts with assigning values to the local variables PREY and 

PRED. Subsequently, the rates of change are calculated according to the following 

--~~~~~~~- -----------~---~-· 

l ~~ = r ( 1 - ~ ) V - c ( 1 - e-aV lc )P 

dP = be (1 _ 9 -aVIc )P _ dP 
dt 



- 22 -

Table 6. A model subroutine suitable for Runge-Kutta integration 

001 
002 
003 * 
004 * 
005 * 
006 * 
007 * 
008 * 
009 * 
010 * 
011 * 
012 * 
013 * 
014 * 
015 * 
016 * 
017 * 
018 
019 
020 

023 
024 
025 
026 * 
027 
028 
029 
030 
031 * 
032 
033 
034 
035 
036 
037 
038 * 
039 * 
040 * 
041 
042 
043 
044 * 
045 
046 * 
047 
048 
049 * 
050 
051 
052 
053 
054 
055 
056 * 

058 
059 
060 * 
061 
062 
063 * 

SUBROUTINE MODEL (ITASK,OUTPUT,TIME,STATE,RATE,SCALE,NDEC,NEQ) 

Predator prey simulation model that leading to a stable limit 
cycle when the prey carrying capacity is relatively large. 
The model originates from Rosenzweig (1972) and is discussed 
also by May (1972). The parameter names used here are taken 
from Roughgarden (1979). The STANDARD (! !) parameter list: 

I TASK 
OUTPUT 
TIME 
STATE 
RATE 
SCALE 
NDEC 
NEQ 

- task of model routine 
.TRUE. output request (ITASK=2 only) 

- time 
- state array of model 
- rates of change belonging to STATE 
- size scale of state variables 
- declared size of arrays 
- Number of state variables, for ITASK=1 

I 
I 
I 

I/0 
I/0 
I/0 

I 
0 

otherwise I 

IMPLICIT REAL (A-Z) 

INTEGER ITASK, NDEC; NEQ 
DIMENSION STATE(NDEC),RATE(NDEC),SCALE(NDEC) 
LOGICAL OUTPUT 

common /INFO/, ===do not change this section ! ! 

INTEGER IULOG, IUMOD, KEEP 
LOGICAL TERMNL 
COMMON /INFO/ IULOG,IUMOD,KEEP,TERMNL 

local (non-common) variables 
INTEGER IURES, IUDAT 
REAL PREY, PRED, RPREY, RPRED 
REAL R, K, A, C, B, D, FOUND 
SAVE 

IF (ITASK.EQ.l) THEN 
initial 

get local unit numbers 
IURES IUMOD 
IUDAT = IUMOD + 2 

open input file 
CALL RDINIT (IUDAT,IULOG, 'MODEL.DAT') 
initial state 
CALL RDSREA (I PREY I' PREY) 
CALL RDSREA ( 'PRED' , PRED) 
model parameters (see data file for meaning of symbols) 
CALL RDSREA (I R I 'R) 
CALL RDSREA ('K' ,K) 
CALL RDSREA ('A' ,A) 
CALL RDSREA ( 'C' ,C) 
CALL RDSREA ( 'B' ,B) 
CALL RDSREA ( 'D' ,D) 
scales 

CLOSE (IUDAT,STATUS='DELETE') 

check the size of the SCALE array on file: 
IF (NEQ.NE .2) CALL ERROR ("MODEL', ~sCALE length mismatch') 

initialize output 



064 
065 
066 * 
067 
068 
069 
070 
071 * 
072 * 
073 * 
074 
075 
076 
077 * 
078 
0~9 

080 
081 
082 * 
083 
084 
085 
086 
087 

090 
091 
092 
093 * 
094 * 
095 * 
096 
097 
098 
099 
100 
101 

- 23 -

CALL OUTDAT (1,IURES, 'PREY',PREY) 

initialize state variables 
STATE(1) = PREY 
STATE(2) = PRED 

ELSE IF (ITASK.EQ.2) THEN 
rates of change 

assign state to local variable names 
PREY = STATE ( 1) 
PRED = STATE(2) 

equations of the model using found preys per predator 
FOUND= C * (1.0- EXP (-1.0 *A* PREY/ C)) 
RPREY = R * PREY * (1.0 - PREY/K) - FOUND * PRED 
RPRED = (B * FOUND - D) * PRED 

output section 
IF (OUTPUT) THEN 

CALL OUTDAT (2,0, 'PREY',PREY) 
CALL OUTDAT (2,0, 'PRED',PRED) 

END IF 

RATE(2) = RPRED 

ELSE IF (ITASK.EQ.4) THEN 
terminal 

table output in two columns and delete temporary 
CALL OUTDAT (6,0, 'A stable limit cycle',O.O) 
CALL OUTDAT (99,0,' ',0.0) 

END IF 

RETURN 
END 

The calculated rates of change are assigned to elements of the output array RATE. When 

output is enabled, the state variables are sent to OUTDAT. In the terminal section (lines 96 

and 97) OUTDAT is called for a table with results. (Note that also rates can be sent to 

OUTDAT.) 

The use of a standard parameter list has an important advantage. All calls to the model can be 

brought in a standard form. That implies that model execution can be made fully independent 

of the problem at hand. The user only has to supply a single subroutine describing the system 

whereas the driver does not need to be changed. 

The model subroutine in Table 6 can be executed by means of the following (model

independent) main program: 



- 24-

PROGRAM RK 

IMPLICIT REAL (A-Z) 
INTEGER IS, INSETS, IULOG, IURER, IUDRIV, IUMOD 
EXTERNAL MODEL 
DATA IULOG/20/,IURER/30/,IUDRIV/40/,IUMOD/50/ 

* open log file and analyse rerun file 
CALL FOPEN (IULOG, 'MODEL.LOG', 'NEW', 'DEL') 
CALL RDSETS (IURER,IULOG, 'RERUNS.DAT',INSETS) 

