

SIMULATION REPORT CABO-TT No. 1

Actual and Potential Production from Semi-Arid Grasslands - Phase II
(APPSAG II)

FORTRAN version of the simulation model

ARID CROP

E. Ungar and H. van Keulen

E. Ungar, Agricultural Research Organisation, Bet Dagan
 Hebrew University of Jerusalem
 Jerusalem
 Israël

H. van Keulen, Centre for Agrobiological Research (CABO)
 Wageningen
 The Netherlands

Wageningen, 1982

Simulation Reports CABO-TT

Simulation Reports is a series of supplementary information concerning simulation models in agriculture which have been published elsewhere. Knowledge of those publications will in general be a prerequisite for studying the supplementary information in these reports.

Simulation Reports may contain improvements of simulation models, new applications, or translations of the programs into other computer languages.

Simulation Reports are issued by CABO-TT and available on request.

Announcements of Reports in this series will be issued regularly. Addresses of those who are interested in the announcements will be put on the mailing list on request.

CABO-TT
Bornsesteeg 65
P.O.Box 14
6700 AA WAGENINGEN
The Netherlands

CENTRUM VOOR AGROBIOLOGISCH ONDERZOEK (CABO)
Centre for Agrobiological Research

VAKGROEP THEORETISCHE TEELTKUNDE (TT), Landbouwhogeschool
Department of Theoretical Production Ecology, Agricultural University

<u>Contents</u>	<u>Page</u>
1. Introduction	1
2. Summary description of the model	1
2.1 Soil physical processes	1
2.2 Growth of the vegetation	3
2.3 Model specifications	5
3. The FORTRAN model	5
3.1 Setting up a job and run control	5
3.2 Central processing (CP) and central memory (CM) requirements	8
3.3 Possible language compatibility problems	8
3.4 Functions defined in the model	9
3.5 Model initialisation	13
3.6 Meteorological data input	14
References	16
Appendix 1: Listing of the model	17
Appendix 2: Dictionary of the model	30
Appendix 3: List of parameters of the model	37
Appendix 4: List of functions of the model	38

1. INTRODUCTION

In the framework of a joint Dutch-Israeli research project on actual and potential production from semi-arid grasslands, a simulation model was developed for the growth of natural pasture under semi-arid conditions (van Keulen, 1975). Subsequently, the model was further developed in the light of new data sets that became available (van Keulen et al., 1981).

The model is written in CSMP (Continuous System Modelling Program), a simulation language developed by IBM for its 360 and 370 series of machines. Other languages developed along the CSSL (Continuous System Simulation Languages) concepts, which are available on other machines are very similar to CSMP and the model can thus be run fairly easily on one of these machines. In many computer centres however, no such language is available and moreover development in computer programming, computer use and the budgets available for research have been such in recent years, that the costs of running a model like "ARID CROP" are prohibitively high for all but a few research institutions. Since that limits the use of the model to a considerable extent, it seemed worthwhile to produce a parallel FORTRAN-version of the model, thus allowing its implementation in a far wider range of computer centres and reducing the running costs to only a fraction of that required for the original model.

Development of the FORTRAN version was carried out on a CDC 6000. No conceptual changes were introduced and it was attempted to retain as much as possible of the original CSMP structure. The results produced by this version are in complete agreement with those obtained by the use of the CSMP-version on an IBM 370-45.

In this report a summary description of the model is given, some details on computer implementation, a complete listing of the FORTRAN model, a dictionary defining the abbreviations used and their dimensions, and a separate list of the parameters and functions applied. Finally, a number of functions, which are available in CSMP and had to be defined as FORTRAN functions are elaborated and their use illustrated.

We hope that the availability of this version of the model ARID CROP may increase its usefulness.

2. SUMMARY DESCRIPTION OF THE MODEL

The simulation model ARID CROP calculates the time course of dry matter production of an annual herbaceous vegetation in relation to the amount and distribution of water in the soil below that vegetation. The vegetation is considered as an homogeneous stand uniquely defined in terms of physiological, phenological and physical properties. For vegetations consisting of a mixture of species, as is often the case in natural pastures in semi-arid regions, this is an oversimplification, but since in terms of dry matter production there is generally little difference between species this assumption seems permissible.

The weather is defined in terms of meteorological observations from standard weather stations: daily values of rainfall, total global radiation, minimum and maximum air temperature at screen height, dew point temperature (or dry and wet bulb temperatures) and daily windrun.

2.1 Soil physical processes

To simulate soil physical processes, particularly transport processes, the soil is divided into a number of homogeneous compartments of unit area. Both the total number of compartments and their individual thickness can be

adapted very easily to suit the need in a particular situation. Detailed simulation models of transport processes in soils are available (de Wit and van Keulen, 1972) but these have not been incorporated in the present model since their small time constants would require very small integration time steps in the simulation.

Infiltration

Moisture transport is defined therefore especially with emphasis on availability of water to the plants, rather than on its exact distribution in the profile. Transport between soil compartments only takes place during rain or irrigation. The rate of change of water content in a particular compartment is set equal to the water content at "field capacity" and the actual water content, divided by the time interval of integration, provided that the rate of inflow in that compartment is sufficient. The rate of flow out of a compartment and consequently into the next one equals the rate of inflow minus the rate of change in water content in that compartment. This procedure is repeated for the consecutive compartments until all infiltrated water is dissipated or till the remainder has drained below the potential rooting zone. The result after a rainy day is a soil profile, partly or completely at field capacity, with in the former case a sharp boundary with the first "non-filled" compartment.

Soil evaporation

In medium to deep soils in semi-arid regions, where deep drainage is of minor importance, direct evaporation of water from the soil surface is the major source of non-productive water loss and the overall efficiency of use of precipitation in terms of dry matter production is mainly determined by the ratio of evaporation from the soil surface to transpiration by the vegetation.

In the model potential soil evaporation is calculated from a Penman-type formula. Subsequently, a reduction factor is introduced to account for partial interception of energy by the vegetation cover. The actual rate of soil evaporation is then determined by the moisture content of the upper soil compartment, expressed as a dimensionless number to allow application to different soil types. This total water loss by evaporation is subsequently withdrawn from the various compartments in dependence of the actual moisture distribution in the profile. A Soil-type dependent extinction coefficient, is used, that essentially 'mimicks' the recharge of the upper soil compartments from the lower ones as a result of developing potential gradients.

Soil heat flow

Soil temperature is not calculated in any detail but a ten-day running average of air temperature is used. This seems justified by the fact that the influence of soil temperature on various processes is not known very accurately.

Water uptake by the roots

The rate of transpiration of a vegetation in a given environment, depends on the distribution and functioning of the root system and on the amount and distribution of water in the profile. Quantitative information on the interrelation between the two, especially under field conditions is scarce. It is obvious however, that when part of the root system is in dry soil and part in wetter soil, the uptake of moisture by the latter will compensate partly the lack of uptake by the former: therefore in the model first an effective rootlength is calculated in each compartment, determined

by its moisture content -the lower the moisture content, the lower the efficiency factor-. From the total effective root length and potential transpiration, the potential uptake per unit effective root length is obtained. The actual rate of uptake from each compartment follows then from the potential rate, the moisture content in that compartment and the temperature effect. The latter includes the influence on both root activity and on viscosity of the water.

2.2 Growth of the vegetation

Germination

Since we are dealing with annual vegetation, growth starts from germination each year. The process of germination, which is very complicated is treated in a rather rudimentary fashion in the model, with the result that the prediction of initial biomass - that is the amount of above ground dry matter at emergence of the vegetation - is still a major difficulty with the model. Seeds start germinating after the first rains and the process proceeds as long as the moisture content in the top 10 cm of the profile is above wilting point. Germination is completed when a total temperature sum of 150 day-degrees, above 0°C has accumulated, during favourable soil moisture conditions. If the soil dries out before the required temperature sum is reached, the germinating seedlings are killed and a new wave of germination starts after rewetting only.

Phenological development of the crop

The development pattern of a growing plant is characterized by the rate and order of appearance of vegetative and reproductive organs. The rate of development of plants is partly governed by genetic characteristics and partly by environmental factors, especially temperature and daylength. The genetic characteristics vary among species and among cultivars within the same species (cf. short vs. long duration cultivars). Photoperiodic effects could not be demonstrated for the winter annuals that the model treats. This is in contrast to annuals growing in summer rainfall regions where daylength exerts a very strong influence.

In the model therefore a relation between development rate and temperature is introduced, mainly based on field observations. The relation assumes a threshold temperature of 3.75°C and is linear from that value until 25°C. The development rate (dimension day⁻¹) is integrated to yield the dimensionless value of the development stage of the vegetation, which ranges from 0 at emergence to 1. at dead ripeness. The value of the development stage governs primarily the partitioning of assimilates over the various plant organs.

Growth of the vegetation

After establishment, that is after the temperature requirement for germination has been satisfied, both above ground and below ground biomass are initialized to a pre-set value. (This value varies between seasons, between different fields etc.). Total seasonal dry matter production appears to be rather insensitive to the value of the initial biomass, but the growth curve may be shifted by a period of upto two weeks, which is very important early in the growing season, especially when the vegetation is to be exploited by grazing. A satisfactory solution to this problem has not yet been found, however.

After establishment, calculation of the growth rate of the vegetation is based on determination of the rate of transpiration and on the water use efficiency. The water use efficiency is calculated each day as the ratio

between the potential rate of increase in dry weight of the vegetation and the potential rate of transpiration. The former depends on the photosynthetic characteristics of the species, the leaf area index of the vegetation and the prevailing radiation intensity, (which in combination determine the potential rate of gross CO_2 -assimilation) and the amount of dry matter present, (which determines the maintenance requirement of the vegetation). For the conversion of primary photosynthetic products into structural plant material, a constant conversion efficiency is introduced, based on an average chemical composition of the material being formed. Potential transpiration rate is obtained from the evaporative demand of the atmosphere, characterized by the prevailing radiation intensity, the combined effect of wind speed and air humidity, and the leaf area index of the vegetation.

It is assumed that water use efficiency is independent of the moisture status of the soil and the condition of the vegetation. The former may not be valid in all situations, but the actual amount of water transpired during periods of stress is so low that the difference in terms of dry matter production is very small.

The actual rate of transpiration of the vegetation is calculated from the potential rate, taking into account the moisture distribution and the root distribution in the soil profile. The latter is only defined by its vertical extension, not by a root density function.

When actual transpiration falls short of the potential, a relative transpiration deficit is defined. When the value exceeds 0.4, it is integrated with a time constant of 10 days to yield the cumulative relative transpiration deficit. The value of the latter influences the photosynthetic performance of the vegetation, i.e. prolonged stress leads to deterioration of the photosynthesizing capacity. After removal of the stress, recovery is possible, once growth recommences.

The total increase in dry weight of the vegetation is subsequently calculated by multiplying the actual rate of transpiration by the water use efficiency. In dependence of the development stage, this increment is partitioned between various plant organs. First a part is allocated to the roots, the function being defined in such a way that a progressively smaller proportion of the assimilates contributes to root growth. In the early stages, a considerable proportion of total growth is invested in the root system on which the plant has to rely later on for an adequate supply of water and nutrients. When the plant is under water stress, the proportion diverted to the roots increases in accordance with the functional balance principle. A fixed proportion of the assimilates available for above ground growth is first allocated to the developing seeds, once the development stage for seed fill has been reached. The remainder is partitioned between leaf blades and other vegetative structures (leaf sheaths, stems etc.) Again the proportion of both is a function of the actual value of the development stage. Since plant structures have only a limited life span, there is continuous dying of earlier formed material. Under favourable growth conditions, only a negligible proportion of the standing crop dies. When conditions become more unfavourable, i.e. when the soil dries out or when the vegetation approaches maturity resulting in enhanced translocation of nutrients to the developing seeds and accelerated deterioration of existing structures, the rate of dying increases drastically. The rate of dying due to moisture stress is governed both by the evaporative demand of the atmosphere and the moisture content of the soil. Under high evaporative demands, a situation develops where even complete closure of the stomata cannot prevent dehydration of plant tissue and subsequent death. In the model, the rate of dying is proportional to the difference in potential cuticular water loss (=actual water loss by the vegetation) and the calculated actual transpiration rate of the vegetation (=rate of water uptake from the soil), with a time constant of five days, reflecting the buffering capacity of the vegetation. The death rate due to senescence is calculated independently and the maximum of the two is applied in each situation.

Leaf area growth

The increase in leaf area follows directly from the rate of increase in weight of the leaf blades by the application of a constant specific leaf area ratio. Our understanding of the basic processes governing the morphogenetic characteristics of the plant is too weak at present to permit a more realistic treatment of leaf area development.

Root extension growth

In the model it is assumed that a root "front" is formed without horizontal gradients, so that root density is not a limiting factor for the uptake of water and nutrients. The potential rate of vertical extension of the root system is constant. The actual rate is influenced by soil temperature, and extension growth continues until a dry soil compartment is reached.

2.3 Model specifications

The model is executed with time intervals of one day and the simple rectilinear method of integration is used.

3. THE FORTRAN MODEL

A complete listing of the FORTRAN text is given in Appendix 1, a dictionary of all variables, with their dimensions is provided in Appendix 2, Appendix 3 gives a list of parameter values applied in the model, and Appendix 4 lists the relevant functions and their numerical values. Structure statistics of the model are provided in Table 1.

3.1 Setting up a job and run control.

The control cards needed to run the model are rather specific to installation and operating system. Nevertheless, it may be useful to outline the set-up for a typical batch compilation and execution job as it might be carried out on a CDC CYBER74 operating under NOS/BE operating system.

The following example assumes that the FORTRAN program and the meteorological data file reside on disk. Model output is written on file 'OUTPUT' which is automatically sent for printing at termination of the job.

SHAL.	identification and
USER,467259.	password of user
ATTACH, ARIDOB, ID=SHAL.	attach file 'ARIDOB' which contains the FORTRAN code of ARID CROP.
ATTACH, MET80, ID=SHAL.	attach file 'MET80' which contains the meteorological data for 1980/81.
MNF (I=ARIDOB, D,T,Y,U)	compile the program in 'ARIDOB' using the MNF compiler with a number of specified options.
LGO (MET80)	EXECUTE PROGRAM. Equate file 'MET80' with the first file defined in the program card of ARID CROP.
EOB	

TABLE 1

STRUCTURE OF THE FORTRAN VERSION OF THE MODEL

<u>SECTION</u>	<u>TOTAL NUMBER OF STATEMENTS</u>	<u>NUMBER OF NON-COMMENT STATEMENTS</u>	<u>NUMBER OF COMMENT STATEMENTS</u>	<u>NUMBER OF LINES (INCL. CONTINUATIONS)</u>	<u>NO. OF CM WORDS ALLOCATED BY DIMENSION STATEMENTS</u>
MAIN	464	385	79	525	1567
FUNCTION RAFGEN	36	23	13	36	100
" AFGEN	37	25	12	42	upto 30
" DELAYT	12	10	2	12	20
" LIMIT	12	11	1	13	0
" INSW	9	8	1	9	0
" FCNSW	11	10	1	11	0
" NOT	9	8	1	9	0
" AND	9	8	1	9	0
" TWOVAR	56	41	15	69	182
SUBROUTINE PLOTT	77	69	8	80	230
TOTAL	732	598	134	815	2129

Using FORTRAN instead of CSMP entails a certain loss of flexibility and ease of use. Any 'parameters' must thus appear on the input file in the correct order in the correct format. The input file continues with:

1,210,5,50.,1 input DELT, FINTIM, PRDEL, IBIOM, WANTPL in free-format.

where:

DELT = integration time step (1 should be used) (integer).
FINTIM = number of days simulation is to run. Can be set very large for entire season runs since execution is halted when growth ceases (integer).
PRDEL = time interval between printing of tabular output values. Can be any number larger than zero (integer).
IBIOM = initial pasture biomass (real).
WANTPL = graphic option (integer) 0 - no plotted output required.
1 - plotted output required.

