

Simulation Reports CABO-TT

A STRUCTURED APPROACH TO MODELLING THE ASSIMILATION OF A HETEROGENEOUS CANOPY, IMPLEMENTED AS A MODEL FOR THE GROWTH OF COMPETING SPRING WHEAT CULTIVARS

H.J. Rennau & C.J.T. Spitters
Sim. Rep. CABO-TT No. 11

Centre for Agrobiological Research

Department of Theoretical Production Ecology, Agricultural University

The state of the s

SIMULATION REPORTS CABO-TT

Reports published in this series

- 1. UNGAR, E. & H. van KEULEN:
 FORTRAN version of the simulation model ARID CROP. 1982, 39 pp.
- 2. CORDOVA, J., F.W.T. PENNING de VRIES & H.H. van LAAR:

 Modeling of crop production: evaluation of an international post graduate
 course held at IDEA, November 1982. 1983, 23 pp.

Modelos matematics de produccion de cultivos: evaluacion del curso internacional realizado en IDEA, en Noviembre de 1982. 1983, 27 pp.

- 3. MARLETTO, V. & H. van KEULEN:
 Winter wheat experiments in The Netherlands and Italy analysed by the
 SUCROS model. 1984, 61 pp.
- 4. GENG, S., F.W.T. PENNING de VRIES & I. SUPIT:

 Analysis and simulation of weather variables part I:
 rain and wind in Wageningen. 1985, 55 pp.
- 5. GENG, S., F.W.T. PENNING de VRIES & I. SUPIT:
 Analysis and simulation of weather variables part II:
 temperature and solar radiation. 1985, 74 pp.
- 6. BENSCHOP, M.:
 TUCROS, een simulatiemodel voor de tulpecultivar "Apeldoorn".
 1985, 83 pp.
- 7. SUPIT, I.:

 Manual for generation of daily weather data. 1985, 21 pp.
- 8. VEN, G.W.J. van de:
 Simulation of barley production in the north-western coastal zone of Egypt. 1986, 71 pp.

- 9. LEFFELAAR, P.A., E.W. WOLBEER & R.T. DIERKX:

 Some hints to write more readable simulation programs by the combined use of CSMP and FORTRAN-subroutines. 1986.
- 10. JANSEN, D.M. & P. GOSSEYE

 Simulation of growth of millet (Pennisetum americanum) as influenced by waterstress. 1986, 108 pp.

Simulation Reports CABO-TT

Simulation Reports is a series of supplementary information concerning simulation models in agriculture which have been published elsewhere. Knowledge of those publications will in general be a prerequisite for studying the supplementary information in these reports.

Simulation Reports may contain improvements of simulation models, new applications, or translations of the programs into other computer languages. Manuscripts or suggestions should be submitted to F.W.T. Penning de Vries (CABO) or J. Goudriaan (TT).

Simulation Reports are issued by CABO-TT and available on request.

Announcements of Reports in this series will be issued regularly. Addresses of those who are interested in the announcements will be put on the mailing list on request.

CABO-TT
Bornsesteeg 65
P.O. Box 14
6700 AA WAGENINGEN
The NETHERLANDS

CENTRUM VOOR AGROBIOLOGISCH ONDERZOEK (CABO) Centre for Agrobiological Research

VAKGROEP THEORETISCHE TEELTKUNDE (TT), Landbouwhogeschool Department of Theoretical Production Ecology, Agricultural University.

CONTENTS	PAGE			
1. Introduction				
2. Scope of the model				
3. Description of the model				
3.1 Concepts underlying the model	4			
3.2 Model structure	5			
3.3 Description of the modules				
3.3.1 Vertical distribution of light absorbing surface	5			
3.3.2 Daily gross assimilation	9			
3.3.3 Dry matter increment	15			
4. Performance of the model				
5. General discussion				
References				
Appendix A: Listing of the model				
Appendix B: List of abbreviations 4				

1. INTRODUCTION

The model presented in this paper was written for simulating the growth of several wheat cultivars in mixture. Notwithstanding this specific purpose, an effort has been made to develop a model structure which may be of use in simulating photosynthesis of heterogeneous canopies in general. A distinction between different types of light absorbing and photosynthesizing surfaces of heterogeneous canopies may be necessary because they belong to different, competing populations, or they differ in optical behaviour (extinction coefficient), or they differ in photosynthetic behaviour. Such a situation is for example given when growth of competing species is modelled or when assimilation not only of leaves but also of other organs (e.g. ears) has to be accounted for.

Modelling of the light distribution and photosynthesis is essentially based on the model of de Wit et al. (1978) for homogeneous monocultures and the extension of this model by Spitters & Aerts (1983) to mixed canopies. This latter model is improved here by introducing a rigorous modular structure and by incorporating the revised procedures to calculate and to handle the different components of incoming radiation (Spitters et al., 1986; Spitters, 1986) and to integrate photosynthesis over time intervals within the day (Goudriaan, 1986). Furthermore, different types of photosynthesizing organs (leaf blades, leaf sheaths + stems, ears) are distinguished in the presented model. The derivation of daily net assimilation from daily gross assimilation and the distribution of net assimilates over plant organs proceed according to Van Keulen et al. (1982).

2. SCOPE OF THE MODEL

The model simulates plant growth under potential conditions: gross production is only dependent on light absorption and temperature and unrestricted by the supplies of water and nutrients or the occurrence of pests, diseases and weeds.

As stated above, the model was written to simulate the growth of wheat. Features of wheat are largely restricted to the actual values of parameters. Still, there are two structural accommodations to the species wheat:

- 1) light absorption and photosynthesis of ears and stems is included;
- 2) the total yellow fraction of leaves is assumed to be positioned below the total green fraction.

If a potential user of our model decides that point (2) is inappropriate, he has to perform structural adjustments (replacement of the subroutine YELDII). Such adjustments are unnecessary for the omission of point (1), which can be achieved by assigning appropriate values to switch parameters.

3. DESCRIPTION OF THE MODEL

3.1 Concepts underlying the model

a) For each type of assimilating surface (e.g. the leaves of one competitor) a 2-parametric light response curve is assumed:

$$A(I) = AMAX \cdot (1 \cdot - exp(-I \cdot EFF/AMAX))$$
 (1)

I : absorbed photosynthetically active radiation $(J/m**^2/s)$

A : assimilation rate $(kg CO_2/ha/h)$

AMAX : assimilation rate at light saturation (kg CO₂/ha/h)

EFF : initial light use efficiency (kg ${\rm CO_{2}/ha/h}$)/(J/m**2/s), defined as

$$\lim_{T \to 0} A(I)/I \tag{2}$$

- b) From the daily global irradiance, the diurnal courses of diffuse and direct photosynthetically active radiation are estimated.
- c) On their vertical path through the canopy, the direct and diffuse flux attenuate exponentially:

$$I(x_1) = I(x_2) \cdot exp(-\sum_{s=1}^{NST} AI_s(x_1, x_2) \cdot K(s)) \quad x_1 < x_2$$
 (3)

x : height above ground (cm)

I(x): light intensity (J/m**2/s) at height x above the ground

Als (x1, x2): area index (ha surface/ha ground) of the fraction of surface type s

that is positioned between the boundaries x1 and x2.

NST : number of distinguished surface types

K(s) : extinction coefficient of surface type s

The extinction coefficients K(s) differ for diffuse and direct light.

d) The light absorbed by a vertically homogeneous mixture of surface types is distributed over the constituent surface types according to their areas, weighted by their extinction coefficients.

- e) Maintenance respiration of each plant organ is obtained by multiplying its weight by an organ specific relative rate of respiration and a factor accounting for the influence of temperature.
- f) The allocation of dry matter over the various organs (leaves, stems, roots, ears) is a function of the developmental state. This developmental state is defined as a linear function of the temperature sum.
- g) The efficiency of transforming net assimilates into dry matter is an organ specific constant.

3.2 Model structure

The model is written in CSMP. It can be viewed as being composed of 3 main modules which encompass submodules. This structure is outlined in Table 1, the program flow in Table 2.

3.3 Description of the modules

3.3.1 Vertical distribution of light absorbing surfaces

Principle

The basic principle is characterized as follows. The vertical distribution of a surface type is described by a density function AID of the argument h' (height above ground/height of the plant top). AID may be an arbitrary function fulfilling the constraints

$$AID(h') \ge 0$$
 for $0 \le h' \le 1$ (4i)

$$\int_{0}^{1} AID(h') dh' = 1$$
(4ii)

Let the total area index of surface type s be TAI_s and x1(1), x2(1) (cm above ground) the boundaries of canopy layer 1. Then $AI_{s,1}$, the area index of surface type s positioned in canopy layer 1, is calculated as

Table 1:
Module structure of the model. (MP) denotes that the respective calculations are performed by the main program.

Mod	ule fu	nction S	ubroutines
Ι.	VERTI	CAL DISTRIBUTION OF LIGHT ABSORBING SURFACES	
	I.1	area indices (ha surface/ha ground) of the various surface types	(MP)
	I.2	boundary heights defining canopy layers	STRATA
	I.3	distribution of surface area over the	VERDI2
		canopy layers	CLFRAC
			YELDI1
			YELDI2
II.	DAILY	GROSS ASSIMILATION	
	II.1	daylength and diffuse fraction of daily	ASTRO
		global radiation	FRADIF
	II.2	instantaneous intensity and direct fraction	INSTIR
		of incoming light, sine of sun height	
	II.3	instantaneous rates of assimilation	PHOTOC
	II.4	integration of the instantaneous assimila-	DAYASS
		tion rate over the day	
III	. DRY M	MATTER INCREMENT	
	III.1	maintenance respiration	(MP)
	111.2	allocation of net production and resulting	(MP)
		rates of biosynthesis; dying process of	

organ tissues

Table 2:

Program flow of the model. MP denotes the main program. Module numbers explained in Table 1.

MODULE	SUBROUTINES	SECTION
I.3	MP ────────────────────────────────────	INITIAL
(preparation)	MP ——— VPRE2	-
I.1		DYNAMIC
I.2	MP ───────────STRATA	
I.3	MP VERDI2 CLFRAC	
	MP ─────YELD[1	
	MP ───────VERDI2 ───────CLFRAC	
	YELDI2	
II.4	MP DAYASS ASTRO	
II.1	FRADIF	
II.2	INSTIR	
E.II	РНОТОС	es.
III.1	MP 	
III.2	MP	

$$AI_{s,1} = AI_{s} (x_{1}(1), x_{2}(1)) = TAI_{s} \int_{h'(x_{1})} AID_{s}(h') dh'$$
(5)

where
$$h'(x) = \begin{cases} x/H(s) & 0 \le x \le H(s) \\ 1 & x > H(s) \end{cases}$$

with H(s) denoting the height (cm) of the genotype to which surface type s belongs.

Module I.l: Area indices

For leaves and stems (including leaf sheaths) the area indices are obtained by multiplying the respective dry matter weights by their surface area ratios. The area index of ears is assumed to be zero until anthesis. Then its value is determined by multiplying the aboveground biomass with a conversion factor. During post anthesis growth the ear area is assumed to be constant. The yellow fraction of the ear area is introduced as a forcing function of days after emergence.

Module I.2: Definition of canopy layers

The canopy is stratified into layers of equal thickness. The number of layers is chosen dependent on the summed leaf area indices of all competitors.

Module I.3: Distribution of surface area over the layers

Stems and leaves are each distributed vertically according to the three parametric density function.

AID
$$(h') = (-a h'^2 + a + c) * normalization constant$$
 (6)

with AID (h') : normalized surface area density at h'

h': height above ground level divided by plant height

a, c, z : function parameters

Fig. 1 illustrates how the parameters a, c and z determine the shape of the curve. The normalization constant serves to fulfil constraint (4ii) and is accordingly given by

$$\int_{1}^{1} (-ah'^{2} + a + c) dh' = a \cdot (1 + \frac{c}{a} - \frac{1}{z+1}) = NC$$
 (7)

As the form of the function as well as the parameter values are assumed to be constant during the growing season, the normalization constant is evaluated in the initial section of the program. The surface area index within a horizontal layer bounded by the relative heights h_1^{\prime} and h_2^{\prime} is calculated at every time step as

TAI . NC . a . (A1 .
$$(h'_2 - h'_1) - A2 \cdot (h'_2^{z+1} - h'_1^{z+1})$$
) (8)

where TAI is the total area index of the considered surface, NC is the normalization constant, and A1 (= 1 + c/a) and A2 (= 1/(z+1)) are auxiliary variables calculated in the initial section of the program.

The function AID is assumed to characterize the distribution of total leaf area and total stem area respectively, encompassing the green as well as the yellow fraction. Thus a subdivision into a green and a yellow fraction of the surface area is necessary. For leaves as well as stems, it is assumed that the total yellow fraction is positioned below the total green fraction.

The ear area is assumed to be distributed as a homogeneous layer. This is equivalent to defining the vertical area density function (AID) as

$$1/d \qquad \text{for } 1\text{-}d \leq h' \leq 1$$
 AID(h') = {
$$0 \qquad \text{otherwise}$$

where d is the thickness of the ear layer divided by the plant height. The yellow fraction of the ear area is assumed to be distributed vertically homogeneously within the ear layer.

3.3.2 Daily gross assimilation

Principles

The daily assimilation is obtained by a weighted summation (= numerical integration) of the instantaneous assimilation rates of selected time points

during the day. The instantaneous assimilation rates are calculated from the instantaneous intensities of direct and diffuse light and accounting for the canopy architecture.

Module II.1: daylength and diffuse fraction of daily global radiation

The diffuse fraction of daily global radiation is derived from the measured global radiation according to Spitters et al. (1986).

Module II.2: instantaneous intensity and direct fraction of incoming light, sine of sun height

Given the calendar day, the latitude of the location and the diffuse fraction of daily global radiation, the instantaneous intensities of diffuse and direct visible radiation are estimated according to Spitters et al. (1986).

Module II.3: instantaneous rates of assimilation

The instantaneous assimilation rate of a competitor is derived from the instantaneous direct and diffuse light flux and the canopy structure. It is viewed as the sum of the rates performed by its different assimilating surfaces (leaf blades, stems + leaf sheaths, ears).

The instantaneous assimilation rate of a surface type (e.g. the leaves of one competitor) is derived by partitioning its total area into fractions each of which is exposed to an approximately uniform irradiation level. For each fraction, the instantaneous assimilation rate is obtained from the corresponding photosynthetic light response curve. This partitioning of the surface area belonging to one surface type is achieved by distributing it over the canopy layers (Module I.3). Within each layer, a sunlit and a shaded fraction are distinguished. This procedure can be formally summarized as

$$A_{c} = \begin{array}{ccc} & \text{NST} & \text{NCL} \\ A_{c} & = & \Sigma & \Sigma & (A(s,1 \text{ / shaded}) + A(s,1/\text{sunlit})) \cdot 1(c,s) \\ s=1 & 1=1 \end{array}$$
 (9)

A : instanteneous assimilation rate of competitor c

s: subscript denoting the surface type

1: subscript denoting the canopy layer

NST: number of surface types

NCL: number of canopy layers

A(s,1/shaded): instantaneous assimilation rate performed by the shaded fraction of

surface type s which is positioned in canopy layer 1

- A(s,1/sunlit): instantaneous assimilation rate performed by the sunlit fraction of surface type s which is positioned in canopy layer 1
- 1(c,s): switch function, having the value 1 if surface type s belongs to competitor c and 0 otherwise.

We now present in some detail how the rates A (s,1/...) are calculated. The basic task consists of coupling a submodel for vertical light distribution within the canopy to a submodel for the distribution of absorption over the different components within a canopy layer.

Several major steps are repeated for each canopy layer:

- 1) calculation of the diffuse and direct flux absorbed by the whole canopy layer,
- 2) calculation of absorption intensities for the sunlit and shaded parts of the canopy layer,
- 3) calculation of absorption intensities for the sunlit and shaded parts of each of the different surface types present in the canopy layer,
- 4) calculation of assimilation rate of the sunlit and shaded parts of the different surface types present in the canopy layer,

The thus obtained partial assimilation rates (A(s,1/...)) are then summed according to (9).

ad 1:

Light entering the canopy is composed of 2 fluxes: a diffuse flux and a direct flux.

Within the canopy the diffuse flux originates from 2 sources: light that has entered the canopy as diffuse light and light that has entered the canopy as direct light but that has been scattered within the canopy. To manage bookkeeping,

- 3 fluxes are discerned within the canopy:
- a) diffuse light that had entered the canopy as diffuse light ("DIF")
- b) light (diffuse and direct) that had entered the canopy as direct light ("DRF")
- c) direct light ("DIR")

Note that flux DIR is part of flux DRF. These 3 fluxes are extincted exponentially within the canopy. For each surface type s, the extinction coefficients differ for the 3 fluxes: Kdif(s), Kdrf(s), Kdir(s) for fluxes DIF, DRF, DIR, respectively.

The ratios between these 3 coefficients are approximately the same for all surface types and only dependent on sun height (Goudriaan, 1982):

$$K \text{ dir}(s) = CDIR \text{ (sun height) } * K \text{ dif}(s)$$

$$K drf(s) = CDRF (sun height) * K dif(s)$$
 (10ii)

This linearity facilitates compact algorithms for calculating the absorption within a canopy layer and the distribution of this absorption over the constituent surfaces.

Several auxiliary variables are defined. Let ${\rm DIF}_{\rm O}$, ${\rm DRF}_{\rm O}$ and ${\rm DIR}_{\rm O}$ denote the net downward fluxes of DIF, DRF and DIR at the top of the canopy. It holds

$$DIF_{o} = IRR*(1.-FDIR)*(1.-REFLC_{dif})$$
 (11i)

$$DRF_{o} = IRR*FDIR(1.-REFLC_{dir})$$
 (11ii)

$$DIR_{O} = IRR*FDIR$$
 (11iii)

where IRR is the intensity and FDIR is the direct fraction of the light flux incident at top of the canopy and ${
m REFLC}_{
m dif}$ and ${
m REFLC}_{
m dir}$ are the reflection coefficients of the canopy for diffuse and direct light.

Let further $FR_{dif}(x)$, $FR_{drf}(x)$ and $FR_{dir}(x)$ denote the fraction of DIF_o, DRF_o and DIR_o that penetrates to the height level x (cm) above the ground. By considering these auxiliary variables we only have to calculate the FR_{dif} -values for the layer boundaries in order to obtain readily the rates with which the layers absorb all 3 fluxes. This follows from equations (3) and (10i):

$$FR_{dir}(x) = exp \left(-\sum_{s=1}^{NST} AI_s(x,x'(CT) \cdot K_{dir}(s))\right)$$

= exp (- CDIR .
$$\Sigma$$
 AI_s(x,x'(CT)) . $K_{dif}(s)$)

$$= (FR_{dif}(x))^{CDIR}$$
 (12i)

and, analogously,

$$FR_{drf}(x) = \dots = (FR_{dif}(x))^{CDRF}$$
(12ii)

Here x'(CT) denotes the height of the canopy top.

Defining as further auxiliary variable the "extinction capacity of a layer l for diffuse light"

$$ECDIF(1) = \sum_{s=1}^{NST} AI_{s,1} \cdot K_{dif}(s)$$
(13)

we describe the 3 parallel absorption processes using the single loop structure:

where NCL denotes the number of canopy layers, the superscipts u and d relate the function value to the upper and lower layer boundary, and AFR dir, drf, dir is the absorbed fraction of DIF, DRF, DIR, respectively.

(14)

The layer absorbs direct (LABS dir) and diffuse (LABS dif) light with the rates

$$LABS_{dir} = DIR_{o} \cdot AFR_{dir}$$
 (15i)

$$LABS_{dif} = DIF_{o} \cdot AFR_{dif} + DRF_{o} \cdot AFR_{drf} - LABS_{dir}$$
 (15ii)

ad 2:

1000 CONTINUE

From AFR dir, the absorbed fraction of direct light, the sunlit fraction of the canopy layer (SLLA) can be derived (Goudriaan, 1982) approximately as

SLLA = AFR_{dir} / (KDIR . TCLAI) . KDIF /
$$\sqrt{1-SCV}$$
 / 0.8 (16)

with TCLAI denoting the summed area index of all surfaces present in the layer, KDIR, KDIF the area-weighted average of their extinction coefficients for diffuse, direct light and SCV the scattering coefficient.

The light absorption performed by the shaded part (LABS $_{\mbox{sh}})$ of the canopy layer is

$$LABS_{sh} = LABS_{dif} * (1 - SLLA)$$
 (17i)

and the rate of light absorption performed by the sunlit part (LABS) is

$$LABS_{su} = LABS_{dif} * SLLA + LABS_{dir}$$
 (17ii)

ad 3:

From the light absorption by the shaded and by the sunlit part of the whole layer, the absorption rates of the sunlit and shaded parts of every surface type separately are calculated. The basic assumption is that the sunlit fraction of the total canopy layer is equal to the sunlit fraction of every single surface type. We thus obtain immediately (compare concept 3.1 d) the absorption rate per surface area of the shaded part of the surface type s positioned in layer 1:

SABS (s,1/shaded) =

$$= \frac{1}{\text{ECDIF}(1) \cdot (1-\text{SLLA}_1)} \cdot K_{\text{dif}}(s)$$
 (18)

where ECDIF is again the extinction capacity of the canopy layer defined by (13).

From the linear relationship between $K_{\rm dif}$, $K_{\rm dir}$ and $K_{\rm drf}$ (10i, 10ii) it follows that the absorption rate per surface area of the sunlit part of surface type s positioned in canopy layer 1 can be formulated analogously

SABS (s,1/sunlit) = LABS_{su}(1)
$$\frac{1}{\text{ECDIF}(1) \cdot \text{SLLA}_1} \cdot \text{K}_{\text{dif}}$$
 (s) (19)

The compactness of the distribution algorithm is emphasized: two layer specific auxiliary variables (1./(ECDIF*SLLA) and (1./(ECDIF*(1.-SLLA)) only have to be multiplied with a surface type specific constant $K_{\mbox{dif}}(s)$).

ad 4:

Using the photosynthetic light response functions, from the absorption rates per surface area the corresponding assimilation rates per surface area are derived. For obtaining the assimilation rates per ground area (A(s,1/...) in (9)), these rates per surface area are multiplied by the respective surface area index. For the sunlit and shaded part of the surface this is the layer specific surface area index (A1,s,1) multiplied by SLLA and (1.-SLLA) respectively.

Module II.4: Integration of the instantaneous assimilation rate over the day

Following Goudriaan (1986), daily assimilation (DA) is calculated by a 3-point Gaussian integration of the instantaneous assimilation rate (A):

$$DA = \sum_{i=1}^{3} A(t_i) * W_i$$
(20)

where $t_{1,2,3}$ and $W_{1,2,3}$ are being appropriate time points and weighting factors.

3.3.3 Dry matter increment

Module III.1: Maintenance respiration

The rate of maintenance respiration is obtained by calculating its value for a standard temperature $(15^{\circ}C)$ and multiplying this with the factor

$$Q10 ** (0.1 * T - 1.5)$$

where T denotes the actual air temperature (°C) and Q10 the increase of the respiration rate caused by a temperature increase of $10\,^{\circ}\text{C}$.

The rate of maintenance respiration at the standard temperature is the sum of the rates of the different organs: leaves, stems, roots and ears. These rates are calculated as the dry matter weight of living organ tissue multiplied by an organ specific relative rate of respiration (kg CH_2O/kg DM/d). For leaves, this relative rate is described as a function of developmental state. The relative rates of the other organs are invariant parameters.

Module III.2: Allocation of net production and resulting rates of biosynthesis; dying process of organ tissues

Daily net production is distributed over the organs, leaves, stems, roots and ears according to allocation factors. These factors are formulated as functions of the developmental state. The transformation of allocated net production (kg ${\rm CH_2O}$) into new dry matter (kg biomass) is performed with organ specific efficiences.

Parallel to biosynthesis, a dying process changes the weight of living organ tissues. The daily transformation of living into dead biomass is calculated by multiplying the live organ weight with an organ specific relative dying rate (kg/kg/d). These relative rates are formulated as functions of the number of days since emergence.

4. PERFORMANCE OF THE MODEL

The model has been applied to simulate field experiments with 12 spring wheat cultivars (Rennau & Spitters, in prep.). Monocultures and mixtures were grown at a range of plant densities. For experimental details and further results see Kramer (1984) and Spitters & Kramer (1986).

The model representation of inter-cultivar variation was restricted by the availability of data. It concerned the following 4 attributes: initial weight and leaf area (22 days after emergence), dry matter allocation to leaves as fraction of the allocation to the shoot, plant height and "dying" rates of leaves and grains.

A more detailed discussion of the model performance will be given in Rennau & Spitters (in prep.). Here we only present the performance of the model to simulate the biomass relations between the cultivars when growing in mixture. For this, a measure Δ LN is defined for the productivity of a cultivar relative to the average productivity level:

$$\Delta LN_{i} = LN(W_{i}) - LN(W) \approx LN (W_{i}/W)$$
(21)

where W_i is the aboveground biomass of genotype i, W and LN(W) denote the average of W_i and $LN(W_i)$ over all genotypes, and LN points to the natural logarithm.

Mixtures have been grown at total plant densities of 25, 44, 100 and 400 plants/m**2. For these experiments, the measured and simulated LN-values, averaged over the 4 densities, are shown in Fig. 2. Given the incomplete knowledge about the genetic variation of physiological and morphological attributes, we judge the model performance to be satisfactory.

5. GENERAL DISCUSSION

The model presented in this paper describes the growth of competing populations. As pointed out in the introduction, competition can be viewed as a special case of the general situation that the canopy description has to account for more than one type of light absorbing and photosynthesizing surface.

The model is an attempt to realize a modular structure directed towards representing a family of systems - heterogeneous canopies - rather than a specific system - competing genotypes. We do not claim that the modelling of another system of this family does not demand structural changes, but the modular structure confines the adjustments to few, exchangeable subunits of the program (subroutines). This principle will be illustrated by briefly sketching the "use" of the model for a quite different system with a heterogeneous canopy.

Consider a system consisting of a wheat crop and a pathogen covering a fraction of its leaves with variable density. It is assumed that the initial light use efficiency and the AMAX-value are reduced by the pathogen and the relationships between these reductions and the pathogen density are known quantitatively.

Evidently the canopy can be viewed as consisting of n surface types - leaves with different classes of pathogen density. These surface types differ with respect to their photosynthetic parameters. An appropriate approach for describing the vertical distribution of these surface types is first to distribute the total leaf area and to subdistribute this subsequently over the leaf classes.

For the first step the model offers a general implementation which is independent from the specific choice of a vertical area density function. A rather flexible 3-parametric function is used, but this can easily be replaced by an alternative without sacrificing the general distribution algorithm (subroutine VERDI). To implement the second step, a new subroutine has to be written which is called after the distribution of the total leaf area. This two step procedure runs analogously to the subdistribution of total surface area into its green and yellow fraction which is performed in the present model version.

Considering the local character of the adjustments this example may serve to illustrate the economy achieved by a modular approach in the longer run.

Acknowledgements

H. Rennau wishes to express his cordial thanks to Herman van Keulen for advice concerning the model representation of the species wheat, and to Jan Goudriaan for assisting in optical problems. The suggestions of both were indispensable. The same author has performed this work during a scholarship received from the Dutch "International Agricultural Center" and gratefully acknowledges this support.

REFERENCES

- Goudriaan, J., 1982. Potential production processes. In: F.W.T. Penning de Vries & H.H. van Laar (Eds.): Simulation of plant growth and crop production.

 Simulation Monograph, Pudoc, Wageningen, 98-113.
- Goudriaan, J., 1986. A simple and fast numerical method for the computation of daily totals of crop photosynthesis. Agric. For. Meteorol. 38: 251-255.
- Keulen, H. van, F.W.T. Penning de Vries & E.M. Drees, 1982. A summary model for crop growth. In: F.W.T. Penning de Vries & H.H. van Laar (Eds.): Simulation of plant growth and crop production. Simulation Monograph, Pudoc, Wageningen, 87-97.
- Kramer, Th., 1984. Fundamental considerations on the density-dependence of the selection response to plant selection in wheat. Proc. 6th Int. Wheat Genetics Symp., Kyoto, Japan: 719-724.
- Rennau, H.J. & C.J.T. Spitters. Analysis of morpho-physiological attributes responsible for differences in competitive ability between spring wheat genotypes (in prep.).
- Spitters, C.J.T., 1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. II. Calculation of canopy photosynthesis. Agric. For. Meteorol. 38: 231-242.
- Spitters, C.J.T. & R. Aerts, 1983. Simulation of competition for light and water in crop-weed associations. Aspects appl. Biol. 4: 467-483.
- Spitters, C.J.T. & Th. Kramer, 1986. Differences between spring wheat cultivars in early growth. Euphytica 35(1): 273-292.
- Spitters, C.J.T., H.A.J.M. Toussaint & J. Goudriaan, 1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. I. Components of incoming radiation. Agric. For. Meteorol 38: 217-229.
- Wit, C.T. de, et al., 1978. Simulation of assimilation, respiration and transpiration of crops. Simulation Monograph, Pudoc, Wageningen, 140 pp.

Fig. 1: Shape of the unnormalized leaf area density function AIDun := $-a h^2 + a + c$ for different values of the parameter z; h' denotes the height above the ground divided by the plant height; the function values for h' = 0 and h' = 1 are c+a and c, respectively

Fig. 2. Performance of the model to fit the relative biomass production of 12 spring wheat cultivars grown in mixture. The aboveground biomass (W_i) of cultivar i was expressed relative to the population mean (\overline{W}) and represented by the natural logarithm ln (W_i/\overline{W}) . Each point represents the value of one cultivar, averaged over the 4 plant densities (25, 44, 100 and 400 plants/m²) at which the mixtures were grown.