* model runs 
DO 10 IS = O,INSETS 

CALL RDFROM (IS, . TRUE.) 
~~~ ~G~!JL RKDRIV (IULOG, IUDRIV, IUMOD,MODEL) 

10 CONTINUE
IF (INSETS.GT.O) CLOSE (IURER,STATUS='DELETE')
STOP
END

In the DATA statement unit numbers are set for a log file, a rerun file, the file TIMER.DAT (read

by the driver) and for use by the model routine. Note that all timer variables and model

parameters may occur in the rerun file.

The name of the model subroutine is declared external by means of the EXTERNAL

statement. Another name could be used in the above main program without having to change

the driver RKDRIV and the integration routines in TTUTIL. On some computers the linker

appears to have problems with handling external subprograms. Problems tend to arise

especially when routines with external modules in their parameter list (like RKDRIV) are

linked from an object library. Hence, inclusion of the driver RKDRIV by means of an include

statement in the compiled source will almost always cure the problem. Also the lower level

routines RKQCA and RK4A may have to be included. With Absoft FORTRAN on Apple

Macintosh the problem can be solved by including in the main program (after the declarations)

a fully dummy call to the model subroutine:

CALL MODEL (0, .FALSE.,DUM,DUM,DUM,DUM,1,I)

It is easily verified that this call does absolutely nothing (cf. Table 6). It just takes over the

function of the external statement that seems to be incorrectly dealt with.

3.2.3. Results of the example model

The above main program and the example model in Table 6 have been compiled and linked to

the TTUTIL library. The data files used in combination with the program are given in Table 7.

The biological interpretation of the model parameters is given as comment in the file

MODEL.DAT. The differential equations describe a predator-prey model with saturation. At

low prey density, the number of preys eaten per prey r10inC'I1r\/

At a high prey density, the predators have no difficulties in finding their preys and have

enough to eat. As a consequence, the nurnoerorpreys eaten per predator approaches a

maximum. This saturation effect appears to destabilize the system. Without saturation a

- 25 -

Table 7. Data files belonging to the model in Table 6. Figure 1 shows the results.

<file MODEL.DAT>
* initial numbers + scales
PREY 700.0 ; PRED = 50.0 ! model run starting from inside the limit cycle
SCALE = 1000.0, 100.0
* model parameters ; values taken from Roughgarden (1979)
* ===
R 0.5 relative growth rate prey at low density
K 3500 carrying capacity of environment for prey
A 0.01 consumption of preys per prey per predator at low prey
c 10.0 consumption of preys per predator at high prey density
B 0.02 predator's increase per eaten prey
D 0.1 relative death rate predator without food
<End>

<file TIMER.DAT>
* simulation control variables
STTIME 0.0 start time
FINTIM 1000. finish time
PRDEL 1.0 output time step
EPS 1E-4 tolerable relative integration error
TRY1 0.01 First try of time step

<file RERUNS.DAT>
* rerun of the model starting from outside the limit cycle
PREY= 200.0 ; PRED = 15.0
<End>

density

predator-prey model has a stable equilibrium. For a relatively large carrying capacity K, this

equilibrium is not very stable against disturbances, however. The saturation effect can be

regarded as such a disturbance. Adding it to the model leads, for large values of K, to a so

predator
100 ~------------------------------------~

80

60

40

20

0 1000 prey 2000

Figure 1. Stable limit cycles in predator-prey space generated by the simulation
program in Table 6 and TTUTIL routines. The graph shows frajeclories sfaftTng
from two different initial points. Both lines approach the same limit cycle.

- 26-

called stable limit cycle. The predator and prey populations oscillate. Amplitude and frequency

of the oscillation are independent of the initial conditions.

In the model routine prey density was chosen as the independent output variable. That leads

to an output table containing PREY and PRED as two columns (without TIME). Plotting that

result leads to the curves in Figure 1 . The data files specify two model runs with different initial

conditions. The model parameters were taken from Roughgarden (1979) and the result in

Figure 1 accurately corresponds to his Figure 22.7.

3.2.4. Coupling different models

When differenrmooers h~ave to be coupled, each having the·structure of thErexample model

in Table 6, the procedure is somewhat more complex than for the EULER integration, where

the driver can be easily adapted for performing calls to all models.

When a separate integration routine like RKQCA is used, however, only a single STATE

array, a single RATE array and a single SCALE array exist. Hence, the arrays of the different

mooels-neea to~becombrned.irfa single"sUpermoael"tliat· is· positioned between the driver

and the actual model routines. The supermodel has the structure of an ordinary model

subroutine and its only function is to subdivide up the full state arrays into contributions from

the various models. The calls from the driver and the integration routine are then translated

into calls to the different models.

Variables expressing the interaction between the different models can be added to the

parameter lists of the model subroutines, since the separate models do not need to be in

standard form anymore (only the "supermodel" has to be). A more elegant way is probably the

use of small common blocks containing interaction variables. Then each submodel can still be

used as an independent model subroutine. Together, with a "supermodel" above them, they

interact.

3.2.5. The variable KEEP

The common block /INFO/ contains the variable KEEP which has a special function. Each

integration step requires many rate calculations and the model is often called by the

integration routine RKQCA (or in fact by RK4A, at an even lower level). Before starting an

integration step, however, the driver RKDRIV calls the model once. That call is needed for

several reasons. Sometimes the output flag OUTPUT is set by the driver, requesting the

model not only to calculate rates but also to produce output. Moreover, the integration

procedure requires valid rates of change at its starting point. Therefore the driver always has

to call the model before integration. During that call the variable KEEP is equal to 1. After
~~·~~············~····w··~···~-~~~returnTn9 fromiile.mode(Tile ·ar:rver~sets~R-EEP~i:>ack iO·oa9ain~When-Kl~~E.F>~-c···i11e .. mocrer---·~-·--~· ···················-·w·- ···

may calculate new values for discontinuous functions. Or, in complicated cases, it may change

the vaJI.Jes of its state variables to acrount fortast subprocesses that are not described by the

differential equations incorporated in the model.

- 27 -

3.3. Euler integration of differential equations

The driver for Runge-Kutta integration can be easily adapted for Euler integration. The call to

the integrating subroutine RKQCA is replaced by a DO-loop in which new states are

calculated according to the simple Euler algorithm. The result is subroutine EUDRIV. This

subroutine differs in two ways from the Euler driver for difference equations discussed above

(the driver in Appendix D). Subroutine EUDRIV calls the same type of model subroutines as

RKDRIV. Hence, it makes use of the STATE and RATE arrays and even of the array SCALE

although this last one is not used in the integration algorithm. That implies that one can switch

between Euler integration and Runge-Kutta integration by simply calling either EUDRIV or

~ RKDRIVin the main program.

A second difference with the Euler driver in Appendix D is that EUDRIV adapts its timestep

when an output time is approached. With DEL T =2 and PRDEL=3, for instance, the

successive timesteps are 2,1 ,2, 1 ,2, 1 In case of the solution of difference equations the

timestep has to be kept fixed. Hence, EUDRIV applies the Euler algorithm to differential

· - equations-while-the-anvet-ln -Appem:fiX1)-(arn:f-th-e~riV~l's-dis-cus-s1rd-irr:Van1{raa1ingen\-t99t}

solve difference equations.

3.4. Concluding remark

The utilities for input and output of the TTUTIL library can be used in combination with a

Runge-Kutta integration algorithm or with any other integration algorithm. In a simulation

model the system description is preferably separated from the integration algorithm. Usually

that will require the use of a separate integration routine by which the model is called. Also

programs for solving partial differential equations, for instance models for water transport in

the soil, can probably be substantially improved by writing a more abstract routine that takes

care of the integration and separating it from the solved equations. Examples of an elegant

program structure can be found in the IMSL library (1987).

- 28 -

- 29 -

4. Headers of the library routines

The headers consist of the following parts:

- The SUBROUTINE or FUNCTION statement.

- A short description of the function of the subprogram.

- A list of formal parameters with their meaning. The parameters are classified as input (I) or

output (0) parameters.

- A list of called subroutines and/or functions. The lists give the names of all required

subprograms. Only other TTUTIL routines are called.

- The author(s) and the date on which the last changes were made .

..: - ln-somecases additional explanation~

- The declarations of the formal parameters of the subprogram. They give the datatype of

each parameter and the array lengths. In case of doubt the declarations are decisive.

- 31 -

REAL FUNCTION BOXMUL ()

* Generates unit normal deviate by Box-Muller method

* BOXMUL - pseudo-random standard normal deviate 0

*
* Subroutines and/or functions called:
* - from library TTUTIL: UNIFL

* Author: Kees Rappoldt
* Date October 1989

* Some remarks:
* The Box-Muller (1958) method is based on inversion. No
* inverse exists of the distribution of a single normal
* variate However SQRT(X**2+Y**2) with X andY both being
* normal variates, has a distribution which can be inverted.

* This enables elegant generation of normal variates
* in combination with a generator for uniform variates

* on (0,1). The commonly used linear congruential
* generators, however, lead to pathological behaviour
* (see section 6.7.3 in Bratley (1987)). This is not
* the case with the generator UNIFL used in this program.

*
* References:
* Box, G.E.P., and M.E.Muller. (1958). A note on the
* generation of random normal deviates.

* Ann.Math.Stat. 29:610-611.
* Bratley,P., B.L.Fox and L.E.Schrage. 1983. A guide to
* simulation. Springer-Verlag New York Inc. 397 pp.

* no formal parameters

- 33 -

SUBROUTINE CLS

* This subroutine clears the screen (IBM only)

*
* Author: Daniel van Kraalingen

* Date: Oct 1989

*
* No subroutines called

* no formal parameters

- 35 -

LOGICAL FUNCTION DECCHK (STRING)

* Checks if string STRING is a number.

* DECCHK --> .TRUE. if the string is a number

* STRING - input string, NO trailing or leading blanks

*
* No subroutines and/or functions called

* Author: Kees Rappoldt
* Date September 1989

* formal parameter
CHARACTER*(*) STRING

0

I

- 36-

SUBROUTINE DECINT (IWAR,STRING,IVALUE)

* Decodes an integer number from a character string

*
*
*
*

IWAR - In case of error IWAR = 1, otherwise IWAR = 0

STRING - input string, NO trailing or leading blanks

IVALUE - Integer value read from string

* Subroutines and/or functions called:

* - from library TTUTIL: DECCHK

-~~-- --~*--- -~~j:._J:lor: Kees Rappoldt
* Date September 1989

* formal parameters

INTEGER IWAR,IVALUE

CHARACTER*(*) STRING

0

I

0

- 39 -

SUBROUTINE ENTCHA (QUEST,X)

* Interactive entry of a character string.
* Writes the text QUEST on screen as a "question" and

* returns entered string to calling program.

* QUEST - character string, for instance 'name'

* X - entered character string

*
* No subroutines and/or functions called

-J5 --Authnr: Kees~RappQldt

* Date October 1989

* formal parameters
CHARACTER QUEST*(*),X*(*)

I

0

- 43 -

SUBROUTINE ENTINT (QUEST,IX)

* Interactive entry of an INTEGER number
* Writes the text QUEST on screen as a "question" and

* returns entered number to calling program.

* QUEST - character string, for instance 'number N'

* IX - entered number

*
* No subroutines and/or functions called

* ~AuthQr: Kees Rappoldt
* Date October 1989

* formal parameters
INTEGER IX
CHARACTER QUEST*(*)

I

0

- 45 -

SUBROUTINE ERROR (MODULE,MESSAG)

* Writes an error message to the screen and holds the
* screen until the <RETURN> is pressed.
* Then execution is terminated.

*
*
*

MODULE - string containing the module name

MESSAG - string containing the message

* No subroutines and/or functions called

* __ Author: Daniel van Kraalingen
* Date October 1989

* formal parameters
CHARACTER*(*) MODULE, MESSAG

I

I

- 46-

SUBROUTINE EXTENS (FILEIN,NEWEXT,ICHECK,FILEOU)

* Changes extension of filename. Output filename is filled
* with characters of input filename and new extension until
* end is reached. Output filename is in uppercase characters.

* The old extension is the part of the filename that follows
* a dot (.). A dot before a bracket (]) is neglected (VAX).
* The input filename does not necessarily have an extension.

* FILEIN - Input filename with old or without extension
* NEWEXT - New extension ; is set to uppercase
* ____ ICHECK 1 --> check on equal output and input extension

* 0 --> no check

* FILEOU - Output filename with new extension in uppercase

*
* Subroutines and/or functions called:
* - from library TTUTIL: ERROR, ILEN, UPPERC

* Date October 1989

* formal parameters

INTEGER ICHECK
CHARACTER*(*) FILEIN,FILEOU,NEWEXT

I

I

I

0

- 47-

SUBROUTINE EUDRIV (IUL,IUD,IUM,MODEL)

* Solves an initial value problem with the simple Euler method.

* This driver routine initializes the model, reads a control

* file TIMER.DAT and drives the user supplied model until the

* finish time FINTIM given in TIMER.DAT is reached.

* IUL - logfile unit number I

* IUD - first of two free unit numbers used by this driver I

* IUM - first of a series of free unit numbers for model I

* MODEL - external model routine I
*---

* Subroutines and/or functions called:

* - from library TTUTIL: DECCHK, DECINT, DECREA, ERROR, EXTENS,

* FOPENG, IFINDC, ILEN, ISTART, RDDATA,

* RDINDX, RDINIT, RDSREA, UPPERC

* Author: Kees Rappoldt

* Date october 19 9 o

* The user supplied routine MODEL:

* The differential equations are actually contained in the user

* supplied subroutine MODEL which is called by this driver as:

* CALL MODEL (ITASK,OUTPUT,TIME,STATE,RATE,SCALE,NDEC,NEQ)

* Note that the user routine may have an arbitrary name which is

* given as an EXTERNAL in the CALL to this driver EUDRIV. The

* action of the user supplied model subroutine depends on the

* value of ITASK in the following way.

* ITASK = 1 The model is initialized. The number of state variables

* (differential equations) NEQ is set. Model parameters are

* set or are read from file. Time and states are set to their

* initial values. Also the corresponding scales have to be

* set. The scale array SCALE contains the order of magnitude

* of each state variable in STATE. A scale needs to be a

* positive number, for instance 0.001, 0.5 or 30000.0. Also

* output should be initialized (files opened, headers etc.)

*
*
*
*
*
*

*
*
*
*

I TASK

I TASK

2 Values in the STATE array and the current TIME are used

to calculate rates of change for each status variable.

In order to prevent confusion it is advised to use local

and more meaningfull names for state variables than just

the input array elements STATE(l), STATE(2), etc. Then,

at first, the state array is copied into the local

copied into the output array RATE.

4 Terminal call to the model. Final output may have to be

generated, files closed, etc.

*
*
*
*
*

- 48-

Some CALL's with ITASK=2 ("rate calls") take place with the logical

OUTPUT set to .TRUE. Then the user supplied model is allowed to

produce output to file and/or screen. The period between successive

output times is PRDEL, a variable read from the control file TIMER.DAT.

* Information on the variables in common block /INFO/ is given in the

* header of subroutine RKDRIV. The same common block is contained

* in this routine, although all rate call's are done with KEEP=l.

* Hence, both EUDRIV and RKDRIV can be linked to a main program in

* which a choice can be made between the integration methods. The block

* /INFO/ also contains the unit number of an opened logfile and the

* first of a series of free unit numbers that can be used by the model.

* Further-/iNFO/ contains a logical TERMNL. This logical can be set

* to .TRUE. by the model routine at any moment. It causes the

* termination of the current simulation run.

* formal parameters
--------~IJ>w:J'l'-EGER-IIlL-,-Illil,___.__...LJ.:.L_ _____________________________ _

EXTERNAL MODEL

* common /INFO/

INTEGER IULOG, IUMOD, KEEP

LOGICAL TERMNL

COMMON /INFO/ IULOG,IUMOD,KEEP,TERMNL

- 49 -

SUBROUTINE FOPEN (IUNIT,FILE,STATUS,PRIV)

* Opens a sequential, formatted file
* after doing an inquiry about the existence.

*
*
*
*
*
*
*
*

IUNIT - unit number used to open file
FILE - name of the file to be opened

STATUS - status of the file

PRIV privilege in case status='new' and file exists:

'del' --> old file is overwritten
'nod' --> old file saved, program stopped

'unk' --> interactive choice

* Subroutines and/or functions called:
* - from library TTUTIL: ERROR, ILEN, UPPERC

* Author: Daniel van Kraalingen, Kees Rappoldt

* Date July 1990

* formal parameters
INTEGER IUNIT
CHARACTER*(*) FILE, STATUS, PRIV

I

I

I

I

- 50 -

SUBROUTINE FOPENG (IUNIT,FILE,STATUS,TYPE,IRECL,PRIV)

* Opens formatted, unformmated or binary

* files with sequential or direct access.

*
*
*
*
*
*
* *

*
*
*
*

IUNIT - unit number used to open file
FILE - name of the file to be opened

STATUS - status of the file

TYPE - string containing code for FORM keyword (F,U or B)

and code for ACCESS keyword (S or D) .

IRECL record length of direct access files. Parameter

is dummy in case of sequential files.

-PRIV privilege ; in case status=''new' and file exists:

'del' --> old file is overwritten

'nod' --> old file saved, program stopped

'unk' --> interactive choice

* Subroutines and/or functions called:

* - from library TTUTIL: ERROR, ILEN, UPPERC

* Author: Kees Rappoldt

* Date July 1990

* formal parameters
INTEGER IUNIT,IRECL

CHARACTER*(*) FILE, STATUS, PRIV, TYPE

I

I

I

I

I

I

- 51 -

REAL FUNCTION GAMMA (ALFA, BETA)

* Generates a gamma distributed pseudo random variate. The gamma

* distribution has two parameters, ALFA and BETA. This generator

* works for 0.0 < ALFA <= 1.0 only (checked !) .

*
*
*
*

ALFA - Shape parameter of the distribution

BETA - Scaling parameter of the distribution

GAMMA - Function name, gamma variate

* Subroutines and functions called:

* - from library TTUTIL: ERROR, UNIFL
---~----~

* Author: Kees Rappoldt

* Date January 1990

* This pseudo random generator is fully based on FUNCTION RGS

I

I

0

______ ___,* _ _'.-n_t:h~:n~~di-t----.to:n-=-(--1~~8-1~)------Q::f~.-------------------------H

* Bratley, P., B.L. Fox and L.E. Schrage.

* to simulation. Springer Verlag. New York. 397 pp.

* The original function RGS (in Appendix L of the book) depends

* on the parameter ALFA only. This function GAMMA is defined as:

* GAMMA (ALFA, BETA) BETA * RGS (ALFA)

* So the result of the original program is multiplied by BETA

* in this routine in order to simplify the scaling of the

* generated gamma variates.

* Further, the program has been adapted for the use of the UNIFL

* function for the generation of uniformly distributed variates.

* formal parameters

REAL ALFA,BETA

- 52 -

SUBROUTINE GETCH (IUNIT,INCHAR,CHARS,EOF)

* Reads INCHAR characters from a sequential file.
* Resets itself during the first CALL, on an End Of File

* condition and when a new unit number is used.

*
*
*
*
*

IUNIT - unit of opened file used for reading
INCHAR - number of characters to be read

CHARS - characters read from file
EOF - End_Of_File found ; CHARS may not be complete

* Subroutines and/or functions called:
-* -~-:.- fromlibrary TTlJTIL: ERROR, ILEN

* Author: Kees Rappoldt

* Date January 1989

INTEGER IUNIT,INCHAR

CHARACTER*(*) CHARS
LOGICAL EOF

I

I

0

0

-54-

INTEGER FUNCTION IFINDC (NAMLIS,ILDEC,IST,IEND,NAME)

* Finds number of name in a list with names ; when

* name is not in the list a zero value is returned

* Character strings should be of the same length ! !

*
*
*
*
*
*
*

IFINDC - element where a match was found

NAMLIS - character string array, the "list"

ILDEC - declared length of array NAMLIS

IST - array element where search should start

!END - actual size of the list with names

NAME - name to be found in the list

* Subroutines and/or functions called:

* - from library TTUTIL: ERROR

* Author: Kees Rappoldt

* formal parameters

INTEGER ILDEC, IST, !END

CHARACTER*(*) NAMLIS, NAME

DIMENSION NAMLIS(ILDEC)

0

I

I

I

I

I

- 55 -

INTEGER FUNCTION ILEN (STRING)

* Determines the significant length of a string.
* If the string is empty a zero is returned.

*
*
*

ILEN - returned length

STRING - input string

0

I

* No subroutines and/or functions called

* Author: Daniel van Kraalingen

* nate October 1989

* formal parameter
CHARACTER*(*) STRING

-56-

REAL FUNCTION INSW (Xl,X2,X3)

* Input switch depending on sign of Xl ;

* function is equivalent to the CSMP-INSW.

* INSW - returned value

* Xl identifier upon which the test is done

* X2 - value of INSW in case Xl < 0,

* X3 - value of INSW in case Xl >= 0,

*
* No subroutines and/or functions used

* Author: Daniel van Kraalingen

* Date October 1989

* formal parameters

REAL Xl,X2,X3

0

I

I

I

- 57 -

REAL FUNCTION INTGRL (STATE, RATE, DELT)

* Function value = STATE + RATE * DELT.

*
*
*
*
*

INTGRL - function name, new state

STATE - old state

RATE - rate of change per unit time

DELT - time step

* No subroutines of functions called

-~-*~~~ _ _l\._l.!_1;1}Qr~: Darli~l VC!n Kraalingen

* Date December 1989

* formal parameters

REAL STATE, RATE, DELT

0

I

I

I

- 58 -

INTEGER FUNCTION ISTART (STRING)

* Determines the first significant character of a string.
* If the string contains no characters, a zero is returned.

*
*
*

ISTART - returned value
STRING - input string

0

I

* No subroutines and/or functions called

* Author: Daniel van Kraalingen

* ~ ___ _l)g.j::~---- _Octo}:)er 1989

* formal parameter
CHARACTER*(*) STRING

- 59 -

REAL FUNCTION LIMIT (MIN, MAX, X)

* Returns value of X limited within the interval [MIN,MAX]

*
*
*
*

MIN - interval lower boundary

MAX - interval upper boundary

X - Argument of function

I

I

I

* Subroutines and/or functions called:

* - from library TTUTIL: ERROR

* -~~11-~l'l.q:r:_; _Kees Rappoldt

* Date : January 1990

* formal parameters

REAL MIN,MAX,X

----------~--------------

- 61 -

SUBROUTINE MOFILP (IUNIT)

* Moves the file pointer across comment lines of data files

* and puts the file pointer at the first non-comment record.

* Comment lines have an asterisk (*) in their first or

* second (! !) column (with a space in the first).

* IUNIT - unit of opened file used for reading

*
* No subroutines and/or functions called

* Autho:r-_:_~Da~i_el ya_n K:r:a_a_~j_ngen

* Date : October 1989

* formal parameter

INTEGER IUNIT

I

- 62 -

SUBROUTINE OUTARR (NAME, ARRAY, I 1, I 2)

* This function writes the contents of arrays to the OUTDAT routines.
* See description of OUTDAT routines for further information.

* Example:
* CALL OUTDAT ('ABC', ABC, 1, 10)

*
* This call writes the array elements ABC(1) to ABC(10) to

* the OUTDAT routine which can then be used to generate an output

* table.

- Name of CiJ=ray_ to be written * NAME
--~~ ~-

* ARRAY - Array itself

* I1 - Array element where output should start

* I2 - Array element where output should finish

*
* Subroutines called:
* - from library TTUTIL: OUTDAT, ILEN, FOPENG, IFINDC, ERROR,

* Author: Daniel van Kraalingen
* Date November 1990

* formal parameters
CHARACTER*(*) NAME
INTEGER I1, I2
REAL ARRAY(I1:I2)

I
I
I
I

- 63 -

SUBROUTINE OUTCOM (STR)

* Stores a text string which is written to

* the output file generated by OUTDAT. A maximum

* number of 25 strings of 80 characters can be stored.

* STR - text string I

*
* Subroutines and/or functions called:

* from library TTUTIL: IFINDC, ERROR, ILEN

-~--- ---*----- _ Authn_r :___l;lQ,niel ve1n K:r:-Q.alingen

* Date : November 1990

* Example:

* CALL OUTCOM ('Potential production')

* CALL OUTCOM ('and water limited production')

--- -~--~-*------GA-LL-GlJ'l'DA'I'--(-4-r--0 ,----'=F'3..-nal--output'-,-0 .)---

* both text strings will appear in the final output file.

* formal parameters

CHARACTER*(*) STR

- 64-

SUBROUTINE OUTDAT (ITASK, IUNIT, RN, R)

* Can be used to generate output files from within simulation models.

* It should be initialized first, to define the name of the

* independent variable and to set unit numbers (ITASK=1) . The name

* and value of the data are stored by calls with ITASK=2, supplying

* the name and the value to OUTDAT. The output file is generated by a

* call with ITASK=4, 5, or 6. These generate table output, spreadsheet

* output and two column output, respectively.

* ITASK - integer, can be 1, 2, 4, 5, or 6. 1 initializes the

·* subroutine, opens a temporary file for storage, and stores

* the name of the independent variable and the unit number.

* 2 stores the name and value of the variable in a temporary

* file. 4, 5, or 6 generate an output file. After 4, 5, or 6

* the subroutine can be used again by using ITASK=1.

* IUNIT - unit number used for writing to output file. If the unit

* defined during ITASK=1 is open this is used for output.

-*-- ·----·-- ---etherw±-s e--a-f·i-J:e-·-~-res--;-da t-•--us-±-ng -that--un-it';- -is--e-re a t-ed-. --·-

* IUNIT+1 is used I/O to the temporary file.

* RN - string, name of variable, (up to 11 characters

* will be used) . If ITASK is 4, 5, or 6, this string

* will be written to the output file as title

* (not limited to 11 characters) .

* R - value of variable (only effective at ITASK=2).

*
* Subroutines and/or functions called:

* - from library TTUTIL: ILEN, FOPENG, IFINDC, ERROR, OUTCOM, UPPERC

* Author: Daniel van Kraalingen, Kees Rappoldt

* Date November 1990

* Example:

*
* CALL OUTDAT (1,20, 'TIME',O.) initialization, TIME is

* made independent variable

* CALL OUTDAT (2,20, 'TIME',TIME) value of TIME is stored

* CALL OUTDAT (2,20, 'D(11) ',D(11)) value of DTGA is stored

*
* repeated calls to OUTDAT with ITASK=2

*
* CALL OUTDAT (4,20, 'Plottitle',O.) generate output file with

*
* CALL OUTDAT (6,20, 'plottitle',O.) generate output file with

*
* CALL OUTDAT (1,20, 'TIME 1 ,0.)
* etc.

two column format

initi~lize ~~aifi

i

I
·-1

* formal parameters

INTEGER ITASK, IUNIT

REAL R

CHARACTER*(*) RN

- 65 -

- 66-

SUBROUTINE OUTPLT (ITASK, RN)

* Designed to be used in conjunction with OUTDAT, which is used

* to write variable name and value to a temporary file. OUTPLT is

* used to printplot a selection of the stored variables. By repeated

* calls to the subroutine with ITASK=1, names of variable for which

* the plot is wanted can be given to the subroutine.

* By a call with ITASK=4, 5, 6, or 7, printplots are generated with

* a width of 80 or 132 characters, either with individual scaling

* or with common scaling (all variables scaled to the smallest and

* largest value in the data set) .

* ·ITASK- integer, can be 1, 4, 5, 6, or 7. Repeated calls with a

* 1 instruct the routine to store variable names for

*
*
*
*

use in the printplot. Calls with 4, 5, 6, and 7 generate

the printplot with the variables as defined with ITASK=1.

4 means wide format, individual scale,

5 means wide format, common scale,
I