ARID CROP 1980/81 DEMO RUN title card.

This title will appear at the top of each tabular output page and at the top of the graphic output when requested. The title may contain upto and including 80 characters (any characters) and is printed such that column 1 of the title card appears about 20 printing positions across the output page. If no title is wanted, a blank card must be inserted here.

2,3,1,1 input OUTDEL, PLOT, EQLSCL, PVALS in free-format.

~~This line must appear if WANTPL = 1. One graph may be plotted per run. This line controls the form of the graph, which may contain 1 to 5 curves, all plotted to the same scale, or all with independent scaling and the values of 1 variable or all variables printed alongside the graph.~~

The variables are defined as follows:

OUTDEL = time interval between graphic output points. Can be any number larger than zero. Needs no coordination with PRDEL (integer).
PLOT = the number of curves to be plotted on the single graph (1-5) (integer).
EQLSCL = scaling option (integer) 0 - all curves to be plotted with independent scaling according to their individual value ranges.
1 - all curves to be plotted with the same scaling set according to the highest and lowest values.
PVALS = value printing option (integer) 0 - only one of the plotted variables is to have the plotted values printed on the left-hand side of the graph (alongside TIME values).
1 - all of the plotted variables are to have their plotted values printed. One on the left-hand side of the graph and the remainder on the right-hand side. The greater PLOT is, the narrower the graph becomes when PVALS is set to 1 (if PLOT = 5 and PVALS = 1, the graph is about 70 printing positions wide).

0.,0.	A set of X,Y coordinate pairs (real) describing the
85.,0.	observed biomass growth curve for 1980/81 where X is
86.,41.	the running day no. (1=OCT 1) and Y is aboveground
100.,248.	biomass (kg DM/ha). The last 3 data points are simply
113.,495.	to make up the total number of points to 15 which is
126.,869.	the number of input cards for the OBSERT function
142.,2286.	table read by the program. All these cards are read in
155.,4040.	free-format.
170.,4985.	
182.,5511.	
190.,6194.	
205.,0.	
208.,0.	
210.,0.	

EOI

The program uses an additional file ('TAPE40') which is declared in the PROGRAM statement at the beginning and is used for storing data for graphic output during the course of a run. At the end of a simulation run, the program rewinds this file and reads the data for the purpose of constructing the graphic output (when requested). Some installations may require space allocation on disk for this file in the control cards prior to program execution.

Unfortunately, it is cumbersome and inconvenient to write a FORTRAN program that can read the name of a variable and print or plot the value of that variable as calculated during execution. Thus the variables to be printed and/or plotted for output are written into the source program, and any alteration in these lists requires recompilation. Tabular output is provided in CSMP III-style with about 47 variables printed at each requested interval. It is hoped that this list of 47 variables contains all desired outputs since altering the list or extending it is not simple. As far as graphic output is concerned, 5 variables are named in the source program and are ready for graphing.

3.2. Central processing (CP) and central memory (CM) requirements.

The actual CM used by a computer in compilation and execution is rather dependent on the particular compiler and installation. It is usually possible to make an approximate calculation of CM requirements if one knows the total number of memory words actually required by DIMENSIONed and non-DIMENSIONed variables which in this case is about 2500 words.

CP requirement is also highly compiler and installation dependent. Using a CDC CYBER74 computer, the range of CP requirements for compilation using different compilers is about 3 - 6 seconds. As with CSMP, the execution time requirement of the FORTRAN version of ARID CROP is highly dependent on the quantity of output requested. Generally, the model is run using a 5 or 10 day interval between tabular outputs (about 50 variables) and something like a 5 day interval between graphic outputs (usually plotting 3 variables). Under such circumstances, the model requires 3 - 5 seconds CP time for execution of a 200 day season using the same computer as above.

3.3. Possible language compatibility problems.

The version of FORTRAN used includes features described in the ANSI Standard Fortran 77 as well as a couple of additional features that are accepted by the University of Minnesota FORTRAN Compiler (version 5.4). It is possible that many computer centres have not

updated their FORTRAN compilers even to the ANSI 77 set, so a number of potential compatibility problems in the model are listed below to aid the potential user of the model. No claim is made as to the exhaustiveness of this list!

1. PROGRAM statement (line number 1 in the listing)
2. EXTERNAL AND statement (after the DIMENSIONS section)
3. the large number of continuation lines used in entering the ALPHAT matrix data.
4. use of the dollar sign (\$) to indicate start of a new statement.
This is used in setting the parameters and in the section for preparing the tabular output.
5. input-output statements.
 - a) use of free-format (asterisk)
 - b) use of comma before I/O list. e.g. WRITE (40,120), TIME
 - c) use of Hollerith constants exceeding 10 characters
 - d) non-standard column 1 output format such as '1X'.
6. REWIND statement (3rd and 17th line in initialisation section and in SUBROUTINE PLOTIT).
7. IF-type block structures.
 - a) IF (.....) THEN

ENDIF
b) IF (.....) THEN
ELSE
ENDIF

all these block structures are used
widely in the model. They can be
replaced quite simply with simple IF
statements and suitable GOTO statements
if necessary.

c) IF (.....) THEN
ELSEIF (....) THEN
ELSE
ENDIF

8. WHILE block structures
WHILE(.....) DO

ENDWHILE

The action of this block is self explanatory and is also very simple to replace with appropriate DO or IF or GOTO combinations.

3.4. Functions defined in the model

Most of the functions described below are based on equivalent functions that are used in CSMP. Any details on use of these functions that are not provided here can easily be worked out by looking at the model listing.

AFGEN

The AFGEN function for linear interpolation is set up slightly differently from the CSMP form, though in effect does the same thing. In calling the function 3 parameters need be supplied as opposed to 2 in CSMP. The form of the call is:

R = AFGEN (TABLE, INDVAR, NDP)

where: R must be a real variable
TABLE is the name of the function table
INDVAR is the independent variable which must be either a real variable or a real constant or number.
NDP is the number of (x,y) data pairs in the function table. It must be an integer (number or constant).

The function first checks whether INDVAR lies within the coordinate range of the independent variable ("X") supplied for the function table. If it does, linear interpolation between the data pairs given is executed normally. If it does not, an appropriate error message is written on the output file, and the minimum or maximum value for the dependent variable defined in the table is returned to enable continued execution of the program. This is different to CSMP in that no extrapolation takes place in the event of out-of-range "X" values - a zero gradient is assumed at both ends of the inputed curve and thus an "overflow" or "underflow" does not occur.

The function table itself is simply a matrix of 2 rows, the upper row containing the x-coordinates and the lower row the corresponding y-coordinates.

The matrix must of course be DIMENSIONed, the size of the matrix can be larger than the actual number of locations filled with data. If the matrix is to be filled by use of a DATA statement, remember that FORTRAN fills matrices in such a case by column and thus the DATA statement will consist of x,y pairs of numbers (as in CSMP). The x-coordinates must be entered in ascending order only.

e.g.

DIMENSION DVRT (2, 50)

DATA DVRT/0., 0., 3.75, 0., 16., 0.01, 25., 0.02, 30., 0.001/

DVR = AFGEN (DVRT, TMPA, 5)

If changes are to be made to an AFGEN function, check:

1. that the DIMENSION declaration for the function table (in the main program only) is sufficiently large to hold all data points (not all compilers check this).
2. that the NDP parameter in the call statement is adjusted suitably for each and every call of that function table.
3. that the x-coordinates in the function table are entered in ascending order only. Unfortunately, failure to do so will not necessarily result in abnormal termination of execution.

TWOVAR

The differences between the CSMP and the FORTRAN TWOVAR function run parallel to those described for the AFGEN function. In calling the function, 5 parameters need to be supplied as opposed to 3 in CSMP. The form of the call is:

R = TWOVAR (MATRIX, INDVR1, INDVR2, MNDP1, NDP2)

where: R must be a real variable
MATRIX is the name of the function table.
INDVR1 is the first independent variable which must be either a real variable or a real constant or number.
INDVR2 is the second independent variable which must be either a real variable or a real constant or number.
MNDP1 is the maximum number of x,y data pairs that appear in a single row of the function table. Must be an INTEGER.
NDP2 is the number of second independent variable values that there are in the function table. Must be an INTEGER.

Whenever called, the function first checks the input value of both independent variables against the corresponding range of values in the matrix. If either of them falls outside its defined range, an error message is printed and the same fixup is taken as described for the AFGEN function.

The function table itself is a 2-dimensional matrix, set up as shown below:

X2 ₁	X1 _a	Y1 _a	X1 _b	Y1 _b	X1 _c	Y1 _c	X1 _d	Y1 _d
X2 ₂	X1	Y1	X1	Y1	X1	Y1		
X2 ₃	X1	Y1	X1	Y1				
X2 ₄	X1	Y1	X1	Y1	X1	Y1	X1	Y1
X2 ₅	X1	Y1	X1	Y1				
X2 ₆	X1	Y1	Y1	X1	Y1			

Column 1 contains the values of INDVR2 in ascending order only. The number of values in this column corresponds to the value of NDP2. The even columns (2,4 etc) contain the various values of INDVR1 for each of the values of INDVR2 defined in column 1. The odd columns (3,5 etc.) contain the values of the dependent variable corresponding to each INDVR1 value. Thus each row of the matrix contains pairs of x, y coordinates which describe the "curve" of dependent variable versus one independent variable (INDVR1) for the particular value of the second independent variable (INDVR2) contained in column 1 of that row. The x values along any row must be in ascending order only.

Not always are there an equal number of data points for each row of the matrix. In such an instance the matrix must be "squared-off" with zeros. (This is because of the way the matrix is filled by FORTRAN when using the DATA statement). Thus every row must contain an NDP2 value followed by 2 * MNDP1 numbers (some of which may be "squaring-off" zeros).

e.g.

DIMENSION FLRT (6, 50)

```
DATA FLRT/X21, X22, X23, X24, X25, X26,  
      X1a, X1, X1, X1, X1, X1,  
      Y1a, Y1, Y1, Y1, Y1, Y1,  
      X1b, X1, X1, X1, X1, X1,  
      Y1b, Y1, Y1, Y1, Y1, Y1,  
      X1c, X1, 0., X1, 0., X1,  
      Y1c, Y1, 0., Y1 0., Y1,  
      X1d, 0., 0., X1, 0., 0.,  
      Y1d, 0., 0., Y1, 0., 0.,/
```

```
XFLR = TWOVAR (FLRT, A1, B1, 4, 6)
```

RAFGEN

This is a special purpose function having no equivalent in CSMP. One may wish to investigate the effect of various rainfall distributions and quantities over the season for a given set of other wheather variables. Using the AFGEN function to generate a rainfall bar chart is a most inconvenient method and likewise, creating a special rainfall disk file of the same format as the other meteorological data used by FORTRAN ARIDCROP is tedious, since each day of the season requires an entry even though rain only occurs on a small number of them and most of the data is a series of zeros. The RAFGEN function provides a simple way of representing a seasons rainfall with a minimum of effort. In principle, the data is presented as for a regular AFGEN function, but only rain events appear in the function table; the function carries out no interpolation.

The function table is a matrix of 2 rows, the upper containing the day numbers on which rain events take place (ascending order only), and the lower row containing the corresponding rainfall for each of those days (in mm.). The end of the rains is indicated by a 0.,0. data pair.

The form of the call is:

```
R = RAFGEN (TABLE, INDVAR)
```

where R is a real variable.

TABLE is the name of the function table containing the rainfall events
INDVAR is the day number for which the rainfall is to be returned by the
function.

INDVAR is REAL. If time is integer and is used for INDVAR, convert to
REAL by adding "+ 0." in the call.

A 2 x 50 matrix is DIMENSION-ed in the routine, thus if there are more than 49 rain events this must be altered accordingly.

On the first RAFGEN call only, the routine finds on which day the last rain occurs. Since many calls to RAFGEN are made after the last rain event, such calls can be dealt with by a simple IF statement and a value of 0 is returned without searching in the actual tabulated function. It is only when a call is made before the end of the rains that the rainfall array is checked through. Failure to find an entry for the input day number results in 0 being returned.

The function resides in the model. A call to the function does not. The call card must be added if it is wished to utilize the RAFGEN function. The call card must be inserted after rain is read off the meteorological data file and will thus override the first value read. Obviously the card must also be inserted before the first time RAIN is used in the model.

DELAYT

Purpose: to store today's average air temperature and return the average air temperature of X days ago.

Call Statement: OLDT = DELAYT (X, NEWT)

Ensure that X never exceeds the size of the storage array DIMENSION-ed in the DELAYT function. X in the model is currently 10, and 20 words are allocated for storage.

LIMIT

Call Statement: Y = LIMIT (P1, P2, X)

ACTION: Y = P1; X < P1
 Y = P2; X > P2
 Y = X; P1 < X < P2

INSW

Call Statement: Y = INSW (X1, X2, X3)

ACTION: Y = X2; X1 < 0
 Y = X3; X1 > 0

FCNSW

Call Statement: Y = FCNSW (X1, X2, X3, X4)

ACTION: Y = X2; X1 < 0
 Y = X3; X1 = 0
 Y = X4; X1 > 0

NOT

Call Statement: Y = NOT (X)

ACTION: Y = 1; X < 0
 Y = 0; X > 0

AND

Call Statement: Y = AND (X1, X2)

ACTION: Y = 1; X1 > 0, X2 > 0
 Y = 0; otherwise.

3.5. Model initialisation

In its narrowest sense, initialisation refers only to the setting of integrals (state variables) to their appropriate initial conditions prior to the commencement of a simulation run. ARID CROP contains 23 integrals plus those of water content of each soil layer. The number of soil layers is presently set at 10, so the total number of integrals is 33. The version of ARID CROP presented here assumes that all runs commence on 1st October, which is invariably before the first effective rainfall and germination in the Mediterranean region where the model is applied. Thus most of the integrals are initialised to zero and this is done in the initialisation section of the model in a single DATA statement. Of the 33 integrals that are updated each time step in the integration section of the model, the following ones have non-zero initial values:

a) soil moisture content of each soil compartment.

This is set by the following expression:

$$W(N) = DRF(N) * WLPT * TCK(N)$$

where:

W(N) = soil moisture content of the Nth soil compartment (mm)

DRF (N) = dryness factor of Nth soil compartment expressed as a fraction of moisture content at wilting point (-)

WLPT = wilting point (parameter) (cm^3/cm^3)

TCK(N) = thickness of the Nth soil compartment (mm).

