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Abstract. The sensible heat flux density C and the latent heat flux density J..E are coupled in the case of 
a multi-layer model of vegetation. Therefore two linearly independent combinations of C and J..E, the 
enthalpy flux density Hand the saturation heat flux density J, are introduced. Two electrical analogues, for 
H andJ, are designed. They are equivalent to the resistance scheme for C and)..£, but uncoupled. Penman's 
formulas for C and ;.E, which are applicable only to single-layer models, can be expressed equivalently in 
terms of H and J. This version of Penman's formulas can be extended easily to multi-layer canopies. 

1. Introduction 

Transpiration from a crop stand has been and is still being extensively studied, both 
experimentally and theoretically, because of its importance to agriculture as well as to 
meteorology. As to the theoretical work, there are two different approaches: single-layer 
models and multi-layer models. Both are well developed. In the single-layer models, a 
crop stand is treated as one equivalent surface with a mean surface temperature, an 
equivalent resistance, which is often called canopy resistance, and an equivalent surface 
boundary-layer resistance. In the multi-layer models, the profiles of all relevant variables 
- not only above but also within canopies - are simulated. 

For single-layer models, Penman's formulas (Penman, 1948) are the most frequently 
used equations for determining sensible and latent heat flux densities from an evaporat~ 
ing surface, based on the energy balance approach. 

The energy balance method can also be used in the multi-layer models. The unknown 
variables are the temperatures and humidities of each layer, and the sensible and latent 
heat flux densities at different levels within the canopy. Unfortunately, the equations for 
sensible and latent heat flux densities are coupled, so that explicit expressions for canopy 
latent and sensible heat flux densities have not been developed. 

Although single-layer models may not be adequate for many cases, they have been 
widely used because of their simplicity. Multi-layer models should be more useful if 
analytical solutions can be offered for their steady-state flux densities. Shuttleworth 
(1976) derived a so-called combination equation in an attempt to obtain a unified model 
describing single- and multi-layer models. 

In the present paper, the multi-layer model developed by Goudriaan and Waggoner 
(1972) is examined. Then two linearly i.11dependent combinations of sensible and latent 
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heat flux densities are introduced. Using the enthalpy flux density H and the saturation 
heat flux density J as two new variables, the equations' are uncoupled. 

Two electrical analogues, for Hand J, are designed. Based on the uncoupled electrical 
analogues, analytical solutions can be found. 

2. Theory 

2.1. CouPLED MULTI-LAYER MODEL 

Agrometeorologists are interested not only in the sensible and latent heat flux densities 
above a crop canopy, but also in the profiles of temperature and humidity within the 
canopy. To simulate these profiles, single-layer models are no longer applicable. One 
has to divide the whole canopy into several layers, and define the leaf temperature, air 
temperature and humidity, and the sensible and latent heat flux densities in each layer 
as state variables. 
· Because the heat capacity of the air in the free space within the canopy and that of 

the leaves are rather small for a mean state over a relatively long period, one hour say, 
the heat storage term can be ignored in the energy balance equation. For every layer, 
therefore, the net radiation absorbed can be considered to be equal to the sum of the 
sensible and latent heat flux densities. These energy balance equations together with the 
relationships between flux densities and relevant driving forces, using the analogy of the 
electrical circuit theory, constitute a closed set of equations for all unknown variables. 

This method was used by Waggoner eta/. (1969) and Goudriaan and Waggoner 
(1972). The electrical analogue shown in Figure 1 is based on these two papers, but the 
notations for the variables and the symbols for the potential and current sources are 
adapted to standard usage. 

The driving force (potential source) above the canopy for sensible heat flux density 
is pcpTa, 0 , in which peP is the volumetric heat capacity of air and Ta, 0 is the air 
temperature. at the reference height. The driving force above the canopy for latent heat 
flux density is (pcPjy)ea, 0 , where y is the psychometric constant and ea, 0 is the water 
vapour pressure of the air at the reference height. In addition to these two potential 
sources, there is a current source for each layer. This is the net radiation absorbed within 
the layer, denoted as S1, where i specifies the layer index. 

The sensible and latent heat flux densities supplied by the layer i are denoted by C,. 
and },£1, respectively. The corresponding resistances are specified by r H,; and r v, ;· The 
resistances in the vertical direction due to turbulent exchange are represented by the R;'s, 
which are assumed to be the same for both the sensible and latent heat transfers. 

Based on this electrical analogue, the following equations can be obtained: 

C; + J..E; = S; 

C; = pcp(TL,; - Ta, ;)/r H,; 

}.E; = (pcpjy) (es(TL, ;) - ea, ;)/rv, t 

es(TL, ;) = esCTa,;) + ~(TL, i- Ta, J. 