~~~~~~~~--'-*-=--~~~~~~---'....__Lu,eans_sma 1 1 fa rma:t._, j nd i vidua.l_s_c_ale_,~~~~~~~~~~~~~~~~~--H~ 
·~~-~ 

* 
* 
* 
* 
* RN 

* 
* 
* 

7 means small format, common scale, 

If the unit defined during ITASK=1 of OUTDAT is open, 

this is used for output. Otherwise 

a file 'res.dat' with that unit is created. 

- string, name of variable, up to 11 characters will be 

used. The value of the variable must have been stored 

by previous calls to OUTDAT. 

* Subroutines and/or functions called: 

* - from library TTUTIL: ILEN, FOPENG, IFINDC, ERROR, UPPERC 

* Author: Daniel van Kraalingen 

* Date July 1990 

* Example: 

* 
* 
* 
* 

CALL OUTPLT (1, 'DTGA') 

CALL OUTPLT (1, 'WSO') 

CALL OUTPLT (5, 'Plot title') 

define DTGA to be plotted 

define wso to be plotted 

make printplot using 

* wide format, common scale 

* formal parameters 

INTEGER ITASK 



- 67-

SUBROUTINE PLTFUN (IUNIT,FUN,ILF,ILINE,IMARK,FORM,LEGEND) 

* writes AFGEN/LINT table points to file in TTPLOT format 

* ! ! ! ! ! ! ! ! ! ! ! ! NO CHECKS ARE CARRIED OUT !! ! ! ! ! ! ! ! ! ! 

* 
* 
* 
* 
* 

I UNIT 

FUN 

ILF 

I LINE 

I MARK 

- unit of opened file used for writing 

- "AFGEN" table as defined by routine LINT 

- length of table FUN (=twice the number of 

- line type (see TTPLOT documentation) 

- marker type (see TTPLOT documentation) 

* FORM - data pair FORMAT ; CHARACTER string, 

* for example ' (2F8. 3) ' 

* LEGEND - legend text ; CHARACTER string 

* 
* Subroutines and/or functions called: 

* - from library TTUTIL: ERROR 

* Author: Kees Rappoldt 

* formal parameters 

INTEGER IUNIT,ILF,IMARK,ILINE 

REAL FUN 

DIMENSION FUN(2,ILF/2) 

CHARACTER*(*) FORM,LEGEND 

points) 

I 

I 

I 

I 

I 

I 

I 







- 70 -

SUBROUTINE RDAREA (XNAME,X,ILDEC,IFND) 

* Reads an array of REAL values from a data file, 
* that should be initialized with RDINIT. 

* XNAME 

X 

ILDEC 

IFND 

- Name of array, for which data are on file 

* - Array itself 

* - Declared length of X 

* - Number of values found on file 

* 
* Subroutines and/or functions called: 

* - from library TTUTIL: DECCHK, DECINT, DECREA, ERROR, EXTENS, 
·~· 

* 

* Author: Kees Rappoldt 

* Date November 1990 

FOPENG, IFINDC, 
UP PERC 

ILEN, RDDATA, RDINDX, 

* Example: The data file below contains values for 

* the variables A, B and ZTB: 

* 
* 
* 
* 
* 
* 
* 
* 

* example 

A= 3.4 B = 5 
* the following variable is an array 

ZTB = 1.0, 3.4, 

1.2, 4.8, 

1.4, 5.9 

* With this routine one may read the array ZTB by: 

* CALL RDAREA ('ZTB',ZTB,100,ILZ). 
* The actual array length ILZ will get the value 6. 

* In the header of RDINDX a formal description of 

* the data file syntax can be found. 
* The lines of the data file are read until column 80. 

* formal parameters 

INTEGER ILDEC,IFND 

REAL X 

DIMENSION X(ILDEC) 

CHARACTER*(*) XNAME 

I 

0 

I 

0 



- 71 -

SUBROUTINE RDDATA (ITASK,IUNIT,IULOG,FILNAM, 

$ IS,XNAME,X,NDEC,NREQ) 

* This is the central subroutine of the complete set of RD* 

* routines in the library TTUTIL. The simple routines RDSINT 

* RDSREA, RDAREA, RDSETS and RDFROM form user interfaces. The 

* actual work is done here. That implies that the headers of 

* all user interfaces also apply to this routine RDDATA. The 

* used ITASK values are: 

* I TASK 1 <---- RDSETS 

* I TASK 2 <---- RDFROM 

~ _ITASK 3 - <---- RDINIT 

* I TASK 4 <---- RDSINT, RDSREA and RDAREA 

* Rerun and data files both are analysed by routine RDINDX 

* called for ITASK is 1 and 3. 

* Examples of data files can be found in the headers of 

* RDSETS, RDSINT, RDSREA and RDAREA. In the header of RDINDX 

* a formal description of the data file syntax can be found. 

* 
* 
* 
* 
* 
* 
* 

I TASK 

I UNIT 

- function control, see the header above 

- Unit number used for the .TMP direct access file 

in which values are written (ITASK=1 or 3) . 

IUNIT+1 is used for the data file itself, which is 

closed after reading it. 

Different unit numbers should be used in the calls to 

RDSETS and RDINIT. 

I 

I 

* IULOG - >0, Unit number of logfile used for data file syntax I 

* errors. When not opened RDINDX.LOG is created. 

* =0, Nothing is done with a logfile. 

* The unit number used with ITASK=1 (RDSETS call) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

is stored and also used for a report about replaced 

data file values during calls to RDSINT, RDSREA 

and RDAREA. 

FILNAM - Name of file (ITASK=1 or 3) 

IS - For ITASK = 1: Number of sets, output 

For ITASK = 2: Requested set number, input 

XNAME - Name of variable, for which data are on file 

X 

NDEC 

NREQ 

- Variable itself, may be array 

- Declared length of X, when not array use 1 

-For ITASK=2: 
=0, non-used variables previous set --> logfile 

>0, non-used variables --> fatal error 

For ITASK=4: 
The number of values on file is returned 

>0, Requested number of values, should match 

the number present on file (checked ! !) 

* Subroutines and/or functions called: 

I 

I/O 

I 

0 

I 

I/O 



--------------- ------

- 72 -

* - from library TTUTIL: DECCHK, DECINT, DECREA, RDINDX, ERROR, 

* EXTENS, FOPENG, IFINDC, ILEN, UPPERC 

* Author: Kees Rappoldt 

* Date November 1990 

* ======= word size in bytes belonging to unformatted record ======= 

* = on VAX this is 4 bytes/word; on ATARI, IBM and MAC 1 byte/word = 

INTEGER IWLEN 

PARAMETER ( IWLEN=1) 

~· ~·'/(·~··-·~formal p-arameter·s 

INTEGER ITASK,IUNIT,IULOG,IS,NDEC,NREQ 

REAL X 

DIMENSION X(NDEC) 

CHARACTER*(*) FILNAM,XNAME 





$ 
$ 

SUBROUTINE RDINDX 

- 74-

(IUNIT,SETS,TOSCR,TOLOG,IUL,DATFIL, 
XBUF,ILBUF,IWLEN,NAMLIS,ILIND,INDPNT, 

ILPNT,INFND,INSETS) 

* Produces an index of a data file. The index consists of a list of 

* variable names and an integer array pointing to decoded values 

* on a direct access file. The direct access file is opened 

* for reading at the end of the routine or deleted after errors. 

* IUNIT - unit number used to open random access file for I/O I 

* IUNIT+l used to open data file (closed after reading) 

* SETS - when .TRUE. more than a single set of values is I 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

is allowed. The order of the names in all sets 

should be identical. 

TOSCR - flag enabling error message output to screen 

TO LOG - flag enabling error message output to logfile 

IUL - unit number of logfile (when TOLOG is set) 

if non-existent, RDINDX.LOG is created 

XBUF - record buffer direct access file, overwritten 

ILBUF - array length XBUF, number of values on record 

IWLEN - word length in bytes for unformatted record 

NAMLIS - list of variable names 

ILIND - declared size of array NAMLIS 

INDPNT - points to value in temporary file 

ILPNT - declared size of array INDPNT 

INFND - number of variable names found 

INSETS - Number of sets in data file (0 when empty) 

Subroutines and/or functions called: 

- from library TTUTIL: DECCHK, DECINT, DECREA, 

FOPENG, IFINDC, ILEN, 

ERROR, EXTENS, 

UP PERC 

I 

I 

I 

I/O 

I 

I 

0 

I 

0 

I 

0 

0 

* Author: Kees Rappoldt 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Date November 1990 

The data should be present on file in the form "name= value(s)". 

Such a string is called a field in the formal description below. 

On each record (line) of a data file different fields may occur, 

separated by a semi-colon. 

A field may be continued on a following line. A name or an 

individual number, however, should not be interrupted. Continuing 

a series of numbers, the comma is expected before going to the 

next line. On all lines comments may be present following an 

exclamation mark (!). Lines beginning with an asterisk (*) are 

ignored~ Maximum name~lengthis set by the variablBtype ofNAMLIS. 



- 75 -

------

* 
-- ---

field {; field} record 

* field name = number { ' number} 

* name letter{letdig} 

* letdig < letter I digit > 

* number [repeat*] real 

* repeat INTEGER number 

* real REAL number (may be without decimal point) 

* 
* When SETS is .TRUE. the data file may consist of more than a single 

* set of variable names and values. The order of the names in all 

* sets should be identical. In this case the pointer array INDPNT 

* contains INFND pointers for each set. 
* Examples of data files can be found in the headers of RDAREA, RDSREA, 

* RDSINT and RDSETS. 

* formal parameters 
INTEGER IUNIT,IUL,ILBUF,IWLEN,INDPNT,ILIND,ILPNT,INFND,INSETS 

BIMENSION NAMLIS(ILIND),INDPNT(O:ILPNT),XBUF(ILBUF) 

LOGICAL SETS,TOSCR,TOLOG 







- 78 -

* data file (just using RDINIT and RDSREA), the value from 

* the data file will be replaced by 3.7. 

* The lines of the data file are read until column 80. 

* 
* The following statements form a typical application. The 

* rerun file RERUNS.DAT is assumed to contain sets of values 

* for parameter PARl of (sub)model A and parameter PAR2 of 

* (sub)model B. Both models make use of their own data file 

* containing also other variables. The structure below runs 

* the two models, at first for the values of PARl and PAR2 on 

* the data files, then for the sets in RERUNS.DAT. When the 

* file RERUNS.DAT is not there, a normal model run is made. 