The DRF and TCK values for each soil compartment are set in the PARAMETERS section in DATA statements.

b) soil temperature.

This is initialised as the average air temperature on the first day of the simulation. In order to do this, one record of the meteorological data file is read and the file is rewound before the simulation commences.

ARID CROP simulates establishment by updating the (zeroed) integrals of plant part biomass by some initial value on emergence day. These initial values are described by the following variables:

IBIOM = initial aboveground biomass at emergence. This is frequently altered from run to run and is therefore read in from the input file (see Section 3.1). (kg DM/ha)

IRWT = initial root biomass at emergence.
IRWT = IBIOM (kg DM/ha)

WLVSI = initial weight of leaves at emergence.
WLVSI = IBIOM * AFGEN (DISTFT, 0., 5) (kg DM/ha)

WNLVSI = initial weight of aboveground non-leaf material.
WNLVSI = IBIOM - WLVSI (kg DM/ha)

LFI = initial leaf area at emergence.
LFI = WLVS * LFARR (m^2/ha)

The root depth integral is initialised in a similar way:

IRTD = initial root depth.
IRTD = 101. (set in PARAMETERS section) (mm)

Using the term initialisation in its broader sense, the other variables that are set prior to the commencement of the simulation proper are function tables and parameters. Only IBIOM and the observed biomass function table (OBSERT) are read in from the input file in the version presented here, all other function tables and parameter values reside in the model. If one wishes to vary these values from run to run, it might be simpler to adjust the program to read in those variables from the input file instead of having to edit and recompile each time.

Unfortunately, mid-season initialisation cannot be carried out with the same ease as it can with CSMP. The changes required in the model listing are not very extensive, but since the need for such runs is probably minimal, details of the required changes are not presented here.

3.6. Meteorological data input

The CSMP version of ARIDCROP imposes 3 main inconveniences in using meteorological data:

1. the data are entered as AFGEN function tables which are both tedious to punch and awkward to check; 2. the computer memory requirement for the 7 data function tables is very large. This is wasteful since each number is required only once each run; 3. the data function tables are printed out each job and this cannot be suppressed. This is quite unnecessary and is wasteful of time, paper and money.

FORTRAN ARIDCROP avoids these problems. The data is structured in an easily read format, it is stored on disk and read sequentially as the simulation progresses and does not appear on the output file unless specifically requested.

The meteorological data files currently read by ARIDCROP were originally generated for a different purpose and include information not required by ARIDCROP. This extra information presents no difficulty and is skipped in the READ instruction in ARIDCROP. The data for each year consists of 210 records, the first being for Oct 1 and the last for April 28. Each record contains:

DATE, RUNNING DAY NUMBER, RAINFALL (mm), CUMULATIVE RAINFALL (mm), MINIMUM TEMP. ($^{\circ}$ C), MAXIMUM TEMP. ($^{\circ}$ C), RADIATION (cal/cm²/day), WINDRUN (km/day) DEWPOINT TEMP. at 800 hrs and 1400 hrs ($^{\circ}$ C), PENMAN EVAPORATION (mm).

For example, the 80th record of the 79/80 data file reads:

1979 DEC 19 80 0.4 106.3 7.9 12.9 223.9 152.0 7.0 7.6 1.0.

ARIDCROP does not require the date, day no., cumulative rainfall or Penman evaporation, and so the following format is used in ARIDCROP in reading the meteorological data files: FORMAT (17X, F6.0, 8X, F5.0, F6.0, F7.0, F6.0, F6.0).

REFERENCES

Keulen, H. van, 1975. Simulation of water use and herbage growth in arid regions. *Simulation Monographs*, PUDOC, Wageningen.

Keulen, H. van, N.G. Seligman and R.W. Benjamin, 1981. Simulation of water use and herbage growth in arid regions - a reevaluation and further development of the model 'ARID CROP'. *Agric. Syst.*, 6: 159-193.

Wit C.T. de and H. van Keulen, 1972. Simulation of transport processes in soils. *Simulation Monographs.*, Pudoc, Wageningen.

Appendix 1

```
C ****ARIDCROP ****
C
C THIS IS A FORTRAN TRANSLATION OF ARIDCROP - A SIMULATION
C MODEL OF CROP GROWTH IN ARID ENVIRONMENTS WRITTEN BY
C HERMAN VAN KEULEN IN THE LANGUAGE CSMP.
C NO CONCEPTUAL CHANGES HAVE BEEN MADE TO THE MODEL,
C AND AN ATTEMPT HAS BEEN MADE TO RETAIN MUCH OF
C THE CSMP STRUCTURE.
C
C DEFINITIONS OF ALL TERMS USED IN THE MODEL ARE
C AVAILABLE ON FILE, THUS THERE ARE VERY FEW
C DEFINING COMMENTS IN THE MODEL LISTING.
C
C **** DIMENSIONS REALS INTEGERS ****
C
DIMENSION W(20), F(20), EB(20), DRF(20)
DIMENSION TCK(20), TRB(20), TDB(20), DRR(20)
DIMENSION RTL(20), VAR(20), RWFB(20), SWFB(20)
DIMENSION RWRB(20), ERLB(20), WRED(20), EDFTF(20)
DIMENSION MWATER(20), AWATER(20), ER(20), TRR(20)
DIMENSION DVRT(2,5), TECT(2,8), FDMT(2,3), CSRR(2,7)
DIMENSION RDRD(2,6), RDRAT(2,4), WREDT(2,7), RADTB(2,14)
DIMENSION FLTRT(2,10), FAMSTT(2,5), DISTFT(2,5), REDTTB(2,7)
DIMENSION REDFDT(2,10), EDPFT(2,5), ALPHAT(7,26), RFDVST(2,4)
DIMENSION NAME(60), MAT(60,10), TITLE(80), PE(5)
DIMENSION MIN(5), MAX(5), OBSERT(2,15)
EXTERNAL AND
INTEGER TIME, FINTIM, DELT, DAY, STDAY, DAYY, FDAYY, OUTDEL, PRDEL,
1      NAME, RO, COL, ROW, UPTO, TITLE, WANTPL, EQLSCL, PVALS, PLOT
REAL   LAT, LHVAP, LFARR, MXRTD, MRESF, LFOV, MNT, MIN, MXT, MAX,
1      LWR, LAI, INFR, LIMIT, INSW, NOT, IBIOM, IRTD, LRF, LFAREA,
2      IRWT, LAGRTR, LFI, LMBIOM, MAINT, MWATER, MWRTD, MAT
C
C **** NON-METEOROLOGICAL FUNCTION TABLES ****
DATA RFDVST/0.,1., .9,1., 1.,0., 1.1,0./
DATA WREDT /0.,0., .1,.3, .15,.45, .3,.7, .5,.975,
1      .75,1., 1.1,1./
DATA TECT /0.,0.,06, 3.,.29, 10.,.85, 16.,.94, 20.,1.,0
1      31.,.87, 40.,.6, 50.,.3/
DATA REDFDT/-01.,05, 0.,.075, .05,.1, .1,.2, .2,.375,
1      .3,.5, .4,.725, .75,.9, 1.,1., 1.1,1./
DATA CSRR( /0.,.3, .1,.4, .25,.5, .5,.65, .75,.75,
1      1.,.975, 1.1,.975/
DATA FAMSTT/0.,1., .4,1., .75,.6, 1.,.5, 1.1,.5/
DATA RDRD( /0.,0., .7,0., .71,.005, .9,.005, 1.,1.,
1      1.1,1./
DATA FLTRT /0.,1., .5,.705, 1.,.496, 1.5,.384, 2.,.248,
1      3.,.134, 5.,.03, 8.,.004, 10.,.001, 15.,.0001/
DATA REDTTB/5.,.8, 10.,.9, 15.,1., 20.,.97, 25.,.97,
1      30.,.97, 50.,.97/
DATA FDMT /0.,.1, 1.,.25, 1.1,.25/
DATA RDRAT /0.,0., .5,0., 1.,.05, 1.1,.05/
DATA EDPFT/0.,.15, .15,.6, .3,.8, .5,1., 1.1,1./
DATA DISTFT/0.,.9, .5,.8, .7,.6, .9,0., 1.1,0./
DATA DVRT /0.,0., 3.75,0., 16.,0.01, 25.,0.0175, 40.,0.02/
C
C **** METEOROLOGICAL FUNCTION TABLE ****
C
C TOTAL DAILY VISIBLE RADIATION AT 31 DEG LAT (NOT DUMMY)
DATA RADTB /0.,178.9, 15.,185., 46.,239.5, 74.,298.7, 105.,360.6,
1      135.,399.6, 166.,417.5, 194.,411.2, 227.,382.5, 258.,329.5,
```

```
2 288.,265., 319.,204.1, 349.,172.8, 365.,176.9/  
C C TWOVAR FUNCTION TABLE - ALPHAT  
C DATA ALPHAT/0.0, 0.2, 2.0, 3.5, 5.0, 10.0, 12.0,  
1 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
2 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
3 100.0, 100.0, 10.0, 10.0, 10.0, 10.0, 10.0,  
4 1.0, 1.0, 0.6, 0.425, 0.39, 0.35, 0.334,  
4 0.0, 0.0, 15.0, 15.0, 15.0, 15.0, 15.0,  
5 0.0, 0.0, 0.66, 0.515, 0.455, 0.41, 0.392,  
6 0.0, 0.0, 20.0, 20.0, 20.0, 20.0, 20.0,  
7 0.0, 0.0, 0.715, 0.585, 0.505, 0.45, 0.428,  
8 0.0, 0.0, 25.0, 25.0, 25.0, 25.0, 25.0,  
9 0.0, 0.0, 0.76, 0.64, 0.545, 0.485, 0.461,  
1 0.0, 0.0, 30.0, 30.0, 30.0, 30.0, 30.0,  
2 0.0, 0.0, 0.795, 0.68, 0.58, 0.51, 0.482,  
3 0.0, 0.0, 35.0, 35.0, 35.0, 35.0, 35.0,  
4 0.0, 0.0, 0.835, 0.715, 0.61, 0.53, 0.498,  
5 0.0, 0.0, 40.0, 40.0, 40.0, 40.0, 40.0,  
6 0.0, 0.0, 0.87, 0.745, 0.635, 0.55, 0.516,  
7 0.0, 0.0, 45.0, 45.0, 45.0, 45.0, 45.0,  
8 0.0, 0.0, 0.91, 0.77, 0.66, 0.565, 0.527,  
9 0.0, 0.0, 50.0, 50.0, 50.0, 50.0, 50.0,  
1 0.0, 0.0, 0.94, 0.795, 0.685, 0.585, 0.545,  
2 0.0, 0.0, 60.0, 60.0, 60.0, 60.0, 60.0,  
3 0.0, 0.0, 0.97, 0.845, 0.74, 0.61, 0.558,  
4 0.0, 0.0, 100., 100., 100., 100., 100.0,  
5 0.0, 0.0, 1.0, 0.875, 0.775, 0.65, 0.6/  
C C ***** OUTPUT LIST *****  
C DATA NAME/" ", "W1", "W2", "W3", "W4", "W5", "W6", "W7", "W8", "W9", "W10",  
1 "WTOT", "TRAIN", "THPA", "THPSUM", "HRAD", "EVAP",  
2 "TPEVAP", "PEVAP", "AEVAP", "TEVAP", "PCTRAN", "PTRAN",  
3 "APTRAN", "TRAN", "TOTRAN", "AEPER", "TRANDEF", "RTRDEF",  
4 "CTRDEF", "RTD", "ERLB10", "TRPMH", "AMAX", "EFFE",  
5 "PDTGAS", "PDTGR", "WUSEFF", "TGRWTH", "LAI", "WLVS",  
6 "WNLVS", "WSDS", "DBIOM", "TADRW", "RTWGHT", "TDRWT",  
7 "DVS"/  
C C ***** PARAMETERS *****  
C C ALL THE FOLLOWING PARAMETERS REMAIN CONSTANT  
C C THROUGHOUT AN ENTIRE RUN OF THE MODEL.  
C AMAXB=40. $CONFS=0.75 $DGRRT=12. $DVSSF=0.65 $EFFEB=0.5  
FLDCP=0.23 $FWDB=0.1 $GAMMA=0.49 $IRTD=101. $LAT=31.  
LFARR=20. $LHVAP=59. $MRESF=0.02 $MXRTD=1800. $PI=3.1416  
PROP=15. $PSCH=0.67 $RC=37.E-5 $REFCF=0.05 $REFT=25.  
RHOCP=2.86E-4$RS=18.5E-6 $TCOPH=10. $TCORL=5. $TCRNL=5.  
TCRPH=10. $TSUMG=150. $WLTPT=0.075 $WCLIM=WLTPT*0.333  
DATA DRF / 0.5,0.75,0.8,0.9,1.0,1.0,1.0,1.2,1.2,1.2,1.0/  
DATA TCK / 20.,30.,50.,100.,300.,300.,300.,300.,1000./  
C C ***** RUN CONTROL *****  
C C  
READ *,DELT,FINTIM,PRDEL,IBIOM,WANTPL  
READ 8,TITLE  
8 FORMAT(80A1)  
IF(WANTPL .EQ. 1)THEN  
READ *,OUTDEL,PLOT,EQLSCL,PVALS  
ENDIF  
C C READ IN OBSERVED BIOMASS FUNCTION TABLE  
DO 11 IX=1,15  
READ *,OBSERT(1,IX),OBSERT(2,IX)  
11 CONTINUE  
C C ***** INITIALISATION *****
```

```
STDAY=1
FDAYY=273
REWIND 40
LHBIOM=IBIOM*0.5
C   SOIL WATER
J=10
DO 1 N=1,J
W(N)=DRF(N)*WLTP+TCK(N)
1 CONTINUE
DATA TRAIN,TOTINF,TOTTRAN,TPEVAP,TEVAP,THPSUM,TDRAIN,DVS,
1     LFAREA,WSDS,DBIOM,RTWGH,RTD,EFFE,CTRDEF,TINTAK,
2     SLCVR,AMAX,PLBIOM,WLVS,WNLVS,LAI/22*0./
COL=0
C   SOIL TEMPERATURE INITIALISATION
READ(50,10)MNT,HXT
10 FORMAT(31X,F5.0,F6.0)
REWIND 50
TS10=5.*(MNT+MXT)
TS=TS10*0.1
TS0=TS10
C   INITIAL ABOVEGROUND BIOMASS
IRWT=IBIOM
WLVSI=IBIOM*AFGEN(DISTFT,0.,5)
WNLVSI=IBIOM-WLVS
LFI=WLVSI*LFARR
DO 21 I=1,5
    MAX(I)=-10E200
    MIN(I)=+10E200
21 CONTINUE
C   **** MAIN TIME LOOP ****
C   ===== DYNAMIC SECTION =====
DO 1000 TIME=0,FINTIM,DELT
DAY=STDAY+TIME
DAYY=MOD(DAY+FDAYY,365)
C   ***** READ IN ONE DAY OF METEOROLOGICAL DATA *****
READ(50,9)RAIN,MNT,MXT,DTR,WSR,DPT8,DPT2
9 FORMAT(17X,F6.0,8X,F5.0,F6.0,F7.0,F7.0,F6.0,F6.0)
DGRCL=2.*AFGEN(RADTB,(DAYY+0.),14)
DGROV=0.2*DGRCL
FCL=(DTR-DGROV)/(DGRCL-DGROV+NOT(DGRCL-DGROV))
FOV=1.-FCL
LFOV=LIMIT(0.,1.,FOV)
TMPA=(MNT+HXT)/2.
DPT=A MIN1((DPT8+DPT2)*0.5,TMPA)
VPA=4.58*EXP(17.4*DPT/(DPT+239.))
SVPA=4.58*EXP(17.4*TMPA/(TMPA+239.))
C   RUNOFF/RUNOFF IGNORED FOR THE MOMENT, THEREFORE...
INFR=RAIN
LWR=1.178E-7*(TMPA+273.)*4*(0.58-0.09*SQRT(VPA))*(1.-0.9*LFOV)
WSM=WSR/1.6
HZERO=DTR*(1.-REFCF)-LWR
EA=0.35*(SVPA-VPA)*(0.5+WSM/100.)*LHVAP
DELTA=17.4*SVPA*(1.-TMPA/(TMPA+239.))/(TMPA+239.)
EVAP=(HZERO+DELTA/GAMMA+EA)/(1.+DELTA/GAMMA)*1./LHVAP
C   ***** SOIL TEMPERATURE *****
DTMPA=DELAYT(10,TMPA)+INSW(TIME-10.,0.1*TS0,0.)
RCST=(TMPA-DTMPA)/DELT
WCPR=(W(1)/TCK(1)-WCLIM)/(FLDCP-WCLIM)
FRLT=AFGEN(FLTRT,SLCVR,10)
PEVAP=FRLT*EVAP
REDFD=AFGEN(REFDFT,WCPR,10)
AEVAP=PEVAP*REDFD
C   ***** DAILY GROSS PHOTOSYNTHESIS *****