Component layout

F	:	function
G <u>A</u>	:	array; i-th component \rightarrow genotype with <u>a</u> ctual reference i
GL	•	array; i-th component \Rightarrow genotype with <u>l</u> ibrary reference i
C	•	array, i -th component \rightarrow canopy layer i , counted from the top
CG	:	array; component $(i-1) + j \rightarrow$
		canopy layer i, counted from the top,
		and genotype with the actual reference j
Gn	:	array; first n components → genotype with library
		reference 1,
		next n components \rightarrow genotype with library reference 2, etc.
S	:	scalar (no array)

```
TITLE
               COMPETITION BETWEEN WHEAT GENOTYPES
      DIMENSION EARATA(27)
      DIMENSION EAI(27)
      DIMENSION FCHN(27)
      DIMENSION HEI(27)
      DIMENSION OGBM(27)
STORAGE SAI(27), YFST(27), KLSTEM(27), KLEAR(27)
STORAGE AGE(27), LAI(27), GASSP(27), STORE(144)
STORAGE V(27), EARSUR(27), LAID(144), SAID(144), EAID(144)
STORAGE ULCL(25), KL(27), PKL(27), EFF(27), EEFF(27), SEFF(27)
STORAGE YFLVS(27), LAIL(25), ECDIF(25)
STORAGE COR(27), DISPA1(200), DISPA2(200), DISPA3(200)
STORAGE CULTP(27), DVS(27), EAMAX(27), AMAX(27), PAMAX(27), SAMAX(27)
STORAGE OGBMPP(27), YFEAR(27)
STORAGE IWLVS(27), IWST(27), IWRT(27), IARLF(27), IDVSV(27)
STORAGE EMERG(27), EXIST(27), APPEAR(27), PLOP(27)
STORAGE LNDVBM(27), XEAI(20)
FIXED DNSP, V, NSP, NCL, I, L, K, A, G
FIXED STPSWI, EAPSWI, C, COMIND, AUXINT
****************
                     INITIALIZATION
                                                              ***
****************
INITIAL
NOSORT
                 BASIC SPECIFICATIONS
    NUMBER OF GENOTYPES DESCRIBED IN THE PARAMETER SET
PARAM DNSP = 12
    NUMBER OF COMPETING GENOTYPES SIMULATED IN THE PRESENT CASE
PARAM NSP = 12
*** LATITUDE OF LOCATION ***
PARAM LAT = 52.
      SWITCH PARAMETERS FOR CHOOSING FROM ALTERNATIVE ALGORITHMS
       THE LEAF AREA INDEX CAN BE INTRODUCED AS A FORCING FUNCTION BY
       ASSIGNING TO THE SWITCH PARAMETER "LAISWI" THE VALUE 1
       INSTEAD OF O
PARAM LAISWI = 0.
       SWITCH PARAMETER FOR DECIDING WHETHER THE ABBSORPTION
       OF STEMS IS ACCOUNTED FOR WHEN MODELLING THE EXTINCTION
       OF LIGHT WITHIN THE CANOPY
PARAM STASWI = 1.
       SWITCH PARAMETER FOR DECIDING WHETHER THE PHOTOSYNTHESIS
       OF STEMS IS ACCOUNTED FOR WHEN CALCULATING THE DAILY
       ASSIMILATIION (NOTE THAT IN THIS CASE ALSO THE ABSORPTION OF STEMS
       MUST BE ACCOUNTED FOR, THAT IS "STASWI = 1")
PARAM STPSWI = 1
       SWITCH PARAMETER FOR DECIDING WHETHER THE ABBSORPTION
       OF EARS IS ACCOUNTED FOR WHEN CALCULATING THE EXTINCTION
       OF LIGHT WITHIN THE CANOPY
PARAM EAASWI = 1.
       SWITCH PARAMETER FOR DECIDING WHETHER THE PHOTOSYNTHESIS
       OF EARS IS ACCOUNTED FOR WHEN CULCULATING THE DAILY
       ASSIMILATION (NOTE THAT IN THIS CASE ALSO THE ABSORPTION OF EARS
       MUST BE CONSIDERED, THAT IS EAASWI = 1).
PARAM EAPSWI = 1
```

```
*** SIMULATION
                                      PROJECT
                                                               SPECIFIC INPUT
***
           INITIAL STATE
                                 OF THE POPULATIONS
TITLE
                  SIMULATION PROJECT: REAMIX 15 X 15
                 SIMULATION PROJECT: REAMIX 15 X 15
LABEL
        WEIGHTS OF LEAVES, STEMS, ROOTS;
        (KG/HA / (FREQUENCY OF THE GENOTYPE) / "DENSITY FACTOR")
         (EXPLANATION OF "DENSITY FACTOR" : SEE BELOW)
TABLE IWLVS (1-12) = 1.273, 1.460, 1.666, 1.079,
                                                                       1.323, 1.623,...
TABLE IWEVS (1-12) = 1.273, 1.460, 1.666, 1.079, 1.323, 1.623,...

1.226, 1.196, 1.365, 1.296, 1.359, 1.219

TABLE IWST (1-12) = 0.569, 0.596, 0.703, 0.493, 0.594, 0.783,...

0.597, 0.487, 0.570, 0.499, 0.619, 0.483

TABLE IWRT (1-12) = 1.228, 1.371, 1.579, 1.048, 1.278, 1.604,...

1.215, 1.122, 1.290, 1.196, 1.319, 1.135
        LEAF AREA
        (M**2/HA / (FREQUENCY OF THE GENOTYPE) / "DENSITY FACTOR")
TABLE IARLF (1-12) = 25.533, 28.759, 33.867, 28.567, 27.978, 34.030,...
26.267, 24.452, 27.619, 28.989, 26.174, 26.037
        "DENSITY FACTOR" WITH WHICH THE PARAMETER VALUES FOR INITIAL
        WEIGHTS AND THE INITIAL LEAF AREA ARE MULTIPLIED AT THE
        INITIALIZATION OF THE POPULATION
        (INTRODUCTION OF THIS PARAMETER SPARES THE NECESSITY OF
        REWRITING THE ARRAYS WITH INITIAL WEIGHTS AND LEAF AREAS
        WHEN DIFFERENT PLANT DENSITIES ARE ASSUMED)
PARAM DFAC = 108.
        DEVELOPMENTAL STATE
TABLE IDVSV (1-12) = 0.21345, 0.22085, 0.22485, 0.21010, ... 0.21717, 0.20662, 0.21345, 0.20339, ... 0.20339, 0.20026, 0.20026, 0.20662
        TIME COURSE OF LN (LEAF AREA(M**2/HA))
        (FOR THE INTRODUCTION OF THE LEAF AREA AS FORCING FUNCTION)
FUNCTION LNLAT,1. = 0.,6.60719, 22.,8.06840, 29.,9.0655, ... 36.,9.67608, 41.,9.75777, 49.,10.1414

FUNCTION LNLAT,12.= 0.,6.60719, 22.,8.06840, 29.,9.0655, ... 36.,9.67608, 41.,9.75777, 49.,10.1414
FUNCTION YFRLVT, 1. = 0., 0., 49., 0.
FUNCTION YFRLVT, 12. = 0., 0., 49., 0.
        PLANTS/M2
PARAM PSM = 400.
         TIME SPECIFICATIONS
     DAY OF EMERGENCE
TABLE EMERG (1-12) = 12 * 107.
     FIRST DAY OF SIMULATED GROWTH (NOT NECESSARILY THE DAY OF
     EMERGENCE)
TABLE APPEAR (1-12) = 12 * 129.
     FIRST DAY OF SIMULATION (HAS TO BE AT LEAST
     1 DAY BEFORE GROWTH SIMULATION STARTS)
PARAM START = 106.
```

* LAST DAY OF SIMULATION PARAM STOP = 231. FINISH TIME = STOP

de

```
**********************
***
       PARAMETRIC CHARACTERIZATION OF THE VERTICAL DISTRIBUTION OF
                                                                     ***
***
                                                                      ***
                   LEAVES. STEMS
                                   AND EARS
**********************
   3 PARAMETERS USE FOR CHARACTERIZING THE VERTICAL DISTRIBUTION
   OF THE LEAF AREA
    (THE UNNORMALIZED LEAF AREA DENSITY FUNCTION (M**2/M**3)
   IS ASSUMED TO HAVE THE FORM:
    Y = A - A * H**Z + C
   WITH A.C AND Z PARAMETERS AND H:= HEIGHT ABOVE GROUND/PLANT HEIGHT)
PARAM LA = 1., LC = 0., LZ = 50.
     DISPAL, DUM = VPRE1 (DNSP, LA, LC, LZ)
   3 PARAMETERS USE FOR CHARACTERIZING THE VERTIACL DISTRIBUTION
   OF THE STEM AREA
   (THE UNNORMALIZED STEM AREA DENSITY FUNCTION (M**2/M**3)
   IS ASSUMED TO HAVE THE FORM:
    Y = A - A * H**Z + C
   WITH A,C AND Z PARAMETERS AND H:= HEIGHT ABOVE GROUND/PLANT HEIGHT)
PARAM SA = 1.. SC = 0.. SZ = 50.
     DISPA2, DUM = VPRE1 (DNSP, SA, SC, SZ)
    1 PARAMETER USED FOR CHARACTERIZING THE VERTICAL DISTRIBUTION OF EARS
     (IT IS ASSUMED THAT THE EARS OF A GIVEN GENOTYPE ARE DISTRIBUTED
    IN A HOMONEGEOUS LAYER THAT EXTENDS FROM THE PLANT TOP
    TO A DISTANCE BELOW (CM) GIVEN BY THE PARAMETER "VEEL")
PARAM VEEL = 20.
     DISPA3, DUM = VPRE2 (DNSP, VEEL)
***
            THE WHO-IS-WHO OF COMPETITING GENOTYPES
   THE GENOTYPES SIMULATED IN THE PRESENT CASE ARE
   NUMBERED FROM 1 TO NSP; THE ARRAY V LINKS THIS ACTUAL
   REFERENCES ("A") TO THE NUMBERS USED IN THE PARAMETER
   LIBRARY (LIBRARY REFERENCE - "L")
   EXAMPLE:
        "TABLE V (1-12) = 2, 5, 8, 9 * 11"
   PRODUCES - DEPENDENT ON THE PARAMETER "NSP" -
   THE FOLLOWING MIXTURE COMPOSITIONS:
        "NSP=1" =" MONOCULTURE OF VARIETY 2
"NSP=2" =" BINARY MIXTURE WITH THE VARIETIES 2 AND 5
        "NSP=3" =" MIXTURE WITH THE VARIETIES 2, 5, 8
   AND SO ON
TABLE V(1-12)
              = 12 * 1
   GENOTYPE FREQUENCIES
   (SUM OVER THE NSP GENOTYPES PRESENTLY SIMULATED MUST BE 1 !)
TABLE COR (1-12) = 12 * 8.3333333333E-2
                   SOME TECHNICAL PREPARATIONS
   FOR USE OF THE RERUN-FACILITIES SOME VARIABLES
   HAVE TO BE SET ZERO
        DO 737 A = 1,NSP
        GASSP(A) = 0.
        FCHN(A) = 0.
                = 0.
        LAI(A)
        YFLVS(A) = 0.
        SAI(A) = 0.
        YFST(A) = 0.
```

```
DVS(A) = 0.
       DVRV(A) = 0.
       DVRR(A) = 0.
       EARATA(A) = 0.
       OGBM(A) = 0.
       OGBMPP(A) = 0.
       LNDVBM(A) = 0.
       GRLVS(A) = 0.
       DRLVS(A) = 0.
       GRST (A) = 0.
DRST (A) = 0.
       GRRT (A) = 0.
        GRGR(A) = 0.
737
       CONTINUE
     AUXINT = MAXCL * NSP
        DO 738 A = 1, AUXINT
        LAID(A) = 0.
        SAID(A) = 0.
        EAID(A) = 0.
738
        CONTINUE
********************
                    SYSTEM DYNAMICS
                                                            ***
*************************
DYNAMIC
NOSORT
***
         CHECKING THE NECESSITY TO MODEL GROWTH PROCESSES
***
                  ON THE PRESENT DAY
     DAY - TIME
    ARE PLANTS PRESENT OR EXPECTED TO APPEAR ON THE FOLLOWING DAY?
    (TO KNOW THIS MAY SAVE THE COMPUTER LOTS OF CALCULATIONS)
       DO 719 A = 1,NSP
       L = V(A)
       PLOP(A) = INSW(APPEAR(L) - 0.9 - TIME, 0.,1.) * ...
                INSW(TIME - APPEAR(L) + 1.1, 0.,1.)
       EXIST(A) = INSW (DAY-APPEAR(L) + 1.E-8, 0., 1.)
719
       CONTINUE
     XEXIST = 0.
     XPLOP
           = 0.
       DO 865 A = 1,NSP
       XEXIST = XEXIST + EXIST(A)
               = XPLOP + PLOP (A)
       XPI.OP
865
       CONTINUE
     GROWTH = INSW(XEXIST-.1, 0., 1.)
     ARRIVE = INSW(XPLOP -.1, 0., 1.)
     IF ((GROWTH + ARRIVE).LE.O.) GOTO 7020
*******************
                    WEATHER DATA
****************
   DAILY GLOBAL RADIATION (J / M**2 / D)
     DTR = AFGEN (DTRT, DAY) * 1.E4
   AVERAGE AIR TEMPERATURE (DEGREES C)
      TMPA = (AFGEN (MXTT, DAY) + AFGEN (MNTT, DAY) ) * 0.5
   AVERAGE AIR TEMPERATURE DURING DAYLIGHT PERIOD
      EAVT = AFGEN (MXTT, DAY) - 0.25 * (AFGEN (MXTT, DAY) - ...
            AFGEN (MNTT, DAY))
```

```
*********************
                       DEVELOPMENT
*************************
   PRE- AND POST-ANTHESIS DEVELOPMENTAL RATES
   (EQUATIONS ACCORDING TO VAN KEULEN(85));
   TIME SINCE EMERGENCE
        DO 8100 A = 1, NSP
        L = V(A)
               = CULTP(L) * AMAX1 (0., 0.00094 * TMPA -0.00046)...
                  * INSW (DVSV(A) -1., 1., 0.)
        DVRV(A) = XD1 * EXIST(A) + PLOP(A) * IDVSV(L)
        XD2 = AMAX1(0., 0.000913 * TMPA + 0.003572)

DVRR(A) = XD2 * INSW (DVSV(A)-1.,0.,1.) * EXIST(A)
        AGE(A) = AMAX1(0.,DAY - EMERG(L))
8100
        CONTINUE
     DVSV = INTGRL (0, DVRV, 12)
     DVSR = INTGRL (0., DVRR, 12)
        DO 9000 A = 1, NSP
        DVS (A) = AMIN1 (1., 0.5 * (DVSV(A) + DVSR(A)))
        CONTINUE
9000
     IF (GROWTH.LE.O.5) GOTO 20000
**********************
        VERTICAL DISTRIBUTION OF LIGHT ABSORBING SURFACES
***************************
+++
                            ***
                            ***
***
     AREA INDICES
     **************
     LEAF AREA ***
       DECISION WHETHER LEAF AREA DEVELOPMENT IS MODELLED
       DYNAMICALLY OR INTRODUCED AS A FORCING FUNCTION
     IF (LAISWI.GT.0.5) GOTO 1011
     LEAF AREA DEVELOPMENT IS MODELLED DYNAMICALLY AND NOT INTRODUCED
     AS A FORCING FUNCTION
        DO 1002 A = 1.NSP
        IF (EXIST(A).LT.0.5)
                               GOTO 1002
        LR = V(A)
        SLA = TWOVAR(SLATB, DVS(A), LR) * 1.E-4
        LAI(A) = (WLVS(A) + WDLVS(A)) * SLA
        IF (LAI(A).LT.1.E-6)
           TYPE 4999,A
4999
           FORMAT (' SPECIES ', 15, ' WITH LAI = 0 ')
           GOTO 1002
        YFLVS(A) = WDLVS(A) / (WDLVS(A) + WLVS(A))
1002
        CONTINUE
     GOTO 1012
1011 CONTINUE
     DEVELOPMENT OF LEAF AREA IS INTRODUCED AS A FORCING FUNCTION
        DO 1005 A = 1,NSP
        IF (EXIST(A).LT.0.5) GOTO 1005
        L = V(A)
        LR = V(A)
        XLNLA = TWOVAR (LNLAT, AGE(A), LR)
                 = EXP(XLNLA) * 1.E-4
        LAI(A)
        YFLVS(A) = TWOVAR (YFRLVT, AGE(A), LR)
1005
        CONTINUE
1012
        CONTINUE
```

```
**
     STEM AREA ***
        DO 950 A = 1.NSP
        IF (EXIST(A).LT.0.5)
                                 GOTO 950
         SAI(A) = (WST(A) + WDST(A)) * SSTA * 1.E-4
         IF (SAI(A).LT.1.E-6)
                              THEN
           TYPE 5001,A
           FORMAT (' SPECIES ',15,' WITH SAI = 0 ')
5001
           GOTO 950
        ENDIF
        YFST(A) = WDST(A) / (WDST(A) + WST(A))
950
        CONTINUE
***
                      ***
     EAR
            AREA
   EAR AREA INDEX (DETERMINED BY THE ABOVEGROUND BIOMASS AT ANTHESIS)
       DO 148 A = 1, NSP
         L = V(A)
         LR= V(A)
         IF (EXIST(A).LT.0.5)
                                    GOTO 148
         IF (EARATA(A).GT.1.E-6)
                                   GOTO 149
                                    GOTO 148
         IF (DVS(A).LT.0.5)
         EARATA(A) = EARSUR(L) * OGBM(A) * 1.E-5
149
         CONTINUE
         EAI(A) = EARATA(A) * AFGEN(EARGRT, DVS(A))
         YFEAR(A) = 1. - TWOVAR(GFET, AGE(A), LR)
148
         CONTINUE
***
***
                                                               ***
       BOUNDARY HEIGHTS SEPARATING
***
                                                               ***
                  THE CANOPY
                                       LAYERS
***
                                                               ***
      NUMBER OF DISTINGUISHED CANOPY LAYERS
PARAM CLPERL = 12., MINCL = 12., MAXCL = 12.
      XLAIT = 0.
        DO 8000 A = 1, NSP
        XLAIT = XLAIT + LAI(A)
8000
         CONTINUE
      XNCL = LIMIT (MINCL, MAXCL, XLAIT * CLPERL)
      NCL
               = XNCL
      BOUNDARIES OF CANOPY LAYERS
   HEIGHT DEVELOPMENT IS INTRODUCED AS A FORCING FUNCTION ("HEITB")
      MAXHEI = 0.
        DO 7000 A = 1, NSP
        LR = V(A)
        HEI (A) = TWOVAR (HEITB, AGE(A), LR)
         IF (HEI(A).GT.MAXHEI) MAXHEI = HEI (A)
7000
        CONTINUE
      IF (MAXHEI.LT.1.E-3)
         TYPE 4997, MAXHEI
4997
         FORMAT (' MAXHEI = ',F10.4)
         MAXHEI = 1.E-3
      ENDIF
    UPPER LIMITS ("ULCL") OF THE NCL CANOPY LAYERS (CM ABOVE THE GROUND);
    THE CHOSEN LAYERS HAVE IDENTICAL THICKNESS
```

CALL STRATA (MAXHEI, NCL, ULCL)

```
***
          DISTRBITION OF THE
***
                                                      ***
***
          AREA INDICES OVER
                                                      ***
          THE CANOPY LAYERS
***
          建筑过来引进的设计区域设计区域设计区域设计区域设计区域设计区域
    THE POTENTIAL EXTINCTION COEFFICIENT OF LEAVES IS CORRECTED
    TO ACCOUNT FOR THE STRONG CLUSTERING OF LEAVES THAT YOUNG
    PLANT EXHIBIT
        DO 530 A = 1.NSP
        L = V(A)
        KL(L) = PKL(L) * AFGEN(KLREDT, DVS(A))
530
        CONTINUE
        DO 981 K = 1,NCL
        LAIL(K) = 0.
        ECDIF(K) = 0.
981
        CONTINUE
***
     DISTRIBUTION OF LEAF AREA
     DISTRIBUTION OF THE TOTAL LEAF AREA
     CALL VERDI2 (NSP, DNSP, V, EXIST, ...
                  NCL, HEI, ULCL, ...
                  LAI, KL, DISPA1,...
                  LAID, LAIL, ECDIF, ...
                  CHECK1, CHECK2, CHECK3)
     DERIVED DISTRIBUTION OF THE GREEN LEAF AREA
     CALL YELDI1 (NSP, NCL, LAI, LAID, YFLVS)
     DISTRIBUTION OF STEM AREA
     DISTRIBUTION OF THE TOTAL STEM AREA
     CALL VERDI2 (NSP, DNSP, V, EXIST, ...
                  NCL, HEI, ULCL, ...
                  SAI, KLSTEM, DISPA2, ...
                  SAID, LAIL, ECDIF, ...
                  CHECK4, CHECK5, CHECK6)
     DERIVED DISTRIBUTION OF THE GREEN STEM AREA
     CALL YELDI1 (NSP, NCL, SAI, SAID, YFST)
     IF (EAASWI.LT.O.5) GOTO 9876
     DISTRIBUTION OF EAR AREA
     DISTRIBUTION OF THE TOTAL EAR AREA
     CALL VERDI2 (NSP, DNSP, V, EXIST, ...
                  NCL, HEI, ULCL, ...
                  EAI, KLEAR, DISPA3, ...
                  EAID, LAIL, ECDIF, ...
                  CHECK7, CHECK8, CHECK9)
     DERIVED DISTRIBUTION OF THE GREEN EAR AREA
     CALL YELDI2 (NSP, NCL, EAID, YFEAR)
        DO 4869 A = 1,NSP
        XEAI(A) = EAI(A)
4869
        CONTINUE
        DO 4870 A = 1,NSP*NCL
        STORE(A) = EAID(A)
4870
        CONTINUE
         DAILY GROSS PRODUCTION
************
9876
        CONTINUE
```

ACTUAL VALUES OF AMAX

```
DO 1710 A=1,NSP
       L = V(A)
       SRAMAX
              = AFGEN (SRAMAT, DVS(A))
       AMAX(L) = PAMAX(L) * TRAMAX * SRAMAX
1710
       CONTINUE
***
     DAILY GROSS PRODUCTION
     GASSP, DUM, DAYL, IRR, INST1, FRDFD, FRDR = ...
     DAYASS (DAY, DTR, LAT, NCL, NSP, DNSP, V, STPSWI, EAPSWI, ...
           LAID, SAID, EAID, LAIL, ECDIF, KL, KLSTEM, KLEAR, ...
           AMAX, SAMAX, EAMAX, EFF, SEFF, EEFF)
********************
        DYNAMICS OF DRY MATTER
******************
      MAINTENANCE RESPIRATION
                                                ***
***
***
      ***
   MAINTENANCE RESPIRATION IS SUBTRACTED FROM THE GROSS PRODUCTION
     TEMR = Q10 ** (0.1 * TMPA - 1.5)
       DO 5000 A = 1, NSP
       XMRO = WLVS(A) * BMRCLV * AFGEN (LVRRT, DVS(A)) + ...
              WST(A) * BMRCST
WRT(A) * BMRCRT
              WGR(A) * BMRCGR
              = AMIN1 (TEMR * XMRO, GASSP(A) )
       RMNT
       FCHN (A) = GASSP (A) - RMNT
5000
       CONTINUE
20000
       CONTINUE
       IF ((GROWTH+ARRIVE).LT.0.5) GOTO 7020
***
                                                          ***
***
     ALLOCATION OF NET PRODUCTION
                                                          ***
***
         THE DIFFERENT ORGANS AND
                                                          ***
***
                                                          ***
                TRANSFORMATION
                                          INTO
***
                      DRY
                            MATTER;
                                                          ***
***
        TRANSFORMATION OF LIVE
                                                          ***
                                              INTO
***
                                                          ***
                 DEAD DRY MATTER
***
     ***
***
     RATES DRY MATTER ACCUMULATION IN LEAVES, STEMS, GRAINS, ROOTS
       DO 70 A = 1, NSP
       L = V(A)
       LR = V(A)
       IF (DAY.LE.APPEAR(L)-2)
                              GOTO 70
***
     ROOTS AND SHOOT
       FSH
                 TWOVAR (FSHTB, DVS(A), LR)
       XGRRT
                 FCHN(A) * (1.- FSH) * EFCRT + ...
                 PLOP(A) * IWRT(L) * COR(A) * DFAC
                 WRT(A) * AFGEN(DRRTB, AGE(A))
       DRRT
       GRRT(A) = XGRRT - DRRT
                INTGRL (0., GRRT, 12)
       GSHOOT = FCHN(A) * FSH
***
     LEAVES
            ***
                = TWOVAR (FLVST, DVS(A), LR)
= GSHOOT * FLVS * EFCLVS + ...
       FLVS
       XGRLVS
                 PLOP(A) * IWLVS(L) * COR(A) * DFAC
       DRLVS(A) = WLVS(A) * TWOVAR(DRLVTB, AGE(A), LR)
       GRLVS (A) = XGRLVS - DRLVS (A)
```

TRAMAX = AFGEN (TRAMAT, EAVT)

```
= INTGRL (0., GRLVS, 12)
     WI.VS
     WDI.VS
                   INTGRL (0., DRLVS, 12)
**
             ***
     STEMS
                  = TWOVAR (FSTT, DVS(A), LR)
        FST
                  = GSHOOT * FST * EFCST + ...
        XGRST
                   PLOP(A) * IWST(L) * COR(A) * DFAC
                 = WST(A) * AFGEN (DRSTTB, AGE(A))
= XGRST - DRST(A)
        DRST(A)
        GRST(A)
                 = INTGRL (0., GRST,
     WST
     WDST
                   INTGRL (0., DRST, 12)
***
     GRAINS
        RCR
                  = 1. - FLVS - FST
        GRGR (A) = GSHOOT * FGR * EFCGR
70
        CONTINUE
     WGR
                = INTGRL (0, GRGR, 12)
*******
                GROWTH RECORDING
*******************
     IF (GROWTH.LE.O.5) GOTO 7020
   ABOVEGROUND BIOMASS ( KG/HA), G/PLANT )
        DO 7010 A = 1,NSP
        OGBM(A) = WLVS(A) + WDLVS(A) + WST(A) + WDST(A) + WGR(A)
        IF (COR(A).LT.1.E-6) THEN
           TYPE 5002,A
5002
           FORMAT (' SPECIES ', 15, ' WITH COR = 0 ')
           GOTO 7010
        ENDIF
        OGBMPP(A) = OGBM(A) / (10. * PSM * COR(A))
                CONTINUE
   AVERAGE, VARIANCE AND COEFFICIENT OF VARIATION OF ABOVEGROUND
   BIOMASS PER PLANT
     AV,VAR,CV = EVAL1 (NSP,OGBMPP,COR)
   DELTA - LN - VALUES
     LNDVBM, DUM = LNDCAL (NSP, OGBMPP, COR)
7020
       CONTINUE
******************
           PARAMETER LIBRARY
**********************
      PHYSIOLOGICAL PARAMETERS USED FOR DESCRIBING THE GROWTH
                  OF 12 SPRING WHEAT VARIETIES
*** DEVELOPMENTAL RATE ***
   VARIETY SPECIFIC FACTOR USED FOR DESCRIBING THE PREANTHESIS
   DEVELOPMENTAL RATE (OBTAINED BY FITTING THE EQUATION GIVEN BY
   VAN KEULEN(85) TO OBSERVED DURATIONS UNTIL ANTHESIS)
TABLE CULTP (1-12) = 1.4066, 1.4554, 1.4817, 1.3845, ...
1.4311, 1.3616, 1.4066, 1.3403, ...
1.3403, 1.3197, 1.3197, 1.3616
*** OPTICAL PROPERTIES ***
   EXTINCTION COEFFICIENT OF EARS AND STEMS
   (ESTIMATION ACCORDING TO DE GROOT (85) (PERS. COMMUNICATION)
TABLE KLEAR (1-12) = 12 * 0.4
TABLE KLSTEM (1-12) = 12 * 0.4
```

- POTENTIAL EXTINCTION COEFFICIENT OF LEAVES
- (NOT FULLY REALIZED DURING THE FIRST DAYS OF GROWTH) TABLE PKL (1-12) = 12 * 0.60
- REDUCTION FACTOR FOR THE EXTINCTION COEFFICIENT OF LEAVES,
- ACCOUNTING FOR THE LEAF CLUSTERING EXHIBITED BY YOUNG PLANTS FUNCTION KLREDT = 0.,0.6, 0.1,1., 1.1,1.
- PHOTOSYNTHETIC CHARACTERISTICS ***
- POTENTIAL AMAX (KG CO2 / HA / H) AND LIGHT USE EFFICIENCY
- (KG CO2 / HA / H / (J / M2 / S) OF LEAVES

TABLE PAMAX (1-12) = 12 * 40.

TABLE EFF (1-12) = 12 * .45

- REDUCTION FACTOR OF AMAX ACCOUNTING FOR THE EFFECT
- OF SENESCENCE; VALUES AS FUNCTION OF THE DEVELOPMENTAL STATE FUNCTION SRAMAT = 0.,1.,0.5,1.,1.,0.5
- REDUCTION FACTOR OF AMAX ACCOUNTING
- FOR THE EFFECT OF TEMPERATUR; VALUES AS FUNCITION OF
- THE AVERAGE TEMPERATURE (C) DURING DAYLIGHT PERIOD FUNCTION TRAMAT = 0.,0., 10.,1., 25.,1., 35.,0.01
- AMAX (KG CO2 / HA / H) OF STEMS TABLE SAMAX (1-12) = 12 * 20.
- INITIAL LIGHT USE EFFICIENCY OF STEMS
- (KG CO2 / HA / H / (J/S/CM**2)

TABLE SEFF (1-12) = 12 * 0.45

- AMAX (KG CO2 / HA / H) OF EARS TABLE EAMAX (1-12) = 12 * 20.
- INITIAL LIGHT USE FFICIENCY OF EARS
- (KG CO2 / HA / H / (J/S/CM**2)

TABLE EEFF (1-12) = 12 * 0.22

- *** DEVELOPMENT OF THE EAR AREA ***
- EAR SURFACE AT ANTHESIS DIVIDED BY ABOVEGROUND BIOMASS AT
- ANTHESIS (CM**2 / G)
- (LARGE VALUES BELONG TO GENOTYPES WITH AWNS, SMALL TO
- GENOTYPES WITHOUT AWNS)

TABLE EARSUR (1-12) = 8.64, 8.64, 15.98, 15.98, 8.64, 8.64,... 8.64, 8.64, 15.98, 8.64, 8.64, 8.64

- GROWTH OF THE EAR AREA ((EARSURFACE/PLANT) / (EARSURFACE/PLANT AT
- ANTHESIS) AS FUNCTION OF THE DEVELOPMENT STATE

FUNCTION EARGRT = 0.,0.,0.4999,0.,0.5,1.,1.1,1.

- THICKNESS OF THE EAR LAYER BELONGING
- TO A SINGLE GENOTYPE (CM)

PARAM VEEL = 20.

- *** GREEN FRACTION OF THE EAR AREA ***
- VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE FUNCTION GFET, 1 = 0.1.

67.,1.000, 103.,0.200, 107.,0.125, ...
112.,0.050, 117.,0.025, 130.,0., 131.,0.
65.,1.000, 103.,0.250, 107.,0.138, ...
112.,0.050, 117.,0.000, 130.,0., 131.,0.
64.,1.000, 103.,0.327, 107.,0.319, ... FUNCTION GFET, 2.= 0.,1.,

FUNCTION GFET, 3 = 0.1.

