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1. Introduction

1.1, Development

Development means a coherent znd irreversible change of a number of properties of
a being (usually living) when it gets older. Basically the pattern of change is
repeated in individuals of the same species, so that it is possible to establish a
series of stages that every individual goes through.

Usually a reproductive phase of life succeeds a juvenile phase, without reproduc—
tive activity. In the last phase of life, when senescence occurs, the probability
to die will strongly increase. For interaction with other species it is important
to know how predation activity or also vulnerability for predation develop with
age.

In population dynamics not just one individual is studied, and a means to describe
the age or development composition of a whole population is needed. When the ave-

rage composition is always the same, an average population characteristic may suf-

" fice. But seasonal changes often trigger the onset of population growth, so that

the age distribution is changing all the time. Then, also population charac-

teristics as relative reproductive rate change with the season,

1.2. Ageing and a development scale

Age dependent characteristics, such as reproductive activity or relative death
rate, are in fact not a function of age but of internal development. Still age is
often used as an indicator of the development because development and age are
highly correlated. Especially in warm-bleoded animals the internal environment is

well stabilised so that external conditions have 1ittle influence on the rate of




ageing. In cold-blooded animals and in plents, development is poorly related with
age, because the rate of cevelopment is .1 but constant. Under influence of the
environmental coﬁditigns the rate of development may be altered. The way in which
environmental conditions Influence the rzte of development,is an important subject
of experimental research. Ideally one would hope for this research to lead to the
construction of a scale of development which is uniquely and linearly related to
the integral of the develcrmental effect of the environmental conditions. Impor-

tant developmental transitions, such as czset of flowering, are then not neces- ;

sarily equally spaced on the developmentzl scale,

Fig. 1 A distribution of population density ¢ with stage of development g

For most plant species the basis for the development scale is the temperature sum,
defined as the integral of the excess of the daily mean temperature above a thres-
hold temperature. In this simple situation the rate of development is proportional
to temperature, but the diifferent stages cay well be separated by different incre-

" ments in the temperature stm.
1.3. A mathematical formulation of development.

On a linear scale -of development, the rate of development v is constant for con-
stant environmental conditions. Rate of ageing is essentially dimensionless, be-
cause age is expressed in time, but rate of development has the unit development
(g) per time (t).

To describe the age (or development) distribution of the population a density
function ¢ (Fig. 1) is needed. This density will also be called concentration
because it is a measure of the degree of concentration of individuals at a certain

age, Its unit is number of individuals per development unit (g-l). It is clear
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that the numerical value of the concentration depends on the arbitrary choice of

this unit. The size of the total developing population is given by
2

H = J[ c (g) dg (1)

(o]

where B¢ is the upper limit of the particular development bracket, e.g. the moment
of molting, the onset of fruiting etc. Development means that the value of g of
each individual increases with a rate v. Therefore development can be visualised

as a shift to right in Fig. 1. Mathematically this can be expressed as

(2)
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where the latter equality is based on the assumption that v is independent of g.
This assumption can always be realized by a linearization of the developmental
scale versus some accumulated external factor, and if necessary by a breaking up

of this scale in pieces that are internally homogeneous in environmental response.

Q
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Fig. 2 Outflow shows a delay , and may be dispersed (dashed line)
1.4. Delay and dispersion
In the simplest situation there is no death, and only when an individual has
reached the final development stage gg @ transition to another phase occurs. This

will happen some time after the entrance of this individual into the development

process. When the development rate is constant, there is a constant delay and the
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shape of the outflow curve is exactly équal to the shape of the inflow curve. In
this simple situation the total delay period is by definition equal to the final

development state g divided by the development rate v so that:

Q (£) = Q. (t - g /) (3)

out

where Qout is outflow and Qin is inflow.

When thé inflow Qin shows a peak at time tl’ the outflow Qout should show exactly
the same peak at time tl + 8¢ / v. (Fig. 2). Of course, in reality some dispersion
may occur during development up to stage g..