```

```
DEC=-23.4*COS(PI*(DAYY+10.173)/182.621)
RAD=PI/180.
SSIN=SIN(RAD*LAT)*SIN(RAD*DEC)
CCOS=COS(RAD*LAT)*COS(RAD*DEC)
TTE=(-SSIN*(8.*RAD)+SSIN)/CCOS
TT=SSIN/CCOS
ASE=ASIN(TTE)
AS=ASIN(TT)
DAYL=12.*(PI+2.*AS)/PI
EDAYL=12.*(PI+2.*ASE)/PI
RADC=0.5*DGRCL
RADO=0.2*RADC
IF(LAI .GT. 0.)THEN
  SLLAE=SIN((90.+DEC-LAT)*RAD)
  X=0.45*EFFE*RADC/(SLLAE*AMAX)
  P=ALOG(1.+X)
  P=P/(P+1.)
  PS=SLLAE+P*EDAYL*AMAX
  X=0.5*EFFE*RADC/(AMAX*(5.-SLLAE))
  P=ALOG(1.+X)
  P=P/(P+1.)
  DGCC=PS+(5.-SLLAE)*AMAX*EDAYL*P
  DGCE=0.95*DGCC+20.5
  X=RADO*EFFE/(AMAX*5.)
  P=X/(X+1.)
  DGCO=5.*AMAX*EDAYL*P
  DGCOE=0.9935*DGC0+1.1
  IF(LAI .GE. 5.)THEN
    PDTGAS=(LFOV*DGC0+(1.-LFOV)*DGCC)*30./44.
  ELSE
    FINT=(1.-EXP(-0.8*LAI))
    C1=FINT*DGCCE
    C2=DAYL*LAI*AMAX
    O1=FINT*DGC0E
    O2=C2
    IF(C1 .LE. C2)THEN
      C0=C1
      C1=C2
      C2=C0
    ENDIF
    DGCCAE=C2*(1.-EXP(-C1/C2))
    IF(O1 .LE. O2)THEN
      O0=O1
      O1=O2
      O2=O0
    ENDIF
    DGCOAE=O2*(1.-EXP(-O1/O2))
    PDTGAS=(LFOV*DGC0AE+(1.-LFOV)*DGCCAE)*30./44.
  ENDIF
  ELSE
    PDTGAS=0.
  ENDIF
C ***** SOIL WATER DYNAMICS --- PART 1 --- *****
C PART OF WATER DYNAMICS OF FIRST SOIL COMPARTMENT
TDB(1)=TCK(1)
VAR(1)=AMAX1(W(1)/TCK(1)-WCLIM,0.)*EXP(-PROP*0.001*(0.5*TCK(1)))
SUM10=VAR(1)*TCK(1)
MWATER(1)=FLDCP*TCK(1)
AWATER(1)=AMAX1(0.,W(1)-TCK(1)*WLPT)
EDPTF(1)=AFGEN(EDPTFT,AWATER(1)/(MWATER(1)-TCK(1)*WLPT),5)
RTL(1)=LIMIT(0.,TCK(1),RTD)
ERLB(1)=RTL(1)*EDPTF(1)
WCPR=(W(1)/TCK(1)-WCLIM)/(FLDCP-WCLIM)
WRED(1)=AFGEN(WREDT,AWATER(1)/(MWATER(1)-TCK(1)*WLPT),7)
TEC=AFGEN(TECT,TS,8)
```

```
RWFB(1)=AMAX1(0.,INFR-(MWATER(1)-W(1))/DELT)
SWP=FCNSW(AWATER(1),0.,0.,AND(RTD,TDB(1)-RTD))
SWPB(1)=SWP
DRR(1)=RWFB(1)*AND(MXRTD,TDB(1)-MXRTD+0.5)
C PART OF WATER DYNAMICS OF OTHER COMPARTMENTS
DO 3 N=2,J
  TDB(N)=TDB(N-1)+TCK(N)
  VAR(N)=AMAX1(W(N)/TCK(N)-WCLIM,0.)*EXP(-PROP*0.001*(TDB(N-1)
  1 +0.5*TCK(N)))
  SUM10=SUM10+VAR(N)*TCK(N)
  MWATER(N)=FLDCP*TCK(N)
  AWATER(N)=AMAX1(0.,W(N)-TCK(N)*WLPT)
  EDPTF(N)=AFGEN(EDPTFT,AWATER(N)/(MWATER(N)-TCK(N)*WLPT),5)
  RTL(N)=LIMIT(0.,TCK(N),RTD-TDB(N-1))
  ERLB(N)=ERLB(N-1)+RTL(N)*EDPTF(N)
  WRED(N)=AFGEN(WREDT,AWATER(N)/(MWATER(N)-TCK(N)*WLPT),7)
  RWFB(N)=AMAX1(0.,RWFB(N-1)-(MWATER(N)-W(N))/DELT)
  SWP=FCNSW(AWATER(N),0.,0.,AND(RTD-TDB(N-1),TDB(N)-RTD))
  SWPB(N)=SWPB(N-1)+SWP
  DRR(N)=DRR(N-1)+RWFB(N)*AND(MXRTD-TDB(N-1),TDB(N)-MXRTD+0.5)
3 CONTINUE
C **** CALCULATION OF POTENTIAL CROP TRANSPiration ****
VPA=1.33*VPA
AVTD=MXT-0.25*(MXT-MNT)
SVPAM=6.11*EXP(17.4*AVTD/(AVTD+239.))
WSA=1.333E5*WSR
RA=3.045E-3*SQRT(1./WSA)+63./WSA
ELWR=1.175E-7*(AVTD+273.)*4*(0.58-0.09*SQRT(VPA))*1
1 (1.0-0.9*LFOV)*DAYL/24.
HNOT=0.75*DTR-ELWR
SLOPE=17.4*SVPAM*(1.-AVTD/(AVTD+239.))/(AVTD+239.)
S=(RA+RS)/RA
CC=1./(SLOPE+S*PSCH)
HRA0=DTR/DAYL
ALPHA=TWOVAR(ALPHAT,HRA0,LAI,12,7)
REFUS=AFCEN(REFUST,DVS,4)
PTRAN=CC*((1.-EXP(-0.5*LAI))*HNOT*SLOPE+ALPHA*LAI*
1 RHOCP/RA*(SVPAM-VPAH)*DAYL/24.)/LHVAP
APTRAN=PTRAN*RFDS
TRPMH=APTRAN/(ERLB(J)+NOT(ERLB(J)))
MWRTD=RTD*(FLDCP-WLPT)+NOT(RTD)
C **** SOIL WATER DYNAMICS --- PART 2 --- ****
C REST OF WATER DYNAMICS OF FIRST COMPARTMENT
F(1)=TCK(1)*VAR(1)/(SUM10+NOT(SUM10))
ER(1)=AMIN1(W(1)-WCLIM*TCK(1),F(1)*AEVAP)
EB(1)=ER(1)
TRR(1)=TRPMH*RTL(1)*EDPTF(1)*TEC*WRED(1)
TRB(1)=TRR(1)
RAWR=RTL(1)/TCK(1)*AWATER(1)/MWRTD
RWRB(1)=RAWR
C REST OF WATER DYNAMICS OF OTHER COMPARTMENTS
DO 2 N=2,J
  F(N)=TCK(N)*VAR(N)/(SUM10+NOT(SUM10))
  ER(N)=AMIN1(W(N)-WCLIM*TCK(N),F(N)*AEVAP)
  EB(N)=EB(N-1)+ER(N)
  TRR(N)=TRPMH*RTL(N)*EDPTF(N)*TEC*WRED(N)
  TRB(N)=TRB(N-1)+TRR(N)
  RAWR=RTL(N)/TCK(N)*AWATER(N)/MWRTD
  RWRB(N)=RWRB(N-1)+RAWR
2 CONTINUE
WTOT=0.
DO 7 N=1,J
  WTOT=WTOT+W(N)
7 CONTINUE
```

```
SW=W(1)+W(2)+W(3)-WLTP*TDB(3)

C ***** REST OF POT. CROP TRANSPiration *****
TRAN=TRB(J)
RTRDEF=(PTRAN-TRAN)/(PTRAN+NOT(PTRAN))
S1=(RA+RC)/RA
CC1=1./(SLOPE+S1*PSCH)
PCTTRAN=PTRAN*CC1/CC
TRANDF=(PCTTRAN-TRAN)*DELT
FDV=INSW(TRANDF,1.,-1.)

C **** GERMINATION *****
ENGR=INSW(TSUMG-TMPSUM,0.,INSW(SW,TMPSUM/DELT,0.))
PUSHD=AND(PLBIOM-LMBIOM,LMBIOM-(WLVS+WNLVS))
C PLBIOM IS YESTERDAYS ABOVEGROUND BIOMASS
PLBIOM=WLVS+WNLVS
PUSHG=AND(TMPSUM-TSUMG,0.5*IBIOM-(WLVS+WNLVS))
1   *INSW(TIME-180.,1.,0.)*(1.-PUSHD)
C AEPER=RATIO OF ACTUAL AND POTENTIAL EVAPOTRANSPIRATION
AEPER=(TRB(J)+EB(J))/(PEVAP+PTRAN+NOT(PEVAP+PTRAN))
C **** CROP PRODUCTION *****
TADRW=WLVS+WNLVS+WSDS+DBIOM
DVR=AFGEN(DVRT,TMPA,5)*INSW((WLVS+WNLVS)-LMBIOM,0.,1.)
1   *(1.-PUSHD)*INSW(DVS-1.,1.,0.)
TVEGM=WLVS+WNLVS
FDM=AFGEN(FDMT,DVS,3)
RDLVSX=TRANDF*1.E4/((1.-FDM-FWDB)/FDM)*WLVS/(TVEGM+NOT(TVEGM))
RDLVX=TRANDF*1.E4/((1.-FDM-FWDB)/FDM)*WNLVS/(TVEGM+NOT(TVEGM))
RDRD=AFGEN(RDRDT,DVS,6)
RDLVSA=RDLVSX/TCDR
RDLVVA=RDLVX/TCDRNL
RDLVS2=RDRD*WLVS*(1.-PUSHD)
RDLV2=RDRD*WNLVS*(1.-PUSHD)
RDLVS1=AMIN1(RDLVSA/DELT,WLVS/DELT)
RDLV1=AMIN1(RDLVVA/DELT,WNLVS/DELT)
RDLVS=INSW(FDV,RDLVS1,RDLVS2)*(1.-PUSHD)
RDLV2=INSW(FDV,RDLV1,RDLV2)*(1.-PUSHD)
RINTAK=0.
TPPR=TINTAK+TADRW
CRNLVS=RINTAK*WLVS/(TVEGM+NOT(TVEGM))
CRLVS=RINTAK*WLVS/(TVEGM+NOT(TVEGM))
AVLAR=LFAREA/(WLVS+NOT(WLVS))
RDLFA=AVLAR*RDLVS
CRLFAR=CRLVS*AVLAR
TDRWT=TADRW+RTWGH
TEFR=10.**((TMPA-REFT)*ALOG10(2.)/10.)
MAINT=(TDRWT-DBIOM)*MRESF*TEFR
PDTGR=(PDTGAS-MAINT)*CONFS
WUSEFF=PDTGR/(PTRAN+NOT(PTRAN))
TGRWTH=TRAN*WUSEFF
FAMST=AFGEN(FAMSTT,RTRDEF,5)
CSRR=AFGEN(CSRRT,DVS,7)*FAMST
GRRWTH=TGRWTH*(1.-CSRR)*(1.-PUSHD)
GROWTR=TGRWTH*CSRR*(1.-PUSHD)
FRTS=INSW(DVS-DVSS,0.,0.3)*INSW(GROWTR,0.,1.)
GRSDS=GROWTR*FRTS
DISTF=AFGEN(DISTFT,DVS,5)
GROWTV=GROWTR*(1.-FRTS)
GRLVS=GROWTV*DISTF
GRNLV=GROWTV*(1.-DISTF)
LAGRTR=GRLVS*LFARR
RFRGT=AFGEN(REDTTB,TS,7)
GRRT=SWPB(J)*DGRRT*RFRGT*INSW((WLVS+WNLVS)-IBIOM,0.,1.)*
1   INSW(RTD-MXRTD,1.,0.)*INSW(DVS-1.,1.,0.)
TCREC=TVEGM/(GRNLV+GRLVS+NOT(GRNLV+GRLVS))
```

```
RITDEF=(1.-CTRDEF)*INSW(RTRDEF-0.4,0.,RTRDEF/TCDPH)
RDTDF=CTRDEF/TCRPH*INSW(RTRDEF-0.4,1.,0.)
RDRA=AFGEN(RDRAT,CTRDEF,4)
RDEFFE=INSW(RTRDEF-0.4,0.,RDRA+EFFE)*(1.-PUSHD)
RDAMAX=INSW(RTRDEF-0.4,0.,RDRA+AMAX)*(1.-PUSHD)
RREFFE=(EFFEB-EFFE)/(TCREC+NOT(TCREC))*INSW(CTRDEF-0.5,1.,0.)
1      *INSW(-TVEGM,1.,0.)
RRAMAX=(AMAXB-AMAX)/(TCREC+NOT(TCREC))*INSW(CTRDEF-0.5,1.,0.)
1      *INSW(-TVEGM,1.,0.)
ENGRS=AND(TIME-200.,LMBIDM-(WLVS+WNLVS))

C **** OUTPUT SECTION ****
C ****
C
C IF( (TIME+0.)/PRDEL .EQ. (TIME/PRDEL)+0.
1 .OR. DVS .GT. 1. .OR. ENGRS .GT. 0.9 ) THEN
C      ====== ENTER VALUES INTO OUTPUT MATRIX ======
COL=COL+1
MAT(1,COL)=TIME+0.
DO 4 RO=2,11
      MAT(RO,COL)=W(RO-1)
4  CONTINUE
RO=11
RO=RO+1 $ MAT(RO,COL)=WTOT    $ RO=RO+1 $ MAT(RO,COL)=TRAIN
RO=RO+1 $ MAT(RO,COL)=TMPA    $ RO=RO+1 $ MAT(RO,COL)=TMPSUM
RO=RO+1 $ MAT(RO,COL)=HRAD    $ RO=RO+1 $ MAT(RO,COL)=EVAP
RO=RO+1 $ MAT(RO,COL)=TPEVAP  $ RO=RO+1 $ MAT(RO,COL)=PEVAP
RO=RO+1 $ MAT(RO,COL)=AEVAP   $ RO=RO+1 $ MAT(RO,COL)=TEVAP
RO=RO+1 $ MAT(RO,COL)=PCTRAN  $ RO=RO+1 $ MAT(RO,COL)=PTRAN
RO=RO+1 $ MAT(RO,COL)=APTRAN  $ RO=RO+1 $ MAT(RO,COL)=TRAN
RO=RO+1 $ MAT(RO,COL)=TOTRAN  $ RO=RO+1 $ MAT(RO,COL)=AEPER
RO=RO+1 $ MAT(RO,COL)=TRANDF  $ RO=RO+1 $ MAT(RO,COL)=RTRDEF
RO=RO+1 $ MAT(RO,COL)=CTRDEF  $ RO=RO+1 $ MAT(RO,COL)=RTD
RO=RO+1 $ MAT(RO,COL)=ERLB(10) $ RO=RO+1 $ MAT(RO,COL)=TRPMX
RO=RO+1 $ MAT(RO,COL)=AMAX    $ RO=RO+1 $ MAT(RO,COL)=EFFE
RO=RO+1 $ MAT(RO,COL)=PDTGAS  $ RO=RO+1 $ MAT(RO,COL)=PDTGR
RO=RO+1 $ MAT(RO,COL)=WUSEFF  $ RO=RO+1 $ MAT(RO,COL)=TGRWTH
RO=RO+1 $ MAT(RO,COL)=LAI     $ RO=RO+1 $ MAT(RO,COL)=WLVS
RO=RO+1 $ MAT(RO,COL)=WNLVS   $ RO=RO+1 $ MAT(RO,COL)=WSDS
RO=RO+1 $ MAT(RO,COL)=DRIM    $ RO=RO+1 $ MAT(RO,COL)=TADRW
RO=RO+1 $ MAT(RO,COL)=RTWQHT  $ RO=RO+1 $ MAT(RO,COL)=TDRWT
RO=RO+1 $ MAT(RO,COL)=DVS
      IF ( COL .EQ. 10 .OR. DVS .GT. 1. .OR.
1      ENGRS .GT. 0.9 .OR. TIME .EQ. FINTIM ) THEN
C      ====== PRINT OUT OUTPUT MATRIX ======
      PRINT 90,TITLE
90      FORMAT("1",/20X,80A1,/)
      PRINT 100,(MAT(1,upto),upto=1,10)
100     FORMAT(" ", "TIME", 10(F10.0,2X), " TIME",/)
      DO 5 ROW=2,RO
      PRINT 110,NAME(ROW),(MAT(ROW,upto),upto=1,10),NAME(ROW)
110     FORMAT(1X,A7,10(1PG12.4),1X,A8)
5  CONTINUE
COL=0
DO 6 RO=1,60
      DO 6 COL=1,10
      MAT(RO,COL)=0.
6  CONTINUE
      ENDIF
      ENDIF
C ***** PREPARE GRAPH DATA SET *****
IF ( WANTPL .EQ. 1 .AND.
1      ( (TIME + 0.)/OUTDEL .EQ. (TIME/OUTDEL)+0. .OR.
2      DVS .GT. 1. .OR. ENGRS .GT. 0.9 .OR.
3      TIME .EQ. FINTIM ) THEN
```

```
      PE(1)=ARGEN(OBSERT, DAY+0., 15)
      PE(2)=TADRW
      PE(3)=WLVS
      PE(4)=WSDS
      PE(5)=DBIOM
      WRITE(40,120), TIME
120  FORMAT(15)
      DO 20 IJK=1,PLOT
          IF(PE(IJK) .GT. MAX(IJK)) MAX(IJK)=PE(IJK)
          IF(PE(IJK) .LT. MIN(IJK)) MIN(IJK)=PE(IJK)
          WRITE(40,130), PE(IJK)
130  FORMAT(F20.8)
20    CONTINUE
      ENDIF
      IF ( DVS .GE. 1.0 ) THEN
          PRINT *, "FINISH CONDITION ... DVS=",DVS," SIMULATION HALTED"
          IF ( WANTPL .EQ. 1) CALL PLOTIT(TITLE,PVALS,PLOT,EQLSCL,MIN,MAX)
          STOP
      ENDIF
      IF ( ENGRS .GT. 0.1 ) THEN
          PRINT *, "FINISH CONDITION ... ENGRS ... SIMULATION HALTED"
          IF ( WANTPL .EQ. 1) CALL PLOTIT(TITLE,PVALS,PLOT,EQLSCL,MIN,MAX)
          STOP
      ENDIF
      IF ( TIME .EQ. FINTIM ) THEN
          PRINT *, "FINISH CONDITION ... FINTIM (",FINTIM,") REACHED."
          IF ( WANTPL .EQ. 1) CALL PLOTIT(TITLE,PVALS,PLOT,EQLSCL,MIN,MAX)
          STOP
      ENDIF
C      ****
C      ***** INTEGRATION *****

      TRAIN=TRAIN+RAIN*DELT
      TOTINF=TOTINF+INFR*DELT
      TPEVAP=TPEVAP+EVAP*DELT
      TMPSUM=TMPSUM+((TS-ENGR-TMPSUM*PUSHD/DELT)*DELT)
      TOTTRAN=TOTTRAN+TRAN*DELT
      W(1)=W(1)+((INFR-RWFB(1)-TRR(1)-ER(1))*DELT)
      DO 27 N=2,J
          W(N)=W(N)+((RWFB(N-1)-RWFB(N)-TRR(N)-ER(N))*DELT)
27  CONTINUE
      TEVAP=TEVAP+EB(J)*DELT
      TDRAIN=TDRAIN+DRR(J)*DELT
      DBIOM=DBIOM+(RDLVS+RDNLVS+(WLVS+WNLVS)*PUSHD/DELT)*DELT
      WLVS=WLVS+(PUSHG/DELT*WLVS1+GRLVs-RDLVS-PUSHD/DELT
      1      *WLVS-CRLVS)*DELT
      WNLVS=WNLVS+(PUSHG/DELT*WNLVS1+GRNLV-RDNLVS-PUSHD/DELT
      1      *WNLVS-CRNLVS)*DELT
      WSDS=WSDS+(GRS0S-WSDS*PUSHD/DELT)*DELT
      LFAREA=LFAREA+(LAGRTR-RDLFA+LFI*PUSHG/DELT-LFAREA*PUSHD/DELT
      1      -CRLFAR)*DELT
      LAI=1.E-4*LFAREA
      DVS=DVS+(DVR-DVS*PUSHD/DELT)*DELT
      RTWGBT=RTWGBT+(GRRWT+IRWT*PUSHG/DELT-RTWGBT*PUSHD/DELT)*DELT
      RTD=RTD+(GRRT+IRTD*PUSHG/DELT-RTD*PUSHD/DELT)*DELT
      EFFE=EFFE+(EFFEB/DELT*PUSHG-EFFE/DELT*PUSHD-RDEFFE+RREFFE)*DELT
      CTRDEF=CTRDEF+(RITDF-RDTDF)*DELT
      TINTAK=TINTAK+RINTAK*DELT
      AMAX=AMAX+(AMAXB/DELT*PUSHG-AMAX/DELT*PUSHD-RDAMAX+RRAMAX)*DELT
      SLCVR=SLCVR+(LAGRTR+LFI*PUSHG/DELT-SLCVR*PUSHD/DELT)*1.E-4*DELT
      TS=SOIL TEMPERATURE = TEN DAY RUNNING AVE OF AIR TEMP.
      TS=0.1*(TS10+RCST*DELT)
      TS10=TS10+RCST*DELT
1000 CONTINUE
      STOP
      END
```

```
C ****
C FUNCTION RAFGEN(TABLE,INDVAR)
C TABLE=MATRIX OF X,Y COORDINATES,X=NO OF DAYS FROM OCT 1(X=1=OCT 1)
C X VALUES MUST BE IN INCREASING ORDER. Y=RAINFALL ON THAT DAY (MM)
C END OF RAINS INDICATED BY 0.,0.
C INDOVAR=INDEPENDENT VARIABLE VALUE (DAY NO)
C REAL INDOVAR
C DIMENSION TABLE(2,50)
C LOGICAL DONE
C DATA DONE/.FALSE./
C SINCE MANY CALLS TO RAFGEN ARE MADE AFTER LAST RAIN EVENT, CHECK
C IF INDOVAR IS AFTER LAST RAIN EVENT. IF SO, RETURN VALUE OF 0.
C ELSE, CHECK THROUGH X VALUES FOR INDOVAR VALUE. IF OCCURS,
C RETURN CORRESPONDING Y VALUE, ELSE RETURN VALUE OF 0.
C INITIALISE RAFGEN
C RAFGEN=0.
C IF(.NOT. DONE)THEN
C     FIND WHAT DAY LAST RAIN OCCURS ON (I.E. FIND THE 0.,0.)
C     NDP=1
C     WHILE(TABLE(1,NDP) .NE. 0.)DO
C         NDP=NDP+1
C     ENDWHILE
C     NDP=NDP-1
C     DONE=.TRUE.
C ENDIF
C IF(INDVAR .GT. TABLE(1,NDP))THEN
C     AFTER END OF RAINS
C     RAFGEN=0.
C ELSE
C     INDOVAR MIGHT BE A RAINY DAY
C     DO 1 N=1,NDP
C         IF(INDVAR .EQ. TABLE(1,N))RAFGEN=TABLE(2,N)
1    CONTINUE
C ENDIF
C RETURN
C ****
C FUNCTION AFGEN(TABLE,INDVAR,NDP)
C TABLE=MATRIX OF X,Y COORDINATES, 2 ROWS, NDP COLUMNS LONG.
C X VALUES MUST BE IN INCREASING ORDER.
C INDOVAR=INDEPENDENT VARIABLE VALUE
C NDP=NO OF DATA PAIRS IN THE FUNCTION TABLE
C REAL INDOVAR
C DIMENSION TABLE(2,NDP)
C (MORE EFFICIENT TO SET INDOVAR TO LOCAL VARIABLE...)
C ENDVAR=INDVAR
C     IF(ENDVAR .LT. TABLE(1,1))THEN
C         X COORDINATE BELOW RANGE. ASSUME GRADIENT BELOW 1ST POINT=0
C         AFGEN=TABLE(2,1)
C         PRINT 1,ENDVAR,NDP
1        FORMAT(1X,"AFGEN CHECK. INDEP VARIABLE ",F10.4,
1        " IS BELOW RANGE. VALUE CORRESP TO LOWEST X VALUE",
2        " RETURNED. FUNCTION HAS ",I3," DATA PAIRS.")
C     ELSEIF(ENDVAR .GT. TABLE(1,NDP))THEN
C         X COORDINATE ABOVE RANGE. ASSUME GRADIENT ABOVE LAST POINT=0
C         AFGEN=TABLE(2,NDP)
C         PRINT 2,ENDVAR,NDP
2        FORMAT(1X,"AFGEN CHECK. INDEP VARIABLE ",F10.4,
1        " IS ABOVE RANGE. VALUE CORRESP TO HIGHEST X VALUE",
2        " RETURNED. FUNCTION HAS ",I3," DATA PAIRS.")
C     ELSE
C         X COORDINATE IS WITHIN TABLE RANGE
C         LOCATE X COORDINATE IN TABLE EITHER SIDE OF ENDVAR VALUE
C         N=1
C         WHILE(ENDVAR .GT. TABLE(1,N))DO
```

```
N=N+1
ENDWHILE
  IF(N .EQ. 1)THEN
    AFGEN=TABLE(2,1)
    RETURN
  ENDIF
C  ENDOVAR LIES BETWEEN TABLE(1,N-1) AND TABLE(1,N)
C  LINEAR INTERPOLATION
  AFGEN=((ENDVAR-TABLE(1,N-1))*((TABLE(2,N)-TABLE(2,N-1))
1   /(TABLE(1,N)-TABLE(1,N-1)))+TABLE(2,N-1)
  ENDIF
  RETURN
END
C ****
C FUNCTION DELAYT(NUMBER,PRESENT)
C FUNCTION TO RETURN AVE AIR TEMP OF "NUMBER" DAYS AGO
DIMENSION TEMP(20)
DATA TEMP/ 20*0. /
DELAYT=TEMP(1)
DO 1 N=1,NUMBER-1
TEMP(N)=TEMP(N+1)
1 CONTINUE
TEMP(NUMBER)=PRESENT
RETURN
END
C ****
REAL FUNCTION LIMIT(P1,P2,X)
  IF(P1 .GE. P2)PRINT *, "LIMIT FUNCTION CHECK.
1   P1 IS .GE. P2 ... P1=",P1,"  P2=",P2
  IF(X .LT. P1)THEN
    LIMIT=P1
  ELSEIF(X .GT. P2)THEN
    LIMIT=P2
  ELSE
    LIMIT=X
  ENDIF
  RETURN
END
C ****
REAL FUNCTION INSW(X1,X2,X3)
  IF(X1 .LT. 0.)THEN
    INSW=X2
  ELSE
    INSW=X3
  ENDIF
  RETURN
END
C ****
FUNCTION FCNSW(X1,X2,X3,X4)
  IF(X1 .LT. 0.)THEN
    FCNSW=X2
  ELSEIF(X1 .EQ. 0.)THEN
    FCNSW=X3
  ELSE
    FCNSW=X4
  ENDIF
  RETURN
END
C ****
REAL FUNCTION NOT(X)
  IF(X .LE. 0.)THEN
    NOT=1.
  ELSE
    NOT=0.
  ENDIF
  RETURN
```

```
END
*****
C FUNCTION AND(X1,X2)
  IF(X1 .GT. 0. .AND. X2 .GT. 0.)THEN
    AND=1.
  ELSE
    AND=0.
  ENDIF
RETURN
END
*****
C FUNCTION TWOVAR(MATRIX,INDVR1,INDVR2,MNDP1,NDP2)
REAL MATRIX,INDVR1,INDVR2
DIMENSION MATRIX(NDP2,26)
C      MATRIX=NAME OF FUNCTION TABLE
C      INDVR1=NAME OF FIRST INDEPENDENT VARIABLE,ASCENDING ORDER ONLY
C      INDVR2=      SECOND
C      MNDP1=MAX NO OF SECOND INDEPENDENT VARIABLE VALUES
C      NDP2=NO OF SECOND INDEPENDENT VARIABLE VALUES
C      MORE EFFICIENT TO SET INDVR1 AND INDVR2 TO LOCAL VARIABLES...
ENDVR1=INDVR1
ENDVR2=INDVR2
C CHECK ENDVR2 WITHIN ENDVR2 MATRIX RANGE
IF(ENDVR2 .LT. MATRIX(1,1))THEN
  PRINT *, "TWOVAR CHECK...ENDVR2",ENDVR2," BELOW RANGE. LOWEST
1      ENDVR2 AND LOWEST ENDVR1 VALUES ASSUMED AND APPROPRIATE
2      DEPENDENT VARIABLE VALUE RETURNED."
  TWOVAR=MATRIX(1,3)
ELSEIF(ENDVR2 .GT. MATRIX(NDP2,1))THEN
  PRINT *, "TWOVAR CHECK...ENDVR2",ENDVR2," ABOVE RANGE.
1      HIGHEST ENDVR2 AND LOWEST ENDVR1 VALUES ASSUMED
2      AND APPROPRIATE DEPENDENT VARIABLE VALUE RETURNED."
  TWOVAR=MATRIX(NDP2,3)
ELSE
  ENDVR2 WITHIN BOUNDS. LOCATE DEM BOUNDS..
  N=1
  WHILE(ENDVR2 .GE. MATRIX(N,1))DO
  N=N+1
  ENDWHILE
  N=UPPER BOUND ROW
C CHECK ENDVR1 IS WITHIN ENDVR1 RANGE OF BOUNDING ROWS...
DO 1 M=N-1,N
  L=2
  WHILE(ENDVR1 .GE. MATRIX(M,L) .AND. L .LT. 2*MNDP1)DO
  L=L+2
  ENDWHILE
  IF(L .EQ. 2)THEN
    ENDVR1 IS BELOW RANGE
    PRINT *, "ENDVR2 WITHIN RANGE, BUT ENDVR1",ENDVR1,
    1      " BELOW RANGE. MINIMUM ENDVR1 FOR LOWER/UPPER
    2      BOUND ENDVR2 VALUE IS ASSUMED AND APPROPRIATE
    3      DEPENDENT VARIABLE VALUE RETURNED."
    TWOVAR=MATRIX(M,L)
    RETURN
  ELSEIF(L .EQ. 2*MNDP1 .AND. MATRIX(M,L) .LT. ENDVR1)THEN
    ENDVR1 IS ABOVE RANGE
    PRINT *, "ENDVR2 WITHIN RANGE, BUT ENDVR1",ENDVR1,
    1      " ABOVE RANGE. MAXIMUM ENDVR1 FOR LOWER/UPPER
    2      BOUND ENDVR2 VALUE IS ASSUMED AND APPROPRIATE
    3      DEPENDENT VARIABLE VALUE RETURNED."
    TWOVAR=MATRIX(M,L)
    RETURN
  ELSE
    ENDVR1 IS WITHIN RANGE OF BOUNDING ROWS. INTERPOLATE...
    IF(M .EQ. N-1)THEN
      APROX1=((MATRIX(M,L+1)-MATRIX(M,L-1))/(MATRIX(M,L)-