112.,0.029, 117.,0.014, 130.,0., 131.,0. 68.,1.000, 103.,0.422, 107.,0.352, ... 112.,0.205, 117.,0.000, 130.,0., 131.,0. FUNCTION GFET, 4.= 0.,1.,

```
FUNCTION GFET, 5 .= 0.,1.,
                                     66.,1.000,
                                                    103.,0.263,
                                                                     107.,0.163, ...
                                                                     130.,0., 131.,0.
                                    112.,0.050,
                                                    117.,0.050,
FUNCTION GFET, 6.= 0.,1.,
                                     69.,1.000,
                                                    103.,0.200,
                                                                     107.,0.150,...
                                    112.,0.050,
                                                    117.,0.000,
                                                                     130.,0., 131.,0.
FUNCTION GFET, 7 .= 0.,1.,
                                     67.,1.000,
                                                    103.,0.200,
                                                                     107.,0.138, ...
                                    112.,0.050,
                                                    117.,0.000,
                                                                     130.,0., 131.,0.
FUNCTION GFET, 8 .= 0.,1.,
                                     70.,1.000,
                                                    103.,0.225,
                                                                     107.,0.150, ...
                                                    117.,0.000,
                                    112.,0.050,
                                                                     130.,0., 131.,0.
FUNCTION GFET, 9 = 0.1.
                                     70.,1.000,
                                                    103.,0.509,
                                                                     107.,0.375, ...
                                    112.,0.118,
                                                    117.,0.007,
                                                                     130.,0., 131.,0.
FUNCTION GFET, 10 .= 0.,1.,
                                     71.,1.000,
                                                    103.,0.288,
                                                                     107.,0.188, ...
                                    112.,0.113,
                                                    117.,0.000,
                                                                     130.,0., 131.,0.
FUNCTION GFET, 11 .= 0.,1.,
                                     71.,1.000,
                                                     103.,0.375,
                                                                     107.,0.213, ...
                                    112.,0.075,
                                                    117.,0.000,
                                                                     130.,0., 131.,0.
FUNCTION GFET, 12 .= 0.,1.,
                                     69.,1.000,
                                                    103.,0.238,
                                                                     107.,0.163, ...
                                    112.,0.100,
                                                    117.,0.000, 130.,0., 131.,0.
*** RELATIVE DYING RATES OF LEAVES ***
     VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE
FUNCTION DRLVTB, 1.= 0.,0., 66.,0., 67.,0.024, 102.,0.024, ...
           103.,0.038, 106.,0.038, 107.,0.197, 111.,0.197, ...
112.,0.392, 116.,0.392, 117.,0.452, 131.,0.452
FUNCTION DRLVTB, 2.= 0.,0., 64.,0., 65.,0.033, 102.,0.033, ...
103.,0.092, 106.,0.092, 107.,0.234, 111.,0.234, ...
112.,0.818, 116.,0.818, 117.,0.818, 131.,0.818
FUNCTION DRLVTB, 3.= 0.,0., 63.,0., 64.,0.045, 102.,0.045, ...
           103.,0.045, 106.,0.045, 107.,0.156, 111.,0.156, ...
112.,0.197, 116.,0.197, 117.,0.443, 131.,0.443
FUNCTION DRLVTB, 4.= 0.,0., 67.,0., 68.,0.038, 102.,0.038, ...
           103.,0.075, 106.,0.075, 107.,0.139, 111.,0.139, ...
112.,0.838, 116.,0.838, 117.,0.838, 131.,0.838
FUNCTION DRLVTB, 5.= 0.,0., 65.,0., 66.,0.030, 102.,0.030, ...
           103.,0.077, 106.,0.077, 107.,0.178, 111.,0.178, ...
112.,0.356, 116.,0.356, 117.,0.412, 131.,0.412
FUNCTION DRLVTB, 6.= 0.,0., 68.,0., 69.,0.033, 102.,0.033, ...
            103.,0.111, 106.,0.111, 107.,0.189, 111.,0.189, ...
112.,0.830, 116.,0.830, 117.,0.830, 131.,0.830
FUNCTION DRLVTB, 7.= 0.,0., 66.,0., 67.,0.038, 102.,0.038, ...
           103.,0.168, 106.,0.168, 107.,0.197, 111.,0.197, ...
112.,0.810, 116.,0.810, 117.,0.810, 131.,0.810
FUNCTION DRLVTB, 8.= 0.,0., 69.,0., 70.,0.033, 102.,0.033, ...
103.,0.118, 106.,0.118, 107.,0.189, 111.,0.189, ...
112.,0.830, 116.,0.830, 117.,0.830, 131.,0.830
FUNCTION DRLVTB, 9.= 0.,0., 69.,0., 70.,0.022, 102.,0.022, ...
           103.,0.134, 106.,0.134, 107.,0.164, 111.,0.164, ...
112.,0.381, 116.,0.381, 117.,0.412, 131.,0.412
FUNCTION DRLVTB, 10.= 0.,0., 70.,0., 71.,0.024, 102.,0.024, ...
103.,0.087, 106.,0.087, 107.,0.165, 111.,0.165, ...
112.,0.850, 116.,0.850, 117.,0.850, 131.,0.850
FUNCTION DRLVTB, 11.= 0.,0., 70.,0., 71.,0.027, 102.,0.027, ...
           103.,0.105, 106.,0.105, 107.,0.140, 111.,0.140, ...
112.,0.140, 116.,0.140, 117.,0.488, 131.,0.488
FUNCTION DRLVTB, 12.= 0.,0., 68.,0., 69.,0.030, 102.,0.030, ...
103.,0.148, 106.,0.148, 107.,0.234, 111.,0.234, ...
112.,0.818, 116.,0.818, 117.,0.818, 131.,0.818
*** RELATIVE DYING RATE OF ROOTS ***
     VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE
FUNCTION DRRTB = 0.,0.,
                                      67.,0., 68.,0.0061, 102.,0.0061,...
106.,0.0206, 107.,0.037, 111.,0.037, ...
                    103.,0.0206,
                    112.,0.073,
                                      131.,0.073
*** RELATIVE DYING RATE OF STEMS ***
     VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE
FUNCTION DRSTTB= 0.,0.,
                                        67.,0.,
                                                          68.,0.0076, 102.,0.0076,...
                                      106.,0.0258, 107.,0.047, 111.,0.047, ...
                    103.,0.0258,
                    112.,0.091,
                                    131.,0.091
```

```
*** DEVELOPMENT OF PLANT HEIGHT ***
    VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE
                             40.,34.,
                1. = 0., 5.,
FUNCTION HEITB,
                                         55.,64.,
                                                   72.,89.,
                                                             130.,73.
FUNCTION HEITB.
                2. = 0., 5.,
                                         55.,56.,
                                                   72.,81.,
                                                             130.,63.
FUNCTION HEITB,
                3. = 0., 5.,
                               40.,37.,
                                         55.,66.,
                                                   72.,91.,
                                                             130.,78.
                4. = 0., 5.,
FUNCTION HEITB,
                                                             130.,66.
                               40.,32.,
                                         55.,54.,
                                                   72.,81.,
FUNCTION HEITB, 5. = 0., 5.,
                               40.,32.,
                                         55.,58.,
                                                   72.,81.,
                                                             130.,70.
FUNCTION HEITB, 6. = 0., 5.,
                               40.,31.,
                                         55.,58.,
                                                   72.,97.,
                                                             130.,82.
FUNCTION HEITB,
                7. = 0., 5.,
                               40.,34.,
                                         55.,58.,
                                                   72.,82.,
                                                             130.,70.
FUNCTION HEITB, 8. = 0., 5.,
                               40.,26.,
                                         55.,55.,
                                                   72.,92.,
                                                             130.,74.
FUNCTION HEITB, 9. = 0., 5.,
                               40.,34.,
                                         55.,57.,
                                                             130.,74.
                                                   72.,88.,
FUNCTION HEITB, 10. = 0., 5.,
                               40.,30.,
                                         55.,55.,
                                                   72.,89.,
                                                             130.,69.
FUNCTION HEITB, 11. = 0., 5.,
                               40.,28.,
                                         55.,59.,
                                                   72.,94.,
                                                             130.,77.
FUNCTION HEITB, 12. = 0., 5.,
                               40.,27.,
                                        55.,58.,
                                                  72.,93.,
                                                             130.,79.
*** MAINTENANCE RESPIRATION ***
    "010-PARAMTER"
PARAM Q10 = 2.
*** RELATIVE RESPIRATION RATES OF LEAVES, STEMS, ROOTS, GRAINS ***
PARAM BMRCLV = 0.03, BMRCST = 0.015, BMRCRT = 0.01, BMRCGR = 0.01
    REDUCTION FACTOR ACCOUNTING FOR THE EFFECT OF SENESCENCE ON THE
    RESPIRATION RATE OF LEAVES; VALUES AS FUNCTION OF THE
    DEVELOPMENTAL STATE
FUNCTION LVRRT = 0.,1., 0.5,1., 0.5001,0.5, 1.1,0.5
*** GROWTH EFFICIENCY ***
PARAM EFCLVS = 0.68, EFCST = 0.66, EFCRT = 0.69, EFCGR = 0.70
*** DRY MATTER ALLOCATION ***
    FRACTION OF NET ASSIMILATION ALLOCATED TO THE LEAVES,
    DIVIDED BY THE FRACTION ALLOCATED TO THE SHOOT
    VALUES AS FUNCTION OF THE DEVELOPMENTAL STATE
                    0.,0.61, 0.10671,0.61,
FUNCTION FLVST, 1.=
                     0.14981,0.65, 0.14982,0.54,
     0.10672,0.65,
                                                   0.22581,0.54, ...
     0.22582,0.47,
                     0.26921, 0.47, 0.26922, 0.32, 0.31265, 0.32, ...
      0.40000,0.04,
                     0.50001,0.,
                                    1.,0.
FUNCTION FLVST, 2.=
                    0.,0.65, 0.11041,0.65, ...
     0.11042,0.66,
                    0.15501,0.66, 0.15502,0.56,
                                                   0.23361,0.56, ...
     0.23362,0.42,
                     0.27851,0.42,
                                   0.27852,0.32,
                                                   0.32350,0.32, ...
     0.40000,0.04,
                     0.50001,0.,
                                    1.,0.
FUNCTION FLVST, 3.=
                     0.,0.64, 0.11241,0.64,
      0.11242,0.58,
                     0.15781,0.58, 0.15782,0.54,
                                                   0.23781,0.54, ...
      0.23782,0.42,
                     0.28361,0.42,
                                   0.28362,0.32,
                                                  0.32394,0.32, ...
      0.40000,0.04,
                     0.50001,0.,
                                    1.,0.
FUNCTION FLVST, 4.=
                     0.,0.59, 0.10511,0.59,
      0.10512,0.65,
                     0.14741,0.65, 0.14742,0.56,
                                                   0.22221,0.56, ...
                     0.26501,0.55,
                                    0.26502,0.32, 0.30774,0.32, ...
      0.22222,0.55,
      0.40000,0.04,
                     0.50001,0.,
                                    1.,0.
FUNCTION FLVST, 5.= 0.,0.62, 0.10861,0.62,
                                   0.15242,0.53,
                                                  0.22971,0.53, ...
      0.10862,0.63,
                     0.15241,0.63,
      0.22972,0.42,
                     0.27391,0.42,
                                    0.27392, 0.32, 0.31810, 0.32, ...
      0.40000,0.04,
                                    1.,0.
                     0.50001,0.,
FUNCTION FLVST, 6 .=
                     0.,0.60, 0.10331,0.60,
      0.10332,0.65,
                     0.14501, 0.65, 0.14502, 0.54, 0.21851, 0.54, \dots
                    0.26061,0.44,
                                    0.26062,0.32, 0.30265,0.32, ...
      0.21852,0.44,
      0.40000,0.04,
                    0.50001,0.,
                                    1.,0.
```

```
FUNCTION FLVST, 7.= 0.,0.60, 0.10671,0.60, ...
                                                    0.22581,0.51, ...
      0.10672,0.62,
                      0.14981,0.62, 0.14982,0.51,
                      0.26921,0.57,
      0.22582,0.57,
                                     0.26922,0.32,
                                                    0.31265,0.32, ...
                      0.50001,0.,
      0.40000,0.04,
                                     1.,0.
                      0.,0.65, 0.10171,0.65,
FUNCTION FLVST, 8 .=
                                                     0.21511,0.59, ...
      0.10172,0.68,
                      0.14271,0.68, 0.14272,0.59,
      0.21512,0.53,
                     0.25651,0.53, 0.25652,0.32,
                                                     0.29792,0.32, ...
      0.40000,0.04,
                      0.50001,0.,
                                    1.,0.
                     0.,0.64, 0.10171,0.64,
FUNCTION FLVST, 9 .=
      0.10172,0.64,
                      0.14271,0.64, 0.14272,0.55,
                                                     0.21511,0.55, ...
                     0.25651,0.36, 0.25652,0.32,
      0.21512,0.36,
                                                     0.29792,0.32, ...
                                   1.,0.
      0.40000,0.04,
                      0.50001,0.,
FUNCTION FLVST, 10 .=
                     0.,0.65, 0.10011,0.65,
                                                     0.21181,0.61, ...
                     0.14051,0.70, 0.14052,0.61,
      0.10012,0.70,
                     0.25261,0.46,
      0.21182,0.46,
                                     0.25262,0.32,
                                                     0.29334,0.32, ...
      0.40000,0.04,
                      0.50001,0.,
                                    1.,0.
FUNCTION FLVST.11.=
                     0.,0.62, 0.10011,0.62,
                                                     0.21181,0.61, ...
                     0.14051,0.71, 0.14052,0.61,
      0.10012,0.71,
      0.21182,0.48,
                     0.25261,0.48, 0.25262,0.32,
                                                     0.29334,0.32, ...
      0.40000,0.04,
                      0.50001,0.,
                                    1.,0.
FUNCTION FLVST, 12 .=
                      0.,0.64, 0.10331,0.64,
      0.10332,0.67,
                      0.14501,0.67, 0.14502,0.57,
                                                     0.21851,0.57, ...
      0.21852,0.43,
                      0.26061,0.43,
                                     0.26062,0.32,
                                                     0.30265,0.32, ...
      0.40000,0.04,
                      0.50001,0.,
                                    1.,0.
    FRACTION OF NET ASSIMILATION ALLOCATED TO THE
                                                      STEMS.
    DIVIDED BY THE FRACTION ALLOCATED TO THE SHOOT
    VALUES AS FUNCTION OF THE DEVELOPMENTAL STATE
FUNCTION FSTT, 1.= 0.,0.39, 0.10671,0.39, ...
                                                     0.22581,0.46, ...
      0.10672,0.35,
                     0.14981,0.35, 0.14982,0.46,
      0.22582,0.53,
                     0.26921,0.53, 0.26922,0.68,
                                                     0.31265,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
                     0.,0.35, 0.11041,0.35, ...
0.15501,0.34, 0.15502,0.44,
FUNCTION FSTT, 2.=
      0.11042,0.34,
                                                     0.23361,0.44, ...
      0.23362,0.58,
                     0.27851,0.58,
                                     0.27852,0.68,
                                                     0.32350,0.68, ...
      0.40000,0.96,
                      0.50001,0.,
                                     1.,0.
                     0.,0.36, 0.11241,0.36,
FUNCTION FSTT, 3.=
                                                     0.23781,0.46, ...
      0.11242,0.42,
                     0.15781,0.42, 0.15782,0.46,
      0.23782,0.58,
                     0.28361,0.58,
                                     0.28362,0.68,
                                                    0.32394,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
                     0.,0.41, 0.10511,0.41,
FUNCTION FSTT, 4.=
                                                     0.22221,0.44, ...
                     0.14741,0.35, 0.14742,0.44,
      0.10512,0.35,
                     0.26501,0.45,
      0.22222,0.45,
                                     0.26502,0.68,
                                                    0.30774,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
FUNCTION FSTT, 5.=
                     0.,0.38, 0.10861,0.38,
                     0.15241,0.37, 0.15242,0.47,
      0.10862,0.37,
                                                     0.22971,0.47, ...
      0.22972,0.58,
                      0.27391,0.58,
                                     0.27392,0.68,
                                                     0.31810,0.68, ...
      0.40000,0.96,
                      0.50001,0.,
                                     1.,0.
FUNCTION FSTT, 6.=
                      0.,0.40, 0.10331,0.40,
                                                     0.21851,0.46, ...
      0.10332,0.35,
                      0.14501,0.35, 0.14502,0.46,
                      0.26061,0.56,
      0.21852,0.56,
                                     0.26062,0.68,
                                                    0.30265,0.68, ...
                      0.50001,0.,
      0.40000,0.96,
                                     1.,0.
                      0.,0.40, 0.10671,0.40,
FUNCTION FSTT, 7.=
                      0.14981,0.38, 0.14982,0.49,
                                                     0.22581,0.49, ...
      0.10672,0.38,
      0.22582,0.43,
                      0.26921,0.43, 0.26922,0.68,
                                                    0.31265,0.68, ...
      0.40000,0.96,
                      0.50001,0.,
                                     1.,0.
FUNCTION FSTT, 8.=
                      0.,0.35, 0.10171,0.35,
                      0.14271,0.32, 0.14272,0.41,
                                                     0.21511,0.41, ...
      0.10172,0.32,
      0.21512,0.47,
                      0.25651,0.47, 0.25652,0.68,
                                                    0.29792,0.68, ...
                                   1.,0.
      0.40000,0.96,
                     0.50001,0.,
                     0.,0.36, 0.10171,0.36, ...
0.14271,0.36, 0.14272,0.45,
0.25651,0.64, 0.25652,0.68,
FUNCTION FSTT, 9.=
0.10172,0.36,
                                                    0.21511,0.45, ...
      0.21512,0.64,
                                                    0.29792,0.68, ...
                     0.50001,0.,
      0.40000,0.96,
                                   1.,0.
FUNCTION FSTT, 10 .=
                     0.,0.35, 0.10011,0.35,
      0.10012,0.30,
                     0.14051,0.30, 0.14052,0.39, 0.21181,0.39, ...
      0.21182,0.54,
                     0.25261,0.54, 0.25262,0.68, 0.29334,0.68, ...
                     0.50001,0.,
      0.40000,0.96,
                                   1.,0.
```

```
FUNCTION FSTT, 11.=
                      0.,0.38, 0.10011,0.38,
                      0.14051,0.29, 0.14052,0.39, 0.25261,0.52, 0.25262,0.68,
                                                     0:21181,0.39, ...
      0.10012,0.29,
      0.21182,0.52,
                                                    0.29334.0.68. ...
      0.40000,0.96,
                      0.50001,0.,
                                    1.,0.
FUNCTION FSTT ,12.=
                      0.,0.36, 0.10331,0.36,
                      0.14501,0.33, 0.14502,0.43,
                                                     0.21851,0.43, ...
      0.10332,0.33,
      0.21852,0.57,
                      0.26061,0.57, 0.26062,0.68,
                                                     0.30265,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                    1.,0.
    FRACTION OF NET ASSIMILATION ALLOCATED TO THE SHOOT.
    DEPENDENT ON THE DEVELOPMENTAL STATE
FUNCTION FSHTB, 1.= 0.,0.5, 0.25,0.8, 0.5,1.,
FUNCTION FSHTB, 12 = 0.0.5, 0.25, 0.8, 0.5, 1.1
     SPECIFIC LEAF AREA ***
    VALUES AS FUNCTION OF THE DEVELOPMENTAL STATE
     (M**2 / KG)
FUNCTION SLATB, 1.= 0.,21.570,
FUNCTION SLATB, 2.= 0.,21.848,
                                          21.848
FUNCTION SLATB, 3.= 0.,20.786,
                                 1.,
                                          20.786
FUNCTION SLATB, 4.= 0.,23.348,
FUNCTION SLATB, 5.= 0.,22.227,
                                 1.,
                                          23.348
                                 1.,
                                          22.227
FUNCTION SLATB, 6 .= 0.,21.459,
                                          21.459
                                 1.,
FUNCTION SLATB, 7 .= 0.,22.457,
                                 1.,
                                          22.457
FUNCTION SLATB, 8.= 0.,22.041,
                                 1.,
                                         22.041
                                 1.,
FUNCTION SLATB, 9.= 0.,20.396,
                                          20.396
                                 1.,
FUNCTION SLATB, 10. = 0.,21.478,
                                          21.478
FUNCTION SLATB, 11. = 0., 21.124,
                                 1.,
                                          21.124
FUNCTION SLATB, 12 .= 0., 22.758,
                                 1.,
                                          22.758
     SPECIFIC STEM AREA ***
     (M**2/KG)
PARAM SSTA = 2.5
METHOD RECT
*********************
                   WEATHER
                                          DATA
*************************
    DAILY GLOBAL RADIATION (J/CM**2/D)
FUNCTION DTRT=
                96.,1873., 97.,1593., 98., 834., 99., 902.,100.,
                       0.,102., 0.,103.,2165.,104.,2124.,105.,2083.,...
               106.,2070.,107.,1928.,108.,1894.,109., 411.,110.,1166.,...
               111.,1631.,112.,2159.,113., 959.,114.,2097.,115.,1341.,...
               116., 314.,117., 877.,118.,1847.,119., 367.,120., 629.,...
               121.,2105.,122.,2132.,123.,2345.,124.,1979.,125.,2227.,...
              126.,2589.,127.,1696.,128.,1363.,129., 957.,130.,2486.,...
131.,2774.,132.,2701.,133.,2627.,134.,2691.,135.,2767.,...
               136.,2656.,137.,2089.,138.,2233.,139.,1998.,140.,2601.,...
               141.,2004.,142.,2567.,143.,2778.,144.,1943.,145., 833.,...
               146.,1580.,147.,2040.,148.,1671.,149.,1623.,150.,1326.,...
               151.,2310.,152.,1336.,153.,1319.,154.,2324.,155., 628.,...
              156.,1737.,157.,2798.,158.,2594.,159., 970.,160.,1885.,...
161.,2365.,162., 949.,163.,2053.,164.,2584.,165.,2214.,...
              166.,1707.,167.,1485.,168., 870.,169.,1383.,170.,1147.,...
               171., 667.,172.,1521.,173.,1369.,174.,1398.,175.,1543.,...
               176.,1355.,177.,1892.,178.,1720.,179.,1735.,180., 799.,...
               181.,1573.,182.,2212.,183.,1065.,184.,1542.,185.,1652.,...
               186., 878., 187., 1329., 188., 2219., 189., 1007., 190., 635.,...
               191., 779.,192., 428.,193., 618.,194.,1194.,195.,1348.,...
               196.,1017.,197.,1735.,198.,1031.,199.,1263.,200., 753.,...
               201., 389.,202., 655.,203., 540.,204.,2615.,205.,2592.,...
               206.,2141.,207.,2414.,208.,2153.,209.,1667.,210.,1700.,...
```

```
211.,2282.,212., 556.,213.,2290.,214.,2044.,215.,2073.,...
               216.,1507.,217.,1480.,218.,1393.,219.,1296.,220.,1455.,...
               221.,1799.,222.,1814.,223.,1563.,224.,1264.,225.,1238.,...
               226.,1164.,227., 724.,228.,1989.,229., 928.,230.,1705.,...
               231.,1045.,232.,1372.,233.,1115.,234.,1364.,235.,1229.,...
               236.,1073.,237., 579.,238.,1895.,239.,2087.,240.,1819.,...
               241., 704., 242., 928., 243., 820., 244., 779., 245., 1572.
    DAILY TEMPERATUR MAXIMA ( C)
FUNCTION MXTT=
                96.,10.9, 97.,11.8, 98., 8.0, 99., 7.4,100., 7.9
                                                                           ...WAG1980
               101., 9.3,102.,13.2,103.,15.8,104.,19.3,105.,21.6
                                                                           ...WAG1980
               106.,22.3,107.,22.3,108.,18.6,109., 9.5,110.,10.1
                                                                           ...WAG1980
                                                                           ...WAG1980
               111., 9.1,112.,10.8,113., 8.5,114.,11.1,115.,12.1
                                                                           ...WAG1980
               116., 7.8,117.,12.5,118.,14.1,119., 9.1,120.,10.1
               121.,12.1,122.,19.5,123.,14.9,124.,13.9,125.,14.1
                                                                           ...WAG1980
               126.,13.1,127.,16.7,128.,13.1,129.,10.0,130.,14.9
                                                                           ...WAG1980
               131.,17.9,132.,21.0,133.,23.6,134.,21.1,135.,20.1
                                                                           ...WAG1980
               136.,19.3,137.,18.4,138.,20.5,139.,22.9,140.,24.6
                                                                           ...WAG1980
               141.,24.2,142.,22.6,143.,15.1,144.,14.1,145.,13.2
                                                                           ...WAG1980
               146.,15.7,147.,18.8,148.,20.7,149.,19.6,150.,17.8
                                                                           ...WAG1980
               151.,15.7,152.,17.2,153.,18.6,154.,19.5,155.,18.6
                                                                           ...WAG1980
               156.,23.5,157.,27.0,158.,27.2,159.,17.8,160.,19.5
                                                                           ...WAG1980
               161.,24.1,162.,20.0,163.,22.3,164.,23.5,165.,26.9
                                                                           ...WAG1980
               166.,28.4,167.,20.8,168.,19.8,169.,19.3,170.,18.2
                                                                           ...WAG1980
               171.,17.7,172.,16.3,173.,17.1,174.,15.9,175.,17.2
                                                                           ...WAG1980
               176.,15.8,177.,17.8,178.,17.7,179.,16.7,180.,13.6
                                                                           ...WAG1980
                                                                           ...WAG1980
               181.,16.4,182.,17.7,183.,18.3,184.,18.8,185.,18.4
                                                                           ...WAG1980
               186.,16.1,187.,17.9,188.,20.9,189.,18.0,190.,16.4
               191.,16.0,192.,16.5,193.,14.0,194.,16.2,195.,16.8
                                                                           ...WAG1980
               196.,18.0,197.,17.7,198.,15.0,199.,16.4,200.,17.3
                                                                           ...WAG1980
               201.,16.5,202.,17.6,203.,14.5,204.,20.0,205.,23.9
                                                                           ...WAG1980
                                                                           ...WAG1980
               206.,22.8,207.,26.9,208.,29.1,209.,24.8,210.,24.5
               211.,26.5,212.,20.4,213.,23.9,214.,25.7,215.,28.3
                                                                           ...WAG1980
               216.,28.8,217.,23.5,218.,21.1,219.,21.4,220.,23.0
                                                                           ...WAG1980
               221.,21.9,222.,20.0,223.,21.1,224.,23.9,225.,18.0
                                                                           ...WAG1980
                                                                           ...WAG1980
               226.,18.9,227.,21.3,228.,26.5,229.,22.7,230.,23.3
               231.,22.5,232.,21.0,233.,22.5,234.,19.4,235.,16.9
                                                                           ...WAG1980
               236.,15.1,237.,13.8,238.,18.6,239.,22.2,240.,24.0
                                                                           ...WAG1980
                                                                           ...WAG1980
               241.,18.8,242.,21.7,243.,18.4,244.,17.3,245.,19.1
               246.,20.4,247.,22.3,248.,17.6,249.,18.6,250.,20.7
    DAILY TEMPERATURE MINIMA ( C)
FUNCTION MNTT=
               96.,-3.5, 97.,-2.2, 98.,-1.4, 99., 1.5,100., 1.8
101., 1.9,102.,-2.2,103., 3.1,104., 7.0,105., 8.8
106., 3.1,107., 3.2,108., 4.9,109., 1.3,110., 1.8
                                                                           ...WAG1980
                                                                           ...WAG1980
                                                                           ...WAG1980
               111., 0.9,112., 0.5,113., 0.0,114.,-2.4,115., 4.5
                                                                           ...WAG1980
               116., 4.2,117., 0.6,118.,-0.8,119., 2.5,120., 2.8
                                                                           ...WAG1980
               121., 4.4,122., 7.9,123., 6.8,124., 3.7,125., 2.9
126., 3.7,127., 3.2,128., 4.7,129., 1.4,130., 0.9
131., 2.9,132., 1.9,133.,10.1,134.,10.4,135., 9.3
                                                                           ...WAG1980
                                                                           ...WAG1980
                                                                           ...WAG1980
               136., 5.6,137., 2.0,138., 2.9,139., 7.4,140., 4.7
                                                                           ...WAG1980
               141., 5.6,142., 8.0,143., 5.5,144., 0.8,145., 8.7
                                                                           ...WAG1980
               146., 6.4,147., 5.8,148., 6.7,149., 6.8,150., 5.3
                                                                           ...WAG1980
               151., 3.8,152., 4.0,153., 5.5,154., 4.2,155., 7.1
                                                                           ...WAG1980
               156.,13.0,157., 7.1,158., 9.2,159., 7.7,160., 5.4
                                                                           ...WAG1980
               161., 9.4,162.,14.2,163.,12.1,164.,10.8,165.,16.5
                                                                           ...WAG1980
               166.,15.4,167.,12.8,168.,11.5,169.,11.1,170.,10.3
                                                                           ...WAG1980
               171., 9.2,172., 9.5,173., 9.8,174., 9.3,175., 9.6
                                                                           ...WAG1980
               176.,10.0,177., 7.9,178., 4.0,179., 7.3,180., 8.6
                                                                           ...WAG1980
               181., 9.5,182.,11.2,183.,11.0,184.,12.3,185.,12.2
                                                                           ...WAG1980
               186., 8.3,187.,10.6,188.,11.2,189.,14.3,190.,12.6
                                                                           ...WAG1980
                                                                           ...WAG1980
               191.,11.8,192.,12.9,193.,11.8,194.,10.8,195.,10.5
               196.,11.2,197.,10.8,198., 7.3,199., 7.2,200.,12.7
                                                                           ...WAG1980
```

201.,14.0,202.,12.0,203., 7.7,204., 7.1,205.,12.2

206.,10.9,207.,11.2,208.,17.0,209.,14.1,210.,14.2

...WAG1980

...WAG1980

```
211.,17.0,212.,13.4,213.,12.5,214.,16.0,215.,12.6
                                                   ...WAG1980
          216.,15.6,217.,13.7,218.,17.5,219.,15.8,220.,14.2
                                                   ...WAG1980
          221.,11.2,222., 6.8,223.,10.6,224.,14.3,225.,15.1
                                                   ...WAG1980
          226.,12.8,227.,16.0,228.,15.1,229.,15.5,230.,16.4
                                                   ...WAG1980
          231.,14.4,232.,13.2,233.,13.8,234.,12.9,235.,11.1
                                                   ...WAG1980
          236., 9.4,237., 7.0,238., 3.0,239., 4.3,240., 6.4,
                                                   ...WAG1980
          241.,10.5,242.,14.6,243.,13.3,244., 9.2,245., 7.0 ,
                                                   ...WAG1980
          246., 6.6,247.,10.5,248.,11.5,249.,11.5,250.,11.7
 **********
*********** OUTPUT AND RUN CONTROL *****************
************************
NOSORT
TIMER FINTIM = 231., TIME = 126., DELT=1., PRDEL=1., OUTDEL=1.
PRINT OGBMPP(1-12)
END
STOP
*******************
          SUBROUTINES CALLED FROM DYNAMIC
***********************
    SUBROUTINE STRATA (MAXHEI, NCL, ULCL)
SUBROUTINE CALCULATING THE BOUNDARY HEIGHTS SEPERATING THE
                                                      C
          CANOPY LAYERS; THE LAYERS HAVE EQUAL THICKNESS
C
                                                      C
C
                INPUT PARAMETERS:
                                                      C
C
    MAXHEI:
            CANOPY HEIGHT
                                                   [CM]
                                                      C
C
          : NUMBER OF CANOPY LAYERS
                                                      C
    NCL.
C
                OUTPUT PARAMETERS:
          : UPPER LIMITS OF CANOPY LAYERS
                                                   [CM] C
IMPLICIT REAL(A-Z)
    INTEGER NCL,K
    DIMENSION ULCL (NCL+1)
    THK = MAXHEI / NCL
      DO 10 K = 1, NCL
      ULCL(K) = MAXHEI - (K-1) * THK
10
      CONTINUE
    ULCL(NCL+1) = 0.
    RETURN
    END
    SUBROUTINE VPRE1 (DNSP,A,C,Z,DISPA,DUM)
SUBROUTINE WRITING AN ARRAY CONTAINING PARAMETERS AND/OR AUXILIARY
C
     VARIABLES USED FOR THE VERTICAL DISTRIBUTON OF A SURFACE TYPE;
                                                      C
C
    THE ARRAY PRODUCED BY "VPRE1" REFLECTS THE SITUATION THAT FOR ALL
                                                      C
    DESCRIBED GENOTYPES THE VERTICAL AREA DENSITY FUNCTION OF THE
                                                      C
    SURFACE IS GIVEN BY
                                                      C
       Y = (A * X**Z + A + C) / NORMALIZATION CONSTANT
                                                      C
    AND THAT ITS 3 PARAMETERS (A,C,Z) ARE IDENTICAL FOR ALL GENOTYPES
                                                      C
C
                INPUT PARAMETERS:
                                                      C
C
    DNSP
            DESCRIBED NUMBER OF GENOTYPES
                                                      C
            PARAMETERS CHARACTERIZING THE VERTICAL AREA DENSITY
C
    A,C,Z
                                                      C
C
            FUNCTION
                                                      C
C
                OUTPUT PARAMETERS:
                                                      C
C
    DISPA
            ARRAY CONTAINING PARAMETERSAND/OR AUXILIARY VARIABLES
                                                      C
C
            USED FOR THE VERTICAL DISTRIBUTION OF A SURFACE TYPE
                                                      C
```

```
IMPLICIT REAL (A-Z)
     INTEGER DNSP, A, G, COUNT
     DIMENSION DISPA (72)
     DIMENSION X (6)
     X(1)
         = 0.
     X(2)
         = 1. + C/A
     X(3)
         = 1. / (Z+1.)
         = X(2) - X(3)
     X(4)
     X(5)
         = 2 + 1.
     X(6)
     COUNT = 0
       DO 15251 A = 1,DNSP
          DO 15252 G = 1,6
          COUNT = COUNT + 1
          DISPA(COUNT) = X(G)
15252
          CONTINUE
15251
       CONTINUE
     RETURN
     END
     SUBROUTINE VPRE2 (DNSP,D,DISPA,DUM)
SUBROUTINE WRITING AN ARRAY CONTAINING PARAMETERS AND/OR AUXILIARY
                                                             C
C
     VARIABLES USED FOR THE VERTICAL DISTRIBUTON OF A SURFACE TYPE;
                                                             C
C
    THE ARRAY PRODUCED BY "VPRE2" REFLECTS THE SITUATION THAT FOR ALL
                                                             C
C
    DESCRIBED GENOTYPES THE VERTICAL AREA DENSITY FUNCTION OF THE
                                                             C
C
    SURFACE IS GIVEN BY
                                                             C
C
               1 / D,
                       1-D '= X '= 1
                                                             С
C
        Y
                                                             C
C
               0
                                                             C
                         OTHERWIZE
C
     AND THAT ITS PARAMETER (D) IS IDENTICAL FOR ALL GENOTYPES
INPUT PARAMETERS:
C
                                                             C
С
     DNSP
              DESCRIBED NUMBER OF GENOTYPES
                                                             С
С
              PARAMETER CHARACTERIZING THE VERTICAL AREA DENSITY
     D
                                                             C
              FUNCTION
                                                             C
C
OUTPUT PARAMETERS:
С
                                                             C
C
              ARRAY CONTAINING PARAMETERSAND/OR AUXILIARY VARIABLES
                                                             C
     DISPA
              USED FOR THE VERTICAL DISTRIBUTION OF A SURFACE TYPE
IMPLICIT REAL (A-Z)
     INTEGER A,G,COUNT,DNSP
     DIMENSION X(6)
     DIMENSION DISPA (72)
     X(1) = 1.
     X(2) = D
       DO 128 G = 3,6
       X(G) = 0.
128
       CONTINUE
     COUNT = 0
       DO 698 A = 1,DNSP
          DO 699 G = 1,6
          COUNT = COUNT + 1
          DISPA(COUNT) = X(G)
699
          CONTINUE
698
       CONTINUE
     RETURN
     END
```

```
SUBROUTINE CLFRAC (DISPA, L, LOWLIM, UPLIM, HEIGHT, TAI, CLAI)
SUBROUTINE CALCULATING THE AREA INDEX OF THAT FRACTION OF A
                                                                 C
C
           SURFACE TYPE WHICH IS POSITIONED IN A CANOPY LAYER
                                                                 C
INPUT PARAMETERS:
C
                                                                 C
C
               ARRAY CONTAINING PARAMETERS AND/OR AUXILIARY VARIABLES
      DISPA:
                                                                 C
               USED FOR DESCRIBING THE VERTICAL DISTRIBUTION OF A
C
                                                                 C
C
               SURFACE TYPE
                                                                 C
C
              LIBRARY REFERENCE OF THE GENOTYPE
                                                                 C
C
      LOWLIM :
              LOWER BOUNDARY HEIGHT OF THE CONSIDERED CANOPY LAYER [CM]C
      UPLIM :
C
              UPPER BOUNDARY HEIGHT OF THE CONSIDERED CANOPY LAYER [CM]C
C
      HEIGHT :
              PLANT HEIGHT OF THE GENOTYPE
                                                                 C
              TOTAL AREA INDEX OF THE SURFACE TYPE
                                                                 C
C
      TAT
C
                   OUTPUT PARAMETERS:
                                                                 C
C
            : AREA INDEX OF THAT FRACTION OF THE SURFACE TYPE WHICH
                                                                 С
      CLAI
               IS POSITIONED IN THE CANOPY LAYER
                                                                 C
IMPLICIT REAL(A-Z)
     INTEGER L, XADRES, XFUNC
     DIMENSION DISPA (72)
C
     CHOOSE THE DISTRIBUTION FUNCTION
     XADRES = (L-1) * 6 + 1
     XFUNC = DISPA(XADRES)
     IF (XFUNC.EQ.1) GOTO 88877
     DISTRIBUTION FUNCTION:
     Y = A - A * X**Z + C
     LOW = AMAX1 (0.,LOWLIM / HEIGHT)
     UP = AMIN1 (1., UPLIM / HEIGHT)
IF (LOWLIM.GE.HEIGHT. OR.
        UP. LE.1.E-5
                       ) THEN
       CLAI = 0.
     ELSE
       XO = DISPA(XADRES+4)
       X1 = DISPA(XADRES+1) * (UP-LOW)
       X2 = DISPA(XADRES+2) * (UP ** XO - LOW ** XO)
       CLAI = (X1 - X2) / DISPA(XADRES+3) * TAI
     GOTO 90909
88877 CONTINUE
C
     DISTRIBUTION FUNCTION:
C
                1 / D,
C
                               X
                        1-D
                n
                           OTHERWIZE
C
     LIM1 = AMAX1 (0., HEIGHT - DISPA (XADRES+1))
     LIM2 = AMAX1 (0., HEIGHT - DISPA (XADRES+2))
     THICK = LIM2 - LIM1
     IF (TAI. LE. 1.E-6.
                        OR.
         THICK.LE. 1.E-6.
                        OR.
         UPLIM.LE. LIM1.
                        OR.
        LOWLIM.GE.LIM2)
                           THEN
    1
       CLAI = 0.
     ELSE
       XU = AMIN1 (UPLIM, LIM2)
       XL = AMAX1 (LOWLIM, LIM1)
        CLAI = (XU - XL) / THICK * TAI
     ENDIF
90909 CONTINUE
     RETURN
     END
     SUBROUTINE VERDI2 (NSP, DNSP, V, EXIST,
    1
                      NCL, HEI, ULCL,
                      AI, ECOF, DISPA,
    1
    1
                      AID, LAIL, ECDIF,
                      CHECK1, CHECK2, CHECK3)
```