* 
* * 
* 
* 
* 
* * 

* 
* 
* * 
* 
* 
* 
* * 
* 
* 
* 
* 10 

* 

open logfile 

CALL FOPEN (40, 'LOGFILE.DAT', 'NEW', 'DEL') 

CALL RDSETS (20,40, 'RERUNS.DAT',INS) 

at first the content of the data files is used (set 0) 

IS, .TRUE. 

statements occurring in model A: 

CALL RDINIT (22,40, 'MODELA.DAT') 

CALL RDSREA ( 'PARl' ,PARl) 

statements occurring in model B: 

CALL RDINIT (22,40, 'MODELB.DAT') 

CALL RDSREA ( 'PAR2' ,PAR2) 

CONTINUE 

* Note the following: 

* - The order of variables should be identical in all sets. 

* - When a non-zero logfile unit number is supplied, the usage of 

* values from the rerun file is reported. Also a change of 

* set number with RDFROM is reported and warnings are given 

* on non-used variables (of the previous set) . 

* - In the above example the argument FATAL of RDFROM is set 

* to .TRUE. That leads to a fatal error on non-used variables 

* of the previous set (instead of a warning on logfile only) 

* - The (logfile) unit number used for the report is not 

* overwritten by the unit number in a RDINIT call. 

* - Values on the rerun file can only be used in combination 

* with a data file on which error free values occur for the 

* normal data file reading. 

* - After RDSETS "set 0" is selected meaning that the data file 

* values are not replaced. "Set 0" may also be selected just 

* using CALL RDFROM (O,FATAL). 



* formal parameters 

INTEGER IUNIT,IULOG,INS 

CHARACTER*(*) SETFIL 

- 79 -





- 81 -

SUBROUTINE RDSREA (XNAME,X) 

* Reads a single REAL value from a data file. 
* The reading should be initialized with RDINIT. 

* 
* 
* 
* 
* 

XNAME - Name of variable 
X - Value of variable 

I 

0 

Subroutines and/or functions called: 
- from library TTUTIL: DECCHK, DECINT, DECREA, ERROR, EXTENS, 

* FOPENG, IFINDC, 

UP PERC 

ILEN, RDDATA, RDINDX, 

* 

* Author: Kees Rappoldt 

* Date November 1990 

* Example: The data file below contains values for 

* 
* 
* 
* 
* 
* 
* 
* 

* example 
A= 3.4 B = 5 
* the following variable is an array 

ZTB = 1.0, 3.4, 
1.2, 4.8, 

1.4, 5.9 

* With this routine one may read the value of A by: 

* CALL RDSREA ('A' ,A). 
* Reading the array ZTB with this routines results in an 
* error message. In the header of RDINDX a formal description 

* of the data file syntax can be found. 
* The lines of the data file are read until column 80. 

* formal parameters 

REAL X 
CHARACTER*(*) XNAME 



- 82 -

REAL FUNCTION REAAND (Xl, X2) 

* This function emulates the CSMP function AND. 

* REAl AND is similar to logical .AND. except that 

* arguments and results are REAL instead of LOGICAL 

* The definition of the function is: 

* 
* 

* 
* 
* 
* 

REAAND 

REAAND 

1, X1 > 0 and X2 > 0 

0, else 

REAAND - Function result 

X1 - first argument 

X2 - second argument 

0 

I 

I 

* No subroutines and/or functions used 

* Author: Daniel van Kraalingen 

* Date December 1989 

* formal parameters 

REAL X1, X2 



- 83 -

REAL FUNCTION REANOR (Xl, X2) 

* This function emulates the CSMP function NOR. 

* REAl NOR is similar to logical expression 

* .NOT. (logical.OR.logical) except that 

* arguments and results are REAL instead of LOGICAL 

* The definition of the function is: 

* REANOR 1 when X1 <=0 and X2 <= 0 
* REANOR 0 otherwise 

* REANOR - Function result 

* Xl - first argument 

* X2 - second argument 

* 

0 

I 

I 

* No subroutines and/or functions called 

* Author: Daniel van Kraalingen 

* Date November 1989 

* formal parameters 
REAL X1, X2 



- 84-

SUBROUTINE REMOVE (STRING,CHR) 

* Replaces all unwanted characters (CHR) 

* in a string (STRING) with a <space>. 

* For example, if "e" is removed from 

* "bicentennial", the result is "bic nt nnial" 

* STRING - string that is used I,O 

* CHR - character to be removed I 

* 
* No subroutines and/or functions used 

* Author: Daniel van Kraalingen 

* Date October 1989 

* formal parameters 



- 85 -

SUBROUTINE RK4A (STATE,RATE,NDEC,NEQ,TIME,DELT, 
$ STATE2,SCALE,MODEL) 

* Fourth order Runge Kutta integration over DELT 

* Adapted from routine RK4 from Press et al. (1986) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

STATE 

RATE 

NDEC 

NEQ 

TIME 

- state array of model 

- rates of change for (TIME,STATE) 

- declared size of input arrays 

- Number of state I rate variables 

- time 

DELT - time step 

STATE2 - output state array 

SCALE - size scale of state variables 

MODEL - external model called with ITASK=2 

for rate calculation 

* Subroutines and/or functions called: 

I 

I 

I 

I 

I 

I 

0 

I 

I 

* Author: Kees Rappoldt, adapted from Press et al. (1986) 

* Date February 1990 

* formal parameters 

INTEGER NDEC,NEQ 

REAL STATE,RATE,TIME,DELT,STATE2,SCALE 

DIMENSION STATE(NDEC),RATE(NDEC),STATE2(NDEC),SCALE(NDEC) 

EXTERNAL MODEL 



- 86 -

SUBROUTINE RKDRIV (IUL,IUD,IUM,MODEL) 

* Solves an initial value problem with the fourth order Runge Kutta 

* method described by Press et al. (1986). This driver routine 

* initializes the model, reads a control file TIMER.DAT and drives 

* the user supplied model until the finish time in TIMER.DAT is 

* reached. 

* IUL - logfile unit number I 

* IUD - first of two free unit numbers used by this driver I 

* IUM - first of a series of free unit numbers for model I 

* MODEL~ external model routine I 

* 
* Subroutines and/or functions called: 

* - from library TTUTIL: DECCHK, DECINT, DECREA, ENTDCH, ERROR, 

* EXTENS, FOPENG, IFINDC, ILEN, ISTART, 

* RDDATA, RDINDX, RDINIT, RDSREA, RK4A, 

* Author: Kees Rappoldt 

* Date October 1990 

* The user supplied routine MODEL: 

* The differential equations are actually contained in the user 

* supplied subroutine MODEL which is called by this driver as: 

* CALL MODEL (ITASK,OUTPUT,TIME,STATE,RATE,SCALE,NDEC,NEQ) 

* Note that the user routine may have an arbitrary name which is 

* given as an EXTERNAL in the CALL to this driver RKDRIV. The 

* action of the user supplied model subroutine depends on the 

* value of ITASK in the following way. 

* ITASK = 1 The model is initialized. The number of state variables 

* (differential equations) NEQ is set. Model parameters are 

* set or are read from file. Time and states are set to their 

* initial values. Also the corresponding scales have to be 

* set. The scale array SCALE contains the order of magnitude 

* of each state variable in STATE. A scale needs to be a 

* positive number, for instance 0.001, 0.5 or 30000.0. Also 

* output should be initialized (files opened, headers etc.) 

* 
* 
* 
* 

* 
* 
* 
* 

I TASK 

I TASK 

2 Values in the STATE array and the current TIME are used 

to calculate rates of change for each status variable. 

In order to prevent confusion it is advised to use local 

and more meaningfull names for state variables than just 

at first, the state array is copied into the local 

variables, then the rates are calculated which are finally 

copied into t.he output. array RATE. 
4 Terminal call to the model. Final output may have to be 



- 87-

* generated, files closed, etc. 

* 
* Some CALL's with ITASK=2 ("rate calls") take place with the logical 

* OUTPUT set to .TRUE. Then the user supplied model is allowed to 

* produce output to file and/or screen. The period between successive 

* output times is PRDEL, a variable read from the control file TIMER.DAT. 

* 
* At the start of a new time step (taken by the Runge Kutta routine 

* RKQCA), the state array STATE contains a valid (new) status of the 

* system. If anything has to be changed in the state array in order 

* to account for discontinuities, for instance, that should be done 

* at such moments. Therefore, the CALL's to MODEL at the beginning 

* a new time step are carried out with the common variable KEEP 

* equal to 1. Otherwise KEEP is 0. 

* 
* This common variable is part of a small common block /INFO/. It 

* also contains the unit number of an opened logfile and the first 

* of a series of free unit numbers that can be used by the model. 

n---------------- ttr~he-1: _j_J.N-~l:::~f1~~~=~::l?l~? __ ;b-§>~~~:::l_m'J.'-ERMN-Lt ·---~1'1.~~-m;]..~<;J.;l~:::l_~-n-b~~s.o;;:;;e'-'-t----------' 
* to .TRUE. by the model routine at any moment. It causes the 

* termination of the current simulation run. Note that, after setting 

* TERMNL to .TRUE. a number of CALL's to MODEL will follow in order 

* to terminate the current time step and to produce final output. 

* Hence, when the flag TERMNL is set, it should never be reset by 

* the model. Then its status could be missed by the driver. 

* formal parameters 

INTEGER IUL,IUD,IUM 

EXTERNAL MODEL 

* common /INFO/ 

INTEGER IULOG, IUMOD, KEEP 

LOGICAL TERMNL 

COMMON /INFO/ IULOG,IUMOD,KEEP,TERMNL 



- 88 -

SUBROUTINE RKQCA (STATE,RATE,NDEC,NEQ,TIME,DELTRY, 
$ EPS,SCALE,DELDID,DELNXT,MODEL) 

* Runge Kutta integration with stepsize control. 

* Adapted from routine RKQC from Press et al. (1986) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

STATE - state array of model 

RATE - rates of change for (TIME,STATE) 

NDEC - declared size of input arrays 

NEQ - Number of state I rate variables 

TIME - time 

DELT:RY - tim~ step tried 
EPS - relative accuracy of criterion 

SCALE - size scale of state variables 

DELDID - time step taken 

DELNXT - advise for new step 
MODEL - external model called with ITASK=2 

* Subroutines and/or functions called: 

I/O 

I/O 

I 

I 

I/O 

I 

I 

I 

0 

0 

I 

* - from library TTUTIL: ENTDCH, ERROR, ILEN, ISTART, RK4A 

* Author: Kees Rappoldt, adapted from Press et al. (1986) 

* Date February 1990 

* formal parameters 

INTEGER NDEC,NEQ 
REAL STATE,RATE,TIME,DELTRY,EPS,SCALE,DELDID,DELNXT 

DIMENSION STATE(NDEC),RATE(NDEC),SCALE(NDEC) 

EXTERNAL MODEL 





---- -----------------------

- 90 -

SUBROUTINE TIMER ( ITASK, DAYB, DELT, PRDEL, FINTIM, 

$ IYEAR, TIME, DAY, IDAY, TERMNL, OUTPUT) 

* This subroutine updates TIME and related variables 

* each time it is called with ITASK=2. It will set TERMNL to 

* .TRUE. if FINTIM is reached. 

* The routine should be initialized first by a call 

* with ITASK=1. The first six arguments will then be made local. 

* Leap years are handled correctly. 

* 
* 

I TASK 

DAYB 

- task the routine should carry out (either 1 or 2) 

- start of simulation 
............ ------~---~- - ~- ~~ ~~~ ~ ~ ~~~~~~~ ~ ~~~·· ...... ~·~ ~· ··~· .. ~ ... . 

* 
* DELT 

* 
* PRDEL 

* 

(1 <= DAY <= 365, 366 in leap years) 

- time step of simulation (multiple of 1 or 

1/DELT = integer e.g. 0.25,1/3,0.5,1,2,3) 

- Time between successive outputs (must be equal to 

DELT or multiple) 

* FINTIM - Finish time of simulation (counted from start of 

* 
* 
* 
* 
* 
* 
* 
* 

IYEAR - start year with ITASK=1 and current year with 

ITASK=2) 

TIME - time from start of simulation 

DAY - Day number (REAL) of year=IYEAR 

IDAY - Day number (INTEGER) of year=IYEAR 

TERMNL - Flag that indicates if FINTIM has been reached 

OUTPUT - Flag that indicates if TIME is a multiple of PRDEL 

* Subroutines and/or functions called: 

* - from library TTUTIL: ERROR 

* Author: Daniel van Kraalingen 

* Date November 1990 

* formal parameters 

INTEGER ITASK, IYEAR, IDAY 

REAL DAYB, DELT, PRDEL, FINTIM, TIME, DAY 

LOGICAL TERMNL, OUTPUT 

I 

I 

I 

I 

I/O 

0 

0 

0 

0 

0 







- 93 -

SUBROUTINE WORDS (RECORD,ILW,SEPARS,IWBEG,IWEND,IFND) 

* Returns position of start and end of the (first) ILW words 
* in string RECORD. Valid separators are all the characters 

* present in string SEPARS, for instance ' ' or '/ ,+=-'. 

* 
* 
* 
* 
* 
* 

RECORD - character string 
ILW - number of words to be found 
SEPARS - string containing separator characters 
IWBEG - integer array containing start positions 
IWEND - integer array containing end positions 
IFND - integer containing the number of words 

* No subroutines and/or functions called 

* Author: Kees Rappoldt 
* Date October 1989 

* formal parameters 
INTEGER ILW,IWBEG,IWEND,IFND 
DIMENSION IWBEG(ILW),IWEND(ILW) 
CHARACTER*(*) RECORD,SEPARS 

I 

I 

I 

0 

0 

0 

--------------- -----1 



- 94-



------- --------

- 95 -

5 Examples 

5.1. Testing a subroutine 

The program below is a test program for subroutine ASTRO. The function of ASTRO is 

irrelevant. The input variables DAY and LAT are interactively entered with the current value 

used as the default. The tested subroutine can be executed with different values of its input 

parameters. Only modified values have to be typed in. 

PROGRAM EXAMP1 

* test subroutine ASTRO 

IMPLICIT REAL (A-Z) 

* initial defaults 

10 CONTINUE 

* interactive input 
CALL ENTDRE ('Day number',DAY,DAY) 

CALL ENTDRE ('Latitude in degrees',LAT,LAT) 

* call to tested routine 
CALL ASTRO (DAY,LAT,DAYL,DAYLP,SINLD,COSLD) 

* write results 

WRITE (*,' (1X,A,F8.3,3(/,1X,A,F8.3)) ') 

$ 'DAYL ',DAYL, 

$ 'DAYLP ',DAYLP, 

$ 'SINLD ',SINLD, 

$ 'COSLD ',COSLD 

GOTO 10 

END 

* The following include statement is used on the Apple Macintosh. 

* On other machines the tested routine should be linked 

* to the test program or included with a slightly different 

* statement. 