```

```
1      MATRIX(M,L-2)))*(ENDVR1-MATRIX(M,L-2))+MATRIX(M,L-1)
1      ELSE
1          APROX2=((MATRIX(M,L+1)-MATRIX(M,L-1))/(MATRIX(M,L)-
1          MATRIX(M,L-2)))*(ENDVR1-MATRIX(M,L-2))+MATRIX(M,L-1)
1      ENDIF
1      ENDIF
1  CONTINUE
C  FINAL INTERPOLATION FOR ENDVR2...
TWOVAR=((APROX2-APROX1)/(MATRIX(N,1)-MATRIX(N-1,1)))
1      *(ENDVR2-MATRIX(N-1,1))+APROX1
ENDIF
RETURN
END
C ****
SUBROUTINE PLOTIT ( TITLE, PVALS, PLOT, EQLSCL, MIN, MAX )
DIMENSION TITLE(80), MIN(5), MAX(5), ROEPP(5)
DIMENSION LEN(120), PE(5), SYMBOL(5), LETTER(5)
REAL    INSW, MIN, MAX, MINALL, MAXALL, ROEPP, NOPP
INTEGER  TITLE, PVALS, PLOT, PLOTT, EQLSCL, SYMBOL, LEN, TIME
DATA SYMBOL/*,"*","+","$","&","#"/
DATA LETTER/"A","B","C","D","E"/
C MORE EFFICIENT TO SET PLOT TO LOCAL VARIABLE...
PLOTT=PLOT
      PRINT 10, TITLE
10     FORMAT("1",/,20X,80A1,/)
REWIND 40
C NUMBER OF PLOT POSITIONS
NOPP=INSW ( PVALS-1, 117., 129.-(PLOTT * 12.) )
IF (EQLSCL .EQ. 1) THEN
      MINALL=+10E200
      MAXALL=-10E200
DO 20 IJK=1,PLOTT
      IF (MIN(IJK) .LT. MINALL) MINALL=MIN(IJK)
      IF (MAX(IJK) .GT. MAXALL) MAXALL=MAX(IJK)
20   CONTINUE
C RANGE OF EACH PRINTING POSITION
DO 30 IJK=1,PLOTT
      ROEPP(IJK)=(MAXALL-MINALL)/(NOPP-1)
      MIN(IJK)=MINALL
      MAX(IJK)=MAXALL
30   CONTINUE
ELSE
      DO 40 IJK=1,PLOTT
          ROEPP(IJK)=(MAX(IJK)-MIN(IJK))/(NOPP-1)
40   CONTINUE
ENDIF
C HEADINGS
DO 50 I=1,PLOTT
      PRINT 60,SYMBOL(I),LETTER(I),MIN(I),MAX(I),ROEPP(I)
60      FORMAT(" ",32X,A1," = ",A1," , MINIMUM = ",
1          F8.2," ,MAXIMUM = ",F8.2," , RANGE OF",
2          " EACH PLOT POSITION = ",F6.2)
50   CONTINUE
PRINT 70
70     FORMAT(" ",//)
150    READ(40,160,END=300)TIME
160    FORMAT(15)
C INITIALISE PLOT ARRAY
NOP=INT(NOPP)
DO 80 I=1,NOP
      LEN(I)=" "
80   CONTINUE
C END MARKERS
LEN(1)="I"
LEN(NOP)="I"
DO 90 IJK=1,PLOTT
```

```
100      READ(40,100),PE(IJK)
C      FORMAT(F20.8)
      PRINTING POSITION
      FP=(PE(IJK)-MIN(IJK))/ROEPP(IJK)
      NPP=INT(FP+0.5)+1
      LEN(NPP)=SYMBOL(IJK)
90      CONTINUE
      IF(PLOTT .EQ. 1 .OR. PVALS .EQ. 0) THEN
          PRINT 180,TIME,PE(1),(LEN(N),N=1,NOP)
          FORMAT(1X,I4,1PG12.4,2X,117A1)
180
      ELSEIF(PLOTT .EQ. 2) THEN
          PRINT 190,TIME,PE(1),(LEN(N),N=1,105),PE(2)
190          FORMAT(1X,I4,1PG12.4,2X,105A1,1PG12.4)
      ELSEIF(PLOTT .EQ. 3) THEN
          PRINT 200,TIME,PE(1),(LEN(N),N=1,93),PE(2),PE(3)
200          FORMAT(1X,I4,1PG12.4,2X,93A1,2(1PG12.4))
      ELSEIF(PLOTT .EQ. 4) THEN
          PRINT 210,TIME,PE(1),(LEN(N),N=1,81),PE(2),PE(3),PE(4)
210          FORMAT(1X,I4,1PG12.4,2X,81A1,3(1PG12.4))
      ELSE
          PRINT 220,TIME,PE(1),(LEN(N),N=1,69),PE(2),PE(3),PE(4)
          ,PE(5)
220          FORMAT(1X,I4,1PG12.4,2X,69A1,4(1PG12.4))
      ENDIF
      GOTO 150
300      RETURN
      END
C      *****
```