(1) 

(2) 

(3) 

(4) 
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Fig. 1. Electrical analogue for sensible and latent heat flux densities. For meaning of symbols, see the 
text. 

Equation (1) is the energy balance equation. Equations (2) and (3) are the analogues 
of Ohm's law for the sources of the sensible and latent heat flux densities. The sensible 
heat flux density originates from the leaf surfaces, so that the leaf temperature TL,; is 
introduced. Ta,; is the temperature of the air surrounding the leaves. rH,; consists of only 
the leaf boundary-layer resistance for heat transfer. The latent heat flux density origi­
nates from the substomatal cavities. The air within the cavities is assumed to be 
saturated by water vapour, so that the vapour pressure there can be determined as the 
saturated vapour pressure at the corresponding leaf temperature eATL, ;). The variable 
e a, ; is the vapour pres sure of the air surrounding the leaves. The resistance for the vapour 
transfer from the substomatal cavities to the surrounding free space within the canopy, 
rv, ;, is composed of two parts: the stomatal resistance and the leaf boundary-layer 
resistance. 

Due to the different diffusion coefficients of vapour and heat in air, the leaf boundary­
layer resistance for latent heat is slightly different from r H, ;· It is often convenient to 
define the stomatal resistance rs as 

(5) 
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Equation (4) is the linearized saturated vapour pres.sure versus temperature curve, 
which is in fact more or less exponential, and A is its slope determined at a proper 
temperature, TP. 

To complete the system of equations, Ohm's law can be applied in the vertical 
direction: 

i 

I 0 = pcp(Ta, i-I - Ta, J/Ri (i = 1 to n) (6) 
j=n 

i 

I ).Ej = (pcpfy) (ea, i- 1 - ea, J/Ri (i = 1 to n) (7) 
j=n 

where n specifies the total number of layers. 
The driving forces in the vertical direction for sensible and latent heat flux densities 

are, respectively, the differences in pcpTa and pcpeafY between layers, while the flux 
~ensities through R1 are composed of all sources from layers ito n, so that the summation 
is carried out on the left-hand sides ·of Equations (6) and (7). 

Equations (1) through (4) and (6), (7) constitute a closed set of equations. Being 
coupled, they have to be solved simultaneously. A matrix method was developed by 
Waggoner eta/. (1969). Although sophisticated software for solving matrix problems is 
available, explicit analytical solutions are needed to simplify the application of this 
theory and to provide a more direct physical insight into canopy behaviour. The idea 
is to make the equations uncoupled by introducing two linearly independent combi­
nations of C and J..E . 

.2.2. UNCOUPLING 

One of the two required combinations of C and }.E is straightforward. H follows from 
Equation (1) that if a new variable H, called the enthalpy flux density, is defined as: 

H=C+J..E (8) 

the source for H from layer i, following Equation (1 ), can be written as: 

(9) 

Because the net radiation absorbed within each layer is a known variable, H 1 can be 
obtained immediately. 

The driving force for the enthalpy flux density in the vertical direction is the difference 
in pcp(Ta + eafY) between layers, a combination of the driving forces for sensible and 
latent heat flux densities, following the definition of H. The term Ta + eafY is often called 
the equivalent temperature of air, denoted by Tea: 

(10) 

The problem is to find another combination. 
It follows from Equations (1) through (4) that C1 and J..E1 can be rewritten as: 

(11) 
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J.Ei = (Arn, iS; + pcpD;)/(Arn,; + yrv,;) (12) 

where D; is the water vapour pressure deficit of the air in layer i: 

D; = es(Ta, ;) - ea,; · (13) 

To find the other combination, it can be noticed that Equations (11) and (12) only 
contain one property of the air in the form of the vapour pressure deficit, D;. Therefore 
the flux density driven by the difference in D between layers, should be the desired 
combination of the sensible and latent heat flux densities. 

