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ABSTRACT 

The purpose of this report is to investigate the capability of time 

domain reflectometry (TDR) to measure water content and bulk soil electrical 

conductivity (ECa) simultaneously, and to compare these values with 

electromagnetic (EM38) induction measurements for five different soil 

profiles. The study sites all had a natural vegetation. Horizontal and 

vertical EM38 measurements were taken at intervals of 10 cm above soil surface 

to a height of 1.3 meter. Measurements of ECa and water content with TDR were 

than carried out in the soil profile prior to soil sampling. The soil/water 

ratio 1:1 was determined on these samples and a texture analysis was carried 

out. TDR is found to be a quick method for determining an ECa profile in 

comparison with soil sampling. The electrical conductivity of saturation 

extract (ECe) values can be directly obtained from TDR readings and percentage 

clay. It is found that previous published methods for determining the ECa from 

EM38 readings do not apply for the soils we investigated. The computer model 

which calculates EM38 readings corresponding to a measured ECa profile showes 

a high correlation with measured EM values. The results show that the relative 

response functions of the EM38 instrument also apply for our heterogeneous 

profiles. 



1 INTRODUCTION 

In the semi-arid and arid regions of the world salinization of irrigated 

and non-irrigated lands is a major problem. To check the salt balance in the 

soils, surveys are needed. Electromagnetic (EM) induction techniques can be 

used to measure apparent electrical conductivity (ECa) of soils. The EM38 

instrument (Geonic Ltd., Canada) has the advantage over the four-probe and the 

time domain reflectometry (TDR) instruments that no sensor-soil contact is 

needed. 

Time domain reflectometry is a non-destructive method to measure 

simultaneously soil volumetric water content and ECa. Topp et al. (1980) 

established a relationship between the dielectric constant £ (-) and the 

volumetric water content 6 (-) for a range of soils. This relationship was 

compared with measured data in Clovis NM and the Sevilletta National Wildlife 

Refuge. Recently, Nadler et al. (1991) described a method for measuring the 

ECa which is based on a direct measurement of the transmission-line load by 

TDR. This new method is simpler than the previous published ones because fewer 

values have to be collected and the conversion to the ECa is easier to make. 

Besides, the correlation coefficient between this method and the four 

electrode technique is higher. 

The EM38 instrument has been used in the past for measuring the apparent 

electrical conductivity of the soil. The main advantage of the instrument is 

the speed by which soil salinities can be surveyed although the reading is not 

simply a mean value from a soil profile. The sensitivity of the EM response 

to soil ECa varies with depth. Measurements with the instrument in the 

horizontal position, i.e the coil dipoles horizontal to the ground (JEMh), the 

readings are most sensitive to the ECa near the soil surface. 

When the instrument is held in vertical position (EMv) , the instrument is most 

sensitive to values at 0.35 m depth. These relative response curves for EMv 
and EMh were given by McNeill (1980). Several authors gave relationships to 

determine the ECa at various depths from EM38 readings using these response 

curves (Rhoades and Corwin 1981; Corwin and Rhoades 1982, 1983; Rhoades et al. 

1989) . Recent work by Slavich (1990) showed better correlations between 

measured and calculated ECa profiles. Work by Schlue (unpublished data, 1991) 

indicates that these first-order response curves give an underestimation of 

the true soil conductivities. He presented correction factors to compensate 

for these errors, and made a computer model based on these response curves 

which calculates EM38 readings corresponding to a measured ECa profile. 

The purpose of this paper is to investigate the capability of TDR to 

measure both water content and ECa simultaneously in the field. The results 

of the measurements are compared with EM38 readings for five different soil 

profiles using the computer model and previous published methods. 



2 THEORY 

2.1 TDR for measuring water content 

Time Domain Reflectometry (TDR) measures the velocity of propagation of 

an electromagnetic (EM) signal along a transmission line embedded in soil or 

another medium. The EM signal is supplied as a step voltage of about 0.6 V 
from the TDR unit, which then measures the travel time of the signal along the 

transmission line. This travel time relates directly to the propagation 

velocity of the signal in the soil when the transmission line length is known 

(probe length in the soil) . For most applications in soils, two or more 

parallel metallic rods of a known length serve as the transmission line. 

The propagation velocity is proportional to the dielectric constant (£) 

of the soil in contact with the probes. Water has a dielectric constant of 

81.5 at 20 degrees centigrade, compared to a value of 2 to 5 for dry soil, 

therefore the dielectric constant of a field soil provides an excellent 

measure of its water content. Baker and Lascano (1989) investigated the 

spatial sensitivity of TDR using a two-rod probe. A three-dimensional 

representation of TDR sensitivity is given in Fig. 1. 

Figure 1. Two and Three-dimensional representation of TDR sensitivity with water as the 

continuous medium (distances are given in mm; Baker and Lascano 1989). 

The Tektronix series 1502 TDR cable tester is the instrument in use for 

water content measurements. The original 1502 is an analog model, while the 

newer 1502B and 1502C are digital models. In our measurements, we used the 

1502B instrument (Appendix 1). 

The information obtained during a TDR measurement consists of an output 

trace on the cable tester's oscilloscope screen (Fig. 2). The waveform may be 

analyzed directly from the screen, printed immediately using a chart recorder, 

or stored for later analysis using a personal computer (Baker and Allmaras, 

1990) . The measured travel time is internally converted to a distance, which 

is the information obtained from analysis of the waveform trace. 
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Figure 2. TDR waveform trace with tangents to the curve plotted for determining the signal 

distance 

For printed or stored waveforms, analysis of the signal is shown in Fig. 

2. The reflection points are identified by fitting tangents to the curve at 

(1) the horizontal point of the maximum reflection, (2) the inflection point 

of the curve following the maximum, (3) the horizontal point of the minimum 

reflection and (4) the inflection point of the curve following the minimum. 

The intersection of (1) and (2) identifies the initial reflection, and the 

intersection of (3) and (4) identifies the final reflection. The distance 

between these two points is obtained from the TDR scale. 

For each measurement, the 1502B cable tester can be 'zeroed' at the 

initial reflection, and the dial then moved to the final reflection, which 

will provide a direct reading of the distance on the oscilloscope screen. The 

signal display is also affected by the setting of the vp (velocity of 

propagation constant) dial on the cable tester. For our 50 ohm cables this 

value is 0.66. This value must be included in calculation of travel time from 

the distance reading. 

2.2 Calculation of dielectric constant. 

The calculations to obtain the dielectric constant are as follows: 

travel time is calculated as 

the 

t = -
vp*c 

(1) 

where t is the travel time (s) , Ls is the signal distance read from the cable 

tester (m), vp (-) is dependent of the cable material and is chosen by the 

operator on the cable tester panel, and c is the speed of light in free space, 
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The velocity of propagation of the signal is then calculated as 

r=ZS. (2) 
8 t 

where vs is the velocity of propagation of the signal (m/s) , and Lp is the 

length of the probe in the soil (m). 

The dielectric constant is then calculated as 

E*{±)* (3) 

v. 

or 

r - f C t v a (4) 

For the original Tektronix 1502 cable tester, vp was not provided as an 

option for the operator; calculations performed in previous technical papers 

were based on a value of T , = 1.0. It should also be noted that there are a 

number of published papers (Topp et al., 1988; Dasberg and Dalton, 1985) in 

which £ is given as (ct/2Lp)2. In these papers t is given as (2LE/vp*c) The 

calculation should be performed as discussed above, using Lp, not 2Lp (Bonnell 

et al., 1991), in case of a vp of 0.66. 

Using a number of soils with varying properties, Topp et al. (1980) found 

that £ was primarily a function of volumetric water content, and was only 

slightly dependent on soil type, bulk density and salinity. They proposed an 

empirical relationship between the dielectric constant and the volumetric 

water content, which they suggested should hold for most soil types. Analyses 

by other researchers has found good (Drungil et al., 1989) and poor (Dirksen 

and Dasberg, in press) results with this relationship, and certain 

applications may require calibration for the individual soils under study. 

Drungil et al. (1989) recently showed that a high amount of stones in the soil 

does not affect the TDR readings. The volumetric water content can be related 

to the dielectric constant of the soil via a polynomial equation. The 

polynomial equation determined by Topp et al. (1980) is 

0=-5 . 3 *10~2+2 . 92 *10"2e-5 . 5 *10~4e2+4 . 3 *10"6£3 



This equation may or may not hold for the soil under study; each 

investigator must decide whether calibration should be performed. 

2.3 Measurement of apparent electrical conductivity with TDR 

2.3.1 Method of Dalton et al. 

Dalton et al. (1984) were the first to describe a relationship for 

deriving the ECa from the attenuation of a TDR signal. The parameters required 

for this method are shown in Fig. 3. 

I 
H 

O 

TIMB (NS) 

Figure 3 . Parameters r equ i red for the c a l cu l a t i on of t he EC, out of a TDR s i gna l (Dalton e t a l . , 
1984) 

V0 r e p r e s e n t s t he ou tput of t he pu l se g ene ra to r , Vt i s t he magnitude of t he 
v o l t age p u l s e t h a t e n t e r s t h e t h r e e rod waveguide, and Vr r e p r e s en t t he 
magnitude of t he r e f l e c t e d wave. Vt and Vr a r e measured as a v e r t i c a l 
d e f l e c t i o n p . 
The formula fo r de termining t he ECa t hen becomes : 

EC, 
£1/2 . l n / < 

l2Ô7rtp""ir 
(6) 

where £ i s t he r e l a t i v e d i e l e c t r i c cons tan t (-) and Lp i s t he l eng th of t he 
probe (m). 

Other a u tho r s found r e l a t i o n s h i p s s im i l a r t o t h i s equa t ion (Topp e t a l . , 1988; 
Yanuka e t a l . , 1988; Zegel in and White, 1989) . 



Before Dalton's work, the conventional method for measuring soil salinity 

was to take soil samples and determine the electrical conductivity of the 

extract of a saturated soil paste. These values could be converted into soil 

solution salt concentration by correcting for the soil water content at the 

time of sampling (Dasberg and Dalton, 1985). 

