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NOTE 1004 October 1977 

DEFINITION OF THE DRAINAGE FILTER PROBLEM 

Prof. D. Zaslavsky 

Nota's .van het Instituut ZlJn in principe Interne communicatiemidde­
len, dus geen offici!He publikaties. 
Hun inhoud varieert sterk en kan zowel betrekking hebben op een 
eenvoudige weergave van cijferreeksen, als op een conetuderende 
discussie van onderzoekare sultaten. In de meeste gevallen zullen de 
conclusies echter van voorlopige aard zijn omdat het onderzoek nog 
niet is afgesloten. 
Bepaalde nota's komen niet voo1• ver sp1•eidlng buiten het Instituut 
in aanmerking. 
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Ta s k s of a f i 1 te r ar o un d a n u n de r g 110 u n d d r a in a ge 

filter 

It is common to consider the following 

I. Re~ention of soil particles that may enter the drainage pipe and 

cause its clogging. For some sensitive structures it is important 

to prevent settlements due to soil transportation by drainage 

water. 

2. Increasing the effective permeable diameter of the drainage pipe. 

This is dpne in two W<\YS 

a. By actually increasing the permeable diamete1• reducing the 

radial r.esistance by the.logarithmic rat!o of the original 

diameter D
0 

and the enlar ged one Df so that the decreased 

resistançe is by 

ln D/R 
ln D /R ·o 

N 
.C:.jD 
__ .::.0. 

ln D /R 
0 

(1) 

where R ie some equivalent distance of the 1·adial l'esistance 

part of the flow and-Ll.is Df - D
0 

... The denominator has a value 

of 4 - 5 clearly a 50o/o increase in D givee only a bout 1 Oo/o 
0 

reduction in radial resistance, 

b. The secoud form of reducing the radial resistance is by 

increasing the effective perforatien of the d1•ainage pipe almast 

to infinity. The local contraction of streamlines. towards pipe 

perforation is over a distance which is of the same order of 
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magnitude as the distance between perforation holes. 

KIRKHAM andSCHWAB (1950, 1951). 

Here the effec~ is different for cor1•ugated plastic pipe s where 

the filter bridges over the corrugation and can farm a continuous 

finely perforated surface even when very thin. Without the 

corrugations the filter must have a certain thickness to allow 

for easy latteral flow towards holes in the pipe's circurnference. 

3. Integration of cracks, root poles and,other permeable elements 

in the ground. The lar gen the perimeter of the filter the lar ger is 

the probability of such integration, 

4. Junc~ion of latterals and main pipeij. 

5. Short circuiting pa1·tially clogged drains letting the water bypass 

the clogged part. 

6. Increasing the hydraulic conveyance capacity of the pipe. 

The main uses are the first two. Under present prices of pipes and 

filters it will nat pay to increase diameter by a thick filter. Rather 

it is cheaper to increase the pipe itself. 

The cast price of meter drainage increas es with the diameter whether 

by a larger pipe ar a thicker filter. Bath from a hydraulic point of 

view and from the point of view of performance probability there 

exists an alternative of instaHing a denser d1•ainage system. There 

must be an optim\lm which is difficult to calculate. Neverthele ss 

there is a trade-off between pipl' effective diameter and other 

improvements and it is therefore quite questionable. The proper 

minimum diameter seems to be determ!ned by maintenance 

requirements and higher diameters by hydraulic conveyance 

requirements. 

Thus we are left with two main uses of the filter. 

1. Holding back of soil grains. 

2. 'Approaching an ideal continuous perforation. 
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Materials tried for filters 

Numerous materials have beentried as filters. For the following 

a simple classification will be 

1. Gravel 

These were used more than any other filter and usually with 

success. They are rather expensive l almast doubling the price of 

underground drainage. 

The gravel filters have all the advantages of bulky filte1•s. Insome 

heavy soils they are absolutely essential. This is because the d1•ain 

must be layed below the plough laye1• while the so\1 at this depth 

te~ds to. be absolutely imp.ermeable. 