The saturated vapour pressure at air temperature, es(T0 ), can be expressed as: 

(14) 

where TP is the properly chosen temperature for evaluating A, as mentioned before. 
Equation ( 13) can be rewritten as: 

(15) 

By taking the difference of D; between layers i- 1 and i, the constant esCTP)- ATP 
in Equation (15) is eliminated. A subsequent multiplication of both sides with (pcp/A)/R; 
yields: 

(pcP/A)(D;_ 1 - D;)/R; = pcp(Ta, ;- 1 - Ta, ;)/R;­

(yfA)(pcp/'lHea, i- 1 -ea. ;)/R;. (16) 

Referring to Equations (6) and (7) shows that the right-hand side of Equation (16) 
can be written as C/~:- (y/A)AE;*· C;* and J.E;* denote the cumulative sensible and 
latent heat flux densities above layer i, which are the sums of the relevant sources from 
layers i through n as expressed on the left-hand side of Equations (6) and (7). The 
left-hand side of Equation (16) represents a new cumulative flux density denoted now 
by J;*: 

i 

Ji* = I ~ = (pcP/A)(Di-I - D;)/R; (17) 
j=n 

where~ is the source term from layerj. Therefore the desired combination of the sensible 
and latent heat flux densities is: 

J = C- (yjA)J.E (18) 

which is valid for both J;* and J;. _ 
It follows from Equations (11), (12), an~~'(f8) that the source J; is: 

J. = - (pcp/fl)Di + S; 

I YH, i + (J.Ys, i (1 + YH, ;/ars, ;) 

(19) 

where rs is the stomatal resistance defined by Equation (5), and a is defined as: 

a= yj(y+fl). (20) 
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2.3. UNCOUPLED ELECTRICAL ANALOGUES FOR HAND J 

For the required electrical analogue for H, a potential source above the canopy can be 
specified as pcPTea, 0 , in which Tea, 0 is the equivalent temperature of the air at the 
reference height. The current sources are given by Equation (9) for ea~h layer. 

' The electrical analogue is simple, as is shown in Figure 2. The meaning of the symbols 
is the same as those in Figure 1. Now H;* specifies the cumulative flux density above 
layer i, which is the sum of the sources Hi from layers i through n. H;* is positive upward. 
The change of usage is necessary for obtaining a simpler form of solution later. It is 
obvious that the Hts are determined only by the current sources while the potential 
source gives no contribution to the Hts. 

P Cp Te 0 ,o 

r-------IJ-----.--.., 

s, 

Fig. 2. Electrical analogue for enthalpy flux density H. For meaning of symbols, see the text. 

Similar to the electrical analogue for the enthalpy flux density H, a potential source 
above the canopy for J can be specified as (pcp/11)D0 , in which D0 is the vapour pressure 
deficit of the air at the reference height. 

The role of the current sources requires more consideration. First, a diagram can be 
designed for a single layer. Inspection of Equation (19) indicates that Ji is composed of 
two parts. The first term on the right-hand side of Equation (19) is due to the potential 
source (pep/ 11)Di. The diagram can be easily designed, as is shown in Figure 3a. The 
second term on the right-hand side of Equation (19) is caused by the current source Si 
(for the soil surface, the heat flux into the soil G should be subtracted from Si). The 
diagram obtained is shown in Figure 3b. The diagrams in Figure 3a and b can be 
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S-G 

(c) 

Fig. 3. Electrical analogues for J for one sublayer. (a) For the potential source; (b) for the current source; 
(c) combined. 

combined, according to the superposition theorem in electrical theory, as shown in 
Figure 3c. The electrical analogue for the whole canopy can be obtained, based on that 
for the single layers (Figure 4 ). 

2.4. SOLUTIONS FOR THE TOTAL FLUX DENSITIES Hf AND Jf 
The total flux density Hf above the canopy is simply: 

while that of Jf has to be determined from Figure 4. 

(21) 

For simplicity, only four layers are assumed, but the solutions can be easily extended 
to the general case. Under the notation presently used, Jl is now cumulative to each 
layer i, hence Ji = Ji* - Ji*+ 1, and Equation ( 19) becomes: 

(i = 1 to 4) (22) 
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R, 1 J~ 

Fig. 4. Electrical analogue for saturation heat flux density J. For meaning of symbols, see the text. 

where J~ is defined as zero, and ri is defined as: 

(23) 

Thecbther four equations can be obtained for each Ri in the vertical direction: 

(i = 1 to 4) . (24) 

Equations (22) and (24) represent eight equations for eight unknown variables: four Jts 
and four D/s, so that this is a closed system. 