2.3.2 Method of Nadler et al. 

This method is based on the fact that, at long distances along the trace, 

the signal on the screen approaches a constant value. The ratio of the 

reflected signal amplitude to the incoming amplitude is measured as a vertical 

deflection, which is called the voltage reflection coefficient (p) . This value 

is the ratio of the voltage reflected back to the receiver divided by the 

voltage applied by the TDR unit. The value of p can be used to calculate the 

impedance of the probe (Rx in ohm) using equation (7) . 

p = (Äj - Zo)/ (Rj. + Zo) (7) 

where Zo is the impedance of the cable (50 ohm in our case) . Therefore by 

measuring the p value from the instrument screen R2 can be calculated and 

converted to a bulk soil electrical conductivity (ECa) value (dS/m) according 

to 

ECa = Ka I Rx (8) 

where Ka is a calibration constant as described in Chapter 3. 

The newer TDR instruments have a built-in menu option that automatically 

calculates the i?2 value at the location were the trace intersects the screen 

cursor line. In nonconducting media the TDR trace (Fig. 2) will have a shape 

simular to line A. However, when the medium is conductive, as in a saline 

soil, the amplitude of line A will be attenuated in proportion to the 

conductivity and can approach line B (the i?2 value will decrease with 

increasing conductivity) . In our experiments we used the method of Nadler et 

al. (1991), since fewer parameters have to be collected, and the results of 

this method had a stronger correlation with the four-probe measurements (Fig. 

4), than the technique of Dalton et al. (1984). 
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Fig 4. Bulk soil electrical conductivity (ffa or EC,) values by measuring with the three rod probe 

and by using the calculation procedures of Zegelin et al. (1989), Yanuka et al.(1988), Dalton et 

al. (1984) and Topp et al. (1988) as a function of Nadlers method (ar,f) of Nadler et al. 1991). 

2.4 The EM38 for measuring apparent electrical conductivity 

The EM instrument (Appendix 1) creates a primary magnetic field (ffp) 

which will induce small electrical currents in conductive soil material and 

will generate a secondary magnetic field {Hs); both fields will be sensed by 

a receiver coil. The device used by us had an intercoil spacing of 1 m, 

operated at a frequency of 13.2 kHz and was powered by 9 volt batteries. 

The instrument directly gives the conductivity of the soil in mS/m. The 

sensitivity of the EM response to soil ECa is not linear but varies with depth 

in the profile. With the EM38 held in horizontal position (EMh) , the readings 

are most sensitive to the ECa near the soil surface and the sensitivity 

declines with depth. The EM38 held in vertical position (EMv) , is most 

sensitive to soil ECa at 0.35 m depth and sensitivity declines below that 

depth. These sensitivity curves for EMh and EMv are described by the depth 

response functions (McNeill, 1980), which are used in all the models so far 

and are therefore given in Fig. 5. Several authors gave relationships to 

determine the ECa from EM38 readings. Corwin and Rhoades (1982, 1983) used the 

depth response functions given by McNeill to determine the ECa for depth 

intervals of 0.30 m., to a depth of 1.2 m. They called their method the 

established coefficient approach. However, this method is empirical and site 

specific (Slavich, 1990). Work by Rhoades et al. (1989) showed new ECa-depth 

relations based on a more extensive data set which therefore should be more 

generally applicable than those published before. Recent work by Slavich 

(1990) showed a better correlation between measured and calculated ECa 

profiles. They created non-unique equations for which they expected to hold 

for simular ECa profiles. 

These profiles included inverted (ECa decreases with depth), non-inverted 

(where the ECa increases with depth) and peaked profiles. Peaked profiles 

exhibit a peak in the ECa value at a certain depth. 



Schlue (unpublished, 1991) determined the error in the often applied 

first-order approximation of McNeil (1980). Using McNeill's approximation, 

leads to an underestimation of soil conductivities. Schlue's paper provides 

a more accurate approximation and is based on the complete equation given by 

Wait (1982) instead of the first term only. For the EM38 instrument we used, 

the error percentage in bulk soil electrical conductivity is given in Appendix 

2. Note that the error in readings with the EM38 in vertical position are 

larger than for the horizontal position. This is probably caused by the 

increase in soil depth over which a measurement is obtained. These graphs can 

be used to adjust readings to their proper values. 

Relative EM response 
0 1 2 

Figure 5. Relative response to the secondary magnetic f ield at different depths in a homogeneous 
profi le with the EM held in ver t ical (#„) and horizontal (0h) position (Slavich, 1990) . 

The manufacturer s t a t e d t h a t t he r e l a t i v e response func t ions a l s o apply for 
he terogeneous p r o f i l e s . However t h i s c laim has not been v e r i f i e d . 
EM measurements can be r ep re sen t ed as 

1 EMv= 4>v(z) ECa {z)dz (9) 

rzn EMh=\ <j>h(.z)ECa{z)dz (10) 

where zv i s t h e depth of measurement (m) when t h e EM38 ins t rument i s h e l d i n 
v e r t i c a l p o s i t i o n and zh i s t he depth of measurement (m) when he ld i n 
h o r i z on t a l p o s i t i o n . 
$v(z) and 0h(z) a r e t he r e l a t i v e response funct ions g iven by McNeill a s 

,(z) =4z(4z2+l) (11) 
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(j>„(z)=2-4z(4z2+l)-°-5 ( 1 2 ) 

These two equations can be integrated to give the cumulative relative response 

functions for EMv and EMh, respectively 

Rv(z) =-(4z!+l)-°-5 d3) 

Rh(z) = -(4z2+l)05+2z (14) 

Thus after integrating by steps, the EM response for a profile with N layers 

will be 

EMV=YT ECa ( Rvi ~Rvi -1J ( 1 5 ' 

EMh=^)HhECa(Rh1-Rh1.1) (16) 

where BCa is the mean ECa of the ith soil layer; Rvl and £hi are the cumulative 

response coefficients for the ith soil layer for the vertical and horizontal 

position; Nv is the number of layers to zv, Nh is the number of layers to zh. 

2.5 Particle size analysis 

We used the hydrometer method to determine the particle size distribution 

of the soils we measured (Gee and Bauder, 1986) . This method is based on 

Stokes' Law. This law gives the relation between settling velocity of a 

particle falling through a liquid and particle radius r (m). 

r=(__!2£_)i/' (17) 
2sr(ps-p2) t 

where s is the hydrometer settling depth (m) and is a measure of the 

effective depth of settlement for particles with radius r, t is time (s), g 

is the accereration due to gravity (ms'J) and ps and px are the densities of 

the soil material and water, respectively. 

-9-



2.6 Estimating electrical conductivity of saturation extract using the 

Rhoades model 

To calculate the electrical conductivity of saturation extracts {ECe 

values), we used procedure 4 as described by Rhoades et al. (1990). The ECe 

value is a commonly used parameter in salinity surveys. The other three 

procedures were shown to be essentially the same. The input data are the ECa 

as measured by TDR, volumetric water content and percentage clay. Rhoades et 

al. (1990) stated that with a good measurement of ECa and reasonable estimates 

of the other soil parameters adequate values for soil salinity can be 

obtained. 

•10-



3 MATERIALS AND METHODS 

3 .1 TDR Probe Designs 

Topp et al. (1980) used a coaxial transmission line cell for measuring 

volumetric water content in laboratory soil columns. In field applications, 

the majority of research has been conducted using a simple design of two 

parallel metallic rods inserted into the ground. 

The two-rod design carries a balanced or differential signal, while the TDR 

device has a 50 ohm coaxial connector, which is an unbalanced or single-ended 

signal. To convert from the balanced to the unbalanced signal, a balancing 

transformer or balun is needed. Unfortunately, the balun itself can be a 

source of unwanted signal noise, and can cause difficulties in analyzing the 

TDR signal. 

To eliminate this problem, Zegelin et al. (1989) investigated multiwire 

probes, and showed that a three-rod probe design would eliminate the need for 

a balun. These rods could be attached directly to the coaxial cable without 

causing much signal noise. In addition they found that little additional 

benefit was gained using a four rod design over the three-rod configuration. 

The probes we used were based on the three-rod design and are shown in 

Appendix 3. The rods are 3 mm in diameter and the center to the outer rod 

spacing is 2.5 cm, yielding a total probe width of 5 cm. The rod length may 

vary but we chose 15 cm to assure good soil contact. A 50 ohm coaxial cable 

is soldered to the rods with the center wire of the coax soldered to the 

center rod, and the outer shield of the cable connected to the two outer rods. 

The rods were screwed into plexiglas. 

3.2 TDR calibration curves 

To determine the relationship between a TDR reading and a volumetric 

water content we had to make a calibration curve for every soil. Although Topp 

et al. (1980) published a 'universal calibration curve', which they claim is 

independent of soil type, bulk density, etc, other authors found different 

relationships. So, for longterm measurements like in Clovis and in the 

Sevilletta National Wildlife Refuge, a calibration curve was required. These 

curves were made by applying water at the soil surface and allowing it to 

redistribute for several days. Next, a trench was dug and horizontal TDR 

measurements were taken at several depths, using a 15 cm probe. After that two 

core samples were taken behind each other at the same location. These samples 

(volume 225 cm3) were dried and weighed again after drying and their 

volumetric water content was determined. Wetting the soil was necessary 

because it was extremely dry, especially in the Sevilletta. 

•11-



3 .3 Determining the JCa value 

The value of Ka for use in equation 8 was determined for the TDR probes 

we used in the lab using solutions of known salinity (value for ECa) varying 

from 0.7 to 4.8 dS/m. After immersing the probe in a salt solution, values 

of J?2 were directly measured using the TDR's built-in menu function and 

converted to a Ka value using equation 8. 

The Ka value was found to be the same for a given probe length, but every 

other probe length had its own calibration constant. For the 15 cm probe we 

used in our field experiments we found a Ka value of 41.6 (Appendix 4) . So 

after calibration of every probe length, ECa values can be directly calculated 

from measured R2 values. 

3 .4 Field Measurements 

For our comparison between the EM and the TDR technique we selected five 

sites varying in texture and salinity. The sites were near the Rio Grande 

river and had a natural vegetation. At some sites, the groundwater table was 

located at approximately 1 m below soil surface, at others around 3 m below 

soil surface. 

We started with the EM instrument. An 1 m' area was selected with a low 

variance in EM readings. Here we took measurements on the soil surface at 

intervals of 10 cm, to a height of 1.3 meter above soil surface, with the EM38 

held in vertical and horizontal position. 

Then a hole was dug until groundwater was reached or the underlying sand. 

The hole was 1 meter wide (like the EM instrument) and the backwall had the 

same location as were the EM readings were taken. 