---------

- 96 -

5.2. Data file transformation 

Sometimes data have to be extracted from a file with a complicated structure. With an editor 

the work may be time-consuming. Importing such a file into a spreadsheet program may lead 

to complete chaos. Writing a FORTRAN program may be the solution. One is free in 

developing all kinds of criteria for the rejection or acceptation of "words" in the data file. In the 

example below, each line contains words (groups of characters separated by characters called 

"separators" ; see the header of WORDS). One expects that certain words, if present, are 

numbers. These numbers are written to an output file. 

* An example of data transformation 

* 
* 
* 
* 

The user specifies two columns of an input file 

The two columns need not exist on all lines 

If they exist they should contain numbers 

The numbers are written to an output file as 
*---a-n X-value and an Y-value. A linear transf,-o-rm_a_t~ion --------- -

* may be applied to the Y-values. 

* declarations 
INTEGER IWMAX,IFND,IWB,IWE,IX,IY,IWARX,IWARY 

PARAMETER (IWMAX=lOO) 

DIMENSION IWB(IWMAX),IWE(IWMAX) 

REAL X,Y,A,B 

CHARACTER MESSAG*40,FILIN*80,FILOUT*80,RECORD*80 

LOGICAL EOF 

* ask name input file 

CALL ENTCHA ('Filename',FILIN) 

CALL ENTDIN ('Column X',l,IX) 

CALL ENTDIN ('Column Y',2,IY) 

CALL ENTDRE ('Transform Y as A*Y+B, value of A',l.O,A) 

CALL ENTDRE ('And value of B',O.O,B) 

* change extension into 'OUT' 

CALL EXTENS (FILIN, 'OUT',l,FILOUT) 

* open files 
CALL FOPEN (40,FILIN, 'OLD', 'NVT') 

CALL FOPEN (41,FILOUT, 'NEW', 'UNK') 

20 CONTINUE 
CALL GETREC (40,RECORD,EOF) 

IF (.NOT.EOF) THEN 



* 

* 

* 

* 

$ 

$ 

----~----

- 97-

handle non-comment line 

CALL WORDS (RECORD, IWMAX, ' ,;=', IWB, IWE, IFND) 

IF (IFND.GE.IX .AND. IFND.GE.IY) THEN 

decode IX-th and IY-th word 

CALL DECREA (IWARX, RECORD(IWB(IX) :IWE(IX)), X) 

CALL DECREA (IWARY, RECORD(IWB(IY) :IWE(IY)), Y) 