Substituting Equation (22) into Equation (24) and rearranging gives four equations 
for the Jts: 

where 

(R I /r3)J'f + 

(R I /r4)J'f + 

J* 2 

J* 3 

= b1 (25a) 

= b2 (25b) 

(R 2 /r3 )Jj_ + (1 + R3 /r3 )J~- J! = b3 (25c) 

(R 2/r4)Jj_ + (R3 /r4)J~ + (1 + R4/r4)J! = b4 (25d) 

(26) 



MULTI-LAYER MODEL OF VEGETATION 221 

Jf can be solved by using Cramer's rule: 

bl -1 0 0 

b2 1 + R2jr2 -1 0 

b3 R2/r3 1 + R3/r3 -1 

. b4 R2/r4 R3/r4 1 + R4/r4 
Jf = (27) 

1 + Rtfrt -1 0 0 

Rtfr2 1 + R2jr2 -1 0 

Rtfr3 R2/r3 1 + R3/r3 -1 

Rtfr4 R2/r4 R3/r4 1 + R4/r4 

By. denoting the determinant in the denominator in Equation (27) as A 0 , and defining 
the sub-determinants as: 

1 + R2jr2 -1 

AI= R2/r3 1 + R3/r3 

R2/r4 R3/r4 

1 + R3/r3 -1 
A2 = 

R3/r4 1 + R4/r4 

A3 = 1 + R4/r4 

A4 = 1, 

0 

-1 

1 + R4 /r4 

(28) 

(29) 

(30) 

(31) 

Equation (27) can be written in a concise form by unfolding the numerator according 
to the column bi: 

n 

Jt = I (A)Ao)b1 
j=l 

n 

= I (A)A 0 ) [- (pcp/b.)D0 /r1 + (ars,)r)S1 ] . (32) 
j=l 

A recurrent relation between the A/s can be found. Unfolding A 1, for instance, 
according to the first column gives: 

n 

= A 2 + R2 I A)r1 . 
}=2 

(33) 
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n 

Ai=Ai+1 +Ri+l I (A)r) (i = 0 to n - 1) . (34) 
j=i+ 1 

The profiles of J can also be obtained, as well as those of air temperature, vapour 
pre·ssure and leaf temperature. Because these profiles are calculated from the explicit 
expressions, the computing time is greatly reduced, so that the calculation can be 
executed on a microcomputer. But this subject will be left for another article. 

2.5. AN EQUIVALENT EXPRESSION FOR PENMAN'S FORMULAS 

As mentioned above, Penman's formulas are often used for calculating the sensible and 
latent heat flux densities from an evaporating surface: 

C = y*(S- G)- pcPD0 /(R + rH) 

b.+ y* 

J..E = b.(S- G)+ pcPD0 /(R + rH) 

b.+ y* 

(35) 

(36) 

where G is the heat flux density into the soil and y* is the apparent psychrometric 
constant, defined as: 

(37) 

The problem is that no equivalent expressions exist for C and AE in the multi-layer 
model. 

By using the definitions of H and J, Equations (8) and (17), however, Penman's 

formulas can also be expressed in terms of Hand J: 

H=S-G 

J = _ar-=-sC_S_-_G_)_-_(p__,cP<=--/_b. )_D-=-0 

R + rH + ars 

(38) 

(39) 

These equivalent expressions for ~enman's formulas are in fact only special forms of 
Equations (21) and (32) as can be seen as follows. 

For the single-layer model, n = 1, Sj becomes S- G, so that Equation (21) turns out 
to be Equation (38). In this case A 1 = 1, and A0 = 1 + R/(r H + ars), so that 
Equation (32) becomes the same as Equation (39). In fact, C and J..E can be expressed 

in terms of Hand J: 

C = aH + ( 1 - a)J 

},E = ( 1 - a) (H - J) . 

(40) 

(41) 

The familiar Penman equations (35) and (36) are obtained by substituting Equations 
(38) and (39) into (40) and (41) and simplifying. The equivalent Penman's formulas in 
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terms of H and J, Equations (38) and (39), are more pr~ferable; because for both 
single-layer and multi-layer models, the same formulas can be used. 

As a matter of fact, Equations (21) and (32) provide a bridge between the single-layer 
and multi-layer models, from which several conclusions, particularly for the canopy 
resistance rc, can be drawn. This is again, however, beyond the scope of the present 
paper, in which only the theoretical basis of the method is presented. 

2.6. PHYSICAL SIGNIFICANCE OF J 

The :flux densities H and J were introduced during the mathematical process of 
uncoupling. But it can be seen that they have clear physical meanings. The physical 
meaning of His obvious, viz., the total heat or enthalpy flux density. On the contrary, 
the physical meaning of J is not immediately clear and is exposed now. 

The Bowen ratio f3 is defined as the ratio of sensible to latent heat flux densities. It 
can be expressed in terms of Hand J: 

f3 = Cj}.E = [(yfll)H + J]j(H :_ J). (42) 

This equation shows that a unique relationship exists between f3 and J, as long as His 
fixed. The larger the J, the larger the Bowen ratio will be. It can be seen that: 

f3 = y I /l when J = 0 

f3 < yf!l when J < 0 

/3> yj!l when J> 0 

in which the value of yf!l is often called the critical value of the Bowen ratio (Monteith, 
1973). Likewise J = 0 can also be called a critical value. 