In this soil profile we took horizontal TDR readings of water content and 

ECa with a 15 cm probe at five spots (0, 25, 50, 75, 100 cm from the left 

edge) in a horizontal line. This was repeated all the way down in the profile 

at vertical spacings of about 10 cm. Since we measured a large variation in 

the top layer of the profile, measurements of salinity were taken at 

horizontal 10 cm intervals. The ECa was also measured vertically with the 15 

cm probe at three places in a horizontal line. In this way a mean vertical ECa 

value over 15 cm is obtained. 

After measurements of soil water content and salinity with TDR, we took 

at each location a soil sample. For this purpose we used cores of about 225 

cm3 volume. This volume yielded a sufficiently large amount of soil material 

for our lab determinations and better approximates the measuring range of the 

TDR instrument, then smaller cores. The soil samples were put in air-tight 

plastic bags, and the hole was dug layer for layer to prevent evaporation. 

These samples were later dried in a oven for several days at about 50 

degrees Celsius. This way we could determine the volumetric water content of 

the sample and compare it with our TDR readings. 

-12-



The next step was to determine the E^.-^ of every sample. This will be 

discussed below. 

After measuring the entire soil profile larger samples of each soil layer 

were taken on which we would determine both the EC1:1 and the ECe (saturation 

extract) . We tried to see if there was a correlation between these quantities, 

in order to be able to calculate the ECe of the other samples from their EC1:1 

value. Measuring the ECe of every sample would have been a more accurate 

method but was very time consuming. The soil samples of every layer were also 

used to determine the clay content using the hydrometer method. 

3.5 Determination of soil extracts 

For the determination of soluble salts we used the guidelines described 

by Rhoades (1982). There are four methods for determining soluble salts, (I) 

on samples of soil water itself obtained from the soil, (II) on aqueous 

extracts of soil samples, (III) in soil using buried porous salinity sensors, 

and (IV) in soil using four-electrode probes or electromagnetic (EM) sensors. 

The EM sensors only give a value of the total conductivity of a soil 

column. Extraction of water samples from the ground is limited to relatively 

wet soil conditions. Soil sample extracts give relative comparisons only, 

since the soils are exposed to unnaturally high water contents. 

3.5.1 Saturation extract 

Soil salinity is usually determined using saturation soil pastes. This 

soil/water ratio is used because it is the lowest reproducible ratio which 

gives enough extract by applying a vacuum and because it is related to field 

soil water contents. For our samples of every layer in the soil we weighed 

about 400 g of air dry soil into a plastic container having an airtight lid. 

After that we added distilled water until the soil was saturated. 

After mixing and allowing the sample to stand overnight we rechecked the 

criteria for saturation as given by Rhoades (1982). Then we reweighed the 

container plus contents. We recorded the increase in weight, which is the 

amount of water added. With these data we could calculate the saturation 

percentage (g/g) using the amount of dry soil and the amount of water added. 

In general, one-fourth to one-third of the water in the soil can be removed 

by vacuum filtration. From this extract we determined the conductivity in dS/m 

using a YSI conductivity meter. 

3.5.2 Extracts at soil/water ratios of 1:1 

Extraction ratios of 1:1 to 1:5 are often employed, since they are easier 

to use than that of saturation, but they are not so well related to field soil 

water contents. Errors from peptization, hydrolysis, cation exchange, and 

mineral dissolution also become greater for such extracts. 
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We used for our samples the 1:1 ratio, because this gave us enough extract to 

measure the conductivity and was as close as possible to the saturation 

extract. 

We weighed about 150 g of soil in a bottle and after adding the same 

amount of water, we shaked the bottles in a horizontal shaker for 1 h. Then 

we placed the samples in 100 ml centrifuge bottles and after centrifuging we 

measured the conductivity of the extract using the YSI conductivity meter. 

3.6 Particle size analysis 

To determine the particle size distribution of the soils where we did our 

measurements we used the hydrometer method as described by Gee and Bauder 

(1986) . The main advantage over the pipet method is that it is a quicker 

method to determine the particle size distribution compared with the pipet 

method, and it is accurate. We used the USDA classification i.e sands (<2000-50 

ßm) , silts (<50-2 /urn) , and clays (<2 /xm) . 

Pretreatment of samples to disperse aggregates is generally recommended, 

since many soils contain organic matter and often iron oxides and carbonate 

coatings that bind particles together. 

3.6.1 Removal of Carbonates and Soluble Salts 

Our soils often have considerable amounts of soluble salts and 

carbonates. The calcium often occurs as white spots in the ground. High 

concentrations of soluble salt can cause flocculation of soil suspensions. 

Since our soil profiles contained little iron oxides and organic matter we 

only removed the carbonates and the soluble salts according to the method 

described by Gee and Bauder (1986). 

3.6.2 Measuring with the Hydrometer method 

The hydrometer method is based on Stokes' Law (equation 17) . It is based 

on the relation between settling velocity and particle radius. ASTM 152H 

hydrometers are calibrated at 20 degrees Celsius directly in grams of soil per 

liter solution. So, by knowing the amount of soil (g/1) at a certain time and 

depth, the radius of the particle can be calculated. 

Measurements were taken at 30 sec, and after 1, 3, 10, 30, 60, 120 and 

1440 minutes. After that we calculated the summation percentage P and 

constucted a graph of P versus the calculated particle diameter as shown for 

one layer in Fig. 6. From this curve we determined silt and clay percentages. 

This was done for every layer in all five soils. Appendix 5 gives the texture 

of all our measured profiles. 
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Figure 6. Summation percentage versus the calculated partiele diameter for profile 5, layer 80-

100 cm minus soil surface 
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4 RESULTS 

4.1 TDR calibration curves 

Measured volumetric water contents of every sample were plotted against 

the TDR readings. This is done to relate a field reading directly to a water 

content, although in the literature the water content is given versus the 

dielectric constant. I also made a calibration curve for the soils in Clovis 

(NM) and the Sevilletta National Wildlife Refuge. These graphs are given in 

Fig. 7 and 8. From these graphs we can conclude that the calibration curve for 

the heavy clay soil in Clovis differs considerable from the 'universal 

calibration curve' of Topp et al. (1980). The differences are the most 

pronounced for low TDR readings. 

0.45 

0.10 
0.25 

0.20 0.30 
TDR READING (M) 

0.40 0.50 

VALUES CLOVIS VALUES TOPP 

Figure 7. Volumetric water content of s o i l samples in Clovis (NM) compared with TDR readings and 
the c a l i b r a t i o n curve of Topp e t a l . (1980) 

The h igher TDR r ead ings a r e c l o s e r t o t he 'Topp l i n e ' . For t he sandy loam i n 

t he S e v i l l e t t a we found a c l o s e r r e l a t i o n s h i p wi th t he c a l i b r a t i o n curve of 

Topp. 
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Figure 8. Volumetric water contents of soil samples in the Sevilletta National Wildlife Refuge 

compared with TDR readings and the calibration curve of Topp et al. (1980). 

We also made two graphs of all the data points from our measured soil 

profiles that have a low clay content. These graphs (Appendix 6) also show a 

close relationship with Topp's equation. For the samples in the clay layers 

of our measured soil profiles we did not have enough data to plot. This is due 

to the fact that we could not take accurate TDR readings for water content 

because the salinity was too high in these soils. Then the TDR signal 

attenuates too much, and line A in Fig. 2 becomes straight line (line B) from 

point 4 onward, and hence point 4 can no longer be estimated accurately. We 

can see from all of our calibration curves there is a linear relation between 

the TDR reading and the volumetric water content. Although we measured with 

a 15 cm probe horizontally the water content of the soil (to get an average 

at one particular depth of the soil profile) , the TDR readings are highly 

correlated to the water content in the soil samples, as can be seen in Table 

1. 

Table 1. R2 values between TDR reading and water content 

Sevilletta : 

Clovis : 

Clay 0 - 5% : 

Clay 5 -10% : 

0 

0 

0 

0 

98 

95 

96 

87 
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Dirksen and Dasberg (in press) also found deviating results for clay 

soils. This is probably due to the fact that water in the double layer of a 

clay particle is not measured with TDR. For the calculation of the dielectric 

constant they used the 'de Loor model'. This model yielded good results for 

seven of the eleven measured soils, but it could not follow the abrupt changes 

in the other four soils. Dirksen and Dasberg found that the Topp curve was 

valid for the soils with low clay contents and normaly occurring bulk 

densities. 

4.2 Determining electrical conductivity of saturation extract from TDR 

measurements. 

For the determination of the ECe (saturation extract) from the TDR 

readings we used procedure 4 as described by Rhoades et al. (1990). This 

procedure calculates the ECe from the ECa (as measured by the TDR) , volumetric 

water content and percentage clay. 

The data we collected in our field measurements are given in Appendix 7. 

The saturation percentage as used in the model is a function of the clay 

percentage as described in the same paper. This function is almost the same 

as the relationship we found for our profiles (Fig. 9). 

datapoints 

SP= 0.702(%C)+28.7 

line Rhoades 

20 30 40 50 60 
c lay percentage (%) 

Figure 9. Saturation percentage versus clay percentage for every layer of profiles x-5. 

Using the equation of Rhoades we found good correlations for all of our 

profiles (Appendix 8) between ECa as measured by the TDR and ECe calculated 

with procedure 4 of Rhoades as can be seen in Fig 10. and table 2. 
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Figure 10. EC„ measured by TDR and BC. calculated with Rhoades method for profile 5. 

Table 2. R2 values between EC, and EC. calculated 

profile 1 

profile 2 

profile 3 

profile 4 

profile 5 

0.88 

0.99 

0.92 

0.96 

0.99 

These R2 values are even better than the values found by Rhoades (0.74 -

0.71). The reason for this is the small area which the TDR measures so the 

correlation with the soil sample we took at the same place is also good. 

Rhoades used the four-probe, and the EM38 instrument. These instruments all 

measure a larger soil volume than the TDR instrument. 

All our profiles give lines between ECa and ECe calculated that is about 

1:4 to 1:6 and have a zero intercept. These relationships are often found in 

the literature (Corwin and Rhoades, 1982; Slavich, 1990). All of our soil 

samples are presented in these graphs including the ones in the top layer of 

the soil profiles. These samples exhibit the largest variation. Some graphs 

have outliers that are below average (for example Appendix 8, graph 3) . These 

points correspond to samples with a high silt content. 
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Rhoades' model does not use this parameter, but not using a silt content in 

the model gives a underestimation of the saturation percentage and therefore 

in the ECe calculated. The soil is in reality heavier than suggested by the 

clay content alone. 

4.3 Electrical conductivity of saturation extract versus apparent electrical 

conductivity and clay percentage. 