IF (IWARX.EQ.O .AND. IWARY.EQ.O) THEN 

correct values and write result to output 

WRITE (41,' (1X,2Fl2.4) ') X, A*Y + B 

ELSE 
~~~~~~~-~~ ~ 

END IF

GOTO 20

END IF

STOP

END

error

IF (IWARX.NE.O) MESSAG =
RECORD(IWB(IX) :IWE(IX))//' is not a number'

IF (IWARY.NE.O) MESSAG =

RECORD(IWB(IY) :IWE(IY))//' is not a number'

CALL ERROR ('EXAMP2',MESSAG)

- 98 -

5.3. A scatter plot made with a random number generator

This example illustrates the call to the random number generator in the library. A number of

(X,Y) points is generated and sorted. Sorting is carried out with help of the routine INDEXX in

Press et al. (1986). The output is in two column format. A header is wrtten above the data

containing some parameters used by the plotting program TTPLOT (Van Kraalingen and

Rappoldt, 1988). That header is in no way essential, however.

*
*
*
*
*
*
*

PROGRAM EXAMP3

Generates~ a scatter plot for Y = A * X + B + {erTor term)

The error term has a normal distribution with mean 0.0 and

standard deviation supplied by the user.
The x-values are randomly chosen on a user supplied interval.

The output file contains the calculated (X,Y) pairs with

the X-values in increasing order. A TTPLOT header is written

above the list of (X,Y) pairs.

* declarations

*

INTEGER I,INDX,N,NMAX

REAL A,B,BOXMUL,SIGMA,UNIFL,X,Y

PARAMETER (NMAX=10000)

DIMENSION X(NMAX),Y(NMAX),INDX(NMAX)

ask input

CALL ENTDRE ('Lower bound X interval',

CALL ENTDRE ('Upper bound X interval',

CALL ENTDRE ('Equation A*X+B, value of

CALL ENTDRE ('and value of B',-3.0,B)

4.0, X1)

10., X2)

A', 0. 9, A)

CALL ENTDRE ('Standard deviation of error term',O.S,SIGMA)

CALL ENTDIN ('Number of points',1000,N)

* error check
IF (N.GT.NMAX) CALL ERROR ('EXAMP3', 'N > NMAX')

* generate points

DO 10 I=1,N

X(I) = X1 + (X2-X1) * UNIFL()

10 CONTINUE

.points witli respect toX:vaiue

CALL INDEXX (N,X,INDX)

i

I

I

I

_I

- 99 -

* write results to file ; open file, write TTPLOT header

CALL FOPEN (40, 'RES.DAT', 'NEW', 'UNK')

WRITE (40,' (A, 9 (/,A))')

$ ' *Generated by EXAMP3.FOR',

$ ' Straight line with error term',

$ ' X 1 0 4 10 1 0.5 0 0',

$ ' x-axis',

$ ' y 1 0 -5 10 51 0 0',

$ ' y-axis',

$ ' 0 0',

$ ' *'
$ ' 1 0 9',

$ ' using BOXMUL'

DO 20 I=1,N

J = INDX(I)

20 CONTINUE

STOP

END

* The following include statement is used on the Apple Macintosh.

* On other machines the required routine should be linked

* to the test program or included with a slightly different

* statement.

INCLUDE HD40:FORTRAN:RECIPES:INDEXX.FOR

y-ax1s Straight line with error term
10 r--~

5 6 7 8 9

- 100 -

5.4. Checking a crop data file

In some crop growth simulation models so called partitioning factors are used. They describe

the partitioning of the sugars produced by photosynthesis among the various plant organs.

The partitioning factors are given on plant data files as "AFGEN tables" as a function of the

development stage of the crop (see Appendix C). Evidently, the sum of all fractions has to be

unity for all possible values of the development stage. The latter requirement is verified by this

example program. It reads the relevant data from the data file used by a simulation model. The

partitioning fractions may be somewhere in the data file.

* Checks partitioning factors in a plant data file

* Writes results to a TTPLOT file.

* declarations

INTEGER I,CROPT,ILMAX,ILFL,ILFS,ILFO,ILF
REAL ED~"'F--;F].;-TB---;--F-S-TB--;-FUTB7:GINT~-FRL~-FRS7FRO-;-TOT---;SUM;-DVS(FUNTB __________________ -----·

PARAMETER (ILMAX=100)

DIMENSION FLTB(ILMAX),FSTB(ILMAX),FOTB(ILMAX),SUM(ILMAX)

DIMENSION FUNTB(ILMAX)

LOGICAL EXIST

* initialize data reading

CALL RDINIT (30,40, 'Barley.dat')

* read crop type, for demonstration only

CALL RDSINT ('CROPT',CROPT)

* read photosynthetic efficiency, for demonstration only

CALL RDSREA ('EFF' , EFF)

* read partionioning tables

CALL RDAREA ('FLTB',FLTB,ILMAX,ILFL)

CALL RDAREA ('FSTB',FSTB,ILMAX,ILFS)

CALL RDAREA ('FOTB',FOTB,ILMAX,ILFO)

CLOSE (30,STATUS='DELETE')

* check partitioning tables

DO 10 I = 1, ILMAX/2

FRL LINT (FLTB,ILFL,DVS)

FRS LINT

FRO LINT

- 101 -

TOT FRL + FRS + FRO

* check

$

IF (ABS(TOT-1.0) .GT.0.001) WRITE (*,' (1X,A,F4.2) ')

'Partitioning error at DVS=',DVS

* get sum table

SUM(2*I-1) DVS

SUM(2*I) TOT

10 CONTINUE

-~ --~~ _ ~~write_~tables to TTPLOT plot file

CALL FOPEN (50, 'RES.DAT', 'NEW', 'UNK')

WRITE (50,' (A, 6 (/,A))')

$ ' *Generated by EXAMP4.FOR',

$ ' Partitioning check',

$ ' X 1 0 0 2 0.5 0.1 0 0',

$ ' DVS',

$ ' Fraction',

$ ' 0.1 1.3'

CALL

CALL

CALL

CALL

PLTFUN

PLTFUN

PLTFUN

PLTFUN

(50,FLTB,ILFL,2,7,' (1X,F4.2,F8.3) ','leaves')

(50,FSTB,ILFS,3,8,' (1X,F4.2,F8.3) ','stems')

(50,FOTB,ILF0,5,1,' (1X,F4.2,F8.3) ','storage organs')

(50 , SUM, I LMAX, 1 , 0 , ' (1X, 2 F 8 . 3) ' , ' tot a 1 ')

STOP

END

<begin of data file Barley.dat>

*
* Data file belonging to Example 4

* ===============================
* Example of data file that can be read by the

* routines RDSINT, RDSREA and RDAREA.

*
* Variable names are followed by one or more values

* separated by a comma. Repetition of the same value

* may be coded by using 100*8.3, for instance (without

* spaces around the "*") . See the file below and

* a formal description in the header of RDINDX.

*

* Crop characteristics of Barley (Gerrie van de Ven, Egypt)

*

CROPT 2 DSL 2 AIRDUC 0

SPAN 22. TEASE o. RDMCR 125.

~ ~ DLO ~~ ~1-0 ~+ ~DLC ~ o.
EFF 0.40 CFET 1. 00 DEPNR 4.5

* initial dry weight

TDWI = 100.0 ! in kg/ha

* initial rooting depth

RDI = 10.0 em

* optimum development rates

DVRC1 0.034

DVRC2 = 0.058

- 102 -

* optimum rooting depth increase per day

RRI = 1. 2

* extinction coefficient

KDIF 0.6

* conversion factors

CVL = 0.72 ; CVO = 0.73

* partitioning

* ============

0.33, 0.50,

1~00, 0.00,

2.00, o.oo

FLTB o.oo, 1.00,

0.33, 1.00,

0.80, 0.30,

1. 00, o.oo,
2.00, 0.00

FSTB 0.00, o.oo,
0.33, o.oo,
0.80, 0.70,

1. 00, 0.50,

1. 01, 0.00,

2.00, 0.00

CVR 0.72 cvs

fraction to leaves

fraction to stems

0.69

FOTB o.oo, o.oo, fraction to storage organs

0.80, o.oo,
1. 00, 0.50,

1. 01, 1.00,

2.00, 1. 00

* specific leaf area table

SLATB = 0.00, 0.0025,

2.00, 0.0025

* development rate ; temperature dependence

DVRETB = 0. 00, 0. 00,

45.00, 1.00

<end of data file Barley.dat>

*

*

10

*

- 104 -

$ EFF, DTGA1, DSO)

$

DTGA1S = DTGA1S+DTGA

CALL DASS (DAY, LAT, RAD, 0.6, 0.2, LAI, AMAX2,

EFF, DTGA2, DSO)

DTGA2S = DTGA2S+DTGA

ratio of the two cumulative amounts

D1D2 = DTGA1S/DTGA2S

output

CALL OUTDAT (2, 0, 'DAY', DAY)

CALL OUTDAT (2, 0, 'RAD'' RAD)

CALL OUTDAT (2, 0, 'LAI', LAI)

CALL OUTDAT (2, 0, 'DTGA1S ', DTGA1S)

CALL OUTDAT (2, 0, 'DTGA2S', DTGA2S)

CALL OUTDAT (2, 0, 'D1D2', D1D2)

CONTINUE

normal table output
___________ ~...., .. ALL-OUTDAT-(A,_O_,__!_O_ut..put. van v_o_o_rb_e_e_ldp.r.ogr aroma ' ,_O_.j'---------------!1

* printplot of two variables

CALL OUTPLT (1, 'DTGA1S')

CALL OUTPLT (1, 'DTGA2S')

CALL OUTPLT (6, 'Output of example program')

* printplot of a single variable

CALL OUTPLT (1, 'D1D2')

CALL OUTPLT (6, 'Output of example program')

* table with a <TAB> between the columns (spreadsheet input !)

CALL OUTDAT (5, 0, 'Output of example program', 0.)

* "TTPLOT" output
CALL OUTDAT (6, 0, 'Output of example program', 0.)

CALL OUTDAT (99, 0, ' ', 0.)

STOP

END

* The folllowing include statements are used on the Apple Macintosh.

* On other machines the required routines should be linked

* or included with slightly different statements.

INCLUDE HD40:FORTRAN:WEER.FOR

INCLUDE HD40:FORTRAN:TTLIB:DASS.FOR

- 105 -

Appendix A: Non-standard statements
and machine dependencies

The routines CLS and POS are intended specifically to handle output to a VT100 terminal or

to the screen of an IBM PC and are not general output routines.

To hold the cursor after writing a question to the screen, a"$" is used in FORMAT strings in

ENTCHA, ENTDCH, ENTDIN, ENTDRE, ENTINT, ENTREA, FOPEN and POS. If the

syntax needs to be strictly standard or if the routines are used on an ATARI these "$"

characters need to be removed. They can be found be searching for the string "A$".

In RDDATA the integer PARAMETER IWLEN describes the length in bytes of the words

used in records of unformatted direct access files. On the microcomputers ATARI, IBM and

Apple this is 1 byte per word (the words are just bytes). On a VAX, however, a word consists of

4 bytes. The microcomputer version will run on the VAX, but the temporary files created by

RDDATA and related routines will be 4 times larger than needed. A special VAX version _

---~--- ~~~~-(IWI:EN::4twon'tron-on micro-computers-;--however.-No-error-messages-are given and-results----

- are unpredictable. Since the temporary files will under most circumstances be small, the

microcomputer version is included in the library.

--------------------------- ---~-------

- 106 -

Appendix B: The common blocks in TTUTIL

Names of common blocks have to be unique across a program. In the library TTUTIL two

common blocks occur. Their names are given below with the routines in which they are used.

If you make use of these routines, or if the complete library is linked, other common blocks

occurring in your program should be given different names.

COMMON /OUTCUT I is declared in OUTDAT, OUTPL T and OUTCOM. The common

block contains three variables that communicate file status and unit

numbers between these three subroutines.

COMMON /INFO/ is declared in EUDRIV and RKDRIV. This block is meant to be

declared in a user subroutine as well (cf. sections 3.2.1 and 3.2.5). It

contains unit numbers and flags communicated between the user

supplied subroutine (the "model routine") and the used "driver"

routine EUDRIV or RKDRIV.

- 107 -

Appendix C: A note on AFGEN tables

Some of the programs in TTUTIL are intended to handle so-called AFGEN tables. An AFGEN

table consists of a number of (X,Y) pairs. The values are stored in an array. The X-values in the

array should be in increasing order. AFGEN tables are intended to be used by an interpolation

routine. For linear interpolation, the function LINT is available in TTUTIL.

There are two ways of declaring an AFGEN table. The common method is to declare a one

dimensional array and to use the odd elements as X-values and the even elements as Y

values:

INTEGER ILMAX

PARAMETER (ILMAX=200)

REAL TABLE (ILMAX)

The array TABLE has space for 1 00 data pairs. A DO-loop over the first 50 points looks like:

DO 10 I=1,50

X = TABLE (2*I-1)

Y = TABLE (2*I)

10 CONTINUE

In some of the TTUTIL routines another method is used to declare an AFGEN table:

INTEGER ILMAX

PARAMETER (ILMAX=200)

REAL TABLE (2,ILMAX/2)

The array is now two-dimensional. The element TABLE(1 ,I) is the 1-th X value, the element

TABLE(2,1) is the 1-th Y value. The loop over the first 50 points now reads:

DO 10 I=1,50

X= TABLE (1,I)

Y =TABLE (2,I)

10 CONTINUE

In some applications, the one-dimensional arrays lead may to awkward calculations with array

indices. Using a two-dimensional array, the X- andY-values are directly found from the point

~"""""·····~············~numoer:·TneTw<rmemoas::teaaromesamErvames·nrmrsamJrpla~esln~cpmpmermeroory:···············

Therefore, both declaration methods can be used in combination with LINT and the other

·· AFGE"Ntab1eiland1ingroutines~Note1hat1he~rayiengtttshoufd-always·betwicetfl&.number··

of (X,Y) pairs, the declaration as a two-dimensional array should always use the "2" as the first

- 108 -

index and the number of data pairs (the array length divided by 2) as the second.

The TTUTIL routines handling AFGEN tables all require the actual array length as an

argument. So, it is good practice to always make a distinction between the declared length

and the actual length, for instance by using ILFMAX and ILF as the declared and the actual

length of the table TABLE. Reading data files, one should compare the value of ILF and

ILFMAX, for instance by means of the statement:

IF (ILF.GT.ILFMAX) CALL ERROR ('TEST', 'ILF > ILFMAX')

Such error checks require a single statement only and are frequently used in all routines of

TTUTIL. Subroutine ERROR handles fatal errors.

Using routine RDAREA for reading AFGEN tables from file, the above check can be omitted

since it is carried out by RDAREA. The interpolation at X=2.1 in an AFGEN table TABLE

present in file INPUT. OAT then reads:

INTEGER ILFMAX, ILF

REAL Y,LINT, TABLE (200)

CALL RDINIT (40,50, 'INPUT.DAT')

CALL RDAREA (' TABLE', TABLE,ILFMAX,ILF)

Y = LINT (TABLE,ILF,2.1)

See also Example program 4 and the routine headers of RDINIT, RDAREA and LINT for

further documentation.

- 109 -

Appendix D: A simple driver for Euler integration

The use of Euler integration has been discussed in Chapter 3. An example model has been

given and the structure of a driver has been discussed. Below, a full listing of the driver used

is given. It is 1lQ1 part of the TTUTIL library. For crop growth simulation more luxurious drivers

are available that take care of calendar and weather data (Van Kraalingen, 1991).