According to the preceding derivation, the flux density J is driven by the gradient of 
D. Therefore when J equals zero, the gradient of vapour pressure deficit is zero, and vice 
versa. In this case, },E is equal to (1 - r:x)H or 

J.E = (1 - r:x) (S- G) (43) 

which is often called the equilibrium evaporation rate (Priestley and Taylor, 1972). 
In addition to the three classical flux densities of enthalpy, sensible heat and latent 

heat, it is proper to emphasize the role of J, as a fourth flux density. Together with the 
driving forces (gradients) they are: 

Driving force (gradient): 

temperature T 

vapour pressure e 

equivalent temperature Te 

vapour pressure deficit D 

Flux density: 

sensible heat C 

latent heat }.E 

enthalpy H 

saturation heat J . 

Noting the important role of the vapour pressure deficit in evapotranspiration and the 
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clear physical meaning of the related flux density J, it can be realized that J is not merely 
a mathematical device. It seems proper to give it a name. Here J is called the saturation 
heat flux density. 

3. Discussion and Conclusions 

The saturation heat flux density J is equivalent to 1/12 = -11C + yJ..E, derived by 
McNaughton (1976) in his two-dimensional and single-layer model for evaporation and 
advection. Perrier (1976) has also derived a second-order differential equation for the 
so-called saturation temperature deficit Y = T - Td, where Td is the dew point tempera­
ture. Both their derivations are based on a continuous model in the vertical direction 
rather than on a discrete multi-layer model. 

Because the resulting second-order differential equation cannot be solved analytically 
and a numerical solution based on a difference method has to be used, it is more 
straightforward to derive the equations for J directly from a multi-layer model. Based 
on these equations for the discrete model, an electrical analogue, which gives a clearer 
picture, can be easily designed. 

In the present paper, the quantity J is introduced, based on the linearized saturated 
vapour pressure versus temperature curve. This is only an approximation. Inspection 
of the saturated vapour pressure curve shows that within a 10-deg temperature interval, 
the error caused by the linearization is rather small. Calculations show that for the 
intervals of 10-20, 20-30, and 30-40 oc, the largest relative errors are, respectively, 
4.3, 3.0, and 1.8%,11 being evaluated at the mid-points of the intervals. For a·larger 
interval of 15-3 5 o C, however, the relative error reaches 13.5%. This temperature 
interval is determined in practice by the difference between the highest leaf temperature 
and the lowest air temperature following Equation (4). Under most field conditions, this 
temperature difference is not expected to exceed 10 o C, so that linearization of the 
saturated vapour pressure curve is feasible. 

The substitution of D j 11 by the saturation temperature deficit Y extends unnecessarily 
the temperature interval. The lowest air temperature now is replaced by the lowest dew 
point temperature. The extension depends on the value of D, or more precisely, on the 
relative humidity h. Calculations show that as a rule of thumb, h = 0.5 is equivalent to 
Y = 10 °C. Thus the substitution of Y for D/11 introduces an additional error, which 
becomes substantial when h is small. 

The other basic assumption is related to the substitution of H and J for C and A.E, 
viz., the similarity between the exchange coefficients of heat and water vapour. This is 
a rather good approximati<?n, the conditions for its validity having been extensively 
studied (Monteith, 1973). Obviously, it does not hold for the transfer process in the soil. 
When the substitution is applied to the canopy, the heat flux density into the soil at the 
soil surface, G, should be known. If G is unknown and is an output of the simulation 
program as in Goudriaan's model (1977), an iteration method has to be used. 

The treatment in the present paper is different from that by Shuttleworth (1976). He 
derived his combination equation based on the redefinition of the relevant resistances, 
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~.g., rn and rv. The introduction of Hand J retains all the resistances in an orelinary 
sense, and the electrical analogues thus developed use the concepts of the potential and 
current sources in a standard way. 

Based on these considerations, the following conclusions can be drawn: 
(a) To study transpiration from a canopy, flux densities of enthalpy Hand saturation 

heat J are preferred to flux densities of sensible heat C and latent heat }£, because the 
rest\lCng equations are uncoupled. 

(b) The flux density J is uniquely related to the Bowen ratio at each value of H. The 
equilibrium evaporation rate occurs when J = 0. 

(c) The electrical analogues for H and J provide a method of calculating the flux 
densities; the method is applicable to both single-layer models and multi-layer models. 
In the case of single-layer models, the derived formulas for Hand J are another version 
of the familiar Penman formulas for C and }..£, 
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