Since we observed in the field that profiles with a high clay content 

also give higher TDR readings of the ECa (bulk soil) , we tried to find a 

direct relation between the ECe and ECa (as measured with the TDR) and clay 

percentage as can be estimated in the field. For this purpose we used the SAS 

software package. Here we found a good correlation with an R2 of 0.97. The 

formula for determining the ECe from ECa and clay percentage is 

ECe = (5.55*ECa)-(0.194*%clay)+1.47 (18) 

This equation was applied to profile 5 (Fig. 11) 

30.0-

ECa measured TDR (dS/M) 

Figure 11. ECe calculated by using equation 18 versus EC, measured by TDR. 

Without taking the volumetric water content into account, the equation gives 

almost the same results as the Rhoades' equation. When we also added the %silt 

in the formula we again found a high correlation, with all the factors in the 

equation (21) being highly significant (R2 =0.93). The %clay+silt is maybe 

easier to estimate by sieving. 

ECe= (5. 61* ECa) -[0.0325» (%clay+%silt)] +0.88 (19) 
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4.4 Dependence of apparent electrical conductivity on volumetric water 

content. 

Since Rhoades et al. (1990) describe the relationship between ECe on one 

hand, and ECa, percentage clay and volumetric water content on the other, we 

were interested in the possibility of estimating volumetric water content from 

the ECa readings only. Since we know that a soil with more clay also contains 

more salts. 

We made several classes in clay content and plotted the ECa of the 

samples against the measured volumetric water content. These graphs are given 

in Appendix 9. We see in table 3 that for the lowest class (0-5% clay) the R2 

value is low 0.53. This class includes the samples of the top layers of the 

soil. Therefore, the variation is also larger than the graphs with the higher 

clay contents. These give better relations (for example Fig. 12). 

0.5 1 1.5 2 2.5 3 3.5 4 
ECa measured TDR (dS/m) 

datapoints Vwat=0.031ECa+0.174 

Figure 12. Volumetric water content versus the EC, measured by TDR for the 15-35 percent c l ay 
range. 

T a b l e 3 . R2 v a l u e s b e tween EC„ a nd w a t e r c o n t e n t 

0 - 5 % c l a y : 0 . 53 

5 - 10% c l a y : 0 .87 

10 - 15% c l a y : 0 .96 

15 - 35% c l a y : 0 . 9 1 
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Kachanoski et al. (1988) also found a correlation with a R2 of 0.77 between 

measured soil water content 0 and ECa. They also stated a correlation exists 

between 6, texture, soil solution electrical conductivity, and ECa, 

as was shown earlier by McNeill (1980). We also found a R2 of 0.85 for the 

regression equation based on these parameters: 

£Ca=(6.31*6) +0.20*£C1:1) + [0.0041*(%clay+%silt) ] -0.89 ( 2 0 ) 

4.5 Calculated and observed values of electrical conductivity of saturation 

extract. 

The purpose of determining the EC1:1 of every soil sample was to correlate 

it with the ECe by a constant factor. This factor was obtained by measuring 

both ECl:1 and ECe from every layer in the soil. The associated regression 

lines showed this factor is larger for sandy soils than for clay soils. The 

reason for this is that the clays absorbs more water than sands. Therefore the 

multiplying factor for sands will be higher. As described in 'Materials and 

Methods', the Saturation Percentage (SP) was calculated. The SP is dependent 

on the clay content (Rhoades et al, 1990). A problem connected to saturation 

extracts is the lack of an objective criterium to determine whether or not a 

soil sample is saturated. Although we used the description for a saturated 

soil as given by Rhoades (1982), the variations in the SP we made are quite 

large as can be seen in Fig. 9. 

The line drawn through these points is very close to the line given by 

Rhoades in his model to calculate the ECe. Therefore we used his equation in 

his model. This variation in SP results in a large variation in the salt 

contents we measured in the extracts and therefore in the multiplying factor 

we calculated. 

It is no surprise that by multiplying all of our measured EC1:1 extracts 

with this factor gives a large variation in EC^^^^ (=EC1:1 * multiplying 

factor) . For some profiles (Appendix 10) a 1:1 line can be drawn. These 

profiles have a higher clay content than other profiles and hence saturation 

extracts can be prepared more accurately. When we combine all five profiles, 

we can draw a reasonable 1:1 line although there is much scatter. 

We assumed of course by drawing a 1:1 line that the ECe as calculated by 

the Rhoades model is correct. Efforts to correlate the EC1:1 and clay 

percentage (=dependent on SP) to the ECcalculated (Rhoades) , using the SAS program 

resulted in a R2 of only 0.43. 
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Figure 13. EC, measured versus ECe calculated for all five profiles 

4.6 Comparison of the EM values and apparent electrical conductivity 

4.6.1 Apparent electrical conductivity versus the Rhoades and Slavich model 

The comparisons between the model of Rhoades et al. (1989) and the model 

of Slavich (1990) with our measured ECa values is shown in Fig. 14 and 

Appendix 11. We see that both the Slavich model and the Rhoades model assume 

an increase in ECa in the profile, while we measured peaked profiles. 

Both models can not follow the strong fluctuations of our measured profiles. 

Corwin and Rhoades (1983) already stated that "ECa-depth relations that 

fluctuate abruptly are not as closely predicted as profiles that show a steady 

increase or decrease in electrical conductivity". One can expect that under 

irrigated circumstances the ECa profiles will be more smooth than under 

natural conditions, so the models of Slavich and Rhoades may give better 

results under such circumstances. Until now no equations are available wich 

give accurate estimates of peaked or fluctuating ECa profiles from EM38 

measurements. 
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Figure 14. Comparison between measured profile and calculated according to Slavich (1990) and 

Rhoades (1989). 

4.6.2 EM38 readings versus model of Schlue 

The model of McNeill was used by Schlue (1991) in a computer program that 

inverts the EM38 measurements to an ECa profile. Running the program on our 

EM measurements resulted in a poor correlation of the ECa calculated by the 

program and the measured ECa. This is due to the inherent non-uniqueness of 

the inverse problem. 

The ECa for one layer is dependent on a linear combination of the ECa of all 

other layers and may be higher or lower as long as the total bulk soil 

conductivity remains the same. 

To check whether the model of McNeill still gives a good estimate of the 

sensitivity of the EM38 instrument we calculated EM readings based on the ECa 

values obtained from the TDR measurements. These lines (which are the dashed 

lines in Appendix 12 and Fig. 15) were calculated for both the EMh and EMv 

readings. For most profiles it shows a good relation with our measured EM38 

readings (solid lines). 
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Profile 5 - Vertical ECa Model 
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Figure 15. Measured and calculated conductivities at several heights above soil surface for 

profile 5 (vertical ECa model) . 
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Keeping the instrument horizontal results in a higher correlation then that 

of the vertical readings. For the horizontal EM38 measurements the correlation 

is better than for the vertical. This can be explained from the sensitivity 

curves. 

The EMh measures closer to the soil surface than the EMv. We only took 

readings until we reached groundwater or a thick sandlayer. Although the EMv 

reading is affected most by the top 1 meter, a layer with a higher 

conductivity deeper down can have a significant effect on the EM3 8 reading. 

We saw that the correlation between vertical ECa and EM38 readings was 

lower than between the mean ECa (obtained by taking an average ECa value for 

every horizontal layer) and the EM38 readings (e.g profile 1). The cause of 

this is probably that profile 1 is dug at the wrong way (perpendicular to 

increasing EM readings). Therefore the left side of the profile had a lower 

salinity than the right side. Taking an average over 5 or more measurements 

in a horizontal row (mean ECa model) gives a better estimate of the true ECa 

than taking an average over 3 vertical ECa measurements (vertical ECa model). 

We see that for profile 1 the vertically calculated conductivity tends 

to bend away from our measured line, while the lines for the EM38 held in 

horizontal position stays quite close. Probably there is a conductive layer 

deeper down in the profile. 

We can conclude that the model by McNeill gives a good estimate of our 

EM measurements. Therefore the sensitivity curve is valid for the EM38 

instrument and is also valid for hetergeneous profiles. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

We can conclude that the TDR instrument provides good estimates of the 

volumetric water content and bulk soil salinity. The method as described by 

Nadler (1991) is easier to use than the previously published ones, both 

experimentally and computationally. One can install permanent plots of TDR 

probes at several depths and measure the salinity and water content changes 

in time for each probe. 

Our data indicate a large variation in the top layer of the soils we 

investigated. In sandy soils this variation was found to be higher than in 

clay soils. This variation attributes to the variation found in our EC1:1 

extracts and thus in our EQœasured (for saturated soil) . To minimize this 

variation it would be better to determine the ECe for every sample we took in 

the field but this is very time consuming. 

The correlation coefficient found for our soils between ECa and ECe 

calculated are even better than those found by Rhoades et al (1990) . The 

difference in measured soil volume makes the TDR suitable for small scale 

applications and the EM38 for obtaining mean ECa values of a soil profile. The 

EM38 instrument can therefore be used to obtain measurements of ECa on a large 

scale in the field, to locate areas with high (or low) salinities. EM38 

readings can be calibrated for a soil profile by using the detailled TDR 

technique. This information can be used to support management decisions in 

irrigated agriculture. Our measurements indicated that there is a high 

correlation between ECa as a function of 8, texture and EC1:1. A strong 

correlation also exists between ECe as function of ECa and percentage clay. 

The problem with the sensitivity curves is that they are nonlinear. 

Therefore it is difficult to estimate ECa at every depth in the profile from 

EM38 readings. Methods published by Rhoades et al (1989) and Slavich (1990) 

deviated from the values as measured by TDR. Also the inverse model of Schlue 

(unpublished) which calculates the ECa for every depth in the soil from EM38 

readings) failed. The correlation between measured EM values at several height 

intervals above the ground and the ECa profile is now under study. 

We found high correlations between measured EM values and calculated EM 

readings, when using the computer model based on the equations of McNeill. 

This was especially the case for the horizontal EM readings, which measured 

closer to the soil surface than measurements obtained with the EM held in 

vertical position. 