Then a time course of Q0 may be observed as given by the dashed line in Fig 2, In
this situation, Eqn 2 is not adequate and must be extended to allow for disper-
sion, as described in the next pages. )

At this point the concept of dispersion deserves some attention. Dispersion is
vaguely described as moving away from a densely populated centre to underpopulated
areas. This means that dispersion tends to level out peaks and dips in the distri-
bution of the population. Usually the process of dispersion occurs in true space,
but here it occurs in the degree of development. The quantitative description of
dispersion is often based on the analogy with physical diffusion processes, becau~-
se diffusion aiso causes a levelling out of peaks and dips. Because of its simpli-
city of formulation we shall also use this analogy, but still a warning is neces-
sary. In physical diffusion the driving force for the levelling process is formed
by a gradient in concentration. In dispersion of development the driving force is
the inherent variability of the rate of development. An important consequence of
this difference is that backward movement is impossible, whereas in a physicalb
diffusion process a strong concentration gradient may drive the net flow opposite
to the general mass flow.

First the situation must be considered when there is no dispersion at all. The
problem we face in numerical modelling is that it is very hard to avoid an artifi-
cial dispersion, that is caused by the model structure itself. The reasons for

such an artificial dispersion will be discussed in the next pages.
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2. Some numerical methods
2.1. Discretization 'in time

To solve numerically the differential equations for the rate of change of devel-
opment and of concentration a discretization of time is necessary.

Errors introduced by this discretization depend on the time resolution of the
integration interval, and also on the chosen integration method (Goudriaan 2.3.
In: Penning de Vries and Van Laar, 1982). Simulation languages such as CSMP pro-
vide convenient software for the organization of the time axis. Ideally the time
axis should be discretized to such a high degree of resolution that further refi-~
nement does not improve the results. With CSMP or a similar simulation language
this ideal situation can be very closely approximated, except in extremely large
or complicated simulation models.

Given these software tools, also the representation of the inflow curve (Fig. 2)
does not present particular problems. When its shape must be externally provided,
that means as an independent function of time, sufficient accuracy can be obtained
by reading a table of points on the input curve and using an appropriate interpo-
lation method. When on the bther hand the inflow must be generated in the model
itself, it is the time resolution of the integration method that determines the
accuracy, and in this respect there is no difference with the simulation of any

other flow or state variable in the model.

2.2. TFixed boxcar train, the escalator boxcar train, and the fractional boxcar

train

Next, the development axis of the population is discretized into a number of clas-
ses, equal in width. It is clear that the resolution increases with the number of

classes that we choose, but so does the computational effort. »

After the discretization into N classes we can rewrite the integral expression

(Eqn 1) into a summation:

(4)

c
1

=¥}
"
noes oz

v
i i
where y is the width of the developmental classes expressed in developmental
units, and ey is the average concentration in each class 1.

The distribution of the population with respect to development is assumed to be

known at time zero. For further handling of the classes a crucial choice must be
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Fig. 3 A cascade of water tanks as a physical model of the fixed boxcartrain

made. It is possible to fix the class boundaries with respect to development, but
it is also possible to follow the population classes in their development and let
the class boundaries move with the same development rate. The two methods will be
termed the fixed boxcar train acd the esczlator boxcar train, respectively. Which
one we choose is largely determined by the amount of dispersion that we want to
simulate. \

In the escalator boxcar train the boundaries move with the same development rate
as the individuals. Therefore ttere is no exchange of individuals across the boun-
daries and dispersion does not cccur.

In the fixed boxcar train a continuous through flow of individuals occurs across
the fixed boundaries. This flow does not oanly mean development, but also implies
dispersion, because it establistes forward exchange between boxes.