Appendix 2

ARIDCROP DEFINITIONS		
THIS IS AN ALPHABETICALLY ARRANGED DEFINITIONS LIST OF TERMS APPEARING IN THE MODEL ARID CROP WRITTEN BY HERMAN VAN KEULEN IN THE SIMULATION LANGUAGE CSMP III		
VARIABLE	DEFINITION	UNITS
A		
AEPER	RATIO OF ACTUAL AND POTENTIAL EVAPOTRANSPIRATION	
AEVAP	ACTUAL RATE OF SOIL EVAPORATION(=EB10)	MM/DAY
AINTR	FORTRAN TRUNCATION FUNCTION	
ALPHA	PROPORTIONALITY FACTOR (=F(LAI,RADIATION INTENSITY))	
ALPHAT	ALPHA FUNCTION TABLE	
AMAX	ACTUAL LIGHT SATURATED LEVEL OF PHOTOSYNTHESIS LIGHT CURVE (SINGLE LEAF)	KGCO2/HA LEAF/HR
AMAXB	POTENTIAL LIGHT SATURATED LEVEL OF GROSS CO2 ASSIMILATION (PARAMETER)	KGCO2/HA LEAF/HR
APTRAN	ACTUAL POTENTIAL TRANSPERSION, CORRECTED FOR DEVELOPMENT STAGE	MM/DAY
AS	ARCSIN OF TT	
ASE	ARCSIN OF TTE	
ASIN	FORTRAN ARCSIN FUNCTION	
AVLAR	RATIO BETWEEN TOTAL LEAF AREA AND TOTAL LEAF WEIGHT	
AVTD	AVERAGE TEMPERATURE DURING DAYTIME	DEGREE C
AWATER	MACRO DUMMY VARIABLE FOR AVAILABLE WATER PER COMP	MM
B		
C		
CO	INTERMEDIATE VARIABLE	
C1,C2	INTERMEDIATE VARIABLE, LIMITS TO DGCC	
CC	INTERMEDIATE VARIABLE	
CC1	INTERMEDIATE VARIABLE	
CCOS	PRODUCT OF COSINES OF LATITUDE AND DECLINATION	
COMP	MACRO NAME	
CONFS	CONVERSION EFFICIENCY OF PRIMARY PHOTOSYNTHATE TO STRUCTURAL PLANT MATERIAL (PARAMETER)	KG DM/KG CH20
CRLFAR	CONSUMPTION RATE OF LEAF AREA	M2/DAY
CRLVS	CONSUMPTION RATE OF LEAF MATERIAL	KG DM/HA/DAY
CRNLVS	CONSUMPTION RATE OF NON-LEAF MATERIAL	KG DM/HA/DAY
CSRR	CURRENT SHOOT TO ROOT RATIO, I.E. DIVISION OF NEW MATERIAL BETWEEN ABOVE AND BELOW GROUND PLANT PARTS	
CSRRT	TABLE FOR CSRR FUNCTION OF DEVELOPMENT STAGE	
CTRDEF	CUMULATIVE RELATIVE TRANSPERSION DEFICIT	
D		
DAY	DAY NO. FROM START OF RUN = DAY NO. FROM OCT.1	
DAYL	ASTRONOMICAL DAYLENGTH	HOURS
DAYY	NUMBER OF CALENDAR DAY SINCE JAN.1	

DBIOM	BIOMASS OF DEAD PLANT MATERIAL	KG DM/HA
DEC	DECLINATION OF SUN WITH RESPECT TO EQUATOR	DEGREE
DELT	INTEGRATION TIME STEP	DAYS
DELTA	SLOPE OF SATURATED VAPOUR PRESSURE CURVE AT AIR TEMP.	MM HG/DEGREE C
DGCC	DAILY GROSS CO ₂ ASSIMILATION ON A CLEAR DAY	KG CO ₂ /HA/DAY
DGCCAE	INTERMEDIATE VARIABLE	
DGCCB	INTERMEDIATE VARIABLE	
DGCO	DAILY GROSS CO ₂ ASSIMILATION ON AN OVERCAST DAY	KG CO ₂ /HA/DAY
DGCOAE	INTERMEDIATE VARIABLE	
DGCOB	INTERMEDIATE VARIABLE	
DGRCL	DAILY TOTAL GLOBAL RADIATION WITH CLEAR SKY	CAL/CM ²
DGROV	DAILY TOTAL GLOBAL RADIATION WITH OVERCAST SKY	CAL/CM ²
DISTF	DISTRIBUTION FACTOR FOR PARTITIONING BETWEEN LEAVES AND STEM	
DISTFT	FUNCTION TABLE	
DGRRT	DAILY EXTENSION RATE OF THE ROOTS UNDER OPTIMAL CONDITIONS	MM/DAY
DPT2	DEW POINT TEMPERATURE AT 2 IN THE AFTERNOON	DEGREE C
DP2T	FUNCTION TABLE	
DPT8	DEW POINT TEMPERATURE AT 8 IN THE MORNING	DEGREE C
DP8T	FUNCTION TABLE	
DPT	AVERAGE DEW POINT TEMPERATURE	DEGREE C
DRR1-N	CUMULATIVE DEEP DRAINAGE BEYOND POTENTIAL ROOTING ZONE	MM/DAY
DRF1-N	INITIAL DRYNESS FACTOR OF CONSECUTIVE COMPARTMENTS AS A FRACTION OF MOISTURE CONTENT AT WILTING POINT	
DRF	MACRO DUMMY VARIABLE FOR INITIAL DRYNESS FACTOR	
DRRB	MACRO DUMMY VARIABLE FOR DRR2-N+1	
DRRT	MACRO DUMMY VARIABLE FOR DRR1-N	
DTHPA	AIR TEMPERATURE 10 DAYS AGO	DEGREE C
DTR	DAILY TOTAL RADIATION	CAL/CM ²
DTRT	FUNCTION TABLE	
DVS	DEVELOPMENT STAGE OF VEGETATION AS A FRACTION. DVS=1, IS FULL Maturity	
DVSSF	DEVELOPMENT STAGE AT WHICH SEED FILL STARTS (PARAMETER)	/DAY
DVR	DEVELOPMENT RATE	
DVRT	FUNCTION TABLE. DVR=F(TEMP)	

E

EA CONTRIBUTION OF DRYING POWER OF THE ATMOSPHERE TO
EVAPORATIVE DEMAND

CAL/CM²/DAY

EB MACRO DUMMY VARIABLE FOR EB1-10

MM/DAY

EB1-10 CUMULATIVE EVAPORATION OVER COMPARTMENTS

EDAYL EFFECTIVE DAYLENGTH

HOURS

EDPTF FACTOR DEFINING EFFECTIVENESS OF ROOTS

EDPTFT FUNCTION TABLE. RELATION BETWEEN SOIL MOISTURE
AND EFFECTIVENESS OF ROOTS

EFFE ACTUAL INITIAL EFFICIENCY OF THE PHOTOSYNTHESIS

LIGHT CURVE FOR INDIVIDUAL LEAVES

KG CO₂/HA/HR/J/M²/S

EFFEB BASIC POTENTIAL EFFE (PARAMETER)