We can conclude that the model of McNeill (on which the sensitivity curve 

is based) is valid for the EM38 instrument even for the heterogeneous profiles 

we measured. Differences can be explained with errors in the TDR and EM38 

readings. To obtain better results, we should have measured deeper down in the 

profile with TDR. 
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APPENDIX 1 The 1502 TDR, and the EM38 instrument 

The 1502 TDR instrument 

-nst*-

Trsnsmitter coil Receiver coil 

The EM38 instrument 
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APPENDIX 2 Percentage error in ECa plotted against true conductivity for 
the EM instrument (SAHLUE 1991) 
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APPENDIX 3 TDR probe design 
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APPENDIX 4 K„ va lues of several probelenghts 

DETERMINATION OF Kc VALUES WITH DIFFERENT SALTSOLUTIONS 

probe 
5 cm 
10 cm 
15 cm 
25 cm 

probe 
5 cm 
10 cm 
15 cm 
25 cm 

probe 
5 cm 
10 cm 
15 cm 
25 cm 

probe 
5 cm 
10 cm 
15 cm 
25 cm 

0.7 
Rl 

146.5 
80.6 
56.2 
33.9 

1.99 
Rl 

53.2 
29.1 
21.2 
12.7 

2.83 
Rl 

38.0 
20.9 
14.6 
8.9 

4.84 
Rl 

22.4 
12.4 
8.5 
5.4 

dS/m 
Kc 
102.55 
56.42 
39.34 
23.73 

dS/m 
Kc 
105.87 
57.91 
42.19 
25.27 

dS/m 
Kc 
107.54 
59.15 
41,32 
25.19 

dS/m 
Kc 
108.42 
60.02 
41.14 
26.14 

probe 
5 cm 
10 cm 
15 cm 
25 cm 

probe 
5cm 
10 cm 
15 cm 
25 cm 

probe 
5 cm 
10 cm 
15 cm 
25 cm 

probe 
50 cm 
50 cm 
50 cm 
50 cm 
50 cm 

1.44 
Rl 

74.6 
41.8 
30.7 
17.5 

2.23 
Rl 

47.8 
26.5 
18.4 
11.3 

3.49 
Rl 

31.1 
17.1 
12.1 
7.5 

dS/m 
0.67 
1.65 
0.89 
1.28 
1.42 

dS/m 
Kc 
107.42 
60.19 
44.21 
25.20 

dS/m 
Kc 
106.59 
59.10 
41.03 
25.20 

dS/m 
Kc 
108.54 
59.68 
42.23 
26.18 

Rl 
18.4 
8.4 

13.5 
10.3 
9.4 

Kc 
12.33 
13.86 
12.02 
13.18 
13.35 

probe 
5 cm 
10 cm 
15 cm 
25 cm 

probe 
5cm 
10 cm 
15 cm 
25 cm 

probe 
5 cm 
10 cm 
15 cm 
25 cm 

1.7 
Rl 

62.6 
34.1 
23.6 
14.5 

2.55 
Rl 

42.0 
23.1 
16.5 
9.8 

3.92 
Rl 

27.9 
15.5 
10.8 
6.8 

probe 
5 

10 
15 
25 
50 

dS/m 
Kc 
106.42 
57.97 
40.12 
24.65 

dS/m 
Kc 
107.10 
58.91 
42.08 
24.99 

dS/m 
Kc 
109.37 
60.76 
42.34 
26.66 

mean 
Kc value 

106.98 
59.01 
41.60 
25.32 
12.98 

mean 12.98 
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APPENDIX 5 Texture of all measured profiles 

TEXTURE PROFILE 1 TEXTURE PROFILE 2 

depth % clay %silt % sand depth % clay % sift % sand 

0-30 

30-50 

50-90 

90-120 

> 120 

24.3 

11.1 

6.5 

6.8 

2.2 

47.7 

37.6 

21.5 

53 

8.3 

28 

51.3 

72 

40.2 

89.5 

0-45 

45-75 

75-90 

90-120 

8.3 

35.3 

52.4 

7.2 

10.7 

31.6 

12.1 

8.3 

81 

33.1 

35.5 

84.5 

TEXTURE PROFILE 3 TEXTURE PROFILE 4 

depth % clay % silt % sand depth % clay % silt % sand 

0-35 

35-75 

75-85 

85-120 

2.2 

0.2 

12.9 

1.8 

5.4 

0.3 

52.7 

4.6 

92.4 

99.5 

34.4 

93.6 

0-25 

25-40 

40-45 

45-65 

65-95 

> 9 5 

5.0 

2.0 

1.0 

0.5 

8.3 

3.2 

6.9 

0.9 

0.9 

0.5 

68.5 

7.2 

88.1 

97.1 

98.1 

99 

23.2 

89.6 

TEXTURE PROFILE 5 

dept!" % clay % silt % sand 

0-8 

8-25 

25-50 

50-70 

70-80 

80-100 

100-115 

115-130 

130-140 

>140 

32.7 

6.0 

8.8 

15.3 

8.0 

10.0 

7.0 

9.0 

2.1 

1.0 

62.74 

23 

69.7 

83.7 

48.7 

80.5 

44.6 

78.6 

8 

0.5 

4.56 

71 

21.5 

1 

43.3 

9.5 

48.4 

12.4 

89.9 

98.5 

- 3 5 -



APPKNDXZ 6 TDR curras froa surad profilas 

TDR reading versus volumetric water 
0-5% clay 

0.25 0.3 0.35 0.4 
TDR reading (M) 

0.55 

datapoints values Topp 

to 

*-> 

0 ) 

E 
D 
O 
> 

0.45 

TDR reading versus volumetric water 
5 -10% clay 

0.3 0.35 0.4 
TDR reading (M) 

0.55 

datapoints Values Topp 

- 3 6 -



APPENDIX 7 Measured data froa profile 1-5 

tdrraad 

PROFILE 1 
EC* EC* 

ECa wrtwgt diywgt vdwat EC 1:1 wdmtad EC« u lcutaM 

15 cm 

20 cm 

30 cm 

50 cm 

60 cm 

80 cm 

100 cm 

110 cm 

120 cm 

0.370 
0.400 
0.330 
0.360 
0.340 
0.400 
0.400 
0.390 
0.350 
0.340 
0.440 
0.390 
0.350 
0.350 
0.330 
0.440 
0.460 
0.360 
0.330 
0.330 
0.390 
0.350 
0.330 
0.300 
0.310 
0.410 
0.390 
0.350 
0.340 
0.340 
0.360 
0.360 
0.290 
0.270 
0.270 
0.290 
0.280 
0.250 
0.300 
0.290 
0.280 
0.300 
0.300 
0.360 
0.320 
0.320 
0.300 
0.320 
0.340 

0.320 

0.198 

0.192 

0.196 

0.204 

0.230 

1000 
1000 
1000 
1000 

42.7 
45.5 
72.0 
60.5 
84.3 
22.9 
32.0 
44.5 
54.3 
64.0 
17.5 
32.3 
36.5 
37.5 
55.5 
28.0 
20.0 
31.0 
47.0 
42.5 
19.4 
25.5 
41.5 
43.4 
47.5 
19.7 
22.7 
31.1 
38.5 
35.6 
25.0 
28.5 
38.2 
48.6 
44.6 
40.9 
38.7 
49.4 
36.1 
46.6 
46.0 
40.7 
30.6 
25.8 
25.0 
27.1 
34.8 
26.8 
23.4 

21.9 

19.6 

23.1 

15.0 

17.7 

17.1 

18.0 

20.2 

14.8 

13.1 

21.3 

160.0 

153.0 

116.0 

85.0 

82.0 

0.04 
0.04 
0.04 
0.04 
0.97 
0.91 
0.58 
0.69 
0.49 
1.82 
1.30 
0.93 
0.77 
0.85 
2.38 
1.29 
1.14 
1.11 
0.75 
1.49 
2.08 
1.34 
0.89 
0.98 
2.14 
1.83 
1.00 
0.96 
0.88 
£11 
1.83 
1.34 
1.14 
1.18 
1.66 
1.46 
1.09 
0.86 
0.93 
1.02 
1.07 
0.84 
1.15 
0.89 
0.90 
1.02 
1.38 
1.61 
1.66 
1.54 
1.20 
1.56 
1.78 

1.90 

2.12 

1.80 

2.77 

2.35 

2.43 

2.31 

2.06 

2.81 

3.18 

1.95 

0.26 

0.27 

0.36 

0.49 

0.51 

293.5 
301.5 
303.3 
299.5 
365.7 
358.0 
361.5 
361.4 
364.4 
352.1 
357.9 
347.1 
323.4 
3325 
365.7 
343.9 
341.1 
317.4 
329.6 
345.8 
339.0 
334.8 
338.8 
331.7 
344.4 
325.5 
327.7 
325.5 
323.7 
341.4 
335.5 
329.8 
334.4 
334.0 
327.2 
327.0 
315.8 
313.2 
311.7 
310.3 
301.3 
309.8 
312.1 
317.1 
321.3 
308.4 
323.3 
319.2 
317.4 
325.1 
318.3 
323.9 
312.8 

323.5 

318.4 

310.9 

330.0 

335.1 

340.2 

340.1 

324.3 

343.1 

347.3 

346.8 

296.0 

302.4 

303.2 

323.7 

301.7 

290.5 
298.2 
300.3 
298.9 
320.3 
308.8 
317.4 
318.8 
317.0 
304.5 
312.4 
299.1 
282.0 
291.2 
313.1 
295.0 
295.9 
274.9 
286.4 
295.3 
291.4 
289.8 
294.1 
289.7 
299.3 
265.2 
289.3 
289.1 
288.4 
301.1 
295.9 
291.9 
296.4 
297.9 
292.9 
294.3 
287.5 
286.1 
284.5 
283.3 
277.4 
284.4 
281.8 
288.8 
289.4 
276.0 
289.2 
282.5 
279.6 
288.8 
283.1 
283.9 
273.5 

280.7 

275.0 

270.6 

283.8 

284.9 

288.3 

288.7 

274.3 

288.2 

293.4 

295.2 

275.0 

282.8 

275.1 

302.1 

275.4 

0.013 
0.015 
0.013 
0.012 
0.201 
0.218 
0.195 
0.189 
0.210 
0.211 
0.202 
0.213 
0.183 
0.183 
0.233 
0.217 
0.200 
0.188 
0.191 
0.223 
0.211 
0.200 
0.198 
0.186 
0.200 
0.179 
0.170 
0.161 
0.156 
0.179 
0.175 
0.168 
0.188 
0.180 
0.152 
0.145 
0.125 
0.120 
0.120 
0.120 
0.108 
0.113 
0.134 
0.125 
0.141 
0.144 
0.151 
0.163 
0.167 
0.181 
0.156 
0.177 
0.174 