1

```
SUBROUTINE DISTRIBUTING THE AREA INDEX OF A SURFACE TYPE OVER THE
                                                                   C
   CANOPY LAYERS: FOR EACH CANOPY LAYER, THE EXTINCTION CAPACITY AND
                                                                   C
      THE TOTAL AREA INDEX OF ALL CONTAINED SURFACES IS ENHANCED
                                                                   C
C
C
       CORRESPONDINGLY TO THE CONTRIBUTION OF THIS SURFACE TYPE
                                                                   C
C
                    INPUT PARAMETERS:
                                                                   C
C
     NSP
               NUMBER OF GENOTYPES
                                                                   C
С
               DESCRIBED NUMBER OF GENOTYPES
     DNSP
                                                                   C
C
               ARRAY LINKING THE ACTUAL REFERENCES OF THE GENOTYPES
                                                                   C
     v
               TO THEIR LIBRARY REFERENCES
C
                                                                   C
C
     NCL
               NUMBER OF CANOPY LAYERS
                                                                   C
               PLANT HEIGHTS OF THE GENOTYPES
C
     HET
                                                                   C
C
     III.CI.
               BOUNDARY HEIGHTS SEPRERATING THE CANOPY LAYERS
                                                                   C
C
     ΑI
               AREA INDICES OF THE VARIOUS GENOTYPES
                                                                   C
C
     ECOF
               EXTINCTION COEFFICIENTS OF THIS SURFACE TYPE BELONGING
                                                                   C
C
                                                                   C
               TO THE VARIOUS GENOTYPES
C
     DISPA
               ARRAY CONTAINING PARAMETERSAND/OR AUXILIARY VARIABLES
                                                                   C
C
               USED FOR THE VERTICAL DISTRIBUTION OF A SURFACE TYPE
                                                                   C
C
               CONTAINS FOR EACH OF THE NCL CANOPY LAYERS THE
                                                                   C
     LAIL
C
               SUM OF AREA INDICES BELONGING TO ABSORBING SURFACES
                                                                   C
               (LEAVES, STEMS, EARS...) POSITIONED IN IT
C
                                                           [HA/HA]
                                                                   C
С
     ECDIF
               AS LAIL, BUT THE CONTRIBUTING AREA INDICES ARE
                                                                   C
C
               MULTIPLIED BY THE CORRESPONDING EXTINCTION
                                                                   C
               COEFFICIENTS FOR DIFFUSE LIGHT
                                                           [HA/HA]
                                                                   C
C
                    OUTPUT PARAMETERS:
C
               DISTRIBUTION OF THE TOTAL AREA INDEX OF THE CONSIDERED
                                                                   C
     AID
C
               SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS
                                                                   C
C
     LAIL
               CONTAINS FOR EACH OF THE NCL CANOPY LAYERS THE
                                                                   C
               SUM OF AREA INDICES BELONGING TO ABSORBING SURFACES
C
                                                                   C
               (LEAVES, STEMS, EARS...) POSITIONED IN IT
C
                                                           [HA/HA]
                                                                   C
C
     ECDIF
               AS LAIL, BUT THE CONTRIBUTING AREA INDICES ARE
                                                                   C
               MULTIPLIED BY THE CORRESPONDING EXTINCTION
C
                                                                   C
               COEFFICIENTS FOR DIFFUSE LIGHT
                                                           [HA/HA]
                                                                   C
IMPLICIT REAL (A-Z)
     INTEGER V,K,A,C,NSP,DNSP,NCL,L
     DIMENSION V
                    (NSP)
     DIMENSION EXIST (NSP)
     DIMENSION HEI
                    (NSP)
     DIMENSION ULCL
                    (NCL+1)
     DIMENSION AI
                    (NSP)
     DIMENSION ECOF
                   (DNSP)
     DIMENSION DISPA (72)
     DIMENSION AID
                    (NSP*NCL)
     DIMENSION LAIL
                    (NCL)
     DIMENSION ECDIF (NCL)
     C = 0
     CHECK1 = 0.
        DO 565 K = 1,NCL
        LOWLIM = ULCL(K+1)
        UPLIM = ULCL(K)
           DO 566 A = 1,NSP
           C = C + 1
             = V(A)
           XAI = AI(A)
           XHEI= HEI(A)
           CALL CLFRAC (DISPA, L, LOWLIM, UPLIM, XHEI, XAI, CLAI)
           CHECK1 = CHECK1 + CLAI
           AID(C) = CLAI
           LAIL (K) = LAIL (K) + CLAI
           ECDIF (K) = ECDIF (K) + CLAI * ECOF(L)
566
           CONTINUE
565
        CONTINUE
     CHECK2 = 0.
        DO 1729 A = 1,NSP
        CHECK2 = CHECK2 + AI(A)
1729
        CONTINUE
```

```
C
    CHECKING THE CORRECT DISTRIBUTION
     IF (CHECK2.LT.1.E-5) THEN
       CHECK3 = CHECK1
    ELSE
       CHECK3 = ABS(CHECK1-CHECK2) / CHECK2
    ENDIF
    IF (CHECK3.GT.0.01)
                        TYPE 88661
88661 FORMAT (' INCORRECT DISTRIBUTION ALGORITHM ')
    RETURN
    END
    SUBROUTINE YELDII (NSP, NCL, AI, GAID, YFRAC)
SUBROUTINE DERIVING THE DISTRIBUTION OF THE GREEN FRACTION OF A
                                                          C
C
      SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS FROM THE
                                                          C
C
        CORRESPONDING DISTRIBUTION OF THE TOTAL SURFACE AREA;
                                                          C
C
   THE DERIVATION REFLECTS THE SITUATION THAT THE TOTAL GREEN FRACTION
                                                          С
            IS POSITIONED ABOVE THE TOTAL YELLOW FRACTION
                                                          C
C
                 INPUT PARAMETERS:
                                                          C
C
    NSP
             NUMBER OF GENOTYPES
                                                          C
C
             NUMBER OF CANOPY LAYERS
    NCL.
           :
                                                          C
C
    AT
             TOTAL AREA INDICES OF THE VARIOUS GENOTYPES
                                                          C
C
    YFRAC
             YELLOW FRACTIONS OF THE TOTAL AREA INDICES
                                                          C
C
             BELONGING TO THE VARIOUS GENOTYPES
                                                          С
C
                 OUTPUT PARAMETERS:
                                                          C
C
    GAID
             DISTRIBUTION OF THE GREEN AREA INDEX OF THE CONSIDERED
                                                          C
C
             SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS
                                                          C
IMPLICIT REAL (A-Z)
    INTEGER NSP, NCL, A, K
    DIMENSION AI
                 (NSP)
                 (NSP*NCL)
    DIMENSION GAID
    DIMENSION YFRAC (NSP)
       DO 1914 A = 1,NSP
       XCUMGR = 0.
       XGRAI = AI(A) * (1.-YFRAC(A))
         DO 1915 K = A, (NCL-1) * NSP + A, NSP
         GAID (K) = LIMIT (0.,GAID(K), XGRAI - XCUMGR)
         XCUMGR = XCUMGR + GAID(K)
1915
         CONTINUE
1914
       CONTINUE
    RETURN
    END
    SUBROUTINE YELDI2 (NSP, NCL, GAID, YFRAC)
SUBROUTINE DERIVING THE DISTRIBUTION OF THE GREEN FRACTION OF A
C
                                                          C
      SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS FROM THE
C
        CORRESPONDING DISTRIBUTION OF THE TOTAL SURFACE AREA;
                                                          С
   THE DERIVATION REFLECTS THE SITUATION THAT THE GREEN FRACTION
                                                          C
C
       IS DISTRIBUTED UNIFORMLY FROM GROUND TO PLANT TOP
                                                          C
            IS POSITIONED ABOVE THE TOTAL YELLOW FRACTION
C
                                                          C
C
                 INPUT PARAMETERS:
                                                          C
C
    NSP
             NUMBER OF GENOTYPES
                                                          C
C
    NCL
             NUMBER OF CANOPY LAYERS
                                                          C
             YELLOW FRACTIONS OF THE TOTAL AREA INDICES
C
    YFRAC
                                                          C
             BELONGING TO THE VARIOUS GENOTYPES
                                                          C
C
                 OUTPUT PARAMETERS:
                                                          C
C
    GATD
             DISTRIBUTION OF THE GREEN AREA INDEX OF THE CONSIDERED
                                                          C
C
             SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS
```

```
IMPLICIT REAL (A-Z)
    INTEGER NSP, NCL, A, K
    DIMENSION GAID (NSP * NCL)
    DIMENSION YFRAC (NSP)
      DO 8001 A = 1.NSP
         DO 8002 K = A, (NCL-1) * NSP + A, NSP
         GAID (K) = GAID (K) * (1. - YFRAC(A))
8002
         CONTINUE
8001
      CONTINUE
    RETURN
    END
    SUBROUTINE ASTRO(DAY, LAT, DTR, DAYL, SININT,
                 SINLD, COSLD)
C
    SUBROUTINE CALCULATING THE DAYLENGTH [H] AND 3 AUXILIARY VARIABLES
С
                                                        C
    NEEDED FOR DESCRIBING THE INSTANTANEOUS RADIATION FOR A GIVEN
C
                 TIMEPOINT OF THE DAY
                                                        C
C
                INPUT PARAMETERS:
                                                        C
C
                                                        C
          : NUMBER OF CALENDAR DAY
     DAY
C
     LAT
            LATITUDE OF LOCATION
                                                        C
C
                OUTPUT PARAMETERS:
C
    DAYL
            DAYLENGTH
                                                     [H] C
С
    SINLD
            AUXILIARY VARIABLE
                                                        C
C
    COSLD
            AUXILIARY VARIABLE
                                                        C
          :
C
    SININT
            AIXILIARY VARIABLE
IMPLICIT REAL(A-Z)
    PI=3.1415926
    RAD=PI/180.
    DEC=-23.45*COS(2*PI*(DAY+10.)/365,)
    SINLD=SIN(RAD*LAT)*SIN(RAD*DEC)
    COSLD=COS(RAD*LAT)*COS(RAD*DEC)
    AOB=SINLD/COSLD
    DAYL=12.0*(1.0+2.0*ASIN(AOB)/PI)
    SININT=DAYL*(SINLD+O.4*(SINLD*SINLD+COSLD*COSLD*0.5)) +
    $12.0*COSLD*(2.0+3.0*0.4*SINLD)*SQRT(1.0-AOB*AOB)/PI
    RETURN
    END
    SUBROUTINE FRADIF (DAY, DTR, DAYL, SINLD, COSLD, FRDFD)
C
    SUBROUTINE CALCULATING THE DIFFUSE FRACTION OF DAILY VISIBLE
                                                        C
C
                     RADIATION
C
                INPUT PARAMETERS:
C
     DAY
            NUMBER OF CALENDAR DAY
                                                        C
C
     DTR
            DAILY GLOBAL RADIATION
                                                [J/M**2/D]
                                                        C
          •
C
                                                        C
     DAYL
            DAYLENGTH
                                                     [H]
            AUXILIARY VARIABLE
C
                                                        C
     SINLD
          :
C
          : AUXILIARY VARIABLE
     COSLD
C
                OUTPUT PARAMETERS:
                                                        C
C
     FRDFD: DIFFUSE FRACTION OF DAILY VISIBLE RADIATION
IMPLICIT REAL(A-Z)
    PI=3.1415926
C
    SOLAR CONSTANT (J/M**2/S)
    SC = 1370.
    SCACT = SC * (1. + 0.033 * COS(360.*DAY/365.))
C
    AVERAGE SINE OF SOLAR ALTITUDE
    INTBET= 3600. * (DAYL * SINLD + 24./PI * COSLD *
          SQRT(1.- (SINLD/COSLD)**2))
C
    EXTRATERRESTRIAL IRRADIATION (J/M**2/D)
    EXTEIR= INTBET * SCACT
C
    ATMOSPHERIC TRANSMISSION ON DAY BASIS
    ATD
         - DTR / EXTEIR
```

```
C
    FRACTION DIFFUSE LIGHT ON DAY BASIS
    IF (ATD.GE.0.35) FRDF = 1.33 - 1.46 * ATD
    IF (ATD.LT.0.35) FRDF = 1. - 2.3 * (ATD-0.07)**2
    FRDFD = LIMIT(0.23, 1., FRDF)
    RETURN
     SUBROUTINE INSTIR (DAYL, HOUR, DTR, FRDFD, SINLD, COSLD, SININT,
                   IRR, SINB, FRDR)
SUBROUTINE CALCULATING THE SINE OF SUN HEIGHT AND THE INTENSITY
C
                                                        C
C
    [J/M**2/S]
               AND DIRECT FRACTION OF INSTANTANEOUS VISIBLE
                                                        C
C
                   RADIATION
                                                        C
INPUT PARAMETERS:
C
     DAYI.
            DAYLENGTH
C
     HOUR
          : ACTUAL HOUR OF THE DAY
C
                                                [J/M**2/D]
          : DAILY GLOBAL RADIATION
C
     FRDFD : DIFFUSE FRACTION OF DAILY VISIBLE RADIATION
                                                        C
C
     SINLD :
            AUXILIARY VARIABLE
                                                        C
C
     COSLD :
            AUXILIARY VARIABLE
     SININT: AUXILIARY VARIABLE
C
                                                        C
OUTPUT PARAMETERS:
C
     IRR
             INTENSITY OF INSTANTANEOUS VISIBLE RADIATION [J/M**2/S] C
C
     FRDR
             DIRECT FRACTION OF VISIBLE RADIATION
          :
                                                        C
             SINE OF SUN HEIGHT
C
IMPLICIT REAL (A-Z)
    PI = 3.1415926
      SINB = AMAX1(0.,SINLD + COSLD * COS(2. *
              PI * (HOUR+12.)/24.))
   1
      SFF = SINB * (1. + 0.4 * SINB)
      IRR = SFF * DTR * 0.5 / (SININT * 3600.)
      AUXFRD= (1. - FRDFD) *
                          (1.08 - 0.0095 *
               EXP (4.6 * (HOUR-12.) / (0.5*DAYL)))
      FRDR = LIMIT(0.1.AUXFRD)
3000
      CONTINUE
    RETURN
    END
    SUBROUTINE PHOTOC (NCL, NSP, DNSP, V, STESWI, EARSWI,
                   LAIFIX, SAIFIX, EAIFIX, LAIL, ECDIF,
   1
                   KL, KLSTEM, KLEAR,
   1
                   AMAX, SAMAX, EAMAX, EFF, SEFF, EEFF,
   1
                   IRR, FRDR, SINB, PROD)
   1
SUBROUTINE CALCULATING
C
      INSTANTANEOUS
                          RATES OF GROSS ASSIMILATION [KG/HA/H] C
C
    OF NSP COMPETITORS FORMING A CANOPY DESCRIBED IN TERMS OF NCL
    CANOPY LAYERS; OPTIONALLY, THE PHOTOSYNTHESIS OF STEMS AND EARS
C
                                                        C
    CAN BE INCLUDED
                                                        C
INPUT PARAMETERS:
C
                                                        C
C
            INTENSITY OF VISIBLE RADIATION
                                               [J/M**2/S]
                                                        С
C
     FRDR
            DIRECT FRACTION OF VISIBLE RADIATION
                                                        C
            SINUS OF SUN HEIGHT
C
                                                        C
     STNR
C
                                                        C
C
     THE OTHER INPUT PARAMETERS ARE EXPLAINED IN THE HEAD PART OF
                  THE SUBROUTINE
                               DAYASS
                                                        C
C
                OUTPUT PARAMETERS:
C
            INSTANTANEOUS ASSIMILATION RATES OF THE NSP SPECIES
    PROD
                                                        C
C
                                                (KG/HA/H)
```

```
IMPLICIT REAL (A-Z)
      INTEGER G,K,A,DNSP,NSP,V,NCL,C,STESWI,EARSWI
      DIMENSION LAIFIX (NCL*NSP)
      DIMENSION SAIFIX
                        (NCL*NSP)
      DIMENSION EAIFIX
                        (NCL*NSP)
      DIMENSION LAIL
                        (NCL)
      DIMENSION ECDIF
                        (NCL)
      DIMENSION V
                        (NSP)
      DIMENSION KL
                         (DNSP)
      DIMENSION KLSTEM
                        (DNSP)
      DIMENSION KLEAR
                        (DNSP)
      DIMENSION AMAX
                        (DNSP)
      DIMENSION SAMAX
                        (DNSP)
      DIMENSION EAMAX
                        (DNSP)
      DIMENSION EFF
                        (DNSP)
      DIMENSION SEFF
                        (DNSP)
      DIMENSION EEFF
                        (DNSP)
      DIMENSION PROD
                        (NSP)
      SCATTERING COEFFICIENT (ASSUMED TO BE EQUAL FOR ALL LIGHT
C
      ABSORBING STRUCTURES
      SCV = 0.2
C
      AN AUXILIARY VARIABLE ("SQV")
      SQV = SQRT (1. - SCV)
C
      REFLECTION COEFFICIENT OF THE CANOPY
      REFLC = (1. - SQV) / (1. + SQV)
C
      INTENSITIES (J/CM**2/S) OF DIRECT LIGHT ("DIR") AND OF INDIRECT
      LIGHT ("DIF") ABOVE THE CANOPY AT THE CONSIDERED TIMEPOINT
C
         DIF = IRR * (1.-FRDR) * (1.-REFLC)
         DIR = IRR * FRDR
            DO 4 A = 1, NSP
            PROD(A) = 0.
            CONTINUE
C
      MULTIPLICATION FACTORS FOR CONVERTING THE EXTINCTION OF DIFFUSE
C
      LIGHT INTO THE EXTINCTION OF LIGHT INTENSITY WHEN THE INCOMING
      RADIATION IS DIRECT ("CONDRF") AND INTO THE EXTINCTION OF
C
      THE DIRECT COMPONENT OF INCOMING DIRECT RADIATION ("CONDIR")
      (CONDRF = KDRF/KDIR, CONDIR = KDIR/KDIF)
         CONDIR = 0.5 / (SINB * SQV * 0.8)
         CONDRF = CONDIR * SQV
C
      FRACTION OF LIGHT ENTERING THE CANOPY
         DIFOUT = 1.
С
      LOOP ACCOUNTING FOR THE DIFFERENT LEAF LAYERS
            DO 2 K = 1,NCL
C
      KDIF AND KDIR OF THE COMPOSITE LEAF LAYER, OBTAINED BY
      AVERAGING THE LAI-WEIGHTED VALUES OF THE CONTRIBUTING
      SPECIES (USED FOR CALCULATING THE SUNLIT LEAF AREA)
      IF (LAIL(K).LT.1.E-4)
                             THEN
         TYPE 5011,K
5011
         FORMAT (' CANOPY LAYER ', 15, ' WITH LAIL = 0 ')
         GOTO 2
      IF (ECDIF(K).LT.1.E-4) THEN
          TYPE 5012,K
5012
          FORMAT (' CANOPY LAYER', 15, ' WITH ECDIF = 0 ')
          GOTO 2
      ENDIF
            KDIF = ECDIF(K) / LAIL(K)
            KDIR = KDIF * CONDIR
C
      FRACTIONS OF DIFFUSE LIGHT ENTERING (DIFIN) AND LEAVING
      (DIFOUT) THE CONSIDERED LEAF LAYER
            DIFIN = DIFOUT
            DIFOUT = DIFIN * EXP(-ECDIF(K))
C
      FRACTION OF DIFFUSE LIGHT ABSORBED IN THE LAYER ("ADIF"),
      OF DIRECT LIGHT ABSORBED IN THE LAYER AS DIRECT LIGHT ("ADDIR")
      AND OF DIRECT LIGHT ABSORBED IN THE LAYER AS DIRECT OR
```

```
INDIRECT LIGHT ("ATDIR") (1/S)
2
            ADIF = DIFIN
            EDDIR = DIFIN**CONDIR
                                   DIFOUT**CONDIR
            ADDIR = EDDIR * (1.-SCV)
            ATDIR = (DIFIN**CONDRF - DIFOUT**CONDRF) * (1.-REFLC)
      FRACTION OF SUNLIT LEAF AREA IN THE LAYER
С
            SLLA = EDDIR / (KDIR*LAIL(K)) * KDIF/SQV/0.8
            IF (SLLA.LT.1.E-10) THEN
               TYPE 5020
5020
               FORMAT (' SLLA = 0')
               GOTO 2
            ENDIF
C
      ABSORPTION RATE (J/S) OF THE SUNLIT PART OF THE LEAF LAYER ("SUNA")
      AND OF THE SHADOWED PART ("SHAA") (1/S)
C
            SUMDIF = DIF * ADIF + DIR * (ATDIR-ADDIR)
            SHAA
                   = SUMDIF * (1. - SLLA)
                   = SLLA * SUMDIF + DIR * ADDIR
            SUNA
C
              ASSIMILATION PERFORMED BY LEAVES
               DO 3 A = 1.NSP
               L = V(A)
               C = (K-1) * NSP + A
               LEAFAR = LAIFIX (C)
С
      ABSORPTION RATE (J/CM**2 LEAF/S) OF SUNLIT LEAVES ("ABSDIR")
      AND OF SHADED LEAVES ("ABSDIF")
C
              ABSDIR = SUNA * KL(L)/(ECDIF(K) *
                                                   SLLA)
              ABSDIF = SHAA * KL(L)/(ECDIF(K) * (1. - SLLA))
C
       THE ASSIMILATION OF SUNLIT AND SHADED LEAFAREA IS
C
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
       THE CONSIDERED LEAF LAYER
              IF (AMAX(L).LT.1.E-3)
                                      THEN
                 TYPE 5014,L
5014
                 FORMAT (' SPECIES ', 15, ' WITH AMAX = .0 ! ')
                 GOTO 3
              ENDIF
              PROD1 = AMAX(L) * (1. - EXP(-EFF(L)*ABSDIF/AMAX(L)))
              PROD2 = AMAX(L) * (1. - EXP(-EFF(L)*ABSDIR/AMAX(L)))
              PROD(A) = PROD(A) + LEAFAR *
                        (SLLA*PROD2 + (1. - SLLA) * PROD1)
3
              CONTINUE
         IF (STESWI.EQ.O)
                            GOTO 80
C
       ***
               ASSIMILATION PERFORMED BY STEMS
                                                   ***
       ABSORPTION RATE (J/CM**2 STEM/S) OF SUNLIT STEMAREA ("STADIR")
       AND OF SHADED STEMAREA ("STADIF")
C
            STADIR = SUNA * KLSTEM(L)/(ECDIF(K) * SLLA)
            STADIF = SHAA * KLSTEM(L)/(ECDIF(K) * (1. - SLLA))
C
       THE ASSIMILATION OF SUNLIT AND SHADED STEMAREA IS
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
       THE CONSIDERED LEAF LAYER
               DO 70 A = 1, NSP
               L = V(A)
               C = (K-1) * NSP + A
               STEMAR = SAIFIX (C)
              IF (SAMAX(L).LT.1.E-3)
                                       THEN
                 TYPE 5015,L
5015
                 FORMAT (' SPECIES ', 15, ' WITH SAMAX = 0 ! ')
                 GOTO 70
              ENDIF
               PROD1 = SAMAX(L)*(1.- EXP(-SEFF(L) * STADIF/SAMAX(L)))
               PROD2 = SAMAX(L)*(1.- EXP(-SEFF(L) * STADIR/SAMAX(L)))
               PROD(A) = PROD(A) + STEMAR *
                           (SLLA * PROD2 + (1. - SLLA) * PROD1)
     1
70
               CONTINUE
80
            IF (EARSWI.EQ.O) GOTO 2
```

```
Ċ
              ASSIMILATION PERFORMED BY EARS
C
       ABSORPTION RATE (J/CM**2 EAR/S) OF SUNLIT EARARE ("EARDIR")
C
       AND OF SHADED EARARE ("EARDIF")
            EARDIR = SUNA * KLEAR(L) / (ECDIF(K) * SLLA)

EARDIF = SHAA * KLEAR(L) / (ECDIF(K) * (1. - SLLA))
       THE ASSIMILATION OF SUNLIT AND SHADED EARAREA IS
C
C
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
       THE CONSIDERED LEAF LAYER
                 DO 75 A = 1, NSP
                 L = V(A)
                 C = (K-1) * NSP + A
                 EARAR = EAIFIX (C)
              IF (EAMAX(L).LT.1.E-3)
                 TYPE 5016,L
5016
                 FORMAT (' SPECIES ',15,' WITH EAMAX = 0 ! ')
                 GOTO 75
              ENDIF
                 PROD1 = EAMAX(L)*(1.-EXP(-EEFF(L)*EARDIF/EAMAX(L)))
                 PROD2 = EAMAX(L)*(1.-EXP(-EEFF(L)* EARDIR/EAMAX(L)))
                 PROD(A) = PROD(A) + EARAR *
     1
                             (SLLA * PROD2 + (1. - SLLA) * PROD1)
75
                 CONTINUE
2
           CONTINUE
C
       NOW THE LOOP HAS GONE THROUGH ALL LEAF LAYERS AND ALL COMPETITORS
         DO 85 A = 1, NSP
         PROD(A) = PROD(A) * 30. / 44.
85
         CONTINUE
      RETURN
      SUBROUTINE DAYASS (DAY, DTR, LAT, NCL, NSP, DNSP, V, STESWI, EARSWI,
                         LAID, SAID, EAID, LAIL, ECDIF,
                         KL, KLSTEM, KLEAR,
                         AMAX, SAMAX, EAMAX, EFF, SEFF, EEFF,
     $
                         GASSP, DUM, DAYL, IRR, INST1, FRDFD, FRDR)
C
                  SUBROUTINE CALCULATING THE
С
                            GROSS ASSIMILATION
                                                       [KG/HA/D]
                                                                          C
                DAILY
C
      OF NSP COMPETITORS FORMING A CANOPY DESCRIBED IN TERMS OF NCL
                                                                          C
      CANOPY LAYERS; OPTIONALLY, THE PHOTOSYNTHESIS OF STEMS AND EARS
C
C
      CAN BE INCLUDED
C
                      INPUT PARAMETERS:
C
                                                                          C
       DAY
                 NUMBER OF CALENDAR DAY
C
       DTR
                                                              [J/M**2/D]
                                                                          C
                 DAILY GLOBAL RADIATION
C
       LAT
                 LATITUDE OF LOCATION
                                                                          C
C
       NCL.
                 NUMBER OF DESCRIBED CANOPY LAYERS
                                                                          C
C
       NSP
                 NUMBER OF SPECIES MODELLED IN THE PRESENT CASE
                                                                          C
C
       DNSP
                 NUMBER OF SPECIES DESCRIBED IN THE PARAMETER
C
                                                                          \mathbf{c}
                 SECTION OF THE MAIN PROGRAMM
C
                 ARRAY RELATING THE NUMBER USED TO DENOTE
C
                 A SPECIES IN THE PARAMETER SECTION OF THE MAIN
C
                 PROGRAM TO THE NUMBER USED IN THE ACTUAL RUN
                                                                          C
       STESWI,
C
C
       EARSWI :
                 SWITCH PARAMETERS DETERMINING IF PHOTOSYNTHESIS OF
C
                                                                          C
                 STEMS (EARS) IS TO BE INCLUDED
C
       LAID
                 DISTRIBUTION OF LAI (GREEN LEAVES ONLY) OVER SPECIES
                                                                          C
C
                 AND LAEF LAYER
                                                                          C
                                                                 [HA/HA]
C
       SAID
                                                                          C
C
       EAID
                 AS LAIFIX, BUT FOR GREEN STEM AND GREEN
C
                                                                 [HA/HA]
C
                 (IF PHOTOSYNTHESIS OF STEMS (EARS) IS TO BE NEGLECTED,
                                                                          C
C
                 SAIFIX (EAIFIX) MAY BE ANY DUMMY ARRAY WITH A DIMENSION
                                                                          C
                 GREATER OR EQUAL "NSP*NCL" (THUS FOR EXAMPLE "LAIFIX")
C
                                                                          C
                 CONTAINS FOR EACH OF THE NCL CANOPY LAYERS THE
C
       LAIL
C
                 SUM OF AREA INDICES BELONGING TO ABSORBING SURFACES
C
                 (LEAVES, STEMS, EARS...) POSITIONED IN IT
                                                                 [HA/HA]
                                                                          C
                 AS LAIL, BUT THE CONTRIBUTING AREA INDICES ARE
C
       ECDIF
                                                                          C
C
                 MULTIPLIED BY THE CORRESPONDING EXTINCTION
                                                                          C
C
                 COEFFICIENTS FOR DIFFUSE LIGHT
                                                                 [HA/HA]
                                                                          C
```

```
C
                                                                      C
      KL,
      KLSTEM,
С
С
      KLEAR:
                EXTINCTION COEFFICIENTS FOR DIFFUSE LIGHT OF LEAVES
C
                                                                      C
                STEMS, EARS
C
      AMAX.
                                                                      C
С
      SAMAX.
      EAMAX : AMAX VALUES OF LEAVES, STEMS, EARS
                                                            [KG/HA/D]
C
C
      EFF.
C
      SEFF.
C
             : LIGHT USE EFFICIENCY OF LEAVES, STEMS, EARS
                                                                      C
      EEFF
                                                 [KG/HA/D/(J/S/M**2)]
                                                                      C
C
C
                     OUTPUT PARAMETERS:
                                                            [KG/HA/D]
C
               GROSS ASSIMILATION OF THE NSP SPECIES
                                                                      С
              DUMMY PARAMETER
IMPLICIT REAL (A-Z)
     INTEGER G,K,A,DNSP,NSP,V,NCL,C,STESWI,EARSWI
     DIMENSION LAID (NCL*NSP)
                     (NCL*NSP)
     DIMENSION SAID
     DIMENSION EAID
                     (NCL*NSP)
     DIMENSION LAIL
                       (NCL)
     DIMENSION ECDIF
                       (NCL)
     DIMENSION V
                       (NSP)
     DIMENSION KL
                       (DNSP)
     DIMENSION KLSTEM
                       (DNSP)
     DIMENSION KLEAR
                       (DNSP)
     DIMENSION AMAX
                       (DNSP)
     DIMENSION SAMAX
                       (DNSP)
     DIMENSION EAMAX
                       (DNSP)
     DIMENSION EFF
                       (DNSP)
     DIMENSION SEFF
                       (DNSP)
     DIMENSION EEFF
                       (DNSP)
     DIMENSION GASSP
                       (NSP)
     DIMENSION INSTAS
                       (27)
     DIMENSION WEIGHT
                       (3)
     DIMENSION DIR
                       (3)
     DIMENSION INTENS
                       (3)
     DIMENSION SNUS
                      (3)
     CALCULATE DAYLENGTH AND 3 AUXILIARY VARIABLES WHICH
C
     ARE NEEDED FOR DESCRIBING INSTANTANEOUS IRRADIATION
     CALL ASTRO (DAY, LAT, DTR,
                 DAYL, SININT, SINLD, COSLD)
C
     CALCULATE THE DIFFUSE FRACTION OF DAILY IRRADIATION
     CALL FRADIF(DAY, DTR, DAYL, SINLD, COSLD,
                 FRDFD)
C
     WEIGHTING FACTORS USED IN THE 3-POINT GAUSS INTEGRATION
     WEIGHT(1) = 1.
     WEIGHT(2) = 1.6
     WEIGHT(3) = 1.
      XGAUS = SQRT (0.15)
        DO 445 A = 1, NSP
        GASSP(A) = 0.
445
        CONTINUE
        DO 6000 G=1,3
C
      SELECT TIMEPOINT DURING THE DAY
        HOUR = 12. + DAYL * 0.5 * (0.5 + (G-2.) * XGAUS)
C
      DESCRIBE INSTANTANEOUS IRRADIATION (INTENSITY, DIRECT
C
      FRACTION AND SINUS OF SUN HEIGHT)
         CALL INSTIR (DAYL, HOUR, DTR, FRDFD, SINLD, COSLD, SININT,
     1
                     IRR,SINB,FRDR)
        DIR(G)
                  = FRDR
         INTENS(G) = IRR
        SNUS (G) = SINB
```

```
C
     CALCULATE INSTANTANEOUS ASSIMILATION RATES OF THE NSP COMPETITORS
C
     (KG CHO / HA / HA)
        CALL PHOTOC (NCL, NSP, DNSP, V, STESWI, EARSWI, LAID, SAID, EAID,
    1
             LAIL, ECDIF, KL, KLSTEM, KLEAR, AMAX, SAMAX, EAMAX, EFF, SEFF,
             EEFF, IRR, FRDR, SINB,
    1
                  INSTAS)
        INST1 = INSTAS(1)
      WEIGHTED SUMMATION OF INSTANTANEOUS ASSIMILATION RATES
C
          DO 5 A = 1, NSP
          GASSP(A) = GASSP(A) + INSTAS(A) * WEIGHT(G)
          CONTINUE
6000
        CONTINUE
     WRITE (20,2620) FRDFD, DIR(1), DIR(2), DIR(3), INTENS(1),
                   INTENS(2), INTENS(3), SNUS(1), SNUS(2), SNUS(3)
2620
    FORMAT (10(F11.5))
      FINISHING THE INTEGRATION PROCEDURE
C
       DO 6 A=1,NSP
        GASSP(A) = GASSP(A) / 3.6 * DAYL
6
       CONTINUE
     RETURN
     END
     SUBROUTINE EVAL1 (DIM, ARR, PROB, EXVA, VAR, CV)
SUBROUTINE CALCULATING EXPECTION VALUE, VARIACE AND THE COEFFICIENT OF VARIATION OF A CHANCE VARIABLE
C
C
C
                   INPUT PARAMETERS:
                                                                 C
C
               NUMBER OF VALUES OF THE CHANCE VARIABLE
     DTM
                                                                 C
C
     ARR
               VALUES OF THE CHANCE VARIABLE
                                                                 С
C
     PROB
               PROBABILITIES ASSOCIATED WITH THE VALUES
                                                                 C
C
                   OUTPUT PARAMETERS:
                                                                 C
C
     EXVA
               EXPECTATION VALUE
                                                                 C
C
               VARIANCE
                                                                 C
     VAR
            :
C
               COEFFICIENT OF VARIATION
     CV
                                                                 C
IMPLICIT REAL (A-Z)
     INTEGER DIM, J
     DIMENSION ARR (DIM)
     DIMENSION PROB(DIM)
     IF (DIM.EQ.1) THEN
        EXVA = ARR(1)
        VAR = 0.
     ELSE
        SUMX = 0.
        SUMXX = 0.
          DO 851 J = 1,DIM
          SUMX = SUMX + ARR(J)
                                    * PROB(J)
          SUMXX = SUMXX + ARR(J)**2 * PROB(J)
851
          CONTINUE
        EXVA = SUMX
        VAR = SUMXX - SUMX**2
     ENDIF
     IF (EXVA.LT.1.E-8)
                      GOTO 9013
     IF (VAR. LT.1.E-8)
                       THEN
        CV = 0.
     ELSE
        CV = SQRT(VAR) / EXVA
     ENDIF
9013
     CONTINUE
     RETURN
     END
```

```
SUBROUTINE LNDCAL (NSP,OGBMPP,PROB,LNDVBM,DUM)
SUBROUTINE CALCULATING DELTA - LN - VALUES
C
               INPUT PARAMETERS:
                                                   C
C
           NUMBER OF GENOTYPES
                                                   C
C
                                               [G]
    OBBMPP : ABOVE GROUND BIOMASS PER PLANT
C
    PROB
        : FREQUENCIES OF THE GENOTYPES
                                                   C
C
               OUTPUT PARAMETERS:
                                                   С
C
    LNDBVBM : DELTA - LN - VALUES
                                                   C
         : DUMMY VARIABLE
                                                   C
IMPLICIT REAL (A-Z)
    INTEGER NSP,A
    DIMENSION OGBMPP(NSP)
    DIMENSION PROB (NSP)
    DIMENSION LNDVBM(NSP)
    IF (NSP.EQ.1) GOTO 7020
    SUMLN = 0.
      DO 851 A = 1,NSP
         (OGBMPP(A).LT.1.E-3) GOTO 851
      IF
      SUMLN = SUMLN + ALOG(OGBMPP(A)) * PROB(A)
851
    AVLN = SUMLN
      DO 852 A = 1,NSP
      LNDVBM(A) = ALOG(AMAX1(6.73795E-3, OGBMPP(A))) - AVLN
852
      CONTINUE
    CONTINUE
7020
    RETURN
    END
ENDJOB
```