KG CO₂/HA/HR/J/M²/S

ELWR BRUNT'S ESTIMATION OF LONG-WAVE RADIATION LOSS

ENGR RATE OF EMPTYING OF TEMPERATURE SUM WHEN

NO SEEDS ARE GERMINATING

ENGRS SWITCH PARAMETER TO INDICATE END OF GROWING SEASON

MM/DAY

ER EVAPORATION RATE FROM A COMPARTMENT

ERLB MACRO DUMMY VARIABLE FOR ERLB1-10

ERLB1-10 CUMULATIVE EFFECTIVE ROOT LENGTH

MM

ERLT MACRO DUMMY VARIABLE FOR ERLB1-9

ET MACRO DUMMY VARIABLE FOR EB1-9

EVAP PENMAN EVAPORATION (POTENTIAL SOIL EVAPORATION)

MM/DAY

F

F MACRO DUMMY VARIABLE FOR F1-10

F1-10 SOIL EVAPORATIVE LOSS DISTRIBUTION FACTOR

FAMST EFFECT OF WATER SHORTAGE ON CURRENT SHOOT TO ROOT RATIO

FAMSTT	FUNCTION TABLE	
FCL	FRACTION OF THE DAY THAT IS CLEAR	
FDAYY	FIRST DAY OF SIMULATION IN DAYS FROM 1 JAN	
FDM	FRACTION OF DRY MATTER IN THE CANOPY (1-FRACTION OF WATER)	
FDMT	FUNCTION TABLE.(FDN=F(DVS))	
FDV	INTERMEDIATE VARIABLE	
FINT	FRACTION OF RADIATION INTERCEPTED BY THE CROP CANOPY	
FLDCP	FIELD CAPACITY (PARAMETER)	CM3/CM3
FLTRT	FUNCTION TABLE. FRACTION OF ENERGY REACHING THE SOIL =F(LEAF AREA INDEX)	
FOV	FRACTION OF THE DAY THAT IS OVERCAST	
FRLT	FRACTION OF LIGHT TRANSMITTED THROUGH VEGETATION	
FRTS	FRACTION OF PHOTOSYNTHATE ACTUALLY TRANSLOCATED TO SEEDS	
FTRS	FRACTION OF PHOTOSYNTHATE ALLOCATED TO SEEDS (PARAMETER)	
FWDB	FRACTION OF WATER IN DEAD BIOMASS (PARAMETER)	

	G	

GAMMA	PSYCHROMETER CONSTANT (PARAMETER)	MM HG/DEGREE C
GRLVS	GROWTH RATE OF LEAVES	KG DM/HA/DAY
GRNLV	GROWTH RATE OF NON-LEAF MATERIAL	KG DM/HA/DAY
GROWTR	TOTAL GROWTH RATE OF ABOVE GROUND BIOMASS	KG DM/HA/DAY
GROWTV	GROWTH RATE OF ABOVEGROUND VEGETATIVE BIOMASS	KG DM/HA/DAY
GRRT	RATE OF VERTICAL EXTENSION OF THE ROOT SYSTEM	MM/DAY
GRSDS	GROWTH RATE OF THE SEEDS	KG DM/HA/DAY
GRRWT	GROWTH RATE OF THE ROOTS	KG DM/HA/DAY

	H	

HNOT	ABSORBED SHORT WAVE RADIATION BY VEGETATION	CAL/CM2/DAY
HRAD	AVERAGE HOURLY RADIATION INTENSITY	CAL/CM2/HR
HZERO	ABSORBED SHORT WAVE RADIATION BY SOIL	CAL/CM2/DAY

	I	

IBIOM	INITIAL BIOMASS (PARAMETER)	KG DM/HA
INFR	RATE OF INFILTRATION OF WATER INTO THE SOIL	MM/DAY
IRTD	INITIAL ROOTING DEPTH (PARAMETER)	MM
IRWT	INITIAL WEIGHT OF THE ROOTS, SET EQUAL TO INITIAL ABOVEGROUND BIOMASS	KG DM/HA

	K	

	L	

LAGRTR	RATE OF LEAF AREA GROWTH	M2/HA/DAY
LAI	LEAF AREA INDEX	HA/HA
LAT	LATITUDE OF LOCATION (PARAMETER)	DEGREES
LFAREA	LEAF AREA	M2/HA
LFARR	LEAF AREA PER UNIT LEAF WEIGHT (PARAMETER)	M2/KG
LFI	INITIAL LEAF AREA	M2/HA
LFOV	FOV RESTRAINED BETWEEN 0 AND 1 (USING LIMIT FUNCTION)	
LHVAP	HEAT OF VAPORISATION OF WATER (PARAMETER)	CAL/10**-4 KG
LMBIOM	LIMITING BIOMASS TO BE CONSIDERED	KG DM/HA
LWR	OUTGOING LONG WAVE RADIATION	CAL/CM2/DAY

	M	

MAINT	MAINTENANCE RESPIRATION ASSIMILATE REQUIREMENT	KG CH20/HA/DAY
MNT	MINIMUM DAILY TEMPERATURE	DEGREE C
MNTT	FUNCTION TABLE	
MRESF	MAINTENANCE RESPIRATION FACTOR (PARAMETER)	KG CH20/KGDM/DAY

MWATER	MAXIMUM AMOUNT OF WATER THAT CAN BE HELD IN A SOIL COMPARTMENT	MM
MWRTD	MAXIMUM AMOUNT OF WATER THAT CAN BE STORED IN ROOTED DEPTH	MM
MXRTD	MAXIMUM ROOTING DEPTH (PARAMETER)	MM
MXT	MAXIMUM DAILY TEMPERATURE	DEGREE C
MXTT	FUNCTION TABLE	
	*****	*****
	N	
	*****	*****
	0	
	*****	*****
01	INTERMEDIATE VARIABLE	
02	INTERMEDIATE VARIABLE	
00	INTERMEDIATE VARIABLE	
	*****	*****
	P	
	*****	*****
P	INTERMEDIATE VARIABLE	
PCTRAN	POTENTIAL CUTICULAR TRANSPERSION	MM/DAY
PDTGAS	POTENTIAL DAILY TOTAL GROSS ASSIMILATION	KG CH20/HA
PDTGR	POTENTIAL DAILY TOTAL GROWTH RATE	KG DM/HA/DAY
PEVAP	POTENTIAL EVAPORATION AS A FUNCTION OF SOIL COVER	MM/DAY
PHOTPR	PROCEDURE DUMMY NAME	
PI	3.1416 (PARAMETER)	
PLBIOM	LIVING BIOMASS ONE TIME STEP AGO	KG DM/HA
PROP	PROPORTIONALITY FACTOR FOR DIVISION OF SOIL WATER EVAPORATION OVER VARIOUS COMPARTMENTS (PARAMETER)	KG CH20/HA/DAY
PS	PHOTOSYNTHETIC RATE OF SUNLIT LEAF AREA	MBAR/DEGREE C
PSCH	PSYCHROMETRIC CONSTANT (PARAMETER)	
PIRAN	POTENTIAL TRANSPERSION RATE	MM/DAY
PUSHD	SWITCH TO KILL THE VEGETATION AFTER DROUGHT PERIOD	
PUSHG	SWITCH TO INITIALISE BIOMASS AT MOMENT OF ESTABLISHMENT	
	*****	*****
	Q	
	*****	*****
	R	
	*****	*****
RA	HEAT RESISTANCE OF LEAF BOUNDARY LAYER	DAY/CM
RAD	VALUE OF A RADIAN	
RADC	PHOTOSYNTHETICALLY ACTIVE RADIATION ON A CLEAR DAY	J/M2/SEC
RADO	PHOTOSYNTHETICALLY ACTIVE RADIATION ON AN OVERCAST DAY	J/M2/SEC
RADTB	FUNCTION TABLE (TOTAL DAILY VISIBLE RADIATION)	
RAIN	RAINFALL INTENSITY	MM/DAY
RAINTB	FUNCTION TABLE	
RAWR	RELATIVE AMOUNT OF WATER AVAILABLE FOR THE ROOTS	
RAWRB	MACRO DUMMY VARIABLE FOR RURB1-10	
RAWRT	MACRO DUMMY VARIABLE FOR RURB1-9	
RC	CUTICULAR RESISTANCE (PARAMETER)	DAY/CM
RCST	RATE OF CHANGE OF SOIL TEMPERATURE	DEGREE C/DAY
RDAMAX	RATE OF DECLINE IN LIGHT SATURATED LEVEL OF PHOTOSYNTHESIS LIGHT CURVE FOR INDIVIDUAL LEAVES	KG CO2/HA/HR/DAY
RDEFFE	RATE OF DECLINE IN INITIAL EFFICIENCY OF PHOTOSYNTHESIS LIGHT CURVE FOR INDIVIDUAL LEAVES	KG CO2/HA/HR/J/M2/S/DAY
RDLFA	RATE OF REDUCTION OF LIVE LEAF AREA DUE TO LEAF DEATH	M2/HA/DAY
RDLVS	ACTUAL RATE OF DYING OF LEAF MATERIAL	KG DM/HA/DAY
RDLVS1	RATE OF DYING OF LEAVES DUE TO WATER SHORTAGE	KG DM/HA/DAY
RDLVS2	RATE OF DYING OF LEAVES DUE TO SENESCENCE	KG DM/HA/DAY
RDLVSA	INTERMEDIATE VARIABLE	
RDLVSX	INTERMEDIATE VARIABLE	
RDNLV1	RATE OF DYING OF NON-LEAF MATERIAL DUE TO H2O SHORTAGE	KG DM/HA/DAY
RDNLV2	RATE OF DYING OF NON-LEAF MATERIAL DUE TO SENESCENCE	KG DM/HA/DAY
RDNLVA	INTERMEDIATE VARIABLE	

RDNLV5	ACTUAL RATE OF DYING OF NON-LEAF MATERIAL	KG DM/HA/DAY
RDNLVX	INTERMEDIATE VARIABLE	
RDR4	RELATIVE RATE OF DECLINE IN AMAX AND EFFE	/DAY
RDRAT	FUNCTION TABLE. RDR4=F(CUMULATIVE TRANSPERSION DEFICIT)	
RDRD	RELATIVE DEATH RATE CAUSED BY COMPLETION OF DEVELOPMENT	/DAY
RDRDT	FUNCTION TABLE. RDRD=F(DVS)	
RDTDF	RATE OF DECREASE IN TRANSPERSION DEFICIT	MM/DAY
REDFD	REDUCTION FACTOR FOR EVAPORATION DUE TO DRYING OF THE SOIL	
REDFDT	FUNCTION TABLE. FRACTION OF POTENTIAL EVAPORATION= F(DIMENSIONLESS WATER CONTENT OF TOP SOIL COMPARTMENT)	
REDTTB	FUNCTION TABLE. REDUCTION FACTOR FOR ROOT GROWTH= F(SOIL TEMPERATURE)	
REFCF	REFLECTION COEFFICIENT OF WATER (PARAMETER)	
REFT	REFERENCE TEMPERATURE FOR CALCULATION OF MAINTENANCE RESPIRATION (PARAMETER)	
RFDVS	REDUCTION FACTOR FOR TRANSPERSION DUE TO SENESCENCE	
RFDVST	FUNCTION TABLE	
RFRGT	REDUCTION FACTOR FOR ROOT GROWTH DUE TO TEMPERATURE	
RHOCP	VOLUMETRIC HEAT CAPACITY OF THE AIR (PARAMETER)	CAL/CM3/DEGREE C
RINTAK	RATE OF GRAZING INTAKE	KG DM/HA/DAY
RITDF	RATE OF INCREASE IN TRANSPERSION DEFICIT	MM/DAY
RKAMAX	RATE OF RECOVERY OF LIGHT SATURATED LEVEL OF PHOTOSYNTHESIS LIGHT CURVE FOR INDIVIDUAL LEAVES	KG CO2/HA/HR/DAY
RREFFE	RATE OF RECOVERY OF INITIAL EFFICIENCY OF PHOTOSYNTHESIS LIGHT CURVE FOR INDIVIDUAL LEAVES	KG CO2/HA/HR/J/M2/S/DAY
RRNOFF	RATE OF RUN-OFF	MM/DAY
RS	MINIMUM STOMATAL RESISTANCE (PARAMETER)	DAY/CM
RTD	ROOTING DEPTH	MM
RTL	VERTICAL ROOTING LENGTH IN A COMPARTMENT	MM
RTRDEF	RELATIVE TRANSPERSION DEFICIT	
RTWGHT	WEIGHT OF ROOTS	KG DM/HA
RWFB	MACRO DUMMY VARIABLE FOR RWFB1-10	
RWFB1-10	RATE OF WATER FLOW THROUGH BOTTOM OF PREVIOUS SOIL COMPARTMENT	MM/DAY
RWFT	MACRO DUMMY VARIABLE FOR RWFB1-9	
RWRB1-10	CUMULATIVE RELATIVE AMOUNT OF WATER AVAILABLE FOR THE ROOTS	

S		

S	INTERMEDIATE VARIABLE TO CALCULATE CC	
S1	INTERMEDIATE VARIABLE TO CALCULATE "S" FOR CUTICLE	
SLCVR	SOIL COVER USED IN CALCULATION OF LIGHT TRANSMISSION	M2/HA
SLLAE	SUNLIT LEAF AREA (AS PROPORTION OF TOTAL LEAF AREA)	
SLOPE	SLOPE OF SVP CURVE AT AIR TEMPERATURE	MBAR/DEGREE C
SSIN	PRODUCTS OF SINES OF LATITUDE AND DECLINATION OF SUN	
STDAY	DAY NUMBER OF START OF RUN AS DAYS FROM OCT 1	
SUM10	CUMULATIVE "VAR" * COMPARTMENT THICKNESS	
SURB	MACRO DUMMY VARIABLE FOR SUM1-10	
SUNT	MACRO DUMMY VARIABLE FOR SUM1-9	
SVPA	AVERAGE SATURATED VAPOUR PRESSURE OF THE AIR	MM HG
SVPAM	SATURATED VAPOUR PRESSURE OF THE AIR	MBAR
SW	AMOUNT OF AVAILABLE WATER IN UPPER 10 CM OF SOIL	MM
SWP	SWITCH PARAMETER FOR ROOT GROWTH	
SWFB	MACRO DUMMY VARIABLE FOR SWFB1-10	
SWFB1-10	CUMULATIVE ROOT GROWTH SWITCH PARAMETER	
SWPT	MACRO DUMMY VARIABLE FOR SWPB1-9	

T		

TADRW	TOTAL ABOVE GROUND BIOMASS	KG DM/HA
TCDPH	TIME CONSTANT FOR BUILD-UP OF CUMULATIVE TRANSPERSION DEFICIT (PARAMETER)	DAY
TCDRL	TIME CONSTANT FOR DYING OF LEAF MATERIAL AS A RESULT OF WATER SHORTAGE (PARAMETER)	DAY