2. Artificial aggregates produced from I'Oil (DIERICKX ET AL). 

The aggregates have been produced by using portland cement, 

lime aaphalt emulsions and poliroe resins of various kinds. It is 

easy to show that the cheapest among these would be with portland 

cement or lime. Still at about 5% level by weight to rvoduce the 

aggregate the ratio of 1/20 between the co st of aggregate per 

ton and cement per ton is roughly the break even point. In most 

cases artificial aggregates will not be economical as were 

substitutes for gravel filters. 

Artificial aggregates 11.ay have some merits if used in a smaller 

quantity around the drainage pipe by some special technique. It 

mayalso become interesting when gravel are rare and expensive 

or when they cannot prevent effectivdy soil partiele transport. 

3. Fibrous filters 

These were made of natural materials such as coconut fibers 

or peat and synthetic materials or felt like or actual cloth. 

There exist many examples of glass plastics and other fibers. 

The main experience with such filte1•s can be summarised as 

follows. 

a. Fine filters clog by clay accumulation on its surface and 

possibly by deposition of or ganic matte•• and chemicals. 
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b. Thin coarse filters do not fulfil their taks as they let particles 

of silt to enter the drain which wilt easily settie and will not 

he wasbed out. 

c. Thick and coarse filters have worked well. 

There is no proved explanation for this experience. However an 

attempt may be made her('. 

Why thick and coarse filters wot·k· 

The theory of detachement of soil particles has been formulated 

and demonstrated elsewhere (ZA SLA VSKY, KASSIFF. 1965). 

Particles smaller than the filter's hole leave the soil. Larger 

particles remain bebind. This process may continue until the 

soil stabUizes and an inverted natura! soil filter forms gradually. 

changing from coarse to fine grains. 

If the filter is too coarse and conditions fit. the erosive process 

may continue almost without a chance for stabilization. If the 

filter is thin and fine all the small particles will he stopped at one 

thin surface and pract ically clog it. However with a thicker filter 

the fine particles leaving the soil into the filter will be stopped 

somewhere in the filter. Each partiele will be stopped at some 

other filter' s depth. The probability of filling up the filter 

completely over a continuons surface and thus clogging it is 

minimaL The inverted natura! soil filter has an oppo:rtunity to 

develop. It then stahilizes the soil against further erosion while 

somewhat increasing the effective thickness of the filter. 

A 1 t e r. n a t i v e a p p r o a c h e s t o d r a i n a g e f i 1 t e r 

It would be economical to use thin and coarse filters. However such 

filters would he effective only if in the soU there would be large 

enough particles or aggregates that will form the inverted soil 

filter with little silting into the drainage pipe, 

AÜernatively a finer filter could have been used if there would he 

no free fines in the soU. 
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The above may be achieve,d where the soil has stabie q_ggregates. This 

is really the expe)'ience in many clay soils with high .cohesion and 

stabie aggregates when practically no filter is necessary for the 

prevention of clogging. 

The use of a soil conditioner can be tded. Differing from the 

approach of producing a bulk of soil aggregates '!-round the pipe 

we wish only to treat a relatively thin layer around the drain. 

Alternatively we can formulate our probl~m in eliminating from 

the soil particles smallerthansome 50 - 100 microns in size. 

In other words the requirement is not to produce large aggregates 

but to prevent clogging of fine fîltel' s or faiture of coar se thin 

filters. 

Preliminary experiments 

In the following there are typical results intheuse of 'Lima' soil 

conditioner on various soils. Clearly it increases the effective 

aggregate diameter and can practically eliminate any fines in the 

clay fraction and the finer silt fraction. 

This soil conditioner is water soluble befare it is adsorbed on 

the soil. The soil is stabilized practically as soon as it comes in 

contact with the 'Lima' solution. 

Therefore it has been thought that the filter can be soaked with 

a soil conditioner salution and the soil that will come in contact 

with the filter will become stabilized. In other wo:rds the soil 

immediately in contact with the filter will have no fine loose 

particles. 