Name	Compon layo	ent Definition out	Dimension
	(S) (GA)	single value array; the i-th component refers to the genotype with the actual reference i	
	(GL)		
	(C)	array; the i-th component refers to the i-th canopy layer (counted from the top)	
	(CG)	array; component 1,, NSP refer to canopy layer 1 and the genotype with the actual reference 1,, NSP; component NSP+1,, 2*NSP refer to canopy layer 2 and the genotype with the actual reference 1,, NSP; and so on	
	(G6)	array; component 1,,6 refer to the genotype with the library reference 1; component 7,12 refer to the genotype with the library reference 2; and so on	
	(F)	function table	
A AGE	(S) (GA)	actual reference of a genotype (can be 1,,NSP) number of days since emergence	
AMAX APPEAR	(GL)	photosynthetic rate of leaves at light saturation calendar day on which the population of the considered genotype is initialized	kg CO2/ha/h
ARRIVE	(GA)	switch variable assuming the value 1 on days preceding a day of population initialization and the value 0 on other days	
AV BMRCLV	(S) (S)	average aboveground biomass per plant relative rate of maintenance respiration of leaves at	g/plan t
	•	reference temperature	kg/kg/d
BMRCGR		relative rate of maintenance respiration of grains at reference temperature	kg/kg/d
BMRCRT	(S)	relative rate of maintenance respiration of roots at reference temperature	kg/kg/d
BMRCST	(S)	relative rate of maintenance respiration of stems at reference temperature	kg/kg/d
CLPERL	(S)	number of canopy layers which are defined per unit of the summed leaf area indices of all populations	26/ 26/ C
CULTP	(GL)	parameter characterizing the dependence of DVRV on temperature	
CV	(S)	coefficient of variation of aboveground biomass per plant	
DAY DFAC	(S) (S)	calendar day "plant density factor" with which the parameter values	
<i>D1110</i>	(5)	for the initial weights of leaves, stems and roots are	
DISPA1	(G6)	multiplied at the initialization of the populations array containing auxiliary variables used for distributing the leaf area over the canopy layers	
DISPA2	(G6)	array containing auxiliary variables used for distributing the stem area over the canopy layers component layout as for array DISPA1	
DISPA3	(G6)	array containing auxiliary variables used for distributing the ear area over the canopy layers	
DNSP DRLVS	(S)	number of genotypes described in the parameter library	kg/ha/d
DRLVS DRLVTB	(GA) (F)	relative dying rate of leaves relative dying rate of leaves as function of the	kg/na/d
	(-)	developmental state, dependent on the library reference	
DRRT	(S)	of the genotype dying rate of roots	kg/kg/d kg/ha/d
DRRTTB		relative dying rate of roots as function of the	KS/ Ha/ U
		developmental state	kg/kg/d
DRST	(GA)	dying rate of stems	kg/ha/d

			- 50 -	
•	DRSTTB	(F)	relative dying rate of stems as function of the	
			developmental state	kg/kg/d
	DTR	(S)	daily global radiation	J/m**2/d
	DTRT	(F)	DTR as function of the calendar day	
	DVRR	(GA)	rate of post-anthesis development	1/d
	DVRV DVS	(GA) (GA)	rate of pre-anthesis development developmental state (0 at emergence, 1 at dead ripeness)	1/d
	DVS	(GA)	state of post-anthesis development (0 at anthesis, 1 at	
	DIDE	(011)	dead ripeness)	
	DVSV	(GA)	state of pre-anthesis development (0 at emergence, 1 at dead ripeness)	
	EAI	(GA)	index of total ear area	ha/ha
	EAID	(CG)	index of the green ear area belonging to	
			a considered genotype and positioned in a considered	
	T 43/47	(07)	canopy layer	ha/ha
	EAMAX	(GL)	photosynthetic rate of ears at light saturation	kg CO2/ha/h
	EARATA EARGRT	(GA) (F)	ear area index at anthesis ratio between the present ear area and the ear area	ha/ha
	LAKGKI	(1)	at anthesis as function of the developmental state	
	EARSUR	(GL)	ratio of the ear area and the aboveground biomass	
		,,	at anthesis	cm**2/g
	EAVT	(S)	average air temperature during the daylight part of the day	С
	ECDIF	(C)	"extinction capacity" of a canopy layer, defined as the	
			sum of the products of area index and extinction	
			coefficient of all contained surfaces	
	EEFF	(GL)	initial light use efficiency of ears	kg CO2/ha/h/(J/m**2/s)
	EFF	(GL)	initial light use efficiency of leaves	kg $CO2/ha/h/(J/m**2/s)$
	EMERG EFCGR	(GL) (S)	calendar day on which the considered genotype emerges efficiency of biosynthesis of grain tissue from carbohydrates	kg/kg
	EFCLVS	(S)	efficiency of biosynthesis of leaf tissue from carbohydrates	kg/kg
	EFCRT	(s)	efficiency of biosynthesis of root tissue from carbohydrates	kg/kg
	EFCST	(s)	efficiency of biosynthesis of stem tissue from carbohydrates	kg/kg
	EXIST	(GA)	switch variable assuming the value 0 before the	3. 3
			initialization of the population and the value 1 from	
		(0.)	that timepoint on	
	FCHN	(GA)	daily net assimilation	kg/ha/d
	FGR	(S)	fraction of net production allocated to the grains, divided by the fraction allocated to the shoot	
	FLVS	(S)	fraction of net production allocated to the leaves,	
	1210	(5)	divided by the fraction allocated to the shoot	
	FLVST	(F)	FLVS as function of the developmental state, dependent	
		` '	on the library reference of the genotype	
	FSH	(S)	fraction of net production allocated to the shoot	
	FSHT	(F)	FSH as function of the developmental state, dependent	
	12000	(0)	on the library reference of the genotype	
	FST	(S)	fraction of net production allocated to the stems, divided by the fraction allocated to the shoot	
	FSTT	(F)	FST as function of the developmental state, dependent	
		(-)	on the library reference of the genotype	-
	GASSP	(GA)	daily gross assimilation	kg/ha/d
	GFET	(F)	green fraction of the ear area as function of the	_
			number of days since emergence, dependent on the	
			library reference of the genotype	
	GRGR	(GA)	growth rate of grains	kg/ha/d
	GRLVS GROWTH	(GA) (S)	net growth rate of living leaf tissue switch variable assuming the value 0 before any	kg/ha/d
	GROWIII	(3)	population is initialized and the value 1 from the first	
			initialization on	
	GSHOOT	(S)	rate of assimilate allocation to the shoot	kg/ha/d
	HEI	(GA)	plant height	cm
	HEITB	(F)	HEI as function of the number of days since	
•			emergence, dependent on the library reference of the	
		4	genotype	cm
	IDVSV	(GL)	initial value of DVSV	
	IWLVS	(GL)	initial dry weight of leaves, divided by the frequency	lro/ha
			of the genotype and the "density factor" DFAC	kg/ha

IWKT	(GL)	initial dry weight of roots, divided by the frequency	
IWST	(GL)	of the genotype and the "density factor" DFAC initial dry weight of stems, divided by the frequency	kg/ha
1451	•	of the genotype and the "density factor" DFAC	kg/ha
KL	(GL)	extinction coefficient of leaves	
KLEAR KLREDT	(GL) (F)	extinction coefficient of ears	
KLKEDI	(F)	reduction factor for the extinction coefficient of leaves, accounting for leaf clustering of young plants;	
		values as function of the developmental state	
KLSTEM	(GL)	extinction coefficient of stems	
L	(S)	library reference of a genotype (can be 1,,DNSP)	
LA,LC,	(0)	nonemations for characteristics the month of the desired	
LZ	(S)	parameters for characterizing the vertical area density function of leaf area	
LAI	(GA)	index of total leaf area	ha/ha
LAID	(CG)	index of the green leaf area belonging to	
	(0)	a given genotype and positioned in a given canopy layer	ha/ha
LAIL	(C)	"total area index of a canopy layer": sum of the area indices of all surfaces contained in	
		the considered canopy layer	ha/ha
LAT	(S)	latitude of location	,
LC	(S)	see LA	
LNDVBM	(GA)	defined as: LN(OGBMPP) - E (LN(OGBMPP))	
		(with E denoting the expectation value referring to the	
LNLAT	(F)	genotypes present in the mixed population) ln (leaf area) as function of the number of days since	
	(-)	emergence, dependent on the library reference of the genotype	
LVRRT	(F)	reduction factor for the maintenance repiration of leaves	
		accounting for the effect of senescence; values as	
LZ	(e)	function of the developmental state see LA	
MAXCL	(S) (S)	maximal number of canopy layers	
MAXHEI	(S)	height of the canopy	cm
MNTT	(F)	daily temperature minimum as function of the calendar day	С
MXTT	(F)	daily temperature maximum as function of the calendar day	С
MINCL NCL	(S) (S)	minimal number of canopy layers number of canopy layers	
NSP	(S)	number of genotypes competing in the actual simulation	
OGBM	(GA)	aboveground biomass	kg/ha
OGBMPP	(GA)	aboveground biomass	g/plant
PAMAX	(GL)	potential photosynthetic rate of leaves at light saturation	
		<pre>(possible reduction dependent on developmental state and temperature)</pre>	kg CO2/ha/h
PKL	(GL)		kg 0027 ha7 h
PLOP	(GA)	switch variable assuming the value 1 on the day	
		before the considered population is initialized;	
DCM	(0)	on other days the value is 0	
PSM RMNT	(S) (S)	total number of plants per m**2 rate of maintenance respiration	m** -2 kg/ha/d
SA,SC,S		parameters for characterizing the vertical area density	kg/ lia/ d
,,.	_	function of stem area	
SAI	(GA)	index of total stem area	ha/ha
SAID	(CG)	index of the green stem area belonging to a considered	ha/ha
sc	(S)	genotype and positioned in a considered canopy layer see SA	na/ na
SAMAX	(GL)	photosynthetic rate of stems at light saturation	kg CO2/ha/h
SEFF	(GL)	initial light use efficiency of stems	kg CO2/ha/h/(J/m**2/s)
SLA	(S)	specific leaf area	m**2/kg
SLATB	(F)	SLA as function of the developmental state, dependent on the library reference of the genotype	m**2/kg
SRAMAX	(S)	reduction factor of AMAX accounting for the effect of	m7 v2
	\-/	senescence	
SRAMAT	(F)	SRAMAX as function of the developmental state	
SSTA	(S)	specific stem area	m**2/kg
START STOP	(S) (S)	calendar day on which the simulation starts calendar day on which the simulation finishes	
0101	(5)	COLUMN TO THE ORDINATION THE ORDINATION OF THE O	

SWI	(S)	switch parameter whose function is explained in the program listing (initial section)	
SZ	(S)	see SA	
TEMR	7 7	factor accounting for the effect of temperature on	
LEM	(S)	the rate of maintenance respiration	
THK	(S)	thickness of the canopy layers	cm
TRAMAX	(s)	reduction factor of AMAX accounting for the effect of temperature	
TRAMAT	(F)	TRAMAX as function of the average temperature	
	, ,	during daylight period (C)	
ULCL	(C)	upper limit of a canopy layer	cm
V	(GA)		
	` '	to their library references (L)	
VAR	(S)	variance of aboveground biomass per plant	
7.220	(-)	(referring to the genotyps present in the mixed population	(g/plant)**2
VEEL	(S)	thickness of the ear layer belonging to a single	(0.1
	(-,	genotype	cm
WDLVS	(GA)	• · · · · · · · · · · · · · · · · · · ·	kg/ha
WDST	(GÀ)	dry weight of dead stems	kg/ha
WGR	(GA)	• •	kg/ha
WLVS	(GA)	dry weight of living leaves	kg/ha
WRT	(GA)		kg/ha
WST	(GA)		kg/ha
х	(s)	auxiliary variable	G.
YFEAR	(GA)	•	
YFLVS	(GA)		
YFST	(GA)	yellow fraction of stem area	
	• •	•	


```
COMPETITION BETWEEN WHEAT GENOTYPES
TITLE
      DIMENSION EARATA(27)
      DIMENSION EAI(27)
      DIMENSION FCHN(27)
      DIMENSION HEI(27)
      DIMENSION OGBM(27)
STORAGE SAI(27), YFST(27), KLSTEM(27), KLEAR(27)
STORAGE AGE(27), LAI(27), GASSP(27), STORE(144)
STORAGE V(27), EARSUR(27), LAID(144), SAID(144), EAID(144)
STORAGE ULCL(25), KL(27), PKL(27), EFF(27), EEFF(27), SEFF(27)
STORAGE YFLVS(27), LAIL(25), ECDIF(25)
STORAGE COR(27), DISPA1(200), DISPA2(200), DISPA3(200)
STORAGE CULTP(27), DVS(27), EAMAX(27), AMAX(27), PAMAX(27), SAMAX(27)
STORAGE OGBMPP(27), YFEAR(27)
STORAGE IWLVS(27), IWST(27), IWRT(27), IARLF(27), IDVSV(27)
STORAGE EMERG(27), EXIST(27), APPEAR(27), PLOP(27)
STORAGE LNDVBM(27), XEAI(20)
FIXED DNSP, V, NSP, NCL, I, L, K, A, G
FIXED STPSWI, EAPSWI, C, COMIND, AUXINT
*********************
                     INITIALIZATION
                                                             ***
********************
INITIAL
NOSORT
***
                 BASIC SPECIFICATIONS
    NUMBER OF GENOTYPES DESCRIBED IN THE PARAMETER SET
PARAM DNSP = 12
    NUMBER OF COMPETING GENOTYPES SIMULATED IN THE PRESENT CASE
PARAM NSP = 12
*** LATITUDE OF LOCATION ***
PARAM LAT = 52.
      SWITCH PARAMETERS FOR CHOOSING FROM ALTERNATIVE ALGORITHMS
       THE LEAF AREA INDEX CAN BE INTRODUCED AS A FORCING FUNCTION BY
*
       ASSIGNING TO THE SWITCH PARAMETER "LAISWI" THE VALUE 1
       INSTEAD OF O
PARAM LAISWI = 0.
       SWITCH PARAMETER FOR DECIDING WHETHER THE ABBSORPTION
       OF STEMS IS ACCOUNTED FOR WHEN MODELLING THE EXTINCTION
       OF LIGHT WITHIN THE CANOPY
PARAM STASWI = 1.
       SWITCH PARAMETER FOR DECIDING WHETHER THE PHOTOSYNTHESIS
       OF STEMS IS ACCOUNTED FOR WHEN CALCULATING THE DAILY
*
       ASSIMILATIION (NOTE THAT IN THIS CASE ALSO THE ABSORPTION OF STEMS
       MUST BE ACCOUNTED FOR, THAT IS "STASWI = 1")
PARAM STPSWI = 1
       SWITCH PARAMETER FOR DECIDING WHETHER THE ABBSORPTION
       OF EARS IS ACCOUNTED FOR WHEN CALCULATING THE EXTINCTION
       OF LIGHT WITHIN THE CANOPY
PARAM EAASWI = 1.
       SWITCH PARAMETER FOR DECIDING WHETHER THE PHOTOSYNTHESIS
       OF EARS IS ACCOUNTED FOR WHEN CULCULATING THE DAILY
       ASSIMILATIION (NOTE THAT IN THIS CASE ALSO THE ABSORPTION OF EARS
       MUST BE CONSIDERED, THAT IS EAASWI = 1)
PARAM EAPSWI = 1
```

```
*** SIMULATION
                                  PROJECT
                                                        SPECIFIC INPUT
         INITIAL STATE OF THE POPULATIONS
                SIMULATION PROJECT: REAMIX 15 X 15
TITLE
                SIMULATION PROJECT: REAMIX 15 X 15
LABEL
       WEIGHTS OF LEAVES, STEMS, ROOTS;
       (KG/HA / (FREQUENCY OF THE GENOTYPE) / "DENSITY FACTOR")
       (EXPLANATION OF "DENSITY FACTOR" : SEE BELOW)
TABLE IWLVS (1-12) = 1.273, 1.460, 1.666, 1.079,
                                                                1.323, 1.623,...
TABLE IWST (1-12) = 0.569, 0.596, 0.703, 0.493, 0.594, 0.783,...
0.597, 0.487, 0.570, 0.499, 0.619, 0.483
TABLE IWRT (1-12) = 1.228, 1.371, 1.579, 1.048, 1.278, 1.604,...
                         1.215, 1.122, 1.290, 1.196, 1.319, 1.135
*
       LEAF AREA
* (M**2/HA / (FREQUENCY OF THE GENOTYPE) / "DENSITY FACTOR")
TABLE IARLF (1-12) = 25.533, 28.759, 33.867, 28.567, 27.978, 34.030,...
26.267, 24.452, 27.619, 28.989, 26.174, 26.037
       "DENSITY FACTOR" WITH WHICH THE PARAMETER VALUES FOR INITIAL
       WEIGHTS AND THE INITIAL LEAF AREA ARE MULTIPLIED AT THE
       INITIALIZATION OF THE POPULATION
       (INTRODUCTION OF THIS PARAMETER SPARES THE NECESSITY OF
       REWRITING THE ARRAYS WITH INITIAL WEIGHTS AND LEAF AREAS
       WHEN DIFFERENT PLANT DENSITIES ARE ASSUMED)
PARAM DFAC = 108.
       DEVELOPMENTAL STATE
TABLE IDVSV (1-12) = 0.21345, 0.22085, 0.22485, 0.21010, ... 0.21717, 0.20662, 0.21345, 0.20339, ... 0.20339, 0.20026, 0.20026, 0.20662
       TIME COURSE OF LN (LEAF AREA(M**2/HA))
       (FOR THE INTRODUCTION OF THE LEAF AREA AS FORCING FUNCTION)
FUNCTION LNLAT,1. = 0.,6.60719, 22.,8.06840, 29.,9.0655, ... 36.,9.67608, 41.,9.75777, 49.,10.1414

FUNCTION LNLAT,12.= 0.,6.60719, 22.,8.06840, 29.,9.0655, ... 36.,9.67608, 41.,9.75777, 49.,10.1414
FUNCTION YFRLVT, 1. = 0.0., 49.0.
FUNCTION YFRLVT, 12. = 0.0., 49.0.
       PLANTS/M2
PARAM PSM = 400.
        TIME SPECIFICATIONS
* DAY OF EMERGENCE
TABLE EMERG (1-12) = 12 * 107.
     FIRST DAY OF SIMULATED GROWTH (NOT NECESSARILY THE DAY OF
     EMERGENCE)
TABLE APPEAR (1-12) = 12 * 129.
     FIRST DAY OF SIMULATION (HAS TO BE AT LEAST
     1 DAY BEFORE GROWTH SIMULATION STARTS)
PARAM START = 106.
```

LAST DAY OF SIMULATION

PARAM STOP = 231. FINISH TIME = STOP

```
***
       PARAMETRIC CHARACTERIZATION OF THE VERTICAL DISTRIBUTION OF
***
                  LEAVES, STEMS AND EARS
                                                                    ***
*************************
   3 PARAMETERS USE FOR CHARACTERIZING THE VERTICAL DISTRIBUTION
   OF THE LEAF AREA
    (THE UNNORMALIZED LEAF AREA DENSITY FUNCTION (M**2/M**3)
   IS ASSUMED TO HAVE THE FORM:
    Y = A - A * H**Z + C
   WITH A,C AND Z PARAMETERS AND H:= HEIGHT ABOVE GROUND/PLANT HEIGHT)
PARAM LA = 1., LC = 0., LZ = 50.
     DISPA1, DUM = VPRE1 (DNSP, LA, LC, LZ)
   3 PARAMETERS USE FOR CHARACTERIZING THE VERTIACL DISTRIBUTION
   OF THE STEM AREA
   (THE UNNORMALIZED STEM AREA DENSITY FUNCTION (M**2/M**3)
   IS ASSUMED TO HAVE THE FORM:
    Y = A - A * H**Z + C
   WITH A,C AND Z PARAMETERS AND H:= HEIGHT ABOVE GROUND/PLANT HEIGHT)
PARAM SA = 1., SC = 0., SZ = 50.
     DISPA2, DUM = VPRE1 (DNSP, SA, SC, SZ)
    1 PARAMETER USED FOR CHARACTERIZING THE VERTICAL DISTRIBUTION OF EARS
    (IT IS ASSUMED THAT THE EARS OF A GIVEN GENOTYPE ARE DISTRIBUTED
    IN A HOMONEGEOUS LAYER THAT EXTENDS FROM THE PLANT TOP
    TO A DISTANCE BELOW (CM) GIVEN BY THE PARAMETER "VEEL")
PARAM VEEL = 20.
     DISPA3, DUM = VPRE2 (DNSP, VEEL)
***
            THE WHO-IS-WHO OF COMPETITING GENOTYPES
   THE GENOTYPES SIMULATED IN THE PRESENT CASE ARE
   NUMBERED FROM 1 TO NSP; THE ARRAY V LINKS THIS ACTUAL
   REFERENCES ("A") TO THE NUMBERS USED IN THE PARAMETER
   LIBRARY (LIBRARY REFERENCE - "L")
        "TABLE V (1-12) = 2, 5, 8, 9 * 11"
   PRODUCES - DEPENDENT ON THE PARAMETER "NSP" -
   THE FOLLOWING MIXTURE COMPOSITIONS:
        "NSP=1" =" MONOCULTURE OF VARIETY 2
        "NSP=2" =" BINARY MIXTURE WITH THE VARIETIES 2 AND 5
        "NSP=3" =" MIXTURE WITH THE VARIETIES 2, 5, 8
   AND SO ON
TABLE V(1-12)
                = 12 * 1
   GENOTYPE FREQUENCIES
   (SUM OVER THE NSP GENOTYPES PRESENTLY SIMULATED MUST BE 1 !)
TABLE COR (1-12) = 12 * 8.3333333333E-2
***
                  SOME TECHNICAL PREPARATIONS
   FOR USE OF THE RERUN-FACILITIES SOME VARIABLES
   HAVE TO BE SET ZERO
        DO 737 A = 1,NSP
        GASSP(A) = 0.
        FCHN(A) = 0.
        LAI(A)
                = 0.
        YFLVS(A) = 0.
                = 0.
        SAI(A)
```