0.190 

0.192 

0.179 

0.205 

0.222 

0.225 

0.228 

0.221 

0.243 

0.239 

0.229 

0.093 

0.087 

0.124 

0.096 

0.118 

0.26 
0.18 
0.18 
0.15 
3.70 
1.04 
0.56 
3.10 
0.56 
8.39 
2.93 
0.87 
3.18 
2.91 
8.12 
5.23 
5.57 
6.27 
3.32 
9.87 
8.26 
5.69 
4.77 
6.25 
9.21 
8.11 
5.78 
5.85 
8.00 
8.86 
8.96 
8.48 
7.06 
7.02 
9.03 
8.57 

' 7.22 
6.33 
6.51 
8.44 
7.56 
7.41 
8.05 
7.61 
8.94 
9.15 
8.22 
9.62 
9.57 
9.25 
9.28 

10.25 
10.43 

8.72 

9.39 

8.52 

9.51 

10.72 

10.13 

9.14 

9.25 

9.73 

9.78 

9.42 

3.43 

3.12 

4.95 

3.01 

4.59 

0.59 
0.38 
0.38 
0.35 
8.47 
2.38 
1.29 
7.10 
1.29 

19.21 
870 
1.98 
7.29 
8.67 

1859 
11.97 
1275 
14.36 
7.61 

22.58 
18.91 
13.02 
10.93 
14.30 
14.64 
1£90 
9.19 
9.30 
9.55 

14.14 
14.25 
13.45 
11.22 
11.16 
15.86 
15.03 
1£67 
11.11 
11.42 
14.81 
13.27 
1X00 
14.13 
13.35 
15.69 
16.08 
14.42 
18.88 
18.80 
17.15 
17.17 
19.02 
19.34 

16.17 

17.41 

15.80 

17.65 

19.89 

18.80 

16.95 

17.15 

18.04 

18.15 

17.48 

9.04 

8.24 

13.05 

7.93 

12.09 

0.040 

1.094 

1.333 

1.354 

1.322 

0.996 

1.312 

2.296 

2.462 

0.377 

0.00 
0.00 
0.00 
0.00 
3.05 
2.88 
1.12 
1.89 
0.68 
7.17 
4.67 
£ 7 9 
£11 
1.53 
9.72 
4.51 
3.88 
3.81 
1.98 
5.44 
8.48 
4.89 
£62 
3.17 

11.87 
8.96 
5.08 
4.88 
4.40 

11.97 
10.26 
7.23 
5.97 
8.20 

10.81 
9.49 
7.15 
5.49 
6.07 
6.73 
7.53 
5.53 
7.45 
5.68 
5.53 
8.38 
8.88 

10.25 
10.53 
9.66 
7.40 
9.62 

11.13 

11.73 

13.19 

11.22 

17.33 

14.29 

14.79 

13.97 
12.40 

17.03 

19.45 

11.83 

1.63 

1.81 

£ 2 2 

3.70 

3.54 

-37^* 



depth 

5 cm 

maan 
ECa distança tdr read 

0.069 

0.103 

25 cm 0.107 

40 cm 

50 cm 

0.346 

4.005 

80 cm 

100 cm 

110 cm 

3.480 

0.260 

0.158 

PROFILE 2 

ECa vratwgt diywgt vdwat EC 1:1 
E O ECa 

estimated calculated 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
0 

10 
20 
30 
40 
50 
60 
70 
90 

100 
0 

10 
25 
40 
50 
60 
75 
90 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 
0 

25 

50 

75 

100 

0 

25 

50 

75 

100 

0 

50 

75 

100 

0 

25 

50 

75 

100 

0.180 

0.180 

0.180 

0.182 

0.180 

0.180 
0.176 

0.180 

0.176 

0.180 

0.180 
0.204 

0.204 

0.192 

0.208 

0.204 
0.208 

0.200 

0.208 

0.208 

0.208 
0.260 
0.236 
0.248 
0.244 
0.244 

0.172 

0.184 

0.220 

0.180 

0.18 

0.180 

0.160 

0.168 

0.160 

566 
593 
787 
483 
665 
862 
742 
867 
879 
894 
970 
726 
726 
840 
840 
832 
874 

1000 
950 
950 
944 
850 
623 
477 
510 
620 
650 
612 
505 
526 
550 
722 
614 
487 
606 
428 
409 
811 
533 
691 
581 

122.7 
133.4 
103.6 

132 
115 
10.2 
10.8 
10.9 
10.2 
9.9 
8 5 
8.8 

9 

8.8 

8.9 

22.3 

20.1 

16.7 

14.2 

14.3 

220 

165 

96.5 

250 

334 

363 

340 

197 

192 

0.10 
0.10 
0.07 
0.13 
0.09 
0.07 
0.08 
0.07 
0.07 
0.07 
0.06 
0.08 
0.08 
0.07 
0.07 
0.07 
0.07 
0.08 
0.08 
0.08 
0.06 
0.07 
0.09 
0.12 
0.12 
0.10 
0.09 
0.10 
0.12 
0.11 
0.11 
0.08 
0.10 
0.12 
0.10 
0.14 
0.14 
0.07 
0.11 
0.09 
0.10 
0.34 
0.31 
0.40 
0.32 
0.36 
4.08 
3.85 
3.82 
4.08 
4.20 
4.89 
4.73 

4.62 

4.84 

4.67 

2.65 
2.94 

3.53 

4.16 

4.13 

0.19 

0.25 

0.43 

0.17 

0.12 

0.11 

0.12 

0.21 

0.22 

338.60 

334.70 

339.10 

317.10 

327.00 

330.70 
332.10 

326.70 

330.70 

321.20 

321.50 
336.80 

334,40 

330.70 

331.90 

332.40 
338.30 

343.70 

326.80 

330.00 

330.70 
332.10 
317.40 
324.50 
324.50 
327.20 
333.80 
351.90 
334.80 
356.10 
331.90 
361.50 
358.40 

358.90 

357.80 

359.60 

400.60 

294.40 

286.50 

310.60 

290.50 

280.90 

301.60 

293.20 

298.70 

298.50 

326.60 

321.69 

328.00 

303.93 

315.10 

319.42 
318.26 

314.48 

317.22 

307.84 

307.54 
321.13 

319.00 

31860 

318.50 

317.40 
32200 

328.48 

307.24 

313.60 

313.93 
309.12 
295.20 
297.46 
301.88 
303.64 
288.00 
280.05 
267.06 
285.64 
285.51 
285.89 
283.55 

284.72 

286.44 

285.94 

353.81 

284.15 

274.65 

289.17 

281.35 

273.70 

291.96 

284.90 

288.70 

285.30 

0.05 

0.08 

0.05 

0.08 

0.05 

0.05 
0.06 

0.06 

0.08 

0.06 

0.06 
0.07 

0.07 

0.05 

0.07 

0.07 
0.07 

0.08 

0.09 

0.07 

0.07 
0.10 
0.10 
0.12 
0.10 
0.10 
0.29 
0.32 
0.30 
0.31 
0.29 
0.33 
0.33 
0.33 

0.32 

0.33 

0.21 

0.05 

0.05 

0.09 

0.04 

0.03 

0.04 

0.04 

0.04 

0.05 

0.12 

0.12 

0.11 

0.11 

0.12 

0.12 
0.12 

0.36 

0.11 

0.14 

0.13 
0.14 

0.13 

0.55 

0.19 

0.27 
1.18 

0.81 

0.82 

2.04 

1.78 
3.03 
3.43 
3.66 
3.48 
275 

10.11 
10.65 
11.14 
10.24 
11.36 
14.06 
13.51 

12.00 

13.63 

1226 

11.22 

4.50 

4.73 

5.65 

4.26 

4.23 

4.34 

3.96 

4.88 

4.72 

0.38 

0.36 

0.33 

0.33 

0.36 

0.36 
0.36 

1.12 

0.33 

0.43 

0.40 
0.43 

0.40 

1.70 

0.58 

0.83 
3.68 

250 

254 

8.31 

5.51 
9.39 

10.62 
11.34 
10.76 
8.52 

13.79 
14.53 
15.20 
13.97 
15.50 
19.17 
18.42 

16.38 

18.60 

16.73 

13.54 

10.13 

10.64 

13.17 

9.59 

9.52 

9.77 

8.91 

10.98 

10.62 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 
0.01 

0.01 

0.00 

0.01 

0.00 
0.01 

0.01 

0.07 

0.01 

0.01 
1.49 
1.31 
1.83 
1.32 
1.65 

14.63 
13.43 
13.45 
14.43 
15.12 
17.56 
16.92 

1*52 

17.53 

16.76 

7.44 

1.14 

1.71 

2.44 

1.02 

0.7 

0.02 

0.1 

1.6 

1.35 
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PROFILE 3 

depth 

Sem 

15 cm 

25 cm 

35 cm 

50 cm 

70 cm 

SO cm 

100 cm 

50 

75 

100 

0 

25 

50 

75 

100 

0 

25 

50 

75 

100 

0.176 
0.168 
0.188 
0.218 
0.188 

distance tdr read 

0 
10 
20 
30 
40 
50 
80 
70 
80 
80 

100 
0 

10 
20 
30 
40 
50 
60 
70 
80 
80 

100 
0 

20 
40 
70 
90 
0 

25 
30 
40 
50 
80 
70 
80 
90 

100 
0 

25 
SO 
75 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 
0 

25 

50 

75 

100 

0 

25 

EC* watwgt drywgt 

0.300 
0.300 
0.238 
0.260 
0.212 
0.192 
0.212 
0.200 
0.216 
0.192 
0.244 
0.272 
0.312 
0.312 
0.248 
0.412 
0.450 
0.432 
0.432 
0.380 
0.550 
0.460 
0.520 
0.500 
0.540 
0.440 
0.460 
0.450 
0.450 
0.450 
0.480 
0.500 
0.510 
0.500 
0.500 

1000 
1000 
1000 
1000 
810 
480 
95S 

1000 
1000 
1000 
1000 
950 

1000 
1000 
1000 

180 
260 
157 
210 
314 
740 
797 
247 
320 
201 
117 
385 
32.4 
28.4 

40 
65 
58 
65 
84 
57 
89 
80 

40.7 
58 
64 
92 
70 

365 
247 
410 
344 
355 
171 
101 
82 
98 

100 
47 

30.5 

38.9 

48.7 

60.7 

24 

33 

28 

31.3 

20.7 

55.5 

50 

49.6 

56.5 

60 

49.7 

41 

41.3 

47 

41.8 

0.04 
0.04 
0.04 
0.04 
0.05 
0.09 
0.04 
0.04 
0.04 
0.04 
0.04 
0.04 
0.04 
0.04 
0.04 
0.26 
0.16 
0.28 
0.20 
0.13 
0.06 
0.05 
0.17 
0.13 
0.21 
0.36 
0.11 
1.28 
1.48 
1.04 
0.64 
0.72 
0.64 
0.85 
0.73 
0.47 
0.52 
1.02 
0.72 
0.65 
0.45 
0.59 
0.11 
0.17 
0.10 
0.12 
0.12 
0.24 
0.41 
0.51 
0.42 
0.42 
0.89 