SUBROUTINE DRIVER (IUDAT,IULOG,IUOUT)

* ~ . Drives $t11::>.routine MODEL

*
*
*
*

IUDAT - first of two free unit numbers data file reading

IULOG - unit number of open logfile

IUOUT - first of two free unit numbers for OUT routines

* declarations

INTEGER IUDAT,

LOGICAL OUTPUT,HALT,TERMNL

SAVE

* read timer variables ; temporary use of unit IUDAT

CALL RDINIT (IUDAT,IULOG, 'TIMER.DAT')

CALL RDSREA ('STTIME',STTIME)

CALL RDSREA ('FINTIM',FINTIM)

CALL RDSREA ('PRDEL' , PRDEL)

CALL RDSREA ('DELT' ,DELT

CLOSE (IUDAT,STATUS='DELETE')

I

I

I

IF (FINTIM.LT.STTIME) CALL ERROR ('DRIVER', 'FINTIM <= STTIME')

IF (PRDEL. LE. 0) CALL ERROR ('DRIVER_', 'zero or negative PRDEL')

IF (DELT.LE.O) CALL ERROR ('DRIVER', 'zero or negative DELT')

* initialize time

TIME = STTIME

* initialize output

CALL OUTDAT (l,IUOUT, 'TIME',TIME)

* initialize model(s)

CALL MODEL (l,IUDAT,IULOG, .FALSE.,TIME,DELT,TERMNL)

* initialize dynamic loop

IP

TNEXT

TERMNL

HALT

0

STTIME

.FALSE.

.FALSE.

---·-------

- 110 -

* dynamic loop (emulated DO WHILE)

10 IF (.NOT.HALT) THEN

* output required ?

OUTPUT= (TNEXT-TIME)/DELT.LT.0.01 .OR. TERMNL

* write time to output ; rate call
IF (OUTPUT) CALL OUTDAT (2,0, 'TIME',TIME)

CALL MODEL (2,IUDAT,IULOG,OUTPUT,TIME,DELT,TERMNL)

IF (OUTPUT) THEN

* get next output time ; leave dynamic loop ?

IP IP + 1 - ---1
TNEXT MIN (STTIME + IP * PRDEL, FINTIM)

HALT (FINTIM-TIME)/DELT.LT.0.01 .OR. TERMNL

END IF

IF (.NOT. (HALT.OR.TERMNL)) THEN

__ * ________ i;!:=;M~::~~.___s_t_a_t_e_v_a_r_i_a_b_l_e_s_i_n_m_o_d_e_l_(_s_)------~~~~~~~----_-__ -_-__ -_-__ -H.

CALL MODEL (3,IUDAT,IULOG, .FALSE.,TIME,DELT,TERMNL)

END IF

GOTO 10

END IF

* terminate model ; table output ; delete temporary file
CALL MODEL (4,IUDAT,IULOG,OUTPUT,TIME,DELT,TERMNL)

CALL OUTDAT (4,0, 'MODEL',O.O)

CALL OUTDAT (9 9 , 0 , ' ' , 0 . 0)

RETURN

END

,----------~---~~--~- ~----,------------------1

- 112 -

Appendix F: The use of object libraries

Object libraries are made by compiling the FORTRAN sources of all routines. Subsequently, a

special program for creating and maintaining libraries, a library manager, is used to create an

object library. Below, at first, the creation of an object library is described for a VAX, an Apple

Macintosh with the Absoft compiler and for an IBM PC with the Microsoft compiler. The actual

linking procedure is described for the same three machines. Only the minimum number of

required commands is explained. For details and a complete description of the library

managers, the reader is referred to FORTRAN manuals.

Creating- an object library:

VAX
It is assumed that the TTUTIL sources are present on a subdirectory UTIL. All routines are

combined into a single source TEMP.FOR, which is compiled. The result is an object file

TEMP.OBJ which is used to create the object library. After that, the object file can be deleted.

<CTRL>Z

$APPEND *.FOR TEMP.F77

$ RENAME TEMP.F77 TEMP.FOR

$ FORTRAN/CHECK=(NOUNDERFLOW,OVERFLOW,BOUNDS) TEMP

Then create a library TTUTIL_LIB, using for instance:

$ LIBRARY/OBJECT/LOG/CREATE TTUTIL_LIB

and insert all objects into the library, using

$ LIBRARY/OBJECT/LOG/INSERT TTUTIL LIB TEMP

$DELETE TEMP.*;*

Apple
The names of all TTUTIL routines should be present in a separate list file. They are compiled

then using the "compile list" command from the (Absoft) compiler menu. After selection of this

list file, all listed subprograms are compiled. Do not forget to instruct the compiler for

subprogram compilation (=option).

The library manager is called from the compiler menu ("command M"). It requires the name of

the (new) library, TTUTIL.OLB, for instance. Then all object files have to be added to the

library by means of successive library commands:

> A file 1 (without extension)

> A file2

After entering all object names in this way, a "0" is typed:

> Q
··,······~···-··-· ·····Be"tO"rErt~avmgltre·program;ltTEr·titJratyts··creatett:Since·the·iinkef~·ifieiibrar;roniy~e;···· ·······,···-··················-············

the objects have to be added to the library in hierarchical order (see Appendix E).

- 113 -

IBM

At first, all source files have to be compiled, for instance using the following command, calling

the Microsoft FORTRAN compiler.(option /G2 generates IBM-AT compatible code)

fl /Gt /4Yb /FPa /Od /c /AH /G2 *
Generally, a simpler procedure for calling the compiler will have been installed. A"*", instead

of a filename causes all .FOR files to be compiled.

The library manager is run by typing the LIB command. After entering the library name TTUTIL,

the creation of TTUTIL.LIB has to be confirmed. Then, all object files are inserted into the

library by typing (from the DOS level):

LIB TTUTIL +file;

The order~of- insertion is notimportant.

Using an object library:

VAX I

---lt~is~assumed~that~an~oojeet~ltofary~,-T~TIJ"f-l~biB.GIB,~ts~present~on~suootrectory~lJTib~ln~~~~--~-~-~~~--1
linking a library to your programs you may profit from a logical TTUTIL, defined in your I

I
LOGIN.COM as follows: I

$ASSIGN DISK$ [username.UTIL]TTUTIL_LIB.OLB TTUTIL

A LINK command then reads

$LINK PROG,SUBl, ,TTUTIL/L

This command will work on all your directories, since the logical TTUTIL refers to the full

filename of the object library.

Apple
It is assumed that an object library, TTUTIL.OLB, is present as:

HD40:FORTRAN:TTUTIL.OLB

It may be linked to a compiled program "TEST apl" by creating a linker control file with the

following contents:

F TEST

L HD40:FORTRAN:TTUTIL.OLB

The linker is called from the compiler menu by "command K". Then the file menu of the linker

is used to select the desired linker control file and you will see the program being linked to the

library.

IBM

It is assumed that an object library, TTUTIL.LIB, has been created. The LINK command linking

LINK TEST,,,TTUTIL;

~~ ~it:lr11ry TILJTI~.qE3 ~~()LJicjl:)e _present on the current direct~ry or on~r1Y~()!~~~9ir~e~t()ry _in the

path.

- 114 -

Appendix G: List of NETLIB program libraries.

The NETLIB program libraries can be reached via the BITNET at NETLIB@ORNL.GOV. By

means of simple commands one can order routines from many different libraries. Among

these are the famous libraries EISPACK and UNPACK. The free availability of FORTRAN

programs within the "computing community" is a very attractive side of the use of FORTRAN.

Here is the index of the NETLIB system as it was sent to us on October 14, 1990. It contains

an impressive list of FORTRAN libraries ! !

The usual procedure is to order the index of a library that seems interesting. The index

contains short descriptions of the--subroutines and functions available in- that library;

Subsequently, you request the programs you need.

===== GENERAL NETLIB INDEX =====

WELCOME TO NETLIB, A SYSTEM FOR DISTRIBUTION OF MATHEMATICAL SOFTWARE
BY ELECTRONIC MAIL. THIS INDEX IS THE REPLY YOU'LL GET TO:

MAIL NETLIB@ORNL.GOV

TO EXAMINE THE FULL INDEX FOR ANY LIBRARY SEND A REQUEST OF THE FORM:
SEND INDEX FROM EISPACK.

TO SEARCH FOR ALL SOFTWARE WITH CERTAIN KEYWORDS:
FIND CUBIC SPLINE.

TO SEARCH FOR SOMEBODY IN GENE GOLUB'S ADDRESS LIST:
WHO IS JOAN DOE?

DISPLAYS ENTRIES CONTAINING "JOAN" AND "DOE". (NO SPELLING CORRECTION!)
YOU MAY INCLUDE SEVERAL REQUESTS IN A SINGLE PIECE OF MAIL, BUT PUT
EACH ON A SEPARATE LINE.

HERE ARE SOME ADDITIONAL FORMS A REQUEST MAY TAKE ...
SEND DGECO FROM LINPACK

(RETRIEVES ROUTINE DGECO AND ALL ROUTINES IT CALLS FROM THE LINPACK LIBRARY.)
SEND ONLY DGECO FROM LINPACK

(RETRIEVES JUST DGECO AND NOT SUBSIDIARY ROUTINES.)
SEND DGECO BUT NOT DGEFA FROM LINPACK

(RETRIEVES DGECO AND SUBSIDIARIES, BUT EXCLUDES DGEFA AND SUBSIDIARIES.)
SEND LIST OF DGECO FROM LINPACK

(RETRIEVES JUST THE FILE NAMES RATHER THAN THE CONTENTS;
THIS CAN BE HELPFUL WHEN ONE ALREADY HAS AN ENTIRE LIBRARY AND JUST
WANTS TO KNOW WHAT PIECES ARE NEEDED IN A PARTICULAR APPLICATION.)

SEND THE REQUESTS TO "NETLIB@ORNL.GOV" EVEN THOUGH REPLIES APPEAR TO BE
COMING FROM "NETLIBD@ORNL.GOV". YOU'LL BE TALKING TO A PROGRAM, SO DON'T
EXPECT IT TO UNDERSTAND MUCH ENGLISH. IF YOUR UNIX SYSTEM DOESN'T TALK
DIRECTLY TO RESEARCH (AT&T BELL LABS IN MURRAY HILL, NEW JERSEY), YOU MIGHT
TRY FORWARDING THROUGH IHNP4 (BELL LABS IN CHICAGO) OR MCVAX (MATH CENTRUM
IN AMSTERDAM) . SOMEONE WILL BE PAYING FOR LONG DISTANCE PHONE CALLS, SO BE
REASONABLE! THOSE WITH ACCESS TO THE ARPANET CAN USE NETLIB@ORNL.GOV (AT
OAK RIDGE NATIONAL LABS) . FOR AN INTRODUCTION TO THE MYSTERIES OF NETWORKS
AND ADDRESS SYNTAX, SEE J. QUARTERMAN AND J. HOSKINS, COMM. ACM (OCT 1986)
29,932-971. FOR BACKGROUND ABOUT NETLIB, SEE JACK J. DONGARRA AND ERIC
GROSSE, DISTRIBUTION OF MATHEMATICAL SOFTWARE VIA ELECTRONIC MAIL, COMM.
ACM (1987) 30,403--407.

THE DEFAULT PRECISION IS
WITH "S". HOWEVER, IF THE LIBRARY ONLY COMES IN ONE PRECISION, THAT'S WHAT
YOU WILL BE SENT. TO SAVE SPACE WE REMOVE SEQUENCE NUMBERS AND MAINTAIN A
CENTRAL-SET OF MAefUNE· DEPENDENT--CONSTANTS. OTHERWISE THE-£-BDES,- -WHICH ARE
ALMOST ALL IN FORTRAN, ARE AS RECEIVED FROM THE AUTHORS. BUGS FOUND IN
CORE LIBRARIES LIKE EISPACK WILL RECEIVE PROMPT ATTENTION; IN GENERAL, WE

---~------·------------------~~--~~---- ------

- 116 -

CORE MACHINE CONSTANTS (IlMACH,RlMACH,DlMACH), BLAS (LEVEL 1, 2 AND 3)

EISPACK A COLLECTION OF FORTRAN SUBROUTINES THAT COMPUTE THE EIGENVALUES
AND EIGENVECTORS OF NINE CLASSES OF MATRICES. THE PACKAGE CAN
DETERMINE THE EIGENSYSTEMS OF COMPLEX GENERAL, COMPLEX HERMITIAN,
REAL GENERAL, REAL SYMMETRIC, REAL SYMMETRIC BAND, REAL SYMMETRIC
TRIDIAGONAL, SPECIAL REAL TRIDIAGONAL, GENERALIZED REAL, AND
GENERALIZED REAL SYMMETRIC MATRICES. IN ADDITION, THERE ARE TWO
ROUTINES WHICH USE THE SINGULAR VALUE DECOMPOSITION TO SOLVE
CERTAIN LEAST SQUARES PROBLEMS.
DEVELOPED BY THE NATS PROJECT AT ARGONNE NATIONAL LABORATORY.
(D.P. REFER TO EISPACK, S.P. REFER TO SEISPACK)

FFTPACK A PACKAGE OF FORTRAN SUBPROGRAMS FOR THE FAST FOURIER
TRANSFORM OF PERIODIC AND OTHER SYMMETRIC SEQUENCES
THIS PACKAGE CONSISTS OF PROGRAMS WHICH PERFORM FAST FOURIER
TRANSFORMS FOR BOTH COMP.LEX ... AND REAL PERIODIC SEQUENCES AND
CERTIAN OTHER SYMMETRIC SEQUENCES.
DEVELOPED BY PAUL SWARZTRAUBER, AT NCAR.

FISHPACK A PACKAGE OF FORTRAN SUBPROGRAMS PROVIDING FINITE DIFFERENCE
APPROXIMATIONS FOR ELLIPTIC BOUNDARY VALUE PROBLEMS.
DEVELOPED BY PAUL SWARZTRAUBER AND ROLAND SWEET.

FNLIB WAYNE FULLERTON'S SPECIAL FUNCTION LIBRARY. (SINGLE AND DOUBLE)

GO GOLDEN OLD IEs:~:ROOT!NE-S~T-HAT-Hl\VK-BEEN-WIDELY-USED_; ___ ---~~-------~---~~---
BUT AREN'T AVAILABLE THROUGH THE STANDARD LIBRARIES.
NOMINATIONS WELCOME!

HARWELL SPARSE MATRIX ROUTINE MA28 FROM THE HARWELL LIBRARY. FROM IAIN DUFF

LINPACK A COLLECTION OF FORTRAN SUBROUTINES THAT ANALYZE AND SOLVE LINEAR
EQUATIONS AND LINEAR LEAST SQUARES PROBLEMS. THE PACKAGE SOLVES
LINEAR SYSTEMS WHOSE MATRICES ARE GENERAL, BANDED, SYMMETRIC
INDEFINITE, SYMMETRIC POSITIVE DEFINITE, TRIANGULAR, AND TRIDIAGONAL
SQUARE. IN ADDITION, THE PACKAGE COMPUTES THE QR AND SINGULAR VALUE
DECOMPOSITIONS OF RECTANGULAR MATRICES AND APPLIES THEM TO LEAST
SQUARES PROBLEMS.
DEVELOPED BY JACK DONGARRA, JIM BUNCH, CLEVE MOLER AND PETE STEWART.
(ALL PRECISIONS CONTAINED HERE)

PPPACK SUBROUTINES FROM: CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES,
SPRINGER VERLAG. THIS IS AN OLD VERSION, FROM AROUND THE TIME THE BOOK
WAS PUBLISHED. WE WILL INSTALL A NEWER VERSION AS SOON AS WE CAN.

TOMS COLLECTED ALGORITHMS OF THE ACM. WHEN REQUESTING A SPECIFIC
ITEM, PLEASE REFER TO THE ALGORITHM NUMBER.

IN CONTRAST TO THE ABOVE LIBRARIES, THE FOLLOWING ARE COLLECTIONS OF CODES
FROM A VARIETY OF SOURCES. MOST ARE EXCELLENT, BUT YOU SHOULD EXERCISE
CAUTION. WE INCLUDE RESEARCH CODES THAT WE HAVEN'T TESTED AND CODES
THAT MAY NOT BE STATE-OF-THE-ART BUT USEFUL FOR COMPARISONS.
THE FOLLOWING LIST IS CHRONOLOGICAL, NOT BY MERIT:

MISC CONTAINS VARIOUS PIECES OF SOFTWARE COLLECTED OVER TIME AND:
THE SOURCE CODE FOR THE NETLIB PROCESSOR ITSELF;
THE PAPER DESCRIBING NETLIB AND ITS IMPLEMENTATION;
THE ABSTRACTS LIST MAINTAINED BY RICHARD BARTELS.

FMM ROUTINES FROM THE BOOK COMPUTER METHODS FOR MATHEMATICAL
COMPUTATIONS, BY FORSYTHE, MALCOLM, AND MOLER.
DEVELOPED BY GEORGE FORSYTHE, MIKE MALCOLM, AND CLEVE MOLER.

- (!5:1'. J:r.EFER -1'6 FMM~- s.-P. REFER-TO SFMM)

QUADPACK A PACKAGE FOR NUMERICAL COMPUTATION OF DEFINITE UNIVARIATE INTEGRALS.

- 117 -

DEVELOPED BY PIESSENS, ROBERT(APPL. MATH. AND PROGR. DIV.- K.U.LEUVEN)
DE DONKER, ELISE(APPL. MATH. AND PROGR. DIV.- K.U.LEUVEN
KAHANER, DAVID(NATIONAL BUREAU OF STANDARDS) (SLATEC VERSION)

TOEPLITZ A PACKAGE OF FORTRAN SUBPROGRAMS FOR THE SOLUTION OF SYSTEMS
OF LINEAR EQUATIONS WITH COEFFICIENT MATRICES OF TOEPLITZ OR
CIRCULANT FORM, AND FOR ORTHOGONAL FACTORIZATION OF COLUMN
CIRCULANT MATRICES.

ITPACK

BIHAR

DEVELOPED BY BURT GARBOW AT ARGONNE NATIONAL LABORATORY,
AS A CULMINATION OF SOVIET-AMERICAN COLLABORATIVE EFFORT.
(D.P. REFER TO TOEPLITZ, S.P. REFER TO STOEPLITZ)

ITERATIVE LINEAR SYSTEM SOLVERS FOR SYMMETRIC AND NONSYMMETRIC
SPARSE PROBLEMS. INCLUDES ITPACK 2C (SINGLE AND DOUBLE