TCDRNL	TIME CONSTANT FOR DYING OF NON-LEAF MATERIAL AS A RESULT OF WATER SHORTAGE (PARAMETER)	DAY
TCK1-11	THICKNESS OF CONSECUTIVE COMPARTMENTS	MM
TCREC	TIME CONSTANT FOR RECOVERY OF ANAX AND EFFE	DAY
TCRPH	TIME CONSTANT FOR DECLINE IN CUMULATIVE TRANSPIRATION DEFICIT (PARAMETER)	DAY
TDB	MACRO DUMMY VARIABLE FOR TDB1-10	
TDB1-10	TOTAL DEPTH TO THE BOTTOM OF A SOIL COMPARTMENT	MM
TDRAIN	WATER LOST BY DEEP DRAINAGE BELOW DEPTH OF 180 CM	MM
TDRWT	TOTAL BIOMASS	KG DM/HA
TDI	MACRO DUMMY VARIABLE FOR TDB1-9	
TEC	ROOT CONDUCTIVITY REDUCTION FACTOR DUE TO TEMPERATURE	
TECT	FUNCTION TABLE, ROOT CONDUCTIVITY=F(SOIL TEMP)	
TEFR	TEMPERATURE EFFECT ON MAINTENENCE RESPIRATION	
TEVAP	CUMULATIVE SOIL EVAPORATIVE LOSS OVER SEASON	MM
TGRWTH	ACTUAL RATE OF DRY MATTER PRODUCTION	KG DM/HA/DAY
THCKN	MACRO DUMMY VARIABLE FOR TCK1-10	
TINTAK	TOTAL RATE OF INTAKE BY GRAZING ANIMALS	KG DM/HA/DAY
TMFA	AVERAGE DAILY AIR TEMPERATURE	DEGREE C
TMPSMI	INITIAL VALUE OF THE TEMPERATURE SUM EXPERIENCED BY THE VEGETATION	DEGREE C*DAYS
TMPSUM	TEMPERATURE SUM FROM THE ONSET OF GERMINATION	DEGREE C*DAYS
TOTINF	CUMULATIVE SOIL WATER INFILTRATION	MM
TOTTRAN	CUMULATIVE TRANSPIRATION OVER GROWING SEASON	MM
TPEVAP	CUMULATIVE POTENTIAL SOIL EVAPORATIVE LOSS (PENMAN) OVER GROWING SEASON	MM
TPPR	TOTAL PRIMARY PRODUCTION	KG DM/HA
TRAIN	CUMULATIVE SEASONAL RAINFALL	MM
TRAN	ACTUAL RATE OF TRANSPIRATION	MM/DAY
TRANDF	DIFFERENCE BETWEEN POTENTIAL CUTICULAR TRANSPIRATION AND ACTUAL SOIL WATER UPTAKE	MM
TRB	MACRO DUMMY VARIABLE FOR TRB1-10	
TRB1-10	TRANSPIRATION LOSS SUMMED OVER COMPARTMENTS	MM
TRPHH	POTENTIAL TRANSPIRATION RATE PER MM ROOT LENGTH IN WET SOIL	MM/DAY
TRR	TRANSPIRATION RATE FROM A SINGLE SOIL COMPARTMENT	MM/DAY
TRT	MACRO DUMMY VARIABLE FOR TRB1-9	
TS	AVERAGE SOIL TEMPERATURE (=10 DAY RUNNING AVERAGE OF AIR TEMPERATURE)	DEGREE C
TSI	INITIAL VALUE OF SOIL TEMPERATURE	DEGREE C
TSUNG	TEMPERATURE SUM REQUIRED FOR GERMINATION (PARAMETER)	DEGREE C*DAYS
TT	INTERMEDIATE VARIABLE	
TTE	INTERMEDIATE VARIABLE	
TVGM	TOTAL VEGETATIVE BIOMASS (LEAF + NON-LEAF MATERIAL)	KG DM/HA

U		

V		

VAR	SOIL MOISTURE REDISTRIBUTION FACTOR INTERMEDIARY VARIABLE	
VPA	AVERAGE VAPOUR PRESSURE OF THE AIR	MM HG
VPAH	ACTUAL VAPOUR PRESSURE OF THE AIR	MBAR

W		

W1-10	AMOUNT OF WATER IN A SOIL COMPARTMENT	MM
WATER	MACRO DUMMY VARIABLE FOR W1-10	
WCIM	AIR DRY WATER CONTENT OF A SOIL COMPARTMENT	CM3/CM3
WCPR	DIMENSIONLESS WATER CONTENT OF THE TOP SOIL COMPARTMENT	
WLPT	WILTING POINT (PARAMETER)	CM3/CM3
WLVS	LEAF BIOMASS	KG DM/HA
WLVSI	INITIAL LEAF BIOMASS	KG DM/HA
WNLVS	NON-LEAF BIOMASS	KG DM/HA
WNLVSI	INITIAL NON-LEAF BIOMASS	KG DM/HA
WRD	REDUCTION FACTOR FOR ROOT WATER UPTAKE	

DUE TO LOW SOIL MOISTURE CONTENT
WREDT FUNCTION TABLE, REDUCTION IN ROOT WATER UPTAKE=

F(SOIL MOISTURE CONTENT)

WSA	AVERAGE DAYTIME WINDSPEED	CM/DAY
WSDS	SEED BIOMASS	KG DM/HA
WSM	DAILY WINDRUN	MILES
WSR	MEASURED DAILY WINDRUN	KM
WSTB	FUNCTION TABLE	
WTOT	TOTAL AMOUNT OF WATER IN THE SOIL PROFILE	MK
WUSEFF	WATER USE EFFICIENCY OF THE VEGETATION	KG DM/MM H2O

X

X INTERMEDIATE VARIABLE

Y

Z

Appendix 3

***** ARIDCROP PARAMETER LIST *****			
THIS IS AN ALPHABETICALLY ORDERED LIST OF PARAMETERS OF THE MODEL ARID CROP			
PARAMETER	VALUE	DEFINITION	UNITS
AMAXB	40.	POTENTIAL LIGHT SATURATED LEVEL OF GROSS CO ₂ ASSIMILATION	KG CO ₂ /HA LEAF/HR
CONFS	0.70	CONVERSION EFFICIENCY OF PRIMARY PHOTOSYNTHATES INTO STRUCTURAL PLANT MATERIAL	KG DM/KG CH ₂ O
DGRRT	12.	DAILY EXTENSION RATE OF THE ROOTS UNDER OPTIMAL CONDITIONS	MM/DAY
DVSSF	0.65	DEVELOPMENT STAGE AT WHICH SEED FILL STARTS	
EFFEB	0.5	POTENTIAL INITIAL LIGHT USE EFFICIENCY	KG CO ₂ /HA/HR PER J/M ² /S
FDAYY		FIRST DAY OF SIMULATION IN DAYS FROM 1 JAN	
FLDCP	0.23	FIELD CAPACITY	CM ₃ /CM ₃
FTRS	0.3	FRACTION OF PHOTOSYNTHATE TRANSLOCATED TO SEEDS ONCE SEED-FILL DV _S IS REACHED	
FWDB	0.1	FRACTION OF WATER IN DEAD BIOMASS	
GAMMA	0.49	PSYCHROMETER CONSTANT	MM HG/DEGREE C
IBION		INITIAL BIOMASS	KG DM/HA
IRTD	101.	INITIAL ROOTING DEPTH	MM
LAT		LATITUDE OF LOCATION	DEGREES
LFARR	20.	LEAF AREA PER UNIT LEAF WEIGHT	M ² /KG
LHVAP	59.	HEAT OF VAPORISATION OF WATER	CAL/10***-4 KG
MRESF	0.15	MAINTENANCE RESPIRATION FACTOR	KG CH ₂ O/KGDM/DAY
MXRTD	1800.	MAXIMUM ROOTING DEPTH	MM
PI	3.1416		
PROP	15.	PROPORTIONALITY FACTOR FOR PARTITIONING OF SOIL EVAPORATION OVER VARIOUS COMPARTMENTS	
PSCH	0.67	PSYCHROMETRIC CONSTANT	MBAR/DEGREE C
RC	37.5E-5	CUTICULAR RESISTANCE	DAY/CM
REFCF	0.05	REFLECTION COEFFICIENT OF WATER	
REFT	25.	REFERENCE TEMPERATURE FOR CALCULATION OF MAINTENANCE RESPIRATION	
RHOCP	2.086E-4	VOLUMETRIC HEAT CAPACITY OF AIR	CAL/CM ³ /DEGREE C
RS	18.5E-6	STOMATAL RESISTANCE	DAY/CM
STDAY		DAY NUMBER OF START OF RUN AS DAYS FROM OCT 1	
TCDPH	10.	TIME CONSTANT FOR BUILD-UP OF CUMULATIVE TRANSPERSION DEFICIT DAY	
TCDRL	5.	TIME CONSTANT FOR DYING OF LEAF MATERIAL DUE TO WATER SHORTAGE	DAY
TCDRNL	5.	TIME CONSTANT FOR DYING OF NON-LEAF MATERIAL DUE TO WATER SHORTAGE	DAY
TCREC	5.	TIME CONSTANT FOR RECOVERY OF AMAX AND EFFE	DAY
TCRPH	10.	TIME CONSTANT FOR DECLINE IN CUMULATIVE TRANSPERSION DEFICIT DAY	
TSUNG	150.	TEMPERATURE SUM REQUIRED FOR GERMINATION	DEGREE C*DAYS
WLTPT	0.075	WILTING POINT	CM ₃ /CM ₃

Appendix 4

***** THIS IS A LIST OF ALL FUNCTIONS, CONTAINED IN
THE MODEL ARID CROP, EXCEPT FOR THE TABLES

1. FUNCTION ALPHABET

REDUCTION FACTOR FOR DRYING POWER TERM IN TRANSPIRATION CALCULATION, FUNCTION OF LEAF AREA INDEX AND HOURLY RADIATION INTENSITY

HRAD	0.	10.	15.	20.	25.	30.	35.	40.	45.	50.	60.	100.
LAI/ALPHA												
0.2	1.0											1.0
2.0	0.0	.600	.660	.715	.760	.795	.835	.870	.910	.940	1.00	1.00
3.5	0.0	.425	.515	.585	.640	.680	.715	.745	.770	.795	.845	1.00
5.0	0.0	.390	.455	.505	.545	.580	.610	.635	.660	.685	.740	.775
10.0	0.0	.350	.410	.450	.485	.510	.530	.550	.565	.585	.610	.650

2. FUNCTION CSRRT

PARTITIONING OF ASSIMILATE BETWEEN SHOOT AND ROOT
 CURRENT FRACTION TO SHOOT AS A FUNCTION OF DEVELOPMENT STAGE

BVS	0.	0.10	0.25	0.50	0.75	1.00	1.10
CSRR	0.30	0.40	0.50	0.65	0.75	1.00	1.00

3. FUNCTION DISTFT

PARTITIONING OF ASSIMILATE BETWEEN LEAF BLADES AND STEM/SHEATHS
 CURRENT FRACTION TO LEAF BLADES AS FUNCTION OF DEVELOPMENT STAGE

DISTF 0.90 0.80 0.60 0.00 0.00

4. FUNCTION DVRT

DEVELOPMENT RATE OF THE VEGETATION AS A FUNCTION OF AIR TEMPERATURE

DVR 0. 0.0 0.01 0.0175 0.02

5. FUNCTION EDPTFT

RELATIVE EFFECTIVENESS OF THE ROOTS AS A FUNCTION OF THE FRACTION AVAILABLE WATER PER COMPARTMENT

FAWAT 0. 0.15 0.30 0.50 1.10
EBBIE 0.15 1.10 5.50 5.50

FUNCTION ELEMENT

SHIFT IN CURRENT SHOOT TO ROOT RATIO AS A FUNCTION OF RELATIVE TRANSCRIPTION DEFICIT

TRANSPIRATION DEFICIT

2. FUNCTION EDIT

FRACTION DRY MATTER IN LIVE BIOMASS AS A FUNCTION OF DEVELOPMENT STAGE OF THE VEGETATION

DEVELOPMENT STAGE OF

8. FUNCTION FILTER

FRACTION OF ENERGY REACHING THE SOIL SURFACE AS A FUNCTION OF TOTAL FOLIAGE AREA INDEX

TOTAL FOLIAGE AREA INDEX														
SLCVR	0.	0.50	1.00	1.50	2.00	3.00	5.00	8.00	10.00	15.00				
FRLT	1.00	0.705	0.496	0.384	0.248	0.134	0.03	0.004	0.001	0.0001				

9. FUNCTION RADTB

DAILY TOTAL VISIBLE RADIATION ON COMPLETELY CLEAR DAYS AS A FUNCTION OF LATITUDE AND DAY OF THE YEAR, EXAMPLE GIVEN HERE REFERS ONLY TO

1. ENTITLED AND DAY OF THE YEAR, EXHIBITE GIVEN HERE REFERS ONLY TO

LATITUDE OF 30 DEGREES N.L.
DAYY 0. 15. 46. 74. 105. 135. 166. 196. 227. 258. 288. 319. 349. 365.
DTVRAD 185. 191. 245. 303. 363. 400. 417. 411. 384. 333. 270. 210. 179. 183.

10. FUNCTION RDRA
RELATIVE RATE OF DECLINE IN PHOTOSYNTHETIC CAPACITY AS A FUNCTION
OF CUMULATIVE RELATIVE TRANSPERSION DEFICIT
CTRDEF 0. 0.50 1.00 1.10
RDRA 0. 0. 0.05 0.05

11. FUNCTION RDRD
RELATIVE DEATH RATE OF THE VEGETATION DUE TO SENESCENCE AS A FUNCTION
OF DEVELOPMENT STAGE OF THE VEGETATION
DVS 0. 0.70 0.71 0.90 1.00 1.10
RDRD 0. 0. 0.005 0.005 0.10 0.10

12. FUNCTION REDFD
FRACTION OF POTENTIAL SOIL EVAPORATION REALIZED AS A FUNCTION
OF DIMENSIONLESS WATER CONTENT OF TOP SOIL COMPARTMENT
WCPR -0.10 0. 0.05 0.10 0.20 0.30 0.40 0.75 1.00 1.10
REDFD 0.05 0.075 0.10 0.20 0.375 0.50 0.725 0.90 1.00 1.00

13. FUNCTION REDTTB
REDUCTION FACTOR FOR ROOT GROWTH AS A FUNCTION OF SOIL TEMPERATURE
TS 5. 10. 15. 20. 25. 30. 50.
RFRGT 0.80 0.90 1.00 0.97 0.97 0.97 0.97

14. FUNCTION RFDVST
REDUCTION FACTOR FOR POTENTIAL TRANSPERSION AS A FUNCTION
OF DEVELOPMENT STAGE OF THE VEGETATION
DVS 0. 0.90 1.00 1.10
RFDVST 1.00 1.00 0.00 0.00

15. FUNCTION TECT
REDUCTION FACTOR FOR ROOT CONDUCTIVITY AS A
FUNCTION OF SOIL TEMPERATURE
TS 0. 3. 10. 16. 20. 31. 40. 50.
TEC 0.06 0.29 0.85 0.94 1.00 0.87 0.60 0.30

16. FUNCTION WREDT
REDUCTION FACTOR FOR ROOT WATER UPTAKE AS A FUNCTION OF
FRACTION AVAILABLE WATER IN A COMPARTMENT
FAWAT 0. 0.10 0.15 0.30 0.50 0.75 1.10
WRED 0. 0.30 0.45 0.70 0.975 1.00 1.00