1.36 

1.07 

0.85 

0.69 

1.73 

1.26 

1.60 

1.33 

2.01 

0.75 

0.83 

0.84 

0.74 

0.69 

0.84 

1.01 

1.01 

0.89 

1.00 

276.69 

270.52 

273.09 

285.49 

»at EC 1:1 

0.02 0.37 

0.02 0.42 

ECe 
estimated 

0.97 

1.09 

mean 
ECa 

0.047 

ECe 
calculated 

0.00 

0.00 

272.01 264,48 

273.84 280.48 

281.79 
285.74 

291.50 

304.29 

288.28 

331.21 
303.04 
288.28 
293.15 
308.24 
290.19 
343.60 
348.27 

320.84 

349.60 

324.34 
342.99 
340.93 
339.23 
342.69 
341.28 
313.93 
325.20 
321.17 
326.54 
318.75 
331.88 
317.13 
332.77 
338.57 
325.52 
379.85 
373.94 
384.03 
368.13 
371.75 
386.10 
376.24 
384.12 
386.75 
388.74 
407.02 
405.50 
394.05 
402.09 
401.37 
397.53 
402.83 
390.00 
388.42 
394.83 

276.91 
278.34 

278.33 

272.81 

27Z61 

324.58 
286.41 
273.72 
278.29 
287.58 
279.27 
292.29 
297.32 

291.42 

301.78 

291.38 
300.56 
303.42 
301.88 
304.10 
303.76 
290.88 
300.94 
300.05 
202.84 
296.81 
297.01 
279.78 
281.99 
284,98 
290.88 
306.10 
304.80 
311.30 
297.80 
303.80 
281.40 
300.00 
304.60 
310.00 
284.60 
338.10 
331.20 
323.20 
332.30 
331.80 
320.50 
320.90 
310.80 
317.50 
315.90 

0.03 

0.02 
0.03 

0.07 

0.14 

0.07 

0.03 
0.07 
0.08 
0.07 
0.09 
0.05 
0.23 
0.23 

0.13 

0.21 

0.15 
0.19 
0.17 
0.17 
0il7 
0.17 
0.10 
0.11 
0.09 
0.55 
0.10 
0.15 
0.17 
0.22 
0.24 
0.15 
0.33 
0.31 
a 32 
0.30 
0.30 
0.38 
0.34 
0.35 
O 34 
0.37 
0.31 
O 33 
0.31 
0.31 
0.31 
034 
O 36 
035 
0.36 
0.35 

0.39 

0.38 
0.63 

3.87 

2.43 

2.32 

0.50 
1.44 
2.04 
2.09 
1.99 
2.04 
4.33 
4.28 

2.22 

3.44 

3.21 
2.95 
£25 
1.51 
1.73 
1.90 
0.84 
0.94 
0.63 
0.73 
0.73 
1.01 
1.50 
1.44 
1.23 
1.11 
1.63 
2.28 
1.97 
1.42 
1.52 
1.72 
1.56 
1.51 
1.21 
1.99 
0.76 
0.84 
0.91 
0.80 
0.74 
0.85 
1.03 
1.05 
0.88 
0.92 

1.00 
1.38 

10.02 

6.30 

5.99 

1.30 
3.72 
5.27 
5.42 
5.15 
5.27 

11.20 
11.08 

5.75 

8.90 

8.30 
7.52 
5.73 
3.85 
4.42 
4.83 
Z15 
2.38 
1.61 
1.85 
1.85 
£57 
3.82 
3.67 
3.13 
2.84 
4.15 
5.82 
5.01 
3.61 
3.88 
4.38 
3.96 
3.84 
3.07 
5.08 
2.60 
2.88 
3.12 
2.72 
2.52 
2.92 
3.52 
3.60 
3.00 
3.16 

0.195 

0.815 

0.687 

0.972 

1.587 

0.949 

ass 

0.00 
0.00 

1.38 

0.58 

0.00 
0.93 
0.60 
1.33 
2.54 
0.62 
8.47 
9.78 

5.10 

3.97 

3.38 
7.38 
5.16 
4.63 
3.01 
4.17 
0.46 
0.94 
0.37 
0.51 
0.51 
1.40 
£72 
3.23 
2.57 
£81 
5.69 
9.23 
7 * 4 
5.54 
4.32 
7.80 
5.36 
3.84 
5.73 
9.32 
4.43 
4,93 
5.02 
4.32 
4.03 
4.93 
6.09 
8.08 
5.22 
6.04 
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depth 

5 cm 

distance tdr read 

30 cm 

50 cm 

60 cm 

80 cm 

80 cm 

0 
20 
30 
40 
50 
60 
70 
80 
90 

100 
10 
20 
30 
40 
50 
80 
70 
80 
SO 

100 
0 

20 
30 
50 
70 
90 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 

0 

25 

50 

75 

100 

0 

25 

50 

75 
100 

0.228 
0.244 
0.228 
0.212 
0.236 
0.236 
0.220 
0.220 
0.208 
0.220 
0.240 
0.284 
0.256 
0.268 
0.248 
0.220 
0.216 
0.216 
0.216 
0.228 
0.212 
0.224 
0.224 
0.204 
0.204 
0.208 
0.236 
0.228 
0.228 
0.220 
0.216 
0.224 
0.224 
0.224 
0.248 
0.220 
0.224 

165.0 
67.9 
79.3 
115 
118 
87 

169 
153 
188 
175 
96 
43 
70 
58 
78 

174 
152 
200 
184 
165 
176 
89 
77 

156 
211 
186 
110 
112 
110 
111 
119 
111 
118 
125 
114 
120 
113 

24.3 
23 

26.9 
26.3 
34.1 
18.7 
17.3 
20.1 
16.2 

18 
10.5 
11.5 
11.5 
12.1 
12.2 
12.2 

12.3 

12.5 

13.1 

14.5 
13.8 

14.2 

14.7 

14.7 

15.5 

15.6 

15.6 

15.3 

16.1 

18.4 

PROFILE 4 

ECa 

0.25 
0.61 
0.52 
0.36 
0.35 
0.48 
0.25 
0.27 
0.22 
0.24 
0.43 
0.97 
0.59 
0.72 
0.53 
0.24 
0.27 
0.21 
0.23 
0.25 
0.24 
0.47 
0.54 
0.27 
0.20 
0.22 
0.38 
0.37 
0.38 
0.37 
0.35 
0.37 
0.35 
0.33 
0.36 
0.35 
0.37 
1.71 
1.81 
1.44 
1.58 
1.22 
2.22 
2.40 

^07 
2.57 

2.31 

3.96 

3.62 

3.62 

3.44 

3.41 

3.41 

3.38 

3.33 

3.18 

Z87 

3.01 

Z93 

£83 

2.83 

2.68 

2.ST 

Z67 

£72 

Z58 

2.26 

rtwgt drywgt volvrat EC 1:1 

314.27 286.50 0.12 1.98 

313.97 294.35 0.09 4.48 

304.52 

307.68 

310.55 
315.50 

306.40 

303.02 

296.46 

315.89 
314.89 
303.75 
311.18 

295.23 
308.54 
328.03 

316.19 

320.00 

324.25 

305.05 

358.62 

368.40 

363.78 

358.66 

343.23 

377.03 

379.30 

383.14 

378.91 

361.86 

378.05 

387.65 

385.78 

379.45 

391.47 

361.56 

352.51 

363.00 

357.38 

376.11 

383.00 

379.07 

379.43 

374.09 

375.68 

380.25 

365.22 

381.92 

378.15 

372.37 

274.55 

288.01 

287.81 
287.55 

277.71 

283.50 

279.61 

292.61' 
294.49 
281.41 
289.66 

278.56 
285.56 
303.00 

293.76 

300.79 

301.68 

285.50 

303.70 

306.7a 

308.74 

306.44 

291.45 

312.21 

31Z55 

315.45 

312.44 

314.54 

308.85 

316.00 

315.09 

308.88 

31578 

279.51 

268.35 

279.37 

277.29 

291.63 

294.07 

288.74 

287.21 

282.88 

282.07 

291.30 

274.31 

266.80 

279.12 

278.30 

0.13 

0.09 

0.10 
0.12 

0.13 

0.09 

0.07 

0.10 
0.09 
0.10 
0.10 

0.07 
0.10 
0.10 

0.10 

0.09 

0.10 

0.09 

0.24 

0.27 

0.24 

0.22 

0.23 

0.29 

0.30 

0.30 

0.29 

0.30 

0.31 

0.32 

0.31 

0.31 

0.34 

0.36 

0.37 

0.37 

0.35 

0.37 

0.39 

0.40 

0.41 

0.40 

0.41 

0.39 

0.40 

0.42 

0.43 

0.42 

5.18 

Z07 

1.54 
3.34 

3.65 

1.52 

1.28 
1.31 
4.88 
4.18 

a 04 
2.28 
1.69 

Z 56 

2.08 

2.01 

1.98 

4.66 

4.95 

4.67 

4.45 

4.58 

4.21 

4.28 

4.45 

4.47 

4.08 

4.49 

4.19 

4.41 

4.40 

4.54 

6.18 

8.14 

8.20 

5.62 

4.32 

3.89 

3.92 

3.91 

3.82 

3.49 

2.73 

3.24 

3.05 

2.97 

2.63 

EC» 
estimated 

5.45 

12.35 

14.29 

5.71 

4.28 
9.19 

10.61 

4.03 

4.19 

3.52 
3.81 

13.39 
11.51 

5.61 
6.29 
5.14 

7.82 

6.35 

6.14 

6.03 
13.47 
14.31 
13.50 
12.86 
13.23 
10.97 
11.15 
11.58 
11.64 
10.63 
11.70 
10.91 
11.48 
11.45 
11.82 
14.60 