PRECISION), ITPACKV 2C (VECTORIZED VERSION OF ITPACK 2C),
AND NSPCG. DEVELOPED BY YOUNG AND KINCAID AND THE GROUP AT

~ ~-U OF ~TEXAS .

BIHARMONIC SOLVER IN RECTANGULAR GEOMETRY AND POLAR COORDINATES.
THESE ROUTINES WERE OBTAINED FROM PETTER BJORSTAD,
VERITAS RESEARCH, OSLO NORWAY IN JULY 1984.

LANCZOS PROCEDURES COMPUTING A FEW EIGENVALUES/EIGENVECTORS OF A LARGE (SPARSE)
SYMMETRIC MATRIX. JANE CULLUM AND RALPH WILLOUGHBY, IBM YORKTOWN.

CONFORMAL CONTAINS ROUTINES TO SOLVE THE "PARAMETER PROBLEM" ASSOCIATED
WITH THE SCHWARZ-CHRISTOFFEL MAPPING. INCLUDES:
SCPACK (POLYGONS WITH STRAIGHT SIDES) FROM NICK TREFETHEN.
CAP (CIRCULAR ARC POLYGONS) FROM PETTER BJORSTAD AND ERIC GROSSE.

FITPACK A PACKAGE FOR SPLINES UNDER TENSION. (AN EARLY VERSION)
FOR A CURRENT COPY AND FOR OTHER ROUTINES, CONTACT:
ALAN KAYLOR CLINE, 8603 ALTUS COVE, AUSTIN, TEXAS 78759, USA

BENCHMARK CONTAINS BENCHMARK PROGRAMS AND THE TABLE OF LINPACK TIMINGS.

MACHINES CONTAINS INFORMATION ON HIGH PERFORMANCE COMPUTERS THAT
ARE OR SOON TO BE MADE AVAILABLE

MINPACK A PACKAGE OF FORTRAN PROGRAMS FOR THE SOLUTION OF SYSTEMS OF
NONLINEAR EQUATIONS AND NONLINEAR LEAST SQUARES PROBLEMS.
FIVE ALGORITHMIC PATHS EACH INCLUDE A CORE SUBROUTINE AND AN
EASY-TO-USE DRIVER. THE ALGORITHMS PROCEED EITHER FROM AN ANALYTIC
SPECIFICATION OF THE JACOBIAN MATRIX OR DIRECTLY FROM THE PROBLEM
FUNCTIONS. THE PATHS INCLUDE FACILITIES FOR SYSTEMS OF EQUATIONS
WITH A BANDED JACOBIAN MATRIX, FOR LEAST SQUARES PROBLEMS WITH A
LARGE AMOUNT OF DATA, AND FOR CHECKING THE CONSISTENCY OF THE
JACOBIAN MATRIX WITH THE FUNCTIONS.
DEVELOPED BY JORGE MORE', BURT GARBOW, AND KEN HILLSTROM AT
ARGONNE NATIONAL LABORATORY.
(D.P. REFER TO MINPACK, S.P. REFER TO SMINPACK)

PORT THE PUBLIC SUBSET OF THE PORT LIBRARY. INCLUDES THE LATEST VERSION
OF GAY'S NL2SOL NONLINEAR LEAST SQUARES. THE REST OF THE PORT3
LIBRARY IS AVAILABLE BY LICENSE FROM AT&T.

Y12M CALCULATION OF THE SOLUTION OF SYSTEMS OF LINEAR SYSTEMS OF
LINEAR ALGEBRA EQUATIONS WHOSE MATRICES ARE LARGE AND SPARSE.
AUTHORS: ZAHARI ZLATEV, JERZY WASNIEWSKI AND KJELD SCHAUMBURG

PCHIP IS A FORTRAN PACKAGE FOR PIECEWISE CUBIC HERMITE INTER-
POLATION OF DATA. IT FEATURES SOFTWARE TO PRODUCE A MONOTONE AND
"VISUALLY PLEASING" INTERPOLANT TO MONOTONE DATA.

-FRED -N. ~ FRTTSCR~ LAWRENCE- LIVERMORE ~A'riONAL T.ABORATORY

LP LINEAR PROGRAMMING - AT PRESENT, THIS CONSISTS OF ONE SUBDIRECTORY,

- 118 -

DATA: A SET OF TEST PROBLEMS IN MPS FORMAT, MAINTAINED BY DAVID GAY.
FOR MORE INFORMATION, TRY A REQUEST OF THE FORM
SEND INDEX FOR LP/DATA

ODE VARIOUS INITIAL AND BOUNDARY VALUE ORDINARY DIFFERENTIAL EQUATION
SOLVERS: COLSYS, DVERK, RKF45, ODE
A SUBSET OF THESE IN SINGLE PRECISION IS IN THE LIBRARY SODE.

ODEPACK THE ODE PACKAGE FROM HINDMARCH AND OTHERS.
THIS IS THE DOUBLE PRECISION VERISON; TO GET SP REFER TO SODEPACK.
ALAN HINDMARCH, LAWRENCE LIVERMORE NATIONAL LABORATORY

ELEFUNT IS A COLLECTION OF TRANSPORTABLE FORTRAN PROGRAMS FOR TESTING
THE ELEMENTARY FUNCTION PROGRAMS PROVIDED WITH FORTRAN COMPILERS. THE
PROGRAMS ARE DESCRIBED IN DETAIL IN THE BOOK "SOFTWARE MANUAL FOR THE
ELEMENTARY FUNCTIONS" BY W. J. CODY AND W. WAITE, PRENTICE HALL, 1980.

SPECFUN IS AN INCOMPLETE, BUT GROWING, COLLECTION OF TRANSPORTABLE
FORTRAN PROGRAMS FOR SPECIAL FUNCTIONS, AND OF ACCOMPANYING TEST
PROGRAMS SIMILAR IN CONCEPT TO THOSE IN ELEFUNT.
W.J. CODY, ARGONNE NATIONAL LABORATORY

PARANOIA IS A RATHER LARGE PROGRAM, DEVISED BY PROF. KAHAN OF BERKELEY,
TO EXPLORE THE FLOATING POINT SYSTEM ON YOUR COMPUTER.

SLATEC LIBRARY DOE POLICY APPARENTLY PROHIBITS US FROM DISTRIBUTING THIS.
CONTACT~THE~NATTONAL~ENERGY~SOFTWARE~CENTER~oR~youR~ceNGRESSMAN-~. --- --------------~--~-~----~

HOMPACK IS A SUITE OF FORTRAN 77 SUBROUTINES FOR SOLVING NONLINEAR SYSTEMS
OF EQUATIONS BY HOMOTOPY METHODS. THERE ARE SUBROUTINES FOR FIXED
POINT, ZERO FINDING, AND GENERAL HOMOTOPY CURVE TRACKING PROBLEMS,
UTILIZING BOTH DENSE AND SPARSE JACOBIAN MATRICES, AND IMPLEMENTING
THREE DIFFERENT ALGORITHMS: ODE-BASED, NORMAL FLOW, AND AUGMENTED
JACOBIAN.

DOMINO IS A SET OF C-LANGUAGE ROUTINES WITH A SHORT ASSEMBLY LANGUAGE
INTERFACE THAT ALLOWS MULTIPLE TASKS TO COMMUNICATE AND SCHEDULES
LOCAL TASKS FOR EXECUTION. THESE TASKS MAY BE ON A SINGLE PROCESSOR
OR SPREAD AMONG MULTIPLE PROCESSORS CONNECTED BY A MESSAGE-PASSING
NETWORK. (O'LEARY, STEWART, VAN DE GEIJN, UNIVERSITY OF MARYLAND)

GCV SOFTWARE FOR GENERALIZED CROSS VALIDATION, FROM: WOLTRING,
(UNIVARIATE SPLINE SMOOTHING); BATES, LINDSTROM, WARBA AND YANDELL
(MULTIVARIATE THIN PLATE SPLINE SMOOTHING AND RIDGE REGRESSION) .

CHENEY-KINCAID PROGRAMS FROM: WARD CHENEY & DAVID KINCAID, NUMERICAL
MATHEMATICS AND COMPUTING.

POLYHEDRA A DATABASE OF ANGLES, VERTEX LOCATIONS, AND SO ON FOR OVER A
HUNDRED GEOMETRIC SOLIDS, COMPILED BY ANDREW HOME.

GRAPHICS PRESENTLY JUST CONTAINS SOME C ROUTINES FOR TESTING RAY-TRACING

A APPROXIMATION ALGORITHMS (ALMOST EMPTY, BUT SOON TO GROW)
LOWESS: MULTIVARIATE SMOOTHING OF SCATTERED DATA; CLEVELAND+DEVLIN+GROSSE

APOLLO A SET OF PROGRAMS COLLECTED FROM APOLLO USERS.

ALLIANT A SET OF PROGRAMS COLLECTED FROM ALLIANT USERS.

PARMACS - PARALLEL PROGRAMMMING MACROS FOR MONITORS AND SEND/RECEIVE

SCHED - THE SCHEDULE PACKAGE IS AN ENVIRONMENT FOR THE TRANSPORTABLE
IMPLEMENTATION OF PARALLEL ALGORITHMS IN A FORTRAN SETTING.

-- -JACK TIDNGARRA- AND DAI\r SORENSEN, lJNIV -op TENN ; -ANIJ RICE
JUNE 5, 1987 (DONGARRA@CS.UTK.EDU SORENSEN@RICE.EDU)

--~---,-~

- 119 -

NAPACK A COLLECTION OF FORTRAN SUBROUTINES TO SOLVE LINEAR SYSTEMS,
TO ESTIMATE THE CONDITION NUMBER OR THE NORM OF A MATRIX,
TO COMPUTE DETERMINANTS, TO MULTIPLY A MATRIX BY A VECTOR,
TO INVERT A MATRIX, TO SOLVE LEAST SQUARES PROBLEMS, TO PERFORM
UNCONSTRAINED MINIMIZATION, TO COMPUTE EIGENVALUES, EIGENVECTORS,
THE SINGULAR VALUE DECOMPOSITION, OR THE QR DECOMPOSITION.
THE PACKAGE HAS SPECIAL ROUTINES FOR GENERAL, BAND, SYMMETRIC,
INDEFINITE, TRIDIAGONAL, UPPER HESSENBERG, AND CIRCULANT MATRICES.
CODE AUTHOR: BILL HAGER, MATHEMATICS DEPARTMENT, PENN STATE
UNIVERSITY, UNIVERSITY PARK, PA 16802, E-MAIL: HAGER@PSUVAX1.BITNET
OR HAGER@PSUVAX1.PSU.EDU. RELATED BOOK: APPLIED NUMERICAL LINEAR
ALGEBRA, PRENTICE-HALL, ENGLEWOOD CLIFFS, NEW JERSEY.
BOOK SCHEDULED TO APPEAR IN DECEMBER, 1987.

SPARSPAK SUBROUTINES FROM THE BOOK "COMPUTER SOLUTION OF LARGE SPARSE
POSITIVE DEFINITE SYSTEMS" BY GEORGE AND LIU, PRENTICE HALL 1981.

SPARSE A LIBRARY OF SUBROUTINES WRITTEN IN C THAT SOLVE LARGE SPARSE
SYSTEMS OF LINEAR EQUATIONS USING LU FACTORIZATION. THE
PACKAGE IS ABLE TO HANDLE ARBITRARY REAL AND COMPLEX SQUARE
MATRIX EQUATIONS. BESIDES BEING ABLE TO SOLVE LINEAR SYSTEMS,
IT IS SOLVES TRANSPOSED SYSTEMS, FIND DETERMINANTS, MULTIPLIES
A VECTOR BY A MATRIX, AND ESTIMATE ERRORS DUE TO
ILL-CONDITIONING IN THE SYSTEM OF EQUATIONS AND INSTABILITY IN
THE COMPUTATIONS. SPARSE DOES NOT REQUIRE OR ASSUME SYMMETRY
AND IS ABLE TO PERFORM NUMERICAL PIVOTING (EITHER DIAGONAL OR

----------COMPfJETE") -TO-AVOri3-UNNECESSARY~ERR0R-I-N-THE~S0hU-T-ION-. -SPARSE--
ALSO HAS AN OPTIONAL INTERFACE THAT ALLOW IT TO BE CALLED FROM
FORTRAN PROGRAMS.
KEN KUNDERT, ALBERTO SANGIOVANNI-VINCENTELLI. (SPARSE@IC.BERKELEY.EDU)

SLAP THIS IS THE OFFICIAL RELEASE VERSION 2.0 OF THE SPARSE LINEAR
ALGEBRA PACKAGE: A SLAP FOR THE MASSES! IT CONTAINS "CORE"
ROUTINES FOR THE ITERATIVE SOLUTION SYMMETRIC AND NON-SYMMETRIC
POSITIVE DEFINITE AND POSITIVE SEMI-DEFINITE LINEAR SYSTEMS.
INCLUDED IN THIS PACKAGE ARE CORE ROUTINES TO DO ITERATIVE
REFINEMENT ITERATION, PRECONDITIONED CONJUGATE GRADIENT
ITERATION, PRECONDITIONED CONJUGATE GRADIENT ITERATION ON THE
NORMAL EQUATIONS, PRECONDITIONED BICONJUGATE GRADIENT ITERATION,
PRECONDITIONED BICONJUGATE GRADIENT SQUARED ITERATION, ORTHOMIN
ITERATION AND GENERALIZED MINIMUM RESIDUAL ITERATION. CORE
ROUTINES REQUIRE THE USER TO SUPPLY "MATVEC" (MATRIX VECTOR
MULTIPLY) AND "MSOLVE" (PRECONDITIONG) ROUTINES. THIS ALLOWS THE
CORE ROUTINES TO BE WRITTEN IN A WAY THAT MAKES THEM INDEPENDENT
OF THE MATRIX DATA STRUCTURE. FOR EACH CORE ROUTINE THERE ARE
SEVERAL DRIVERS AND SUPPORT ROUTINES THAT ALLOW THE USER TO
UTILIZE DIAGONAL SCALING AND INCOMPLETE CHOLESKY/INCOMPLETE LU
FACTORIZATION AS PRECONDITIONERS WITH NO CODING. THE PRICE FOR
THIS CONVIENCE IS THAT ONE MUST USE THE A SPECIFIC MATRIX DATA
STRUCTURE: SLAP COLUMN OR SLAP TRIAD FORMAT.

WRITTEN BY MARK K. SEAGER & ANNE GREENBAUM

PROBLEM-SET: THIS SET OF DIRECTORIES IS A COLLECTION OF PROBLEMS FOR
AUTOMATED THEOREM PROVERS. IT IS PARTIONED BY SUBJECT.
LARRY WOS, ARGONNE NATIONAL LABORATORY

SEQUENT SOFTWARE FROM THE SEQUENT USERS GROUP.
JACK DONGARRA 9/88

UNCON/DATA TEST PROBLEMS: UNCONSTRAINED OPTIMIZATION, NONLINEAR LEAST SQUARES.
PROBLEMS FROM MORE, GARBOW, AND HILLSTROM; FRALEY, MATRIX SQUARE

DE VILLIERS AND
DENNIS, GAY, AND VU. COLLECTED BY CHRIS FRALEY.

JAKEF IS A PRECOMPILER THAT ANALYSES A GIVEN FORTRAN?? SOURCE CODE FOR
---TRE ~VALUA"TION--oF I\ -scALAR- OR VECTOR FUNC"TION"- A"ND~THEN -GENERATES- AN

EXPANDED FORTRAN SUBROUTINE THAT SIMULTANEOUSLY EVALUATES THE GRADIENT
OR JACOBIAN RESPECTIVELY.

______ I

--------------------~-------------~ .. ·~~-.. ·------------------~ ---~---------.. ·---·-------

- 120 -

A. GRIEWANK, ARGONNE NATIONAL LABORATORY, GRIEWANK@MCS.ANL.GOV, 12/1/88.

SPARSE-BLAS AN EXTENSION TO THE SET OF BASIC LINEAR ALGEBRA SUBPROGRAMS.
THE EXTENSION IS TARGETED AT SPARSE VECTOR OPERATIONS, WITH THE GOAL OF
PROVIDING EFFICIENT, BUT PORTABLE, IMPLEMENTATIONS OF ALGORITHMS FOR HIGH
PERFORMANCE COMPUTERS.
CONVEX!DODSON@ANL-MCS.ARPA MON AUG 31 19:53:21 1987 (DAVE DODSON)

VORONOI - COMPUTE VORONOI DIAGRAM OR DELAUNAY TRIANGULATION.
FROM RESEARCH!SJF THU MAY 5 14:09:33 EDT 1988

MATLAB - SOFTWARE FROM THE MATLAB USERS GROUP.
CHRISTIAN BISCHOF BISCHOF@MCS.ANL.GOV 12/89

PICL - IS A SUBROUTINE LIBRARY THAT IMPLEMENTS A GENERIC MESSAGE-PASSING
INTERFACE FOR A VARIETY OF MULTIPROCESSORS. IT ALSO PROVIDES

... .. _____ 1'I}1ESTA~J?ED 'J?Rl:\C:J!.: I:>]\T]\, I:[REQUESTED.
AUTHORS: GEIST, HEATH, PEYTON, AND WORLEY, OAK RIDGE NATIONAL LAB.
WORLEY@MSR.EPM.ORNL.GOV 4/17/90.

PARALLEL - A DIRECTORY CONTAINING INFORMATION ON PARALLEL PROCESSING AND
HIGH-PERFORMANCE COMPUTING.

MADPACK IS A A COMPACT PACKAGE FOR SOLVING SYSTEMS OF LINEAR EQUATIONS USING
MULTIGRID OR AGGREGATION-DISAGGREGATION METHODS. IMBEDDED IN
THE-AliGORITHMS-ARE-IMPLEMENTATT0NS-F0R .. -SPARSE-GA:USSI-AN-E-LINI-NA-T-10N-
AND SYMMETRIC GAUSS-SEIDEL (UNACCELERATED OR ACCELERATED BY
CONJUGATEGRADIENTS OR ORTHOMIN(l)). THIS PACKAGE IS PARTICULARLY
USEFUL FOR SOLVING PROBLEMS WHICH ARISE FROM DISCRETIZING PARTIAL
DIFFERENTIAL EQUATIONS, REGARDLESS OF WHETHER FINITE
DIFFERENCES, FINITE ELEMENTS, OR FINITE VOLUMES ARE USED.
IT WAS WRITTEN BY CRAIG DOUGLAS.

PARAGRAPH - A GRAPHICAL DISPLAY SYSTEM FOR VISUALIZING THE BEHAVIOR OF
PARALLEL ALGORITHMS ON MESSAGE-PASSING MULTIPROCESSOR ARCHITECTURES.
AUTHORS: JENNIFER ETHERIDGE AND MICHAEL HEATH, OAK RIDGE NATIONAL LAB.
MTH@ORNL.GOV, 4/19/90.

NAPACK A COLLECTION OF FORTRAN SUBROUTINES TO SOLVE LINEAR SYSTEMS,
TO ESTIMATE THE CONDITION NUMBER OR THE NORM OF A MATRIX,

GMAT -

TO COMPUTE DETERMINANTS, TO MULTIPLY A MATRIX BY A VECTOR,
TO INVERT A MATRIX, TO SOLVE LEAST SQUARES PROBLEMS, TO PERFORM
UNCONSTRAINED MINIMIZATION, TO COMPUTE EIGENVALUES, EIGENVECTORS,
THE SINGULAR VALUE DECOMPOSITION, OR THE QR DECOMPOSITION.
THE PACKAGE HAS SPECIAL ROUTINES FOR BAND, SYMMETRIC,
INDEFINITE, TRIDIAGONAL, UPPER HESSENBERG, AND CIRCULANT MATRICES.
CODE AUTHOR: BILL HAGER, MATHEMATICS DEPARTMENT, UNIVERSITY OF
FLORIDA, GAINESVILLE, FL 32611, E-MAIL: HAGER@MATH.UFL.EDU.
RELATED BOOK: APPLIED NUMERICAL LINEAR ALGEBRA, PRENTICE-HALL,
ENGLEWOOD CLIFFS, NEW JERSEY, 1988.

FROM MARK SEAGER (LLNL OCT 8, 1987)

STATEGRAPH.SHAR THIS SHAR FILE CONTAINS THE SOURCE CODE FOR THE GMAT
STATEGRAPH ANALYSIS TOOL. THIS TOOL WILL ANALYZE MULTIPROCES
SING TRACE FILES GENERATED BY THE CRAY COMPATIBILITY LIBRARY
ON THE ALLIANT FX/8, THE INPUT FILE SPECIFICATION IS VERY
SIMILAR TO THAT FOR MTDUMP FROM CRAY RESEARCH.

TIMELINE.SHAR THIS SHAR FILE CONTAINS THE SOURCE
TIMELINE ANALYSIS TOOL. THIS TOOL WILL ASSIST THE USER IN A
TIME BASED ANALYSIS OF MULTIPROCESSING TRACE FILES GENERATED

-·--·trr"THE --a~:AY "COMPATIBILITY tiBRARY""ON-THE ALLTANT -FX/"S;·· -""THE
INPUT FILE SPECIFICATION IS VERY SIMILAR TO THAT FOR MTDUMP
FROM CRAY RESEARCH.

- 121 -

GMAT.SHAR THIS SHAR FILE CONTAINS DOCUMENTATION THE GMAT MULTI-
PROCESSING TIME LINE AND STATE GRAPH TOOLS. IT ALSO INCLUDES
SOME (COMPACED AND UUENCODED) SAMPLE TRACE FILES FOR USE WITH
THE TOOLS.

VFFTPK - A VECTORIZED PACKAGE OF FORTRAN SUBPROGRAMS FOR THE
FAST FOURIER TRANSFORM OF MULTIPLE REAL SEQUENCES

FORTRAN CONTAINS TOOLS SPECIFIC TO FORTRAN.
AT PRESENT, IT CONTAINS A SINGLE-DOUBLE PRECISION CONVERTER.

TYPESETTING TROFF AND LATEX MACROS, MOSTLY WRITTEN AT BELL LABS. ALSO,
AMS-TEX MACROS BY ARNOLD, LUCIER, AND SIAM.

C++ MISCELLANEOUS CODES IN THE C++ LANGUAGE. AT PRESENT THIS INCLUDES

HANSEN'S C++ ANSWER BOOK.

OPT MISCELLANEOUS OPTIMIZATION SOFTWARE. CONTAINS BRENT'S PRAXIS.

BIB BIBLIOGRAPHIES: GOLUB AND VAN LOAN, 2ND ED.