In mathematical terms the fixed boxcar train describes the population distribution
in FEulerian coordinates, and the escalator boxcar train in Lagrangian coordinates.
The fractional boxcar train is z hybridizztion of these two methods. It offers the

possibility to modify the dispersion during simulation relative to the delay.
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3. Fixed toxcartrain
3.1. 1Its delay . R

A cascade of water tanks (Fig.3) is a model of the fixed boxcar train. The flow

out of a box is assumed to be proportional to its contents H azd inversely propor-

tional to a time constant T :
= H, /1 (5)

where i denotes the number of the box, and Qi the flow from box i-l to box i.
The average residence time T in box i can be found as the difference between the

average time of outflow ti and the average time of inflow ti:

+1

(6)

T =

fg
6fh € q,dt

uff
&) t Qi+1 dt
t t
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o : o
To evaluate this expression it is mecessary to assume that the box starts empty,
and is practically empty again at time tf. This means that the inflow shows a
flush, and that tf is chosen sufficiently long after the inflow has returned to
zero, sc that the outflow has become zero as well (Fig. 1). Under this condition

the integrals of inflow and outflow are the same so that Eqn. (6) can be written

as
jf
- t (Q,,, - Q)dt
T = A i+l i )
& |
Qyp oF
o
dHi
Because Qi+1 - Qi is equal to - 3T this expression becomes
te
S e
T = . (8)

)//f
Q4 dF

o]




N
o

P

t

f
Tntegraticn Ty parts of J[ t dHi, and using that t Hi equals zero at both time
0

zero and tize t, gives

T = : (9)

XN

vow the re.atioaship setween outflow and contents (Eqn 5) must be used, which says
that Hi is always T times as large as Qi+l' This relation also holds for their
integrals so that incdezed T is equal to T.

Tt should be noted thzt in this derivatioz about the average residence time no
assumption was ctade &dout the shape of the inflow. Therefore it is valid for each
Sox in the cascade, even though the shape of the inflow curve may be altered on
its way through the cascade. Because the boxes are connected in series, and all

material mist pass through all boxes the important conclusion can be drawn that:

- The totzl mean delay in the boxcar train is the sum of the delays in the

individual boxes.
3.2. Its dispersion
The variance of the time of outflow from & box will usually be larger than that of
the time of inflow. The difference is the dispersion added by the residence in the

e . . . 2,
box. The cefinition of the dispersion o, 1§

t E t

£ £
2 2
2 / (-0 Qy 9t / (t -t Q dt
C [ - o (10)
fr te
/ Qi—:l de ./ Qi at
(e} o]

Using the sace technique as in the previous paragraph it can be shown that

02 =12 (11)
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Because each -cx in the cascade will add this acount of dispersion, whatever its
position in trne cascade, the conclusion can be drawn that:

Mg
- The total cdiscersion by a boxcar train is the sum of the dispersions by the

individual boxes.

Fig 4. Higher orcer delays show less dispersion

3.3. The overzll behaviour
\
It follows from the preceding paragraphs that the total delay time TN and the

2

total variance of the time of outflow ¢ N are given by:

Ty =AN-[ (12)

szq =X 12 (13)

Consequently, the coefficient of variation of the outflow is equal to:

= — | (14)

These simple relztionships show that the relative dispersion, caused by the fixed
boxcar train, cecreases as the number of boxes in the boxcar train increases. This
type of chained exponential delays is also often termed an Nth- order delay, where
N indicates the number of boxes. The dynamic response of the outflow to a step
wise change in the inflow is given in Fig. 4, for different values of N (Ferrari,
1978). An analvtical expression for the contents of each box in the cascade was

given by Goudriaan (1973).




3.4 Varizble rate of development

When the rate of development v is variable with time, Eqn 5 must be replaced by

the fellowing equation:

QUi =V &y (15)
To obtain the differential equation for Hi the concentration ey must be expressed

in Hi and in the developmental width y of box i (see also Eqn 4):

o, = Hi/y (16)

These two equations can be combined to

Qg = By (a7
v Y

The rate of increase of the physiological time g is equal to the rate of develop-

ment v
dg = v dt (18)