A special permcameter has been built to try this concept. A thin 

and reiatively co ar se filter that permitted. soU pa1·tlcle s to pass 

through, became effective after the treatment which involved soaking 

with 5% 'Lima' solution. It still has to be shown that there is no 

appreciable clogging by clay accumulation at the outer filter 

surface. 
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Further work 

A program has been drawn for a series of exper!ments with specially 

designed erosionmeters where the outflow hy~r.au.tic gradients at 

which soil .detachement starts is observed. lt is pos.sible to instaU 

standard sieves of hole diameter D , The important measurement 
s 

is j (D ) {the outflow gradient as a function of the hole diameter) 
s 

for each soil {ZA SLA VSKY; KASSIFF,' '1965). 

The metbod of application of the soil cönditioner should be stuclied 

in coordination with drainage machine builder s.' Contact in that 

respect have been made with Steenbergen B.V. It is possible to spray 

soil aggregates at different .stages of.the drainage installation. 
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APPE:NDIX I 

Typical test results with a soil stabilizer 

1 . Typical results of wet sieving after treatment with various 

stahilizing agents (The different enumerated stabilizers are 

preeaarsers of 1Lima 1
). 

Table 1 

The soil: Loess of Northern Negev: Clay 38o/o, Silt 49o/o, Sand 13o/o. 

Tests 1narked with Ji,. have been clone on a different loess, 30o/o Clay, 

'>9'7o Silt and 11o/o Sand. 

'7o of stabilizer by 0. 025 
wei ·ht 

larg. lar g. 
"'ype of stabilizer than than 

0.25 0. 1 

1 2 3 

Water alone 14.8 36.2 
Krikium 19. 5 39. 2 
Gat flock 
Russian 
Lignosulfonate 
Lignosulfonate 0. 25o/o 
Norling II da 22.4 38. 1 
Lignosulfonate 0. 25o/o 
Norling 41 
Lignosulfonate 
Serla Sol N 
Lignosulfonate 
w 88 c 
Portland cement 

Stabilizer 16 
Sta bilizer 15 
Sta bilizer·1 
Stabilizer 30 
Sta bilizer 29 
Sta bilizer 31 a 
Stabilizer 31 b 
Sta bilizer 35Ji,. 
Sta bilizer 41 31. 1 54. 3 
Sta b. ·41 afte}i. 
spray drying 
Stabilizer 42 31.4 50.8 
Stab. 42 afte}i. 
spray drying 
Stab. 43 after 
spray· drying 

0. 050 0. 075 0. 100 

'7o stable aggregates by weight 

larg. larg. larg. larg. larg. larg. 
than than than than than than 
0. 25 0. 1 0. 25 0. 1 0. 25 0. 1 

4 5 6 7 8 9 

21. 6 42.3 23.4 44.7 28. 1 49.3 
38. 5 49. 5 45.0 56. 9 47.5 61.2 

17. 3 40. 1 20.2 44.5 
0. 50o/o 0.75o/o 1 . Oo/o 

27.8 43. 9 39.0 52.4 39.6 54.0 
0. 50o/o 0.75o/o 1. Oo/o 

46. 1 59. 2 
1 . Oo/o 

24."2 41. 6 
1. Oo/o 

33.4 48.6 
0. 50o/o 1 . Oo/o 

27.5 48. 6 32. 5 55.0 
25. 5 49.5 35. 3 60. 3 34. 7 60. 1 

55. 6 77. 2 
22. 2 47.2 29. 5 54. 7 28. 1 54. 1 
29.8 58.1 43.6 66.0 
21. 7 39.8 30.9 61. 6 

50.3 70.0 
50.2 68.8 
45.3 64. 6 

44.6 68. 5 47.4 67.0 53. 5 73. 1 

67.9 81. 9 
47. 1 65.8 55.2 72. 3 60.0 74.5 

57. 0 75.6 

61. 0 78. 2 

7 

0. 200 

larg. larg. 
than than 
0.25 0. 1 

10 1 1 

32. 1 53. 4 
51. 0 74. 9 

22.6 46. 2 
2. Oo/o 

55. 1 67. 8 
2. Oo/o 

57.0 69. 2 
2. Oo/o 

35.9 50.9 
2. Oo/o 

36. 2 51. 1 
2. Oo/o 

42. 5 66. 6 
42. 1 64. 5 
58. 3 76. 5 
45. 1 65.4 
59.7 80.3 
66.4 86. 5 

50. 7 69. 2 
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2. Typical results for clay soil Nes Amim-Israel by wet sieving 