YFST(A) = 0.

```
DVS(A)
                = 0.
        DVRV(A) = 0.
        DVRR(A) = 0.
        EARATA(A) = 0.
        OGBM(A) = 0.
        OGBMPP(A) = 0.
        LNDVBM(A) = 0.
        GRLVS(A) = 0.
        DRLVS(A) = 0.
        GRST (A) = 0.
DRST (A) = 0.
        GRRT(A) = 0.
        GRGR(A) = 0.
737
        CONTINUE
     AUXINT = MAXCL * NSP
        DO 738 A = 1, AUXINT
        LAID(A) = 0.
        SAID(A) = 0.
        EAID(A) = 0.
738
        CONTINUE
******************************
                     SYSTEM DYNAMICS
                                                              ***
***
DYNAMIC
NOSORT
***
         CHECKING THE NECESSITY TO MODEL GROWTH PROCESSES
***
                   ON THE PRESENT DAY
     DAY = TIME
    ARE PLANTS PRESENT OR EXPECTED TO APPEAR ON THE FOLLOWING DAY?
    (TO KNOW THIS MAY SAVE THE COMPUTER LOTS OF CALCULATIONS)
        DO 719 A = 1,NSP
        L = V(A)
        PLOP(A) = INSW(APPEAR(L) - 0.9 - TIME, 0.,1.) * ...
                 INSW(TIME - APPEAR(L) + 1.1, 0.,1.)
        EXIST(A)= INSW (DAY-APPEAR(L) + 1.E-8, 0., 1.)
719
        CONTINUE
     XEXIST = 0.
            = 0.
     XPLOP
        DO 865 A = 1,NSP
        XEXIST = XEXIST + EXIST(A)
                = XPLOP + PLOP (A)
        XPLOP
865
        CONTINUE
     GROWTH = INSW(XEXIST-.1, 0., 1.)
     ARRIVE = INSW(XPLOP -.1, 0., 1.)
IF ((GROWTH + ARRIVE).LE.0.) GOTO 7020
*************************************
                    WEATHER
                               DATA
****************************
   DAILY GLOBAL RADIATION (J / M**2 / D)
     DTR = AFGEN (DTRT, DAY) * 1.E4
   AVERAGE AIR TEMPERATURE (DEGREES C)
      TMPA = (AFGEN (MXTT, DAY) + AFGEN (MNTT, DAY) ) * 0.5
   AVERAGE AIR TEMPERATURE DURING DAYLIGHT PERIOD
      EAVT = AFGEN (MXTT, DAY) - 0.25 * (AFGEN (MXTT, DAY) - ...
            AFGEN (MNTT, DAY))
```

```
DEVELOPMENT
**************************
   PRE- AND POST-ANTHESIS DEVELOPMENTAL RATES
   (EQUATIONS ACCORDING TO VAN KEULEN(85));
   TIME SINCE EMERGENCE
        DO 8100 A = 1, NSP
        L = V(A)
               = CULTP(L) * AMAX1 (0., 0.00094 * TMPA -0.00046)...
        XD1
                  * INSW (DVSV(A) -1., 1., 0.)
        DVRV(A) = XD1 * EXIST(A) + PLOP(A) * IDVSV(L)
              = AMAX1(0., 0.000913 * TMPA + 0.003572)
        DVRR(A) = XD2 * INSW (DVSV(A)-1.,0.,1.) * EXIST(A)
        AGE(A) = AMAX1(0.,DAY - EMERG(L))
8100
        CONTINUE
     DVSV = INTGRL (0, DVRV, 12)
DVSR = INTGRL (0, DVRR, 12)
        DO 9000 A = 1, NSP
        DVS (A) = AMIN1 (1., 0.5 * (DVSV(A) + DVSR(A)))
9000
        CONTINUE
     IF (GROWTH.LE.O.5) GOTO 20000
********************************
        VERTICAL DISTRIBUTION OF LIGHT ABSORBING SURFACES
***********************************
***
     ------
***
     AREA INDICES
                             ***
***
     ______
                             ***
             AREA ***
***
     LEAF
       DECISION WHETHER LEAF AREA DEVELOPMENT IS MODELLED
       DYNAMICALLY OR INTRODUCED AS A FORCING FUNCTION
     IF (LAISWI.GT.0.5) GOTO 1011
     LEAF AREA DEVELOPMENT IS MODELLED DYNAMICALLY AND NOT INTRODUCED
     AS A FORCING FUNCTION
        DO 1002 A = 1,NSP
                               GOTO 1002
        IF (EXIST(A).LT.0.5)
        LR = V(A)
        SLA = TWOVAR(SLATB, DVS(A), LR) * 1.E-4
        LAI(A) = (WLVS(A) + WDLVS(A)) * SLA
        IF (LAI(A).LT.1.E-6)
                            THEN
           TYPE 4999,A
4999
           FORMAT (' SPECIES ',15,' WITH LAI = 0 ')
           GOTO 1002
        ENDIF
        YFLVS(A) = WDLVS(A) / (WDLVS(A) + WLVS(A))
1002
        CONTINUE
     GOTO 1012
1011
     CONTINUE
     DEVELOPMENT OF LEAF AREA IS INTRODUCED AS A FORCING FUNCTION
        DO 1005 A = 1.NSP
        IF (EXIST(A).LT.0.5)
                            GOTO 1005
        L = V(A)
        LR = V(A)
        XLNLA = TWOVAR (LNLAT, AGE(A), LR)
        LAI(A)
                 = EXP(XLNLA) * 1.E-4
        YFLVS(A)
                 = TWOVAR (YFRLVT, AGE(A), LR)
1005
        CONTINUE
1012
        CONTINUE
```

```
***
     STEM AREA ***
        DO 950 A = 1,NSP
                                GOTO 950
        IF (EXIST(A).LT.0.5)
        SAI(A) = (WST(A) + WDST(A)) * SSTA * 1.E-4
        IF (SAI(A).LT.1.E-6)
                            THEN
          TYPE 5001,A
5001
          FORMAT (' SPECIES ', 15, ' WITH SAI = 0 ')
          GOTO 950
        ENDIF
        YFST(A) = WDST(A) / (WDST(A) + WST(A))
950
        CONTINUE
***
     EAR AREA
                     ***
   EAR AREA INDEX (DETERMINED BY THE ABOVEGROUND BIOMASS AT ANTHESIS)
      DO 148 A = 1, NSP
         L = V(A)
         LR= V(A)
                                 GOTO 148
         IF (EXIST(A).LT.0.5)
         IF (EARATA(A).GT.1.E-6)
                                 GOTO 149
         IF (DVS(A).LT.0.5)
                                 GOTO 148
         EARATA(A) = EARSUR(L) * OGBM(A) * 1.E-5
149
         CONTINUE
         EAI(A) = EARATA(A) * AFGEN(EARGRT, DVS(A))
         YFEAR(A) = 1. - TWOVAR(GFET, AGE(A), LR)
148
         CONTINUE
***
      ***
***
      BOUNDARY HEIGHTS SEPARATING
***
                THE CANOPY LAYERS
                                                           ***
***
                                                           ***
      ______
***
     NUMBER OF DISTINGUISHED CANOPY LAYERS
PARAM CLPERL = 12., MINCL = 12., MAXCL = 12.
     XLAIT = 0.
        DO 8000 A = 1, NSP
        XLAIT = XLAIT + LAI(A)
8000
        CONTINUE
      XNCL = LIMIT (MINCL, MAXCL, XLAIT * CLPERL)
              = XNCL
     BOUNDARIES OF CANOPY LAYERS
   HEIGHT DEVELOPMENT IS INTRODUCED AS A FORCING FUNCTION ("HEITB")
     MAXHEI = 0.
        DO 7000 A = 1, NSP
        LR = V(A)
        HEI(A) = TWOVAR(HEITB, AGE(A), LR)
        IF (HEI(A).GT.MAXHEI) MAXHEI = HEI (A)
7000
        CONTINUE
     IF (MAXHEI.LT.1.E-3)
                          THEN
        TYPE 4997, MAXHEI
4997
        FORMAT (' MAXHEI = ',F10.4)
        MAXHEI = 1.E-3
     ENDIF
    UPPER LIMITS ("ULCL") OF THE NCL CANOPY LAYERS (CM ABOVE THE GROUND);
    THE CHOSEN LAYERS HAVE IDENTICAL THICKNESS
     CALL STRATA (MAXHEI, NCL, ULCL)
```

```
***
                                                      ***
***
                                OF THE
                                                      ***
          DISTRBITION
***
                     INDICES OVER
                                                      ***
          AREA
***
          THE
                   CANOPY
                                 LAYERS
                                                      ***
***
    THE POTENTIAL EXTINCTION COEFFICIENT OF LEAVES IS CORRECTED
*
    TO ACCOUNT FOR THE STRONG CLUSTERING OF LEAVES THAT YOUNG
*
    PLANT EXHIBIT
        DO 530 A = 1,NSP
        L = V(A)
        KL(L) = PKL(L) * AFGEN(KLREDT, DVS(A))
530
        CONTINUE
        DO 981 K = 1,NCL
        LAIL(K) = 0.
        ECDIF(K) = 0.
981
        CONTINUE
     DISTRIBUTION OF LEAF AREA
     DISTRIBUTION OF THE TOTAL LEAF AREA
     CALL VERDI2 (NSP, DNSP, V, EXIST, ...
                  NCL, HEI, ULCL,...
                  LAI, KL, DISPA1,...
                  LAID, LAIL, ECDIF, ...
                  CHECK1, CHECK2, CHECK3)
     DERIVED DISTRIBUTION OF THE GREEN LEAF AREA
     CALL YELDI1 (NSP, NCL, LAI, LAID, YFLVS)
***
     DISTRIBUTION OF STEM AREA
     DISTRIBUTION OF THE TOTAL STEM AREA
     CALL VERDI2 (NSP, DNSP, V, EXIST, ...
                  NCL, HEI, ULCL, ...
                  SAI, KLSTEM, DISPA2,...
                  SAID, LAIL, ECDIF, ...
                  CHECK4, CHECK5, CHECK6)
     DERIVED DISTRIBUTION OF THE GREEN STEM AREA
     CALL YELDI1 (NSP, NCL, SAI, SAID, YFST)
     IF (EAASWI.LT.0.5) GOTO 9876
***
     DISTRIBUTION OF EAR AREA
     DISTRIBUTION OF THE TOTAL EAR AREA
     CALL VERDI2 (NSP, DNSP, V, EXIST, ...
                  NCL, HEI, ULCL, ...
                  EAI, KLEAR, DISPA3, ...
                  EAID, LAIL, ECDIF, ...
                  CHECK7, CHECK8, CHECK9)
     DERIVED DISTRIBUTION OF THE GREEN EAR AREA
     CALL YELDI2 (NSP, NCL, EAID, YFEAR)
        DO 4869 A = 1.NSP
        XEAI(A) = EAI(A)
4869
        CONTINUE
        DO 4870 A = 1,NSP*NCL
        STORE(A) = EAID(A)
4870
        CONTINUE
************************************
         DAILY GROSS
                                   PRODUCTION
*************************************
9876
       CONTINUE
***
     ACTUAL VALUES OF AMAX
```

```
TRAMAX = AFGEN (TRAMAT, EAVT)
       DO 1710 A=1,NSP
       L = V(A)
             = AFGEN (SRAMAT, DVS(A))
       SRAMAX
       AMAX(L) = PAMAX(L) * TRAMAX * SRAMAX
1710
       CONTINUE
***
    DAILY GROSS PRODUCTION
    GASSP, DUM, DAYL, IRR, INST1, FRDFD, FRDR = ...
    DAYASS (DAY, DTR, LAT, NCL, NSP, DNSP, V, STPSWI, EAPSWI, ...
           LAID, SAID, EAID, LAIL, ECDIF, KL, KLSTEM, KLEAR, ...
           AMAX, SAMAX, EAMAX, EFF, SEFF, EEFF)
**************************
       DYNAMICS OF DRY MATTER
*************************
***
     ***
***
     MAINTENANCE RESPIRATION
                                             ***
***
     ***
   MAINTENANCE RESPIRATION IS SUBTRACTED FROM THE GROSS PRODUCTION
    TEMR = Q10 ** (0.1 * TMPA - 1.5)
       DO 5000 A = 1, NSP
       XMRO = WLVS(A) * BMRCLV * AFGEN (LVRRT.DVS(A)) + ...
             WST(A) *
                     BMRCST
             WRT(A) * BMRCRT
             WGR(A) * BMRCGR
       RMNT
             = AMIN1 (TEMR * XMRO, GASSP(A) )
       FCHN (A) = GASSP (A) - RMNT
5000
       CONTINUE
20000
       CONTINUE
       IF ((GROWTH+ARRIVE).LT.0.5) GOTO 7020
***
    ***
***
    ALLOCATION
                     OF NET PRODUCTION
***
     TO THE DIFFERENT
                                  ORGANS AND
                                                      ***
***
               TRANSFORMATION
                                       INTO
                                                      ***
***
                                                      ***
                    DRY MATTER;
***
       TRANSFORMATION OF LIVE
                                                      ***
***
                DEAD DRY MATTER
                                                      ***
    ***
    RATES DRY MATTER ACCUMULATION IN LEAVES, STEMS, GRAINS, ROOTS
       DO 70 A = 1, NSP
       L = V(A)
       LR = V(A)
       IF (DAY.LE.APPEAR(L)-2)
                            GOTO 70
    ROOTS AND SHOOT ***
***
               TWOVAR (FSHTB, DVS(A), LR)
       XGRRT
               FCHN(A) * (1.- FSH) * EFCRT + ...
               PLOP(A) * IWRT(L) * COR(A) * DFAC
               WRT(A) * AFGEN(DRRTB, AGE(A))
       DRRT
       GRRT(A) = XGRRT - DRRT
    WRT
              = INTGRL (0., GRRT, 12)
       GSHOOT = FCHN(A) * FSH
    LEAVES
           ***
               = TWOVAR (FLVST, DVS(A), LR)
       FLVS
               = GSHOOT * FLVS * EFCLVS + ...
       XGRLVS
                PLOP(A) * IWLVS(L) * COR(A) * DFAC
       DRLVS(A) = WLVS(A) * TWOVAR(DRLVTB, AGE(A), LR)
       GRLVS (A) = XGRLVS - DRLVS (A)
```

```
INTGRL (0., GRLVS, 12)
     WI.VS
     WDLVS
                    INTGRL (0., DRLVS, 12)
     STEMS
        FST
                  = TWOVAR (FSTT, DVS(A), LR)
                  = GSHOOT * FST * EFCST + ..
        XGRST
                   PLOP(A) * IWST(L) * COR(A) * DFAC
                 = WST(A) * AFGEN (DRSTTB, AGE(A))
= XGRST - DRST(A)
        DRST(A)
        GRST(A)
                 = INTGRL (0., GRST, 12)
     WST
                 = INTGRL (0., DRST, 12)
     WDST
***
     GRAINS
                   1. - FLVS - FST
        GRGR (A) = GSHOOT * FGR * EFCGR
70
        CONTINUE
                 = INTGRL (0, GRGR, 12)
*************************
                GROWTH RECORDING
**********************
     IF (GROWTH.LE.O.5) GOTO 7020
   ABOVEGROUND BIOMASS ( KG/HA), G/PLANT )
        DO 7010 A = 1,NSP
                 = WLVS(A) + WDLVS(A) + WST(A) + WDST(A) + WGR(A)
        OGBM(A)
        IF (COR(A).LT.1.E-6) THEN
           TYPE 5002,A
5002
           FORMAT (' SPECIES ', 15, ' WITH COR = 0 ')
           GOTO 7010
        OGBMPP(A) = OGBM(A) / (10. * PSM * COR(A))
                 CONTINUE
        7010
   AVERAGE, VARIANCE AND COEFFICIENT OF VARIATION OF ABOVEGROUND
   BIOMASS PER PLANT
     AV,VAR,CV = EVAL1 (NSP,OGBMPP,COR)
   DELTA - LN - VALUES
     LNDVBM, DUM = LNDCAL (NSP, OGBMPP, COR)
7020
       CONTINUE
********************
           PARAMETER LIBRARY
************************
***
      PHYSIOLOGICAL PARAMETERS USED FOR DESCRIBING THE GROWTH
                  OF 12 SPRING WHEAT VARIETIES
*** DEVELOPMENTAL RATE ***
   VARIETY SPECIFIC FACTOR USED FOR DESCRIBING THE PREANTHESIS
   DEVELOPMENTAL RATE (OBTAINED BY FITTING THE EQUATION GIVEN BY
   VAN KEULEN(85) TO OBSERVED DURATIONS UNTIL ANTHESIS)
TABLE CULTP (1-12) = 1.4066, 1.4554, 1.4817, 1.3845, ...
1.4311, 1.3616, 1.4066, 1.3403, ...
1.3403, 1.3197, 1.3197, 1.3616
*** OPTICAL PROPERTIES ***
   EXTINCTION COEFFICIENT OF EARS AND STEMS
    (ESTIMATION ACCORDING TO DE GROOT (85) (PERS. COMMUNICATION)
TABLE KLEAR (1-12) = 12 * 0.4
TABLE KLSTEM (1-12) = 12 * 0.4
```

```
POTENTIAL EXTINCTION COEFFICIENT OF LEAVES
```

- (NOT FULLY REALIZED DURING THE FIRST DAYS OF GROWTH) TABLE PKL (1-12) = 12 * 0.60
- REDUCTION FACTOR FOR THE EXTINCTION COEFFICIENT OF LEAVES,
- ACCOUNTING FOR THE LEAF CLUSTERING EXHIBITED BY YOUNG PLANTS FUNCTION KLREDT = 0.,0.6, 0.1,1., 1.1,1.
- PHOTOSYNTHETIC CHARACTERISTICS ***
- POTENTIAL AMAX (KG CO2 / HA / H) AND LIGHT USE EFFICIENCY
- (KG CO2 / HA / H / (J / M2 / S) OF LEAVES

TABLE PAMAX (1-12) = 12 * 40.

TABLE EFF (1-12) = 12 *

- REDUCTION FACTOR OF AMAX ACCOUNTING FOR THE EFFECT
- OF SENESCENCE; VALUES AS FUNCTION OF THE DEVELOPMENTAL STATE FUNCTION SRAMAT = 0.1., 0.5, 1., 1., 0.5
- REDUCTION FACTOR OF AMAX ACCOUNTING
- FOR THE EFFECT OF TEMPERATUR; VALUES AS FUNCITION OF
- THE AVERAGE TEMPERATURE (C) DURING DAYLIGHT PERIOD FUNCTION TRAMAT = 0.,0., 10.,1., 25.,1., 35.,0.01
- AMAX (KG CO2 / HA / H) OF STEMS

TABLE SAMAX (1-12) = 12 * 20.

- INITIAL LIGHT USE EFFICIENCY OF STEMS
- (KG CO2 / HA / H / (J/S/CM**2)

TABLE SEFF (1-12) = 12 * 0.45

- AMAX (KG CO2 / HA / H) OF EARS TABLE EAMAX (1-12) = 12 * 20.
- INITIAL LIGHT USE FFICIENCY OF EARS
- (KG CO2 / HA / H / (J/S/CM**2)

TABLE EEFF (1-12) = 12 * 0.22

- DEVELOPMENT OF THE EAR AREA ***
- EAR SURFACE AT ANTHESIS DIVIDED BY ABOVEGROUND BIOMASS AT
- ANTHESIS (CM**2 / G)
- (LARGE VALUES BELONG TO GENOTYPES WITH AWNS, SMALL TO
- GENOTYPES WITHOUT AWNS)

TABLE EARSUR (1-12) = 8.64, 8.64, 15.98, 15.98, 8.64, 8.64, ... 8.64, 8.64, 15.98, 8.64, 8.64, 8.64

- GROWTH OF THE EAR AREA ((EARSURFACE/PLANT) / (EARSURFACE/PLANT AT
- ANTHESIS) AS FUNCTION OF THE DEVELOPMENT STATE

FUNCTION EARGRT = 0.,0.,0.4999,0.,0.5,1.,1.1,1.

- THICKNESS OF THE EAR LAYER BELONGING
- TO A SINGLE GENOTYPE (CM)

PARAM VEEL = 20.

- GREEN FRACTION OF THE EAR AREA ***
- VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE

67.,1.000, 103.,0.200, 107.,0.125, ... FUNCTION GFET, 1 = 0.1.112.,0.050, 117.,0.025, 130.,0., 131.,0.

FUNCTION GFET, 2 = 0.1.

65.,1.000, 103.,0.250, 107.,0.138, ... 112.,0.050, 117.,0.000, 130.,0., 131.,0 64.,1.000, 103.,0.327, 107.,0.319, ... 130.,0., 131.,0.

FUNCTION GFET, 3 = 0.1.112.,0.029, 117.,0.014, 130.,0., 131.,0.

FUNCTION GFET, 4.= 0.,1., 68.,1.000, 103.,0.422, 107.,0.352, ...

112.,0.205, 117.,0.000, 130.,0., 131.,0.

```
FUNCTION GFET, 5 = 0.1.
                                     66.,1.000,
                                                    103.,0.263, 107.,0.163, ...
                                    112.,0.050,
                                                    117.,0.050,
                                                                     130.,0., 131.,0.
FUNCTION GFET,
                    6 = 0.1.
                                     69.,1.000,
                                                    103.,0.200,
                                                                     107.,0.150,...
                                    112.,0.050,
                                                    117.,0.000,
                                                                     130.,0., 131.,0.
                                                    103.,0.200,
FUNCTION GFET.
                                     67.,1.000,
                                                                     107.,0.138, ...
                    7 = 0., 1.,
                                    112.,0.050,
                                                     117.,0.000,
                                                                     130.,0., 131.,0.
                                                    103.,0.225,
                                                                     107.,0.150, ...
FUNCTION GFET,
                    8 = 0., 1.,
                                     70.,1.000,
                                                                     130.,0., 131.,0.
                                    112.,0.050,
                                                    117.,0.000,
                    9 = 0., 1.,
FUNCTION GFET,
                                     70.,1.000,
                                                    103.,0.509,
                                                                     107.,0.375, ...
                                                    117.,0.007,
                                    112.,0.118,
                                                                     130.,0., 131.,0.
                                     71.,1.000,
FUNCTION GFET, 10.= 0.,1.,
                                                     103.,0.288,
                                                                     107.,0.188, ...
                                    112.,0.113,
                                                     117.,0.000,
                                                                     130.,0., 131.,0.
FUNCTION GFET, 11.= 0.,1.,
                                     71.,1.000,
                                                     103.,0.375,
                                                                     107.,0.213, ...
                                    112.,0.075,
                                                     117.,0.000,
                                                                     130.,0., 131.,0.
                                     69.,1.000,
FUNCTION GFET, 12.= 0.,1.,
                                                    103.,0.238,
                                                                     107.,0.163, ...
                                    112.,0.100, 117.,0.000, 130.,0., 131.,0.
*** RELATIVE DYING RATES OF LEAVES ***
     VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE
FUNCTION DRLVTB, 1 = 0.0., 66.0., 67.0.024, 102.0.024, ...
           103.,0.038, 106.,0.038, 107.,0.197, 111.,0.197, ...
112.,0.392, 116.,0.392, 117.,0.452, 131.,0.452
FUNCTION DRLVTB, 2:= 0.,0., 64.,0., 65.,0.033, 102.,0.033, ...
103.,0.092, 106.,0.092, 107.,0.234, 111.,0.234, ...
112.,0.818, 116.,0.818, 117.,0.818, 131.,0.818
FUNCTION DRLVTB, 3.= 0.,0., 63.,0., 64.,0.045, 102.,0.045, ...
           103.,0.045, 106.,0.045, 107.,0.156, 111.,0.156, ...
112.,0.197, 116.,0.197, 117.,0.443, 131.,0.443
FUNCTION DRLVTB, 4.= 0.,0., 67.,0., 68.,0.038, 102.,0.038, ...
103.,0.075, 106.,0.075, 107.,0.139, 111.,0.139, ...
112.,0.838, 116.,0.838, 117.,0.838, 131.,0.838
FUNCTION DRLVTB, 5.= 0.,0., 65.,0., 66.,0.030, 102.,0.030, ...
           103.,0.077, 106.,0.077, 107.,0.178, 111.,0.178, ...
112.,0.356, 116.,0.356, 117.,0.412, 131.,0.412
FUNCTION DRLVTB, 6.= 0.,0., 68.,0., 69.,0.033, 102.,0.033, ...
103.,0.111, 106.,0.111, 107.,0.189, 111.,0.189, ...
112.,0.830, 116.,0.830, 117.,0.830, 131.,0.830
FUNCTION DRLVTB, 7.= 0.,0., 66.,0., 67.,0.038, 102.,0.038, ...
103.,0.168, 106.,0.168, 107.,0.197, 111.,0.197, ...
112.,0.810, 116.,0.810, 117.,0.810, 131.,0.810

FUNCTION DRLVTB, 8.= 0.,0., 69.,0., 70.,0.033, 102.,0.033, ...
           103.,0.118, 106.,0.118, 107.,0.189, 111.,0.189, ...
112.,0.830, 116.,0.830, 117.,0.830, 131.,0.830
FUNCTION DRLVTB, 9.= 0.,0., 69.,0., 70.,0.022, 102.,0.022, ...
           103.,0.134, 106.,0.134, 107.,0.164, 111.,0.164, ...
112.,0.381, 116.,0.381, 117.,0.412, 131.,0.412
FUNCTION DRLVTB, 10.= 0.,0., 70.,0., 71.,0.024, 102.,0.024, ...
           103.,0.087, 106.,0.087, 107.,0.165, 111.,0.165, ...
112.,0.850, 116.,0.850, 117.,0.850, 131.,0.850
FUNCTION DRLVTB, 11.= 0.,0., 70.,0., 71.,0.027, 102.,0.027, ...
103.,0.105, 106.,0.105, 107.,0.140, 111.,0.140, ...
112.,0.140, 116.,0.140, 117.,0.488, 131.,0.488

FUNCTION DRLVTB, 12.= 0.,0., 68.,0., 69.,0.030, 102.,0.030, ...
           103.,0.148, 106.,0.148, 107.,0.234, 111.,0.234, ...
112.,0.818, 116.,0.818, 117.,0.818, 131.,0.818
*** RELATIVE DYING RATE OF ROOTS ***
     VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE
FUNCTION DRRTB = 0.,0.,
                                                        68.,0.0061, 102.,0.0061,...
                                       67.,0.,
                     103.,0.0206,
                                      106.,0.0206, 107.,0.037, 111.,0.037, ...
                     112.,0.073,
                                      131.,0.073
*** RELATIVE DYING RATE OF STEMS ***
     VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE
FUNCTION DRSTTB- 0.,0.,
                                                         68.,0.0076, 102.,0.0076,...
                                       67.,0.,
                     103.,0.0258, 106.,0.0258, 107.,0.047, 111.,0.047, ...
                                       131.,0.091
                     112.,0.091,
```

```
*** DEVELOPMENT OF PLANT HEIGHT ***
    VALUES AS FUNCTION OF THE NUMBER OF DAYS AFTER EMERGENCE
FUNCTION HEITB, 1. = 0., 5.,
                               40.,34.,
                                         55.,64.,
                                                   72.,89.,
                                                              130.,73.
                                         55.,56.,
FUNCTION HEITB, 2 \cdot = 0., 5.,
                               40.,30.,
                                                    72.,81.,
                                                              130.,63.
                               40.,37.,
                                         55.,66.,
                                                   72.,91.,
FUNCTION HEITB, 3. = 0., 5.,
                                                              130.,78.
FUNCTION HEITB,
                               40.,32.,
                4. = 0., 5.,
                                         55.,54.,
                                                   72.,81.,
                                                              130.,66.
FUNCTION HEITB,
                 5. = 0., 5.,
                               40.,32.,
                                         55.,58.,
                                                   72.,81.,
                                                              130.,70.
                               40.,31.,
FUNCTION HEITB,
                 6. = 0., 5.,
                                         55.,58.,
                                                   72.,97.,
                                                              130.,82.
FUNCTION HEITB,
                 7. = 0., 5.,
                               40.,34.,
                                         55.,58.,
                                                   72.,82.,
                                                              130.,70.
                                         55.,55.,
FUNCTION HEITB, 8. = 0., 5.,
                               40.,26.,
                                                   72.,92.,
                                                              130.,74.
                               40.,34.,
                                         55.,57.,
                                                   72.,88.,
FUNCTION HEITB, 9 \cdot = 0 \cdot, 5 \cdot,
                                                              130.,74.
FUNCTION HEITB, 10. = 0., 5.,
                               40.,30.,
                                         55.,55.,
                                                   72.,89.,
                                                              130.,69.
FUNCTION HEITB, 11. = 0., 5.,
                               40.,28.,
                                         55.,59.,
                                                   72.,94.,
                                                              130.,77.
FUNCTION HEITB, 12. = 0., 5.,
                               40.,27.,
                                         55.,58.,
                                                   72.,93.,
                                                              130.,79.
*** MAINTENANCE RESPIRATION ***
    "Q10-PARAMTER"
PARAM Q10 = 2.
*** RELATIVE RESPIRATION RATES OF LEAVES, STEMS, ROOTS, GRAINS ***
PARAM BMRCLV = 0.03, BMRCST = 0.015, BMRCRT = 0.01, BMRCGR = 0.01
    REDUCTION FACTOR ACCOUNTING FOR THE EFFECT OF SENESCENCE ON THE
    RESPIRATION RATE OF LEAVES; VALUES AS FUNCTION OF THE
    DEVELOPMENTAL STATE
FUNCTION LVRRT = 0.,1., 0.5,1., 0.5001,0.5, 1.1,0.5
*** GROWTH EFFICIENCY ***
PARAM EFCLVS = 0.68, EFCST = 0.66, EFCRT = 0.69, EFCGR = 0.70
*** DRY MATTER ALLOCATION ***
    FRACTION OF NET ASSIMILATION ALLOCATED TO THE LEAVES,
    DIVIDED BY THE FRACTION ALLOCATED TO THE SHOOT
    VALUES AS FUNCTION OF THE DEVELOPMENTAL STATE
FUNCTION FLVST, 1.= 0.,0.61, 0.10671,0.61, ...
      0.10672,0.65,
                     0.14981,0.65, 0.14982,0.54,
                                                    0.22581,0.54, ...
      0.22582,0.47,
                     0.26921,0.47,
                                    0.26922,0.32,
                                                   0.31265,0.32, ...
                     0.50001,0.,
      0.40000,0.04,
                                    1.,0.
FUNCTION FLVST, 2.=
                     0.,0.65, 0.11041,0.65, ...
                     0.15501,0.66, 0.15502,0.56,
      0.11042,0.66,
                                                    0.23361,0.56, ...
      0.23362,0.42,
                     0.27851,0.42,
                                    0.27852,0.32,
                                                   0.32350,0.32, ...
                     0.50001,0.,
      0.40000,0.04,
                                    1.,0.
FUNCTION FLVST, 3.=
                     0.,0.64, 0.11241,0.64,
      0.11242,0.58,
                     0.15781,0.58, 0.15782,0.54,
                                                    0.23781,0.54, ...
      0.23782,0.42,
                     0.28361,0.42, 0.28362,0.32,
                                                   0.32394,0.32, ...
                     0.50001,0.,
      0.40000,0.04,
                                    1.,0.
FUNCTION FLVST, 4.=
                     0.,0.59, 0.10511,0.59,
      0.10512,0.65,
                     0.14741,0.65, 0.14742,0.56,
                                                   0.22221,0.56, ...
      0.22222,0.55,
                     0.26501,0.55,
                                    0.26502,0.32,
                                                   0.30774,0.32, ...
      0.40000,0.04,
                     0.50001,0.,
                                    1.,0.
                     0.,0.62, 0.10861,0.62,
FUNCTION FLVST, 5.=
                     0.15241,0.63, 0.15242,0.53,
      0.10862,0.63,
                                                   0.22971,0.53, ...
      0.22972,0.42,
                     0.27391,0.42,
                                    0.27392, 0.32, 0.31810, 0.32, ...
                     0.50001,0.,
      0.40000,0.04,
                                    1.,0.
 FUNCTION FLVST, 6.=
                     0.,0.60, 0.10331,0.60,
      0.10332,0.65,
                     0.14501,0.65,
                                    0.14502,0.54,
                                                   0.21851,0.54, ...
                                    0.26062,0.32, 0.30265,0.32, ...
      0.21852,0.44,
                     0.26061,0.44,
      0.40000,0.04,
                     0.50001,0.,
                                    1.,0.
```

```
FUNCTION FLVST, 7.=
                     0.,0.60, 0.10671,0.60,
      0.10672,0.62,
                     0.14981,0.62,
                                    0.14982,0.51,
                                                    0.22581,0.51, ...
      0.22582,0.57,
                                    0.26922,0.32,
                     0.26921,0.57,
                                                    0.31265,0.32, ...
      0.40000,0.04,
                                     1.,0.
                     0.50001,0.,
                     0.,0.65, 0.10171,0.65,
FUNCTION FLVST, 8.=
      0.10172,0.68,
                     0.14271,0.68, 0.14272,0.59,
                                                    0.21511,0.59, ...
                     0.25651,0.53,
      0.21512,0.53,
                                    0.25652,0.32,
                                                    0.29792,0.32, ...
                                  1.,0.
      0.40000,0.04,
                     0.50001,0.,
FUNCTION FLVST, 9.=
                     0.,0.64, 0.10171,0.64,
                     0.14271,0.64, 0.14272,0.55,
      0.10172,0.64,
                                                    0.21511,0.55, ...
      0.21512,0.36,
                     0.25651,0.36, 0.25652,0.32,
                                                    0.29792,0.32, ...
      0.40000,0.04,
                     0.50001,0.,
                                   1.,0.
FUNCTION FLVST, 10 .=
                     0.,0.65, 0.10011,0.65,
      0.10012,0.70,
                     0.14051,0.70, 0.14052,0.61,
                                                    0.21181,0.61, ...
      0.21182,0.46,
                     0.25261,0.46, 0.25262,0.32,
                                                    0.29334,0.32, ...
                                   1.,0.
      0.40000,0.04,
                     0.50001,0.,
                     0.,0.62, 0.10011,0.62,
FUNCTION FLVST, 11.=
                     0.14051,0.71, 0.14052,0.61,
                                                    0.21181,0.61, ...
      0.10012,0.71,
                     0.25261,0.48,
      0.21182,0.48,
                                    0.25262,0.32,
                                                    0.29334,0.32, ...
                     0.50001,0.,
      0.40000,0.04,
                                   1.,0.
                     0.,0.64, 0.10331,0.64,
FUNCTION FLVST,12.=
                     0.14501,0.67, 0.14502,0.57,
      0.10332,0.67,
                                                    0.21851,0.57, ...
      0.21852,0.43,
                     0.26061,0.43, 0.26062,0.32,
                                                    0.30265,0.32, ...
      0.40000,0.04,
                     0.50001,0.,
                                   1..0.
    FRACTION OF NET ASSIMILATION ALLOCATED TO THE
                                                     STEMS,
    DIVIDED BY THE FRACTION ALLOCATED TO THE SHOOT
    VALUES AS FUNCTION OF THE DEVELOPMENTAL STATE
FUNCTION FSTT, 1.= 0.,0.39, 0.10671,0.39,
      0.10672,0.35,
                     0.14981,0.35, 0.14982,0.46,
                                                    0.22581,0.46, ...
      0.22582,0.53,
                     0.26921,0.53,
                                                    0.31265,0.68, ...
                                     0.26922,0.68,
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
                     0.,0.35, 0.11041,0.35, ...
FUNCTION FSTT, 2.=
                                                    0.23361,0.44, ...
      0.11042,0.34,
                     0.15501,0.34, 0.15502,0.44,
                     0.27851,0.58,
      0.23362,0.58,
                                    0.27852,0.68,
                                                    0.32350,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
                     0.,0.36, 0.11241,0.36,
0.15781,0.42, 0.15782,
FUNCTION FSTT, 3.=
      0.11242,0.42,
                                                    0.23781,0.46, ...
                                    0.15782,0.46,
      0.23782,0.58,
                     0.28361,0.58,
                                     0.28362,0.68,
                                                    0.32394,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
FUNCTION FSTT, 4.=
                     0.,0.41, 0.10511,0.41,
      0.10512,0.35,
                                    0.14742,0.44,
                                                    0.22221,0.44, ...
                     0.14741,0.35,
      0.22222,0.45,
                     0.26501,0.45,
                                     0.26502,0.68,
                                                    0.30774,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
                     0.,0.38, 0.10861,0.38,
FUNCTION FSTT, 5.=
      0.10862,0.37,
                     0.15241,0.37,
                                    0.15242,0.47,
                                                    0.22971,0.47, ...
      0.22972,0.58,
                     0.27391,0.58,
                                    0.27392,0.68,
                                                    0.31810,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
FUNCTION FSTT, 6.=
                     0.,0.40, 0.10331,0.40,
                     0.14501,0.35,
                                    0.14502,0.46,
      0.10332,0.35,
                                                    0.21851,0.46, ...
      0.21852,0.56,
                     0.26061,0.56,
                                     0.26062,0.68,
                                                    0.30265,0.68, ...
                     0.50001,0.,
      0.40000,0.96,
                                     1.,0.
FUNCTION FSTT, 7.=
                     0.,0.40, 0.10671,0.40,
      0.10672,0.38,
                                                    0.22581,0.49, ...
                     0.14981,0.38,
                                     0.14982,0.49,
      0.22582,0.43,
                     0.26921,0.43,
                                     0.26922,0.68,
                                                    0.31265,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                     1.,0.
FUNCTION FSTT, 8.=
                     0.,0.35, 0.10171,0.35,
      0.10172,0.32,
                     0.14271,0.32,
                                    0.14272,0.41,
                                                    0.21511,0.41, ...
      0.21512,0.47,
                     0.25651,0.47, 0.25652,0.68,
                                                    0.29792,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
                                   1.,0.
FUNCTION FSTT, 9.=
                     0.,0.36, 0.10171,0.36,
      0.10172,0.36,
                     0.14271,0.36, 0.14272,0.45,
                                                    0.21511,0.45, ...
      0.21512,0.64,
                     0.25651,0.64, 0.25652,0.68,
                                                    0.29792,0.68, ...
                                   1.,0.
      0.40000,0.96,
                     0.50001,0.,
                     0.,0.35, 0.10011,0.35,
FUNCTION FSTT, 10.=
      0.10012,0.30,
                     0.14051,0.30, 0.14052,0.39,
                                                    0.21181,0.39, ...
      0.21182,0.54,
                                    0.25262,0.68,
                     0.25261,0.54,
                                                    0.29334,0.68, ...
      0.40000,0.96,
                     0.50001,0.,
```

```
FUNCTION FSTT, 11.=
                      0.,0.38, 0.10011,0.38,
      0.10012,0.29,
                      0.14051,0.29, 0.14052,0.39,
                                                      0.21181,0.39, ...
      0.21182,0.52,
                      0.25261,0.52, 0.25262,0.68,
                                                     0.29334,0.68, ...
      0.40000,0.96,
                      0.50001,0.,
                                     1.,0.
                      0.,0.36, 0.10331,0.36,
FUNCTION FSTT ,12.=
                                                      0.21851,0.43, ...
                      0.14501,0.33, 0.14502,0.43,
      0.10332,0.33,
      0.21852,0.57,
                      0.26061,0.57, 0.26062,0.68,
                                                      0.30265,0.68, ...
      0.40000,0.96,
                      0.50001,0.,
                                    1.,0.
    FRACTION OF NET ASSIMILATION ALLOCATED TO THE SHOOT.
    DEPENDENT ON THE DEVELOPMENTAL STATE
FUNCTION FSHTB, 1.= 0.,0.5, 0.25,0.8, 0.5,1., 1.,1.
FUNCTION FSHTB, 12.= 0.,0.5, 0.25,0.8, 0.5,1., 1.,1.
    SPECIFIC LEAF AREA ***
    VALUES AS FUNCTION OF THE DEVELOPMENTAL STATE
     (M**2 / KG)
FUNCTION SLATB, 1 = 0.,21.570,
                                 1.,
                                          21.570
FUNCTION SLATB, 2.= 0.,21.848,
FUNCTION SLATB, 3.= 0.,20.786,
FUNCTION SLATB, 4.= 0.,23.348,
                                 1.,
                                          21.848
                                  1.,
                                          20.786
                                  1.,
                                          23.348
FUNCTION SLATB, 5 .= 0.,22.227,
                                          22.227
                                  1.,
FUNCTION SLATB, 6 = 0.,21.459,
                                          21.459
FUNCTION SLATB, 7.= 0.,22.457,
                                          22.457
FUNCTION SLATB, 8.= 0.,22.041,
FUNCTION SLATB, 9.= 0.,20.396,
FUNCTION SLATB, 10.= 0.,21.478,
                                  1.,
                                          22,041
                                  1.,
                                          20.396
                                  1.,
                                          21.478
FUNCTION SLATB, 11.= 0.,21.124,
                                          21.124
                                  1.,
FUNCTION SLATB, 12.= 0., 22.758,
                                          22.758
     SPECIFIC STEM AREA ***
     (M**2 / KG)
PARAM SSTA = 2.5
METHOD RECT
************************************
                   WEATHER
                                           DATA
*************************
    DAILY GLOBAL RADIATION (J/CM**2/D)
FUNCTION DTRT=
                96.,1873., 97.,1593., 98., 834., 99., 902.,100.,
                       0.,102., 0.,103.,2165.,104.,2124.,105.,2083.,...
               106.,2070.,107.,1928.,108.,1894.,109., 411.,110.,1166.,...
               111.,1631.,112.,2159.,113., 959.,114.,2097.,115.,1341.,...
               116., 314.,117., 877.,118.,1847.,119., 367.,120., 629.,...
               121.,2105.,122.,2132.,123.,2345.,124.,1979.,125.,2227.,...
               126.,2589.,127.,1696.,128.,1363.,129., 957.,130.,2486.,...
               131.,2774.,132.,2701.,133.,2627.,134.,2691.,135.,2767.,...
               136.,2656.,137.,2089.,138.,2233.,139.,1998.,140.,2601.,...
               141.,2004.,142.,2567.,143.,2778.,144.,1943.,145., 833.,...
               146.,1580.,147.,2040.,148.,1671.,149.,1623.,150.,1326.,...
               151.,2310.,152.,1336.,153.,1319.,154.,2324.,155., 628.,...
               156.,1737.,157.,2798.,158.,2594.,159., 970.,160.,1885.,...
               161.,2365.,162., 949.,163.,2053.,164.,2584.,165.,2214.,...
               166.,1707.,167.,1485.,168., 870.,169.,1383.,170.,1147.,...
               171., 667.,172.,1521.,173.,1369.,174.,1398.,175.,1543.,...
               176.,1355.,177.,1892.,178.,1720.,179.,1735.,180., 799.,...
               181.,1573.,182.,2212.,183.,1065.,184.,1542.,185.,1652.,...
               186., 878., 187., 1329., 188., 2219., 189., 1007., 190., 635.,...
               191., 779.,192., 428.,193., 618.,194.,1194.,195.,1348.,...
               196.,1017.,197.,1735.,198.,1031.,199.,1263.,200., 753.,...
               201., 389.,202., 655.,203., 540.,204.,2615.,205.,2592.,...
206.,2141.,207.,2414.,208.,2153.,209.,1667.,210.,1700.,...
```

```
211.,2282.,212., 556.,213.,2290.,214.,2044.,215.,2073.,...
               216.,1507.,217.,1480.,218.,1393.,219.,1296.,220.,1455.,...
               221.,1799.,222.,1814.,223.,1563.,224.,1264.,225.,1238.,...
               226.,1164.,227., 724.,228.,1989.,229., 928.,230.,1705.,...
               231.,1045.,232.,1372.,233.,1115.,234.,1364.,235.,1229.,...
               236.,1073.,237., 579.,238.,1895.,239.,2087.,240.,1819.,...
               241., 704.,242., 928.,243., 820.,244., 779.,245.,1572.
    DAILY TEMPERATUR MAXIMA ( C)
FUNCTION MXTT=
                 96.,10.9, 97.,11.8, 98., 8.0, 99., 7.4,100., 7.9
                                                                              ...WAG1980
               101., 9.3,102.,13.2,103.,15.8,104.,19.3,105.,21.6
                                                                              ...WAG1980
               106.,22.3,107.,22.3,108.,18.6,109., 9.5,110.,10.1
                                                                              ...WAG1980
               111., 9.1,112.,10.8,113., 8.5,114.,11.1,115.,12.1
                                                                              ...WAG1980
               116., 7.8,117.,12.5,118.,14.1,119., 9.1,120.,10.1
                                                                              ...WAG1980
               121.,12.1,122.,19.5,123.,14.9,124.,13.9,125.,14.1
                                                                              ...WAG1980
               126.,13.1,127.,16.7,128.,13.1,129.,10.0,130.,14.9
                                                                              ...WAG1980
               131.,17.9,132.,21.0,133.,23.6,134.,21.1,135.,20.1
                                                                              ...WAG1980
               136.,19.3,137.,18.4,138.,20.5,139.,22.9,140.,24.6
                                                                              ...WAG1980
                                                                              ...WAG1980
               141.,24.2,142.,22.6,143.,15.1,144.,14.1,145.,13.2
               146.,15.7,147.,18.8,148.,20.7,149.,19.6,150.,17.8
                                                                              ...WAG1980
               151.,15.7,152.,17.2,153.,18.6,154.,19.5,155.,18.6
                                                                              ...WAG1980
                                                                              ...WAG1980
               156.,23.5,157.,27.0,158.,27.2,159.,17.8,160.,19.5
                161.,24.1,162.,20.0,163.,22.3,164.,23.5,165.,26.9
                                                                              ...WAG1980
               166.,28.4,167.,20.8,168.,19.8,169.,19.3,170.,18.2
                                                                              ...WAG1980
                171.,17.7,172.,16.3,173.,17.1,174.,15.9,175.,17.2
                                                                              ...WAG1980
                                                                              ...WAG1980
                176.,15.8,177.,17.8,178.,17.7,179.,16.7,180.,13.6
               181.,16.4,182.,17.7,183.,18.3,184.,18.8,185.,18.4
                                                                              ...WAG1980
               186.,16.1,187.,17.9,188.,20.9,189.,18.0,190.,16.4
                                                                              ...WAG1980
               191.,16.0,192.,16.5,193.,14.0,194.,16.2,195.,16.8
                                                                              ...WAG1980
               196.,18.0,197.,17.7,198.,15.0,199.,16.4,200.,17.3
                                                                              ...WAG1980
               201.,16.5,202.,17.6,203.,14.5,204.,20.0,205.,23.9
                                                                              ...WAG1980
               206.,22.8,207.,26.9,208.,29.1,209.,24.8,210.,24.5
                                                                              ...WAG1980
               211.,26.5,212.,20.4,213.,23.9,214.,25.7,215.,28.3
                                                                              ...WAG1980
                                                                              ...WAG1980
               216.,28.8,217.,23.5,218.,21.1,219.,21.4,220.,23.0
                                                                              ...WAG1980
               221.,21.9,222.,20.0,223.,21.1,224.,23.9,225.,18.0
               226.,18.9,227.,21.3,228.,26.5,229.,22.7,230.,23.3
                                                                              ...WAG1980
                231.,22.5,232.,21.0,233.,22.5,234.,19.4,235.,16.9
                                                                              ...WAG1980
                236.,15.1,237.,13.8,238.,18.6,239.,22.2,240.,24.0
                                                                              ...WAG1980
               241.,18.8,242.,21.7,243.,18.4,244.,17.3,245.,19.1
                                                                              ...WAG1980
               246.,20.4,247.,22.3,248.,17.6,249.,18.6,250.,20.7
    DAILY TEMPERATURE MINIMA ( C)
FUNCTION MNTT=
                 96.,-3.5, 97.,-2.2, 98.,-1.4, 99., 1.5,100., 1.8
                                                                              ...WAG1980
                101., 1.9,102.,-2.2,103., 3.1,104., 7.0,105., 8.8
                                                                              ...WAG1980
                106., 3.1,107., 3.2,108., 4.9,109., 1.3,110., 1.8
                                                                              ...WAG1980
                111., 0.9,112., 0.5,113., 0.0,114.,-2.4,115., 4.5
                                                                              ...WAG1980
               116., 4.2,117., 0.6,118.,-0.8,119., 2.5,120., 2.8
121., 4.4,122., 7.9,123., 6.8,124., 3.7,125., 2.9
                                                                              ...WAG1980
                                                                              ...WAG1980
               126., 3.7,127., 3.2,128., 4.7,129., 1.4,130., 0.9
                                                                              ...WAG1980
               131., 2.9,132., 1.9,133.,10.1,134.,10.4,135., 9.3
                                                                              ...WAG1980
               136., 5.6,137., 2.0,138., 2.9,139., 7.4,140., 4.7
                                                                              ...WAG1980
               141., 5.6,142., 8.0,143., 5.5,144., 0.8,145., 8.7
146., 6.4,147., 5.8,148., 6.7,149., 6.8,150., 5.3
151., 3.8,152., 4.0,153., 5.5,154., 4.2,155., 7.1
156.,13.0,157., 7.1,158., 9.2,159., 7.7,160., 5.4
                                                                              ...WAG1980
                                                                              ...WAG1980
                                                                              ...WAG1980
                                                                              ...WAG1980
               161., 9.4,162.,14.2,163.,12.1,164.,10.8,165.,16.5
                                                                              ...WAG1980
               166.,15.4,167.,12.8,168.,11.5,169.,11.1,170.,10.3
                                                                              ...WAG1980
               171., 9.2,172., 9.5,173., 9.8,174., 9.3,175., 9.6
176.,10.0,177., 7.9,178., 4.0,179., 7.3,180., 8.6
181., 9.5,182.,11.2,183.,11.0,184.,12.3,185.,12.2
                                                                              ...WAG1980
                                                                              ...WAG1980
                                                                              ...WAG1980
               186., 8.3,187.,10.6,188.,11.2,189.,14.3,190.,12.6
                                                                              ...WAG1980
               191.,11.8,192.,12.9,193.,11.8,194.,10.8,195.,10.5
                                                                              ...WAG1980
               196.,11.2,197.,10.8,198., 7.3,199., 7.2,200.,12.7 201.,14.0,202.,12.0,203., 7.7,204., 7.1,205.,12.2
                                                                              ...WAG1980
                                                                              ...WAG1980
```