Using Eqn 17 and 18, the derivation of the average residence time and of the dis-
persion in paragraph 3.1 and 3.2 can be entirely written in terms of development
instead of time. The coefficient y replaces the time constant t, and so the dura-
tion of residence in a box expressed in phys%ological time units is also v. The
physiological time g itself is replaced by g’ v dt' . The physiological age of the
individuals in the boxcartrain is given by the index number of the box, multiplied

with vy,

4. The escalator boxcar train
4.1, Its functioning

The discretization of the population into N boxes of width y is not different from
the fixed boxcar train. But because the boundaries between the boxes now also
"age", they move together with the population and the flow across the boundaries
is zero. The following example can clarify the principle of the escalator boxcar

train. In an imaginary school children are admitted on their 6th birthday and they
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leave the school on their lithAbirthday. The school year starts on September l. At
that moment the school has 6 grades (or classes or boxes). In the first class are
only children that were born between August 31 6 years ago and September 1 7
years ago, in the second clzss born between August 31 7 years ago and September 1
8 years ago etc. No children repeat a class. At the beginning of the school year
all children in the first class are six years old, and all children in the six
class are eleven years old. During the school year all children celebrate their
birthday, but only those of the last class must leave the school when they become
12 years old. The children in the other classes stay in their class. The sixth
class will gradually loose zll its pupils, but for the school as a whole this loss
is compensated by admission of children who become six years old. To accommodate
these children a zero'th class is established. At September 1 it is still empty,
but it will gradually receive newcomers and by the next first of September this
class will be termed the first class. Then also the number of the other classes is
increased by unity. From then on these children will stay together, untill they

. th :
leave the six class due to their age.
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Fig. 5 Shift of the classes over the development scale with time in the

escalator boxcartrain
4,2, The mathematical formulation
The only two boundaries thzt are fixed are the beginaing and the end of the

development scale. Therefore the inflow of the boxcar train is not zero, and

neither is the outflow. The inflow is collected in an additional zeroth box:

in (19)
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The outflew is celculated with Egn 15 and removed from the last box:

) = 20

Quue =V oy (20)

To illustraete the computation of cq reference is made to Fig. 5. Because the
boundaries between the boxes "age' themselves, the development width covered by
the last box continuously decreases with increasing physiological age, until it
completely venishes. Before this moment the concentration can be simply calculated

as
oy = He / (y - 8" (21)

where g' stands for the physiological age elapsed since the present last reached
its position of '"last box".

The ratio Cy is constant.

This can be seen by combining Eqns 20 and 2} to

vk

iy (22)
or
diy
-y dt
—_— = 23
B v-g' (23)
Because vdt is the same as dg' also:
4 . .
_N_dl-g) (24)

He v-g'
so that H, and y-g' have the same relative rate of change. Therefore their ratio,
which is CN’ is constant, until g' reaches the value of y. At that moment the last
box vanishes entirely, and the preceding box takes its function. Physically
nothing happens to the intermediate boxes and they can smoothly ﬁove along.
However, we must close the zeroth box and create z new box of newcomers in the
population. To prevent an unwieldy growth of the number of boxes it is convenient
to perform an act of renumbering right at this moment (Fig.5). The last box HN
will receive the contents of the preceding box ané by working backwards to the
zeroth box which will start with zero, the whole boxcar train has undergone a
complete shift. Also the value of g', the development elapsed since the last

shift, must be reset and be decreased with a quantity y.
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4,3, Delay in the escalator boxcar train

The total delay isvthe.ﬁum of the delays in the individual boxes.

The delay in the zeroth box, and also in the last box (with number N) is different
from the delays in those numbered be€ween 1 through N-1. In all these boxes the
residence time T is the same and equal to y/v when v is constant. Their combined
delay is equal to (X-1)7. The total delay in the fixed boxcartrain is Nr, so that
the delay of the zeroth and the last box together must be equal to 1, to obtain
the same total delay.

For the last box the inflow is pulsed, but the outflow is continuous, and constant
during the period T between two shifts, Therefore the mean residence time in the
last box is the arithmetic mean of 0 and T, and equal to it.