0. 5o/o Lima no treatment 

lar ger than 2 mm 37. 6 % 6.5 

I -2 mm 32.7 % I 5. 5 

0. 5 -I mm 18. 5 % 35.8 

0.25 - 0. 5 mm 6. 38 o/o 2i.9 

larger than 0. 25 mm 95. 44 % 81. 6 

0. I - 0. 25 mm 4. 93 o/o 14. 7 

lar ger than 0. I mm 100.4 % 90.2 

average weight 

diameter mm I. 24 0.575 

3. Experiments with stabilized Loess with 0. lo/o Lima was conducted 

with two types aggregates 0. 84 - 2 mm and 0. 42 - 0. 84 mm. 

8 

In both cases there was no obvious settiement of the aggregat<os 

in the permeameter after wetting while ther e was I Oo/o settiement 

in the stabilized soil. 

The respective pe1•meabilities to air were related to permeability 

with water (k /k ) 
a w 

A ggregate seize instability 

0.84 2 mm untreated (k /k ) = 675 386 
a w 

0.84 2 mm stabilized {k /k ) = 11 0 29 
a w 

0.4~ 0. 84 mm untreated (k /k ) = 64 40 
a w 

0.42 0. 84 mm stabilized {k /k ) = 27 ~ I 6 
a w • 

Clearly the stabilized soil maintains hydraulic conductivity 

that can be 2. 5 - 12 times lar ger than the untreated soil. 
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APPENDIX Il 

Stability of Soil Fragrnents Against Seepage Farces 

II. 1 Piping of Non-cohesive Material 

Consider a soil surface making an angle 0( with the horizon 

or slope m = tan<i(Figure 1). Consider also a unit vector 

normal to the soil surface and pointing out of the soil. A flux 

F1g. I Outflow scep"-gc from sloping surface 
q - water liux vector 
F - submergcd weight oJ soil fraction 

g 
g • vani.shes in isotrOpie soi.l wnh 

equipotcnltal sail surface 

vector q makes an angle with this unit vector. As suming 

moderate head differ _·,ces in the water above the soil surface, 

equipotentials will be parallel to the soil surface. {This will 

not be the case with a thin water layer flowing downhili called 

seepage force). The hydra•.llic gradients will be orthogonal 

to the soil surface. Thus, any angle f between _g and ln, the 

normal unit vector, will be only in anisatrapie soil. For 

the sake of simplicity, only the isotropie and orthogonal case 

will be treated. The gene1·al case is then straightforward. 

The net submerged weight of a partiele (for the total volume 

including pores) l~ is as·follows: 

F -g = - { 1 " n) { t s - /( w) V 1 z II. 1 

l is the unit weight of the pore-free solid material, V the s Iw 
unit weight of soil solution, V volume of the soil fragment, 

lz unit vector in an upward direction, n is the poro&o~y, 

z elevation. 

The component normal to the soil surface ( direetion of ln) is 

F 
gn 

=I F lcoso<'..=- {1- n) U's- 'iw) -.f cos J_ 
g 

The seepage force {assnming orthogonality) is 

F 
sn = V fw grad% 

II. 2 

II. 3 
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10 

Thus, a flow, out of the soil, has a positive flux q and a 

negative gradient grad ~. and, F is positive. Combining F gn gn 
of equation II. 2 and F of equation II. 3 the total active 

sn 
force is 

F 
a 

= - V [ l grad ~ + ( 1 - n) { f s - Iw) cos 
' , I 

,rf.._ j 

-' 
II. 4 

In a cohesionless soil this force must be positive to cause 

pip ing. In other words, the condition for pi ping is that 

(!;rad ~ 1 n 

- n) (A - 'I ) 
s w 

)1 
cos .' 

"'-

1'his is a generalization of the commonly presented piping 

formula for horizontal soil surface {usually called boiling or 

quicksand). Several conclusions {almost trivial) may be 

drawn here. 

a. An outward flow {grad ~ < 0) may cause piping. 