206.,10.9,207.,11.2,208.,17.0,209.,14.1,210.,14.2

...WAG1980

...WAG1980

```
211.,17.0,212.,13.4,213.,12.5,214.,16.0,215.,12.6 ,
          216.,15.6,217.,13.7,218.,17.5,219.,15.8,220.,14.2
                                                    ...WAG1980
          221.,11.2,222., 6.8,223.,10.6,224.,14.3,225.,15.1 ,
                                                    ...WAG1980
          226.,12.8,227.,16.0,228.,15.1,229.,15.5,230.,16.4 ,
                                                    ...WAG1980
          231.,14.4,232.,13.2,233.,13.8,234.,12.9,235.,11.1 ,
                                                    ...WAG1980
          236., 9.4,237., 7.0,238., 3.0,239., 4.3,240., 6.4, 241.,10.5,242.,14.6,243.,13.3,244., 9.2,245., 7.0,
                                                    ...WAG1980
                                                     ...WAG1980
          246., 6.6,247.,10.5,248.,11.5,249.,11.5,250.,11.7
***********************************
******** OUTPUT AND RUN CONTROL ****************
*********************
NOSORT
TIMER FINTIM = 231., TIME = 126., DELT=1., PRDEL=1., OUTDEL=1.
PRINT OGBMPP(1-12)
END
STOP
**************************
                                                ****
****
          SUBROUTINES CALLED FROM
                             DYNAMIC
**************************
    SUBROUTINE STRATA (MAXHEI, NCL, ULCL)
SUBROUTINE CALCULATING THE BOUNDARY HEIGHTS SEPERATING THE
C
                                                        C
C
          CANOPY LAYERS; THE LAYERS HAVE EQUAL THICKNESS
                                                        C
C
                INPUT PARAMETERS:
                                                        C
C
            CANOPY HEIGHT
    MAXHET
                                                    [CM] C
          :
C
            NUMBER OF CANOPY LAYERS
C
                OUTPUT PARAMETERS:
                                                        C
С
          : UPPER LIMITS OF CANOPY LAYERS
IMPLICIT REAL(A-Z)
    INTEGER NCL, K
    DIMENSION ULCL (NCL+1)
    THK = MAXHEI / NCL
       DO 10 K = 1, NCL
      ULCL(K) = MAXHEI - (K-1) * THK
10
       CONTINUE
    ULCL(NCL+1) = 0.
    RETURN
    END
    SUBROUTINE VPRE1 (DNSP,A,C,Z,DISPA,DUM)
C
    SUBROUTINE WRITING AN ARRAY CONTAINING PARAMETERS AND/OR AUXILIARY
                                                        C
C
     VARIABLES USED FOR THE VERTICAL DISTRIBUTON OF A SURFACE TYPE;
                                                        C
    THE ARRAY PRODUCED BY "VPRE1" REFLECTS THE SITUATION THAT FOR ALL
C
                                                        C
C
    DESCRIBED GENOTYPES THE VERTICAL AREA DENSITY FUNCTION OF THE
                                                        C
C
    SURFACE IS GIVEN BY
                                                        C
           ( A * X**Z + A + C) / NORMALIZATION CONSTANT
                                                        C
C
    AND THAT ITS 3 PARAMETERS (A,C,Z) ARE IDENTICAL FOR ALL GENOTYPES
                                                        C
С
                INPUT PARAMETERS:
                                                        С
C
    DNSP
             DESCRIBED NUMBER OF GENOTYPES
                                                        C
C
    A,C,Z
             PARAMETERS CHARACTERIZING THE VERTICAL AREA DENSITY
                                                        С
С
             FUNCTION
                                                        C
С
                OUTPUT PARAMETERS:
                                                        C
С
    DISPA
             ARRAY CONTAINING PARAMETERSAND/OR AUXILIARY VARIABLES
                                                        C
C
             USED FOR THE VERTICAL DISTRIBUTION OF A SURFACE TYPE
                                                        C
```

```
IMPLICIT REAL (A-Z)
    INTEGER
            DNSP,A,G,COUNT
    DIMENSION DISPA (72)
    DIMENSION X (6)
    X(1)
         = 0.
    X(2)
         = 1. + C/A
         = 1. / (Z+1.)
    X(3)
         = X(2) - X(3)
    X(4)
    X(5)
         = Z + 1.
    X(6) = 0.
    COUNT = 0
       DO 15251 A = 1.DNSP
         DO 15252 G = 1,6
         COUNT = COUNT + 1
         DISPA(COUNT) = X(G)
15252
         CONTINUE
       CONTINUE
15251
    RETURN
    END
    SUBROUTINE VPRE2 (DNSP,D,DISPA,DUM)
SUBROUTINE WRITING AN ARRAY CONTAINING PARAMETERS AND/OR AUXILIARY
                                                             C
     VARIABLES USED FOR THE VERTICAL DISTRIBUTON OF A SURFACE TYPE;
                                                             С
    THE ARRAY PRODUCED BY "VPRE2" REFLECTS THE SITUATION THAT FOR ALL
C
                                                             C
С
    DESCRIBED GENOTYPES THE VERTICAL AREA DENSITY FUNCTION OF THE
                                                             C
    SURFACE IS GIVEN BY
                                                             С
С
                          `= X
              1 / D,
                                                             C
                       1-D
C
        Y
                                                             C
C
                         OTHERWIZE
                                                             C
    AND THAT ITS PARAMETER (D) IS IDENTICAL FOR ALL GENOTYPES
C
С
                  INPUT PARAMETERS:
                                                             С
С
     DNSP
             DESCRIBED NUMBER OF GENOTYPES
                                                             C
C
             PARAMETER CHARACTERIZING THE VERTICAL AREA DENSITY
                                                             С
              FUNCTION
                                                             С
С
                  OUTPUT PARAMETERS:
                                                             С
С
             ARRAY CONTAINING PARAMETERSAND/OR AUXILIARY VARIABLES
                                                             С
              USED FOR THE VERTICAL DISTRIBUTION OF A SURFACE TYPE
C
                                                             C
IMPLICIT REAL (A-Z)
     INTEGER A,G,COUNT,DNSP
     DIMENSION X(6)
     DIMENSION DISPA (72)
     X(1) = 1.
     X(2) = D
       DO 128 G = 3,6
       X(G) = 0.
128
       CONTINUE
    COUNT = 0
       DO 698 A = 1,DNSP
         DO 699 G = 1,6
          COUNT = COUNT + 1
         DISPA(COUNT) = X(G)
699
          CONTINUE
698
       CONTINUE
     RETURN
     END
```

```
SUBROUTINE CLFRAC (DISPA, L, LOWLIM, UPLIM, HEIGHT, TAI, CLAI)
C
      SUBROUTINE CALCULATING THE AREA INDEX OF THAT FRACTION OF A
                                                                 С
C
           SURFACE TYPE WHICH IS POSITIONED IN A CANOPY LAYER
                                                                 C
C
                   INPUT PARAMETERS:
                                                                 C
С
      DISPA: ARRAY CONTAINING PARAMETERS AND/OR AUXILIARY VARIABLES
                                                                 C
C
              USED FOR DESCRIBING THE VERTICAL DISTRIBUTION OF A
                                                                 C
С
                                                                 С
               SURFACE TYPE
С
              LIBRARY REFERENCE OF THE GENOTYPE
                                                                 С
С
      LOWLIM:
              LOWER BOUNDARY HEIGHT OF THE CONSIDERED CANOPY LAYER [CM]C
              UPPER BOUNDARY HEIGHT OF THE CONSIDERED CANOPY LAYER [CM]C
C
      UPLIM :
              PLANT HEIGHT OF THE GENOTYPE
C
            : TOTAL AREA INDEX OF THE SURFACE TYPE
                                                                 C
C
OUTPUT PARAMETERS:
C
                                                                 C
              AREA INDEX OF THAT FRACTION OF THE SURFACE TYPE WHICH
                                                                 С
C
      CLAI
С
               IS POSITIONED IN THE CANOPY LAYER
                                                                 C
IMPLICIT REAL(A-Z)
     INTEGER L, XADRES, XFUNC
     DIMENSION DISPA (72)
C
     CHOOSE THE DISTRIBUTION FUNCTION
     XADRES = (L-1) * 6 + 1
     XFUNC = DISPA(XADRES)
     IF (XFUNC.EQ.1) GOTO 88877
     DISTRIBUTION FUNCTION:
     Y = A - A * X**Z + C
     LOW = AMAX1 (0.,LOWLIM / HEIGHT)
     UP = AMIN1 (1., UPLIM / HEIGHT)
     IF (LOWLIM.GE.HEIGHT. OR.
        UP.
              LE.1.E-5
                        ) THEN
       CLAI = 0.
     ELSE
       XO = DISPA(XADRES+4)
       X1 = DISPA(XADRES+1) * (UP-LOW)
       X2 = DISPA(XADRES+2) * (UP ** XO - LOW ** XO)
       CLAI = (X1 - X2) / DISPA(XADRES+3) * TAI
     ENDIF
     GOTO 90909
88877 CONTINUE
     DISTRIBUTION FUNCTION:
C
C
С
               1 / D,
                        1-D
C
        Y
С
                           OTHERWIZE
C
     LIM1 = AMAX1 (0., HEIGHT - DISPA (XADRES+1))
     LIM2 = AMAX1 (0., HEIGHT - DISPA (XADRES+2))
     THICK = LIM2 - LIM1
     IF (TAI. LE. 1.E-6.
                        OR.
        THICK.LE. 1.E-6.
    1
                        OR.
    1
        UPLIM.LE. LIM1.
    1
        LOWLIM.GE.LIM2)
                           THEN
        CLAI = 0.
     ELSE
       XU = AMIN1 (UPLIM, LIM2)
       XL = AMAX1 (LOWLIM, LIM1)
       CLAI = (XU - XL) / THICK * TAI
     ENDIF
90909 CONTINUE
     RETURN
     END
     SUBROUTINE VERDI2 (NSP, DNSP, V, EXIST,
    1
                      NCL, HEI, ULCL,
                      AI, ECOF, DISPA,
    1
    1
                      AID, LAIL, ECDIF,
                      CHECK1, CHECK2, CHECK3)
    1
```

```
C
   SUBROUTINE DISTRIBUTING THE AREA INDEX OF A SURFACE TYPE OVER THE
                                                                   C
C
   CANOPY LAYERS; FOR EACH CANOPY LAYER, THE EXTINCTION CAPACITY AND
                                                                   C
      THE TOTAL AREA INDEX OF ALL CONTAINED SURFACES IS ENHANCED
                                                                   C
C
       CORRESPONDINGLY TO THE CONTRIBUTION OF THIS SURFACE TYPE
C
                                                                    C
INPUT PARAMETERS:
                                                                   C
C
C
               NUMBER OF GENOTYPES
                                                                    C
            :
C
     DNSP
               DESCRIBED NUMBER OF GENOTYPES
                                                                   C
C
               ARRAY LINKING THE ACTUAL REFERENCES OF THE GENOTYPES
                                                                    C
C
               TO THEIR LIBRARY REFERENCES
                                                                    C
                                                                    C
C
     NCL
               NUMBER OF CANOPY LAYERS
                                                                    C
C
     HET
               PLANT HEIGHTS OF THE GENOTYPES
C
     ULCL
               BOUNDARY HEIGHTS SEPRERATING THE CANOPY LAYERS
                                                                    C
            :
C
     ΑI
               AREA INDICES OF THE VARIOUS GENOTYPES
                                                                    C
C
     ECOF
               EXTINCTION COEFFICIENTS OF THIS SURFACE TYPE BELONGING
                                                                    C
C
               TO THE VARIOUS GENOTYPES
                                                                    C
C
     DISPA
               ARRAY CONTAINING PARAMETERSAND/OR AUXILIARY VARIABLES
                                                                    C
               USED FOR THE VERTICAL DISTRIBUTION OF A SURFACE TYPE
C
                                                                    C
C
               CONTAINS FOR EACH OF THE NCL CANOPY LAYERS THE
                                                                    C
     LAIL
C
               SUM OF AREA INDICES BELONGING TO ABSORBING SURFACES
                                                                    C
               (LEAVES, STEMS, EARS...) POSITIONED IN IT
                                                            [HA/HA]
                                                                    C
C
               AS LAIL, BUT THE CONTRIBUTING AREA INDICES ARE
С
                                                                    C
     ECDIF
C
               MULTIPLIED BY THE CORRESPONDING EXTINCTION
                                                                    C
                                                                   C
C
               COEFFICIENTS FOR DIFFUSE LIGHT
                                                            [HA/HA]
C
                    OUTPUT PARAMETERS:
                                                                    C
C
     ATD
               DISTRIBUTION OF THE TOTAL AREA INDEX OF THE CONSIDERED
                                                                    C
С
               SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS
                                                                    C
C
                                                                    C
               CONTAINS FOR EACH OF THE NCL CANOPY LAYERS THE
     LAIL
C
               SUM OF AREA INDICES BELONGING TO ABSORBING SURFACES
                                                                    C
C
               (LEAVES, STEMS, EARS...) POSITIONED IN IT
                                                            [HA/HA]
                                                                    C
               AS LAIL, BUT THE CONTRIBUTING AREA INDICES ARE
                                                                    C
C
     ECDIF
C
               MULTIPLIED BY THE CORRESPONDING EXTINCTION
                                                                    C
C
               COEFFICIENTS FOR DIFFUSE LIGHT
                                                            [HA/HA]
                                                                    C
IMPLICIT REAL (A-Z)
     INTEGER V,K,A,C,NSP,DNSP,NCL,L
     DIMENSION V
                    (NSP)
     DIMENSION EXIST (NSP)
     DIMENSION HEI
                    (NSP)
     DIMENSION ULCL
                    (NCL+1)
     DIMENSION AI
                    (NSP)
     DIMENSION ECOF
                    (DNSP)
     DIMENSION DISPA (72)
                    (NSP*NCL)
     DIMENSION AID
     DIMENSION LAIL
                    (NCL)
     DIMENSION ECDIF (NCL)
     C = 0
     CHECK1 = 0.
        DO 565 K = 1.NCL
        LOWLIM = ULCL(K+1)
        UPLIM = ULCL(K)
           DO 566 A = 1,NSP
           C = C + 1
             = V(A)
           L
           XAI = AI(A)
           XHEI= HEI(A)
           CALL CLFRAC (DISPA, L, LOWLIM, UPLIM, XHEI, XAI, CLAI)
           CHECK1 = CHECK1 + CLAI
           AID(C) = CLAI
           LAIL (K)= LAIL (K) + CLAI
           ECDIF (K) = ECDIF (K) + CLAI * ECOF(L)
566
           CONTINUE
565
        CONTINUE
     CHECK2 = 0.
        DO 1729 A = 1,NSP
        CHECK2 = CHECK2 + AI(A)
1729
        CONTINUE
```

```
CHECKING THE CORRECT DISTRIBUTION
C
    IF (CHECK2.LT.1.E-5) THEN
       CHECK3 = CHECK1
    ELSE
       CHECK3 = ABS(CHECK1-CHECK2) / CHECK2
    ENDIF
    IF (CHECK3.GT.0.01)
                        TYPE 88661
88661 FORMAT (' INCORRECT DISTRIBUTION ALGORITHM ')
    RETURN
    END
    SUBROUTINE YELDII (NSP, NCL, AI, GAID, YFRAC)
SUBROUTINE DERIVING THE DISTRIBUTION OF THE GREEN FRACTION OF A
                                                          C
C
      SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS FROM THE
                                                          C
C
        CORRESPONDING DISTRIBUTION OF THE TOTAL SURFACE AREA;
                                                          C
   THE DERIVATION REFLECTS THE SITUATION THAT THE TOTAL GREEN FRACTION
C
                                                          C
             IS POSITIONED ABOVE THE TOTAL YELLOW FRACTION
                                                           C
C
                 INPUT PARAMETERS:
                                                          C
             NUMBER OF GENOTYPES
C
    NSP
                                                           C
C
             NUMBER OF CANOPY LAYERS
    NCL.
                                                          C
             TOTAL AREA INDICES OF THE VARIOUS GENOTYPES
C
    ΑI
                                                           C
C
    YFRAC
             YELLOW FRACTIONS OF THE TOTAL AREA INDICES
                                                           C
             BELONGING TO THE VARIOUS GENOTYPES
                                                          c
C
C
                 OUTPUT PARAMETERS:
                                                          C
C
           : DISTRIBUTION OF THE GREEN AREA INDEX OF THE CONSIDERED
    GAID
                                                           C
C
             SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS
                                                          C
IMPLICIT REAL (A-Z)
    INTEGER NSP, NCL, A, K
    DIMENSION AI
                 (NSP)
                 (NSP*NCL)
    DIMENSION GAID
    DIMENSION YFRAC (NSP)
       DO 1914 A = 1.NSP
       XCUMGR = 0.
       XGRAI = AI(A) * (1.-YFRAC(A))
         DO 1915 K = A, (NCL-1) * NSP + A, NSP
         GAID (K) = LIMIT (0.,GAID(K), XGRAI - XCUMGR)
         XCUMGR = XCUMGR + GAID(K)
1915
         CONTINUE
       CONTINUE
1914
    RETURN
    SUBROUTINE YELDI2 (NSP, NCL, GAID, YFRAC)
SUBROUTINE DERIVING THE DISTRIBUTION OF THE GREEN FRACTION OF A
      SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS FROM THE
                                                           C
C
        CORRESPONDING DISTRIBUTION OF THE TOTAL SURFACE AREA;
                                                           C
   THE DERIVATION REFLECTS THE SITUATION THAT THE GREEN FRACTION
C
                                                           C
        IS DISTRIBUTED UNIFORMLY FROM GROUND TO PLANT TOP
C
                                                           C
            IS POSITIONED ABOVE THE TOTAL YELLOW FRACTION
                                                           C
C
                 INPUT PARAMETERS:
                                                          C
             NUMBER OF GENOTYPES
C
    NSP
                                                           С
           :
C
    NCL
             NUMBER OF CANOPY LAYERS
                                                          C
             YELLOW FRACTIONS OF THE TOTAL AREA INDICES
                                                          C
C
    YFRAC
C
             BELONGING TO THE VARIOUS GENOTYPES
                                                          C
OUTPUT PARAMETERS:
C
                                                          C
             DISTRIBUTION OF THE GREEN AREA INDEX OF THE CONSIDERED
C
    GAID
                                                          C
             SURFACE TYPE OVER CANOPY LAYERS AND COMPETITORS
C
                                                          \mathbf{C}
```

```
IMPLICIT REAL (A-Z)
    INTEGER NSP, NCL, A, K
    DIMENSION GAID (NSP * NCL)
    DIMENSION YFRAC (NSP)
      DO 8001 A = 1.NSP
         DO 8002 K = A, (NCL-1) * NSP + A, NSP
         GAID (K) = GAID (K) * (1. - YFRAC(A))
8002
         CONTINUE
8001
      CONTINUE
    RETURN
    END
    SUBROUTINE ASTRO(DAY, LAT, DTR, DAYL, SININT,
                 SINLD, COSLD)
C
    SUBROUTINE CALCULATING THE DAYLENGTH [H] AND 3 AUXILIARY VARIABLES
C
    NEEDED FOR DESCRIBING THE INSTANTANEOUS RADIATION FOR A GIVEN
                                                        C
C
                 TIMEPOINT OF THE DAY
                                                        C
C
                INPUT PARAMETERS:
                                                        C
C
            NUMBER OF CALENDAR DAY
                                                        C
     DAY
            LATITUDE OF LOCATION
                                                        \mathbf{C}
C
     LAT
          •
OUTPUT PARAMETERS:
                                                        C
C
            DAYLENGTH
                                                        C
    DAYI.
                                                      [H]
          :
C
    SINLD
             AUXILIARY VARIABLE
                                                        С
          :
            AUXILIARY VARIABLE
                                                        C
C
    COSLD
            AIXILIARY VARIABLE
                                                        С
C
    SININT
IMPLICIT REAL(A-Z)
    PI=3.1415926
    RAD=PI/180.
    DEC=-23.45*COS(2*PI*(DAY+10.)/365.)
    SINLD=SIN(RAD*LAT)*SIN(RAD*DEC)
    COSLD=COS(RAD*LAT)*COS(RAD*DEC)
    AOB=SINLD/COSLD
    DAYL=12.0*(1.0+2.0*ASIN(AOB)/PI)
    SININT=DAYL*(SINLD+0.4*(SINLD*SINLD+COSLD*COSLD*0.5)) +
    $12.0*COSLD*(2.0+3.0*0.4*SINLD)*SQRT(1.0-AOB*AOB)/PI
    RETHRN
    END
    SUBROUTINE FRADIF (DAY, DTR, DAYL, SINLD, COSLD, FRDFD)
SUBROUTINE CALCULATING THE DIFFUSE FRACTION OF DAILY VISIBLE
C
                                                        C
                      RADIATION
INPUT PARAMETERS:
C
                                                        C
C
     DAY
             NUMBER OF CALENDAR DAY
                                                         C
          :
                                                [J/M**2/D]
C
     DTR
             DAILY GLOBAL RADIATION
                                                        С
                                                     [H]
                                                        C
C
             DAYLENGTH
     DAYL
          •
            AUXILIARY VARIABLE
                                                         C
     SINLD
          :
     COSLD
          :
            AUXILIARY VARIABLE
                                                         C
C
                 OUTPUT PARAMETERS:
         : DIFFUSE FRACTION OF DAILY VISIBLE RADIATION
                                                         C
C
IMPLICIT REAL(A-Z)
    PI=3.1415926
C
    SOLAR CONSTANT (J/M**2/S)
    SC = 1370.
    SCACT = SC * (1. + 0.033 * COS(360.*DAY/365.))
C
    AVERAGE SINE OF SOLAR ALTITUDE
    INTBET= 3600. * (DAYL * SINLD + 24./PI * COSLD *
          SQRT(1.- (SINLD/COSLD)**2))
    EXTRATERRESTRIAL IRRADIATION (J/M**2/D)
C
    EXTEIR= INTBET * SCACT
C
    ATMOSPHERIC TRANSMISSION ON DAY BASIS
         = DTR / EXTEIR
    ATD
```

```
C
    FRACTION DIFFUSE LIGHT ON DAY BASIS
    IF (ATD.GE.0.35) FRDF = 1.33 - 1.46 * ATD
                  FRDF = 1.
                           -2.3 * (ATD-0.07)**2
    IF (ATD.LT.0.35)
    FRDFD = LIMIT(0.23, 1., FRDF)
    RETHEN
    END
     SUBROUTINE INSTIR (DAYL, HOUR, DTR, FRDFD, SINLD, COSLD, SININT,
                    IRR, SINB, FRDR)
С
    SUBROUTINE CALCULATING THE SINE OF SUN HEIGHT AND THE INTENSITY
С
    [J/M**2/S]
               AND DIRECT FRACTION OF INSTANTANEOUS VISIBLE
                                                         С
C
                    RADIATION
                                                         C
INPUT PARAMETERS:
C
             DAYLENGTH
     DAYI.
                                                      [H] C
C
             ACTUAL HOUR OF THE DAY
     HOUR
          :
C
                                                 [J/M**2/D]
     DTR
          :
             DAILY GLOBAL RADIATION
                                                         C
C
             DIFFUSE FRACTION OF DAILY VISIBLE RADIATION
                                                         C
     FRDFD
          :
C
     SINLD
          :
             AUXILIARY VARIABLE
                                                         C
             AUXILIARY VARIABLE
C
     COSLD
          :
                                                         C
C
     SININT:
            AUXILIARY VARIABLE
С
                 OUTPUT PARAMETERS:
C
             INTENSITY OF INSTANTANEOUS VISIBLE RADIATION [J/M**2/S]
     TRR
                                                         C
C
     FRDR
             DIRECT FRACTION OF VISIBLE RADIATION
C
     SINB
             SINE OF SUN HEIGHT
                                                         C
IMPLICIT REAL (A-Z)
    PI = 3.1415926
      SINB = AMAX1(0.,SINLD + COSLD * COS(2. *
              PI * (HOUR+12.)/24.))
       SFF = SINB * (1. + 0.4 * SINB)
      IRR = SFF * DTR * 0.5 / (SININT * 3600.)
      AUXFRD= (1. - FRDFD) *
                           (1.08 - 0.0095 *
                EXP (4.6 * (HOUR-12.) / (0.5*DAYL)))
      FRDR = LIMIT(0.,1.,AUXFRD)
3000
      CONTINUE
    RETURN
    SUBROUTINE PHOTOC (NCL, NSP, DNSP, V, STESWI, EARSWI,
                   LAIFIX, SAIFIX, EAIFIX, LAIL, ECDIF,
   1
                   KL, KLSTEM, KLEAR,
   1
                   AMAX, SAMAX, EAMAX, EFF, SEFF, EEFF,
                   IRR, FRDR, SINB, PROD)
SUBROUTINE CALCULATING
C
      INSTANTANEOUS
                           RATES OF GROSS ASSIMILATION [KG/HA/H]
                                                         C
    OF NSP COMPETITORS FORMING A CANOPY DESCRIBED IN TERMS OF NCL
C
                                                         C
    CANOPY LAYERS; OPTIONALLY, THE PHOTOSYNTHESIS OF STEMS AND EARS
                                                         C
    CAN BE INCLUDED
                                                         C
С
                 INPUT PARAMETERS:
                                                         C
C
     IRR
             INTENSITY OF VISIBLE RADIATION
                                                [J/M**2/S]
                                                         C
             DIRECT FRACTION OF VISIBLE RADIATION
C
     FRDR
                                                         C
          :
C
     SINB
             SINUS OF SUN HEIGHT
                                                         C
C
                                                         C
C
     THE OTHER INPUT PARAMETERS ARE EXPLAINED IN THE HEAD PART OF
                                                         C