In the zeroth box the situation is the opposite; the inflow is continuous and the
outflow is pulsed with interyals 7. Only for a constant rate of inflow is the mean
residence time in the zeroth box now zlso equal to %t ., For a growing rate of
inflow there will be a bias towards a shorter mean residence time, and vice versa.
The first approximation of the bias can be found by assuming a linear increase of
inflow and neglecting the higher order terms. When the inflow Q at time zero is
denoted by Q(o), and its rate of increase by Q'(o) the mean residence time in the

box is equal to '
it (1 —% (Q' (0)/Q(0))

This expression can be found by evaluation of

t t
T - f tht/oj Q dt

o

When T is small enough this bias can be neglected. Then both the zerdth and the
last box each cause a mean delay of %1, making up for the difference that remained
between the total delay in the fixed boxcartrain and in the central boxes in the
" escalator boxcartrain. The methods therefore only differ in their influence on the

dispersion.
4.4, Dispersion in the escalator boxcartrain

No dispersion occurs during the movement from box 1 to box N-1, because their
exchange is zero. Within a box, however, the exchange is perfect. During a devel-
opment cycle y the inflow is collected in box zero, and whatever its variationm, it

is levelled out. Bow much dispersion is added by this process? The answer is,
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unfortunately, that it depends on the shape of the inflow. The stronger the
variaticn of inflow within the tize period of cne development cycle, the higher
the apparent dispersion. The strongest sossible concentration of inflow is in the
form of a single pulse. The outflow froo the last box will occur some time later,
and cover z time span T, equal to y/v. The dispersion around the average time of

outflow ty can be derived by

t
g§= %_ jd (e-t)? q  dt (25)
t

Because during the time span T an amouat Ho must flow out, Qout will be equal to
H /T and B_ cancels.

o o .
Substitution, and solving the integral gives ci = (1/12)r2. But in this equation
the outflow is centred symmetrically zround td. Dependent on when the pulse
arrived in the cyclic development stage, the lower and upper boundaries may vary
between t, - T, t, and t

d d 4’ ‘e
Under the assumption of random arrival the dispersion is doubled so that:

+ 1 resp.

g .2 = 12/6 (26)

L - /& 2n

This equation permits to choose the right number of boxes when the observed c.v.
is small. For instance, when it is 57, 8 boxes are required. An entirely dis~
persion free boxcar train does not exist.

5. The fractional boxcartrain

5.1, Its functioning

With the method of the fixed boxes it is possible to influence the dispersion by

the choice of the number of boxes.
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This nurmber determines the coéfficienf of variation, and fixes it at 1//N. Once it
is chosen, it cannot be changed during the simulation., But in several experimental
data sets there is evidence that the delay and the dispersion are not equally
influenced by for instance temperature, so that the coefficient of variation also
varies. To allow for this change during the simulation a more flexible method than
that of the fixed boxcar train is needed. Such a flexible method can be obtained
by a hybridization of the methods of the fixed and of the escalator boxcar train.
This method will be termed the fractional boxcar train, because it is based on 2
fractional repeated shift.

In the escalator boxcar train a cyclic renumbering occurs, but this can also be
considered as a complete shift to the next box. In the fractional boxcar train not
the complete contents is éhifted, but only a fraction F of it. To compensate for
the smaller amount, it must occur more frequently. Whereas in the escalator boxcar
train the renumbering (or shift) occurs upon completion of the deveiopment cycle v
, in this method the fractional shift occurs upon completing a fraction F only of
the development cycle vy.

The fraction F ranges between 0 and 1. The imaginary escalator school in the pre-
ceding chapter may be turned into a fractional shift school by a quarterly promo-
tion system. Each quarter of the year ome quarter of the box is moved to the next
one (F = 0.25). The choice of the children is not based on age, but determined by
lottery. If this system is always maintained, once can imagine that the children
in the sixth grade show a wide variety of ages. This variety is an expression of
dispersion. By choosing F equal to unity the escalator boxcar train can be retai-
ned with annual promotion of the whole box. On the other hand, F can also be cho-
sen very small. If F is chosen at 1/365, every day.a fraction 1/365 of each box
(selected by lottery) is transferred to the next one. No% effectively the fixed

boxcar train is obtained with a time step of integration of one day.
5.2. Its mathematical function