Infiltration {grad ~ 70) is a stahilizing mechanism. 

b. On a high slope {cos 0/ . .(1) the conditions are less stable 

against piping. Here the stability of a single aggregate 

is considered regardless of the possibility that the slope 

as a whole may become instable at Di approaching the 

internal friction angle. It is realistic to consider larger 

value s of a C>l only if there is an incoming seepage that 

acts as a stabilizer or if some other processes such as 

electro-osmosis are being used for stabilization. 

c. Under the same gradients and cohesion, a compacted 

material ( small n) will be more stable. 

d. Any mechanism increasing the outward gradient or 

decreasing the inward gradient will dee1·ease stability, 

against other farces such drag by flowing water, splashing 

by raindrops, earthquakes etc. 
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One of the more significant conclusions can be drawn by 

substituting grad pi in II. 5 by ( q/k). The piping can occur by an 

extremely small flux of water if the conductivity is srnall. 

Furthermore grad pi rnay be large over an extremely srnall 

soil volume ( cavitation point) and pi ping will occur with an 

extremely small water di schar ge. Th is is already in line 

with some observations. 

II. 2 St a bi 1 i t y a ga ins t pip in g in a co he s i v e s o i l 

In equation II. 4 tl.e gravity, floatation and secpage forces have 

.been summed up. In the case that there is a net force F that 
a 

te'nds to detach the parÜcle frorn its place, there will develop 

an adhesive force F as a reaction. Let us assume the 
c 

maximum average tensile stress T between aggregates and 

a contact area A (without any moments) 

F =at A 
c 

II. 6 

where a is some geometrie coefficient and A a surface area 

of this soil fragment. The direction of F is always colinear 
c 

and opposite to the net force in II. 4. 

For a soil fragment to be unsta ble the criterion is now 

- V c~ gr ad pi + ( 1 - n) ( l - ( ) cos ,,.:_ a T A I I. 7 
0 w s w 

rearranging equation II. 7 and putting (V /a A) = bD where D is 

an eqaivalent partiele diameter and ba geometrie coefficient 

one gets as a criterion for instp.bility 

cos ..... -· ' 1 II. 8 

To somewhat simplify equation II. 8 we note an outward 

gradient by j = - grad pi . An aggregate will be unstable if 

bD 
T 

.. lwj- (1 - n) ( :_{ - ) ·) cos..!.. .)ti 
.. s w. . 

II. 9 

11 
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If the outward flux _q is known {assuming an isotropie 

equipotential soil surface) then in place of equation II. 9 one 

_can write 

bB-ft .9. - ( 1 - n) ( 'I - b ) cos <>'.])i 
TLW K s w 

II. 10 

Many heavy soils may develop tensile strengthof up to 

T = 0. 1 kg/cm and when compactedeven as high as 1 kg/cm. 

For the following estimate, one can copsider b as being 

round unity. Clearly 

II. 11 

And therefore for highly cohesive soils the criterion for 

stability of a fragment against piping is 

t 
T 

D J'j t' 1 
w ' 

n. 12 

The neglected term here is ( 1- n) ( 1 - 'I ) cos ,!_. 
2 s w 

If T = 0. 1 kg/cm , then the product r:;>j must be of the order 
2 . 

of 10 . Clearly the neglected term which is at best of the 

order of a unity is negligible. It \s interesting to no·oe, that 

for the partiele diameter D = · 0. 1 cm, j must be of the order 

of 1000. This is what was actually found in experiments 

(ZA SLA VSKY and KASSIFF, 1965). It explains why in 

cohesive soil, splashing by raindrops or free swelling 

and dispersion are necessary to produce appreciable 

erosion. The momentary outward gradients developed by a 

raindrop can be very high. A highly dispersed swollen clay 

has a lower T. 

Evidently, lar ge soil portions will be more ea sily washed 

out because of larger D and smaller T. This is really the 

experience in.channels through cohesive soils where aften 

large chunks of soil fall out from the bank into the water 

stream. However for lar ger soil po1·tions the hydraulic 
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