                  THE SUBROUTINE
                                DAYASS
C
                 OUTPUT PARAMETERS:
                                                         C
C
    PROD
             INSTANTANEOUS ASSIMILATION RATES OF THE NSP SPECIES
                                                         С
C
                                                [KG/HA/H]
                                                         C
```

```
IMPLICIT REAL (A-Z)
      INTEGER G,K,A,DNSP,NSP,V,NCL,C,STESWI,EARSWI
     DIMENSION LAIFIX (NCL*NSP)
     DIMENSION SAIFIX
                        (NCL*NSP)
      DIMENSION EAIFIX
                        (NCL*NSP)
     DIMENSION LAIL
                         (NCL)
      DIMENSION ECDIF
                         (NCL)
      DIMENSION V
                         (NSP)
     DIMENSION KL
                         (DNSP)
                        (DNSP)
     DIMENSION KLSTEM
      DIMENSION KLEAR
                         (DNSP)
     DIMENSION AMAX
                         (DNSP)
      DIMENSION SAMAX
                         (DNSP)
      DIMENSION EAMAX
                         (DNSP)
      DIMENSION EFF
                         (DNSP)
      DIMENSION SEFF
                         (DNSP)
                         (DNSP)
      DIMENSION EEFF
      DIMENSION PROD
                         (NSP)
      SCATTERING COEFFICIENT (ASSUMED TO BE EQUAL FOR ALL LIGHT
      ABSORBING STRUCTURES
      SCV = 0.2
C
      AN AUXILIARY VARIABLE ("SQV")
      SQV = SQRT (1. - SCV)
      REFLECTION COEFFICIENT OF THE CANOPY
C
      REFLC = (1. - SQV) / (1. + SQV)
INTENSITIES (J/CM**2/S) OF DIRECT LIGHT ("DIR") AND OF INDIRECT
      LIGHT ("DIF") ABOVE THE CANOPY AT THE CONSIDERED TIMEPOINT
C
         DIF = IRR * (1.- FRDR) * (1.- REFLC)
         DIR = IRR * FRDR
            DO 4 A = 1, NSP
            PROD(A) = 0.
            CONTINUE
C
      MULTIPLICATION FACTORS FOR CONVERTING THE EXTINCTION OF DIFFUSE
      LIGHT INTO THE EXTINCTION OF LIGHT INTENSITY WHEN THE INCOMING
      RADIATION IS DIRECT ("CONDRF") AND INTO THE EXTINCTION OF
C
      THE DIRECT COMPONENT OF INCOMING DIRECT RADIATION ("CONDIR")
      (CONDRF = KDRF/KDIR, CONDIR = KDIR/KDIF)
C
         CONDIR = 0.5 / (SINB * SQV * 0.8)
         CONDRF = CONDIR * SQV
C
      FRACTION OF LIGHT ENTERING THE CANOPY
         DIFOUT = 1.
      LOOP ACCOUNTING FOR THE DIFFERENT LEAF LAYERS
C
            DO 2 K = 1.NCL
      KDIF AND KDIR OF THE COMPOSITE LEAF LAYER, OBTAINED BY
C
      AVERAGING THE LAI-WEIGHTED VALUES OF THE CONTRIBUTING
      SPECIES (USED FOR CALCULATING THE SUNLIT LEAF AREA)
C
      IF (LAIL(K).LT.1.E-4)
                               THEN
         TYPE 5011,K
         FORMAT (' CANOPY LAYER ', 15, ' WITH LAIL = 0 ')
5011
         GOTO 2
      ENDIF
      IF (ECDIF(K).LT.1.E-4) THEN
          TYPE 5012,K
          FORMAT (' CANOPY LAYER', 15, ' WITH ECDIF = 0 ')
5012
          GOTO 2
      ENDIF
            KDIF = ECDIF(K) / LAIL(K)
            KDIR = KDIF * CONDIR
С
      FRACTIONS OF DIFFUSE LIGHT ENTERING (DIFIN) AND LEAVING
      (DIFOUT) THE CONSIDERED LEAF LAYER
            DIFIN = DIFOUT
            DIFOUT = DIFIN * EXP(-ECDIF(K))
C
      FRACTION OF DIFFUSE LIGHT ABSORBED IN THE LAYER ("ADIF"),
      OF DIRECT LIGHT ABSORBED IN THE LAYER AS DIRECT LIGHT ("ADDIR")
C
C
      AND OF DIRECT LIGHT ABSORBED IN THE LAYER AS DIRECT OR
```

```
INDIRECT LIGHT ("ATDIR") (1/S)
C
            ADIF = DIFIN
                                       DIFOUT
            EDDIR = DIFIN**CONDIR
                                       DIFOUT**CONDIR
            ADDIR = EDDIR * (1.-SCV)
            ATDIR = (DIFIN**CONDRF - DIFOUT**CONDRF) * (1.-REFLC)
      FRACTION OF SUNLIT LEAF AREA IN THE LAYER
C
            SLLA = EDDIR / (KDIR*LAIL(K)) * KDIF/SQV/0.8
            IF (SLLA.LT.1.E-10) THEN
               TYPE 5020
5020
               FORMAT (' SLLA = 0 ')
               GOTO 2
            ENDIF
C
      ABSORPTION RATE (J/S) OF THE SUNLIT PART OF THE LEAF LAYER ("SUNA")
      AND OF THE SHADOWED PART ("SHAA") (1/S)
C
            SUMDIF = DIF * ADIF + DIR * (ATDIR-ADDIR)
                  = SUMDIF * (1. - SLLA)
                   = SLLA * SUMDIF + DIR * ADDIR
            SUNA
              ASSIMILATION PERFORMED BY LEAVES
C
       ***
                                                   ***
               DO 3 A = 1, NSP
               L = V(A)
               C = (K-1) * NSP + A
               LEAFAR = LAIFIX (C)
      ABSORPTION RATE (J/CM**2 LEAF/S) OF SUNLIT LEAVES ("ABSDIR")
C
      AND OF SHADED LEAVES ("ABSDIF")
С
              ABSDIR = SUNA * KL(L)/(ECDIF(K) *
              ABSDIF = SHAA * KL(L)/(ECDIF(K) * (1. - SLLA))
C
       THE ASSIMILATION OF SUNLIT AND SHADED LEAFAREA IS
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
       THE CONSIDERED LEAF LAYER
C
              IF (AMAX(L).LT.1.E-3)
                 TYPE 5014,L
                 FORMAT (' SPECIES ',15,' WITH AMAX = 0 ! ')
5014
              PROD1 = AMAX(L) * (1. - EXP(-EFF(L)*ABSDIF/AMAX(L)))
              PROD2 = AMAX(L) * (1. - EXP(-EFF(L)*ABSDIR/AMAX(L)))
              PROD(A) = PROD(A) + LEAFAR *
                         (SLLA*PROD2 + (1. - SLLA) * PROD1)
3
              CONTINUE
         IF (STESWI.EQ.O)
                            GOTO 80
               ASSIMILATION PERFORMED BY STEMS
C
                                                    ***
       ABSORPTION RATE (J/CM**2 STEM/S) OF SUNLIT STEMAREA ("STADIR") AND OF SHADED STEMAREA ("STADIF")
C
С
            STADIR = SUNA * KLSTEM(L)/(ECDIF(K) * SLLA)
            STADIF = SHAA * KLSTEM(L)/(ECDIF(K) * (1. - SLLA))
C
       THE ASSIMILATION OF SUNLIT AND SHADED STEMAREA IS
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
       THE CONSIDERED LEAF LAYER
               DO 70 A = 1,NSP
               L = V(A)
               C = (K-1) * NSP + A
               STEMAR = SAIFIX (C)
              IF (SAMAX(L).LT.1.E-3)
                                        THEN
                 TYPE 5015,L
                 FORMAT (' SPECIES ',15,' WITH SAMAX = 0 ! ')
5015
                 GOTO 70
               PROD1 = SAMAX(L)*(1.- EXP(-SEFF(L) * STADIF/SAMAX(L)))
               PROD2 = SAMAX(L)*(1.- EXP(-SEFF(L) * STADIR/SAMAX(L)))
               PROD(A) = PROD(A) + STEMAR *
                            (SLLA * PROD2 + (1. - SLLA) * PROD1)
     1
70
               CONTINUE
            IF (EARSWI.EQ.O) GOTO 2
80
```

```
INDIRECT LIGHT ("ATDIR") (1/S)
C
            ADIF = DIFIN
                                        DIFOUT
            EDDIR = DIFIN**CONDIR
                                        DIFOUT**CONDIR
            ADDIR = EDDIR * (1.-SCV)
            ATDIR = (DIFIN**CONDRF - DIFOUT**CONDRF) * (1.-REFLC)
      FRACTION OF SUNLIT LEAF AREA IN THE LAYER
C
            SLLA = EDDIR / (KDIR*LAIL(K)) * KDIF/SQV/0.8
            IF (SLLA.LT.1.E-10) THEN
               TYPE 5020
5020
               FORMAT (' SLLA = 0 ')
               GOTO 2
            ENDIF
C
      ABSORPTION RATE (J/S) OF THE SUNLIT PART OF THE LEAF LAYER ("SUNA")
      AND OF THE SHADOWED PART ("SHAA") (1/S)
C
            SUMDIF = DIF * ADIF + DIR * (ATDIR-ADDIR)
                  = SUMDIF * (1. - SLLA)
                   = SLLA * SUMDIF + DIR * ADDIR
            SUNA
       ***
              ASSIMILATION PERFORMED BY LEAVES
C
                                                    ***
               DO 3 A = 1, NSP
               L = V(A)
               C = (K-1) * NSP + A
               LEAFAR = LAIFIX (C)
      ABSORPTION RATE (J/CM**2 LEAF/S) OF SUNLIT LEAVES ("ABSDIR")
      AND OF SHADED LEAVES ("ABSDIF")
C
              ABSDIR = SUNA * KL(L)/(ECDIF(K) *
              ABSDIF = SHAA * KL(L)/(ECDIF(K) * (1. - SLLA))
C
       THE ASSIMILATION OF SUNLIT AND SHADED LEAFAREA IS
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
       THE CONSIDERED LEAF LAYER
C
              IF (AMAX(L).LT.1.E-3)
                  TYPE 5014,L
5014
                 FORMAT (' SPECIES ', 15, ' WITH AMAX = 0 ! ')
              ENDIF
                     = AMAX(L) * (1. - EXP(-EFF(L)*ABSDIF/AMAX(L)))
              PROD1
              PROD2 = AMAX(L) * (1. - EXP(-EFF(L)*ABSDIR/AMAX(L)))
              PROD(A) = PROD(A) + LEAFAR *
                         (SLLA*PROD2 + (1. - SLLA) * PROD1)
     $
3
              CONTINUE
         IF (STESWI.EQ.0)
                             GOTO 80
               ASSIMILATION PERFORMED BY STEMS
C
                                                     ***
       ABSORPTION RATE (J/CM**2 STEM/S) OF SUNLIT STEMAREA ("STADIR")
AND OF SHADED STEMAREA ("STADIF")
STADIR = SUNA * KLSTEM(L)/(ECDIF(K) * SLLA)
С
С
            STADIF = SHAA * KLSTEM(L)/(ECDIF(K) * (1. - SLLA))
       THE ASSIMILATION OF SUNLIT AND SHADED STEMAREA IS
С
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
       THE CONSIDERED LEAF LAYER
C
               DO 70 A = 1, NSP
               L = V(A)
               C = (K-1) * NSP + A
               STEMAR = SAIFIX (C)
              IF (SAMAX(L).LT.1.E-3)
                                         THEN
                  TYPE 5015,L
5015
                  FORMAT (' SPECIES ',15,' WITH SAMAX = 0 ! ')
                 GOTO 70
              ENDIF
               PROD1 = SAMAX(L)*(1.- EXP(-SEFF(L) * STADIF/SAMAX(L)))
               PROD2 = SAMAX(L)*(1.- EXP(-SEFF(L) * STADIR/SAMAX(L)))
               PROD(A) = PROD(A) + STEMAR *
     1
                            (SLLA * PROD2 + (1. - SLLA) * PROD1)
70
               CONTINUE
80
            IF (EARSWI.EQ.O) GOTO 2
```

```
INDIRECT LIGHT ("ATDIR") (1/S)
C
            ADIF = DIFIN
            EDDIR = DIFIN**CONDIR
                                       DIFOUT**CONDIR
            ADDIR = EDDIR * (1.-SCV)
            ATDIR = (DIFIN**CONDRF -
                                      DIFOUT**CONDRF) * (1.-REFLC)
C
     FRACTION OF SUNLIT LEAF AREA IN THE LAYER
            SLLA = EDDIR / (KDIR*LAIL(K)) * KDIF/SQV/0.8
            IF (SLLA.LT.1.E-10) THEN
               TYPE 5020
5020
               FORMAT (' SLLA = 0')
               GOTO 2
            ENDIF
C
     ABSORPTION RATE (J/S) OF THE SUNLIT PART OF THE LEAF LAYER ("SUNA")
     AND OF THE SHADOWED PART ("SHAA") (1/S)
C
            SUMDIF = DIF * ADIF + DIR * (ATDIR-ADDIR)
                  = SUMDIF * (1. - SLLA)
            SHAA
                   = SLLA * SUMDIF + DIR * ADDIR
C
              ASSIMILATION PERFORMED BY LEAVES
               DO 3 A = 1.NSP
               L = V(A)
               C = (K-1) * NSP + A
               LEAFAR = LAIFIX (C)
      ABSORPTION RATE (J/CM**2 LEAF/S) OF SUNLIT LEAVES ("ABSDIR")
C
     AND OF SHADED LEAVES ("ABSDIF")
C
              ABSDIR = SUNA * KL(L)/(ECDIF(K)
              ABSDIF = SHAA * KL(L)/(ECDIF(K) * (1. - SLLA))
C
       THE ASSIMILATION OF SUNLIT AND SHADED LEAFAREA IS
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
С
       THE CONSIDERED LEAF LAYER
              IF (AMAX(L).LT.1.E-3)
                 TYPE 5014,L
5014
                 FORMAT (' SPECIES ', 15, ' WITH AMAX = 0 ! ')
                 GOTO 3
              ENDIF
              PROD1 = AMAX(L) * (1. - EXP(-EFF(L)*ABSDIF/AMAX(L)))
              PROD2 = AMAX(L) * (1. - EXP(-EFF(L)*ABSDIR/AMAX(L)))
              PROD(A) = PROD(A) + LEAFAR *
                        (SLLA*PROD2 + (1. - SLLA) * PROD1)
3
              CONTINUE
        IF (STESWI.EQ.0)
                            GOTO 80
C
               ASSIMILATION PERFORMED BY STEMS
C
       ABSORPTION RATE (J/CM**2 STEM/S) OF SUNLIT STEMAREA ("STADIR")
       AND OF SHADED STEMAREA ("STADIF")
C
            STADIR = SUNA * KLSTEM(L)/(ECDIF(K) * SLLA)
            STADIF = SHAA * KLSTEM(L)/(ECDIF(K) * (1. - SLLA))
C
       THE ASSIMILATION OF SUNLIT AND SHADED STEMAREA IS
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
       THE CONSIDERED LEAF LAYER
C
               DO 70 A = 1, NSP
               L = V(A)
               C = (K-1) * NSP + A
               STEMAR = SAIFIX (C)
              IF (SAMAX(L).LT.1.E-3)
                                       THEN
                 TYPE 5015,L
                 FORMAT (' SPECIES ',15,' WITH SAMAX = 0 ! ')
5015
                 GOTO 70
              ENDIF
               PROD1 = SAMAX(L)*(1.- EXP(-SEFF(L) * STADIF/SAMAX(L)))
               PROD2 = SAMAX(L)*(1.- EXP(-SEFF(L) * STADIR/SAMAX(L)))
               PROD(A) = PROD(A) + STEMAR *
                           (SLLA * PROD2 + (1. - SLLA) * PROD1)
     1
70
               CONTINUE
            IF (EARSWI.EQ.O) GOTO 2
80
```

```
SUBROUTINE LNDCAL (NSP, OGBMPP, PROB, LNDVBM, DUM)
SUBROUTINE CALCULATING DELTA - LN - VALUES
C
C
               INPUT PARAMETERS:
                                                   C
C
         : NUMBER OF GENOTYPES
                                                   C
C
    OBBMPP : ABOVE GROUND BIOMASS PER PLANT
                                                [G]
                                                   C
C
         : FREQUENCIES OF THE GENOTYPES
                                                   C
OUTPUT PARAMETERS:
                                                   С
С
    LNDBVBM: DELTA - LN - VALUES
                                                   C
        : DUMMY VARIABLE
C
    DUM
                                                   С
IMPLICIT REAL (A-Z)
    INTEGER NSP, A
    DIMENSION OGBMPP(NSP)
    DIMENSION PROB (NSP)
    DIMENSION LNDVBM(NSP)
    IF (NSP.EQ.1) GOTO 7020
    SUMLN = 0.
      DO 851 A = 1,NSP
      IF
        (OGBMPP(A).LT.1.E-3)
                        GOTO 851
      SUMLN = SUMLN + ALOG(OGBMPP(A)) * PROB(A)
851
      CONTINUE
    AVLN = SUMLN
      DO 852 A = 1,NSP
      LNDVBM(A) = ALOG(AMAX1(6.73795E-3, OGBMPP(A))) - AVLN
852
7020
    CONTINUE
    RETURN
    END
ENDJOB
```

```
C
     CALCULATE INSTANTANEOUS ASSIMILATION RATES OF THE NSP COMPETITORS
     (KG CHO / HA / HA)
C
       CALL PHOTOC (NCL, NSP, DNSP, V, STESWI, EARSWI, LAID, SAID, EAID,
             LAIL, ECDIF, KL, KLSTEM, KLEAR, AMAX, SAMAX, EAMAX, EFF, SEFF,
             EEFF, IRR, FRDR, SINB,
    1
                  INSTAS)
        INST1 = INSTAS(1)
C
      WEIGHTED SUMMATION OF INSTANTANEOUS ASSIMILATION RATES
          DO 5 A = 1.NSP
          GASSP(A) = GASSP(A) + INSTAS(A) * WEIGHT(G)
          CONTINUE
5
6000
        CONTINUE
     WRITE (20,2620) FRDFD, DIR(1), DIR(2), DIR(3), INTENS(1),
    1
                   INTENS(2), INTENS(3), SNUS(1), SNUS(2), SNUS(3)
     FORMAT (10(F11.5))
2620
      FINISHING THE INTEGRATION PROCEDURE
C
       DO 6 A=1,NSP
       GASSP(A) = GASSP(A) / 3.6 * DAYL
       CONTINUE
6
     RETURN
     END
     SUBROUTINE EVAL1 (DIM, ARR, PROB, EXVA, VAR, CV)
SUBROUTINE CALCULATING EXPECTION VALUE, VARIACE AND THE COEFFICIENT
C
                                                                C
                 OF VARIATION OF A CHANCE VARIABLE
С
                                                                C
С
                   INPUT PARAMETERS:
                                                                C
C
              NUMBER OF VALUES OF THE CHANCE VARIABLE
     DIM
                                                                C
C
     ARR
            :
              VALUES OF THE CHANCE VARIABLE
                                                                C
C
     PROB
              PROBABILITIES ASSOCIATED WITH THE VALUES
                                                                C
С
                   OUTPUT PARAMETERS:
                                                                C
C
     EXVA
              EXPECTATION VALUE
                                                                C
            :
C
     VAR
              VARIANCE
                                                                C
            :
              COEFFICIENT OF VARIATION
C
     CV
                                                                C
IMPLICIT REAL (A-Z)
     INTEGER DIM, J
     DIMENSION ARR (DIM)
     DIMENSION PROB(DIM)
     IF (DIM.EQ.1 ) THEN
        EXVA = ARR(1)
        VAR = 0.
     ELSE
        SUMX = 0.
        SUMXX = 0.
          DO 851 J = 1,DIM
          SUMX = SUMX
                      +
                         ARR(J)
                                   * PROB(J)
          SUMXX = SUMXX + ARR(J)**2 * PROB(J)
851
          CONTINUE
        EXVA = SUMX
        VAR = SUMXX - SUMX**2
     IF (EXVA.LT.1.E-8) GOTO 9013
     IF (VAR. LT.1.E-8)
                       THEN
        CV = 0.
     ELSE
        CV = SQRT(VAR) / EXVA
     ENDIF
9013
     CONTINUE
     RETURN
     END
```

```
***
              ASSIMILATION PERFORMED BY EARS
C
       ABSORPTION RATE (J/CM**2 EAR/S) OF SUNLIT EARARE ("EARDIR")
       AND OF SHADED EARARE ("EARDIF")
C
            EARDIR = SUNA * KLEAR(L) / (ECDIF(K) *
            EARDIF = SHAA * KLEAR(L) / (ECDIF(K) * (1. - SLLA))
       THE ASSIMILATION OF SUNLIT AND SHADED EARAREA IS
C
       ADDED TO THE OVERALL PRODUCTION OF THE SPECIES WITHIN
C
       THE CONSIDERED LEAF LAYER
                DO 75 A = 1, NSP
                L = V(A)
                 C = (K-1) * NSP + A
                 EARAR = EAIFIX (C)
              IF (EAMAX(L).LT.1.E-3)
                                      THEN
                 TYPE 5016,L
                 FORMAT (' SPECIES ', 15, ' WITH EAMAX = 0 ! ')
5016
                 GOTO 75
              ENDIF
                 PROD1 = EAMAX(L)*(1.-EXP(-EEFF(L)*EARDIF/EAMAX(L)))
                 PROD2 = EAMAX(L)*(1.-EXP(-EEFF(L)*EARDIR/EAMAX(L)))
                 PROD(A) = PROD(A) + EARAR *
     1
                             (SLLA * PROD2 + (1. - SLLA) * PROD1)
75
                 CONTINUE
           CONTINUE
2
       NOW THE LOOP HAS GONE THROUGH ALL LEAF LAYERS AND ALL COMPETITORS
C
        DO 85 A = 1, NSP
         PROD(A) = PROD(A) * 30. / 44.
85
         CONTINUE
      RETURN
      END
      SUBROUTINE DAYASS (DAY, DTR, LAT, NCL, NSP, DNSP, V, STESWI, EARSWI,
                        LAID, SAID, EAID, LAIL, ECDIF,
     $
                        KL, KLSTEM, KLEAR,
                        AMAX, SAMAX, EAMAX, EFF, SEFF, EEFF,
     Ś
                         GASSP, DUM, DAYL, IRR, INST1, FRDFD, FRDR)
SUBROUTINE CALCULATING THE
                                                                         C
C
                           GROSS ASSIMILATION
                                                                         C
C
                DAILY
                                                      [KG/HA/D]
      OF NSP COMPETITORS FORMING A CANOPY DESCRIBED IN TERMS OF NCL
                                                                         C
C
      CANOPY LAYERS; OPTIONALLY, THE PHOTOSYNTHESIS OF STEMS AND EARS
                                                                         С
C
      CAN BE INCLUDED
                                                                         C
C
                      INPUT PARAMETERS:
                                                                         C
C
                 NUMBER OF CALENDAR DAY
                                                                         C
                                                             [J/M**2/D]
                                                                         C
C
       DTR
                 DAILY GLOBAL RADIATION
            % :
                                                                         C
C
       LAT
                 LATITUDE OF LOCATION
              :
                                                                         C
C
       NCL
                 NUMBER OF DESCRIBED CANOPY LAYERS
                 NUMBER OF SPECIES MODELLED IN THE PRESENT CASE
       NSP
                                                                         C
C
                 NUMBER OF SPECIES DESCRIBED IN THE PARAMETER
                                                                         C
C
       DNSP
                 SECTION OF THE MAIN PROGRAMM
                                                                         C
C
C
                 ARRAY RELATING THE NUMBER USED TO DENOTE
                                                                         C
                 A SPECIES IN THE PARAMETER SECTION OF THE MAIN
                                                                         С
C
                 PROGRAM TO THE NUMBER USED IN THE ACTUAL RUN
                                                                         С
C
       STESWI,
C
                                                                         C
C
       EARSWI :
                 SWITCH PARAMETERS DETERMINING IF PHOTOSYNTHESIS OF
                                                                         С
                 STEMS (EARS) IS TO BE INCLUDED
                                                                         C
C
C
       LAID
                 DISTRIBUTION OF LAI (GREEN LEAVES ONLY) OVER SPECIES
                                                                         C
              :
C
                 AND LAEF LAYER
                                                                [HA/HA]
                                                                         C
                                                                         C
C
       SAID
                 AS LAIFIX, BUT FOR GREEN STEM AND GREEN
C
       EAID
                                                                         C
C
                                                                         C
                 (IF PHOTOSYNTHESIS OF STEMS (EARS) IS TO BE NEGLECTED,
                                                                         C
C
                 SAIFIX (EAIFIX) MAY BE ANY DUMMY ARRAY WITH A DIMENSION
                                                                         C
                 GREATER OR EQUAL "NSP*NCL" (THUS FOR EXAMPLE "LAIFIX")
C
                                                                         \mathbf{C}
                 CONTAINS FOR EACH OF THE NCL CANOPY LAYERS THE
                                                                         C
C
       LAIL
C
                 SUM OF AREA INDICES BELONGING TO ABSORBING SURFACES
                                                                         C
С
                 (LEAVES, STEMS, EARS...) POSITIONED IN IT
                                                                         C
                                                                [HA/HA]
C
       ECDIF
                 AS LAIL, BUT THE CONTRIBUTING AREA INDICES ARE
                                                                         С
C
                 MULTIPLIED BY THE CORRESPONDING EXTINCTION
                                                                         C
C
                                                                [HA/HA]
                 COEFFICIENTS FOR DIFFUSE LIGHT
                                                                         C
```

```
C
       KL,
      KLSTEM,
C
                                                                       C
C
       KLEAR:
                EXTINCTION COEFFICIENTS FOR DIFFUSE LIGHT OF LEAVES
                                                                       С
C
                STEMS, EARS
                                                                       С
C
      AMAX,
                                                                       С
      SAMAX,
C
                                                                       С
      EAMAX
                AMAX VALUES OF LEAVES, STEMS, EARS
                                                             [KG/HA/D]
                                                                       C
      EFF,
                                                                       C
C
      SEFF.
C
                                                                       C
      EEFF
             : LIGHT USE EFFICIENCY OF LEAVES, STEMS, EARS
                                                  [KG/HA/D/(J/S/M**2)]
                                                                       C
OUTPUT PARAMETERS:
C
     GASSP :
               GROSS ASSIMILATION OF THE NSP SPECIES
                                                             [KG/HA/D]
                                                                       C
C
     DUM
               DUMMY PARAMETER
                                                                       C
IMPLICIT REAL (A-Z)
      INTEGER G, K, A, DNSP, NSP, V, NCL, C, STESWI, EARSWI
     DIMENSION LAID
                     (NCL*NSP)
     DIMENSION SAID
                     (NCL*NSP)
     DIMENSION EAID
                     (NCL*NSP)
     DIMENSION LAIL
                       (NCL)
     DIMENSION ECDIF
                       (NCL)
      DIMENSION V
                       (NSP)
     DIMENSION KL
                       (DNSP)
     DIMENSION KLSTEM
                       (DNSP)
     DIMENSION KLEAR
                       (DNSP)
     DIMENSION AMAX
                       (DNSP)
     DIMENSION SAMAX
                       (DNSP)
     DIMENSION EAMAX
                       (DNSP)
     DIMENSION EFF
                       (DNSP)
     DIMENSION SEFF
                       (DNSP)
     DIMENSION EEFF
                       (DNSP)
     DIMENSION GASSP
                       (NSP)
     DIMENSION INSTAS
                       (27)
     DIMENSION WEIGHT
                       (3)
     DIMENSION DIR
                       (3)
     DIMENSION INTENS
                       (3)
     DIMENSION SNUS
                      (3)
C
      CALCULATE DAYLENGTH AND 3 AUXILIARY VARIABLES WHICH
      ARE NEEDED FOR DESCRIBING INSTANTANEOUS IRRADIATION
C
     CALL ASTRO (DAY, LAT, DTR,
                 DAYL, SININT, SINLD, COSLD)
      CALCULATE THE DIFFUSE FRACTION OF DAILY IRRADIATION
C
      CALL FRADIF(DAY, DTR, DAYL, SINLD, COSLD,
                 FRDFD)
C
     WEIGHTING FACTORS USED IN THE 3-POINT GAUSS INTEGRATION
      WEIGHT(1) = 1.
      WEIGHT(2) = 1.6
      WEIGHT(3) = 1.
      XGAUS = SQRT (0.15)
         DO 445 A = 1,NSP
        GASSP(A) = 0.
        CONTINUE
445
         DO 6000 G=1,3
C
      SELECT TIMEPOINT DURING THE DAY
         HOUR = 12. + DAYL * 0.5 * (0.5 + (G-2.) * XGAUS)
C
      DESCRIBE INSTANTANEOUS IRRADIATION (INTENSITY, DIRECT
      FRACTION AND SINUS OF SUN HEIGHT)
C
         CALL INSTIR (DAYL, HOUR, DTR, FRDFD, SINLD, COSLD, SININT,
     1
                     IRR, SINB, FRDR)
         DIR(G)
                  = FRDR
         INTENS(G) = IRR
         SNUS(G) = SINB
```