Because the movement through the boxes is pulsewise, the differential equations
ﬁust be replaced by difference equations. In paragraph 4,2, the cyclic development
g', elapsed since the last shift, was introduced. In the escalator boxcar train g'
triggers the renumbering when it exceeds y. Here, in the fractional boxcar train,
the trigger level is set at Fy. When this level is exceeded the fractional shift
occurs and g' is decreased with the quantity Fy. Also the contents of box i is

decreased:

s T By 7 P50 (28)
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where j counts the nucber of shifts since the start. Here, just like for Equation

&, it is zssu=zd that the preceding box is kept zero. Then Hi 3 will be given by

s

v

- - ]
£, = Hi,o (1-1) (29)

. ) . . th
specizl situation occurs in the zero  box. The contents of this box are en-

tirely transZerred to the first ome, so that upon the shift Ho . =0.

sd
The last box will receive the pulsewise transfer from the previous one, but it
will 'mot loose pulsewise., It will only release its contents gradually according to

Egn 20,
5.3, Its delzy
The first fractional shift does not occur at time zero, but only when g' equals

F¢ . When the development speed v is constant, this happens at time Fy/v, or at

time Ft. The expression for the average residence time T is:

o1 8
(o

i Tt Ho(l—F)j_l F (30)

time quantity transferred

Evaluation of this expression gives

Al

=1 (31)

This result shows that the delay per box is independent of the value of F. Also

the total delzy of the boxcar train is independent of F, and equal to Nt.
5.4, 1Its dispersion

The dispersion can be evaluated by

2 = s
o=k 1 Ggr-o? B a-niTE (2)
t o . )
j=1
deviation quantity transferred




which gives

il = T2, (1-F) (33)

This result shows that the dispersion is linearly related to the value of the
fraction F. This dispersion occurs in each box so that the total dispersion of the

whole boxcar train is

2

o, = X 12 (1-F) (34)
A complication is offered by the dispersioz upon inflow, precisely as in the
escalator boxcar train (Chapter 4.4). The vidth of the zeroth box is Fr at most.
Using the same proportionality as in Chapter 4.4, we must add F2 t2/6 to the

result of Eqn 34
2
o, = T2(N(1-F) + F2/6) (35)

6. The escalator boxcar train, applied to a demographic problem

For demography the best method is the escalator boxcar train, because age which is
used as a characteristic, does not disperse. To illustrate its use, the same
example will be given for the growth of the Dutch population as by De Wit and
Goudriaan (1978). For clarity only the femzle part of the population is simulate&,
the male part being taken for granted.

The age dependence of relative death rate znd of relative birth rate is given in-
Fig. 6. The corresponding fraction of survival FS is found by simulating a single
_cohort from birth onwards. Mathematicelly the relative death rate RDR and the

fraction survival FS are related by:

__ da(Fs)
RDR = - Ty / (ES)

where A stands for age.

The listing of the CSMP-program used is given below. First data are supplied about

the initial age distribution of the population . This is done by a TABLE specifying
the contents of the 20 S-year classes of tte population array W. Then two FUNCTIONS

with a list of coordinate points of the relationship between relative death and




470

relative death rate
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Fig. 6 The age dependence of relative death rate rdr and relative birth rate.

The fraction survival fs (dashed line) 1s a function of rdr.

birth rates and age are supplied. In the INITIAL segment some computations are
done for the discretization of age and development scale, necessary before the
actual simulafion.in the DYNAMIC segment. The simulation itself requires compﬁ—
tation of the rates of change, and of course the integration of these rates, which
is done by the INTGRL statement. Also whole population totals are computed by:
summation over all age classes in a regular FORTRAN DO-loop. The data supplied for
the FUNCTIONs are read by an AFGEN statement.

The shift as explained by the end of chapter 4.2 is performed in subroutine, cal-
led from the main program upon g' reaching vy.

This method results in a smooth time course of total population size and of birth
rate, even on a time scale of one year, which is much smaller than the width of
the boxes. In the method of De Wit ard Goudriaan (1978) there was always thke dan-
ger of a sawtooth behaviour of total population size, if one wanted a fimer time
resolution than the class width. Another disadvantage was that the age boundaries
were defined in a much more complicated way, especially for the so~called pre-class.
Here the role of this pre-class has been taken over by the zero class.This class

has a clear meaning with well defined age boundaries.
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TITLE GROWTH OF A HUMAN POPULATION

FIXED N, 1

* INITIAL CQONTENTS OF AGECLASSES OF 5 YEARS WIDE, IN THOUSANDS

TABLE WI(1-20)=582.,587.,553.,543.,554.,420.,380.,381.,378.,376., ...
330.,323.,298.,226,,150., 70., 25., 13., O.