14.51 

14.65 

13.27 

10.20 

9.18 

9.28 

9.23 

9.01 

8.24 

6.44 

7.66 

7.21 

7.02 

6.22 

mean 
ECa 

0.358 

0.444 

0.322 

0.363 

1.552 

2.316 

3.609 

3.233 

2.858 

Z579 

EC» 
calculated 

1.04 

3.73 

Z71 

1.45 

1.03 
a 44 

4.60 

1.18 

0.99 

1.14 
1.10 
2.99 
3.67 

0.89 
0.91 
2.63 

2.64 

2.87 

2.25 

2.77 
11.86 
12.34 
9.86 

11.08 
8.34 

15.47 
16.70 
14.26 
17.90 
16.01 
27.84 
25.26 
25.30 
24.01 
23.8l" 
19.00 

18.77 

18.46 

17.88 

15.70 

16.45 

15.91 

15.27 

15.30 

14.38 

14.38 

14.34 

14.56 

13.72 

11.87 
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PROFILE 5 

depth 

5 cm 0.440 

30 cm 1.249 

50 cm 

3.848 

75 cm 

90 cm 

150 cm 

£620 

4.273 

0.641 

0.185 

mca 

0 
10 
20 
30 
40 
50 
60 
70 
60 
90 

100 
0 

10 
20 
70 
80 
90 

100 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 
0 

25 
50 
75 

100 

0 
25 
50 

75 

100 
0 

25 

50 
75 

100 
0 

25 
50 
75 

100 

0 

25 
SO 

75 
100 

tdrread 

0.252 
0.310 
0.301 
0.350 
0.332 
0.350 
0.310 
0.290 
0.330 
0.308 
0.300 
0.160 
0.160 
0.160 
0.158 
0.160 
0.160 
0.162 
0.346 
0.304 
0.292 
0.292 
0.292 
0.300 
0.300 

0.240 

0.240 
0.240 

0.260 
0.248 

0.160 

0.182 
0.190 

0.176 

0.190 

H 

133.0 
120.0 
113.0 
75.0 
90.6 
69.2 

104.0 
117.0 
70.9 
76.9 

132.0 
530.0 
690.0 
530.0 
580.0 
505.0 
500.0 
500.0 

34.2 
49.5 
61.5 
53.0 
47.1 
43.5 
33.0 
20.0 
20.6 
21.7 
37.5 
22.2 
18.7 
18.9 
18.3 
18.1 
8.9 
9.5 
7.9 
7.4 
9.9 

13.7 
10.9 
10.1 
9.2 

11.1 
24.6 
15.9 
21.9 
20.5 
18.8 
8.8 
9.0 
8.5 
8.3 
8.8 

18.8 

19.6 
15.0 

16.3 

121 
9.8 
9.4 

9.7 

10.0 
9.8 

68.0 

77.2 
69.0 
50.0 

87.0 

404.0 

204.0 
189.0 

215.0 

202.0 

ECa 

0.31 
0.35 
0.37 
0.55 
0.48 
0.60 
0.40 
0.36 
0.59 
0.54 
0.32 
0.08 
0.06 
0.08 
0.07 
0.08 
0.08 
0.08 
1.22 
0.84 
0.68 
0.78 
0.88 
0.96 
1.26 
208 
202 
1.92 
1.11 
1.87 
222 
2.20 
255 
230 
4.67 
4.38 
5.27 
5.62 
4.20 
3.04 
3.82 
4.12 
4.52 
3.75 
1.69 
2.62 
1.90 
203 
221 
4.73 
4.62 
4.89 
5.01 
4.73 

221 

212 
277 

2.55 
3.44 
4.24 

4.43 

4.29 
4.16 

4.24 

0.61 
0.54 
0.60 
0.83 

0.62 

0.10 

0.20 
0.22 

0.19 
0.21 

wetwgt 

27256 

310.05 

290.40 

290.58 

291.47 

292.00 
293.62 
300.53 
297.14 
281.35 

318.18 

311.38 

323.74 

312.66 
320.16 

329.47 
333.87 
325.86 
335.16 
307.05 
345.59 
346.99 
334.01 
360.56 
330.98 
31231 
317.33 
336.39 
324.64 
313.05 
317.45 
344.99 
316.30 
328.55 
31221 
354.47 
341.85 
346.13 
359.41 
361.21 

327.94 

315.12 
338.33 

341.01 
346.71 

355.12 

349.49 

372.38 
355.68 
37287 
329.55 

335.83 
336.50 

332.16 
338.51 

311.10 

334.81 
339.50 

343.37 

339.55 

diywgt 

23287 

256.27 

239.72 

244.87 

244.60 

278.60 
280.86 
286.40 
283.70 
267.05 

266.55 

265.39 

273.57 

255.77 
263.94 

283.39 
281.34 
271.80 
281.02 
256.90 
272.84 
275.07 
262.06 
281.81 
259.09 
254.34 
258.38 
267.64 
281.11 
253.55 
275.06 
286.62 
272.64 
280.86 
266.31 
276.88 
288.59 
270.12 
280.44 

280.60 

270.88 

266.52 
279.56 

280.85 
273.07 
272.98 

286.17 

285.07 
274.10 

285.81 
296.19 

301.22 
301.26 
298.70 

307.83 

300.08 

315.03 
319.02 
32276 

318.55 

vol wat 

0.18 

0.22 

0.22 

0.20 

0.21 

0.06 
0.08 
0.06 
0.08 
0.08 

0.23 

0.20 

0.22 

0.25 
0.25 

0.20 
0.23 
0.24 
0.24 
0.22 
0.32 
0.32 
0.32 
0.35 
0.32 
0.26 
0.27 
0.30 
0.28 
0.26 
0.19 
0.26 
0.19 
0.21 
0.20 
0.34 
0.32 
0.34 
0.35 
0.36 

0.25 
0.22 
0.26 

0.27 

0.33 
0.36 
0.37 

0.39 

0.36 
0.38 
0.15 

0.15 
0.16 
0.15 

0.14 

0.05 

0.09 
0.09 

0.09 

0.09 

EC 1:1 

0.49 

0.63 

0.95 

0.47 

1.04 

0.23 
0.26 
0.27 
0.39 
0.44 

5.06 

4.76 

4.87 

6.46 
6.60 

5.36 
6.47 
7.41 
7.64 
7.97 

10.88 
11.12 
1200 
12.14 
12.12 
10.23 
10.56 
10.66 
11.15 
10.72 
6.52 
8.89 
6.85 
7.43 
7.68 

11.70 
11.48 
11.70 
11.31 
11.53 

7.00 
6.89 

7.44 

7.16 
8.94 

8.48 
9.62 

8.27 
8.41 

8.95 
2.86 

2.93 
2.77 

263 
2.43 

0.87 

1.38 
1.73 

1.65 
1.69 

ECe 
estimated 

0.96 

1.23 

1.88 

0.92 

204 

0.63 
0.71 
0.74 
1.07 
1.21 

8.92 

8.39 

8.58 

11.38 
11.63 

9.44 
11.40 
13.06 
13.46 
14.04 
20.93 
21.36 
23.09 
23.36 
23.32 
19.68 
20.32 
20.89 
21.45 
20.83 
15.11 
20.60 
15.87 
17.22 
17.79 
22.35 
21.93 
22.35 
21.59 
22.02 

17.85 
17.58 

18.98 

18.26 
22.80 

16.55 
18.76 

16.13 
16.41 

17.48 
8.53 

8.63 
8.18 

7.70 

7.18 

2.42 

3.86 
4.84 

4.62 
4.71 

ECa 
calculated 

0.07 

0.12 

0.25 

0.15 

0.65 

0.00 
0.00 
0.00 
0.00 
0.00 

6.41 

3.83 

4.81 

11.23 
10.82 

10.76 
12.68 
1247 
14.65 
13.26 
23.28 
21.74 
26.49 
28.06 
20.79 
15.10 
19.23 
20.49 
22.93 
18.93 
10.01 
15.15 
11.31 
11.92 
13.21 
26.07 
25.65 
27.11 
27.68 
25.94 

13.01 
12.81 
16LS2 

15.04 
20.08 

23.61 
24.64 

23.89 

23.13 
23.45 
4.09 

3.48 
3.95 

5.82 
4.27 

0.64 
1.31 
1.44 

1.17 

1.28 
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APPENDIX 8 ECa as measured by TDR versus ECQ calculated with Rhoades 

method for profile 1-5 

ECa measured (TDR) vs ECe calculated 
profile 1 

E 
CO 
"O 

0) 

U 
(0 
O 

"O 
(D 
17Î 

- I 
O 
«J 
Ü 
CD 
Ü 
LU 

^ u -

18-

16-
14-

12-
10-

8-
6-

4-
2-
0-

• " 

K 

i 

v . 
—• 

B » p 

^ e l 

•' r -

m 
•Vi 

" 

• • I 

• • 

• 

—r 

Jß 
• 

B ^ I B J 

• 

• 

1 

J i " 
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1 

•a 

• 

0 0.5 1 1.5 2 2.5 
ECa measured TDR (dS/m) 

3.5 

datapoints 

ECa measured (TDR) vs ECe calculated 
profile 2 

1.5 2 2.5 3 3.5 
ECa measured TDR (dS/m) 
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APPENDIX 9 ECa measured versus volumetric water content for different 
claycontents 
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APPENDIX 10 EC„ measured versus ECa calculated 
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APPENDIX 11 Comparison between measured profile and calculated according to 
Slavich (1990) and Rhoades (1989) 
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APPKNDIX 12 Measured aad calculated coaductii 
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Profile 1 - Vertical ECa Model 
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Profile 2 - Mean ECa Model 
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Profile 2 - Vertical ECa Model 
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Profile 3 - Mean ECa Model 
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Profile 3 - Vertical ECa Model 

"g 
Ä 
4—» 

<u 
X 
•+•+ 

c <u 
S 
?, 
GÎ 

e 

120.0-

105.0-

90 .0 -

75 . 0 -

60 .0 -

45 . 0 -

30 . 0 -

15.0-

0.0 -

\ Vertical 

\ 

\ 

\ 

\ 

V 
\ 
V 

>* Y 
V 

\» 

\ , \r 

\ 

\ 

\ 
i i 

20.0 45.0 70.0 10.0 35.0 60.0 
Measured (solid) and Calculated (dashed) Conductivities [mS/m] 

S 
o 

o. 
Q 

Measured Conductivity Profile [mS/m] 

- 5 6 -



Profile 4 - Mean ECa Model 
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Profile 4 - Vertical ECa Model 
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Profile 5 - Mean ECa Model 
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Profile 5 - Vertical ECa Model 
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