* AGE DEPENDENCE OF RELATIVE DEATH RATE, IN PROMILLE PER YEAR (FIG 64):
FUNCTION WRDRI=0,,10.,2.5,4.,5.,1.8,7.5,0.8,10.,0.5,15.,0.3,20.,0.3,...
30.,0.6,40.,1.6,50.,4.9,60.,8.5,65,,14.,70.,25.,75.,55., ...

82.5,180,,87.5,380.,92.5,760.,97,5,900,,105.,5900.
* AGE DEPENDENCE OF RELATIVE BIRTH RATE; PER YEAR (FIG 6B):
FUNCTION RBRT=0.,0.,12,5,0.,17.5,0.02,22.5,.137,25.,.166,27.5,.188,...
30.,.166,32.5,.113,37,5,.055,42.5,.016,47.5,.002,50.,,0.,100.,0.
* RATIO OF YOUNG BORN BOYS TO GIRLS
PARAM SEXR=1.048

INITIAL

* 100 YEARS OF AGE IS COVERED IN 20 CLASSES:

PARAM N=20,AGETOT=100.

* RESIDENCE TIME IN ONE AGE CLASS:
TC=AGETOT/N

* DEVELOPMENT RATE; AND DEVELOPMENT WIDTH:
DEVR=1.0/AGETOT
GAMMA=TC*DEVR

* THE FRACTION OF GIRLS IN THE YOUNG BORNS:
FRGIRL=1.0/(1l.0+SEXR)

NOSORT

* CONVERSION OF THE INITIAL THOUSANDS TO INDIVIDUALS:
DO 20 I=1,N

20 WI(I)=WI(I)*1000,

DYRAMIC
NOSORT

* INTEGRAL OF THE DEVELOPMENT RATE
GACC=INTGRL (0. ,DEVR)
* WHEN GACC EXCEEDS GAMMA, THE SHIFT IS APPLIED:
IF(GACC.GE.GAMMA) CALL SHIFT(N,GAMMA,GACC,W,W0)
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*  SUMMATION OF TOTAL BIRTH RATE AND OF TOTAL FEMALE POPULATION:
TBR=0,
Tw=0a
DO 106 I=1,N
FLI=I1
* THE AGE AT THE CENTRE OF EACH CLASS:
AGE=TC* (FLI-0.5) + GACC*AGETOT
TBR=TBR + W(I)*AFGEN(RBRT,AGE)
* THE DEATH RATE OF EACH CLASS:
WR(I)= -W(I)*0.001*AFGEN(WRDRT,AGE)
100 CONTINUE

* THE RATE OF BIRTH OF GIRLS:
WBR=TBR*FRGIRL

* THE ZERO CLASS RECEIVES THE BIRTH RATE, BUT ALSO DEATH
* OCCURS AT AN AGE OF BALF ITS CURRENT WIDTH:
WRO=WBR - WO0*0.001*AFGEN(WRDRT,0.5*GACC*AGETOT)

* INTEGRATIONS
W0 = INTGRL(O.,WRO)
W = INTGRL(WI,WR,20)

* TIME IS EXPRESSED IN YEARS
TIMER FINTIM=50.,DELT=0.5,PRDEL=5.
* TOTAL FEMALE POPULATION TW AND TOTAL BIRTH RATE TBR ARE PRINTED:
PRINT TW,TBR
METHOD RECT
END
STOP
SUBROUTINE SHIFT(N,GAMMA,GACC,H,HO0)
DIMENSION H(N)
DO 300 I=N,2,-1
300 H(I)=H(I-1)
H(1)=HO
HO =0.
GACC=GACC - GAMMA
RETURN !
END
ENDJOB
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